EMI EMC设计秘籍
EMC-EMI之设计技巧与实战设计
EMC/EMI 之设计技巧与实战设计
中心议题:
理解EMC 设计技巧
解决EMC 设计实战难题
本次大讲台的前几部分我们从EMC 元器件的选择与应用技巧、EMC 四大设计技巧、EMC 的PCB 设计技术及EMC/EMI 之综合设计解决方案四方面对电磁兼容器件选型与设计技巧的知识进行了比较系统全面的讲解。
本讲将以
问答的形式,从PCB 设计技巧及抗干扰措施、屏蔽设计要点、手持产品干扰源定位及解决方案等角度探讨电磁兼容设计的设计技巧及实战设计中的难
题,以帮助工程师进一步理解电磁兼容器件选型方法与设计技巧,更好地进
行产品的电磁兼容设计。
理解EMC 设计技巧
Q1:PCB 设计中滤波时选用电感值和电容值的方法是什幺?
A1:电感值的选用除了考虑所想滤掉的噪声频率外,还要考虑瞬时电流的反应能力。
如果LC 的输出端会有机会需要瞬间输出大电流,则电感值太大
会阻碍此大电流流经此电感的速度,增加纹波噪声(ripple noise)。
电容值则和所能容忍的纹波噪声规范值的大小有关。
纹波噪声值要求越小,电容值会
较大。
而电容的ESR/ESL 也会有影响。
另外,如果这LC 是放在开关式电源(switching regulation power)的输出端时,还要注意此LC 所产生的极点零点(pole/zero)对负反馈控制(negative feedback control)回路稳定度的影响。
熟悉电源EMI与EMC设计的必备技能
熟悉电源EMI与EMC设计的必备技能电源EMI与EMC设计是电子设备开发过程中不可忽视的重要环节。
EMI (Electromagnetic Interference)指电磁干扰,EMC(Electromagnetic Compatibility)指电磁兼容性。
不合理的EMI与EMC设计可能导致电子设备在工作时产生干扰,影响设备的正常工作,甚至引发电磁兼容性问题,对设备及其周围环境造成不可预测的影响。
因此,熟悉电源EMI与EMC设计的技能对于从事电子设备开发工作的工程师来说是必不可少的。
首先,了解EMI与EMC的基本概念是理解电源EMI与EMC设计所必需的一步。
EMI是指在电磁环境中电子设备的电磁辐射和电磁感应,一般表现为设备对外部环境的干扰或者设备本身受到外部干扰。
而EMC则是将电子设备在特定环境中正常工作并与其他设备协调工作的能力。
因此,电源EMI与EMC设计旨在减少或避免电子设备对其他设备或环境的干扰,并使其在复杂的电磁环境中正常工作。
其次,了解电源电路中常见的EMI问题非常重要。
在电源设计中,常见的EMI问题包括电源线传导性干扰、电源线辐射性干扰、地线干扰、电源滤波器设计等。
电源线传导性干扰是指电源线上的高频电流在电源线上产生的噪声,可能通过电源线影响其他设备。
电源线辐射性干扰是指电源线上的高频电流引起的电磁辐射,可能干扰到其他设备。
地线干扰是指不同地能耦合在一起产生的噪声,可能对设备产生干扰。
电源滤波器设计的目的是滤除电源线上的高频噪声,减少对其他设备的干扰。
熟悉这些常见的EMI问题,有助于工程师在设计过程中有针对性地解决问题,提高电源EMI与EMC设计的质量。
另外,合理地选择和布置电源元器件也是电源EMI与EMC设计的必备技能。
在电源设计中引入电源滤波器和抑制器件是解决EMI问题的一种常见手段。
电源滤波器的选择应根据设计需求和电源线上的干扰特点进行,以有效地滤除高频噪声。
在布置电源滤波器时,应尽量缩短与其他电子元件和信号线的距离,减少可能的电磁干扰。
EMC-EMI之综合解决方案
EMC-EMI之综合解决方案引言概述:电磁兼容性(EMC)和电磁干扰(EMI)是当今电子设备开发中不可忽视的问题。
随着电子设备的不断发展和普及,电磁辐射和干扰问题也日益突出。
为了确保设备的正常运行和互相兼容,综合解决方案变得至关重要。
本文将介绍EMC-EMI 综合解决方案的五个部分,以及每个部分的详细内容。
一、电磁辐射控制1.1 电磁屏蔽材料的选择:选择合适的电磁屏蔽材料对于控制电磁辐射至关重要。
常见的电磁屏蔽材料包括金属板、导电涂层和电磁屏蔽膜等。
