高中数学选修1-2知识点、考点、附典型例题

合集下载

高中数学选修1-2知识点总结

高中数学选修1-2知识点总结

知识点总结选修1-2知识点总结第一章 统计案例1.线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系 ③线性回归方程:a bx y +=∧(最小二乘法)其中,1221ni i i nii x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x .2.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni i ini i iy y x xy y x xr 11221)()())((注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关; ⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。

3.条件概率对于任何两个事件A 和B ,在已知B 发生的条件下,A 发生的概率称为B 发生时A 发生的条件概率. 记为P (A |B ) , 其公式为P (A |B )=P (AB )P (A )4相互独立事件(1)一般地,对于两个事件A ,B ,如果_ P (AB )=P (A )P (B ) ,则称A 、B 相互独立.(2)如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=_ P (A 1)P (A 2)…P (A n ).(3)如果A ,B 相互独立,则A 与B -,A -与B ,A -与B -也相互独立.5.独立性检验(分类变量关系):(1)2×2列联表设,A B 为两个变量,每一个变量都可以取两个值,变量121:,;A A A A =变量121:,;B B B B =通过观察得到右表所示数据:并将形如此表的表格称为2×2列联表.(2)独立性检验根据2×2列联表中的数据判断两个变量A ,B 是否独立的问题叫2×2列联表的独立性检验.(3) 统计量χ2的计算公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )第二章 推理与证明考点一 合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.考点二 演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理.考点三 数学归纳法:它是一个递推的数学论证方法. 步骤:A.命题在n=1(或0n )时成立,这是递推的基础; B.假设在n=k 时命题成立 C.证明n=k+1时命题也成立,完成这两步,就可以断定对任何自然数(或n>=0n ,且n N ∈)结论都成立。

人教版高中数学选修1-2知识点总结

人教版高中数学选修1-2知识点总结

人教版高中数学选修1-2知识点第一章统计案例1.线性回归方程①变量之间的两类关系:函数关系与相关关系;[来源:简单高中生(ID:jiandan100cn)]②制作散点图,判断线性相关关系;∧1nnx i y i -nx i =1y ⎪⎪③线性回归方程:y =bx +a (最小二乘法)。

其中,⎨⎪b =i =x i2-nx 2⎪⎪⎧⎩a =y -b ⎪x∑∑注意:线性回归直线经过定点(x ,y ).2.相关系数(判定两个变量线性相关性):∑nnnr =i =1i =i =11(i-x )y i -y ∑(xi-x )∑(yi-y )22(x注意:(1)r >0时,变量x ,y 正相关;r <0时,变量x ,y 负相关;(2)①|r |越接近于1,两个变量的线性相关性越强;②|r |接近于0时,两个变量之间几乎不存在线性相关关系。

3.条件概率对于任何两个事件A 和B ,在已知B 发生的条件下,A 发生的概率称为B 发生时A 发生的条件概率.记为P (A |B ),其公式为P (A |B )=P (AB )P (A )4.相互独立事件(1)一般地,对于两个事件A ,B ,如果P (AB )=P (A )P (B ),则称A 、B 相互独立.(2)如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ).(3)如果A ,B 相互独立,则A 与-B ,-A 与B ,-A 与-B 也相互独立.5.独立性检验(分类变量关系):[来源:简单高中生(ID:jiandan100cn)](1)2×2列联表设A,B为两个变量,每一个变量都可以取两个值,变量A:A1,A2=A1;变量B:B1,B2=B1;通过观察得到下表所示数据:并将形如此表的表格称为2×2列联表(2)独立性检验根据2×2列联表中的数据判断两个变量A,B是否独立的问题叫2×2列联表的独立性检验。

高中数学选修1-2知识点总结

高中数学选修1-2知识点总结

高中数学选修1-2知识点总结第一章 统计案例1.线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系③线性回归方程:a bx y +=∧(最小二乘法)其中,1221ni i i nii x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x .2.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni i ini i iy y x xy y x xr 11221)()())((注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关;⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。

