网络计划技术

合集下载

网络计划技术

网络计划技术

网络计划技术什么是网络计划技术网络计划技术,也称作项目管理技术,是一种用来帮助规划和管理项目进度的工具。

它使用网络图来表示项目中各个任务之间的先后顺序关系,并根据这些关系确定整个项目的进度。

网络计划技术通常被应用于工程建设、软件开发、活动策划等众多领域。

为什么使用网络计划技术网络计划技术的主要优势在于它能够帮助项目经理和团队成员:•确定项目中的关键路径,即影响整个项目最长时间和最紧迫的任务序列。

•识别项目中的风险和关键问题,并做出相应的调整和应对策略。

•追踪和控制项目进度,及时发现和解决潜在的延误问题。

•对项目资源进行优化分配,以提高效率和降低成本。

•及时沟通和共享项目进展情况,以便团队成员和相关利益相关者了解项目状态。

常用的网络计划技术方法关键路径方法(CPM)关键路径方法(CPM)是最常见和广泛应用的网络计划技术方法之一。

其基本思想是通过绘制网络图,确定项目中各个任务的先后顺序关系,并计算出整个项目的最早开始时间、最早完成时间、最晚开始时间、最晚完成时间等关键参数。

通过对这些参数的计算和分析,可以找出项目中的关键路径,从而确定项目的最长时间和最紧迫的任务序列。

程序评审技术(PERT)程序评审技术(PERT)是另一种常用的网络计划技术方法。

与关键路径方法不同,PERT方法考虑到了任务完成时间的不确定性,因此可以更好地应对实际项目中的风险和不确定性。

PERT方法通过使用三个时间估计值(最快、最慢、最可能)来计算每个任务的期望完成时间,并通过这些期望时间来计算整个项目的期望完成时间。

PERT方法还可以帮助项目团队制定风险管理和资源分配策略。

网络挣值技术(Earned Value Technique)网络挣值技术(Earned Value Technique)是一种结合了网络计划技术和成本控制技术的方法,用于评估项目进度和成本的绩效。

网络挣值技术通过对已完成工作的挣值和实际成本进行测量和分析,来预测项目的进展和成本偏差。

网络计划技术基础知识

网络计划技术基础知识

最早 开始 时间 (E S)
指某项活动必须完成的 最晚时间。
最早 结束 时间 (E F)
指某项活动能够开始的 最早时间。
最晚 开始 时间 (L S)
指某项活动必须开始的 最晚时间。
最晚 结束 时间 (L F)
关键路径
定义
关键路径是从起点到终点的最长路径,它决定了项目 的总持续时间。
关键路径上的活动
工期优化
计算工期延误
通过比较实际工期和计划工期,确定是否存在工 期延误。
调整关键路径
在关键路径上增加或减少工作,以缩短或延长总 工期。
优化非关键路径
通过调整非关键路径上的工作,使资源得到更合 理的利用,从而缩短总工期。
费用优化
计算费用偏差
比较实际费用和计划费用,确定是否存在费用 偏差。
调整资源投入
这些活动不能延迟,否则整个项目的完成时间将被推 迟。
关键路径的长度
关键路径的总长度(以时间为单位)表示项目的总持 续时间。
时差与自由时差
时差
某项活动的最早结束时间与最晚结束 时间之间的差值,表示该活动时间的 灵活性。
自由时差
某项活动的最晚开始时间与最早开始 时间之间的差值,表示在不延误后续 活动的前提下,该活动可以推迟的时 间长度。
根据开发计划,合理配置开发人员、设备和资金等资源,确保 软件开发顺利进行。
在开发过程中,对进度进行实时监测和控制,及时发现和解决 进度偏差问题,确保软件按时交付。
生产制造流程的网络计划
确定生产制造流程
制定生产计划
根据生产需求和产品特点,确定各个生产 制造环节及其先后顺序。
根据环节顺序和工期要求,制定生产计划 ,包括各个生产环节的开始和结束时间。