根据设备的具体需求和频率范围,选择适合的材料可以有效降低电磁辐射。
1.2 接地系统设计:良好的接地系统设计是控制电磁辐射的关键。
通过合理布置接地导线和接地板,可以有效地降低电磁辐射的水平。
在设计接地系统时,应考虑接地电阻、接地路径的长度和接地导线的截面积等因素。
1.3 电磁辐射测试:进行电磁辐射测试是评估设备电磁辐射水平的重要手段。
通过在实验室环境中进行电磁辐射测试,可以了解设备在不同频率下的辐射水平,并根据测试结果进行相应的改进和优化。
二、电磁干扰抑制2.1 滤波器的应用:滤波器是抑制电磁干扰的常用工具。
根据不同的频率范围和干扰源的特点,选择合适的滤波器可以有效地抑制电磁干扰。
常见的滤波器包括低通滤波器、带通滤波器和带阻滤波器等。
2.2 电磁屏蔽技术:采用电磁屏蔽技术可以有效地抑制电磁干扰的传播。
通过在电路板上布置屏蔽罩、屏蔽盒或屏蔽层,可以阻止电磁波的传播和干扰其他设备。
2.3 地线的设计:合理的地线设计对于抑制电磁干扰非常重要。
通过采用星形接地或者分布式接地的方式,可以减少地线的电阻和电感,从而降低电磁干扰的水平。
三、电磁兼容性测试3.1 电磁兼容性测试标准:根据不同的应用领域和国家的要求,制定适用的电磁兼容性测试标准非常重要。
常见的标准包括CISPR、IEC和FCC等,根据标准进行测试可以评估设备的电磁兼容性。
3.2 辐射和传导测试:电磁兼容性测试包括辐射测试和传导测试。
EMC整改秘籍
EMI / EMC 设计秘籍整理整理::柏自飞————电子产品设计工程师必备手册电子产品设计工程师必备手册目 录一、EMC 工程师必须具备的八大技能二、EMC 常用元件三、EMI/EMC 设计经典 85 问四、EMC 专用名词大全五、产品内部的 EMC 设计技巧六、电磁干扰的屏蔽方法七、电磁兼容(EMC)设计如何融入产品研发流程一、EMC 工程师必须具备的八大技能EMC 工程师需要具备那些技能?从企业产品需要进行设计、整改认证的过程看,EMC 工程师必须具备以下八大技能:1、EMC 的基本测试项目以及测试过程掌握;2、产品对应 EMC 的标准掌握;3、产品的 EMC 整改定位思路掌握;4、产品的各种认证流程掌握;5、产品的硬件硬件知识,对电路(主控、接口)了解;6、EMC 设计整改元器件(电容、磁珠、滤波器、电感、瞬态抑制器件等)使用掌握;7、产品结构屏蔽设计技能掌握;8、对EMC 设计如何介入产品各个研发阶段流程掌握。
二、EMC 常用元件介绍共模电感由于EMC 所面临解决问题大多是共模干扰,因此共模电感也是我们常用的有力元件之一!这里就给大家简单介绍一下共模电感的原理以及使用情况。
共模电感是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作用。
原理是流过共模电流时磁环中的磁通相互叠加,从而具有相当大的电感量,对共模电流起到抑制作用,而当两线圈流过差模电流时,磁环中的磁通相互抵消,几乎没有电感量,所以差模电流可以无衰减地通过。
因此共模电感在平衡线路中能有效地抑制共模干扰信号,而对线路正常传输的差模信号无影响。
共模电感在制作时应满足以下要求:1)绕制在线圈磁芯上的导线要相互绝缘,以保证在瞬时过电压作用下线圈的匝间不发生击穿短路。
2)当线圈流过瞬时大电流时,磁芯不要出现饱和。
避免 pcb 设计中出现 emc 和 emi 的 9 个技巧 -回复
避免pcb 设计中出现emc 和emi 的9 个技巧-回复如何避免PCB 设计中出现EMC 和EMI 的问题。
引言:在电子产品的设计和制造过程中,电磁兼容性(EMC)和电磁干扰(EMI)是需要特别注意和解决的问题。
如果不正确处理EMC 和EMI,可能会导致电磁故障、性能问题、功能故障,甚至影响产品的市场竞争力。
因此,本文将介绍PCB 设计中的9个技巧,帮助避免EMC 和EMI 的出现。
一、理解EMC 和EMI 的概念:在开始探讨如何避免EMC 和EMI 之前,我们首先需要了解EMC 和EMI 的概念。
EMC 是指电子器件或系统在特定环境下能够以无干扰或受控的方式正常工作的能力。
而EMI 则是指电子器件或系统在工作过程中,产生的干扰能量向外界传播,对其他电子设备造成干扰。