1.(2011·山东)某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为 ( ).A .63.6万元B .65.5万元C .67.7万元D .72.0万元 解析 ∵x -=4+2+3+54=72,y -=49+26+39+544=42,又y ^=b ^x +a ^必过(x -,y -),∴42=72×9.4+a ^,∴a ^=9.1.∴线性回归方程为y ^=9.4x +9.1.∴当x =6时,y ^=9.4×6+9.1=65.5(万元). 答案 B2.(2011·江西)为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则A.y ^=x -1 B.y ^=x +1 C.y ^=88+12x D.y ^=176解析 因为x -=174+176+176+176+1785=176,y -=175+175+176+177+1775=176,又y 对x 的线性回归方程表示的直线恒过点(x -,y -), 所以将(176,176)代入A 、B 、C 、D 中检验知选C. 答案 C3.(2011·陕西)设(x1,y 1),(x 2,y 2),…,(x n ,y n )是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是( ). A .x 和y 的相关系数为直线l 的斜率 B .x 和y 的相关系数在0到1之间C .当n 为偶数时,分布在l 两侧的样本点的个数一定相同D .直线l 过点(x -,y -)解析 因为相关系数是表示两个变量是否具有线性相关关系的一个值,它的 绝对值越接近1,两个变量的线性相关程度越强,所以A 、B 错误.C 中n 为偶数时,分布在l 两侧的样本点的个数可以不相同,所以C 错误.根据回 归直线方程一定经过样本中心点可知D 正确,所以选D. 答案 D4.(2011·广东)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x (单位:小时)与当天投篮命中率y 之间的关系:6号打6小时篮球的投篮命中率为________. 解析 小李这5天的平均投篮命中率 y -=0.4+0.5+0.6+0.6+0.45=0.5,可求得小李这5天的平均打篮球时间x -=3.根据表中数据可求得b ^=0.01,a ^= 0.47,故回归直线方程为y ^=0.47+0.01x ,将x =6代入得6号打6小时篮球的 投篮命中率约为0.53. 答案 0.5 0.535.(2011·辽宁)调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:y ^=0.254x +0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.解析 由题意知[0.254(x +1)+0.321]-(0.254x +0.321)=0.254. 答案 0.2546.(2011·安徽)某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y =b x +a ; (2)利用(1)中所求出的直线方程预测该地2012年的粮食需求量.解 (1)由所给数据看出,年需求量与年份之间是近似直线上升的,下面求回归直线方程.为此对数据预处理如下:对预处理后的数据,容易算得x =0,y =3.2.b ^=(-4)×(-21)+(-2)×(-11)+2×19+4×29-5×0×3.2(-4)2+(-2)2+22+42-5×02=26040=6.5,a ^=y --b x -=3. 由上述计算结果,知所求回归直线方程为 y ^-257=b ^(x -2 006)+a ^=6.5(x -2 006)+3.2, 即y ^=6.5(x -2 006)+260.2.①(2)利用直线方程①,可预测2012年的粮食需求量为 6.5×(2012-2006)+260.2=6.5×6+260.2=299.2(万吨).7.(2010·新课标全国)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例? 说明理由. 附:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d )解 (1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估计值为70500=14%.(2)K 2=500×(40×270-30×160)270×300×200×430≈9.967.由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.8.(2010·辽宁)为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.下表1和表2分别是注射药物A和药物B后的试验结果.(疱疹面积单位:mm2)表1:注射药物A后皮肤疱疹面积的频数分布表(2)完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.表3:附:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d )从频率分布直方图中可以看出注射药物A 后皮肤疱疹面积的中位数在65至70之间,而注射药物B 后皮肤疱疹面积的中位数在70至75之间,所以注射药物A 后疱疹面积的中位数小于注射药物B 后疱疹面积的中位数. (2)表3:K 2=200×(70×65-35×30)100×100×105×95≈24.56.由于K 2>10.828,所以有99.9%的把握认为“注射药物A 后的疱疹面积与注射药物B 后的疱疹面积有差异”.。

