2018届人教A版 推理与证明 单元测试

合集下载

新人教A版高中数学选修1-2第二章:推理与证明

新人教A版高中数学选修1-2第二章:推理与证明

第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理A级基础巩固一、选择题1.下列推理是归纳推理的是()A.F1,F2为定点,动点P满足|PF1|+|PF2|=2a>|F1F2|,得P 的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n 项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜想出椭圆x2a2+y2b2=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇解析:由归纳推理的定义知,B项为归纳推理.答案:B2.根据给出的数塔猜测123 456×9+7等于()1×9+2=1112×9+3=111123×9+4=1 1111 234×9+5=11 11112 345×9+6=111 111A.111 1110B.1 111 111C.1 111 112 D.1 111 113解析:由1×9+2=11;12×9+3=111;123×9+4=1 111;1 234×9+5=111 111;…归纳可得,等式右边各数位上的数字均为1,位数跟等式左边的第二个加数相同,所以123 456×9+7=1 111 111.答案:B3.观察图形规律,在其右下角的空格内画上合适的图形为()解析:观察可发现规律:①每行、每列中,方、圆、三角三种形状均各出现一次,②每行、每列有两个阴影一个空白,应为黑色矩形.答案:A4.设n是自然数,则18(n2-1)[1-(-1)n]的值()A.一定是零B.不一定是偶数C.一定是偶数D.是整数但不一定是偶数解析:当n为偶数时,18(n2-1)[1-(-1)n]=0为偶数;当n为奇数时(n=2k+1,k∈N),18(n2-1)[1-(-1)n]=18(4k2+4k)·2=k(k+1)为偶数.所以18(n 2-1)[1-(-1)n ]的值一定为偶数. 答案:C5.在平面直角坐标系内,方程x a +y b=1表示在x 轴,y 轴上的截距分别为a 和b 的直线,拓展到空间,在x 轴,y 轴,z 轴上的截距分别为a ,b ,c (abc ≠0)的平面方程为( )A.x a +y b +z c=1 B.x ab +y bc +z ca =1 C.xy ab +yz bc +zx ca =1 D .ax +by +cz =1解析:从方程x a +y b=1的结构形式来看,空间直角坐标系中,平面方程的形式应该是x a +y b +z c=1. 答案:A二、填空题6.已知a 1=1,a n +1>a n ,且(a n +1-a n )2-2(a n +1+a n )+1=0,计算a 2,a 3,猜想a n =________.解析:计算得a 2=4,a 3=9,所以猜想a n =n 2.答案:n 27.在平面上,若两个正三角形的边长比为1∶2.则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.解析:V 1V 2=13S 1h 113S 2h 2=S 1S 2·h 1h 2=14×12=18. 答案:1∶88.观察下列各式:①(x3)′=3x2;②(sin x)′=cos x;③(e x-e-x)′=e x+e-x;④(x cos x)′=cos x-x sin x.根据其中函数f(x)及其导数f′(x)的奇偶性,运用归纳推理可得到的一个命题是__________________________________________.解析:对于①,f(x)=x3为奇函数,f′(x)=3x2为偶函数;对于②,g(x)=sin x为奇函数,f′(x)=cos x为偶函数;对于③,p(x)=e x-e-x为奇函数,p′(x)=e x+e-x为偶函数;对于④,q(x)=x cos x 为奇函数,q′(x)=cos x-x sin x为偶函数.归纳推理得结论:奇函数的导函数是偶函数.答案:奇函数的导函数是偶函数三、解答题9.有以下三个不等式:(12+42)(92+52)≥(1×9+4×5)2;(62+82)(22+122)≥(6×2+8×12)2;(132+52)(102+72)≥(13×10+5×7)2.请你观察这三个不等式,猜想出一个一般性结论,并证明你的结论.解:一般性结论为(a2+b2)(c2+d2)≥(ac+bd)2.证明:因为(a2+b2)(c2+d2)-(ac+bd)2=a2c2+b2c2+a2d2+b2d2-(a2c2+2abcd+b2d2)=b2c2+a2d2-2abcd=(bc-ad)2≥0,所以(a2+b2)(c2+d2)≥(ac+bd)2.10.如图所示,在△ABC中,射影定理可表示为a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,类比上述定理,写出对空间四面体性质的猜想.解:如右图所示,在四面体PABC中,设S1,S2,S3,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示平面PAB,平面PBC,平面PCA与底面ABC所成二面角的大小.猜想射影定理类比推理到三维空间,其表现形式应为S=S1·cos α+S2·cos β+S3·cos γ.B级能力提升1.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n个“金鱼”图需要火柴的根数为() A.6n-2 B.8n-2C.6n+2 D.8n+2解析:从①②③可以看出,从图②开始每个图中的火柴棒都比前一个图中的火柴棒多6根,故火柴棒数成等差数列,第一个图中火柴棒为8根,故可归纳出第n个“金鱼”图需火柴棒的根数为6n+2.答案:C2.等差数列{a n}中,a n>0,公差d>0,则有a4·a6>a3·a7,类比上述性质,在等比数列{b n}中,若b n>0,q>1,写出b5,b7,b4,b8的一个不等关系________.解析:将乘积与和对应,再注意下标的对应,有b4+b8>b5+b7.答案:b4+b8>b5+b73.观察下列等式: ①sin 210°+cos 240°+sin 10°cos 40°=34; ②sin 26°+cos 236°+sin6°cos36°=34. 由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想.解:由①②知,两角相差30°,运算结果为34, 猜想:sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34. 证明:左边=1-cos 2α2+1+cos (2α+60°)2+sin αcos(α+30°)=1-cos 2α2+cos 2αcos 60°-sin 2αsin 60°2+ sin α⎝ ⎛⎭⎪⎫32cos α-sin α2 =1-12cos 2α+14cos 2α-34sin 2α+34sin 2α-1-cos 2α4=34=右边 故sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34. 2.1.2 演绎推理A 级 基础巩固一、选择题1.若大前提是“任何实数的平方都大于0”,小前提是“a∈R”,结论是“a2>0”,那么这个演绎推理()A.大前提错误B.小前提错误C.推理形式错误D.没有错误解析:因为“任何实数的平方非负”,所以“任何实数的平方都大于0”是错误的,即大前提错误.答案:A2.在“△ABC中,E,F分别是边AB,AC的中点,则EF∥BC”的推理过程中,大前提是()A.三角形的中位线平行于第三边B.三角形的中位线等于第三边长的一半C.E,F为AB,AC的中点D.EF∥BC解析:大前提是“三角形的中位线平行于第三边”.答案:A3.下列四个推导过程符合演绎推理“三段论”形式且推理正确的是()A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数解析:对于A,小前提与结论互换,错误;对于B,符合演绎推理过程且结论正确;对于C和D,均为大小前提及结论颠倒,不符合演绎推理“三段论”形式.答案:B4.下列四类函数中,具有性质“对任意的x>0,y>0,函数f(x)满足f(x+y)=f(x)·f(y)”的是()A.幂函数B.对数函数C.指数函数D.余弦函数解析:只有指数函数f(x)=a x(a>0,a≠1)满足条件.答案:C5.有这样一段演绎推理:“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,这是因为() A.大前提错误B.小前提错误C.推理形式错误D.非以上错误解析:用小前提“S是M”,判断得到结论“S是P”时,大前提“M是P”必须是所有的M,而不是部分,因此此推理不符合演绎推理规则.答案:C二、填空题6.已知△ABC中,∠A=30°,∠B=60°,求证a<b.证明:∵∠A=30°,∠B=60°,∴∠A<∠B,∴a<b,画线部分是演绎推理的________.解析:结合三段论的特征可知,该证明过程省略了大前提“在同一个三角形中大角对大边”,因此画线部分是演绎推理的小前提.答案:小前提7.在求函数y =log 2x -2的定义域时,第一步推理中大前提是当a 有意义时,a ≥0;小前提是log 2x -2有意义;结论是________.解析:要使函数有意义,则log 2x -2≥0,解得x ≥4,所以函数y =log 2x -2的定义域是[4,+∞).答案:函数y =log 2x -2的定义域是[4,+∞)8.下面几种推理过程是演绎推理的是________(填序号).①两条直线平行,同旁内角互补,如果∠A 和∠B 是两条平行线的同旁内角,那么∠A +∠B =180°②由平面三角形的性质,推测空间四面体的性质③某高校共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人④在数列{a n }中,a 1=1,a n =12⎝ ⎛⎭⎪⎫a n -1+1a n -1(n ≥2),由此归纳出{a n }的通项公式.解析:①为演绎推理,②为类比推理,③④为归纳推理.答案:①三、解答题9.设m 为实数,利用三段论求证方程x 2-2mx +m -1=0有两个相异实根.证明:如果一元二次方程ax 2+bx +c =0(a ≠0)的判别式Δ=b 2-4ac >0,那么方程有两相异实根.(大前提)一元二次方程x 2-2mx +m -1=0的判别式Δ=(2m )2-4(m -1)=4m 2-4m +4=(2m -1)2+3>0,(小前提)所以方程x 2-2mx +m -1=0有两相异实根.(结论)10.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )的图象的一条对称轴是直线x =π8. (1)求φ;(2)求函数f (x )的单调增区间.解:(1)∵x =π8是函数y =f (x )的图象的对称轴, ∴sin ⎝ ⎛⎭⎪⎫2×π8+φ=±1.∴π4+φ=k π+π2,k ∈Z. ∵-π<φ<0,∴φ=-3π4. (2)由(1)知φ=-3π4,因此y =sin ⎝⎛⎭⎪⎫2x -3π4. 由题意,得2k π-π2≤2x -3π4≤2k π+π2,k ∈Z , ∴k π+π8≤x ≤5π8+k π,k ∈Z. 故函数f (x )的增区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8,k ∈Z. B 级 能力提升1.某人进行了如下的“三段论”:如果f ′(x 0)=0,则x =x 0是函数f (x )的极值点,因为函数f (x )=x 3在x =0处的导数值f ′(0)=0,所以x =0是函数f (x )=x 3的极值点.你认为以上推理的( )A .大前提错误B .小前提错误C .推理形式错误D .结论正确解析:若f ′(x 0),则x =x 0不一定是函数f (x )的极值点,如f (x )=x 3,f ′(0)=0,但x =0不是极值点,故大前提错误.答案:A2.设a >0,f (x )=e x a +a e x 是R 上的偶函数,则a 的值为________. 解析:因为f (x )是R 上的偶函数,所以f (-x )=f (x ),所以⎝ ⎛⎭⎪⎫a -1a ⎝ ⎛⎭⎪⎫e x -1e x =0对于一切x ∈R 恒成立,由此得a -1a =0,即a 2=1.又a >0,所以a =1.答案:13.在数列{a n }中,a 1=2,a n +1=4a n -3n +1(n ∈N *).(1)证明数列{a n -n }是等比数列;(2)求数列{a n }的前n 项和S n ;(3)证明不等式S n +1≤4S n 对任意n ∈N *皆成立.(1)证明:由已知a n +1=4a n -3n +1,得a n +1-(n +1)=4(a n -n ),n ∈N *,又a 1-1=2-1=1≠0,所以数列{a n -n }是首项为1,公比为4的等比数列.(2)解:由(1)得a n -n =4n -1,所以a n =4n -1+n .所以S n =a 1+a 2+a 3+…+a n =1+4+42+…+4n -1+(1+2+3+…+n )=4n -13+n (n +1)2. (3)证明:对任意的n ∈N *,S n +1-4S n =4n +1-13+(n +1)(n +2)2-4⎣⎢⎡⎦⎥⎤4n -13+n (n +1)2=-12(3n 2+n -4)=-12(3n +4)(n -1)≤0. 所以不等式S n +1≤4S n 对任意n ∈N *皆成立.2.2 直接证明与间接证明2.2.1 综合法和分析法第1课 时综合法A 级 基础巩固一、选择题1.在下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)解析:由题设知,f (x )在(0,+∞)上是减函数,由f (x )=1x,得f ′(x )=-1x2<0,所以f (x )=1x 在(0,+∞)上是减函数. 答案:A2.已知函数f (x )=lg 1-x 1+x,若f (a )=b ,则f (-a )等于( ) A .bB .-b C.1b D .-1b解析:f (x )定义域为(-1,1),f (-a )=lg 1+a 1-a =lg ⎝ ⎛⎭⎪⎫1-a 1+a -1=-lg 1-a 1+a =-f (a )=-b .答案:B3.命题“如果数列{a n }的前n 项和S n =2n 2-3n ,那么数列{a n }一定是等差数列”是否成立( )A .不成立B .成立C .不能断定D .与n 取值有关解析:当n ≥2时,a n =S n -S n -1=4n -5又a 1=S 1=2×12-3×1=-1适合上式.∴a n =4n -5(n ∈N *),则a n -a n -1=4(常数)故数列{a n }是等差数列.答案:B4.若a ,b ∈R ,则下面四个式子中恒成立的是( )A .lg(1+a 2)>0B .a 2+b 2≥2(a -b -1)C .a 2+3ab >2b 2 D.a b <a +1b +1解析:在B 中,因为a 2+b 2-2(a -b -1)=(a 2-2a +1)+(b 2+2b +1)=(a -1)2+(b +1)2≥0,所以a 2+b 2≥2(a -b -1)恒成立.答案:B5.在△ABC 中,已知sin A cos A =sin B cos B ,则该三角形是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析:由sin A cos A =sin B cos B 得sin 2A =sin 2B ,所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2.所以该三角形是等腰或直角三角形.答案:D二、填空题6.