二、合理布局与分离:PCB 设计中的布局和分离是避免EMC 和EMI 的重要因素之一。
在布局方面,应该合理规划电路板上各个模块、信号和功率链的位置,避免相互干扰。
在分离方面,设计者需要将模拟电路和数字电路、高频电路和低频电路、信号和功率线分离开来,避免它们之间的相互干扰。
三、地线设计和电源滤波:地线是PCB 设计中的一个重要因素,合理的地线设计能有效降低EMC 和EMI。
应尽量减少地线回路的面积,使用合适的地线宽度和间距,并注意地线与其他信号线的交叉。
同时,在电源输入端需要加入合适的滤波电路,以过滤电源线上的噪声,减轻EMI 的产生。
四、合理选择元器件和布局:元器件的选择和布局对于避免EMC 和EMI 也至关重要。
在选择元器件时,应优先选择具有良好EMC 性能的元器件,并根据设计需求选择合适的封装和引脚布局。
在布局过程中,需要避免元器件间的相互干扰,注意布局时的间距和引脚分离,以减少EMC 和EMI 发生的可能性。
五、正确使用屏蔽和引线:在设计PCB 时,合理使用屏蔽和引线也是减少EMC 和EMI 的一种有效方法。
对于高频和干扰敏感的电路,可以考虑添加屏蔽罩或屏蔽线,限制干扰源对电路的影响。
避免 pcb 设计中出现 emc 和 emi 的 9 个技巧 -回复
避免pcb 设计中出现emc 和emi 的9 个技巧-回复PCB(Printed Circuit Board)设计中,EMC(Electromagnetic Compatibility)和EMI(Electromagnetic Interference)是两个重要的考虑因素。
EMC是指电子设备在同一环境下,互相之间不会对彼此的正常工作产生负面影响的能力。
而EMI则是指电子设备在工作时,产生的电磁辐射对周围的其他电子设备和系统产生的有害影响。
为了确保PCB设计不会出现EMC和EMI问题,以下是9个技巧供设计工程师参考:1. 分层设计:将电路板的信号层、地层和电源层进行合理的分层设计,可以有效地减小信号之间的干扰,并降低电磁辐射的水平。
信号和电源层之间应确保有足够的地层以提供良好的屏蔽效果。
2. 阻抗匹配:在设计信号线路时,要注意保持合适的阻抗匹配。
通过匹配信号线和驱动电路的阻抗,可以减小信号的反射和干扰,降低电磁辐射。
3. 使用电磁屏蔽材料:在设计中使用电磁屏蔽材料可以有效地抑制电磁辐射和吸收外部的电磁干扰。
常见的电磁屏蔽材料包括电磁屏蔽膜和金属屏蔽箱等。
4. 地线设计:合理的地线设计可以减小电磁辐射,降低EMI问题的发生。
在设计过程中要确保地线的连通性好,并且尽量避免共地引发的回流路径问题。
5. 电源滤波设计:在电源输入和输出端添加适当的滤波电路,可以有效地限制电磁干扰的传播和扩散,提高抗干扰能力。
滤波电路可以包括电容、电感和滤波器等元件。
6. 合理布局:合理的布局可以减小信号回流路径的长度,降低电磁辐射的水平。
将高频和低频信号线路进行分离布局,并减小信号线与电源线和地线之间的交叉干扰,可以有效地减小EMC和EMI问题。
7. 防护接地:在设计中要合理设置防护接地,确保各个部分之间的接地电位相同,并保证接地回路的连续性。
防护接地可以有效地降低EMI问题,提高系统的电磁兼容性。
8. 外部电磁屏蔽:在设计中可以考虑添加外部电磁屏蔽,如金属屏蔽罩或金属屏蔽网格等。
【老鸟推荐】成功设计符合EMCEMI 要求的十个技巧
【老鸟推荐】成功设计符合EMCEMI 要求的十个技巧2016-07-11 Mark TI 本文来自TI的工程师Mark Sauerwald,感谢TI公司的无私奉献!引言汽车行业及各家汽车制造商必须满足多种电磁兼容性(EMC) 要求。
比如:其中有两项要求是确保电子系统不会产生过多的电磁干扰(EMI)或噪声,以及必需能够免受其他系统所产生之噪声的影响。
本文探究了部分此类要求,并介绍了一些可用于确保设备设计符合这些要求的技巧和方法。
EMC 要求概述CISPR 25 是一项标准,其提出了几种配有建议限值的测试方法,用以对某个即将安装到汽车上的组件所产生的辐射发射进行评估。
