中考数学一次函数测测试题5
中考数学模拟题汇总《一次函数》专项练习(附答案)
中考数学模拟题汇总《一次函数》专项练习(附答案)一、选择题1.若函数y=(k﹣1)x+b+2是正比例函数,则( )A.k≠﹣1,b=﹣2B.k≠1,b=﹣2C.k=1,b=﹣2D.k≠1,b=22.下列函数:①y=16x;②y=-4x;③y=3-12x;④y=3x2﹣2;⑤y=x2﹣(x﹣3)(x+2);⑥y=6x.其中,是一次函数的有( ).A.5个B.4个C.3个D.2个3.经过以下一组点可以画出函数y=2x图象的是( )A.(0,0)和(2,1)B.(1,2)和(-1,-2)C.(1,2)和(2,1)D.(-1,2)和(1,2)4.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=( )A.2B.﹣2C.4D.﹣45.若一次函数y=(3﹣k)x﹣k的图象经过第二、三、四象限,则k的取值范围是( )A.k>3B.0<k≤3C.0≤k<3D.0<k<36.一次函数y1=kx+b与y2=x+a的图象如图所示.则下列结论:①k<0;②a>0;③当x<3时,y1<y2,错误的个数是( )A.0B.1C.2D.37.若点A(2,4)在函数y=kx﹣2的图象上,则下列各点在此函数图象上的是( ).A.(0,﹣2)B.(32,0) C.(8,20) D.(12,12)8.在平面直角坐标系中,将直线l1:y=﹣3x﹣1平移后,得到直线l2:y=﹣3x+2,则下列平移方式正确的是( )A.将l1向左平移1个单位 B.将l1向右平移1个单位C.将l1向上平移2个单位 D.将l1向上平移1个单位9.下图是温度计的示意图,左边的刻度表示摄氏温度,右边的刻度表示华氏温度,华氏温度y(℉)与摄氏温度x(℃)之间的一次函数表达式为( )A.y=95x+32 B.y=x+40 C.y=59x+32 D.y=59x+3110.直线y=kx+b交坐标轴于A(﹣8,0),B(0,13)两点,则不等式kx+b≥0的解集为( )A.x≥﹣8B.x≤﹣8C.x≥13D.x≤1311.若等腰△ABC的周长是50cm,底边长为xcm,一腰长为ycm,则y与x的函数关系式及自变量x的取值范围是( )A.y=50-2x(0<x<50)B.y=50-2x(0<x<25)C.y= (50-2x)(0<x<50)D.y= (50-x)(0<x<25)12.对于函数y=﹣2x+5,下列表述:①图象一定经过(2,﹣1);②图象经过一、二、四象限;③与坐标轴围成的三角形面积为12.5;④x每增加1,y的值减少2;⑤该图象向左平移1个单位后的函数表达式是y=﹣2x+4.正确的是( )A.①③B.②⑤C.②④D.④⑤二、填空题13.点(0.5,y1),(2,y2)是一次函数y=﹣0.5x﹣3图像上的两点,则y1y2.(填“>”、“=”或“<”)14.若一次函数y=(m﹣1)x﹣m+4的图象与y轴的交点在x轴的上方,则m的取值范围是________.15.如图,在△ABC中,∠ACB=90°,斜边AB在x轴上,点C在y轴的正半轴上,直线AC的解析式是y=-2x+4,则直线BC的解析式为_________________16.一次函数y= -4x+12的图象与x轴交点坐标是,与y轴交点坐标是,图象与坐标轴所围成的三角形面积是 .17.如图,一次函数y1=k1x+b1与y2=k2x+b2的图象相交于A(3,2),则不等式(k2﹣k1)x+b2﹣b1>0的解集为_________.18.如图,矩形ABCD边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点E坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD周长分成2:1两部分,则x值为.三、解答题19.已知一次函数y=kx﹣4,当x=2时,y=﹣3.(1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位,求平移后的图象与x轴交点的坐标.20.已知一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k,b的值;(2)若一次函数 y=kx+b的图象与x轴的交点是A(a,0),求a的值.21.如图,一次函数y=﹣x+m的图象和y轴交于点B,与正比例函数y=32x的图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积.22.如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.23.学校为奖励在艺术节系列活动中表现优秀的同学,计划购买甲、乙两种奖品.已知购买甲种奖品30件和乙种奖品25件需花费1950元,购买甲种奖品15件和乙种奖品35件需花费1650元.(1)求甲、乙两种奖品的单价;(2)学校计划购买甲、乙两种奖品共1800件,其中购买乙种奖品的件数不超过甲种奖品件数的2倍,学校分别购买甲、乙两种奖品多少件才能使总费用最小?最小费用是多少元?24.在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图,直线y=﹣2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B横坐标为-1.①求点B的坐标及k的值;②直线y=-2x+1与直线y=kx+4与y轴所围成的△ABC的面积等于;(2)直线y=kx+4(k≠0)与x轴交于点E(x0,0),若-2<x<-1,求k的取值范围.25.正方形OABC的边长为2,其中OA、OC分别在x轴和y轴上,如图1所示,直线l经过A、C两点.(1)若点P是直线l上的一点,当△OPA的面积是3时,请求出点P的坐标;(2)如图2,直角坐标系内有一点D(﹣1,2),点E是直线l上的一个动点,请求出|BE+DE|的最小值和此时点E的坐标.(3)若点D关于x轴对称,对称到x轴下方,直接写出|BE﹣DE|的最大值,并写出此时点E的坐标.参考答案1.B2.C3.B4.B5.D6.C7.C 8.B 9.A. 10.A 11.D 12.C. 13.答案为:>; 14.答案为:m <4且m ≠1 15.答案为:y=12x+4.16.答案为:(3,0),(0,12),18. 17.答案为:x <3 18.答案为:±23.19.解:(1)将x =2,y =﹣3代入y =kx ﹣4, 得﹣3=2k ﹣4,解得k=12.故一次函数的解析式为y=12x-4.(2)将y=12x-4的图象向上平移6个单位得y=12x+2,当y =0时,x =﹣4,故平移后的图象与x 轴交点的坐标为(﹣4,0). 20.解:(1)由题意知解得∴k ,b 的值分别为1,2. (2)由(1)得y =x +2.∴当y =0时,x =﹣2,即a =﹣2.21.解:(1)∵点P(2,n)在正比例函数y =32x 的图象上,∴n =32×2=3.把点P 的坐标(2,3)代入y =﹣x +m ,得 3=﹣2+m , ∴m =5.即m=5,n=3.(2)由(1)知,一次函数为y=﹣x+5,令x=0,得y=5,∴点B的坐标为(0,5),∴S△POB =12×5×2=5.22.解:(1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3.∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=-1.(2)当x=a时,yC =2a+1.当x=a时,yD=4-a.∵CD=2,∴|2a+1-(4-a)|=2,解得a=13或53.23.解:(1)设甲种奖品的单价为x元/件,乙种奖品的单价为y元/件,依题意,得:,解得:.答:甲种奖品的单价为40元/件,乙种奖品的单价为30元/件.(2)设购买甲种奖品m件,则购买乙种奖品(1800﹣m)件,设购买两种奖品的总费用为w,∵购买乙种奖品的件数不超过甲种奖品件数的2倍,∴1800﹣m≤2m,∴m≥600.依题意,得:w=40m+30(1800﹣m)=10m+54000,∵10>0,∴w随m值的增大而增大,∴当学习购买600件甲种奖品、1200件乙种奖品时,总费用最小,最小费用是60000元.24.解:(1)①∵直线y=-2x+1过点B,点B的横坐标为-1,∴y=2+1=3,∴B(-1,3),∵直线y =kx +4过B 点, ∴3=-k +4,解得:k =1; ②∵k =1,∴一次函数解析式为:y =x +4, ∴A(0,4), ∵y =-2x +1, ∴C(0,1), ∴AC =4-1=3,∴△ABC 的面积为12×1×3=32.(2)∵直线y =kx +4(k ≠0)与x 轴交于点E(x 0,0),-2<x 0<-1, ∴当x 0=-2,则E(-2,0),代入y =kx +4得:0=-2k +4, 解得:k =2,当x 0=-1,则E(-1,0),代入y =kx +4得:0=-k +4, 解得:k =4,故k 的取值范围是:2<k <425.解:(1)如图1中,由题意知点A 、点C 的坐标分别为(﹣2,0)和(0,2) 设直线l 的函数表达式y =kx +b(k ≠0),经过点A(﹣2,0)和点C(0,2), 得解得,∴直线l 的解析式为y =x +2. 设点P 的坐标为(m ,m +2), 由题意得12×2×|m +2|=3, ∴m =1或m =﹣5.∴P(1,3),P ′(﹣5,﹣3).(2)如图2中,连接OD 交直线l 于点E ,则点E 为所求,此时|BE +DE|=|OE +DE|=OD ,OD 即为最大值.设OD所在直线为y=k1x(k1≠0),经过点D(﹣1,2),∴2=﹣k1,∴k1=﹣2,∴直线OD为y=﹣2x,由解得,∴点E的坐标为(﹣23,43),又∵点D的坐标为(﹣1,2),∴由勾股定理可得OD=5.即|BE+DE|的最小值为5.(3)如图3中,∵O与B关于直线l对称,∴BE=OE,∴|BE﹣DE|=|OE﹣DE|.由两边之差小于第三边知,当点O,D,E三点共线时,|OE﹣DE|的值最大,最大值为OD.∵D(﹣1,﹣2),∴直线OD的解析式为y=2x,OD=5,由,解得,∴点E(2,4),∴|BE﹣D′E|的最大值为5此时点E的坐标为(2,4).。
中考数学复习《一次函数》专项提升训练题-附带答案
中考数学复习《一次函数》专项提升训练题-附带答案学校:班级:姓名:考号:一、选择题1.下列各点在直线y=−2x+6上的是()A.(−1,4)B.(2,10)C.(3,0)D.(−3,0)2.将一次函数y=2x−1的图象沿y轴向上平移4个单位长度,所得直线的解析式为()A.y=2x−5B.y=2x−3C.y=2x+3D.y=2x+43.关于y是x的一次函数y=kx+b2+1(其中k<0,b为任意实数)的图象可能是()A.B.C.D.4.已知一次函数y=−2x+4,那么下列结论正确的是()A.y的值随x的值增大而增大B.图象经过第一、二、三象限C.图象必经过点(1,2)D.当x<2时5.若点A(x1,−1),B(x2,−2),C(x3,3)在一次函数y=−2x+m(m是常数)的图象上,则x1,x2,x3的大小关系是()A.x1>x2>x3B.x2>x1>x3C.x1>x3>x2D.x3>x2>x16.如图,函数y=mx和y=kx+b的图象相交于点P(1,m),则不等式−b≤kx−b≤mx的解集为()A.0≤x≤1B.−1≤x≤0C.−1≤x≤1D.−m≤x≤m7.已知一次函数y=32x+m和y=−12x+n的图象都经过点A(−2,0),且与y轴分别交于B、C两点,那么△ABC的面积是()A .2B .3C .4D .68.小明从家出发到公园晨练,在公园锻炼一段时间后按原路返回,同时小明爸爸从公园按小明的路线返回家中.如图是两人离家的距离y (米)与小明出发的时间x (分)之间的函数图象.下列结论中不正确的是( )A .公园离小明家1600米B .小明出发253分钟后与爸爸第一次相遇C .小明与爸爸第二次相遇时,离家的距离是960米D .小明在公园停留的时间为5分钟二、填空题9.若函数y =(m −1)x |m|−5是一次函数,则m 的值为 .10.一次函数y=(2m ﹣6)x+4中,y 随x 的增大而减小,则m 的取值范围是 .11.弹簧的自然长度为5cm ,在弹簧的弹性限度内,所挂的物体的质量x 每增加1kg ,弹簧的长度y 增加0.5cm ,则y 与x 之间的函数关系式是 .12.