数学选修1至2知识点总结

数学选修1至2知识点总结

数学选修1至2知识点总结一、选修11. 一次函数一次函数是数学中的一种基本类型的函数,其一般形式为y=ax+b,其中a,b为常数且a≠0。

一次函数的图像是一条通过原点的直线,斜率a表示直线的倾斜程度,常数b表示直线与y轴的交点。

在数学上,一次函数是一种简单串直线函数,但它在实际应用中有着广泛的用途,如经济学、物理学等领域均可利用一次函数来描述问题。

2. 二次函数二次函数是一种常见的函数类型,其一般形式为y=ax²+bx+c,其中a,b,c为常数且a≠0。

二次函数的图像是一条开口向上或向下的抛物线,其开口方向取决于a的正负。

二次函数对应的抛物线有着许多特性,如顶点坐标、对称轴、焦点、直焦距等,这些特性能够帮助我们更好地理解二次函数的性质。

3. 多项式函数多项式函数是由常数组成的数列f(n),在数学中,n是一个变量,它的值可以是实数或者复数,但不是整数或负数,并有定义域。

封闭整数或负数的情况是另一种基于变量方面的数列。

4. 分式函数分式函数是由两个多项式相除而得到的函数,分母不能取0。

5. 指数函数、对数函数指数函数和对数函数是常见的特殊函数类型,它们在数学和实际应用中都有着重要的作用。

指数函数的一般形式是y=a^x,其中a为底数,x为指数,而对数函数的一般形式是y=loga(x),其中a为底数,x为真数。

指数函数和对数函数之间存在着互为反函数的关系,它们在代数、几何、概率等方面均有广泛的应用。

6. 三角函数三角函数是用于描述角度与变化的函数,常见的三角函数包括正弦函数、余弦函数、正切函数等,它们在三角学和实际问题中都有着重要的应用。

三角函数不仅能够描述角度的变化,还能够描述周期性的现象,如振动、波动等。

7. 数列与数学归纳法数列是由一系列按照一定规律排列的数构成的序列,数学归纳法是一种证明数学命题的常用方法。

数列与数学归纳法是数学中重要的概念和方法,它们在数学分析、组合数学、离散数学等领域都有着广泛的应用。

高中数学选修1-2知识点总结

高中数学选修1-2知识点总结

知识点总结选修1-2知识点总结第一章 统计案例 1.线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系③线性回归方程:a bx y +=∧(最小二乘法)其中,1221ni i i nii x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x .2.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni i ini i iy y x xy y x xr 11221)()())((注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关;⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。

3.条件概率对于任何两个事件A 和B ,在已知B 发生的条件下,A发生的概率称为B 发生时A 发生的条件概率. 记为P (A |B ) , 其公式为P (A |B )=P (AB )P (A )4相互独立事件(1)一般地,对于两个事件A ,B ,如果_ P (AB )=P (A )P (B ) ,则称A 、B 相互独立.(2)如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=_ P (A 1)P (A 2)…P (A n ). (3)如果A ,B 相互独立,则A 与B -,A -与B ,A -与B -也相互独立. 5.独立性检验(分类变量关系): (1)2×2列联表设,A B 为两个变量,每一个变量都可以取两个值,变量121:,;A A A A =变量121:,;B B B B =通过观察得到右表所示数据:并将形如此表的表格称为2×2列联表.(2)独立性检验根据2×2列联表中的数据判断两个变量A ,B 是否独立的问题叫2×2列联表的独立性检验.(3) 统计量χ2的计算公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )第二章 推理与证明考点一 合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.考点二 演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理. 考点三 数学归纳法:它是一个递推的数学论证方法. 步骤:A.命题在n=1(或0n )时成立,这是递推的基础; B.假设在n=k 时命题成立 C.证明n=k+1时命题也成立,完成这两步,就可以断定对任何自然数(或n>=0n ,且n N ∈)结论都成立。

数学选修1-2知识点及习题-(2)

数学选修1-2知识点及习题-(2)

数学选修1-2知识点及习题-(2)选修1-2知识点第一章 统计案例1.线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系 ③线性回归方程:a bx y +=∧(最小二乘法)1221ni i i nii x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x 。

2.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni i ini i iy y x xy y x xr 11221)()())((注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关;⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。

3.回归分析中回归效果的判定:⑴总偏差平方和:∑=-ni iy y 12)(;⑵残差:∧∧-=ii iy y e ;⑶残差平方和:21)(∑=∧-ni yi yi ;⑷回归平方和:∑=-ni iy y12)(-21)(∑=∧-ni yi yi ;⑸相关指数∑∑==∧---=ni i ini i iy yy y R12122)()(1 。

注:①2R 得知越大,说明残差平方和越小,则模型拟合效果越好;②2R 越接近于1,,则回归效果越好。

4.独立性检验(分类变量关系):随机变量2K 越大,说明两个分类变量,关系越强,反之,越弱。

第二章推理与证明一.推理:⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。

①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。

注:归纳推理是由部分到整体,由个别到一般的推理。

②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。

高中数学选修1-2知识点、考点、附典型例题

高中数学选修1-2知识点、考点、附典型例题

选修1-2数学知识点第一部分 统计案例 知识点:1.线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系③线性回归方程:a bx y +=∧(最小二乘法)1221ni i i nii x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x 。

2.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni i ini i iy y x xy y x xr 11221)()())((注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关;⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。