除了CISPR 25 为制造商提供的指导之外,大多数制造商还拥有一套自己的标准作为CISPR 25 指导准则的补充。
CISPR 25 测试的主要目的是确保即将安装到汽车中的组件不会干扰车内的其他系统。
CISPR 25 要求执行测试的房间里的电磁噪声电平必须至少比实测的最低电平低 6 dB。
由于CISPR 25 具有其期待噪声电平低至18 dB (μV/m) 的场所,因此需要一个低于12 dB (μV/m) 的环境噪声电平。
作为参考,这大约相当于距离天线1 km 以外的一个典型AM 广播电台的场强。
在当今的环境中,满足该要求的唯一办法就是在一个专为把测试环境与外界电磁场加以屏蔽而设计和建造的特殊房间里进行测试。
此外,由于正常的预算都要求对测试室的大小做一定的限制,故而应避免测试环境遭受测试室内部产生的信号反射的不良影响,这一点很重要。
于是,测试室的墙壁必须镶嵌有某种不会反射电磁(EM) 波的材料(图1)。
测试室的造价十分昂贵,其通常是按小时来租用的。
为了节省成本,最好是在设计阶段即对EMC/EMI 问题进行评估,从而在测试室中实现一次成功。
图 1 另一种测试标准是ISO 11452-4 大电流注入(BCI) 系列测试,其用于验证某个组件是否受到了窄带电磁场的不利影响。
电子产品设计中的EMC和EMI问题分析
电子产品设计中的EMC和EMI问题分析电子产品设计中的EMC问题和EMI问题是非常重要的考虑因素,其影响着产品的性能和可靠性。
本文将详细分析EMC和EMI问题,并给出相应的解决步骤。
1. 什么是EMC和EMI问题:- EMC (Electromagnetic Compatibility) 是指电子设备在同一环境中能够共存并互不干扰。
- EMI (Electromagnetic Interference) 是指电子设备之间相互干扰,导致其性能下降或者失效。
2. EMC和EMI问题的原因:- 电子设备内部不同电路之间的高频信号干扰。
- 电子设备与外部环境的电磁辐射和电磁感应。
3. EMC和EMI问题的影响:- 降低产品性能和可靠性。
- 对其他设备产生干扰。
4. 解决EMC和EMI问题的步骤:- 设计阶段:a. 选择合适的电磁屏蔽材料,将电磁波传播限制在产品内部。
b. 使用合适的滤波器和降噪电路,减少干扰信号的传播。
c. 合理规划电路板布局,减少高频信号的串扰。
d. 使用地线和功率平面分层布局,减少地回流干扰。
- 材料选择:a. 选择低电阻和高导电性的材料,提高电磁波的屏蔽效果。
b. 选择低电磁散射率和高磁饱和磁导率的材料,减少电磁波的反射和传播。
c. 选择低介电常数和低介电损耗的绝缘材料,减少电磁波的衍射和能量损耗。
- 电路设计:a. 适当地使用滤波器和降噪电路,降低电磁干扰信号的传输。
b. 使用合适的屏蔽技术,将关键的高频信号线缠绕在金属盖板或电磁屏蔽罩中,避免干扰信号泄漏。
- PCB布局设计:a. 避免信号线和功率线平行布局,降低互相的干扰。
b. 合理规划地线和功率平面的布局,减少地回流干扰。
c. 使用地平面和功率平面进行分层布局,减少电磁辐射。
d. 对高频信号线进行合理的阻抗匹配,减少反射和串扰。
- 产品测试:a. 使用专业的EMI测试设备对产品进行测试,确保其符合相关的电磁兼容标准。
b. 测试产品在不同频率下的辐射和传导幅度,找出潜在的干扰源和敏感部件。
直流emc emi电路
直流emc emi电路摘要:一、引言二、直流EMC/EMI 电路的定义和作用三、直流EMC/EMI 电路的设计要点1.选择合适的元器件2.合理布局电路3.采用屏蔽和滤波技术4.考虑接地和布线四、直流EMC/EMI 电路的性能评估1.辐射干扰测试2.传导干扰测试五、总结正文:一、引言随着电子技术的不断发展,电磁兼容性(EMC)和电磁干扰(EMI)问题日益受到人们的关注。
特别是在直流系统中,由于其独特的电路特性和应用场景,直流EMC/EMI 电路的设计变得尤为重要。
本文将针对直流EMC/EMI 电路进行详细介绍。
二、直流EMC/EMI 电路的定义和作用直流EMC/EMI电路是一种用于减小电磁干扰、提高系统电磁兼容性的电路。