网络计划技术

网络计划技术

网络计划技术网络计划技术是指利用计算机网络和相关技术进行规划、设计、管理和实施网络系统的一种技术。

随着信息技术的不断发展,网络计划技术在各个领域的应用越来越广泛,成为企业和组织管理网络系统的重要工具。

本文将对网络计划技术进行介绍和分析,以便读者更好地了解和掌握这一技术。

首先,网络计划技术包括网络规划、设计和管理三个方面。

网络规划是指根据组织的需求和资源情况,制定网络系统的整体规划和布局,确定网络拓扑结构、设备配置和连接方式等。

网络设计则是在网络规划的基础上,进行具体的网络系统设计和方案制定,包括网络设备的选型、布线、安全策略等。

而网络管理则是指对网络系统进行监控、维护、优化和故障处理,确保网络系统的稳定运行和高效管理。

其次,网络计划技术的核心是网络规划和设计。

在网络规划阶段,需要充分了解组织的业务需求和发展方向,结合现有的网络资源和技术条件,进行网络系统的整体规划和布局。

在网络设计阶段,需要根据网络规划的要求,进行具体的网络系统设计和方案制定,包括网络设备的选型、布线、安全策略等。

网络规划和设计的质量直接影响到网络系统的性能和稳定性,因此在实际应用中需要认真对待,进行充分的规划和设计工作。

另外,网络计划技术还涉及到网络管理和优化。

网络管理是指对网络系统进行监控、维护、优化和故障处理,确保网络系统的稳定运行和高效管理。

网络优化则是指对网络系统进行性能优化和资源调配,提高网络系统的性能和效率。

网络管理和优化是网络计划技术的重要组成部分,对于确保网络系统的稳定运行和高效管理具有重要意义。

最后,随着信息技术的不断发展,网络计划技术也在不断演进和完善。

新一代的网络技术如云计算、大数据、物联网等的发展,为网络计划技术的应用提供了新的机遇和挑战。

网络计划技术需要不断更新和改进,以适应新的网络环境和需求。

同时,网络计划技术的应用也需要结合实际情况,充分发挥其作用,为组织的发展和管理提供有力支持。

综上所述,网络计划技术是一种利用计算机网络和相关技术进行规划、设计、管理和实施网络系统的技术。

网络计划技术

网络计划技术

三、时间——资源优化
时间——资源优化有两种: 1、资源有限,工期最短问题 由于资源有限,使一些活动不能同时进行,在这种
情况下,为了使工期最短,首先要尽可能保证关键活动
准时进行,然后,保证时差最小的活动优先进行。可采 用试算的办法求解。(或叫移峰填谷法)
A (6)
1 B (4) 2
3
D
(5)
G (7) 5 I (3) K (7) J (3) 6
例:已知某项任务的作业组成及其作业时间,
要求:画出网络图并计算各结点时间参数和作业时 间参数,找出关键路线。 任务的作业组成及其作业时间如下表:
பைடு நூலகம்
作业 名称 紧前 作业 作业 时间
A -- 3
B A 5
C A 4
D B 2
E B 6
F
G
H
C、 D、 E、 E F C 8 2 5
8 4 3
8 D 2
注意: 压缩工期的活动必须是关键活动; 被压缩对象的顺序是从单位时间直接费用变化 率最低的活动开始; 压缩某一关键活动的时间时,不能超过活动 允许压缩的限度。同时,应该使压缩后该活动所 在关键线路的周期不得短于非关键线路。 当不断优化时,网络图上会出现数条关键线路 ,继续压缩工期必须在数条关键线路上同时进行。
A
3 3 2 D 3
F 13 13 5 H 6
3
19 19 6
G 2
6 6
六、作业(活动)时间参数计算
1、作业最早可能开始的时间TES(i,j) TES (i,j)= TES (i) 2、作业最早可能完成的时间TEF(i,j) TEF (i,j)= TES (i,j)+ TE(i,j) 3、作业最迟必须完成的时间TLF(i,j) TLF (i,j)= TLF (j) 4、作业最迟必须开始的时间TLS(i,j) TLS (i,j)= TLS (j)- TE(i,j)