如图所示,直线y =kx +b 经过点(−2,0),则关于x 的不等式kx +b >0的解集为 .13.函数y =ax +b 和y =−x +2的图像如图所示,两图像交于点P(−1,m),则二元一次方程组:{y −ax =b y +x =2的解是 .三、解答题14.已知一次函数y=k(x+2)(k≠0).(1)求证:点(−2,0)在该函数图象上;(2)若该函数图象向上平移2个单位后过点(1,−2),求k的值;(3)若该函数图象与y轴的交点在x轴和直线y=−2之间,求k的取值范围.15.为丰富学生的业余生活,学校准备购进甲、乙两种畅销图书.经调查,甲种图书的总费用y(元)与购进本数x之间的函数关系如图所示,乙种图书每本20元.(1)直接写出当0≤x≤100和x>100时,y与x的函数关系式;(2)现学校准备购买300本图书,且两种图书均不少于80本,该如何购买,才能使总费用最少?最少的总费用为多少元?x+m的图象交于点P(n,−2).16.如图,函数y=−2x+3与y=−12(1)求出m,n的值;x+m≤−2x+3的解集;(2)观察图象,写出−12.(3)设△BOC和△ABP的面积分别为S1、S2,求S1S217.A、B两个码头之间航程为24千米,甲、乙两轮船同时出发,甲轮船从A码头顺流匀速航行到B码头后,立即逆流匀速航行返回到A码头,乙轮船从B码头逆流匀速航行到A码头后停止,两轮船在静水中速度均为10千米/时,水流速度不变,两轮船距A码头的航程y(千米)与各自的航行时间x(时)之间的函数图象如图所示.(顺流速度=静水速度+水流速度:逆流速度=静水速度-水流速度)(1)水流速度为千米/时;a值为;(2)求甲轮船从B码头向A码头返回过程中y与x之间的函数关系式;(3)当乙轮船到达A码头时,求甲轮船距A码头的航程.x−6的图象与坐标轴交于点A,B,BC平分∠OBA交x轴与点C,CD⊥AB垂足为18.如图1,一次函数y=34D.(1)求点A,B的坐标;(2)求CD所在直线的解析式;(3)如图2,点E是线段OB上的一点,点F是线段BC上的一点,求EF+OF的最小值.参考答案1.【答案】C2.【答案】C3.【答案】A4.【答案】C5.【答案】B6.【答案】B7.【答案】C8.【答案】C9.【答案】-110.【答案】m <311.【答案】y=5+0.5x12.【答案】x >−213.【答案】{x =−1y =314.【答案】(1)证明:当x =−2时y =k(x +2)=k(−2+2)=0 ∴点(−2,0)在y =k(x +2)图象上.(2)解:一次函数y =k(x +2)图象向上平移2个单位得y =k(x +2)+2.将(1,−2)代入得:−2=k(1+2)+2解得k =−43.(3)解:由题意得:该函数图象与y 轴的交点为(0,2k)∵该交点在x 轴和直线y =−2之间∴−2<2k <0∴−1<k <0.15.【答案】(1)解:由图可知:y ={25x(0≤x ≤100)19x +600(x >100)(2)解:设总费用为w 元.根据题意,得80≤x ≤220.当80≤x ≤100时w =25x +20(300−x)=5x +6000.∵k =5>0,w 随x 的增大而增大,∴当x =80时,总费用最少w 最小=5×80+6000=6400元.当100<x ≤220时w =19x +600+20(300−x)=−x +6600.∵k =−1<0,w 随x 的增大而减小,∴当x =220时,总费用最少w 最小=−220+6600=6380元<6400元.∴此时乙种图书为300−220=80本.∴应购买甲种图书220本,乙种图书80本,才能使总费用最少,最少总费用为6380元.16.【答案】(1)解:将点P(n ,−2)代入函数y =−2x +3得:−2n +3=−2 解得n =52∴P(52,−2) 将点P(52,−2)代入函数y =−12x +m 得:−12×52+m =−2解得m =−34.(2)解:不等式−12x +m ≤−2x +3表示的是函数y =−12x +m 的图象位于函数y =−2x +3的图象下方(含交点)则由函数图象可知,−12x +m ≤−2x +3的解集为x ≤52. .(3)解:对于函数y =−12x −34当x =0时y =−34,则OB =34当y =0时−12x −34=0,解得x =−32,则OC =32∴S 1=12×34×32=916 对于函数y =−2x +3当x =0时y =3,则OA =3∴AB =OA +OB =154 ∵P(52,−2) ∴S 2=12×154×52=7516 ∴S 1S 2=9167516=325.17.【答案】(1)2;2(2)解:设甲轮船从B 码头向A 码头返回过程中y 与x 之间的函数关系式为y =kx +b 由图象可得,甲轮船从B 码头向A 码头返回需要3小时∴点(2,24),(5,0)在该函数图象上∴{2k +b =245k +b =0,解得{k =−8b =40即甲轮船从B 码头向A 码头返回过程中y 与x 之间的函数关系式为y =−8x +40;(3)解:由(2)知,当x =3时即当乙轮船到达A 码头时,甲轮船距A 码头的航程为16千米.18.【答案】(1)解:由一次函数y=34x−6的图象与坐标轴交于点A,B 另y=0,则x=8,即A(8,0);另x=0,则y=-6,即B(0,-6).(2)解:根据题意,如图,延长DC交y轴于点G,设CD=m∵BC平分∠OBA,OC⊥OB,CD⊥BD∴OC=CD=m∵OA=8,OB=6∴AB=√62+82=10∴12AB•CD=12AC•OB∵AC=8−m∴12×10m=12×(8−m)×6∴m=3∴点C的坐标为(3,0);∵CD⊥AB∴∠BDG=∠AOB=∠90°又∵OB=BD,∠ABO=∠GBD∴△AOB≌△GBD(ASA)∴BG=AB=10,OG=BG-OB=4即G(0,4)∴设直线CD的解析式为y=kx+4把点C(3,0)代入,则k=−43∴直线CD的解析式为y=−43x+4;(3)解:根据题意,作点E关于直线BC的对称点E′,则EF=FE′,如图:∵BC是角平分线∴点E′恰好落在直线AB上∴EF+OF=E′F+OF≥OE′∴EF+OF的最小值就是OE′的最小值当OE′⊥AB时,OE′为最小值;∵12AB•OE′=12OA•OB∴12×10×OE′=12×8×6∴OE′=245∴EF+OF的最小值为245.。
中考数学专题复习之一次函数的图像及性质测试卷
中考数学专题复习之一次函数的图像及性质测试卷一.选择题1.若y =x +2﹣3b 是正比例函数,则b 的值是( )A .0B .﹣C .D .﹣2.函数y =(k ﹣1)x ,y 随x 增大而减小,则k 的范围是( )A .k <0B .k >1C .k ≤1D .k <13.已知点M (﹣2,m )和点N (3,n )是直线y =2x +1上的两个点,那么有( )A .m =nB .m >nC .m <nD .不能确定mn 的大小关系4.一次函数y =8x 的图象经过的象限是( )A .一、三B .二、四C .一、三、四D .二、三、四5.若点(1,2)M 关于y 轴的对称点在正比例函数(32)y k x =+的图象上,则k 的值为( )A .13B .13-C .43-D .06. 1(A x ,1)y 和2(B x ,2)y 是一次函数2(1)2y k x =++图象上的两点,且12x x <,则1y 与2y 的大小关系是( )A .12y y =B .12y y <C .12y y >D .不确定7.下列图形中,表示一次函数y =mx +n 与正比例函数y =﹣mnx (m ,n 为常数,且mn ≠0)的图象不正确的是( )A .B .C .D .8.下列关于一次函数y =﹣2x +2的图象的说法中,错误的是( )A.函数图象经过第一、二、四象限B.函数图象与x轴的交点坐标为(2,0)C.当x>0时,y<2D.y的值随着x值的增大而减小9.如图,一次函数y=k1x+b1的图象l1与一次函数y=k2x+b2的图象l2相交于点P,则不等式组的解集为()A.x>﹣2B.﹣2<x<1.5C.x>﹣1D.x>210.如图,直线y=﹣x+5交坐标轴于点A、B,与坐标原点构成的△AOB向x轴正方向平移4个单位长度得△A′O′B′,边O′B′与直线AB交于点E,则图中阴影部分面积为()A.B.15C.10D.14二.填空题11.在平面直角坐标系中,已知一次函数y=﹣2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1>x2,则y1y2(填“>”或“<”).12.当m=时,函数y=(2m﹣1)x2m﹣2是正比例函数.13.一次函数y=mx+|m﹣1|的图象经过(0,3),且y随x增大而减小,则m=.14.定义:点P与图形W上各点连接的所有线段中,若线段P A最短,则线段P A的长度称为点P到图形W的距离,记为d(P,图形W).例如,在图1中,原点O(0,0)与直线l:x=3的各点连接的所有线段中,线段OA最短,长度为3,则d(O,直线x=3)=3.特别地,点P在图形W上,则点P到图形的距离为0,即d(P,图形W)=0.①在平面直角坐标系中,原点O(0,0)与直线l:y=x的距离d(O,y=x)=;②如图2,点P的坐标为(0,m)且d(p,y=2x﹣2)=,则m=.15.如图,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0),…直线l n⊥x轴于点(n,0).函数y=x的图象与直线l1,l2,l3,……l n分别交于点A1,A2,A3,……A n;函数y=3x的图象与直线l1,l2,l3,……l n分别交于点B1,B2,B3,……B n,如果△OA1B1的面积记的作S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积记作S3,…四边形A n﹣1A n B n B n﹣1的面积记作S n,那么S2020=.16.如图,在平面直角坐标系中,点C的坐标是(0,4),作点C关于直线AB:y=x+1的对称点D,则点D的坐标是.三.解答题17.已知函数y=(m+2)x|m|﹣1+n+4.(1)当m,n为何值时,此函数是正比例函数?(2)当m,n为何值时,此函数是一次函数?18.如图,已知直线y=x+5与x轴交于点A,直线y=kx+b与x轴交于点B(1,0),且与直线y=x+5交于第二象限点C(m,n).(1)若△ABC的面积为12,求点C的坐标及关于x的不等式的x+5>kx+b解集;(2)求k的取值范围.19.如图,一次函数y=﹣x+5的图象l1分别与x轴,y轴交于A、B两点,正比例函数的图象l2与l1交于点C(m,).(1)求m的值及l2的解析式;(2)求得S△AOC﹣S△BOC的值为;(3)一次函数y=kx+1的图象为l3且l1,l2,l3可以围成三角形,直接写出k的取值范围.20.如图,在平面直角坐标系中,直线y=2x+3与y轴交于点A,直线y=kx﹣1与y轴交于点B,与直线y=2x+3交于点C(﹣1,n).(1)求n、k的值;(2)求△ABC的面积.21.如图,已知一次函数y=﹣x+6的图象与x轴、y轴分别交于点A和点B,与直线y =x相交于点C.过点B作x轴的平行线l,点P是直线l上的一个动点.①点C坐标是;②若点E是直线y=x上的一个动点,且处于直线AB下方,当△APE是以∠EAP为直角的等腰直角三角形时,点E的坐标是.22.如图,正比例函数y=x与一次函数y=ax+7的图象相交于点P(4,n),过点A(t,0)作x轴的垂线l,且0<t<4,交一次函数的图象于点B,交正比例函数的图象于点C,连接OB.(1)求a值;(2)设△OBP的面积为s,求s与t之间的函数关系式;(3)当t=2时,在正比例函数y=x与一次函数y=ax+7的图象上分别有一动点M、N,是否存在点M、N,使△CMN是等腰直角三角形,且∠CNM=90°,若存在,请直接写出点M、N的坐标;若不存在,请说明理由.23.如图1,在平面直角坐标系中,直线y=﹣x+2与坐标轴交于A,B两点,以AB为斜边在第一象限内作等腰直角三角形ABC.点C为直角顶点,连接OC.(1)A点坐标为,B点坐标为.(2)请你过点C作CE⊥y轴于E点,试探究并证明OB+OA与CE的数量关系.(3)如图2,将线段AB绕点B沿顺时针方向旋转至BD,且OD⊥AD,延长DO交直线y=x+5于点P,求点P的坐标.。