它通过合理的设计和布局,有效降低电路对外部电磁环境的干扰,同时提高系统对内部电磁干扰的抗扰动能力。
在直流系统中,这种电路对于保证系统稳定运行、提高系统可靠性和满足相关标准具有重要意义。
三、直流EMC/EMI 电路的设计要点1.选择合适的元器件在直流EMC/EMI电路设计中,选择合适的元器件是关键。
应根据电路的具体要求,选用具有良好电磁兼容性能的元器件,如低噪声、低失真、高线性度等。
此外,还要考虑元器件的额定功率、工作温度、封装等因素,确保其在实际应用中可靠工作。
2.合理布局电路合理布局电路有助于减小电磁干扰。
在直流EMC/EMI 电路设计中,应尽量减小信号路径的长度,降低信号传输线的干扰。
同时,将干扰源和敏感电路远离,降低相互干扰。
此外,还可以采用屏蔽技术,如金属屏蔽、电磁屏蔽等,减小电磁辐射和传导干扰。
3.采用屏蔽和滤波技术屏蔽技术是直流EMC/EMI电路设计中常用的方法,可以有效减小电磁辐射和传导干扰。
例如,金属屏蔽可以阻止辐射电磁波的传播,降低系统对外部电磁环境的干扰;电磁屏蔽可以减小电路内部噪声,提高系统抗干扰能力。
此外,滤波技术也是减小电磁干扰的有效手段,如在电源端采用LC滤波器,可以降低电源噪声对系统的影响。
EMC-EMI之综合解决方案
EMC-EMI之综合解决方案引言概述:电磁兼容性(EMC)和电磁干扰(EMI)是现代电子设备设计中不可忽视的重要问题。
为了确保设备在电磁环境中的正常运行,需要采取综合解决方案来解决EMC-EMI问题。
本文将介绍一种综合解决方案,包括五个大点,每个大点包含3-5个小点。
正文内容:1. 设计阶段的EMC-EMI考虑1.1. 电路板设计:合理布局和层叠设计,减少信号线的长度和交叉,降低电磁辐射和敏感度。
1.2. 接地设计:采用良好的接地策略,包括分离地平面、地平面划分和接地回路的优化,以减少共模和差模噪声。
1.3. 滤波器设计:使用合适的滤波器来抑制高频噪声和干扰,包括低通滤波器、带通滤波器和带阻滤波器等。
2. 电磁屏蔽技术2.1. 金属屏蔽:使用金属外壳或金属屏蔽罩来阻挡外部电磁场的干扰,减少电磁泄漏和辐射。
2.2. 电磁屏蔽材料:选择合适的电磁屏蔽材料,如电磁屏蔽涂料、电磁屏蔽膜和电磁屏蔽垫等,来吸收或反射电磁波。
2.3. 接地屏蔽:通过良好的接地设计和屏蔽连接,确保设备的接地系统能够有效地排除干扰。
3. 信号完整性和EMC-EMI测试3.1. 信号完整性:设计合适的信号线和电源线布局,减少信号串扰和功率噪声,提高信号完整性。
3.2. 电磁辐射测试:使用专业的测试设备进行电磁辐射测试,评估设备的辐射水平是否符合标准。
3.3. 电磁兼容性测试:进行电磁兼容性测试,包括传导干扰和辐射干扰测试,确保设备在电磁环境中的正常工作。
4. 故障排除和修复4.1. 电磁干扰源的定位:通过专业的仪器和技术,定位和识别电磁干扰源,如电源线、信号线和外部设备等。
4.2. 故障分析:分析电磁干扰对设备的影响,找出故障原因和解决方案。
4.3. 修复措施:采取合适的修复措施,如增加滤波器、重新布线和更换屏蔽材料等,以消除或减少电磁干扰。
5. EMC-EMI标准和合规性5.1. 国际标准:了解和遵守国际电磁兼容性标准,如IEC 61000系列标准和CISPR标准等。
EMI-EMC硬件设计实用技巧
EMI/EMC硬件设计实用技巧
下面的一些系统要特别注意抗电磁干扰:
1、微控制器时钟频率特别高,总线周期特别快的系统。
2、系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。
3、含微弱模拟信号电路以及高精度A/D变换电路的系统。
为增加系统的抗电磁干扰能力采取如下措施:
1、选用频率低的微控制器:
选用外时钟频率低的微控制器可以有效降低噪声和提高系统的抗干扰能力。
同样频率的方波和正弦波,方波中的高频成份比正弦波多得多。
虽然方波的高频成份的波的幅度,比基波小,但频率越高越容易发射出成为噪声源,微控制器产生的最有影响的高频噪声大约是时钟频率的3倍。
2、减小信号传输中的畸变
微控制器主要采用高速CMOS技术制造。