3.回归分析中回归效果的判定: ⑴总偏差平方和:∑=-ni iy y12)(⑵残差:∧∧-=i i i y y e ;⑶残差平方和:21)(∑=∧-ni yi yi ;⑷回归平方和:∑=-ni iy y12)(-21)(∑=∧-ni yi yi ;⑸相关指数∑∑==∧---=ni i ini i iy yy y R 12122)()(1 。

注:①2R 得知越大,说明残差平方和越小,则模型拟合效果越好;②2R 越接近于1,,则回归效果越好。

4.独立性检验(分类变量关系):随机变量2K 越大,说明两个分类变量,关系越强,反之,越弱。

考点:无第二部分 推理与证明 知识点:一.推理:⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。

①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。

注:归纳推理是由部分到整体,由个别到一般的推理。

②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。

人教版高中数学【选修1-2】[知识点整理及重点题型梳理] 复数的概念与运算(文)

人教版高中数学【选修1-2】[知识点整理及重点题型梳理] 复数的概念与运算(文)

人教版高中数学选修1-2知识点梳理重点题型(常考知识点)巩固练习复数的概念与运算【学习目标】1.理解复数的有关概念:虚数单位i 、虚数、纯虚数、复数、实部、虚部等。

2.理解复数相等的充要条件。

3. 理解复数的几何意义,会用复平面内的点和向量来表示复数。

4. 会进行复数的加、减运算,理解复数加、减运算的几何意义。

5. 会进行复数乘法和除法运算。

【要点梳理】知识点一:复数的基本概念1.虚数单位i数i 叫做虚数单位,它的平方等于1-,即21i =-。

要点诠释:①i 是-1的一个平方根,即方程21x =-的一个根,方程21x =-的另一个根是i -;②i 可与实数进行四则运算,进行四则运算时,原有加、乘运算律仍然成立。

2. 复数的概念形如a bi +(,a b R ∈)的数叫复数,记作:z a bi =+(,a b R ∈);其中:a 叫复数的实部,b 叫复数的虚部,i 是虚数单位。

全体复数所成的集合叫做复数集,用字母C 表示。

要点诠释:复数定义中,,a b R ∈容易忽视,但却是列方程求复数的重要依据.3.复数的分类对于复数z a bi =+(,a b R ∈)若b=0,则a+bi 为实数,若b≠0,则a+bi 为虚数,若a=0且b≠0,则a+bi 为纯虚数。

分类如下:用集合表示如下图:4.复数集与其它数集之间的关系 N Z Q R C (其中N 为自然数集,Z 为整数集,Q 为有理数集,R 为实数集,C 为复数集。

) 知识点二:复数相等的充要条件两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.即:特别地:00a bi a b +=⇔==.要点诠释:① 一个复数一旦实部、虚部确定,那么这个复数就唯一确定;反之一样.② 根据复数a+bi 与c+di 相等的定义,可知在a=c ,b=d 两式中,只要有一个不成立,那么就有a+bi≠c+di (a ,b ,c ,d ∈R ).③ 一般地,两个复数只能说相等或不相等,而不能比较大小. 如果两个复数都是实数,就可以比较大 小;也只有当两个复数全是实数时才能比较大小.④ 复数相等的充要条件提供了将复数问题化归为实数问题来解决的途径,这也是本章常用的方法, 简称为“复数问题实数化”.知识点三、复数的加减运算1.复数的加法、减法运算法则:设1z a bi =+,2z c di =+(,,,a b c d R ∈),我们规定: 12()()()()z z a bi c di a c b d i +=+++=+++21()()z z c a d b i -=-+-要点诠释:(1)复数加法中的规定是实部与实部相加,虚部与虚部相加,减法同样。

高中数学选修1-2知识点总结

高中数学选修1-2知识点总结

高中数学选修1-2知识点总结知识点总结选修1-2知识点总结第一章统计案例1 .线性回归方程① 变量之间的两类关系:函数关系与相关关系;② 制作散点图,判断线性相关关系 ③ 线性回归方程:y bx a (最小二乘法)a y bx注意:线性回归直线经过定点(x,y ).2. 相关系数(判定两个变量线性相关性)n n2 2(X i x)2(y i y)2i 1i 1注:⑴r >0时,变量x,y 正相关;r <0时,变量x, y 负相关;⑵①|r |越接近于1,两个变量的线性相关性越强;②|r|接近 于0时,两个变量之间几乎不存在线性相关关系。