网络计划技术介绍

网络计划技术介绍

网络计划技术介绍网络计划技术是一种有效的管理和优化项目进度的方法,它可以帮助项目团队在有限的资源条件下合理规划和安排项目工作,以实现项目的成功。

网络计划技术主要包括关键路径法(CPM)和程序评审和评估技术(PERT)两种方法。

下面将详细介绍这两种技术以及它们的优势和应用。

程序评审和评估技术(PERT)是一种基于概率和统计方法的项目管理技术,主要用于分析和优化不确定的项目进度。

PERT通过将每个活动的持续时间估计为一个概率分布,而不是一个确定的值,来考虑活动持续时间中的不确定性。

PERT的关键是对项目活动持续时间估计的定义和计算,它通过计算活动的最早开始时间(EST)和最晚完成时间(LFT)来确定项目的关键路径和总体项目进度。

PERT能够帮助项目团队更准确地预测项目的完成时间,并识别出可能引起项目延误的风险因素。

同时,通过对不确定性进行分析和评估,可以优化项目的资源分配和进度安排,以提高项目的成功率。

1.有效的工作规划和资源分配:网络计划技术可以将项目工作分解为一系列有序的活动,并确定它们之间的依赖关系。

通过分析活动的持续时间和资源需求,可以合理规划和安排项目工作,减少资源浪费和冲突,提高工作效率。

2.提前识别风险和问题:通过网络计划技术,可以快速识别项目中的关键路径和风险活动。

项目团队可以集中资源和注意力,及时处理关键路径上的问题,防止项目延误,并制定相应的应对策略来降低风险。

3.灵活调整项目进度:网络计划技术可以将项目工作和资源需求以图形化形式呈现,更直观地展示项目的进度和关系。

这使得项目团队能够更好地理解项目的整体情况,并做出相应的调整和优化,以适应项目变化和需求。

网络计划技术的应用范围非常广泛,几乎适用于各种类型的项目和领域。

它在建筑、工程、IT、制造、新产品开发、市场推广等众多行业和领域中得到了广泛应用。

通过网络计划技术,可以帮助项目团队合理规划项目工作,优化资源分配,调整工作进度,并提前识别和防止潜在风险,从而最大程度地提高项目的成功率。

网络计划技术3篇

网络计划技术3篇

网络计划技术第一篇:网络计划技术概述网络计划技术是一种基于项目管理的技术,它是在整个项目中按照时间顺序分析和安排所有活动,以便计算最短时间的总成本、找出关键路径和控制进度。

它适用于复杂的工程项目和重要的商业计划,通过合理地分析和安排活动的关系和时间,实现高效率、高质量和高经济效益的目的。

网络计划技术主要包括两种方法:PERT和CPM。

PERT (Program Evaluation and Review Technique)是1958年由美国海军在极其复杂的项目优化计划中开发出来的,是一种基于概率的技术,它通过对各个活动时间的估计来计算最短时间和最长时间,以及进行进度控制和风险管理。

CPM(Critical Path Method)是美国对联合机械公司开发的一种基于确定性的技术,它通过确定活动的时序关系来计算关键路径和最短时间,以及进行进度控制和成本管理。

网络计划技术的应用非常广泛,特别是对于大型的、复杂的、有序的、相互关联的项目和活动,如建筑、通信、能源、运输、信息系统、金融、医疗和教育等领域。

在这些领域,网络计划技术能够为项目管理提供科学化、规范化、可控化、连续化的方法和工具,有效地解决进度滞后、成本超支、质量低下、风险增加等问题,提高项目成功率和商业利润率。

网络计划技术的基本原理包括:活动的分解与排序、活动的时间估计和校准、网络图的绘制和分析、关键路径的确定和优化、进度计划的编制和更新。

在实际应用中,网络计划技术需要考虑复杂度、精度、可行性和灵活性等因素,需要有专门的软件和专业的人员来支持和实施。

网络计划技术的优点是:能够全面分析和把控项目的时间、进度、成本、质量和风险等方面;能够提高项目的计划效率、执行效果和评价效益;能够促进项目管理的科学化、标准化和信息化水平;能够提高企业的竞争力、创新力和利润率。

但是网络计划技术也存在一些局限性和挑战,包括:活动时间估计存在主观性、不确定性和随机性;网络图的绘制和分析存在复杂度、限制性和死板性;关键路径的优化存在局部最优、缺乏灵活性和动态性;进度计划的更新存在误差、滞后和重复性。

网络计划技术

网络计划技术

网络计划技术一、网络计划技术的基本知识网络计划技术是20世纪50年代在国外陆续出现的一些计划管理的方法。

由于这些方法将计划的工作关系建立在网络模型上,把计划的编制、协调、优化和控制有机地结合起来,而称之为网络计划技术。

网络计划技术的发展从1956年关键线路法(CPM),到1958年的计划评审技术(PERT),再到1960年以后的搭接网络技术(DLN)、图形评审技(GERT)、决策网络技术(DN)、风险评审技术(VERT)等。

20世纪60年代,我国著名数学家华罗庚教授在吸收外国网络计划技术理论的基础上,结合我国实际情况,将网络计划技术将引入国内,并将CPM、PERT 等方法统称为统筹法。

目前,网络计划技术已经在我国,特别是在工程项目管理中广泛应用,并取得了巨大的经济效益。

根据国内的资料统计,工程项目应用网络计划技术进行计划管理,可平均缩短工期20%左右,节约费用10%左右。

可以预见,随着计算机技术的发展,网络计划技术应用将更加普及,由此带来的经济和社会效益将日益显著。

1.网络计划技术概念网络图是由箭头和节点组成的,用来表示工作流程的有向、有序的网状图形。

常见的网络图分为单代号网络图和双代号网络图两种。

在网络图上加注工作的时间参数而编成的进度计划,称为网络计划。

有网络计划对任务的工作进度进行安排和控制,以保证实现目标的计划管理技术,称为网络计划技术。

2.网络计划的特点(1)网络图把施工过程中的各有关工作组成了一个有机的整体,能全面明确地表达出各项工作开展的先后顺序和反映出各项工作之间相互制约和相互依赖的关系。

(2)能通过各种时间参数的计算,在名目繁多、错综复杂的工作中找出决定工程进度的关键工作,并以此决定关键线路,便于计划管理者集中力量抓主要矛盾,确保工期,避免盲目施工。