中考数学复习《一次函数》专项提升训练题-附答案
中考数学复习《一次函数》专项提升训练题-附答案学校:班级:姓名:考号:一、选择题1.把一次函数的图象向上平移4个单位长度,得到图象表达式是()A.B.C.D.2.小红骑自行车到离家为千米书店买书,行驶了分钟后,遇到一个同学因说话停留分钟,继续骑了分钟到书店.图中的哪一个图象能大致描述她去书店过程中离书店的距离千米与所用时间分之间的关系()A.B.C.D.3.已知直线与x轴的交点在,之间(包括A,B两点),则a的取值范围是()A.B.C.D.4.已知一次函数的图像经过点,且当时,则该函数图象所经过的象限为()A.一、二、三B.二、三、四C.一、三、四D.一、二、四5.已知正比例函数的图象上两点、且,则下列不等式中一定成立的是()A.B.C.D.6.已知一次函数的图象与的图象交于点.则对于不等式,下列说法正确的是()A.当时B.当时C.当且时D.当且时7.如图,已知直线与轴、轴分别交于点和点,是线段上一点,若将沿折叠,点恰好落在x轴上的点处,则直线所对应的函数表达式是()A. B. C. D.8.如图,正方形、正方形、正方形的顶点、与和、与、分别在一次函数的图像和轴上,若正比例函数则过点,则的值是()A.B.C.D.二、填空题9.与直线垂直且过点的直线解析式是.10.已知一次函数的图象经过点,则不等式的解是. 11.已知为整数,且一次函数的图像不经过第二象限,则= .12.某家庭电话月租费为10元,若市内通话费平均每次为0.2元,则该家庭一个月的话费y(元)与通话次数x(次)之间的关系式是.13.如图,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点B的坐标为(4,3),点D为对角线OB上一点.若OA=OD,则点D到x轴的距离为.三、解答题14.已知是一次函数.(1)求m的值;(2)若,求对应y的取值范围.15.某花农培育甲种樱花 3 株,乙种樱花 2 株,共需要成本 1700 元,乙种樱花 2 株,共需成本 1500 元.(1)求甲、乙两种樱花每株成本分别为多少元?(2)据市场调研,1 株甲种樱花售价为 160 元,1 株乙种樱花售价为 840 元.该花农决定在成本不超过 29000 元的前提下培育甲、乙两种樱花,那么要使总利润不少于 5000 元,花农有哪几种具体的培育方案?(3)求出选何种方案成本最少?16.如图,一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象解决下列问题:(1)求慢车和快车的速度;(2)求线段所表示的y与x之间的函数关系式,并写出自变量x的取值范围.17.为提升学生的文学素养,培养学生的阅读兴趣,某校准备购进A,B两种图书.经调查,购进A 种图书费用y元与购进A种图书本数x之间的函数关系如图所示,B种图书每本20元.(1)当和时,求y与x之间的函数关系式;(2)现学校准备购进300本图书,其中购进A种图书x本,设购进两种图书的总费用为w元.①当时,求出w与x间的函数表达式;②若购进A种图书不少于60本,且不超过B种图书本数的2倍,那么应该怎样分配购买A,B两种图书才能使总费用最少?最少总费用多少元?18.如图,在平面直角坐标系中,直线与轴交于点,直线与轴、轴分别交于点和点,且与直线交于点.(1)求直线的解析式;(2)若点为线段BC上一个动点,过点作轴,垂足为,且与直线交于点,当时,求点的坐标;(3)若在平面上存在点,使得以点A,C,D,H为顶点的四边形是平行四边形,请直接写出点的坐标.参考答案:1.A2.D3.D4.D5.C6.D7.B8.B9.10.11.-3或-212.13.14.(1)解:因为是一次函数,所以且,解得(2)解:由(1)可知,该一次函数的表达式为,因为,所以随的增大而减小.当时;当时,所以当时,.15.(1)解:设甲、乙两种樱花每株成本分别为 x则:解得:故甲种樱花每株成本为 100 元,乙种樱花每株成本为 700元。
中考数学常考考点专题之一次函数测试卷
中考数学常考考点专题之一次函数测试卷一.选择题(共15小题)1.如图1,在平面直角坐标系中,将平行四边形ABCD 放置在第一象限,且AB ∥x 轴.直线y =﹣x 从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图2,那么平行四边形ABCD 的面积为( )A .4√5B .4C .8√5D .82.一次函数y =mx +m 2(m ≠0)的图象过点(0,4),且y 随x 的增大而增大,则m 的值为( )A .﹣2B .﹣2或2C .1D .23.如图,直线y 1=x +b 与y 2=kx ﹣1相交于点P ,若点P 的横坐标为﹣1,则关于x 的不等式x +b >kx ﹣1的解集是( )A .x ≥﹣1B .x >﹣1C .x ≤﹣1D .x <﹣14.如果直线y =3x +6与y =2x ﹣4交点坐标为(a ,b ),则解为{x =a y =b 的方程组是( )A .{y −3x =62y +x =−4B .{y −3x =62y −x =4C .{3x −y =63x −y =4D .{3x −y =−62x −y =45.在平面直角坐标系中,点A 1(﹣1,1)在直线y =x +b 上,过点A 1作A 1B 1⊥x 轴于点B 1,作等腰直角三角形A 1B 1B 2(B 2与原点O 重合),再以A 1B 2为腰作等腰直角三角形A 2A 1B 2;以A2B2为腰作等腰直角三角形A2B2B3;按照这样的规律进行下去,那么A2019的坐标为()A.(22018﹣1,22018)B.(22018﹣2,22018)C.(22019﹣1,22019)D.(22019﹣2,22019))6.已知一次函数y=kx+b的图象如图所示,则k,b的取值范围是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0 7.关于x的一次函数y=﹣4x+8的图象,下列说法不正确的是()A.直线不经过第三象限B.直线经过点(1,4)C.直线与x轴交于点(2,0)D.y随x的增大而增大8.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=54或154.其中正确的结论有()A.1个B.2个C.3个D.4个9.已知A、B两地相距4千米.上午8:00,甲从A地出发步行到B的,8:20乙从B地出发骑自行车到A地,甲乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为()A.8:30B.8:35C.8:40D.8:410.“漏壶”是古代一种计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间.在漏壶漏完水之前,漏壶内水的深度与对应的漏水时间满足的函数关系式()A.正比例函数关系B.一次函数关系C.反比例函数关系D.二次函数关系11.将直线y=2x+1向右平移2个单位后所得图象对应的函数表达式为()A.y=2x+5B.y=2x+3C.y=2x﹣2D.y=2x﹣3 12.对于某个一次函数y=kx+b(k≠0),根据两位同学的对话得出的结论,错误的是()A.k>0B.kb<0C.k+b>0D.k=−1 2b13.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.14.若直线BC和直线y=x+3平行,其中点B的坐标为B(﹣2,3),将直线BC向右平移1个单位后为()A.y=﹣x+2B.y=﹣x+4C.y=x+6D.y=x+415.如图,甲从A村匀速骑自行车到B村,乙从B村匀速骑摩托车到A村,两人同时出发,到达目的地后,立即停止运动,甲、乙两人离A村的距离y(km)与他自骑车的时间x (h)之间的函数关系如图所示,则下列说法错误的是()A.A、B两村的距离为120km B.甲的速度为20kmhC.乙的速度为40km/h D.乙运动3.5h到达目的地二.填空题(共5小题)16.我国古代数学经典著作《九章算术》记载:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之.问几何步及之?”如图是善行者与不善行者行走路程s(单位:步)关于善行者的行走时间t的函数图象,则两图象交点P的纵坐标是.17.若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第象限.18.学校提倡“低碳环保,绿色出行”,小明和小亮分别选择步行和骑自行车上学,两人各自从家同时同向出发,沿同一条路匀速前进.如图所示,l1和l2分别表示两人到小亮家的距离s(km)和时间t(h)的关系,则出发h后两人相遇.19.若函数y=|2x﹣3|﹣2a始终大于y=|x+a|,则a的取值范围为.20.根据图象,可得关于x的不等式kx>﹣x+3的解集是.三.解答题(共5小题)21.在襄阳市创建“经济品牌特色品牌”政策的影响下.每到傍晚,市内某网红烧烤店就食客如云,这家烧烤店的海鲜串和肉串非常畅销,店主从食品加工厂批发以上两种产品进行加工销售,其中海鲜串的成本为m元/支,肉串的成本为n元/支;两次购进并加工海鲜串和肉串的数量与成本如下表所示(成本包括进价和其他费用):次数数量(支)总成本(元)海鲜串肉串第一次3000400017000第二次4000300018000针对团以消费,店主决定每次消费海鲜串不超过200支时,每支售价5元;超过200支时、不超过200支的部分按原价,超过200支的部分打八折.每支肉串的售价为3.5元.(1)求m、n的值;(2)五一当天,一个旅游团去此店吃烧烤,一次性消费海鲜串和肉串共1000支,且海鲜串不超过400支.在本次消费中,设该旅游团消费海鲜串x支,店主获得海鲜串的总利润为y元,求y与x的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,该旅游团消费的海鲜串超过了200支,店主决定给该旅游团更多优惠,对每支肉串降价a(0<a<1)元,但要确保本次消费获得肉串的总利润始终不低于海鲜串的总利润,求a的最大值.22.在平面直角坐标系中,点B、E的坐标分别为B(﹣2,√3),E(4,0),过点E作直线l⊥x轴,设直线l上的动点A的坐标为(4,m),连接AB,将线段BA绕点B顺时针方向旋转30°得到线段BA′,在射线BA′上取点C,构造Rt△ABC,使得∠BAC=90°.(1)当m=−√3时,求直线AB的函数表达式.(2)当点C落在坐标轴上时,求△ABC的面积.(3)已知点B关于原点O的对称点是点D,在点A的运动过程中,是否存在某一位置,使以A,C,D为顶点的三角形与△ABC相似?若存在,求出点A的坐标;若不存在,请说明理由.23.在平面直角坐标系中,已知一次函数y1=3x﹣5与y2=2x﹣4.(1)求这两个函数图象的交点坐标;(2)求一次函数y2=2x﹣4的图象与坐标轴所围成三角形的面积.24.在平面直角坐标系xOy中,对于第一象限的P,Q两点,给出如下定义:若y轴正半轴上存在点P',x轴正半轴上存在点Q',使PP'∥QQ',且∠1=∠2=α(如图1),则称点P 与点Q为α﹣关联点.(1)在点Q1(3,1),Q2(5,2)中,与(1,3)为45°﹣关联点的是;(2)如图2,M(6,4),N(8,4),P(m,8)(m>1).若线段MN上存在点Q,使点P与点Q为45°﹣关联点,结合图象,求m的取值范围;(3)已知点A(1,8),B(n,6)(n>1).若线段AB上至少存在一对30°﹣关联点,直接写出n的取值范围.25.近年,净月潭公园将环潭公路改造为东北三省最长的人车分离彩色环保公路,平坦宽敞的路面分橙、黑两色,拓宽了原有的人行步道,成为市民健身的好去处.小明和爸爸参加了此公园举办的“亲子健身赛”,两人的行程y(千米)随时间x(时)变化的图象(全程)如图所示.(1)两人出发后小时相遇,此次“亲子健身赛”的全程是千米.(2)求出AB所在直线的函数关系式.(3)若小明想和爸爸一起到达终点,则需在两人出发 1.5小时后,将速度调整为千米/时.。
中考数学《一次函数》专题练习含答案解析