信号输入端静态输入电流在1mA左右,输入电容10PF左右,输入阻抗相当高,高速CMOS电路的输出端都有相当的带载能力,即相当大的输出值,将一个门的输出端通过一段很长线引到输入阻抗相当高的输入端,反射问题就很严重,它会引起信号畸变,增加系统噪声。
当Tpd>Tr时,就成了一个传输线问题,必须考虑信号反射,阻抗匹配等问题。
信号在印制板上的延迟时间与引线的特性阻抗有关,即与印制线路板材料的介电常数有关。
可以粗略地认为,信号在印制板引线的传输速度,约为光速的1/3到1/2之间。
微控制器构成的系统中常用逻辑。
EMC-EMI之综合解决方案
EMC-EMI之综合解决方案引言概述:电磁兼容性(EMC)和电磁干扰(EMI)是现代电子设备设计和制造中的重要问题。
在一个复杂的电磁环境中,电子设备需要能够正常工作,而不会对其他设备或系统产生干扰。
为了解决这个问题,工程师们需要采取一系列综合的解决方案。
本文将介绍EMC-EMI综合解决方案的五个主要部分。
一、电磁兼容性设计1.1 电磁兼容性测试与分析:在设计阶段,工程师需要进行电磁兼容性测试和分析,以评估设备在电磁环境中的性能。
这包括测量设备的辐射和敏感性,以及分析设备的电磁兼容性问题。
1.2 电磁屏蔽设计:为了减少设备对外部电磁干扰的敏感性,工程师需要设计有效的电磁屏蔽。
这可以通过使用屏蔽材料、设计屏蔽结构和布线来实现。
1.3 地线和接地设计:良好的地线和接地设计是保证设备电磁兼容性的关键。
工程师需要注意地线的布线和连接,以减少电磁干扰的传导和辐射。
二、滤波器设计2.1 电源线滤波器:电源线滤波器可以有效地抑制电源线上的高频噪声和干扰。
工程师需要选择适当的滤波器类型和参数,以满足设备的EMI要求。
2.2 信号线滤波器:信号线滤波器可以减少信号线上的电磁干扰。
工程师需要根据信号频率和干扰源的特性选择合适的滤波器,并考虑滤波器对信号质量的影响。
2.3 模块化滤波器设计:对于大型系统或模块化设备,工程师可以设计模块化滤波器来简化滤波器的安装和维护。
这可以提高设备的可靠性和可维护性。
三、接地和屏蔽技术3.1 接地系统设计:良好的接地系统可以减少设备的地线回路干扰和地线回路噪声。
工程师需要设计合适的接地系统,包括接地电极的布置和连接。
3.2 屏蔽技术:除了电磁屏蔽设计外,工程师还需要考虑其他屏蔽技术,如屏蔽罩、屏蔽盒和屏蔽涂料。
这些技术可以进一步减少设备的辐射和敏感性。
3.3 防静电设计:静电会对电子设备的性能和可靠性产生负面影响。
工程师需要采取防静电设计措施,如使用防静电材料和接地技术,以减少静电干扰和损害。
电源设计过程中关于EMI的几条经验
几点经验:1、交流输入与直流输出要有较明确的布局区分,最佳办法是能够互相隔离。
2、输入端与输出端(包括DC/DC变换初级与次级)布线距离最少要在5毫米以上。
3、控制电路与主功率电路要有较明确的布局区分。
4、尽量避免大电流高电压布线与测量线、控制线的并行布线。
5、在空白的板面尽量敷铜。
6、在大电流高电压的布线连接中,尽量避免用导线在空间中长距离连接,它导致的干扰是很难处理的。
7、如果成本允许的情况下,可采用多层板布线,有专门的辅助电源层与地层,将大大降低EMC的影响。
8、工作地是最容易受干扰的,因此尽量采取大面积敷铜的布线办法。
9、屏蔽地的布线不能构成明显的环路,这样的话会形成天线效应,容易引入干扰。
10、大功率的器件最好能比较规整地布局,便于散热器的安装及散热风道的设计。
几点经验:1.合理选择"Y"电容的接地点.2.感性器件在PCB的合理分布,能使干扰电磁场相互削弱,避免干扰信号叠加形成更强的干扰.一、地线设计1.正确选择单点接地与多点接地相结合.2.将数字电路与模拟电路分开3.尽量加粗接地线4.将接地线构成闭环路二、电磁兼容性设计1.选择合理的导线宽度2.采用正确的布线策略采用平等走线可以减少导线电感,但导线之间的互感和分布电容增加,如果布局允许,最好采用井字形网状布线结构,具体做法是印制板的一面横向布线,另一面纵向布线,然后在交叉孔处用金属化孔相连。
为了抑制印制板导线之间的串扰,在设计布线时应尽量避免长距离的平等走线,尽可能拉开线与线之间的距离,信号线与地线及电源线尽可能不交叉。