命题“函数f(x)=x-x ln x在区间(0,1)上是增函数”的证明过程“对函数f(x)=x-x ln x求导,得f′(x)=-ln x,当x∈(0,1)时,f′(x)=-ln x>0,故函数f(x)在区间(0,1)上是增函数”,应用了________的证明方法.解析:本命题的证明,利用题设条件和导数与函数单调性的关系,经推理论证得到了结论,所以应用的是综合法的证明方法.答案:综合法7.角A,B为△ABC内角,A>B是sin A>sin B的________条件(填“充分”“必要”“充要”或“即不充分又不必要”).解析:在△ABC中,A>B⇔a>b由正弦定理asin A=bsin B,从而sin A>sin B.因此A>B⇔a>b⇔sin A>sin B,为充要条件.答案:充要8.已知p=a+1a-2(a>2),q=2-a2+4a-2(a>2),则p,q的大小关系为________.解析:因为p=a+1a-2=(a-2)+1a-2+2≥2(a-2)·1a-2+2=4,又-a2+4a-2=2-(a-2)2<2(a>2),所以q=2-a2+4a-2<4≤p.答案:p>q三、解答题9.已知a>0,b>0,且a+b=1,求证:1a+1b≥4.证明:因为a >0,b >0且a +b =1,所以1a +1b =a +b a +a +b b =2+b a +a b≥2+2 b a ·a b =4. 当且仅当b a =a b,即a =b 时,取等号, 故1a +1b≥4. 10.设函数f (x )=ax 2+bx +c (a ≠0),若函数y =f (x +1)与y =f (x )的图象关于y 轴对称,求证:函数y =f ⎝ ⎛⎭⎪⎫x +12为偶函数. 证明:∵函数y =f (x )与y =f (x +1)的图象关于y 轴对称.∴f (x +1)=f (-x )则y =f (x )的图象关于x =12对称 ∴-b 2a =12,∴a =-b . 则f (x )=ax 2-ax +c =a ⎝ ⎛⎭⎪⎫x -122+c -a 4 ∴f ⎝ ⎛⎭⎪⎫x +12=ax 2+c -a 4为偶函数. B 级 能力提升1.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( )A .恒为负值B .恒等于零C .恒为正值D .无法确定正负解析:由f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,可知f (x )是R 上的单调递减函数,由x 1+x 2>0,可知x 1>-x 2,f (x 1)<f (-x 2)=-f (x 2),则f (x 1)+f (x 2)<0.答案:A2.已知sin x=55,x∈⎝⎛⎭⎪⎫π2,3π2,则tan⎝⎛⎭⎪⎫x-π4=________.解析:∵sin x=55,x∈⎝⎛⎭⎪⎫π2,3π2,∴cos x=-45,∴tan x=-12,∴tan⎝⎛⎭⎪⎫x-π4=tan x-11+tan x=-3.答案:-33.(2016·江苏卷)如图,在直三棱柱ABC A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明:(1)在直三棱柱ABC A1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,所以DE∥A1C1.因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2)在直三棱柱ABC A1B1C1中,A1A⊥平面A1B1C1,因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.又因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.第2课时分析法A级基础巩固一、选择题1.关于综合法和分析法的说法错误的是()A.综合法和分析法是直接证明中最基本的两种证明方法B.综合法又叫顺推证法或由因导果法C.综合法和分析法都是因果分别互推的两头凑法D.分析法又叫逆推证法或执果索因法解析:由综合法和分析法的意义与特点,知C错误.答案:C2.分析法又叫执果索因法,若使用分析法证明:设a>b>c,且a+b+c=0,求证:b2-ac<3a,则证明的依据应是() A.a-b>0B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0解析:b2-ac<3a⇔b2-ac<3a2⇔(a+c)2-ac<3a2⇔(a-c)·(2a +c)>0⇔(a-c)(a-b)>0.答案:C3.在不等边△ABC中,a为最大边,要想得到A为钝角的结论,对三边a,b,c应满足的条件,判断正确的是()A.a2<b2+c2B.a2=b2+c2C.a2>b2+c2D.a2≤b2+c2解析:要想得到A为钝角,只需cos A<0,因为cos A=b2+c2-a22bc,所以只需b2+c2-a2<0,即b2+c2<a2.答案:C4.对于不重合的直线m,l和平面α,β,要证明α⊥β,需要具备的条件是()A.m⊥l,m∥α,l∥βB.m⊥l,α∩β=m,l⊂αC.m∥l,m⊥α,l⊥βD.m∥l,l⊥β,m⊂α解析:对于选项A,与两相互垂直的直线平行的平面的位置关系不能确定;对于选项B,平面内的一条直线与另一个平面的交线垂直,这两个平面的位置关系不能确定;对于选项C,这两个平面有可能平行或重合;根据面面垂直的判定定理知选项D正确.答案:D5.设P=2,Q=7-3,R=6-2,则P,Q,R的大小关系是()A.P>Q>R B.P>R>QC.Q>P>R D.Q>R>P解析:先比较Q与R的大小.Q-R=7-3-(6-2)=(7+2)-(6+3).因为(7+2)2-(6+3)2=7+2+214-(6+3+218)=2(14-18)<0,所以Q<R.又P=2>R=2(3-1),所以P>R>Q.答案:B二、填空题6.如果a a+b b>a b+b a,则实数a,b应满足的条件是________.解析:a a+b b>a b+b a⇔a a-a b>b a-b b⇔a(a-b)>b(a-b)⇔(a-b)(a-b)>0⇔(a+b)(a-b)2>0,故只需a≠b且a,b都不小于零即可.答案:a≥0,b≥0且a≠b7.当x>0时,sin x与x的大小关系为________.解析:令f(x)=x-sin x(x>0),则f′(x)=1-cos x≥0,所以f(x)在(0,+∞)上是增函数,因此f(x)>f(0)=0,则x>sin x.答案:x>sin x8.如图,在直四棱柱A1B1C1D1­ABCD(侧棱与底面垂直)中,当底面四边形ABCD满足条件________时,有A1C⊥B1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形).解析:要证明A 1C ⊥B 1D 1只需证明B 1D 1⊥平面A 1C 1C因为CC 1⊥B 1D 1只要再有条件B 1D 1⊥A 1C 1,就可证明B 1D 1⊥平面A 1CC 1 从而得B 1D 1⊥A 1C 1.答案:B 1D 1⊥A 1C 1(答案不唯一)三、解答题9.已知a >1,求证:a +1+a -1<2a .证明:因为a >1,要证a +1+a -1<2a ,只需证(a +1+a -1)2<(2a )2,只需证a +1+a -1+2(a +1)(a -1)<4a , 只需证(a +1)(a -1)<a ,只需证a 2-1<a 2,即证-1<0.该不等式显然成立,故原不等式成立.10.求证:2cos(α-β)-sin (2α-β)sin α=sin βsin α. 证明:欲证原等式2cos(α-β)-sin (2α-β)sin α=sin βsin α成立. 只需证2cos(α-β)sin α-sin(2α-β)=sin β,①因为①左边=2cos(α-β)sin α-sin[(α-β)+α]=2cos(α-β)sin α-sin(α-β)cos α-cos(α-β)sin α =cos(α-β)sin α-sin(α-β)cos α=sin β=右边.所以①成立,所以原等式成立.B 级 能力提升1.设a ,b ,c ,d 为正实数,若a +d =b +c 且|a -d |<|b -c |,则有( )A .ad =bcB .ad <bcC .ad >bcD .ad ≤bc解析:∵|a -d |<|b -c |⇔(a -d )2<(b -c )2⇔a 2+d 2-2ad <b 2+c 2-2bc ①又a +d =b +c∴a 2+d 2+2ad =b 2+c 2+2bc ②由②-①,得4ad >4bc ,即ad >bc .答案:C2.设函数f (x )是定义在R 上的以3为周期的奇函数,若f (1)>1,f (2)=3a -4a +1,则实数a 的取值范围是________. 解析:因为f (x )是周期为3的奇函数,且f (1)>1,所以f (2)=f (-1)=-f (1),因此3a -4a +1<-1,则4a -3a +1<0, 解之得-1<a <34. 答案:⎝ ⎛⎭⎪⎫-1,34 3.设实数a ,b ,c 成等比数列,非零实数x ,y 分别为a 与b ,b 与c 的等差中项,证明:a x +c y=2.证明:要证明ax+cy=2,只要证ay+cx=2xy,也就是证明2ay+2cx=4xy.由题设条件b2=ac,2x=a+b,2y=b+c,所以2ay+2cx=a(b+c)+(a+b)c=ab+2ac+bc,4xy=(a+b)(b+c)=ab+b2+bc+ac=ab+2ac+bc,所以2ay+2cx=4xy成立,故ax+cy=2成立.2.2.2 反证法A级基础巩固一、选择题1.应用反证法推出矛盾的推导过程中,要把下列哪些作为条件使用()①结论的否定即假设;②原命题的条件;③公理、定理、定义等;④原命题的结论.A.①②B.①②④C.①②③D.②③解析:由反证法的定义知,可把①②③作为条件使用,而④原命题的结论是不可以作为条件使用的.答案:C2.用反证法证明命题:“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是()A.方程x2+ax+b=0没有实根B.方程x2+ax+b=0至多有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根解析:“方程x2+ax+b=0至少有一个实根”的反面是“方程x2+ax+b=0没有实根.”答案:A3.用反证法证明命题“若直线AB、CD是异面直线,则直线AC、BD也是异面直线”的过程归纳为以下三个步骤:①则A、B、C、D四点共面,所以AB、CD共面,这与AB、CD是异面直线矛盾;②所以假设错误,即直线AC、BD也是异面直线;③假设直线AC、BD是共面直线.则正确的序号顺序为()A.①②③B.③①②C.①③②D.②③①解析:结合反证法的证明步骤可知,其正确步骤为③①②.答案:B4.否定结论“自然数a,b,c中恰有一个偶数”时,正确的反设为()A.a,b,c都是奇数B.a,b,c都是偶数C.a,b,c中至少有两个偶数D.a,b,c都是奇数或至少有两个偶数解析:自然数a,b,c中奇数、偶数的可能情况有:全为奇数,恰有一个偶数,恰有两个偶数,全为偶数.除去结论即为反设,应选D.答案:D5.设实数a 、b 、c 满足a +b +c =1,则a ,b ,c 中至少有一个数不小于( )A .0B.13C.12 D .1解析:假设a ,b ,c 都小于13,则a +b +c <1,与a +b +c =1矛盾,选项B 正确.答案:B二、填空题6.已知平面α∩平面β=直线a ,直线b ⊂α,直线c ⊂β,b ∩a =A ,c ∥a ,求证:b 与c 是异面直线,若利用反证法证明,则应假设________.解析:∵空间中两直线的位置关系有3种:异面、平行、相交, ∴应假设b 与c 平行或相交.答案:b 与c 平行或相交7.完成反证法证题的全过程.设a 1,a 2,…,a 7是1,2,…,7的一个排列,求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数.证明:假设p 为奇数,则a 1-1,a 2-2,…,a 7-7均为奇数.因奇数个奇数之和为奇数,故有奇数=________=0.但0≠奇数,这一矛盾说明p 为偶数.解析:由假设p 为奇数可知(a 1-1),(a 2-2),…,(a 7-7)均为奇数,故(a 1-1)+(a 2-2)+…+(a 7-7)=(a 1+a 2+…a 7)-(1+2+…+7)=0为偶数.答案:(a 1-1)+(a 2-2)+…+(a 7-7)8.已知数列{a n },{b n }的通项公式分别为a n =an +2,b n =bn +1(a ,b 是常数,且a >b ),那么这两个数列中序号与数值均对应相同的项有________个.解析:假设存在序号和数值均相等的项,即存在n 使得a n =b n ,由题意a >b ,n ∈N *,则恒有an >bn ,从而an +2>bn +1恒成立,所以不存在n 使a n =b n .答案:0三、解答题9.设x ,y 都是正数,且x +y >2,试用反证法证明:1+x y <2和1+y x<2中至少有一个成立.证明:假设1+x y <2和1+y x <2都不成立,即1+x y ≥2,1+y x≥2. 又因为x ,y 都是正数,所以1+x ≥2y ,1+y ≥2x .两式相加,得2+x +y ≥2x +2y ,则x +y ≤2,这与题设x +y >2矛盾,所以假设不成立.故1+x y <2和1+y x<2中至少有一个成立. 10.已知三个正数a ,b ,c ,若a 2,b 2,c 2成公比不为1的等比数列,求证:a ,b ,c 不成等差数列.证明:假设a ,b ,c 成等差数列,则有2b =a +c ,即4b 2=a 2+c 2+2ac ,又a2,b2,c2成公比不为1的等比数列,且a,b,c为正数,所以b4=a2c2且a,b,c互不相等,即b2=ac,因此4ac=a2+c2+2ac,所以(a-c)2=0,从而a=c=b,这与a,b,c互不相等矛盾.故a,b,c不成等差数列.B级能力提升1.设a,b,c大于0,则3个数:a+1b,b+1c,c+1a的值()A.都大于2 B.至少有一个不大于2 C.都小于2 D.至少有一个不小于2解析:假设a+1b,b+1c,c+1a都小于2则a+1b<2,b+1c<2,c+1a<2∴a+1b+b+1c+c+1a<6,①又a,b,c大于0所以a+1a≥2,b+1b≥2,c+1c≥2.∴a+1b+b+1c+c+1a≥6.②故①与②式矛盾,假设不成立所以a+1b,b+1c,c+1a至少有一个不小于2.答案:D2.对于定义在实数集R上的函数f(x),如果存在实数x0,使f(x0)=x0,那么x0叫作函数f(x)的一个好点.已知函数f(x)=x2+2ax+1不存在好点,那么a的取值范围是()A.⎝ ⎛⎭⎪⎫-12,32B.⎝ ⎛⎭⎪⎫-32,12 C .(-1,1) D .(-∞,-1)∪(1,+∞)解析:假设函数f (x )存在好点,则x 2+2ax +1=x 有实数解,即x 2+(2a -1)x +1=0有实数解.所以Δ=(2a -1)2-4≥0,解得a ≤-12或a ≥32. 所以f (x )不存在好点时,a 的取值范围是⎝ ⎛⎭⎪⎫-12,32. 答案:A3.已知二次函数f (x )=ax 2+bx +c (a >0,c >0)的图象与x 轴有两个不同的交点,若f (c )=0且0<x <c 时,恒有f (x )>0.(1)证明:1a是f (x )=0的一个根; (2)试比较1a与c 的大小. (1)证明:因为f (x )的图象与x 轴有两个不同的交点,所以f (x )=0有两个不等实根x 1,x 2.因为f (c )=0,所以x 1=c 是f (x )=0的根,又x 1x 2=c a, 所以x 2=1a ⎝ ⎛⎭⎪⎫1a ≠c , 所以1a是f (x )=0的一个根. (2)解:假设1a<c ,又1a>0,且0<x <c 时,f (x )>0, 所以知f ⎝ ⎛⎭⎪⎫1a >0,这与f ⎝ ⎛⎭⎪⎫1a =0矛盾, 因此1a≥c , 又因为1a≠c , 所以1a>c .。