一次函数一、选择题1.在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法正确的是()A.甲的速度随时间的增加而增大B.乙的平均速度比甲的平均速度大C.在起跑后第180秒时,两人相遇D.在起跑后第50秒时,乙在甲的前面2.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个 B.2个 C.3个 D.4个3.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度4.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元二、填空题5.一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如表.现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元,则一次性购买盒子所需要最少费用为元.型号A B单个盒子容量(升)23单价(元)566.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要s能把小水杯注满.7.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省元.三、解答题8.“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:型号进价(元/只)售价(元/只)A型1012B型1523(1)小张如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.9.已知某市的光明中学、市图书馆和光明电影院在同一直线上,它们之间的距离如图所示.小张星期天上午带了75元现金先从光明中学乘出租车去了市图书馆,付费9元;中午再从市图书馆乘出租车去了光明电影院,付费12.6元.若该市出租车的收费标准是:不超过3公里计费为m元,3公里后按n元/公里计费.(1)求m,n的值,并直接写出车费y(元)与路程x(公里)(x>3)之间的函数关系式;(2)如果小张这天外出的消费还包括:中午吃饭花费15元,在光明电影院看电影花费25元.问小张剩下的现金够不够乘出租车从光明电影院返回光明中学?为什么?10.某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?11.联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,A、B两种套餐收费一样?(3)什么情况下A套餐更省钱?12.某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料全部生产A、B两种产品共50件,生产A、B两种产品与所需原料情况如下表所示:甲种原料(千克)乙种原料(千克)原料型号A产品(每件)93B产品(每件)410(1)该工厂生产A、B两种产品有哪几种方案?(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润?一次函数参考答案与试题解析一、选择题1.在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法正确的是()A.甲的速度随时间的增加而增大B.乙的平均速度比甲的平均速度大C.在起跑后第180秒时,两人相遇D.在起跑后第50秒时,乙在甲的前面【考点】一次函数的应用.【分析】A、由于线段OA表示甲所跑的路程S(米)与所用时间t(秒)之间的函数图象,由此可以确定甲的速度是没有变化的;B、甲比乙先到,由此可以确定甲的平均速度比乙的平均速度快;C、根据图象可以知道起跑后180秒时,两人的路程确定是否相遇;D、根据图象知道起跑后50秒时OB在OA的上面,由此可以确定乙是否在甲的前面.【解答】解:A、∵线段OA表示甲所跑的路程S(米)与所用时间t(秒)之间的函数图象,∴甲的速度是没有变化的,故选项错误;B、∵甲比乙先到,∴乙的平均速度比甲的平均速度慢,故选项错误;C、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故选项错误;D、∵起跑后50秒时OB在OA的上面,∴乙是在甲的前面,故选项正确.故选D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.2.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个 B.2个 C.3个 D.4个【考点】一次函数的应用.【分析】根据题目所给的图示可得,两人在1小时时相遇,行程均为10km,出发0.5小时之内,甲的速度大于乙的速度,0.5至1小时之间,乙的速度大于甲的速度,出发1.5小时之后,乙的路程为15千米,甲的路程为12千米,再利用函数图象横坐标,得出甲先到达终点.【解答】解:在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;由图可得,两人在1小时时相遇,行程均为10km,故②正确;甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,甲的路程为15千米,乙的路程为12千米,甲的行程比乙多3千米,故③正确;甲到达终点所用的时间较少,因此甲比乙先到达终点,故④正确.故选C.【点评】本题考查了一次函数的应用,行程问题的数量关系速度=路程后÷时间的运用,解答时理解函数的图象的含义是关键.3.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度【考点】一次函数的应用.【分析】根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800﹣2800)米,爬山的总路程为3800米,根据路程、速度、时间的关系进行解答即可.【解答】解:A、根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;B、根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B正确;C、根据图象可知,小明在上述过程中所走的路程为3800米,故错误;D、小明休息后的爬山的平均速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;故选:C.【点评】本题考查了函数图象,解决本题的关键是读懂函数图象,获取信息,进行解决问题.4.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元【考点】一次函数的应用.【专题】压轴题.【分析】根据函数图象分别求出设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=﹣x+25,当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=,根据日销售利润=日销售量×一件产品的销售利润,即可进行判断.【解答】解:A、根据图①可得第24天的销售量为200件,故正确;B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=﹣x+25,当x=10时,y=﹣10+25=15,故正确;C、当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(0,100),(24,200)代入得:,解得:,∴y=,当t=12时,y=150,z=﹣12+25=13,∴第12天的日销售利润为;150×13=1950(元),第30天的日销售利润为;150×5=750(元),750≠1950,故C错误;D、第30天的日销售利润为;150×5=750(元),故正确.故选:C【点评】本题考查了一次函数的应用,解决本题的关键是利用待定系数法求函数解析式.二、填空题5.一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如表.现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元,则一次性购买盒子所需要最少费用为29元.型号A B单个盒子容量(升)23单价(元)56【考点】一次函数的应用.【分析】设购买A种型号盒子x个,购买盒子所需要费用为y元,则购买B种盒子的个数为个,分两种情况讨论:①当0≤x<3时;②当3≤x时,利用一次函数的性质即可解答.【解答】解:设购买A种型号盒子x个,购买盒子所需要费用为y元,则购买B种盒子的个数为个,①当0≤x<3时,y=5x+=x+30,∵k=1>0,∴y随x的增大而增大,∴当x=0时,y有最小值,最小值为30元;②当3≤x时,y=5x+﹣4=26+x,∵k=1>0,∴y随x的增大而增大,∴当x=3时,y有最小值,最小值为29元;综合①②可得,购买盒子所需要最少费用为29元.故答案为:29.【点评】本题考查了一次函数的应用,解决本题的关键是根据题意列出函数解析式,利用一次函数的性质解决最小值的问题,注意分类讨论思想的应用.6.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要5s能把小水杯注满.【考点】一次函数的应用.【分析】一次函数的首先设解析式为:y=kx+b,然后利用待定系数法即可求得其解析式,再由y=11,即可求得答案.【解答】解:设一次函数的首先设解析式为:y=kx+b,将(0,1),(2,5)代入得:,解得:,∴解析式为:y=2x+1,当y=11时,2x+1=11,解得:x=5,∴至少需要5s能把小水杯注满.故答案为:5.【点评】此题考查了一次函数的实际应用问题.注意求得一次函数的解析式是关键.7.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元.【考点】一次函数的应用.【分析】根据函数图象,分别求出线段OA和射线AB的函数解析式,即可解答.【解答】解:由线段OA的图象可知,当0<x<2时,y=10x,1千克苹果的价钱为:y=10,设射线AB的解析式为y=kx+b(x≥2),把(2,20),(4,36)代入得:,解得:,∴y=8x+4,当x=3时,y=8×3+4=28.当购买3千克这种苹果分三次分别购买1千克时,所花钱为:10×3=30(元),30﹣28=2(元).则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元.【点评】本题考查了一次函数的应用,解决本题的关键是分别求出线段OA和射线AB 的函数解析式.三、解答题8.“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:型号进价(元/只)售价(元/只)A型1012B型1523(1)小张如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.【考点】一次函数的应用;一元一次方程的应用;一元一次不等式的应用.【分析】(1)设A文具为x只,则B文具为(100﹣x)只,根据题意列出方程解答即可;(2)设A文具为x只,则B文具为(100﹣x)只,根据题意列出函数解答即可.【解答】解:(1)设A文具为x只,则B文具为(100﹣x)只,可得:10x+15(100﹣x)=1300,解得:x=40.答:A文具为40只,则B文具为100﹣40=60只;(2)设A文具为x只,则B文具为(100﹣x)只,可得(12﹣10)x+(23﹣15)(100﹣x)≤40%[10x+15(100﹣x)],解得:x≥50,设利润为y,则可得:y=(12﹣10)x+(23﹣15)(100﹣x)=2x+800﹣8x=﹣6x+800,因为是减函数,所以当x=50时,利润最大,即最大利润=﹣50×6+800=500元.【点评】此题考查一次函数的应用,关键是根据题意列出方程和不等式,根据函数是减函数进行解答.9.已知某市的光明中学、市图书馆和光明电影院在同一直线上,它们之间的距离如图所示.小张星期天上午带了75元现金先从光明中学乘出租车去了市图书馆,付费9元;中午再从市图书馆乘出租车去了光明电影院,付费12.6元.若该市出租车的收费标准是:不超过3公里计费为m元,3公里后按n元/公里计费.(1)求m,n的值,并直接写出车费y(元)与路程x(公里)(x>3)之间的函数关系式;(2)如果小张这天外出的消费还包括:中午吃饭花费15元,在光明电影院看电影花费25元.