3. 条件概率对于任何两个事件 A 和B,在已知B 发生的条件下,A 发生的概 率称为B 发生时A 发生的条件概率.记为RA B ),其公式为RA B P (ABP (A )其中,nX i y i i 1n2 Xii 1nx y-2nxn__(X i x)(y i y)i 1独立炖检整 绽计炭M一可红件化的回扫分析 「|松件膛 「闹互独立爭件L 曲小二乘法求线性回SJ 方租2 X 2 的独立性故验高中数学选修1-2知识点总结4相互独立事件(1) 一般地,对于两个事件 A , B,如果_RAE) = P (A )P (B ),则 称A B 相互独立.(2) 如果A,A ,…,An 相互独立,则有RAA …A) = _RA)RA)… RA). ⑶ 如果A , B 相互独立,则A 与B,入与B,入与B 也相互独立.5.独立性检验(分类变量关系):(1) 2 X 2列联表设代B 为两个变量,每一个变量 都可以取两个值,变量A :A,A 2瓦;变 量 B : B I ,B 2 B I ;通过观察得到右表所示数据:并将形如此表的表格称为2X 2列联表.(2) 独立性检验根据2X 2列联表中的数据判断两个变量 A , 是否独立的问题叫2X 2列联表的独立性检验.(3) 统计量x 2的计算公式_________ n (ad — be ) 2 ________x 2= (a + b )( e + d )( a + e )(b + d )第二章推理与证明考点一合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推 理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理根据两类不同事物之间具有某些类似 (或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想); (3) —般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似 ,类比的结论可能是真的.(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.考点二演绎推理(俗称三段论)0;高中数学选修1-2知识点总结由一般性的命题推出特殊命题的过程,这种推理称为演绎推理考点三数学归纳法:它是一个递推的数学论证方法 • 步骤:A.命题在n=1 (或n 0)时成立,这是递推的基础;B. 假设在n=k 时命题成立C. 证明n=k+1时命题也成立 完成这两步,就可以断定对任何自然数 (或n>=圧,且n N )结论都成立。

高中数学选修1-2知识点总结61389

高中数学选修1-2知识点总结61389

知识点总结选修1-2知识点总结第一章 统计案例1.线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系 ③线性回归方程:a bx y +=∧(最小二乘法)其中,1221ni i i nii x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x .2.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni i ini i iy y x xy y x xr 11221)()())((注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关; ⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。

3.条件概率对于任何两个事件A 和B ,在已知B 发生的条件下,A 发生的概率称为B 发生时A 发生的条件概率. 记为P (A |B ) , 其公式为P (A |B )=P (AB )P (A )4相互独立事件(1)一般地,对于两个事件A ,B ,如果_ P (AB )=P (A )P (B ) ,则称A 、B 相互独立.(2)如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=_ P (A 1)P (A 2)…P (A n ).(3)如果A ,B 相互独立,则A 与B -,A -与B ,A -与B -也相互独立.5.独立性检验(分类变量关系):(1)2×2列联表设,A B 为两个变量,每一个变量都可以取两个值,变量121:,;A A A A =变量121:,;B B B B =通过观察得到右表所示数据:并将形如此表的表格称为2×2列联表.(2)独立性检验根据2×2列联表中的数据判断两个变量A ,B 是否独立的问题叫2×2列联表的独立性检验.(3) 统计量χ2的计算公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )第二章 推理与证明考点一 合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.考点二 演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理.考点三 数学归纳法:它是一个递推的数学论证方法. 步骤:A.命题在n=1(或0n )时成立,这是递推的基础; B.假设在n=k 时命题成立 C.证明n=k+1时命题也成立,完成这两步,就可以断定对任何自然数(或n>=0n ,且n N ∈)结论都成立。

高中数学选修1-2知识点总结

高中数学选修1-2知识点总结

知识点总结选修1-2知识点总结第一章 统计案例 1.线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系③线性回归方程:a bx y +=∧(最小二乘法)其中,1221ni i i nii x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x .2.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni i ini i iy y x xy y x xr 11221)()())((注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关;⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。