(3)能够利用网络计划中反映出的各项工作的时间储备,可以更好地调配人力、物力,以达到降低成本的目的,并通过网络技术优化,从许多可行方案中,选出最优方案。

网络计划技术

网络计划技术
在优化过程中,考虑资源的时间、种类和质量等方面的约束条件。
考虑资源约束
成本优化
要点三
降低成本
通过合理安排任务顺序、选择合适的资源和技术,以降低项目成本。
要点一
要点二
考虑全生命周期成本
不仅考虑项目开发阶段的成本,还要考虑项目整个生命周期内的成本。
优化成本效益
在优化过程中,不仅要考虑直接成本,还要考虑间接效益和长期效益。
资源利用
合理安排各工作资源需求,避免资源供不应求或供过于求。
资源均衡
考虑资源约束条件下,关键路径的确定和时间调整。
资源关键路径
包括人工费、材料费、机械使用费等直接用于工程项目的费用。
直接成本
指无法直接计入工程项目的费用,如管理费、规费等。
间接成本
通过成本分析,评估网络计划的效益性。
成本分析
成本评价
在医疗保健领域,网络计划技术可以用于制定医疗资源的调度和分配计划,提高医疗服务的效率和质量。
服务领域的应用
医疗保健
在教育和培训领域,网络计划技术可以用于制定培训计划和课程安排,提高培训效果和学习体验。
教育培训
在金融和保险领域,网络计划技术可以用于制定风险控制和投资计划,提高金融机构的收益和风险管理能力。
要点三
04
网络计划技术的应用
交通工程
在交通工程中,网络计划技术可以用于制定道路施工、维修和养护的计划,提高道路网的运行效率。
建筑工程
在建筑工程中,网络计划技术可以用于制定施工计划、合理安排施工进度,确保项目按期完成。
水利工程
在水利工程中,网络计划技术可以用于合理安排水资源调度、发电和防洪等任务,提高工程效益。
综合评价方法
权重法

网络计划技术概述

网络计划技术概述

网络计划技术概述网络计划技术是项目管理领域中的一种重要工具,它以图形的形式展示了工程项目的活动、工期、资源和关系等关键信息,有助于项目经理分析和优化项目的进度管理。

本文将对网络计划技术进行概述,包括其概念、原理、应用以及优缺点等方面的内容。

一、概念网络计划技术,又称为关键路径法 (Critical Path Method,简称CPM) 或程序评审和评价技术 (Program Evaluation and Review Technique,简称PERT),是一种用于项目计划、进度控制和资源管理的工具。

该技术以图形的形式来表达项目的活动、关系、工期和资源等信息,并使用网络图和关键路径来分析和优化项目的进度管理。

二、原理1.关键路径关键路径是指项目中最长的一条路径,它决定了项目的最短工期。

在网络计划图中,关键路径上的活动不允许延期,否则将会导致整个项目的延期,因此项目经理需要特别关注和重点管理关键路径上的活动。

2.活动时间活动时间是指完成一个活动所需的时间,它可以分为最短时间(Optimistic Time)、最长时间 (Pessimistic Time) 和最可能时间(Most Likely Time)。

项目经理通常使用这些时间的加权平均值来估计活动时间。

3.活动关系活动关系定义了活动之间的前驱关系和后继关系,常见的活动关系包括:开始-开始 (Start-to-Start)、开始-结束 (Start-to-Finish)、结束-开始 (Finish-to-Start) 和结束-结束 (Finish-to-Finish)等。

通过定义活动关系,可以确定活动的最早开始时间、最晚开始时间、最早结束时间和最晚结束时间等关键信息。

三、应用1.项目计划通过建立网络计划图,项目经理可以清晰地了解到项目的活动、关系和工期等关键信息,从而帮助他们制定合理的项目计划。

通过分析和优化关键路径,项目经理可以合理分配资源,优化项目的进度和成本控制。

网络计划技术(关键路径法)

网络计划技术(关键路径法)
10 18
F6
12 18
G5
18 23
计算工作时间
总时差(浮动时间) 不影响整个工期作业可机动的时间, 即TF=LF-EF
TFi j
ES i j
LS i j
时间
计算工作时间
范例
00 3
A3
0
3
3 55
B2
8
10
3 0 10
C7
3 10
357
D4
8 12
10 0 18
E8
10 18
10 2 16
纲要
定义各项工作 编制工作分析表 绘制网络图 计算工作时间 求关键路径 网络计划优化
网络计划优化
根据计划规定的期限,规划最低成本。 在满足成本最低的要求下,寻求最佳
工期。
网络计划优化
缩短工期的单位时间成本计算式:
网络计划优化
优化步骤:
求关键路径 对关键路径上的工作寻找最优化途径 对途径中K值小的工作进行优化 在优化时,要考虑坐邻右舍
两工作完成之后D工作才可以开始,如何
表达?
A
C
B
D
绘制网络图
几种工作关系的表达:搭接关系表达
搭接关系一般用单代号网络表示
SS5
B
A FS10
FF4
D
C
绘制网络图
基本原则:
网络图的开始节点与结束节点均应是唯一
2
2
1
3
5
61
3
5
6
4
4
错误
正确
绘制网络图
基本原则:
在相邻的两个时间节点之间,最多只能有 一条箭线