B 高中数学 第二章 推理与证明综合检测 新人教A版选修2-2

B     高中数学 第二章 推理与证明综合检测 新人教A版选修2-2

第二章推理与证明综合检测一、选择题1.自然数都是整数,4是自然数,所以4是整数.以上“三段论”推理().A.正确B.推理形式不正确C.两个“自然数”概念不一致D.“两个整数”概念不一致【解析】“三段论”中的大前提,小前提及推理形式都是正确的.【答案】A2.余弦函数是偶函数,f(x)=cos(x+1)是余弦函数,因此f(x)=cos(x+1)是偶函数,以上推理().A.结论正确B.大前提不正确C.小前提不正确D.全不正确【解析】因为f(x)=cos(x+1)不是余弦函数,所以小前提错误.【答案】C3.下列推理不是合情推理的是().A.由圆的性质类比推出球的有关性质B.由直角三角形、等腰三角形、等边三角形的内角和都是180°,归纳出所有三角形的内角和都是180°C.某次考试张军的成绩是100分,由此推出全班同学的成绩都是100分D.蛇、海龟、蜥蜴是用肺呼吸的,蛇、海龟、蜥蜴是爬行动物,所以所有的爬行动物都是用肺呼吸的【解析】A是类比推理,B、D是归纳推理,C不是合情推理.【答案】C4.若f(n)=1+++…+(n∈N*),则当n=2时,f(n)等于().A.1+B.C.1++++D.均不正确【解析】∵f(n)=1+++…+,分子是1,分母是1,2,3,…,2n+1,故当n=2时,f(n)=1+++…+=1++++.【答案】C5.下列推理是归纳推理的是().A.A,B为定点,动点P满足|PA|+|PB|=2a>|AB|,则点P的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n项和S n的表达式C.由圆x2+y2=r2的面积S=πr2,猜想出椭圆+=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇【解析】由S1,S2,S3猜想出数列的前n项和S n的表达式,是从特殊到一般的推理,所以选项B中的推理是归纳推理,故选B.【答案】B6.函数y=f(x)的定义域为D,若对任意的x1,x2∈D都有|f(x1)-f(x2)|<1,则称函数y=f(x)为“Storm”函数.那么下列函数是“Storm”函数的是().A.f(x)=x2(x∈[-1,2])B.f(x)=x3(x∈[0,1])C.f(x)=-2x+1(x∈[-1,0])D.f(x)=(x∈[1,3])【解析】由定义知|f(x1)-f(x2)|小于等于函数f(x)的最大值与最小值之差的绝对值,故要判断一个函数是否为“Storm”函数,只需看这个函数的最值之差的绝对值是否小于1即可.在选项D中,因为f(x)=在x∈[1,3]上是减函数,所以令m=f(3)=,M=f(1)=1,所以|M-m|==<1,所以该函数是“Storm”函数.【答案】D7.下列推理正确的是().A.把a(b+c)与log a(x+y)进行类比,则有log a(x+y)=log a x+log a yB.把a(b+c)与sin(x+y)进行类比,则有sin(x+y)=sin x+sin yC.把(ab)n与(a+b)n进行类比,则有(x+y)n=x n+y nD.把(a+b)+c与(xy)z进行类比,则有(xy)z=x(yz)【答案】D8.用数学归纳法证明:12+22+…+(n-1)2+n2+(n-1)2+…+22+12=.从n=k到n=k+1,等式左边应添加的式子是().A.(k-1)2+2k2B.(k+1)2+k2C.(k+1)2D.(k+1)[2(k+1)2+1]【解析】当n=k时,左边=12+22+…+(k-1)2+k2+(k-1)2+…+22+12;当n=k+1时,左边=12+22+…+(k-1)2+k2+(k+1)2+k2+(k-1)2+…+22+12.所以从n=k到n=k+1,左边应添加的式子为(k+1)2+k2.【答案】B9.如表所示,若数列{x n}满足x0=5,且对任何自然数均有x n+1=f(x n),则x2019=().x 1 2 3 4 5f(x) 4 1 3 5 2A.1B.2C.4D.5【解析】因为x1=f(x0)=f(5)=2,x2=f(2)=1,x3=f(1)=4,x4=f(4)=5,x5=f(5)=2,…,所以数列{x n}是周期为4的数列,所以x2019=x3=4.故选C.【答案】C10.在△ABC中,角A,B,C分别为边a,b,c所对的角.若a,b,c成等差数列,则角B的取值范围是().A. B.C. D.【解析】∵a,b,c成等差数列,∴a+c=2b,∴cos B===-≥-=.又∵余弦函数y=cos x在区间内单调递减,∴0<B≤.故选B.【答案】B11.观察数表:1 2 3 4…第一行2 3 4 5…第二行3 4 5 6…第三行4 5 6 7…第四行……………………第一列第二列第三列第四列根据数表所反映的规律,第n行第n列交叉点上的数应为().A.2n-1B.2n+1C.n2-1D.n2【答案】A12.若△A1B1C1的三个内角的余弦值分别等于△A2B2C2的三个内角的正弦值,则().A.△A1B1C1和△A2B2C2都是锐角三角形B.△A1B1C1和△A2B2C2都是钝角三角形C.△A1B1C1是钝角三角形,△A2B2C2是锐角三角形D.△A1B1C1是锐角三角形,△A2B2C2是钝角三角形【解析】由条件知,△A1B1C1的三个内角的余弦值均大于0,故△A1B1C1是锐角三角形.假设△A2B2C2是锐角三角形,由得故A2+B2+C2=,这与三角形内角和为π相矛盾,所以假设不成立.又由已知可得△A2B2C2不是直角三角形,所以△A2B2C2是钝角三角形.【答案】D二、填空题13.已知x,y∈R,且x+y<2,则x,y中至多有一个大于1.在用反证法证明时,假设应为.【解析】“x,y中至多有一个大于1”包括“x,y都不大于1”和“x,y有且仅有一个大于1”,故假设应为“x,y都大于1”.【答案】x,y都大于114.观察下列等式:×=1-,×+×=1-,×+×+×=1-,…,由以上等式推测得到一个一般的结论:对于任何n∈N*,×+×+…+×= .【解析】由已知的等式得对于任何n∈N*,×+×+…+×=1-.【答案】1-15.如图,若对大于或等于2的自然数m的n次幂进行如下方式的“分裂”:则由此规律,52的“分裂”中最大的数是,53的“分裂”中最小的数是.【解析】由题意可知,因此52的“分裂”中最大的数为9,53的“分裂”中最小的数为21.【答案】92116.已知在数列{a n}中,a1=1,且S n,S n+1,2S1成等差数列(S n表示数列{a n}的前n项和),则S2,S3,S4分别为,由此猜想S n= .【解析】由S n,S n+1,2S1成等差数列得2S n+1=S n+2S1.∵S1=a1=1,∴2S n+1=S n+2.令n=1,则2S2=S1+2=1+2=3⇒S2=.同理分别令n=2,n=3,可求得S3=,S4=.由S1=1=,S2==,S3==,S4==, 猜想S n=(n∈N*).【答案】,,(n∈N*)三、解答题17.实数a,b,c,d满足a+b=c+d=1,ac+bd>1,求证:a,b,c,d至少有一个负数.【解析】假设a,b,c,d都是非负数,则1=(a+b)(c+d)=(ac+bd)+(ad+bc)≥ac+bd,这与已知ac+bd>1矛盾.故a,b,c,d至少有一个负数.18.已知A,B都是锐角,且A+B≠90°,(1+tan A)(1+tan B)=2.求证:A+B=45°.【解析】∵(1+tan A)(1+tan B)=2,∴tan A+tan B=1-tan A tan B.∵A+B≠90°,∴tan(A+B)==1.∵A,B都是锐角,∴0°<A+B<180°.∴A+B=45°.19.已知a>0,b>0,2c>a+b,求证:c-<a<c+.【解析】要证c-<a<c+,只需证-<a-c<,即证|a-c|<,只需证(a-c)2<()2,只需证a2-2ac+c2<c2-ab,即证2ac>a2+ab.因为a>0,所以只需证2c>a+b.又因为2c>a+b成立.所以原不等式成立.20.已知△ABC的三边长都是有理数,求证:(1)cos A是有理数;(2)对任何正整数n,cos nA和sin A·sin nA都是有理数.【解析】(1)由AB,BC,AC的长为有理数及余弦定理知,cos A=是有理数.(2)用数学归纳法证明cos nA和sin A·sin nA都是有理数.①当n=1时,由(1)知cos A是有理数,从而有sin A·sin A=1-cos2A也是有理数.②假设当n=k(k≥1,k∈N*)时,cos kA和sin A·sin kA都是有理数,那么当n=k+1时,cos(k+1)A=cos A·cos kA-sin A·sin kA,sin A·sin(k+1)A=sin A·(sin A·cos kA+cos A·sin kA)=(sin A·sin A)·cos kA+(sin A·sin kA)·cos A,由①和归纳假设知,cos(k+1)A和sin A·sin(k+1)A都是有理数.即当n=k+1时,结论成立.综合①②可知,对任何正整数n,cos nA和sin A·sin nA都是有理数.21.如图,已知在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,且PA=AB=BC=2,D为线段AC 的中点,E为线段PC上一点.(1)求证:PA⊥BD.(2)求证:平面BDE⊥平面PAC.(3)当PA∥平面BDE时,求三棱锥E-BCD的体积.【解析】(1)∵PA⊥AB,PA⊥BC,且AB∩BC=B,∴PA⊥平面ABC.又∵BD⊂平面ABC,∴PA⊥BD.(2)∵AB=BC,D为线段AC的中点,∴在△ABC中,BD⊥AC.又由(1)知,PA⊥BD,PA∩AC=A,∴BD⊥平面PAC.又∵BD⊂平面BDE,∴平面BDE⊥平面PAC.(3)当PA∥平面BDE时,由D是AC的中点知,E为PC的中点.因此ED=PA=1,ED⊥平面BDC.由AB=BC=2,AB⊥BC,D为AC的中点知,BD=CD=.又由BD⊥AC知,BD⊥DC,即∠BDC=90°.因此V E-BCD=S△BCD·ED=××××1=.22.已知数列{a n}的前n项和S n满足S n=+-1,且a n>0,n∈N*.(1)求a1,a2,a3;(2)猜想{a n}的通项公式,并用数学归纳法证明.【解析】(1)a1=S1=+-1,即+2a1-2=0,∵a n>0,∴a1=-1.S2=a1+a2=+-1,即+2a2-2=0,∴a2=-.S3=a1+a2+a3=+-1,即+2a3-2=0,∴a3=-.(2)由(1)猜想a n=-,n∈N*.下面用数学归纳法证明:当n=1时,由(1)知a1=-1,猜想成立;假设当n=k(k∈N*)时,a k=-, 猜想成立,那么当n=k+1时,a k+1=S k+1-S k=-=+-.∴+2a k+1-2=0.∴a k+1=-,即当n=k+1时猜想也成立.综上可知,对任何n∈N*猜想都成立.。

高中数学 第二章推理与证明全章归纳总结 新人教A版选修1-2

高中数学 第二章推理与证明全章归纳总结 新人教A版选修1-2

第二章 推理与证明2.1.1 合情推理与演绎推理(1)归纳推理【要点梳理】1、从一个或几个已知命题得出另一个新命题的思维过程称为 任何推理包括 和 两个部分。

是推理所依据的命题,它告诉我们 是什么, 是根据前提推得的命题,它告诉我们 是什么。

2、从个别事实中推演车一般性的结论的推理通常称为 ,它的思维过程是3、归纳推理有如下特点(1)归纳推理的前提是几个已知的 现象,归纳所得的结论是尚属未知的 现象,该结论超越了前提所包含的范围。

(2)由归纳推理得到的结论具有 的性质,结论是否真实,还需经过逻辑证明和实践检验,因此,它 作为数学证明的工具。

(填“能”或“不能”)(3)归纳推理是一种具有 的推理,通过归纳法得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题。

【指点迷津】1、运用归纳推理的一般步骤是什么?首先,通过观察特例发现某些相似性(特例的共性或一般规律);然后,把这种相似性推广为一个明确表述的一般命题(猜想);然后,对所得的一般性命题进行检验。

2、在数学上,检验的标准是什么?标准是是否能进行严格的证明。

3、归纳推理的一般模式是什么?S 1具有P ;S 2具有P ;……;S n 具有P (S 1、S 2、…、S n 是A 类事件的对象) 所以A 类事件具有P【典型例题】例1、设N n x f x f x f x f x f x f x x f n n ∈'='='==-),()(,),()(),()(,sin )(112010 ,则)()(2005=x fA 、x sinB 、x sin -C 、x cosD 、x cos - 【解析】:,cos )(sin )(1x x x f ='=)()()(sin )(cos )()(cos )(sin )(sin )cos ()(cos )sin ()(sin )(cos )(42615432x f x f x f x x x f x f x x x f xx x f xx x f x x x f n n ====-='==='=='-=-='-=-='=+故可猜测)(x f n 是以4为周期的函数,有x x f x f x f n n sin )(,cos )1()(2414-===++xf x f x x f n n sin )4()(cos )(4434==-=++故选C【点评】归纳推理是由部分到整体、由个别到一般的推理,是人们在日常活动和科学学习研究中经常使用的一种推理方法,必须认真学习领会,在归纳推理的过程中,应注意所探求的事物或现象的本质属性和因果关系。

第十一章图形与证明单元测试

第十一章图形与证明单元测试

第十一章 图形与证明测试班级 姓名 学号 得分:一、选择题:(请将你的答案填在下表中,4分×9=36分)A 、对顶角不相等;B 、连结AB 并延长到C ; C 、平行线间的距离处处相等;D 、全等三角形的周长相等2.如图,AD ∥BC ,点E 在BD 的延长线上,若∠ADE=155°,则∠DBC 的度数为 A 、155° B 、50° C 、45° D 、25°3.如图,下列推理正确的是A 、∵MA ∥NB , ∴∠1=∠2 B 、∵MC ∥ND , ∴∠1=∠3 C 、∵∠2=∠4, ∴MC ∥ND D 、∵∠1=∠3, ∴MA ∥NB 4.如图,∠A 、∠DOE 和∠BEC 的大小关系是A 、∠A>∠DOE>∠BECB 、∠DOE>∠A>∠BEC C 、∠DOE>∠BEC >∠AD 、∠BEC >∠DOE>∠A5.考虑下面3个命题:①有一个角是100°的两个等腰三角形相似;②斜边和周长对应相等的两个直角三角形全等;③内错角相等,其中真命题有A 、仅①B 、①③C 、②③D 、①②③6.如图,直线a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=55°,则∠2的度数为 A 、35° B 、45° C 、55° D 、125°7.如图,∠A+∠B+∠C+∠D+∠E+∠F 的度数为A 、180°B 、360°C 、540°D 、720° 8.甲、乙、丙、丁四位同学猜测自己的数学成绩, 甲说:“如果我得优,那么乙也得优” 乙说:“如果我得优,那么丙也得优” 丙说:“如果我得优,那么丁也得优”A C D E (第2题图) M N A CB D 2 1 34 (第3题图) A B C E D O (第4题图) A C a b1 2BA BCDEF (第7题图)(第6题图)大家都没有说错,但只有三个人得优,请问甲、乙、丙、丁中谁没有得优? A 、甲 B 、乙 C 、丙 D 、丁 9.如右图,如果AB ∥CD ,则角α、β、γ之间的关系式为A 、α+β+γ=360°B 、α+β+γ=180°C 、α+β-γ=180°D 、α-β+γ=180°二、填空题(将答案直接填写在横线上,3分×8=24分)10. 直角三角形两个锐角的差为20°,则这两个锐角的度数分别为:___________; 11. 已知命题“如果一个三角形是直角三角形,那么它的两个锐角互余”,写出它的条件和结论,并写出其逆命题条件:________________________________________________; 结论:________________________________________________; 逆命题:_______________________________________________;12. 命题“全等三角形的对应角相等”的逆命题:______________________________; 13.举反例说明命题“如果a+b>0,那么a>0,b>0”是假命题,反例为:_________________________________________________________________; 14. 如图,直线MN ∥PQ ,AB ⊥MN ,垂足为O ,BC 与PQ 相交于点E ,若∠BEP=43°, 则∠ABC=_________°;15.如图,a ∥b ,∠1=(3x-7)°, ∠2=(5x+11)°,则x=__________ 16.如图,已知∠BDC=142°,∠B =34°,∠C=28°,则∠A=_________;17.如图,两平面镜m 、n 的夹角为θ,入射光线AO 平行于n 射到m 上,经两次反射后的出射光线PB 平行于m ,则θ的度数为_________。