3.条件概率对于任何两个事件A 和B ,在已知B 发生的条件下,A发生的概率称为B 发生时A 发生的条件概率. 记为P (A |B ) , 其公式为P (A |B )=P (AB )P (A )4相互独立事件(1)一般地,对于两个事件A ,B ,如果_ P (AB )=P (A )P (B ) ,则称A 、B 相互独立.(2)如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=_ P (A 1)P (A 2)…P (A n ). (3)如果A ,B 相互独立,则A 与B -,A -与B ,A -与B -也相互独立. 5.独立性检验(分类变量关系): (1)2×2列联表设,A B 为两个变量,每一个变量都可以取两个值,变量121:,;A A A A =变量121:,;B B B B =通过观察得到右表所示数据:并将形如此表的表格称为2×2列联表.(2)独立性检验根据2×2列联表中的数据判断两个变量A ,B 是否独立的问题叫2×2列联表的独立性检验.(3) 统计量χ2的计算公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )第二章 推理与证明考点一 合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.考点二 演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理. 考点三 数学归纳法:它是一个递推的数学论证方法. 步骤:A.命题在n=1(或0n )时成立,这是递推的基础; B.假设在n=k 时命题成立 C.证明n=k+1时命题也成立,完成这两步,就可以断定对任何自然数(或n>=0n ,且n N ∈)结论都成立。

高中数学选修1-2知识点及典型题

高中数学选修1-2知识点及典型题

选 修 1-2 知 识 点 总 结第一章:统计案例一.回归分析的基本思想及其初步应用1.正相关:如果点散布在从左下角到右上角的区域,则称这两个变量的关系为正相关。

2.负相关:如果点散布在从左上角到右下角的区域,则称这两个变量的关系为负相关。

3.回归直线方程的斜率和截距公式:⎪⎪⎩⎪⎪⎨⎧-=--=---=∑∑∑∑====xb y a xn x yx n yx x x y yx x b n i i ni ii n i i ini i1221121)()()((此公式不要求记忆)。

4.最小二乘法:求回归直线,使得样本数据的点到它的距离的平方最小的方法。

e :我们把线性回归模型e a bx y ++=,其中b a ,为模型的未知参数,e 称为随机误差。

随机误差a bx y e i i i --=eˆ:我们用回归方程a x b y ˆˆˆ+=中的y ˆ估计a bx +,随机误差)(a bx y e +-=, 所以y y e ˆˆ-=是e 的估计量,故a x b y y y e ii i i i ˆˆˆˆ--=-=,e ˆ称为相应于点),(i i y x 的残差。

2R :∑∑==---=ni ini iy yyy R 12122)()ˆ(1,2R 的表达式中21)(∑=-ni i y y 确定,(1)2R 越大,残差平方和21)ˆ(∑=-ni i yy 越小,即模型的拟合效果越好; (2)2R 越小,残差平方和21)ˆ(∑=-ni i yy 越大,即模型的拟合效果越差。

2R 越接近1,表示回归效果越好。

二.独立性检验的基本思想及其初步应用1.分类变量:这种变量的不同“值”表示个体所属的不同类别的变量。

2.列联表:列出两个分类变量的频数表,称为列联表。

22⨯列联表:2K 的观测值:))()()(()(2d b c a d c b a bc ad n k ++++-=。

0k 表:如果0k k ≥,就推断“Y X ,有关系”,这种推断犯错误的概率不超过α; 否则,在样本数据中没有发现足够证据支持结论“Y X ,有关系”。

【精品】高中数学选修1-2 63框图(流程图与结构图)讲义 知识点+练习题

【精品】高中数学选修1-2  63框图(流程图与结构图)讲义  知识点+练习题

框图【学习目标】1.通过具体实例,进一步认识程序框图,了解工序的流程图。

2.能绘制简单实际问题的流程图,体会流程图在解决实际问题中的作用。

3. 能画出简单问题的结构图,能解读结构图。

【要点梳理】要点一、框图的分类本节概念分类如右图:要点二、流程图的概念、分类及其关系1. 流程图:由一些图形符号和文字说明构成的图示称为流程图,它常用来表示一些动态过程,通常会有一个“起点”,一个或多个“终点”.2. 流程图的分类:流程图可分为程序框图与工序流程图.3. 程序框图:程序框图就是算法步骤的直观图示,算法的输人、输出、条件、循环等基本单元构成了程序框图的基本要素,基本要素之间的关系由流程线来建立。

要点诠释:程序框图主要用于描述算法,一个程序的流程图要基于它的算法。

在设计流程图的时候要分步进行,把一个大的流程图分割成小的部分,按照三个基本结构,即顺序结构、选择结构、循环结构来局部安排,最后把流程图进行部分之间的组装,从而完成完整的程序流程图.4.工序流程图:流程图可用于描述工业生产的流程,这样的流程图称为工序流程图.要点诠释:工序流程图(统筹图)用于描述工业生产流程。