在一些对干扰十分敏感的信号线之间设置一根接地的印制线,可以有效地抑制串扰.三、去耦电容配置在直流电源回路中,负载的变化会引起电源噪声。
例如在数字电路中,当电路从一个状态转换为另一种状态时,就会在电源线上产生一个很大的尖峰电流,形成瞬变的噪声电压。
配置去耦电容可以抑制因负载变化而产生的噪声,是印制电路板的可靠性设计的一种常规做法.怎样做好电磁屏蔽[转帖]电磁屏蔽是解决电磁兼容问题的重要手段之一。
避免 pcb 设计中出现 emc 和 emi 的 9 个技巧
避免 pcb 设计中出现 emc 和 emi 的 9 个技巧:
避免PCB设计中出现EMC和EMI的9个技巧:
1.合理的分区:根据电路的功能,将PCB划分为不同的区域,如模拟区域、数字区域、
电源区域等。
在不同的区域之间设置适当的隔离,以减少信号之间的干扰。
2.合适的布局:在PCB布局时,应将高电流、高电压、高速数字信号等区域进行适当
的分离,避免相互干扰。
同时,要考虑到电源和地的分配,保证电源和地网络的连续性。
3.良好的接地设计:接地是解决EMC和EMI问题的关键。
设计合理的接地网络,可以
有效地抑制干扰信号,提高电路的稳定性。
4.使用适当的屏蔽技术:对于关键的电路部分,可以采用屏蔽措施,如电磁屏蔽罩、
导电衬垫等,以减少外界对电路的干扰。
5.合理的布线:在布线时,应避免使用过长的信号线、90度折线、突然的线宽变化等
不良布线方式。
合理的布线可以降低信号的传输阻抗,减少信号之间的干扰。
6.使用适当的滤波技术:在电路中加入适当的滤波器,可以有效地滤除高频噪声信号,
提高电路的抗干扰能力。
7.合理的元件布局:在元件布局时,应将元件按照功能进行分组,并保持合适的间距。
这样可以减少信号之间的耦合和干扰。
8.使用合适的去耦电容:在电路中加入适当的去耦电容,可以减小电源和地之间的噪
声,提高电路的稳定性。
9.进行充分的仿真和测试:在完成PCB设计后,应进行充分的仿真和测试,以确保设
计的可行性和可靠性。
同时,也可以通过测试来优化设计,提高电路的性能。
EMC-EMI之综合解决方案
EMC-EMI之综合解决方案引言概述:电磁兼容性(EMC)和电磁干扰(EMI)是现代电子设备设计中不可忽视的重要问题。
为了确保电子设备在电磁环境中的正常运行,需要采取综合的解决方案来解决EMC和EMI问题。
本文将介绍一种综合的解决方案,以确保电子设备在各种电磁环境下的正常工作。
一、电磁兼容性(EMC)问题1.1 电磁辐射- 电子设备在工作过程中会产生电磁辐射,可能会对周围设备和系统造成干扰。
- 采取屏蔽措施,如金属外壳和屏蔽罩,以减少电磁辐射。
1.2 电磁感应- 电子设备受到周围电磁场的感应,可能导致设备的正常工作受到干扰。
- 采取滤波措施,如滤波器和抑制器,以减少电磁感应。
1.3 电磁敏感性- 电子设备对外界电磁场的敏感性可能导致设备的正常工作受到干扰。
- 采取抗干扰措施,如增加设备的抗干扰能力和提高系统的抗干扰能力。
二、电磁干扰(EMI)问题2.1 电磁辐射源- 电子设备可能成为电磁辐射源,对周围设备和系统造成干扰。
- 采取屏蔽措施,如金属外壳和屏蔽罩,以减少电磁辐射。
2.2 电磁感应源- 电子设备可能成为电磁感应源,对周围设备的正常工作造成干扰。
- 采取滤波措施,如滤波器和抑制器,以减少电磁感应。
2.3 电磁敏感源- 电子设备可能成为电磁敏感源,对外界电磁场的敏感性可能导致设备的正常工作受到干扰。
- 采取抗干扰措施,如增加设备的抗干扰能力和提高系统的抗干扰能力。
三、综合解决方案3.1 设备设计- 采用合适的电磁屏蔽材料和结构设计,以减少电磁辐射和电磁感应。
- 优化电路布局和地线设计,以提高电磁兼容性。
3.2 电磁兼容性测试- 对电子设备进行电磁兼容性测试,以评估设备在电磁环境中的性能。
- 根据测试结果进行调整和优化,以提高设备的电磁兼容性。
3.3 抗干扰措施- 采用滤波器、抑制器和抗干扰电路等措施,以减少电磁干扰。
- 优化设备的抗干扰能力和提高系统的抗干扰能力。
四、效果评估和改进4.1 评估电磁兼容性- 对设备进行电磁兼容性评估,以检测设备在电磁环境中的性能。
httpbbs51soccomt...