问小张剩下的现金够不够乘出租车从光明电影院返回光明中学?为什么?【考点】一次函数的应用.【分析】(1)根据题意,不超过3公里计费为m元,由图示可知光明中学和市图书馆相距2公里,可由此得出m,由出租车的收费标准是:不超过3公里计费为m元,3公里后按n元/公里计费.当x>3时,由收费与路程之间的关系就可以求出结论;(2)分别计算小张所剩钱数和返程所需钱数,即可得出结论.【解答】解:(1)∵由图示可知光明中学和市图书馆相距2公里,付费9元,∴m=9,∵从市图书馆乘出租车去光明电影院,路程5公里,付费12.6元,∴(5﹣3)n+9=12.6,解得:n=1.8.∴车费y(元)与路程x(公里)(x>3)之间的函数关系式为:y=1.8(x﹣3)+9=1.8x+3.6(x>3).(2)小张剩下坐车的钱数为:75﹣15﹣25﹣9﹣12.6=13.4(元),乘出租车从光明电影院返回光明中学的费用:1.8×7+3.6=16.2(元)∵13.4<16.2,故小张剩下的现金不够乘出租车从光明电影院返回光明中学.【点评】本题考查了分段函数,一次函数的解析式,由一次函数的解析式求自变量和函数值,解答时求出函数的解析式是关键10.某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?【考点】二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设A种货物运输了x吨,设B种货物运输了y吨,根据题意可得到一个关于x的不等式组,解方程组求解即可;(2)运费可以表示为x的函数,根据函数的性质,即可求解.【解答】解:(1)设A种货物运输了x吨,设B种货物运输了y吨,依题意得:,解之得:.答:物流公司月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.【点评】本题考查二元一次方程组的应用和一元一次不等式组以及一次函数性质的应用,将现实生活中的事件与数学思想联系起来,读懂题意列出方程组和不等式即可求解.11.联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,A、B两种套餐收费一样?(3)什么情况下A套餐更省钱?【考点】一次函数的应用.【分析】(1)根据A套餐的收费为月租加上话费,B套餐的收费为话费列式即可;(2)根据两种收费相同列出方程,求解即可;(3)根据(2)的计算结果,小于收费相同时的时间选择B套餐,大于收费相同的时间选择A套餐解答.【解答】解:(1)A套餐的收费方式:y1=0.1x+15;B套餐的收费方式:y2=0.15x;(2)由0.1x+15=0.15x,得到x=300,答:当月通话时间是300分钟时,A、B两种套餐收费一样;(3)由0.1x+15<0.15x,得到x>300,当月通话时间多于300分钟时,A套餐更省钱.【点评】本题考查了一次函数的应用,是典型的电话收费问题,求出两种收费相同的时间是确定选择不同的缴费方式的关键.12.某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料全部生产A、B两种产品共50件,生产A、B两种产品与所需原料情况如下表所示:原料甲种原料(千克)乙种原料(千克)型号A产品(每件)93B产品(每件)410(1)该工厂生产A、B两种产品有哪几种方案?(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润?【考点】一次函数的应用;一元一次不等式组的应用.【分析】(1)设工厂可安排生产x件A产品,则生产(50﹣x)件B产品,根据不能多于原料的做为不等量关系可列不等式组求解;(2)可以分别求出三种方案比较即可.【解答】解:(1)设工厂可安排生产x件A产品,则生产(50﹣x)件B产品由题意得:,解得:30≤x≤32的整数.∴有三种生产方案:①A30件,B20件;②A31件,B19件;③A32件,B18件;(2)方法一:方案(一)A,30件,B,20件时,20×120+30×80=4800(元).方案(二)A,31件,B,19件时,19×120+31×80=4760(元).方案(三)A,32件,B,18件时,18×120+32×80=4720(元).故方案(一)A,30件,B,20件利润最大.【点评】本题考查理解题意的能力,关键是根据有甲种原料360千克,乙种原料290千克,做为限制列出不等式组求解,然后判断B生产的越多,A少的时候获得利润最大,从而求得解.。
中考数学复习《一次函数》专项练习题-附带有答案
中考数学复习《一次函数》专项练习题-附带有答案一、单选题1.在函数y=√9−3x中,自变量x的取值范围是()A.x≤3B.x<3C.x≥3D.x>32.已知一次函数y=kx−3(k≠0),若y随x的增大而减小,则它的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限3.实数k、b满足kb﹥0,不等式kx<b的解集是x>bk那么函数y=kx+b的图象可能是()A.B.C.D.4.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥32B.x≤3 C.x≤32D.x≥35.如图,在平面直角坐标系中,直线y=- 32x+3与矩形OABC的边AB、BC分别交于点E、F,若点B的坐标为(m,2),则m的值可能为()A.12B.32C.52D.726.如图,等边△ABC 的顶点A 在y 轴上,顶点B 、C 在x 轴上,直线y =−√3x +√3经过点A 、C ,则等边△ABC 的面积是( )A .4B .2√3C .√5D .√37. 如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过正方形OABC 的顶点A 和C ,已知点A 的坐标为(1,−2),则k 的值为( )A .1B .2C .3D .48.市自来水公司为鼓励居民节约用水,采取月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图,若该用户本月用水21吨,则应交水费( )A .52.5元B .48方C .45元D .42元二、填空题9.函数y= 32 x+m 与y=﹣ 12 x+n 均经过点A (﹣2,0),且与y 轴交于B 、C ,则S △ABC = . 10.已知一次函数y =kx +b (k ≠0)经过(2,-1),(-3,4)两点,则其图象不经过第 象限. 11.现有一小树苗高100cm ,以后平均每年长高50cm .x 年后树苗的总高度y (cm )与年份x (年)的关系式是 .12.如图,函数y =2x +b 与函数y =kx −1的图象交于点P ,关于x 的不等式kx −1<2x +b 的解集是 .13.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与行驶时间x(小时)之间的函数关系如图所示,已知甲对应的函数关系式为y=60x,根据图象提供的信息可知从乙出发后追上甲车需要小时.三、解答题14.已知实数a满足a+b﹣4<0,b=√(−3)2,当2≤x≤4时,一次函数y=ax+1(a≠0)的最大值与最小值之差是6,求a的值.15.已知两直线l1,l2的位置关系如图所示,请求出以点A的坐标为解的二元一次方程组.16.某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示。
中考数学总复习《一次函数》专项测试卷带答案
中考数学总复习《一次函数》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.(2024·南宁模拟)若直线y=kx(k是常数,k≠0)经过第一、第三象限,则k的值可为( )A.-2B.-1C.-1D.222.(2024·玉林模拟)将直线y=5x+1向下平移2个单位长度,所得直线的解析式为( )A.y=5x-2B.y=5x-1C.y=5x+3D.y=5(x-1)3.(2024·崇左模拟)已知一次函数y=(m+1)x+5,y随x的增大而减小,则m的取值范围是( )A.m≤-1B.m>-1C.m≥-1D.m<-14.(2024·桂林模拟)如图,直线y=ax+b过点A(0,2)和点B(-3,0),则方程ax+b=0的解是( )A.x=2B.x=0C.x=-1D.x=-35.(2024·北海模拟)直线y=kx+3经过点A(2,1),则不等式kx+3≥0的解集是( )A.x≤3B.x≥3C.x≥-3D.x≤06.(2024·青海)如图,一次函数y=2x-3的图象与x轴相交于点A,则点A关于y轴的对称点是( )A .(-32,0) B .(32,0) C .(0,3) D .(0,-3)7.对于某个一次函数y =kx +b (k ≠0),根据两位同学的对话得出的结论,错误的是( )A .k >0B .kb <0C .k +b >0D .k =-12b8.一种弹簧秤最大能称不超过10 kg 的物体,不挂物体时弹簧的长为12 cm,每挂重1 kg 物体,弹簧伸长0.5 cm,在弹性限度内,挂重后弹簧的长度y (cm)与所挂物体的质量x (kg)之间的函数关系式为( )A.y =12-0.5xB.y =12+0.5xC.y =10+0.5xD.y =0.5x9.(2024·包头)在平面直角坐标系中,若一次函数的图象经过第一、二、三象限,请写出一个符合该条件的一次函数的解析式 .10.(2024·包头)如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位: cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数解析式,并说明理由;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8 cm,求此时碗的数量最多为多少个?B层·能力提升x+3分别与x轴,y轴交于点A,B,将△OAB绕着11.(2024·桂林模拟)如图,直线y=-32点A顺时针旋转90°得到△CAD,则点B的对应点D的坐标为( )A.(2,5)B.(3,5)C.(5,2)D.(√13,2)12.(2024·柳州模拟)在平面直角坐标系中,点A1,A2,A3,A4…在x轴的正半轴上,点B1,B2,B3…在直线y=√3x(x≥0)上,若点A1的坐标为(2,0),且3△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,则点B2 025的坐标为.13.在“探索一次函数y=kx+b的系数k,b与图象的关系”活动中,老师给出了直角坐标系中的三个点:A(0,2),B(2,3),C(3,1).同学们画出了经过这三个点中每两个点的一次函数的图象,并得到对应的函数解析式y1=k1x+b1,y2=k2x+b2,y3=k3x+b3.分别计算k1+b1,k2+b2,k3+b3的值,其中最大的值等于.C层·挑战冲A+14.(2024·广州)一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y和脚长x之间近似存在一个函数关系,部分数据如表:脚长x(cm)…232425262728…身高y(cm)…156163170177184191…(1)在图1中描出表中数据对应的点(x,y);(2)根据表中数据,从y=ax+b(a≠0)和y=k(k≠0)中选择一个函数模型,使它能近似地x反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x的取值范围);(3)如图2,某场所发现了一个人的脚印,脚长约为25.8 cm,请根据(2)中求出的函数解析式,估计这个人的身高.参考答案A层·基础过关1.(2024·南宁模拟)若直线y=kx(k是常数,k≠0)经过第一、第三象限,则k的值可为(D)A.-2B.-1C.-1D.222.(2024·玉林模拟)将直线y=5x+1向下平移2个单位长度,所得直线的解析式为(B)A.y=5x-2B.y=5x-1C.y=5x+3D.y=5(x-1)3.(2024·崇左模拟)已知一次函数y=(m+1)x+5,y随x的增大而减小,则m的取值范围是(D)A.m≤-1B.m>-1C.m≥-1D.m<-14.