推理与证明单元测试题及答案

推理与证明单元测试题及答案

A B C 1. 用数学归纳法证明“22111(1)1n n a a a a a a++-++++=≠-”,在验证1n =成立时,等号左边的式子是_________. 2. 由命题“存在x ∈R ,使220x x m ++≤”是假命题,求得m 的取值范围是(,)a +∞,则实数a 的值是3.空间任一点O 和不共线三点A 、B 、C ,则)1(=++++=z y x OC z OB y OA x OP 是P ,A ,B ,C 四点共面的充要条件.在平面中,类似的定理是 .4. 设函数)12ln()(-++=x a x x f 是奇函数的充要条件a = . 5. 如图,在每个三角形的顶点处各放置一个数,使位于ABC △的三边及平行于某边的任一直线上的数(当数的个数不少于3时)都分别成等差数列.若顶点A ,B ,C 处的三个数互不相同且和为1,则所有顶点上的数之和等于 .6.已知a b c >>,且0a b c ++=,求证:23b ac a -<.7. 等比数列{n a }的前n 项和为n S , 已知对任意的n N +∈ ,点(,)n n S ,均在函数(0xy b r b =+>且1,,b b r ≠均为常数)的图像上. (1)求r 的值;(11)当b=2时,记 22(log 1)()n n b a n N +=+∈证明:对任意的n N +∈ ,不等式1212111·······1n nb b b n b b b +++>+16.证明:(分析法)因为a b c >>,且0a b c ++=,所以0a >,0c <,要证明原不等式成立,只需证明23b ac a -<, 即证223b ac a -<,从而只需证明22()3a c ac a +-<, 即()(2)0a c a c -+>,因为0a c ->,20a c a c a a b +=++=->,所以()(2)0a c a c -+>成立,故原不等式成立.17.解:因为对任意的n N +∈,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为常数的图像上.所以得n n S b r =+,当1n =时,11a S b r ==+,当2n ≥时,1111()(1)n n n n n n n n a S S b r b r b b b b ----=-=+-+=-=-,又因为{n a }为等比数列,所以1r =-,公比为b ,1(1)n n a b b -=-(2)当b=2时,11(1)2n n n a b b --=-=, 1222(log 1)2(log 21)2n n n b a n -=+=+=则1212n n b n b n ++=,所以121211135721·······2462n n b b b n b b b n++++=⋅⋅ 下面用数学归纳法证明不等式121211135721 (1246)2n n b b b n n b b b n ++++=⋅⋅>+成立. ① 当1n =时,左边=32,右边=2,因为322>,所以不等式成立. ② 假设当n k =时不等式成立,即121211135721·······12462k k b b b k k b b b k ++++=⋅⋅>+成立.则当1n k =+时,左边=11212111113572123·······246222k k k k b b b b k k b b b b k k ++++++++=⋅⋅⋅⋅⋅+ 2223(23)4(1)4(1)111(1)1(1)1224(1)4(1)4(1)k k k k k k k k k k k ++++++>+⋅===+++>++++++ 所以当1n k =+时,不等式也成立.由①、②可得不等式恒成立.。

人教A版高中数学选修一第二章推理与证明答案.docx

人教A版高中数学选修一第二章推理与证明答案.docx

第二章合情推理与演绎推理答案 2.1.1 合情推理与演绎推理(1)1、d n a a n )1(1-+=2、B3、A4、()nn n n )1(1169411+-++-+-+Λ 5、θθθn cos 23cos 22cos 2 6、V+F —E=2 7、解:9)5(,5)4(,2)3(,0)2(====f f f f可以归纳出每增加一条直线,交点增加的个数为原有直线的条数 4)4()5(,3)3()4(,2)2()3(=-=-=-∴f f f f f f 猜测得出1)1()(-=--n n f n f 有)1(432)2()(-++++=-n f n f Λ)2)(1(21)(-+=∴n n n f 因此)2)(1(21)(,5)4(-+==n n n f f8、解:4211223⨯=432212233⨯=+44332122333⨯=++4544321223333⨯=+++()414321223333+=+++++n n Λ由此可以有求和的一般公式为()414321223333+=+++++n n Λ2.1.2合情推理与演绎推理(2)1、C2、D3、D4、类比5、(1)圆柱面(2)两个平行平面6、()()()x C x S x S 22= ()()()()()y S x C y C x S y x S +=+7、在等比数列{}n a 中,若q p n m +=+,()*,,,Nq p n m ∈,则q p n ma a a a⋅=⋅8、(1)(平面)在平行四边形中,对角线互相平分;(立体)在平行六面体中,对角线相交于同一点,且在这一点互相平分;(2)(平面)在平行四边形中,各对角线长的平方和等于各边长的平方和;(立体)在平行六面体中,各对角线长的平方和等于各棱长的平方和;(3)(平面)圆面积等于圆周长与半径之积的1/2;(立体)球体积等于球面积与半径之积的1/3;(4)(平面)正三角形外接圆半径等于内切圆半径的2倍,(立体)正四面体的外接球半径等于内切球半径的3倍。

人教A版数学选修1-22.2.1

人教A版数学选修1-22.2.1

(2)适用范围:对于一些条件复杂,结构简单的不等式的证明,经常用综合
法.而对于一些条件简单、结论复杂的不等式的证明,常用分析法;
(3)思路方法:分析法证明不等式的思路是从要证的不等式出发,逐步寻求使
它成立的充分条件,最后得到的充分条件是已知(或已证)的不等式;

学 选
(4)应用技巧:用分析法证明数学命题时,一定要恰当地用好“要证”、“只
因为 a2+b2≥2ab 对一切实数恒成立,


选 修
所以 a2+b2≥ 22(a+b)成立.

教 A
综上所述,不等式得证.

返回导航
第二章 推理与证明
『规律方法』 分析法证明不等式的依据、方法与技巧.
(1)解题依据:分析法证明不等式的依据是不等式的基本性质、已知的重要不
等式和逻辑推理的基本理论;
典例3 已知 a、b、c 表示△ABC 的三边长,m>0,求证:a+a m+b+b m>c+c m. [解析] 要证明a+a m+b+b m>c+c m.
只需证明a+a m+b+b m-c+c m>0 即可,
所以a+a m+b+b m-c+c m=
数 学 选
ab+mc+m+ba+mc+m-ca+mb+m
第二章 推理与证明
C 先生上了公交车却发现没带钱包,售票员不由
分说让他下车,一位小伙子微笑着递过一块钱,C 先
生很感激.车上的人开始小声议论 C 先生是骗钱的,
就在 C 先生生气准备甩票下车的时候,借钱给他的小
伙子大声问:“能不能借一下您的手机?”C 先生递过手机,小伙子拨了个号
数 学
码,说了两三分钟的话,C 先生想这下可以证明我的清白了.下车后 C 先生打

高中数学第一章统计案例第二章推理与证明教材习题本新人教A版选修12

高中数学第一章统计案例第二章推理与证明教材习题本新人教A版选修12

第二章推理与证明1.观察5²-1=24,7²-1=48,11²-1=120,13²-1=168,…所得结果都是24的倍数,继续试验,你能得到什么猜想?2.在数列{an}中,a1=1,an+1=,试猜想这个数列的通项公式4.对于任意正整数n,猜想(2n-1)与(n+1)²的大小关系。

5.在△ABC中,不等式++≥成立;在四边形ABCD中,不等式+++≥成立;在五边形ABCDE中,不等式++++≥成立,猜想,在n边形A1A2…An中,有怎样的不等式成立?6.在等差数列{an}中,若a10=0,则有a1+a2+…an=a1+a2+…a10-n(n<19,且n∈}成立类比上述性质,在等比数列{bn}中,若b9=1,则存在怎样的等式?7.用三段论证明:在梯形ABCD中,AD∥BC,AB=DC,则B= C.1.已知数列{an}的前n项和为Sn,a1=,满足Sn++2=an(n≥2),计算S1,S2,S3,S4,并猜想Sn的表达式.2.在学习函数时,我们将它与数类比;在学习数列是,我们将它与函数类比,你在学习过程中还经历过那些类比活动?3.找一个你感兴趣的数学定义,公式或定理,探究它的来源,你也可以通过翻阅书籍,上网查找资料寻求依据。

1.已知A,B都是锐角,且A+B≠,(1+tanA)(1+tanB)=2,求证A+B=45°.2.如图,PD⊥平面ABC,AC=BC,D为AB的中点,求证AB⊥PC3.△ABC的三边a,b,c的倒数成等差数列,求证B<90°。

1.已知=1,求证3sin2a=-4cos2a.2.设实数a,b,c成等比数列,非零实数x,y分别为a与b,b与c的等差中项,求证+=2.1.根据下列图案中圆圈的排列规则,猜想第(5)个图形由多少个圆圈组成,是怎样排列的,第n个图形中共有多少个圆圈?2.猜想的值3.设f(n)〉0,f(2)=4,并且对于任意,,f(+)=f()f()成立,猜想f(n)的表达式。

第二章 基本初等函数(Ⅰ)单元测试(B卷提升篇)(人教A版)(解析版)

第二章 基本初等函数(Ⅰ)单元测试(B卷提升篇)(人教A版)(解析版)