网络计划技术

网络计划技术

网络计划技术网络计划技术是指利用计算机网络和信息技术,对项目进行规划、组织、控制和实施的一种管理方法。

它通过网络图、甘特图等方式,对项目的时间、资源和成本进行全面的管理和控制,以确保项目能够按时、按质、按量完成。

网络计划技术在工程建设、信息技术、市场营销等领域都有广泛的应用,成为项目管理中不可或缺的重要工具。

首先,网络计划技术的核心是网络图。

网络图是将项目中的各个活动以节点和箭头的形式表示出来,通过节点之间的连接关系和活动的持续时间,形成一个完整的项目执行路径。

这种图形化的表示方式,能够直观地展现项目的执行流程和关键路径,帮助项目管理者清晰地了解项目的进度和风险,从而及时做出调整和决策。

其次,网络计划技术的另一个重要工具是甘特图。

甘特图是以时间为横轴,将项目中的各项活动以条形图的形式表示出来,直观地展现出每项活动的开始时间、结束时间和持续时间。

通过甘特图,项目管理者可以清晰地了解项目的时间安排和资源分配情况,及时发现并解决可能出现的问题,保障项目的顺利进行。

此外,网络计划技术还包括了关键路径法和资源平衡法等方法。

关键路径法是通过对项目中各项活动的持续时间进行分析,找出影响整个项目完成时间的关键路径,以便项目管理者有针对性地进行资源调配和进度控制。

而资源平衡法则是在考虑资源限制的情况下,对项目进行资源分配和时间安排,以最大程度地提高资源利用率,确保项目按时完成。

总的来说,网络计划技术在项目管理中起着至关重要的作用。

它能够帮助项目管理者全面、系统地了解项目的进度、资源和成本情况,及时发现和解决问题,提高项目的执行效率和成功率。

因此,掌握网络计划技术,对于项目管理人员来说是非常必要的。

希望大家能够深入学习和应用网络计划技术,为项目管理工作的顺利进行贡献自己的力量。

网络计划技术

网络计划技术

生产计划管理
优化生产流程
通过分析生产流程中的瓶颈和浪费,网 络计划技术可优化生产流程,提高生产
效率和降低成本。
A 生产排程
网络计划技术可用于生产排程,根 据订单需求和产品规格,制定合理
的生产计划。
B
C
D
预测与调整
网络计划技术可结合数据分析进行预测 ,并根据实际生产情况进行调整,以确 保生产计划的准确性和可行性。
活动与事件
活动
在项目中,需要进行的具体工作称为活动。活动之间存在先后关系,后继活 动必须在先活动完成后才能开始。
事件
在项目中,某项活动完成的瞬间称为事件。事件是活动之间连接的关键点, 标志着活动的结束和下一个活动的开始。
网络图
网络图
用于描述项目活动之间的先后 关系和时间关系的一种图形表 示法。常见的网络图有单代号
置,提高生产效率。
降低成本
网络计划技术可以有效地缩短 产品的生产周期,加快生产进 度,从而降低生产成本,提高
企业的经济效益。
提高产品质量
网络计划技术通过对生产过程 的精细规划和控制,可以减少 生产过程中的错误和缺陷,提 高产品质量和客户满意度。
网络计划技术的局限与挑战
技术复杂性
网络计划技术需要针对每个特定的生产过程和资源进行 定制和配置,这需要大量的技术知识和经验,增加了使 用难度。
调整关键路径
在项目实施过程中,根据实际情况 调整关键路径,以优化项目进度。
风险管理
制定风险应对措施,及时处理项目 中出现的风险和问题,确保项目顺 利进行。
ቤተ መጻሕፍቲ ባይዱ4
网络计划技术的应用场景
工程项目管理
制定项目计划 在工程项目管理中,网络计划技 术可用于制定详细的项目计划, 包括任务分配、时间表和资源需 求等。

网络计划技术

网络计划技术

2.局部网络计划
网络计划技术
第二节 双代号网络计划图的绘制
一、双代号网络计划图的组成
双代号网络图由箭线 、节点 、流三要素组成。
箭线 节点 A
t(m,n)