(2024·桂林模拟)如图,直线y=ax+b过点A(0,2)和点B(-3,0),则方程ax+b=0的解是(D)A .x =2B .x =0C .x =-1D .x =-35.(2024·北海模拟)直线y =kx +3经过点A (2,1),则不等式kx +3≥0的解集是(A) A .x ≤3 B .x ≥3 C .x ≥-3 D .x ≤06.(2024·青海)如图,一次函数y =2x -3的图象与x 轴相交于点A ,则点A 关于y 轴的对称点是(A)A .(-32,0) B .(32,0) C .(0,3) D .(0,-3)7.对于某个一次函数y =kx +b (k ≠0),根据两位同学的对话得出的结论,错误的是(C)A .k >0B .kb <0C .k +b >0D .k =-12b8.一种弹簧秤最大能称不超过10 kg 的物体,不挂物体时弹簧的长为12 cm,每挂重1 kg 物体,弹簧伸长0.5 cm,在弹性限度内,挂重后弹簧的长度y (cm)与所挂物体的质量x (kg)之间的函数关系式为(B)A.y=12-0.5xB.y=12+0.5xC.y=10+0.5xD.y=0.5x9.(2024·包头)在平面直角坐标系中,若一次函数的图象经过第一、二、三象限,请写出一个符合该条件的一次函数的解析式y=x+1(答案不唯一).10.(2024·包头)如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位: cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数解析式,并说明理由;【解析】(1)由表中的数据,x的增加量不变∴y是x的一次函数设y=kx+b由题意得:{k+b=62k+b=8.4,解得:{k=2.4 b=3.6∴y与x之间的函数解析式为y=2.4x+3.6;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8 cm,求此时碗的数量最多为多少个?【解析】(2)设碗的数量有x个,则:2.4x+3.6≤28.8,解得:x≤10.5,∴x的最大整数解为10答:碗的数量最多为10个.B层·能力提升x+3分别与x轴,y轴交于点A,B,将△OAB绕着11.(2024·桂林模拟)如图,直线y=-32点A顺时针旋转90°得到△CAD,则点B的对应点D的坐标为(C)A.(2,5)B.(3,5)C.(5,2)D.(√13,2)12.(2024·柳州模拟)在平面直角坐标系中,点A1,A2,A3,A4…在x轴的正半轴上,点B1,B2,B3…在直线y=√3x(x≥0)上,若点A1的坐标为(2,0),且3△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,则点B2 025的坐标为(3×22 024,√3×22 024).13.在“探索一次函数y=kx+b的系数k,b与图象的关系”活动中,老师给出了直角坐标系中的三个点:A(0,2),B(2,3),C(3,1).同学们画出了经过这三个点中每两个点的一次函数的图象,并得到对应的函数解析式y1=k1x+b1,y2=k2x+b2,y3=k3x+b3.分别计算k1+b1,k2+b2,k3+b3的值,其中最大的值等于5.C层·挑战冲A+14.(2024·广州)一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y和脚长x之间近似存在一个函数关系,部分数据如表:脚长x(cm)…232425262728…身高y(cm)…156163170177184191…(1)在图1中描出表中数据对应的点(x,y);【解析】(1)描点如图所示:(2)根据表中数据,从y=ax+b(a≠0)和y=k(k≠0)中选择一个函数模型,使它能近似地x反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x的取值范围);【解析】(2)∵y=kx(k≠0)转化为k=xy=23×156≠24×163≠25×170≠…∴y与x的函数不可能是y=kx故选一次函数y=ax+b(a≠0),将点(23,156),(24,163)代入解析式得:{23a+b=15624a+b=163,解得{a=7 b=−5∴一次函数解析式为y=7x-5.(3)如图2,某场所发现了一个人的脚印,脚长约为25.8 cm,请根据(2)中求出的函数解析式,估计这个人的身高.【解析】(3)当x=25.8时,y=7×25.8-5=175.6.答:脚长约为25.8 cm时,估计这个人的身高为175.6 cm.。
中考数学《一次函数》专题训练(附带答案)
中考数学《一次函数》专题训练(附带答案)一、单选题1.已知一次函数y =(1﹣a )x+2a+1的图象经过第二象限,则a 的值可以是( )A .﹣2B .﹣1C .0D .12.如图,直线y =k 1x +b 1和直线y =k 2x +b 2相交于点M(23,−2),则关于x ,y 的方程组{y =k 1x +b 1y =k 2x +b 2,的解为( )A .{x =23,y =−2 B .{x =−2,y =23C .{x =23,y =2D .{x =−2,y =−233.若一次函数y=(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是 ( )A .k >3B .0<k≤3C .0≤k <3D .0<k <34.如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )A .y=x+5B .y=x+10C .y=﹣x+5D .y=﹣x+105.设min{x ,y}表示x ,y 两个数中的最小值,例如min{0,2}=0,min{12,8}=8,则关于x 的函数y=min{2x ,x+2}可以表示为( ) A .y={2x(x <2)x +2(x ≥2)B .y={x +2(x <2)2x(x ≥2)C .y=2xD .y=x+26.已知一次函数y=kx ﹣1,若y 随x 的增大而增大,则该函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知k≠0,在同一坐标系中,函数y=k(x+1)与y= k x的图象大致为如图所示中的()A.B.C.D.8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=-x+1B.y=x2-1C.y=1x D.y=-x2+19.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,在平面直角坐标系中,O为坐标原点,直线y=−x+4√2与x轴交于B点,与y轴交于A点,点C,D在线段AB上,且CD=2AC=2BD,若点P在坐标轴上,则满足PC+PD=7的点P的个数是()A.4B.3C.2D.111.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定12.一次函数y=(k-3)x|k|-2+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题13.已知一次函数 y =(k +1)x −b ,若y 随x 的增大而减小,则k 的取值范围是 . 14.如图,一次函数与反比例函数的图象分别是直线 AB 和双曲线.直线 AB 与双曲线的一个交点为点 C ,CD ⊥x 轴于点 D ,OD =2OB =4OA =4 ,则此反比例函数的解析式为 .15.一次函数 y 1=k 1x +b 1 与 y 2=k 2x +b 2 的图象如图,则不等式组 {k 1x +b 1≤0k 2x +b 2>0 的解为 .16.若点 (m,n) 若在直线 y =3x −2 上,则代数式2n -6m+1的值是 .17.已知一次函数y =﹣x ﹣(a ﹣2)中,当a 时,该函数的图象与y 轴的交点坐标在x 轴的下方.18.已知一次函数 y =ax +|a −1| 的图象经过点(0,3),且函数y 的值随x 的增大而减小,则a 的值为 .三、综合题19.甲、乙两车分别从相距480千米的 A 、 B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经 C 地,甲车到达 C 地停留1小时,因有事按原路原速返回 A 地.乙车从 B 地直达 A 地,两车同时到达 A 地.甲、乙两车距各自出发地的路程 y (千米)与甲车出发后所用的时间 x (时)的函数图象如图所示.(1)求t的值;(2)求甲车距它出发地的路程y与x之间的函数关系式;(3)求两车相距120千米时乙车行驶的时间.20.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨.①写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少元?②为了获得两种蔬菜的利润之和不少于8400元,则乙种蔬菜进货量应在什么范围内合适?21.已知一次函数y=-2x-2.(1)画出函数的图象;(2)求图象与x轴,y轴的交点A,B的坐标;(3)求A,B两点之间的距离;(4)求△AOB的面积;(5)当x为何值时,y≥0(利用图象解答)?22.在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.23.同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y(cm)与燃烧时间x(min)的关系如图所示.(1)求点P的坐标,并说明其实际意义;(2)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.24.冰墩墩是2022年北京冬季奥运会的吉样物.冬奥会来临之际,冰墩墩玩偶非常畅销.小张在某网店选中A,B两款冰墩墩玩偶,决定用900元(全部用完)从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶进货价(元/个)2520销售价(元/个)3325(1)求y与x之间的函数表达式;(2)如果小张购进A款玩偶20个,那么这次进货全部售完,能盈利多少元?参考答案1.【答案】C 2.【答案】A 3.【答案】A 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】B 9.【答案】C 10.【答案】A 11.【答案】A 12.【答案】C 13.【答案】k <−1 14.【答案】y =−4x15.【答案】x≤-4 16.【答案】-3 17.【答案】>2 18.【答案】-219.【答案】(1)由函数图象得:乙车的速度为:60÷1=60(千米/小时),甲车从A 地出发至返回A 地的时间为:(480−60)÷60=420÷60=7(小时) ∴t =(7−1)÷2=3 即t 的值是3;(2)当0≤x≤3时,设y 与x 的函数关系式为y =kx , 则360=3k ,解得k =120∴当0≤x≤3时,y 与x 的函数关系式为:y =120x 当3<x≤4时,y =360当4<x≤7,设y 与x 的函数关系式为:y =ax +b 则 {4a +b =3607a +b =0 解得: {a =−120b =840∴当4<x≤7,y与x的函数关系式为:y=−120x+840由上可得,y与x的函数关系式为:y={120x(0≤x≤3) 360(3<x≤4)−120x+840(4<x≤7)(3)设乙车行驶的时间为m小时时,两车相距120千米,乙车的速度为60千米/小时,甲车的速度为360÷3=120(千米/小时)甲乙第一次相遇前,60+(60+120)×(m−1)+120=480,得m=8 3甲乙第一次相遇之后,60+(60+120)×(m−1)=480+120,得m=4甲车返回A地的过程中,当m=5时,两车相距5×60-(480-360)=180(千米)∴(120−60)×(m−5)=180−120得m=6答:两车相距120千米时乙车行驶的时间是83小时、4小时或6小时.20.【答案】(1)解:由题意得,设y1=kx5k=3∴k=0.6∴y1=0.6x根据题意得,设y2=ax2+bx+c,由图知,抛物线经过点(0,0)、(1,2)、(5,6),代入得{c=0a+b+c=2 25a+5b+c=6∴{a=−0.2b=2.2c=0∴y2=−0.2x2+2.2x;(2)解:①设乙种蔬菜的进货量为t吨,w=y1+y2=0.6(10−t)+(−0.2t2+2.2t)=−0.2t2+1.6t+6=−0.2(t−4)2+9.2当t=4,利润之和最大W最大=9200(元)答:当乙种蔬菜进货4吨,甲种蔬菜进货6吨,利润之和最大,最大9200元.