第二章基本初等函数(Ⅰ)单元测试(B卷提升篇)(人教A版)参考答案与试题解析一.选择题(共12小题,满分60分,每小题5分)1.(2018秋•焦作期中)素数也叫质数,部分素数可写成“2n﹣1”的形式(n是素数),法国数学家马丁•梅森就是研究素数的数学家中成就很高的一位,因此后人将“2n﹣1”形式(n是素数)的素数称为梅森素数.已知第20个梅森素数为P=24423﹣1,第19个梅森素数为Q=24253﹣1,则下列各数中与最接近的数为()(参考数据:lg2≈0.3)A.1045B.1051C.1056D.1059【答案】解:2170.令2170=k,则lg2170=lgk,∴170lg2=lgk,又lg2≈0.3,∴51=lgk,即k=1051,∴与最接近的数为1051.故选:B.【点睛】本题考查有理指数幂的运算性质与对数的运算性质,是基础题.2.(2019春•玉林期末)若函数f(x)=a|2x﹣4|(a>0,a≠1),满足f(1),则f(x)的单调递减区间是()A.(﹣∞,2] B.[2,+∞)C.[﹣2,+∞)D.(﹣∞,﹣2]【答案】解:由f(1),得a2,于是a,因此f(x)=()|2x﹣4|.因为g(x)=|2x﹣4|在[2,+∞)上单调递增,所以f(x)的单调递减区间是[2,+∞).故选:B.【点睛】本题考查指数函数的单调性,复合函数的单调性,考查计算能力,是基础题.3.(2019•陆良县二模)已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a【答案】解:∵a=30.2>1,b=log64,c=log32,∵1<log26<log29,∴1>b>c,则a>b>c,故选:B.【点睛】本题考查了指数函数与对数函数的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.4.(2018秋•丰县期末)幂函数在(0,+∞)时是减函数,则实数m的值为()A.2或﹣1 B.﹣1 C.2 D.﹣2或1【答案】解:由于幂函数在(0,+∞)时是减函数,故有,解得m=﹣1,故选:B.【点睛】本题主要考查幂函数的定义和性质应用,属于基础题.5.(2019•山东模拟)已知函数f(x)=x﹣4,x∈(0,4),当x=a时,f(x)取得最小值b,则函数g(x)=a|x+b|的图象为()A.B.C.D.【答案】解:∵x∈(0,4),∴x+1>1∴f(x)=x﹣4x+15≥25=1,当且仅当x=2时取等号,此时函数有最小值1∴a=2,b=1,此时g(x)=2|x+1|,此函数可以看成函数y的图象向左平移1个单位结合指数函数的图象及选项可知A正确故选:A.【点睛】本题主要考察了基本不等式在求解函数的最值中的应用,指数函数的图象及函数的平移的应用是解答本题的关键6.(2018秋•道里区校级月考)若,则()A.x≥y B.x≤y C.xy≥1 D.xy≤1【答案】解:∵,∴即,令f(x),则f()∵f(x)在(0,+∞)上单调递增,且f(x)≥f(),∴,∴xy≥1故选:C.【点睛】本题主要考查了利用对数函数的单调性及复合函数单调性的应用,解题的关键是构造函数并能灵活利用函数的单调性.7.(2018秋•开福区校级月考)已知f(x)是定义在R上的单调函数,满足f[f(x)﹣e x]=1,且f(a)>f (b)>e,若log a b+log b a,则a与b的关系是()A.a=b3B.b=a3C.a=b4D.b=a4【答案】解:∵f(x)是定义在R上的单调函数,满足f[f(x)﹣e x]=1,∴f(x)﹣e x是一个常数,设a=f(x)﹣e x,则f(a)=1,由a=f(x)﹣e x,得f(x)=a+e x,令x=a,得f(a)=a+e a=1,解得a=0,∵f(a)>f(b)>e=f(1),∴a>b>1,∴log b a>1,∵log a b+log b a,∴log b a,解得log b a=4或log b a.(舍去),∴a=b4.故选:C.【点睛】本题考查两个实数的关系的求法,考查对数运算法则等基础知识,考查运算求解能力,是中档题.8.(2018春•定州市校级期末)已知函数f(x)=log a(x2﹣2ax)在[4,5]上为增函数,则a的取值范围是()A.(1,4)B.(1,4] C.(1,2)D.(1,2]【答案】解:由题意可得g(x)=x2﹣2ax的对称轴为x=a①当a>1时,由复合函数的单调性可知,g(x)在[4,5]单调递增,且g(x)>0在[4,5]恒成立则∴1<a<2②0<a<1时,由复合函数的单调性可知,g(x)在[4,5]单调递增,且g(x)>0在[4,5]恒成立则此时a不存在综上可得,1<a<2故选:C.【点睛】本题主要考查了由对数函数及二次函数复合二次的复合函数的单调性的应用,解题中一定要注意对数的真数大于0这一条件的考虑.9.(2019•陆良县一模)已知函数f(x)=ln(|x|+1),则使得f(x)>f(2x﹣1)的x的取值范围是()A.B.C.(1,+∞)D.【答案】解:∵函数f(x)=ln(|x|+1)为定义域R上的偶函数,且在x≥0时,函数单调递增,∴f(x)>f(2x﹣1)等价为f(|x|)>f(|2x﹣1|),即|x|>|2x﹣1|,两边平方得x2>(2x﹣1)2,即3x2﹣4x+1<0,解得x<1;∴使得f(x)>f(2x﹣1)的x的取值范围是(,1).故选:A.【点睛】本题考查了函数的奇偶性与单调性的应用问题,也考查了转化思想的应用问题,是综合性题目.10.(2019•泸州模拟)设a,b,c都是正数,且3a=4b=6c,那么()A.B.C.D.【答案】解:由a,b,c都是正数,且3a=4b=6c=M,则a=log3M,b=log4M,c=log6M代入到B中,左边,而右边,左边等于右边,B正确;代入到A、C、D中不相等.故选:B.【点睛】考查学生利用对数定义解题的能力,以及换底公式的灵活运用能力.11.(2019春•沙坪坝区校级月考)函数f(x)=log2(ax2+2x+a)的值域为R,则实数a的取值范围为()A.[1,+∞)B.(0,1)C.[﹣1,1] D.[0,1]【答案】解:令g(x)=ax2+2x+a,因为函数f(x)=log2(ax2+2x+a)的值域为R,所以g(x)的值域包含(0,+∞).①当a=0时,g(x)=2x,值域为R⊇(0,+∞),成立.②当a≠0时,要使g(x)的值域包含(0,+∞),则,解得0<a≤1,综上,a∈[0,1].故选:D.【点睛】本题考查了对数函数的值域,二次函数的性质,二次不等式的解法.考查分析解决问题的能力,属于中档题.12.(2018•保定一模)已知函数f(x)既是二次函数又是幂函数,函数g(x)是R上的奇函数,函数,则h(2018)+h(2017)+h(2016)+…+h(1)+h(0)+h(﹣1)+…h(﹣2016)+h(﹣2017)+h(﹣2018)=()A.0 B.2018 C.4036 D.4037【答案】解:函数f(x)既是二次函数又是幂函数,∴f(x)=x2,∴f(x)+1为偶函数;函数g(x)是R上的奇函数,m(x)为定义域R上的奇函数;函数,∴h(x)+h(﹣x)=[1]+[1]=[]+2=2,∴h(2018)+h(2017)+h(2016)+…+h(1)+h(0)+h(﹣1)+…+h(﹣2016)+h(﹣2017)+h(﹣2018)=[h(2018)+h(﹣2018)]+[h(2017)+h(﹣2017)]+…+[h(1)+h(﹣1)]+h(0)=2+2+…+2+1=2×2018+1=4037.故选:D.【点睛】本题考查了函数的奇偶性与应用问题,是中档题.二.填空题(共4小题,满分20分,每小题5分)13.(2019春•福州期末)已知函数y=3a x﹣9(a>0且a≠1)恒过定点A(m,n),则log m n=.【答案】解:∵函数y=3a x﹣9(a>0且a≠1)恒过定点A(m,n),∴m﹣9=0,n=3,则log m n=log93,故答案为:.【点睛】本题主要考查指数函数的单调性和特殊点,属于基础题.14.(2019•吉安一模)函数f(x)=log a(3x﹣2)+2(a>0且a≠1)恒过的定点坐标为(1,2).【答案】解:由于函数y=log a x过定点(1,0),即x=1,y=0故函数f(x)=log a(3x﹣2)+2(a>0且a≠1)中,令3x﹣2=1,可得x=1,y=2,所以恒过定点(1,2),故答案为:(1,2).【点睛】本题主要考查对数函数的单调性和特殊点,利用了函数y=log a x过定点(1,0),属于基础题.15.(2019春•中原区校级月考)已知幂函数f(x)=x a(a∈R)的图象经过点(8,4),则不等式f(6x+3)≤9的解集为[﹣5,4].【答案】解:幂函数f(x)=x a(a∈R)的图象经过点(8,4),则8a=4,解得a,∴f(x),是定义域R上的偶函数,且在[0,+∞)上为增函数,∴不等式f(6x+3)≤9可化为|6x+3|≤27,解得﹣27≤6x+3≤27,即﹣5≤x≤4;∴不等式的解集为[﹣5,4].故答案为:[﹣5,4].【点睛】本题考查了幂函数的定义与应用问题,也考查了偶函数的应用问题,是基础题.16.(2018秋•辛集市校级期中)已知不等式对任意x∈R恒成立,则实数m的取值范围是﹣3<m<5.【答案】解:不等式等价为,即x2+x<2x2﹣mx+m+4恒成立,∴x2﹣(m+1)x+m+4>0恒成立,即△=(m+1)2﹣4(m+4)<0,即m2﹣2m﹣15<0,解得﹣3<m<5,故答案为:﹣3<m<5.【点睛】本题主要考查指数不等式和一元二次不等式的解法,利用指数函数的单调性是解决本题的关键.三.解答题(共6小题,满分70分,17题10分,18-22题每小题12分)17.(2018春•沭阳县期中)计算:(1);(2)已知x+x﹣1=3,(0<x<1),求.【答案】解:(1)原式.(2)因为x2+x﹣2=(x+x﹣1)2﹣2=7,又因为,,所以所以.【点睛】本题考查了对数和指数幂的运算性质,属于基础题.18.(2018秋•驻马店期中)已知幂函数f(x)=x(3﹣k)k(k∈Z)在(0,+∞)上为增函数(1)求实数k的值,并写出相应的函数f(x)的解析式;(2)若函数g(x)=mf(x)+mx+1在区间[0,1]上的最大值为5,求出m的值.【答案】解:(1)∵幂函数f(x)=x(3﹣k)k(k∈Z)在(0,+∞)上为增函数,∴k(3﹣k)>0,解得0<k<3∵k∈Z,∴k=1或k=2k=1或k=2时,f(x)=x2满足题意.∴f(x)=x2(2)∵f(x)=x2,∴g(x)=mx2+mx+1,m=0时,g(x)=1不合题意,m≠0时,函数g(x)的对称轴为直线x,函数g(x)在x∈[0,1]时是单调函数.或,解得m=2.【点睛】本题考查了幂函数的单调性,二次函数的单调性及其应用,属中档题.19.(2018秋•潼关县期末)已知函数f(x)=(a2﹣2a﹣2)a x是指数函数.(1)求f(x)的表达式;(2)判断F(x)=f(x)的奇偶性,并加以证明;(3)解不等式:log a(1+x)<log a(2﹣x).【答案】解:(1)a2﹣2a﹣2=1,可得a=3或a=﹣1(舍去),∴f(x)=3x;(2)F(x)=f(x)3x+3﹣x,∴F(﹣x)=F(x),∴F(x)是偶函数;(3)不等式:log a(1+x)<log a(2﹣x)即log3(1+x)<log3(2﹣x).可化为:2﹣x>1+x>0,∴﹣1<x,即不等式:log a(1+x)<log a(2﹣x)的解集为{x|﹣1<x}.【点睛】本题考查指数函数,考查函数的奇偶性,考查不等式的解法,属于中档题20.(2018秋•南京期中)已知函数y=f(x)为偶函数,当x≥0时,f(x)=x2+2ax+1,(a为常数).(1)当x<0时,求f(x)的解析式:(2)设函数y=f(x)在[0,5]上的最大值为g(a),求g(a)的表达式;(3)对于(2)中的g(a),试求满足g(8m)=g()的所有实数m的取值集合.【答案】解:(1)设x<0,则﹣x>0,所以f(﹣x)=(﹣x)2+2a(﹣x)+1=x2﹣2ax+1;又因为f(x)为偶函数,所以f(﹣x)=f(x),所以当x<0时,f(x)=x2﹣2ax+1;…………(4分)(2)当x∈[0,5]时,f(x)=x2+2ax+1,对称轴x=﹣a,①当﹣a,即a时,g(a)=f(0)=1;②当﹣a,即a时,g(a)=f(5)=10a+26;综上所述,g(a);…………(10分)(3)由(2)知g(a),当a时,g(a)为常函数;当a时,g(a)为一次函数且为增函数;因为g(8m)=g(),所以有或,解得m或,即m的取值集合为{m|m或m}.……(16分)另解(3)①当8m,有m,所以∈(,0),则或,解得m或m,取并集得m;②当8m,有m,所以∈(﹣∞,]∪[0,+∞),则或;解得m或m(舍负);综上所述,m的取值集合为{m|m或m}.【注:最后结果不写集合不扣分】.【点睛】本题考查了函数的定义与应用问题,也考查了分类讨论和转化思想的应用问题,是综合题.21.(2018秋•青浦区期末)定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=1+a•()x+()x(1)当a=1,求函数f(x)在(﹣∞,0)上的值域,并判断函数f(x)在(﹣∞,0)上是否为有界函数,请说明理由;(2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围.【答案】解:(1)当a=1时,f(x)=1+1•()x+()x.令t=•()x,由x<0 可得t>1,f(x)=h(t)=t2+t+1,∵h(t)在(1,+∞)上单调递增,故f(t)>f(1)=3,故不存在常数M>0,使|f(x)|≤M成立,故函数f(x)在(﹣∞,0)上不是有界函数.(2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,则当x≥0时,|f(x)|≤3恒成立.故有﹣3≤f(x)≤3,即﹣3≤1+a•()x+()x≤3,即﹣4a2,∴[﹣4•2x]≤a≤[2•2x].∴当x=0时,[﹣4•2x]的最大值为﹣4﹣1=﹣5,[2•2x]的最小值为2﹣1=1,故有﹣5≤a≤1,即a的范围为[﹣5,1].【点睛】本题主要考查指数函数的性质、新定义,函数的恒成立问题,求函数的值域,属于中档题.22.(2018秋•秦州区校级期末)已知函数f(x)的图象关于原点对称,其中a为常数.(1)求a的值;(2)当x∈(1,+∞)时,f(x)(x﹣1)<m恒成立,求实数m的取值范围;(3)若关于x的方程f(x)(x+k)在[2,3]上有解,求k的取值范围.【答案】解:(1)函数f(x)的图象关于原点对称,∴f(x)+f(﹣x)=0,即0,∴()=0,∴1恒成立,即1﹣a2x2=1﹣x2,即(a2﹣1)x2=0恒成立,所以a2﹣1=0,解得a=±1,又a=1时,f(x)无意义,故a=﹣1;(2)x∈(1,+∞)时,f(x)(x﹣1)<m恒成立,即(x﹣1)<m,∴(x+1)<m在(1,+∞)恒成立,由于y(x+1)是减函数,故当x=1,函数取到最大值﹣1,∴m≥﹣1,即实数m的取值范围是m≥﹣1;(3)f(x)在[2,3]上是增函数,g(x)(x+k)在[2,3]上是减函数,∴只需要即可保证关于x的方程f(x)(x+k)在[2,3]上有解,下解此不等式组.代入函数解析式得,解得﹣1≤k≤1,即当﹣1≤k≤1时关于x的方程f(x)(x+k)在[2,3]上有解.【点睛】本题考查函数恒成立问题的解法及对数函数性质的综合运用,属于有一定难度的题,本题考查了数形结合的思想,转化化归的思想,属于灵活运用知识的好题。

数学:第二章《推理与证明》测试(2)(新人教A版选修1-2)

数学:第二章《推理与证明》测试(2)(新人教A版选修1-2)

高中新课标选修(1-2)推理与证明测试题一 选择题(5×12=60分)1. 如下图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色的( )A .白色B .黑色C .白色可能性大D .黑色可能性大 2.“所有9的倍数(M )都是3的倍数(P ),某奇数(S )是9的倍数(M ),故某奇数(S )是3的倍数(P ).”上述推理是( )A .小前提错B .结论错C .正确的D .大前提错 3.F (n )是一个关于自然数n 的命题,若F (k )(k ∈N +)真,则F (k +1)真,现已知F (7)不真,则有:①F (8)不真;②F (8)真;③F (6)不真;④F (6)真;⑤F (5)不真;⑥F (5)真.其中真命题是( )A .③⑤B .①②C .④⑥D .③④ 4.下面叙述正确的是( )A .综合法、分析法是直接证明的方法B .综合法是直接证法、分析法是间接证法C .综合法、分析法所用语气都是肯定的D .综合法、分析法所用语气都是假定的 5.类比平面正三角形的“三边相等,三内角相等”的性质,可知正四面体的下列哪些性质,你认为比较恰当的是( )① 各棱长相等,同一顶点上的任两条棱的夹角都相等;② 各个面都是全等的正三角形,相邻两个面所成的二面角都相等; ③ 各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等。

A .①B .①②C .①②③D .③6.(05·春季上海,15)若a ,b ,c 是常数,则“a >0且b 2-4ac <0”是“对x ∈R ,有ax 2+bx +c >0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .不充分不必要条件7.(04·全国Ⅳ,理12)设f (x )(x ∈R )为奇函数,f (1)=12 ,f (x +2)=f (x )+f(2),f (5)=( )A .0B .1C .52D .58.设S (n )=1n +1n +1 +1n +2 +1n +3 +…+1n2 ,则( )A .S (n )共有n 项,当n =2时,S (2)=12 +13B .S (n )共有n +1项,当n =2时,S (2)=12+13+14C .S (n )共有n 2-n 项,当n =2时,S (2)=12+13+14D .S (n )共有n 2-n +1项,当n =2时,S (2)=12+13+149.在R 上定义运算⊙:x ⊙y =x2-y ,若关于x 的不等式(x -a )⊙(x +1-a )>0的解集是集合{x |-2≤x ≤2,x ∈R }的子集,则实数a 的取值范围是( ) A .-2≤a ≤2 B .-1≤a ≤1 C .-2≤a ≤1 D .1≤a ≤210.已知f (x )为偶函数,且f (2+x )=f (2-x ),当-2≤x ≤0时,f (x )=2x,若n ∈N *,a n =f (n ),则a 2006=( )A .2006B .4C .14D .-411.函数f (x )在[-1,1]上满足f (-x )=-f (x )是减函数,α、β是锐角三角形的两个内角,且α≠β,则下列不等式中正确的是( )A .f (sin α)>f (sin β)B . f (c o s α)>f (sin β)C .f (c o s α)<f (c o s β)D .f (sin α)<f (sin β)12.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖”。

高中数学第二章推理与证明2.1.1类比推理学案无答案新人教A版选修(1)

高中数学第二章推理与证明2.1.1类比推理学案无答案新人教A版选修(1)
问题4:类比推理的结论一定成立吗?
问题5:类比推理与归纳推理有哪些相同点和不同点?
【我的疑问】
备注
【自主探究】
1.(G.波利亚的类比)类比实数的加法与乘法,并列出它们类似的性质.
2.试将平面上的圆与空间的球进行类比.
备注
【课堂检测】
1.平面内平行于同一条直线的两条直线平行,类比空间内,我们可以得到
_________________________________________.
他的思维过程为:茅草是齿形的,茅草能割破手,需要一种能割断木头的,它也可以是齿形的.
问题1:公输班的推理过程是归纳推理吗?
情景2:试根据等式的性质猜想不等式的性质.等式与不等式之间有不少相似的属性,例如:等式不等式
(1)
(2)
(3)
问题2:上述两个推理有什么共同的特点?什么样的推理是类比推理呢?
问题3:该如何进行类比推理?
式的方法,可求得 ___________.
5.若三角形的三边长分别为 ,内切圆半径为 ,则此三角形的面积为
.若四面体四个面的面积分别为 ,内切球的半
径为 ,则此 四面体类似的结论为______ _______.
电、锡导电,所以铝也导电”,此推理方法是________(选 填“归纳推理”、“类比推理”、“演绎推理”)
类比推理
【学习目标】
1.结合已学过的数学实例,了解类比推理的含义.
2.能利用类比进行简单的推理.
【问题情境】
1.(1)什么叫推理?推理由哪几部分组成?
(2)什么是归纳推理?归纳推理具备什么样的特点?其一般的思维过程是什么?
2.情景1:据传,春秋时代鲁国的公输 班(后人称鲁班,被认为是木匠业的祖师)一次去林中砍树时被一株齿形的茅草割破了手,这桩倒霉事却使他发明了锯子.