1.箭线
网络计划技术
箭线表示一项工作。该工作就是按需要的粗细 程度划分的一个消耗时间或消耗资源的一个子项目 或子任务。 箭线所指方向表示工作的进行方向。 双代号网络图中箭线又分为实箭线和虚箭线。 实箭线:表示的工作实际存在,既要消耗时间 又要消耗资源。
网络计划技术 6.网络计划图的布局应合理,要尽量避免箭线的 交叉。当箭线的交叉不可避免时,可采用“暗桥”、 “断线”等方法来处理。
7.一个网络图中不允许单代号、双代号混用。
常见的逻辑关系
E
网络计划技术
四、双代号网络计划图的绘制
1.双代号网络计划图的绘制步骤
(1)按施工方案分解工程任务。 (2)确定各单项工作的相互关系、时间表。 (3)逐节生长绘草图。
第一节
概 述
网络计划技术
一、网络计划技术的特点 (一)基本概念
网络图是由箭线和节点组成的,用来表示工作 流程的有向、有序的网状图形。 在网络图上加注工作时间参数而编成的进度计划, 称为网络计划。 用网络计划对任务的工作进度进行安排和控制, 以保证实现预定目标的科学的计划管理技术,即称为 网络计划技术。
LSij =min(LSjk) ― tij
4.工作的最迟必须完成时间(LF)
网络计划技术
是指一项工作在不影响工程按总工期结束的条 件下,最迟必须结束的时间,它必须在紧后工作开 始之前完成。从终节点逆箭线计算,工作(i,j )最 迟必须结束时间应等于节点j的最迟必须实现时间, 即 LFij=LT(j) =LSij+tij

第六章网络计划技术

第六章网络计划技术
第六章网络计划技术
第一节 网络计划的基本概念 一、网络计划的发展 1.网络计划技术的产生和发展 网络计划技术是20世纪50年代在美国创 造和发展起来的一项新型计划技术,当初 最有代表性的是关键线路法(CPM)和计 划评审技术法(PERT),我国于60年代由 著名数学家华罗庚教授,将此技术介绍到 中国,并把它称为“统筹法”。80年代开 始逐渐在建筑业推广网络计划技术。
3
8 5 2
A
2
D
1
B
3
E
4
F
5
C
二、单代号网络图的绘制 (一)单代号网络图的绘制规则 (1)必须正确表述已定的逻辑关系。
B A C B D A B C D
A
A完成B、C开始
C
A C B
A、B完成C开始
A在B前,C在D 前,A、C在B前
A、B完成C 、D开始
A B
A B
A、B同时开始ABCA、B同时结束
(2)按施工段排列: 施工过程水平排列,施工段垂直排列
(3)按楼层排列(实际就是按施工段排列) 施工过程水平排列,楼层垂直排列
补:绘制双代号网络图应注意的问题 1)网络图布局要合理,重点要突出。 2)正确应用虚箭线进行网络图的断路。 3)力求减少不必要的箭线和节点。
例1:已知网络图资料如下表所示,试绘制双代 号网络图。
二、网络的基本表达方式 1、双代号网络图 以箭线及其两端节点的编号表示工 作的网络图
工作名称 n i Dij 持续时间 j
2、单代号网络图 以节点及其编号表示工作,以箭线表示工作 之间的逻辑关系
i n
D
节点编号 工作名称 持续时间
三、网络计划的组成 (一)双代号网络 1、工作 (1)实工作(消耗时间和资源或消耗时间) (2)虚工作(不消耗时间和资源,仅表示 逻辑关系)