每一个矩形框代表一道工序,流程线则表示两相邻工序之间的关系,这是一个有向线,用于指示工序进展的方向,因此画图时要分清先后顺序,判断是非区别,分清流向.特别注意:在程序框图中可以有首尾相接的圈图或循环回路,而在工序流程图上,不允许出现几道工序首尾相接的圈图或循环回路.要点三、程序框图、工序流程图的画图与识图1.程序框图的画法:最基本的程序框有四种:起止框,输入输出框,处理框(执行框),判断框.画法要求:(1)使用标准的框图符号;(2)框图一般按照从上到下、从左到右的顺序画;(3)除判断框外,大多数程序框只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号;(4)一种判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另一种是多分支判断,有几种不同的结果;(5)在框图符号内描述的语言要非常简练、清楚.2.工序流程图的画法:将一个工作或工程从头至尾依先后顺序分为若干道工序(即自顶向下),每一道工序用矩形框表示,并在该矩形框内注明此工序的名称或代号.两相邻工序之间用流程线相连.有时为合理安排工程进度,还要在每道工序框上注明完成该工序所需的时间.开始时工序流程图可以画得粗疏,然后再对每一框逐步细化。

(完整word版)人教版数学选修1-2知识点总结,推荐文档

(完整word版)人教版数学选修1-2知识点总结,推荐文档

数学选修1- 2知识点总结第一章统计案例L I星水二藥法求缓性hl*」穴程剽斯齒个厨机变筮梱关程度的大小1 .线性回归方程①变量之间的两类关系:函数关系与相关关系;②制作散点图,判断线性相关关系③线性回归方程:y bx a (最小二乘法)可红性化的回归分祈条件慨常区辽列诵表的独立性检壺nX i y nx y b —其中,n 2X ii 1-2nxbxa y注意:线性回归直线经过定点(x, y).2 •相关系数(判定两个变量线性相关性)n(X i x)(y i y)i 1n n(X i x)2(y ii 1 i 1<0时,变量x, y负相关;|r|y)2注:⑴r >0时,变量x, y正相关;⑵①|r|越接近于1,两个变量的线性相关性越强;② 间几乎不存在线性相关关系。

3•条件概率对于任何两个事件A和B,在已知B发生的条件下,A发生的概率称为B发生时A发生的p ( AB)条件概率•记为P(A|B),其公式为P(A|B)= p((A)接近于0时,两个变量之4相互独立事件(1) 一般地,对于两个事件A, B,如果_P(AB)= P(A)P(B),则称A、B相互独立.(2) 如果A i, A2,…,An 相互独立,则有P(A I A2…A n)= P(A I)P(A2)…P(A n).(3)如果A, B相互独立,则A与-,-与B,5.独立性检验(分类变量关系):(1) 2 2列联表设代B为两个变量,每一个变量都可以取两个值,变量A:A,A2A;变量B: B1,B2通过观察得到右表所示数据:并将形如此表的表格称为2X2列联表.(2) 独立性检验根据2X2列联表中的数据判断两个变量B是否独立的问题叫2 X列联表的独立性检验.(3) 统计量x2的计算公式_ n (ad —be) 2__________ x 2_(a + b)( c+ d) ( a+ e)( b+ d) B1;uA6息计4j b舄:c dAW ft+c■+■—与-也相互独立.憩我性判断没宥关联/>2,706郭鴨的把握判定变量甘有关联/>3.141供悯的祀掘判定变fi r. B有关联^>6.635仙%的把握判唐变址4占習关联A,1•流程图流程图是由一些图形符号和文字说明构成的图示•流程 图是表述工作方式、工艺流程的一种常用手段,它的特 点是直观、清晰.2.结构图一些事物之间不是先后顺序关系,而是存在某种逻辑 ________________ 系,像这样的关系可以用结构图来描述.常用的结构图 一般包括层次结构图,分类结构图及知识结构图等.1推理⑴合情推理:归纳推理和类比推理都是根据已有事实, 经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修1-2数学知识点
第一部分 统计案例 知识点:
1.线性回归方程
①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系
③线性回归方程:a bx y +=∧
(最小二乘法)
1
221
n
i i i n
i i x y n x y b x n x a y b x ==⎧
-⎪
⎪=⎪⎨-⎪⎪
=-⎪⎩
∑∑ 注意:线性回归直线经过定点),(y x 。