人教A版选修2-2单元测评(四)推理与证明(B卷)

人教A版选修2-2单元测评(四)推理与证明(B卷)

单元测评(四) 推理与证明(B 卷)
(时间:90分钟 满分:120分)
第Ⅰ卷(选择题,共50分)
一、选择题:本大题共10小题,共50分.
1.锐角三角形的面积等于底乘高的一半;
直角三角形的面积等于底乘高的一半;
钝角三角形的面积等于底乘高的一半;
所以,凡是三角形的面积都等于底乘高的一半.
以上推理运用的推理规则是( )
A .三段论推理
B .假言推理
C .关系推理
D .完全归纳推理
解析:所有三角形按角分,只有锐角三角形、直角三角形和钝角三角形三种情形,上述推理穷尽了所有的可能情形,故为完全归纳推理.
答案:D
2.数列1,3,6,10,15,…的递推公式可能是( )
A.⎩
⎪⎨⎪⎧ a 1=1,a n +1=a n +n (n ∈N *) B.⎩⎪⎨⎪⎧ a 1=1,a n =a n -1+n (n ∈N *,n ≥2)
C.⎩⎪⎨⎪⎧ a 1=1,a n +1=a n
+(n -1)(n ∈N *) D.⎩⎪⎨⎪⎧
a 1=1,a n =a n -1+(n -1)(n ∈N *,n ≥2) 解析:记数列为{an },由已知观察规律:a 2比a 1多2,a 3比a 2多3,。

高中数学 第二章 推理与证明 2.2.2 反证法练习(含解析)新人教A版选修2-2-新人教A版高二选

高中数学 第二章 推理与证明 2.2.2 反证法练习(含解析)新人教A版选修2-2-新人教A版高二选

2.2.2 反证法一、选择题1.用反证法证明命题:“三角形的内角至少有一个不大于60度”时,反设正确的是()A .假设三内角都不大于60度B .假设三内角都大于60度C .假设三内角至多有一个大于60度D .假设三内角至多有两个大于60度【答案】B【解析】由反证法的证明命题的格式和语言可知答案B 是正确的,所以选B.2.用反证法证明“如果a b >>A =<=C D =<【答案】D【解析】>反证法需假设结论的反面,应为小于或等于,=<3.用反证法证明命题“设b a ,为实数,则方程02=++b ax x 至少有一个实根”时,要做的假设是()A .方程02=++b ax x 没有实根B .方程02=++b ax x 至多有一个实根C .方程02=++b ax x 至多有两个实根D .方程02=++b ax x 恰好有两个实根【答案】A【解析】方程02=++b ax x 至少有一个实根的否定是方程02=++b ax x 没有实根,∴用反证法证明命题“设b a ,为实数,则方程02=++b ax x 至少有一个实根”时,要做的假设是方程02=++b ax x 没有实根.故选A .4.用反证法证明命题“a b ∈N ,,如果ab 可以被5整除,那么a ,b 至少有1个能被5整除.”假设的内容是()A .a ,b 都能被5整除B .a ,b 都不能被5整除C .a 不能被5整除D .a ,b 有1个不能被5整除【答案】B【解析】用反证法证明时,要假设所要证明的结论的反面成立,本题中应反设a ,b 都不能被5整除.5.用反证法证明数学命题时,首先应该做出与命题结论相反的假设.否定“自然数c b a ,,中恰有一个偶数”时正确的假设为()A .自然数c b a ,,都是奇数B .自然数c b a ,,都是偶数C .自然数c b a ,,中至少有两个偶数D .自然数c b a ,,中至少有两个偶数或都是奇数【答案】D【解析】反证法证明时应假设所要证明的结论的反面成立,本题需反设为自然数c b a ,,中至少有两个偶数或都是奇数.6.设椭圆22221x y a b +=(a >b >0)的离心率为e =12,右焦点为F (c ,0),方程ax 2+bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2)( )A .必在圆x 2+y 2=2上B .必在圆x 2+y 2=2外C .必在圆x 2+y 2=2内D .以上三种情形都有可能【答案】C 【解析】∵12c e a ==,∴a =2c ,∴b 2=a 2-c 2=3c 2.假设点P (x 1,x 2)不在圆 x 2+y 2=2内,则22122x x +≥,但()222212121222b c x x x x x x a a ⎛⎫+=+-=-+ ⎪⎝⎭ 223272424c c c c =+=<,矛盾.∴假设不成立.∴点P 必在圆x 2+y 2=2内.故选C.二、填空题7.用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是.【答案】方程x 3+ax +b =0没有实根【解析】因为“方程x 3+ax +b =0至少有一个实根”等价于“方程x 3+ax +b =0的实根个数大于或等于1”,所以假设是“方程x 3+ax +b =0没有实根”.8.用反证法证明命题“若210x -=,则1x =-或1x =”时,应假设.【答案】1-≠x 且1≠x【解析】反证法的反设只否定结论,或的否定是且,所以是1-≠x 且1≠x .9.用反证法证明命题:“设实数a 、b 、c 满足a +b +c =1,则a 、b 、c 中至少有一个数不小于31”时,第一步应写:假设.【答案】c b a ,,都小于31 【解析】反证法第一步是否定结论,a 、b 、c 中至少有一个数不小于31的否定是c b a ,,都小于31. 10.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形内角和为180°矛盾,故假设错误. ②所以一个三角形不能有两个直角.③假设△ABC 中有两个直角,不妨设∠A =90°,∠B =90°.上述步骤的正确顺序为________.【答案】③①②【解析】由反证法证明数学命题的步骤可知,步骤的顺序应为③①②.。

高二数学第一章推理与证明单元测试题及答案

高二数学第一章推理与证明单元测试题及答案

高二数学选修2-2《推理与证明》质量检测试题参赛试卷 姓名:_________班级:________ 得分:________第Ⅰ卷(选择题 共60分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

. 2.由10>8,11>10,25>21,…若a >b >0且m >0,则a +m 与a 之间大小关系为( )A .相等B .前者大C .后者大D .不确定3、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )。

(A)假设三内角都不大于60度; (B) 假设三内角都大于60度;(C) 假设三内角至多有一个大于60度; (D) 假设三内角至多有两个大于60度。

5、用数学归纳法证明“)12(212)()2)(1(-⋅⋅⋅⋅=+++n n n n n n”(+∈N n )时,从 “1+==k n k n 到”时,左边应增添的式子是 ( )A .12+kB .)12(2+kC .112++k k D .122++k k 6、某个命题与正整数n 有关,如果当)(+∈=N k k n 时命题成立,那么可推得当1+=k n 时命题也成立. 现已知当7=n 时该命题不成立,那么可推得( )A .当n=6时该命题不成立B .当n=6时该命题成立C .当n=8时该命题不成立D .当n=8时该命题成立7、已知n 为正偶数,用数学归纳法证明 )214121(2114131211nn n n +++++=-++-+-时,若已假设2(≥=k k n 为偶 数)时命题为真,则还需要用归纳假设再证( )A .1+=k n 时等式成立B .2+=k n 时等式成立C .22+=k n 时等式成立D .)2(2+=k n 时等式成立8、在十进制中01232004410010010210=⨯+⨯+⨯+⨯,那么在5进制中数码2004折合成十进制为 ( ) A.29 B. 254 C. 602 D. 20049、一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●…若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数是( ) A .12 B.13 C.14 D.1510、数列{}n a 中,a 1=1,S n 表示前n 项和,且S n ,S n+1,2S 1成等差数列,通过计算S 1,S 2,S 3,猜想当n ≥1时,S n =( ) A .1212-+n nB .1212--n nC .nn n 2)1(+ D .1-121-n二、填空题(每小题5分,共4小题,满分20分)11、设等差数列{a n }的前n 项和为S n , 则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n ,则T 4,________,________,T 16T 12成等比数列.12、设平面内有n条直线(3)n ≥,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用()f n 表示这n条直线交点的个数,则(4)f = ;当n>4时,()f n = (用含n 的数学表达式表示)。

选修1-2《统计案例》、《推理与证明》单元测试题

选修1-2《统计案例》、《推理与证明》单元测试题

选修1-2?统计案例?、?推理与证明?单元测试可能用到的公式:回归直线的方程是:a bx y+=ˆ,其中1221,ni i i nii x y nxyb a y bx xnx ==-==--∑∑;相关指数21122)()ˆ(1∑∑==---=n i ini i iy yyyR ,总偏差平方和:21()nii y y =-∑,残差平方和:21ˆ()niii y y=-∑.随机变量()()()()()22n ad bc K a b c d a c b d -=++++一、选择题 〔每题 5分,共 10小题,共 50分〕1. 工人月工资 〔元〕 依劳动生产率 〔千元〕 变化的回归直线方程为6090y x =+, 以下判断正确的选项是 〔 〕.A. 劳动生产率为 1000元时,工资为 50 元B. 劳动生产率提高 1000 元时,工资提高 150元C. 劳动生产率提高 1000 元时,工资提高 90 元D. 劳动生产率为 1000元时,工资为 90 元2. 在画两个变量的散点图时,下面哪个表达是正确的〔 〕. A. 预报变量在x 轴上,解释变量在 y 轴上 B. 解释变量在x 轴上,预报变量在 y 轴上 C. 可以选择两个变量中任意一个变量在x 轴上 D. 可以选择两个变量中任意一个变量在 y 轴上3. 回归直线的斜率的估计值是 1.23,样本点的中心为(4,5),那么回归直线的方程是 〔 〕. A. 1.234y x =+ B. 1.235y x =+ C. 1.230.08y x =+ D. 0.08 1.23y x =+4.在两个变量 y 与 x 的回归模型中,分别选择了 4 个不同的模型,它们的相关指数2R 如下,其中拟合效果最好的模型是〔 〕A. 模型 1 的相关指数 2R 为 0.95 B. 模型 2的相关指数2R 为 0.80 C. 模型 3 的相关指数2R 为 0.50 D. 模型 4的相关指数2R 为 0.25 5. x 与y 那么y 与x 的线性回归方程为y bx a =+必过点〔 〕.A. 〔2,2〕B. 〔1.5,3〕C. 〔1,2〕D. 〔1.5,4〕A.“假设33a b ⋅=⋅,那么a b =〞类推出“假设00a b ⋅=⋅,那么a b =〞B.“假设()a b c ac bc +=+〞类推出“()a b c ac bc ⋅=⋅〞C.“假设()a b c ac bc +=+〞 类推出“a b a bc c c+=+ 〔c ≠0〕〞 D.“n n a a b =n (b )〞 类推出“n n a a b +=+n(b )〞7. 有一段演绎推理是这样的:“直线平行于平面,那么平行于平面内所有直线;直线b ⊆/平面α,直线⊂a 平面α,直线b ∥平面α,那么直线b ∥直线a 〞的结论显然是错误的,这是因为 〔 〕 A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误8.用反证法证明命题:“三角形的内角中至少有一个不大于60度〞时,反设正确的选项是〔 〕。

人教A版高考总复习一轮文科数学精品课件 第7章 不等式、推理与证明 第2节 基本不等式及其应用

人教A版高考总复习一轮文科数学精品课件 第7章 不等式、推理与证明 第2节 基本不等式及其应用
+ 2 2 + 2
2.ab≤ 2 ≤ 2 (a,b∈R),当且仅当 a=b 时取等号.
3.1
2
1
+

≤ ≤
+
2

2 + 2
(a>0,b>0),当且仅当
2
a=b 时取等号.
研考点 精准突破
考点一
利用基本不等式求最值(多考向探究)
考向1配凑法求最值
例1若
5
x> ,则
3
4
3+2
当且仅当
2+1
=
1
1
6 2+1
1
+ 3+2
1
(4x+2+3y+2)=6
=
4+2
,即
3+2
5-3 2
6 2-8
x=
,y=
时,等号成立.
2
3
3+
4+2
3+2
+
3+2
2+1
1
2
≥ +
2
,
3
考向2常数代换法求最值
例2(1)(2023河北石家庄月考)若正数x,y满足x+3y=5xy,当3x+4y取得最小值
数,“二定”指求最值时和或积为定值,“三相等”指等号成立.
2.连续使用基本不等式时,牢记等号要同时成立.
2.两个重要的不等式
(1)a2+b2≥ 2ab (a,b∈R),当且仅当a=b时取等号.
(2)ab≤
+ 2
(a,b∈R),当且仅当