第四章 网络计划技术

第四章 网络计划技术
在网络图中持续时间最长的线路称为关键线路,位 于关键线路上的工作称为关键工作。
关键线路的性质: (1)关键线路的线路时间代表整个网络计划的计划总工期; (2)关键线路上的工作都称为关键工作;
(3)关键线路没有时间储备,关键工作也没有时间储备;
(4)在网络图中关键线路至少有一条;
(5)当管理人员采取某些技术组织措施,缩短关键工作的持续 时间时,就可能使关键线路变为非关键线路。
三、网络计划的分类
按照不同的分类原则,可以将网络计划分为不同的类型: (1)按性质分为非肯定型网络计划和肯定型网络计划; (2)按绘制符号的不同分为双代号网络计划和单代号网络计 划; (3)按有无时间坐标分为时标网络计划和非时标网络计划; (4)按网络图最终目标的多少分为单目标网络计划和多目标 网络计划; (5)按网络图的应用对象不同分为局部网络计划、单位工程 网络计划和综合网络计划; (6)按工作搭接特点分为流水网络计划、搭接网络计划和普 通网络计划。
(1)紧前工作:在完成本工作之前必须完成的工作; (2)紧后工作:本工作完成之后才能开始的工作; (3)平行工作:可以和本工作同时开始、同时结束的工作; (4)先行工作:自起点节点至本工作开始节点之前各条线 路上的所有工作;
(5)后继工作:本工作结束节点之后至终点节点之前各条 线路上的所有工作; (6)起始工作:没有紧前工作的工作;
已知各工作之间的逻辑关系,见表4-4,试绘制其双代号网络 图。
【案例解析】
(1)绘制工作箭线A、B和C,如图4-19(a)所示。 (2)按前述绘图方法(2)中的情况 ③ 绘制工作箭线D,如图 4-19(b)所示。
(3)按前述绘图方法(2)中的情况 ① 绘制工作箭线E,如图 4-19(c)所示。
(4)按前述绘图方法(2)中的情况 ② 绘制工作箭线F。当确 认给定的逻辑关系表达正确后,再进行节点编号。表4-4所示 逻辑关系所对应的双代号网络图如图4-19(d)所示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
序号 工作之间的逻辑关系 网络图中的表示方法
A A B
说明 A制约B的开始,B依 赖A的结束
1
A、B两项工作依次施工
2
A、B、C三项工作同时开 始施工
B C A
A、B、C三项工作为 平行施工方式
3
A、B、C三项工作同时结 束
B C B A C
A、B、C三项工作为 平行施工方式
4
A、B、C三项工作,A结 束后,B、C才能开始
工作的表示方法: 1)实工作:是由两个带有编号的圆圈和一个箭杆组成。工 作名称写在箭线上面,工作的持续时间写在箭线下面;箭尾表 示工作的开始,箭头表示工作的结束;圆圈中的两代码也可用 以代表工作的名称。
2)虚工作:
(2)节点 表示一项活动的开始或结束的瞬间,起承上启下的衔接作 用,而不需要消耗时间或资源。节点在网络图中一般用圆圈表 示,并赋以编号。
网络图的布图技巧: ⑴网络图的布局要条理清晰,重点突出;
⑵关键工作、关键线路尽可能布置在中心位置; ⑶密切相关的工作,尽可能相邻布置,尽量减少箭杆交叉; ⑷尽量采用水平箭杆,减少倾斜箭杆。
交叉箭杆的画法:
⑴暗桥法
3 2 6 5 2
⑵断线法
3
~ ~
6
5
【例】某工程各项工作间的逻辑关系如下表所示,试绘制双代号 网络图。
一、网络计划技术的起源与发展
1956年,关键线路法(Critical Path Method, CPM)。 1958年,计划评审技术(Program Evaluation and Review Technique,PERT)。 1962年,图示评审技术(Graphic Evaluation and Review Technique,GERT)。 20世纪70年代,风险评审技术(Venture Evaluation and Review Technique,VERT)。
1965年,著名数学家华罗庚教授应用统筹法。
二、网络计划技术的分类 1.按工作之间逻辑关系和持续时间的确定程度分类
(1)肯定型网络计划; (2)非肯定型网络计划
2.按表达方式分类
(1)双代号网络计划;(2)单代号网络计划
3.按目标分类
(1)单目标网络计划; (2)多目标网络计划
4.按层次分类
(1)总网络计划; (2)局部网络计划
(1)计算时间参数的目的 通过计算各项工作和各节点的时间参数,确定网络计划的关 键工作和关键线路;确定计算工期;确定非关键线路和非关键 工作及其机动时间,为网络计划的优化、调整和执行提供明确 的时间参数。 (2)时间参数的概念及其符号 1)工作持续时间 Di j 工作持续时间是一项工作从开始到完成的时间。 单时分析法: Di j
工作名称
A B C D E F
前导工作
—— —— A A B D、E
后续工作
C、D E、G J F F H、I
持续时间
2 3 5 3 2 4
G
H I
B
F F
——
J ——
2
1 3
J
C、H
——
4
A 2
2 D3
C 5
6 H1
J 4
1
4 E2 B 3 3
F 4
5
I 3
7
G 2
3.双代号网络计划时间参数的计算
ETi LTi
i
工作名称
Di j
ETj LT j j
ET j max ETi Di j
LT
它表示该节点所有前导工作最迟必须结束的时间,它也限制 其后续工作的开始。
LTi min LT j Di j
【例】计算下图节点时间参数。
13 13
B 8
23 25
E 6
3