②w=y1+y2=−0.2t2+1.6t+6当w≥8.4时,即−0.2t2+1.6t+6≥8.4∴−0.2t2+1.6t−2.4≥0令−0.2t2+1.6t−2.4=0t2−8t−12=0(t−2)(t−6)=0解得t1=2,t2=6因为抛物线开口向下,所以2≤t≤6答:乙种蔬菜进货量为2吨到6吨范围内.21.【答案】(1)解:列表:x……-10……y……0-2……(2)解:由(1)可得该图象与x轴,y轴的交点坐标分别为A(-1,0),B(0,-2).(3)解:A,B两点之间的距离为√OA2+OB2=√12+22=√5(4)解:S△AOB= 12OA·OB=12×1×2= 1(5)解:由(1)中图象可得,当x≤-1时,y≥0.22.【答案】(1)解:当y=x+3=0时,x=﹣3∴点A 的坐标为(﹣3,0).∵二次函数y=x 2+mx+n 的图象经过点A ∴0=9﹣3m+n ,即n=3m ﹣9 ∴当m=4时,n=3m ﹣9=3.(2)解:抛物线的对称轴为直线x=﹣ m 2当m=﹣2时,对称轴为x=1,n=3m ﹣9=﹣15 ∴当﹣3≤x≤0时,y 随x 的增大而减小∴当x=0时,二次函数y=x 2+mx+n 的最小值为﹣15.(3)解:①当对称轴﹣ m2 ≤﹣3,即m≥6时,如图1所示.在﹣3≤x≤0中,y=x 2+mx+n 的最小值为0,∴此情况不合题意;②当﹣3<﹣ m2 <0,即0<m <6时,如图2,有 {4n−m 24=49−3m +n =0解得: {m =2n =−3 或 {m =10n =21(舍去)∴m=2、n=﹣3;③当﹣ m2 ≥0,即m≤0时,如图3有 {n =−49−3m +n =0 ,解得: {m =53n =−4(舍去).综上所述:m=2,n=﹣3. 23.【答案】(1)解:设乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=kx+b ,得:{b =4050k +b =0 ,解得: {k =−0.8b =40,即乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=﹣0.8x+40,将x=20代入得y=24,故P (20,24)该点表示的实际意义是点燃20分钟后,两支蜡烛剩下的长度都是24cm ; (2)解:设甲蜡烛剩下的长度y 甲与x 之间的函数表达式为y 甲=mx+n ,得: {48=n 24=20m +n,解得: {m =−1.2n =48 ,∴y 甲与x 之间的函数表达式为y 甲=﹣1.2x+48.∵甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍,∴﹣1.2x+48=1.1(﹣0.8x+40),解得:x=12.5. 答:点燃12.5分钟,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍24.【答案】(1)解:由题意,得25x +20y =900∴y =−54x +45;(2)解:当x =20时,则y =−54×20+45=20∴这次进货全部售完,能盈利=20(33−25)+20(25−20)=260(元) 答:这次进货全部售完,能盈利260元.。
中考数学总复习《一次函数图像与坐标轴的问题》专题测试卷带答案
中考数学总复习《一次函数图像与坐标轴的问题》专题测试卷带答案班级:___________姓名:___________考号:___________一、单选题(共12题;共24分)1.一次函数y=x﹣3的图象与y轴的交点坐标是()A.(0,﹣3)B.(0,3)C.(3,0)D.(﹣3,0)2.如图,直线y=−x+4与坐标轴交于A、B两点,点C为坐标平面内一点BC=1,点M为线段AC的中点,连接OM,则线段OM的最小值是()A.2√2+12B.2√2−12C.1D.2√23.如图在平面直角坐标系中,直线l1对应的函数表达式为y=2x,直线l2与x,y轴分别交于A、B,且l1∥ l2,OA=2,则线段OB的长为()A.3B.4C.2√2D.2√34.背面图案、形状大小都相同的四张卡片的正面分别记录着有关函数y=2x−4的四个结论,现将卡片背面朝上,随机抽取一张,抽到卡片上的结论正确的概率是()A.14B.12C.34D.15.已知一次函数的图象与y=2x+3平行,且过点(4,2),则该一次函数与坐标轴围成图形的面积为()A.6B.9C.12D.186.如图,已知直线y=−13x+√10与与双曲线y=kx(x>0)交于A、B两点,连接OA,若OA⊥AB,则k的值为()A.B.C.D.7.对于一次函数y=−x−2,下列说法错误的是()A.图象不经过第一象限B.图象与y轴的交点坐标为(0,−2)C.图象可由直线y=−x向下平移2个单位长度得到D.若点(−1,y1),(4,y2)在一次函数y=−x−2的图象上,则y1<y28.若一次函数y=ax+b的图象如图所示,则方程ax+b=0的解为()A.x=3B.x=0C.x=﹣2D.x=﹣39.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4 √3与x轴、y轴分别交于A,B,∥OAB=30°,点P在x轴上,∥P与l相切,当P在线段OA上运动时,使得∥P成为整圆的点P个数是()A.6B.8C.10D.1210.一次函数y=ax+b交x轴于点(-5,0),则关于x的方程ax+b=0的解是() A.x=5B.x=-5C.x=0D.无法求解11.下列四个选项中,不符合直线y=x﹣2的性质特征的选项是()A.经过第一、三、四象限B.y随x的增大而增大C.与x轴交于(﹣2,0)D.与y轴交于(0,-2)12.下列图形中,阴影部分的面积为2的有()个A.4个B.3个C.2个D.1个二、填空题(共6题;共7分)13.在直角坐标系xOy中,若直线y=x+4a-12与y轴的交点在x轴上方,则a的取值范围.14.函数y=m2x2+(2m+1)x+1与x轴有交点,则m的取值范围.15.如图,一次函数y=x+2的图像与坐标轴分别交于A,B两点,点P,C分别是线段AB,OB 上的点,且∥OPC=45°,PC=PO,则点P的坐标为.16.如果一次函数y=kx+4与两坐标轴围成的三角形面积为4,则k=.17.如图,在平面直角坐标系xOy中,直线y=−34x+3与x轴交于点A,与y轴交于点B,将∥AOB沿过点A的直线折叠,使点B落在x轴负半轴上,记作点C,折痕与y轴交点交于点D,则点C的坐标为,点D的坐标为.18.如图示直线y=√3x+√3与x轴、y轴分别交于点A、B,当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动到点B1,线段BB1长度为.三、综合题(共6题;共54分)19.如图,直线y=2x+1与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求直线BP的函数关系式.20.如图,在直角坐标系中放入一个矩形纸片ABCO,将纸片翻折后,点B恰好落在x轴上,记为B′折痕为CE.直线CE的关系式是y=−12x+8,与x轴相交于点F,且AE=3.(1)OC=,OF=;(2)求点B′的坐标;(3)求矩形ABCO的面积.21.已知一次函数y=kx+b的图象经过点(0,1)和(1,-2)。
中考数学总复习《一次函数》专项测试卷(带有答案)
中考数学总复习《一次函数》专项测试卷(带有答案)时间:45分钟满分:100分学校:___________班级:___________姓名:___________考号:___________ 1.(2023·鄂州)象棋起源于中国,中国象棋文化历史悠久.如图所示是某次对弈的残图,如果建立平面直角坐标系,使棋子“帅”位于点(-2,-1)的位置,则在同一坐标系下,经过棋子“帅”和“马”所在的点的一次函数解析式为 ( )第1题图A.y=x+1 B.y=x-1C.y=2x+1 D.y=2x-12.(2023·无锡)将函数y=2x+1的图象向下平移2个单位长度,所得图象对应的函数表达式是( )A.y=2x-1 B.y=2x+3C.y=4x-3 D.y=4x+53.(2023·兰州)一次函数y=kx-1的函数值y随x的增大而减小,当x=2时,y的值可以是( )A.2 B.1 C.-1 D.-24.(2023·陕西)在同一平面直角坐标系中,函数y=ax和y=x+a(a为常数,a<0)的图象可能是( )A BC D5.(2023·荆州)如图,直线y =-32x +3分别与x 轴,y 轴交于点A ,B ,将△OAB绕着点A 顺时针旋转90°得到△CAD,则点B 的对应点D 的坐标是( )第5题图A .(2,5)B .(3,5)C .(5,2)D .(13,2)6.(2023·苏州)已知一次函数y =kx +b 的图象经过点(1,3)和(-1,2),则k 2-b 2= .7.(2023·天津)若直线y =x 向上平移3个单位长度后经过点(2,m),则m 的值为 .8.(2023·南充)如图,直线y =kx -2k +3(k 为常数,k <0)与x ,y 轴分别交于点A ,B ,则2OA +3OB的值是 .第8题图9.(2023·迎江区三模)如图,直线y=kx+b与直线y=-x相交于点A,则关于x的不等式0<-x<kx+b的解集为.第9题图10.(2022·东营改编)如图,△AB1A1,△A1B2A2,△A2B3A3,…,是等边三角形,直线y=33x+2经过它们的顶点A,A1,A2,A3,…,点B1,B2,B3,…,在x轴上,则点A2 024的横坐标是.第10题图11.(2023·眉山)如图,在平面直角坐标系xOy中,点B的坐标为(-8,6),过点B分别作x轴,y轴的垂线,垂足分别为点C,点A,直线y=-2x-6与AB交于点D,与y轴交于点E,动点M在线段BC上,动点N在直线y=-2x-6上,若△AMN是以点N为直角顶点的等腰直角三角形,则点M的坐标为.第11题图12.(2023·绥化)某校组织师生参加夏令营活动,现准备租用A,B两型客车(每种型号的客车至少租用一辆).A型车每辆租金500元,B型车每辆租金600元.若5辆A型和2辆B型车坐满后共载客310人;3辆A型和4辆B型车坐满后共载客340人.(1)每辆A型车、B型车坐满后各载客多少人?(2)若该校计划租用A型和B型两种客车共10辆,总租金不高于5 500元,并将全校420人载至目的地.该校有几种租车方案?哪种租车方案最省钱?(3)在这次活动中,学校除租用A,B两型客车外,又派出甲、乙两辆器材运输车.已知从学校到夏令营目的地的路程为300千米,甲车从学校出发0.5小时后,乙车才从学校出发,却比甲车早0.5小时到达目的地.如图是两车离开学校的路程s(千米)与甲车行驶的时间t(小时)之间的函数图象.根据图象信息,求甲、乙两车第一次相遇后,t为何值时两车相距25千米.第12题图参考答案1.(2023·鄂州)象棋起源于中国,中国象棋文化历史悠久.如图所示是某次对弈的残图,如果建立平面直角坐标系,使棋子“帅”位于点(-2,-1)的位置,则在同一坐标系下,经过棋子“帅”和“马”所在的点的一次函数解析式为 ( A)第1题图A.y=x+1 B.y=x-1C.y=2x+1 D.y=2x-12.(2023·无锡)将函数y=2x+1的图象向下平移2个单位长度,所得图象对应的函数表达式是( A)A.y=2x-1 B.y=2x+3C.y=4x-3 D.y=4x+53.(2023·兰州)一次函数y=kx-1的函数值y随x的增大而减小,当x=2时,y的值可以是( D)A.2 B.1 C.-1 D.-24.(2023·陕西)在同一平面直角坐标系中,函数y=ax和y=x+a(a为常数,a<0)的图象可能是( D)A BC D5.(2023·荆州)如图,直线y =-32x +3分别与x 轴,y 轴交于点A ,B ,将△OAB绕着点A 顺时针旋转90°得到△CAD,则点B 的对应点D 的坐标是( C )第5题图A .(2,5)B .(3,5)C .(5,2)D .(13,2)6.(2023·苏州)已知一次函数y =kx +b 的图象经过点(1,3)和(-1,2),则k 2-b 2=-6.7.