高中数学 第二章 推理与证明练习 新人教A版选修2-2-新人教A版高二选修2-2数学试题

高中数学 第二章 推理与证明练习 新人教A版选修2-2-新人教A版高二选修2-2数学试题

第二章 推理与证明(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.证明:n +22<1+12+13+14+…+12n<n +1(n >1),当n =2时,中间式子等于( ) A.1 B.1+12C.1+12+13D.1+12+13+14解析:选D.n =2时中间式子的最后一项为14,所以中间式子为1+12+13+14.2.用反证法证明命题:“若函数f (x )=x 2+px +q ,那么|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12”时,反设正确的是( )A.假设|f (1)|,|f (2)|,|f (3)|都不小于12B.假设|f (1)|,|f (2)|,|f (3)|都小于12C.假设|f (1)|,|f (2)|,|f (3)|至多有两个小于12D.假设|f (1)|,|f (2)|,|f (3)|至多有一个小于12解析:选B.“|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12”的反设为“|f (1)|,|f (2)|,|f (3)|都小于12”.3.设x >0,则不等式x +1x ≥2,x +4x 2≥3,x +27x 3≥4,…,推广到x +axn ≥n +1,则a=( )A.2nB.2nC.n 2D.n n解析:选D.结合已知的三个不等式可以发现第二个加数的分子是分母x 的指数的指数次方,可得a =n n.4.下面是一段“三段论”推理过程:若函数f (x )在(a ,b )内可导且单调递增,则在(a ,b )内,f ′(x )>0恒成立.因为f (x )=x 3在(-1,1)内可导且单调递增,所以在(-1,1)内,f ′(x )=3x 2>0恒成立.以上推理中( )A.大前提错误B.小前提错误C.结论正确D.推理形式错误解析:选A.f (x )在(a ,b )内可导且单调递增,则在(a ,b )内,f ′(x )≥0恒成立,故大前提错误,故选A.5.用数学归纳法证明:1+11+2+11+2+3+…+11+2+3+…+n =2nn +1时,由n =k 到n =k +1左边需要添加的项是( )A.2k (k +2)B.1k (k +1)C.1(k +1)(k +2)D.2(k +1)(k +2)解析:选D.由n =k 到n =k +1时,左边需要添加的项是11+2+3+…+(k +1)=2(k +1)(k +2).故选D.6.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证 b 2-ac <3a ”索的因应是( )A.a -b >0B.a -c <0C.(a -b )(a -c )>0D.(a -b )(a -c )<0解析:选C.要证明 b 2-ac <3a ,只需证b 2-ac <3a 2,只需证(a +c )2-ac <3a 2,只需证-2a 2+ac +c 2<0,即证2a 2-ac -c 2>0,即证(a -c )(2a +c )>0,即证(a -c )(a -b )>0.7.若sin A a =cos B b =cos C c,则△ABC 是( )A.等边三角形B.有一个内角是30°的直角三角形C.等腰直角三角形D.有一个内角是30°的等腰三角形解析:选C.因为sin A a =cos B b =cos C c,由正弦定理得,sin A a =sin B b =sin Cc,所以sin B b =cos B b =cos C c =sin C c.所以sin B =cos B ,sin C =cos C , 所以∠B =∠C =45°,所以△ABC 是等腰直角三角形.8.已知f (x )=x 3+x ,a ,b ,c ∈R ,且a +b >0,a +c >0,b +c >0,则f (a )+f (b )+f (c )的值一定( )A.大于0B.等于0C.小于0D.正负都可能解析:选A.f (x )为奇函数,也是增函数,因此由a +b >0可得a >-b ,所以f (a )>f (-b ),即f (a )>-f (b ),于是f (a )+f (b )>0,同理,f (a )+f (c )>0,f (b )+f (c )>0,所以f (a )+f (b )+f (c )>0.9.我们把平面中的结论“到定点的距离等于定长的点的轨迹是圆”拓展至空间中为“到定点的距离等于定长的点的轨迹是球”,类似可得:已知A (-1,0,0),B (1,0,0),则点集{P (x ,y ,z )||PA |-|PB |=1}在空间中的轨迹描述正确的是( )A.以A ,B 为焦点的双曲线绕轴旋转而成的旋转曲面B.以A ,B 为焦点的椭球体C.以A ,B 为焦点的双曲线单支绕轴旋转而成的旋转曲面D.以上都不对解析:选C.在平面中,点集{P (x ,y )||PA |-|PB |=1}是以A ,B 为焦点的双曲线的一支,点集{P (x ,y ,z )||PA |-|PB |=1}在空间中的轨迹是以A ,B 为焦点的双曲线单支绕轴旋转而成的旋转曲面,故选C.10.我国古代数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”.“势”是高,“幂”是截面积.意思是:如果两个等高的几何体在同高处截得两几何体的截面积总相等,那么这两个几何体的体积相等.类比祖暅原理,如图所示,在平面直角坐标系中,区域①是一个形状不规则的封闭图形,区域②是一个上底长为1、下底长为2的梯形,且当实数t 取[0,3]上的任意值时,直线y =t 被区域①和区域②所截得的两线段长总相等,则区域①的面积为( )A.4B.92 C.5D.112解析:选B.根据题意,由祖暅原理分析可得①的面积等于②的面积,又②是一个上底长为1、下底长为2的梯形,所以①的面积为(1+2)×32=92.11.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( )A.(7,5)B.(5,7)C.(2,10)D.(10,2)解析:选B.依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为n +1,且第n 组共有n 个“整数对”,这样的前n 组一共有n (n +1)2个“整数对”,注意到10×(10+1)2<60<11×(11+1)2,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).12.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ) A.△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B.△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C.△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D.△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形解析:选D.因为三角形内角的正弦值是正值,所以△A 1B 1C 1的三个内角的余弦值均大于0.因此△A 1B 1C 1是锐角三角形.假设△A 2B 2C 2也是锐角三角形,并设cos A 1=sin A 2,则cos A 1=cos (90°-∠A 2), 所以∠A 1=90°-∠A 2.同理设cos B 1=sin B 2,cos C 1=sin C 2, 则有∠B 1=90°-∠B 2,∠C 1=90°-∠C 2. 又∠A 1+∠B 1+∠C 1=180°,所以(90°-∠A 2)+(90°-∠B 2)+(90°-∠C 2)=180°, 即∠A 2+∠B 2+∠C 2=90°. 这与三角形内角和等于180°矛盾,所以原假设不成立.若△A 2B 2C 2是直角三角形,不妨设A 2=π2,则sin A 2=1=cos A 1,而A 1在(0,π)内无解.故选D.二、填空题:本题共4小题,每小题5分.13.补充下列证明过程: 要证a 2+b 2+c 2≥ab +bc +ac (a ,b ,c ∈R ),即证,即证W. 因为a ,b ,c 为实数,上式显然成立,故命题结论成立. 答案:2(a 2+b 2+c 2)≥2ab +2bc +2ac (a -b )2+(b -c )2+(a -c )2≥014.已知a =5-12,函数f (x )=a x,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为W.解析:因为当0<a <1时,函数f (x )=a x为减函数,a =5-12∈(0,1),所以函数f (x )=(5-12)x为减函数.故由f (m )>f (n )得m <n .答案:m <n15.有三X 卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一X 卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是W.解析:为方便说明,不妨将分别写有1和2,1和3,2和3的卡片记为A ,B ,C .从丙出发,由于丙的卡片上的数字之和不是5,则丙只可能是卡片A 或B ,无论是哪一X ,均含有数字1,再由乙与丙的卡片上相同的数字不是1可知,乙所拿的卡片必然是C ,最后由甲与乙的卡片上相同的数字不是2,知甲所拿的卡片为B ,此时丙所拿的卡片为A .答案:1和316.如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数且两端的数均为1n (n ≥2),每个数是它下一行左右相邻两数的和,如11=12+12,12=13+16,13=14+112,…,则第7行第4个数(从左往右数)为W. 11 1212 131613 14112112141512013012015…解析:由“第n 行有n 个数且两端的数均为1n ”可知,第7行第1个数为17,由“每个数是它下一行左右相邻两数的和”可知,第7行第2个数为16-17=142.同理易知,第7行第3个数为130-142=1105,第7行第4个数为160-1105=1140.答案:1140三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)定义在[-1,1]上的奇函数f (x ),当a ,b ∈[-1,1],a +b ≠0时,有f (a )+f (b )a +b>0.证明:函数f (x )的图象上不存在两个不同的点A ,B ,使直线AB 恰好与y 轴垂直.证明:假设函数f (x )的图象上存在两个不同的点A ,B ,使直线AB 恰好与y 轴垂直,则A ,B 两点的纵坐标相同.设它们的横坐标分别为x 1和x 2,x 1<x 2,且x 1,x 2∈[-1,1],则f (x 1)=f (x 2). 又f (x )是奇函数,所以f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1)+f (-x 2)x 1+(-x 2)[x 1+(-x 2)].又由题意,得f (x 1)+f (-x 2)x 1+(-x 2)>0,且x 1+(-x 2)<0,所以f (x 1)+f (-x 2)<0,即f (x 1)-f (x 2)<0, 这与f (x 1)=f (x 2)矛盾,故假设不成立,即函数f (x )的图象上不存在两个不同的点A ,B ,使直线AB 恰好与y 轴垂直. 18.(本小题满分12分)已知:A ,B 都是锐角,且A +B ≠90°,(1+tan A )(1+tan B )=2.求证:A +B =45°.证明:因为(1+tan A )(1+tan B )=2, 展开化简为tan A +tan B =1-tan A tan B . 因为A +B ≠90°,tan (A +B )=tan A +tan B 1-tan A tan B =1.又因为A ,B 都是锐角,所以0°<A +B <180°.所以A +B =45°.19.(本小题满分12分)已知a >0,b >0,2c >a +b ,求证:c -c 2-ab <a <c +c 2-ab . 证明:要证c -c 2-ab <a <c +c 2-ab . 只需证-c 2-ab <a -c <c 2-ab , 即证|a -c |<c 2-ab ,只需证(a -c )2<(c 2-ab )2, 只需证a 2-2ac +c 2<c 2-ab ,即证2ac >a 2+ab ,因为a >0,所以只需证2c >a +b .因为2c >a +b 已知, 所以原不等式成立.20.(本小题满分12分)如图,在直三棱柱ABC ­A 1B 1C 1中,A 1B 1=A 1C 1,D ,E 分别是棱BC ,CC 1上的点(点D 不同于点C ),且AD ⊥DE ,F为B 1C 1的中点.求证:(1)平面ADE ⊥平面BCC 1B 1; (2)直线A 1F ∥平面ADE .证明:(1)因为ABC ­A 1B 1C 1是直三棱柱, 所以CC 1⊥平面ABC .因为AD ⊂平面ABC ,所以CC 1⊥AD .因为AD ⊥DE ,CC 1,DE ⊂平面BCC 1B 1,CC 1∩DE =E , 所以AD ⊥平面BCC 1B 1. 因为AD ⊂平面ADE , 所以平面ADE ⊥平面BCC 1B 1.(2)因为A 1B 1=A 1C 1,F 为B 1C 1的中点, 所以A 1F ⊥B 1C 1,因为CC 1⊥平面A 1B 1C 1,且A 1F ⊂平面A 1B 1C 1, 所以CC 1⊥A 1F .因为CC 1,B 1C 1⊂平面BCC 1B 1,CC 1∩B 1C 1=C 1, 所以A 1F ⊥平面BCC 1B 1. 由(1)知AD ⊥平面BCC 1B 1, 所以A 1F ∥AD .因为AD ⊂平面ADE ,A 1F ⊄平面ADE , 所以A 1F ∥平面ADE .21.(本小题满分12分)设函数f (x )=x 3+11+x ,x ∈[0,1].证明:(1)f (x )≥1-x +x 2;(2)34<f (x )≤32.证明:(1)因为1-x +x 2-x 3=1-(-x )41-(-x )=1-x 41+x,由于x ∈[0,1],有1-x 41+x ≤1x +1,即1-x +x 2-x 3≤1x +1,所以f (x )≥1-x +x 2.(2)由0≤x ≤1得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=(x -1)(2x +1)2(x +1)+32≤32,所以f (x )≤32.由第一问得f (x )≥1-x +x 2=⎝ ⎛⎭⎪⎫x -122+34≥34,又因为f (12)=1924>34,所以f (x )>34.综上,34<f (x )≤32.22.(本小题满分12分)在各项为正的数列{a n }中,数列的前n 项和S n 满足S n =12⎝ ⎛⎭⎪⎫a n +1a n .(1)求a 1,a 2,a 3;(2)由(1)猜想数列{a n }的通项公式,并用数学归纳法证明你的猜想. 解:(1)易求得a 1=1,a 2=2-1,a 3=3- 2. (2)猜想a n =n -n -1(n ∈N *)证明:①当n =1时,a 1=1-0=1,命题成立. ②假设n =k (k ≥1,k ∈N *)时,a k =k -k -1成立, 则n =k +1时,a k +1=S k +1-S k =12⎝⎛⎭⎪⎫a k +1+1a k +1-12⎝⎛⎭⎪⎫a k +1ak=12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫k -k -1+1k -k -1 =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-k ,所以,a 2k +1+2ka k +1-1=0,所以a k +1=k +1-k .即n =k +1时,命题成立. 由①②知,n ∈N *时,a n =n -n -1.。

[最新]人教版数学高中选修【1-2】第二章《推理与证明》章末检测及答案

[最新]人教版数学高中选修【1-2】第二章《推理与证明》章末检测及答案

c -1
a+b+ b
c -
1
a+ bc+c-1
=b+a c·a+b
c a+b ·c
= b+c
c·2 ac·2 abc
ab=8(当且仅当
a=b=c 时取等号 ),所以不等
式成立.
证法二: (分析法 )
要证 a1-1 1b-1 1c-1 ≥8 成立,
1-a 1- b 1-c 只需证 a · b · c ≥8 成立.
答案 :B
9.若 Sn=sinπ7+sin27π+…+ sinn7π(n∈N*),则在 S1,S2,…, S100 中,正数的个数是 ( )
A.16 个 B. 72 个 C.86 个 D.100 个
分析 :本题主要考查正弦函数的图象和性质和间接法解题. 解决 此类问题需要找到规律, 从题目出发可以看出每隔 13 或 14 项的和为 0,这就是规律,考查综合分析问题和解决问题的能力.
的推理;③演绎推理是由一般到特殊的推理; ④类比推理是由特殊到
一般的推理;⑤类比推理是由特殊到特殊的推理.
A.①②③
B.②③④
C.②④⑤
D .①③⑤
答案 :D
2.命题“三角形中最多只有一个内角是直角”的结论的否定是 ()
A.有两个内角是直角 B.有三个内角是直角 C.至少有两个内角是直角 D.没有一个内角是直角
SBC 于点 H1,则 DH 1∥AH ,且 S, H1, H 三点共线.
1
11
∵ VS- DEF = VD-SEF = 3S△SEF·DH 1= 3× 2·SE·SF·sin∠ ESF ·DH 1=
1
1
1
6 b1c1·DH 1·sin∠ESF , VS - ABC = VA - SBC = 3 S△SBC·AH = 6

人教A版高中数学选修合情推理与演绎推理文字素材新(2)

人教A版高中数学选修合情推理与演绎推理文字素材新(2)