2.相关系数(判定两个变量线性相关性):
∑∑∑===----=
n i n
i i
i n
i i i
y y x x y y x x
r 1
1
2
21)()()
)((
注:⑴r
>0时,变量y x ,正相关;
r <0时,变量y x ,负相关;
⑵①
|
|r
越接近于1,两个变量的线性相关性越强;②
|
|r接近于0
时,两个变量之间几乎不存在线性相关关系。

3.回归分析中回归效果的判定:
⑴总偏差平方和:∑
=-
n
i
i
y
y
1
2
)
(⑵残差:


-
=
i
i
i
y
y
e;⑶残差平方和:2
1
)
(

=

-
n
i
yi
yi;
⑷回归平方和:∑
=-
n
i
i
y
y
1
2
)
(-2
1
)
(

=

-
n
i
yi
yi;⑸相关指数


=
=

-
-
-
=
n
i
i
i
n
i
i
i
y
y
y
y
R
1
2
1
2
2
)
(
)
(
1。

注:①
2
R得知越大,说明残差平方和越小,则模型拟合效果越好;
②2
R越接近于1,,则回归效果越好。

4.独立性检验(分类变量关系):
随机变量2
K越大,说明两个分类变量,关系越强,反之,越弱。

第二部分推理与证明
知识点:
一.推理:
⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。

①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。

注:归纳推理是由部分到整体,由个别到一般的推理。

②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。

注:类比推理是特殊到特殊的推理。

⑵演绎推理:从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。

注:演绎推理是由一般到特殊的推理。

“三段论”是演绎推理的一般模式,包括:⑴大前提---------已知的一般
结论;⑵小前提---------所研究的特殊情况;⑶结论---------根据一般原理,对特殊情况得出的判断。

二.证明
⒈直接证明
⑴综合法
一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。

综合法又叫顺推法或由因导果法。

⑵分析法
一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。

分析法又叫逆推证法或执果索因法。

2.间接证明------反证法
一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说
明假设错误,从而证明原命题成立,这种证明方法叫反证法。

考点:无
第三部分 复数及数域的扩充 知识点: 1.概念:
(1) z =a +bi ∈R ⇔b =0 (a,b ∈R )⇔
z=z ⇔ z 2≥0;
(2) z =a +bi 是虚数⇔b ≠0(a ,b ∈R );
(3) z =a+b i 是纯虚数⇔a =0且b ≠0(a,b ∈R )⇔z +z =0(z≠0)⇔z 2<0;
(4) a +b i=c +di ⇔a =c 且c =d (a,b,c,d ∈R );
2.复数的代数形式及其运算:设z 1= a + bi , z 2 = c + di (a,b,c,d ∈R ),则:
(1) z 1±z 2 = (a + b )± (c + d )i ;
(2) z 1.z 2 = (a +bi )·(c +di )=(ac -bd )+ (ad +bc )i ;
(3) z 1÷z 2 =
=
-+-+)
)(()
)((di c di c di c bi a
i d
c ad
bc d c bd ac 2
222+-+++ (z 2≠0) ;
3.几个重要的结论:
(1)
i
i 2)1(2
±=±;⑷
;11;11i i
i
i i i -=+-=-+
(2) i
性质:T=4;i i
i
i i
i
n n n n
-=-===+++3
42
41
44,1,,1;
;03
42
41
44=++++++n n n
i
i
i
i
(3)
z z z z z 1
11=
⇔=⇔=。

4.运算律:(1)
);,())(3(;))(2(;2121N n m z z z z z z z
z z m
m
m
mn
n
m n
m n
m
∈=⋅==⋅+
5.共轭的性质:⑴2
121)(z z z z ±=± ;⑵
2
121z z z z ⋅= ;⑶
2
121)(
z z z z = ;⑷ z
z =。

6.模的性质:⑴|
|||||||||||212121z z z z z z +≤±≤-;⑵
|
|||||2121z z z z =;⑶
|
||
|||
2121z z z z =;⑷
n
n z z ||||=;
考点:复数的运算
★1.复数z=
22i i
-+(i
为虚数单位)在复平面内对应的点所在象限为
A .第一象限
B .第二象限
C .第三象限
D .第四象限 ★2、设i 是虚数单位,复数i
ai -+21为纯虚数,则实数a 为
(A)2 (B) -2 (C) 2
1- (D)2
1 ★3、若复数1z i =+,i 为虚数单位,则(1)i z +⋅=
A .13i +
B .33i +
C .3i
- D .3 ★4.复数512i
i
=-
A .2i
- B .12i
- C .
2i
-+ D .
12i
-+。

相关文档
最新文档