3)工作时间参数 最早开始时间(ESi-j),是指各紧前工作全部完成后,工 作i-j有可能开始的最早时刻。 最早完成时间(EFi-j),是指各紧前工作全部完成后,工 作i-j有可能完成的最早时刻。 最迟开始时间(LSi-j),是指在不影响整个任务按期完成 的前提下,工作i-j必须开始的最迟时刻。 最迟完成时间(LFi-j),是指在不影响整个任务按期完成 的前提下,工作i-j必须完成的最迟时刻。 总时差(TFi-j),是指在不影响总工期的前提下,工作i-j 可以利用的机动时间。 自由时差(FFi-j),是指在不影响其紧后工作最早开始的 前提下,工作i-j可以利用的机动时间。
3)确定计算工期Tc 当网络计划终点节点为n时,计算工期: Tc=max{EFi-n} 4)最迟开始时间和最迟完成时间的计算 ①以网络计划终节点n为完成节点的工作,最迟完成时间等于 网络计划的计划工期,即: LFi-n=Tp ,(i<n) ②工作的最迟开始时间等于工作最迟完成时间减去其持续时 间,即: LSi-j=LFi-j-Di-j ③其他工作的最迟完成时间等于其紧后工作最迟开始时间的 最小值,即: LFi-j=min{LSj-k} 或,LFi-j =min{LFj-k-Dj-k},(i<j<k)
②非关键线路上的工作,除了关键工作之外,都称为非关键 工作;
③非关键线路有时间储备,非关键工作也有时间储备;
④在网络图中,除了关键线路之外,其余的都是非关键线 路; ⑤当管理人员由于工作疏忽,拖长了某些非关键工作的持续 时间,就可能使非关键线路转变为关键线路。
2. 绘图规则 (1)必须正确表达已定的逻辑关系
5.按有无时间坐标分类
(1)时标网络计划; (2)非时标网络计划
三、网络计划技术的特点
优点:
(1)能全面而明确地反映出各项工作之间的相互依赖、相互
制约的关系; (2)主次、缓急清楚,便于抓住主要矛盾; (3)反映了各项工作机动时间,有利于资源的合理分配; (4)有利于计算机技术的使用,便于网络计划的调整与控 制。 缺点: (1)流水作业的情况很难在计划上反映出来。
第二节 常用网络计划技术
一、双代号网络计划 1.基本概念
(1)工作 也称活动(Activity),指可以独立存在,需要消耗一定时 间和资源,能够定以名称的活动;或只表示某些活动之间的相 互依赖、相互制约的关系,而不需要消耗时间、空间和资源的 活动。 工作的分类: 1)需要消耗时间和资源的工作; 2)只消耗时间而不消耗资源的工作; 3)不需要消耗时间和资源、不占有空间的工作。
6
A、B、C、D四项工作,A、 B结束后,C、D才能开始 A、B、C、D四项工作,A完 成后,C才能开始,A、B完 成后,D才能开始
j
B A B D C D
7
i
j
i
8
A、B、C、D、E五项工作, A、B、C完成后, D才能开 始,B、C完成后, E才能 开始
A、B、C、D、E五项工作, A、B完成后, C才能开始, B、D完成后, E才能开始
A制约B、C的开始, B、C依赖A的结束, B、C为平行施工
序号 5
工作之间的逻辑关系 A、B、C三项工作,A、B结 束后,C才能开始
网络图中的表示方法
A C B A C
说明 A、B为平行施工,A、 B制约C的开始,C依 赖A、B的结束 引出节点 j 正确 地表达了ABCD之间 的关系 引出虚工作 i j 正确的表达它们之 间的逻辑关系
(4) 关键工作和关键线路的确定
1)关键工作
网络计划中总时差最小的工作是关键工作。 2)关键线路 自始至终全部由关键工作组成的线路为关键线路,或线路上 总的工作持续时间最长的线路为关键线路。网络图上的关键线
路可用双线或粗线标注。
例题:
某网络计划的有关资料如图所示,试绘制双代号网络图,并
计算各项工作的时间参数,判定关键线路。
关键线路性质:
①关键线路的线路时间代表整个网络计划的计划总工期; ②关键线路上的工作都称为关键工作; ③关键线路没有时间储备,关键工作也没有时间储备; ④在网络图中关键线路至少有一条;
⑤当管理人员采取某些技术组织措施,缩短关键工作的持续
时间就可能使关键线路变为非关键线路。 非关键线路性质:
①非关键线路的线路时间只代表该条线路的计划工期;
三时分析法: D
i j
Q S RN a 4m b 6
2)工期 T
计算工期 T :由时间参数计算确定的工期,即关键线路的
C
各项工作总持续时间。 计划工期 T :根据计算工期和要求工期确定的工期。
p
要求工期 T :主管部门或合同条款所要求的工期.
r
这三种工期的关系: c Tp Tr T 无要求工期时,计算工期等于计划工期。
(3)时间参数的计算 1)工作时间参数在网络图上的表示方法
2)最早开始时间和最早完成时间的计算 ①以起始节点(i=1)为开始节点的工作,当未规定其最早 开始时间时,一般假设其最早开始时间为零,即ES1-j=0。 ②最早完成时间等于最早开始时间加上其持续时间。 EFi-j=ESi-j+Di-j ③其他工作的最早开始时间ESi-j 应等于其紧前工作最早完成 时间EFh-i的最大值,即: ESi-j=max{EFh-i} 或,ESi-j =max{ESh-i+Dh-i},(h<i<j)
工 作 A 2 — B 3 A C 5 A D 2 B E 3 B F 3 D G 2 F H 3 E、F I 6 J 2
持续时间 紧前工作
C、E、 G、H F
【解】
2 5 3 7 10 3 10 10 0 16 16 0
C 5
7
5 7 2 8 10 2 10 11 1 13 14 0
I 6
E 3
7
G 5
1 0 0
A 5
2
5 5 13 13 5
D 10
6 23 23 30 30 9
I 4
10
34 34
相关文档
最新文档