推理与证明知识回顾对于数学的学习,应具备“能力”,其中本章的“推理与证明”就是一种重要的“逻辑思维”能力.通过本章的复习,培养推理、论证能力,以增强对问题的敏锐的观察,深刻的理解、领悟能力.一、推理部分1.知识结构框图:2.合情推理:____与____统称为合情推理.①归纳推理:______________.②类比推理:______________.定义特点:归纳推理是由特殊到一般、由具体到抽象的推理;而类比推理是由特殊到特殊的推理;两者都能由已知推测、猜想未知,从而推出结论.但是结论的可靠性有待证明. ③推理过程:从具体问题出发→______→归纳类比→______.3.演绎推理:_______________.①定义特点:演绎推理是由一般到特殊的推理;②学习要点:演绎推理是数学中证明的基本推理形式;推理模式:“三段论”:ⅰ大前提:_______________;ⅱ小前提:_______________;ⅲ结论:_______________.集合简述:ⅰ大前提:x M ∈且x 具有性质P ;ⅱ小前提:y S ∈且S M ⊆;ⅲ结论:y 也具有性质P ;4.合情推理与演绎推理的关系:①合情推理中的归纳推理是由特殊到一般的推理,演绎推理是由一般到特殊的推理; ②它们又是相辅相成的,前者是后者的前提,后者论证前者的可靠性;二、证明部分1.知识结构框图2.综合法与分析法①综合法:_______________.②分析法:_______________.学习要点:在解决问题时,经常把综合法与分析法合起来使用;使用分析法寻找成立的条件,再用综合法写出证明过程.③反证法:_______________.学习要点:反证法的关键是在正确的推理下得出矛盾,这个矛盾可以是与______,______或______等矛盾.3.数学归纳法一般地,证明一个与正整数n有关的命题的步骤如下:(1)(归纳奠基)_______________;(2)(归纳递推)_______________.其证明的方法叫做数学归纳法.学习要点:理解第一步是推理的基础,第二步是推理的依据,两者缺一不可.特别地,在证明第二步1=时命题成立;另外在证明第=+时命题成立,一定要用上归纳假设n kn k二步时首先要有明确的目标式,即确定证题方向;数学归纳法常和合情推理综合应用,特别常以归纳推理为前提.三、考查要求“合情推理”是一种重要的归纳、猜想的推理,它是发现问题和继续推理的基础.逻辑思维能力主要体现为对演绎推理的考查.试卷中考查演绎推理的试题的比例比较大,命题时既考虑使用选择题、填空题的形式进行考查,又考虑如何使用解答题(以证明题的形式)突出进行考查,立体几何是考查演绎推理的最好素材.数学归纳法很少单独考查,由于数列是和自然数有关的,因此,经常和数列一起考查,常与归纳猜想相结合进行综合考查.推理与证明复习指导对于数学的学习,应具备“能力”,其中本章的“推理与证明”就是一种重要的“逻辑思维”能力形式.通过本章的复习,要有着扎实的推理、论证能力,以增强对问题的敏锐的观察,深刻的理解、领悟能力.一.推理部分1.知识结构:2.和情推理:归纳推理与类比推理统称为和情推理.①归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或有个别事实概括出一般结论的推理,称为归纳推理.②类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理.③定义特点;归纳推理是由特殊到一般、由部分到整体的推理;而类比推理是由特殊到特殊的推理;都能由已知推测、猜想未知,从而推理结论.但是结论的可靠性有待证明.例如:已知2()53f n n n =-+-,可以(1)10f =>,(2)30,f => (3)30,(4)10f f =>=>,于是推出:对入任何n N *∈,都有()0f n >;而这个结论是错误的,显然有当5n =时,(5)30f =-<.因此,归纳法得到的结论有待证明.例如:“在平面内与同一条直线垂直的两条直线平行”;类比线与线得到:“在空间与同一条直线垂直的两条直线平行“;显然此结论是错误的”.类比线与面得到:在空间与同一个平面垂直的两个平面平行;显然此结论是错误的.④推理过程: 从具体问题出发 观察、分析、比较、联想 归纳、类比 猜想.3.演绎推理:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理(逻辑推理).①定义特点:演绎推理是由一般到特殊的推理;②数学应用:演绎推理是数学中证明的基本推理形式;推理模式:“三段论”:ⅰ大前提:已知的一般原理(M 是P );ⅱ小前提:所研究的特殊情况(S 是M );ⅲ结论:由一般原理对特殊情况作出判断(S 是P );集合简述:ⅰ大前提:x ∈M 且x 具有性质P ;ⅱ小前提:y ∈S 且S ⊆M ;ⅲ结论: y 也具有性质P ;例题1.若定义在区间D 上的函数()f x 对于D 上的n 个值12,,n x x x L ,总满足[]12121()()()()n n x x x f x f x f x f n n++++++≤L L ,称函数()f x 为D 上的凸函数;现已知()sin f x x =在(0,)π上是凸函数,则ABC ∆中,sin sin sin A B C ++的最大值是 .解答:由[]12121()()()()n n x x x f x f x f x f n n++++++≤L L (大前提) 因为()sin f x x =在(0,)π上是凸函数 (小前提)得()()()3()3A B C f A f B f C f ++++≤ (结论)即sin sin sin 3sin 3A B C π++≤=因此,sin sin sin A B C ++的最大值是2 注:此题是一典型的演绎推理“三段论”题型4.和情推理与演绎推理的关系:①和情推理是由特殊到一般的推理,演绎推理是由一般到特殊的推理;②它们又是相辅相成的,前者是后者的前提,后者论证前者的可靠性;例2.设()2x xa a f x -+=,()2x x a a g x --=(其中0a >且1a ≠) (1)5=2+3请你推测(5)g 能否用(2),(3),(2),(3)f f g g 来表示;(2)如果(1)中获得了一个结论,请你推测能否将其推广.解答:(1)由(3)(2)(3)(2)f g g f + =332a a -+222a a --+332a a --222a a -+=552a a -- 又(5)g =552a a -- 因此,(5)g =(3)(2)(3)(2)f g g f +(2)由(5)g =(3)(2)(3)(2)f g g f +即(23)g +=(3)(2)(3)(2)f g g f +于是推测()g x y +=()()()()f x g y g x f y +证明:因为:()2x xa a f x -+=,()2x x a a g x --=(大前提) 所以()g x y +=2x y x ya a ++-, ()g y =2y y a a --,()f y =2y ya a -+,(小前提及结论) 所以()()()()f x g y g x f y +=2x x a a -+2y y a a --+2x x a a --2y ya a -+ =2x y x ya a ++-=()g x y + 解题评注:此题是一典型的由特殊到一般的推理,构造(23)g +=(3)(2)(3)(2)f g g f +是此题的一大难点,要经过观察、分析、比较、联想而得到;从而归纳推出一般结论()g x y +=()()()()f x g y g x f y +.二.证明部分1.知识结构2.综合法与分析法①综合法;利用已知条件和某些数学定义、公理、定理等出发,经过一系列推理论证,推导出所要证明的结论成立.②分析法:从要证明的结论出发逐步寻求使它成立的充分条件,直至把要证明的结论归结为判别一个明显成立的条件为止.③综合应用:在解决问题时,经常把综合法与分析法和起来使用;使用分析法寻找成立的条件,再用综合法写出证明过程.例3.已知:0a b >>,求证:22()()828a b a b a b a b-+-<< 证明: 因为0a b >>所以22()()828a b a b a b a b-+-<-< ⇔222()()44a b a b a b--<< ⇔<<⇔2<<⇔121<⇔1<< 又由已知0a b >>1<<成立. 由于以上分析步步等价,因此步步可逆.故结论成立.解题评注:(1)以上解答采用恒等变形,其实质从上往下属于分析法,反之属于综合法.(2)这里表示了1<<,(0a b >>)是结论成立的充要条件,当然找到了结论成立的充分条件就可以了.例4.求证抛物线22(0)y px p =>,以过焦点的弦为直径的圆必与2p x =-相切. 证明:(如图)作AA /、BB /垂直 准线,取AB 的中点M ,作MM /垂直准线.要证明以AB 为直径的圆与准线相切只需证|MM /|=12|AB | 由抛物线的定义:|AA /|=|AF |,|BB /|=|BF |所以|AB |=|AA /|+|BB /|因此只需证|MM /|=12(|AA /|+|BB /|) 根据梯形的中位线定理可知上式是成立的. 所以以过焦点的弦为直径的圆必与2p x =-相切. 以上解法同学们不难以综合法作出解答.解题评注:分析法是从结论出发寻找证题思路的一种重要的思维方法, 特别是题设和结论相结合,即综合法与分析法相结合,可使很多较为复杂的问题得到解决.3.数学归纳法一般地,证明一个与正整数n有关的命题的步骤如下:(1)(归纳奠基)证明当n取第一个值n0时命题成立;(2)(归纳递推)假设n=k (0(,)k n k n ≥∈*时命题成立,证明当1n k =+时命题也成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[A 级 基础演练]
1.在△ABC 中,三个内角A 、B 、C 对应的边分别为a 、b 、c ,且A 、B 、C 成等差数列,a 、b 、c 成等比数列,求证:△ABC 为等边三角形.
证明:由A 、B 、C 成等差数列,有2B =A +C .①
因为A 、B 、C 为△ABC 的内角,所以A +B +C =π.②
由①②得,B =π3.③
由a 、b 、c 成等比数列,有b 2=ac .④
由余弦定理及③可得,
b 2=a 2+
c 2-2ac cos B =a 2+c 2-ac .
再由④得,a 2+c 2-ac =ac .即(a -c )2=0,因此a =c .从而有A =C .⑤
由②③⑤得,A =B =C =π3.
所以△ABC 为等边三角形.
2.已知函数f (x )=3x -2x ,求证:对于任意的x 1,x 2∈R ,均有
f (x 1)+f (x 2)2
≥f ⎝ ⎛⎭
⎪⎫x 1+x 22. 证明:要证明f (x 1)+f (x 2)2≥f ⎝ ⎛⎭
⎪⎫x 1+x 22, 即证明(3x 1-2x 1)+(3x 2-2x 2)2≥3x 1+x 22-2·x 1+x 22,
因此只要证明3x 1+3x 22
-(x 1+x 2)≥3x 1+x 22-(x 1+x 2), 即证明3x 1+3x 22
≥3x 1+x 22, 因此只要证明3x 1+3x 22≥3x 1·3x 2, 由于x 1,x 2∈R 时,3x 1>0,3x 2>0,
由基本不等式知3x 1+3x 22≥3x 1·3x 2显然成立, 故原结论成立.
3.设{a n }是公比为q 的等比数列.
(1)推导{a n }的前n 项和公式;
(2)设q ≠1,证明数列{a n +1}不是等比数列.
解:(1)设{a n }的前n 项和为S n ,
当q =1时,S n =a 1+a 1+…+a 1=na 1;
当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,①
qS n =a 1q +a 1q 2+…+a 1q n ,②
①-②得,(1-q )S n =a 1-a 1q n ,
∴S n =a 1(1-q n )1-q
, ∴S n =⎩⎨⎧na 1,q =
1,a 1(1-q n )1-q ,q ≠1.
(2)证明:假设{a n +1}是等比数列,则对任意的k ∈N *,
(a k +1+1)2=(a k +1)(a k +2+1),
a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,
a 21q 2k +2a 1q k =a 1q
k -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =q k -1+q k +1.
∵q ≠0,∴q 2-2q +1=0,
∴q =1,这与已知矛盾.
∴假设不成立,故{a n +1}不是等比数列.
[B 级 能力突破]
1.已知数列{a n }的各项均为正数,b n =n ⎝ ⎛⎭
⎪⎫1+1n n a n (n ∈N *),e 为自然对数的底数.
(1)求函数f (x )=1+x -e x
的单调区间,并比较⎝ ⎛⎭⎪⎫1+1n n 与e 的大小; (2)计算b 1a 1,b 1b 2a 1a 2,b 1b 2b 3a 1a 2a 3
,由此推测计算b 1b 2…b n a 1a 2…a n 的公式,并给出证明. 解:(1)f (x )的定义域为(-∞,+∞),f ′(x )=1-e x .
当f ′(x )>0,即x <0时,f (x )单调递增;
当f ′(x )<0,即x >0时,f (x )单调递减.
故f (x )的单调递增区间为(-∞,0),单调递减区间为(0,+∞). 当x >0时,f (x )<f (0)=0,即1+x <e x .
令x =1n ,得1+1n <e 1n ,即⎝ ⎛⎭
⎪⎫1+1n n <e . ① (2)b 1a 1
=1·⎝ ⎛⎭⎪⎫1+111=1+1=2;b 1b 2a 1a 2=b 1a 1·b 2a 2=2·2⎝ ⎛⎭⎪⎫1+122=(2+1)2=32; b 1b 2b 3a 1a 2a 3=b 1b 2a 1a 2·b 3a 3=32·3⎝ ⎛⎭
⎪⎫1+133=(3+1)3=43. 由此推测:b 1b 2…b n a 1a 2…a n
=(n +1)n . ② 下面用数学归纳法证明②.
(ⅰ)当n =1时,左边=右边=2,②式成立.
(ⅱ)假设当n =k 时,②式成立,即b 1b 2…b k a 1a 2…a k
=(k +1)k . 当n =k +1时,b k +1=(k +1)⎝ ⎛⎭
⎪⎫1+1k +1k +1a k +1,由归纳假设可得 b 1b 2…b k b k +1a 1a 2…a k a k +1=b 1b 2…b k a 1a 2…a k ·b k +1a k +1=(k +1)k (k +1)⎝ ⎛⎭
⎪⎫1+1k +1k +1=(k +2)k +1. 所以当n =k +1时,②式也成立.
根据(ⅰ)(ⅱ),可知②式对一切正整数n 都成立.
2.已知函数f (x )=1+ln x x .
(1)若函数在区间⎝ ⎛⎭
⎪⎫a ,a +12(其中a >0)上存在极值,求实数a 的取值范围; (2)求证:当x ≥1时,不等式f (x )>
2sin x x +1
恒成立. 解:(1)因为f (x )=1+ln x x (x >0), 则f ′(x )=-ln x x 2(x >0),
当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0;当x =1时,f ′(x )=0.
所以函数f (x )在(0,1)上单调递增;在(1,+∞)上单调递减,所以函数f (x )在x =1处取得极大值.
因为函数在区间⎝ ⎛⎭
⎪⎫a ,a +12(其中a >0)上存在极值, 所以⎩
⎪⎨⎪⎧a <1,a +12>1,解得12<a <1. (2)证明:当x ≥1时,不等式
f (x )>2sin x x +1
⇔(x +1)(1+ln x )x >2sin x . 记g (x )=(x +1)(1+ln x )x
(x ≥1), 所以g ′(x )=
[(x +1)(1+ln x )]′x -(x +1)(1+ln x )x 2
=x -ln x
x 2. 令h (x )=x -ln x ,则h ′(x )=1-1x ,
由x ≥1得h ′(x )≥0,所以h (x )在[1,+∞)上单调递增,所以[h (x )]min =h (1)=1>0,从而g ′(x )>0,
故g (x )在[1,+∞)上单调递增,所以
[g (x )]min =g (1)=2.
因为当x ≥1时,2sin x ≤2,所以g (x )≥2sin x .
又因为当x =1时,2sin x =2sin 1<2,
所以当x ≥1时,g (x )>2sin x ,
即(x +1)(1+ln x )x
>2sin x , 所以当x ≥1时,不等式f (x )>
2sin x x +1恒成立.。

相关文档
最新文档