EMI/EMC设计秘籍——电子产品设计工程师必备手册摘要:简要论述了EMC工程师必须具备的八大技能,介绍了EMC常用元件、产品内部的EMC设计技巧、电磁干扰的屏蔽方法和电磁兼容设计如何融入产品研发流程。
全文近5万字。
关键词:EMI,EMC,电磁兼容设计/thread.php?fid=23目 录一、EMC工程师必须具备的八大技能二、EMC常用元件三、EMI/EMC设计经典85问四、EMC专用名词大全五、产品内部的EMC设计技巧六、电磁干扰的屏蔽方法七、电磁兼容(EMC)设计如何融入产品研发流程/thread.php?fid=23一 EMC工程师必须具备的八大技能EMC工程师需要具备那些技能?从企业产品需要进行设计、整改认证的过程看,EMC工程师必须具备以下八大技能:(1)EMC的基本测试项目以及测试过程掌握;(2)产品对应EMC的标准掌握;(3)产品的EMC整改定位思路掌握;(4)产品的各种认证流程掌握;(5)产品的硬件硬件知识,对电路(主控、接口)了解;(6)EMC设计整改元器件(电容、磁珠、滤波器、电感、瞬态抑制器件等)使用掌握;(7)产品结构屏蔽设计技能掌握;(8)对EMC设计如何介入产品各个研发阶段流程掌握。
/thread.php?fid=23/thread.php?fid=23二 EMC 常用元件介绍2.1 共模电感由于EMC 所面临解决问题大多是共模干扰,因此共模电感也是我们常用的有力元件之一!这里就给大家简单介绍一下共模电感的原理以及使用情况。
共模电感是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作用。
原理是流过共模电流时磁环中的磁通相互叠加,从而具有相当大的电感量,对共模电流起到抑制作用,而当两线圈流过差模电流时,磁环中的磁通相互抵消,几乎没有电感量,所以差模电流可以无衰减地通过。
EMI-EMC设计经验总结(二)
EMI-EMC设计经验总结(二)以下资料来自网络:三 EMI/EMC设计经典85问:33、PCB设计时,为何要铺铜?答:一般铺铜有几个方面原因:(1)EMC.对于大面积的地或电源铺铜,会起到屏蔽作用,有些特殊地,如PGND起到防护作用;(2)PCB工艺要求。
一般为了保证电镀效果,或者层压不变形,对于布线较少的PCB板层铺铜;(3)信号完整性要求,给高频数字信号一个完整的回流路径,并减少直流网络的布线。
当然还有散热,特殊器件安装要求铺铜等等原因。
34、安规问题:FCC、EMC的具体含义是什么?布都有相应的原因,标准和测试方法。
35、在做PCB板的时候,为了减小干扰,地线是否应该构成闭和形式?答:在做PCB板的时候,一般来讲都要减小回路面积,以便减少干扰,布地线的时候,也不应布成闭合形式,而是布成树枝状较好,还有就是要尽可能增大地的面积。
36、PCB设计中,如何避免串扰?答:变化的信号(例如阶跃信号)沿传输线由A到B传播,传输线C-D上会产生耦合信号,变化的信号一旦结束也就是信号恢复到稳定的直流电平时,耦合信号也就不存在了,因此串扰仅发生在信号跳变的过程当中,并且信号沿的变化(转换率)越快,产生的串扰也就越大。
空间中耦合的电磁场可以提取为无数耦合电容和耦合电感的集合,其中由耦合电容产生的串扰信号在受害网络上可以分成前向串扰和反向串扰Sc,这个两个信号极性相同;由耦合电感产生的串扰信号也分成前向串扰和反向串扰SL,这两个信号极性相反。
耦合电感电容产生的前向串扰和反向串扰同时存在,并且大小几乎相等,这样,在受害网络上的前向串扰信号由于极性相反,相互抵消,反向串扰极性相同,叠加增强。
串扰分析的模式通常包括默认模式,三态模式和最坏情况模式分析。
默认模式类似我们实际对串扰测试的方式,即侵害网络驱动器由翻转信号驱动,受害网络驱动器保持初始状态(高电平或低电平),然后计算串扰值。
这种方式对于单向信号的串扰分析比较有效。
EMIEMC设计秘籍
EMI / EMC设计秘籍——电子产品设计工程师必备手册目录一、EMC工程师必须具备的八大技能二、EMC常用元件三、EMI/EMC设计经典85问四、EMC专用名词大全五、产品内部的EMC设计技巧六、电磁干扰的屏蔽方法七、电磁兼容(EMC)设计如何融入产品研发流程一、EMC工程师必须具备的八大技能EMC工程师需要具备那些技能?从企业产品需要进行设计、整改认证的过程看,EMC工程师必须具备以下八大技能:1、EMC的基本测试项目以及测试过程掌握;2、产品对应EMC的标准掌握;3、产品的EMC整改定位思路掌握;4、产品的各种认证流程掌握;5、产品的硬件硬件知识,对电路(主控、接口)了解;6、EMC设计整改元器件(电容、磁珠、滤波器、电感、瞬态抑制器件等)使用掌握;7、产品结构屏蔽设计技能掌握;8、对EMC设计如何介入产品各个研发阶段流程掌握。
二、EMC常用元件介绍共模电感由于EMC所面临解决问题大多是共模干扰,因此共模电感也是我们常用的有力元件之一!这里就给大家简单介绍一下共模电感的原理以及使用情况。
共模电感是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作用。
原理是流过共模电流时磁环中的磁通相互叠加,从而具有相当大的电感量,对共模电流起到抑制作用,而当两线圈流过差模电流时,磁环中的磁通相互抵消,几乎没有电感量,所以差模电流可以无衰减地通过。
因此共模电感在平衡线路中能有效地抑制共模干扰信号,而对线路正常传输的差模信号无影响。
共模电感在制作时应满足以下要求:1)绕制在线圈磁芯上的导线要相互绝缘,以保证在瞬时过电压作用下线圈的匝间不发生击穿短路。
2)当线圈流过瞬时大电流时,磁芯不要出现饱和。
3)线圈中的磁芯应与线圈绝缘,以防止在瞬时过电压作用下两者之间发生击穿。