(2023·天津)若直线y =x 向上平移3个单位长度后经过点(2,m),则m 的值为5.8.(2023·南充)如图,直线y =kx -2k +3(k 为常数,k <0)与x ,y 轴分别交于点A ,B ,则2OA +3OB的值是1.第8题图9.(2023·迎江区三模)如图,直线y =kx +b 与直线y =-x 相交于点A ,则关于x 的不等式0<-x <kx +b 的解集为-2<x <0.第9题图10.(2022·东营改编)如图,△AB 1A 1,△A 1B 2A 2,△A 2B 3A 3,…,是等边三角形,直线y =33x +2经过它们的顶点A ,A 1,A 2,A 3,…,点B 1,B 2,B 3,…,在x 轴上,则点A 2 024的横坐标是(22 025-2)3.第10题图11.(2023·眉山)如图,在平面直角坐标系xOy 中,点B 的坐标为(-8,6),过点B 分别作x 轴,y 轴的垂线,垂足分别为点C ,点A ,直线y =-2x -6与AB 交于点D ,与y 轴交于点E ,动点M 在线段BC 上,动点N 在直线y =-2x -6上,若△AMN 是以点N 为直角顶点的等腰直角三角形,则点M 的坐标为(-8,6)或(-8,23).第11题图12.(2023·绥化)某校组织师生参加夏令营活动,现准备租用A ,B 两型客车(每种型号的客车至少租用一辆).A 型车每辆租金500元,B 型车每辆租金600元.若5辆A 型和2辆B 型车坐满后共载客310人;3辆A 型和4辆B 型车坐满后共载客340人.(1)每辆A 型车、B 型车坐满后各载客多少人?(2)若该校计划租用A 型和B 型两种客车共10辆,总租金不高于5 500元,并将全校420人载至目的地.该校有几种租车方案?哪种租车方案最省钱? (3)在这次活动中,学校除租用A ,B 两型客车外,又派出甲、乙两辆器材运输车.已知从学校到夏令营目的地的路程为300千米,甲车从学校出发0.5小时后,乙车才从学校出发,却比甲车早0.5小时到达目的地.如图是两车离开学校的路程s(千米)与甲车行驶的时间t(小时)之间的函数图象.根据图象信息,求甲、乙两车第一次相遇后,t 为何值时两车相距25千米.第12题图解:(1)设每辆A 型车坐满后载客x 人,每辆B 型车坐满后载客y 人根据题意,得⎩⎪⎨⎪⎧5x +2y =310,3x +4y =340,解得⎩⎪⎨⎪⎧x =40,y =55,∴每辆A 型车坐满后载客40人,每辆B 型车坐满后载客55人; (2)设租用A 型车m 辆,则租用B 型车(10-m)辆 由题意,得⎩⎪⎨⎪⎧500m +600(10-m )≤5 500,40m +55(10-m )≥420, 解得5≤m ≤823∵m 是正整数 ∴m 可取5,6,7,8 ∴共有4种方案 设总租金为w 元根据题意,得w =500m +600(10-m)=-100m +6 000 ∵-100<0∴w 随m 的增大而减小∴m =8时,w 最小为-100×8+6 000=5 200(元); ∴租用A 型车8辆,租用B 型车2辆最省钱; (3)设s 甲=kt ,把(4,300)代入,得 300=4k 解得k =75 ∴s 甲=75t设s 乙=k 1t +b ,把(0.5,0),(3.5,300)代入,得⎩⎪⎨⎪⎧0.5k 1+b =0,3.5k 1+b =300, 解得⎩⎪⎨⎪⎧k 1=100,b =-50,∴s 乙=100t -50∵两车第一次相遇后,相距25千米 ∴100t -50-75t =25或300-75t =25解得t =3或t =113∴在甲乙两车第一次相遇后,当t =3小时或113小时时,两车相距25千米.。
中考数学《一次函数》专题检测试卷及答案解析
一次函数专题检测试卷一.选择题(共16小题)1.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0B.a﹣b>0C.ab>0D.<02.一次函数y=kx+b(k,b是常数,k≠0)的图象,如图所示,则不等式kx+b>0的解集是()A.x<2B.x<0C.x>0D.x>23.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<04.对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.例如:min={2,﹣1}=﹣1,若关于x的函数y=min{2x ﹣1,﹣x+3},则该函数的最大值为()A.B.1C.D.5.已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y16.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A.B.C.D.7.在平面直角坐标系中,一次函数y=x﹣1的图象是()A.B.C.D.8.将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1B.x>1C.x>﹣2D.x>29.把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A.y=2x﹣2B.y=2x+1C.y=2x D.y=2x+210.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y (m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②乙行走的速度是甲的1.5倍;④a=34.以上结论正确的有()A.①②B.①②③C.①③④D.①②④11.已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则kb的值为()A.12B.﹣6C.﹣6或﹣12D.6或1212.从2,3,4,5这四个数中,任取两个数p和q(p≠q),构成函数y=px﹣2和y=x+q,并使这两个函数图象的交点在直线x=2的右侧,则这样的有序数对(p,q)共有()A.12对B.6对C.5对D.3对13.如图,直线AB:y=x+1分别与x轴、y轴交于点A,点B,直线CD:y=x+b=4,则分别与x轴,y轴交于点C,点D.直线AB与CD相交于点P,已知S△ABD点P的坐标是()14.如图,在x轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作x轴的垂线与三条直线y=ax,y=(a+1)x,y=(a+2)x相交,其中a>0.则图中阴影部分的面积是()A.12.5B.25C.12.5a D.25a15.甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若其中一人的总价算错了,则此人是谁()甲乙丙丁红豆棒冰(枝)18152427桂圆棒冰(枝)30254045总价(元)396330528585A.甲B.乙C.丙D.丁16.在平面直角坐标系内,直线y=x+3与两坐标轴交于A、B两点,点O为坐标原点,若在该坐标平面内有以点P(不与点A、B、O重合)为顶点的直角三角形与Rt△ABO全等,且这个以点P为顶点的直角三角形与Rt△ABO有一条公共边,则所有符合条件的P点个数为()A.9个B.7个C.5个D.3个二.填空题(共5小题)17.甲、乙两动点分别从线段AB的两端点同时出发,甲从点A出发,向终点B 运动,乙从点B出发,向终点A运动.已知线段AB长为90cm,甲的速度为2.5cm/s.设运动时间为x(s),甲、乙两点之间的距离为y(cm),y与x的函数图象如图所示,则图中线段DE所表示的函数关系式为.(并写出自变量取值范围)18.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示放置,点A1,A2,A3和C1,C2,C3,…分别在直线y=x+1和x轴上,则点B的纵坐标是.19.如图,点A1(1,)在直线l1:y=x上,过点A1作A1B1⊥l1交直线l2:y=x于点B1,以A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2,…按此规律进行下去,则第n个等边三角形A n B n C n的面积为.(用含n的代数式表示)20.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x 交于点Q,则点Q的坐标为.21.如图,直线l1⊥x轴于点A(2,0),点B是直线l1上的动点.直线l2:y=x+1交l1于点C,过点B作直线l3垂直于l2,垂足为D,过点O,B的直线l4交l2于点E,当直线l1,l2,l3能围成三角形时,设该三角形面积为S1,当直线l2,l3,l4能围成三角形时,设该三角形面积为S2.(1)若点B在线段AC上,且S1=S2,则B点坐标为;(2)若点B在直线l1上,且S2=S1,则∠BOA的度数为.三.解答题(共8小题)22.某蔬菜加工公司先后两批次收购蒜薹(tái)共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?23.某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式,若小敏家某月交水费81元,则这个月用水量为多少立方米?24.如图,在平面直角坐标系中,四边形ABCD的边AD在x轴上,点C在y轴的负半轴上,直线BC∥AD,且BC=3,OD=2,将经过A、B两点的直线l:y=﹣2x ﹣10向右平移,平移后的直线与x轴交于点E,与直线BC交于点F,设AE的长为t(t≥0).(1)四边形ABCD的面积为;(2)设四边形ABCD被直线l扫过的面积(阴影部分)为S,请直接写出S关于t的函数解析式;(3)当t=2时,直线EF上有一动点P,作PM⊥直线BC于点M,交x轴于点N,将△PMF沿直线EF折叠得到△PTF,探究:是否存在点P,使点T恰好落在坐标轴上?若存在,请求出点P的坐标;若不存在,请说明理由.25.平面直角坐标系xOy中,点P的坐标为(m+1,m﹣1).(1)试判断点P是否在一次函数y=x﹣2的图象上,并说明理由;(2)如图,一次函数y=﹣x+3的图象与x轴、y轴分别相交于点A、B,若点P 在△AOB的内部,求m的取值范围.26.A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发.图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是(填l1或l2);甲的速度是km/h,乙的速度是km/h;(2)甲出发多少小时两人恰好相距5km?27.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲、y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?28.如图,直角坐标系xOy中,A(0,5),直线x=﹣5与x轴交于点D,直线y=﹣x﹣与x轴及直线x=﹣5分别交于点C,E,点B,E关于x轴对称,连接AB.(1)求点C,E的坐标及直线AB的解析式;(2)设面积的和S=S△CDE +S四边形ABDO,求S的值;(3)在求(2)中S时,嘉琪有个想法:“将△CDE沿x轴翻折到△CDB的位置,而△CDB与四边形ABDO拼接后可看成△AOC,这样求S便转化为直接求△AOC 的面积不更快捷吗?”但大家经反复演算,发现S△AOC≠S,请通过计算解释他的想法错在哪里.29.【操作发现】在计算器上输入一个正数,不断地按“”键求算术平方根,运算结果越来越接近1或都等于1.【提出问题】输入一个实数,不断地进行“乘常数k,再加上常数b”的运算,有什么规律?【分析问题】我们可用框图表示这种运算过程(如图a).也可用图象描述:如图1,在x轴上表示出x1,先在直线y=kx+b上确定点(x1,y1),再在直线y=x上确定纵坐标为y1的点(x2,y1),然后在x轴上确定对应的数x2,…,以此类推.【解决问题】研究输入实数x1时,随着运算次数n的不断增加,运算结果x n,怎样变化.(1)若k=2,b=﹣4,得到什么结论?可以输入特殊的数如3,4,5进行观察研究;(2)若k>1,又得到什么结论?请说明理由;(3)①若k=﹣,b=2,已在x轴上表示出x1(如图2所示),请在x轴上表示x2,x3,x4,并写出研究结论;②若输入实数x1时,运算结果x n互不相等,且越来越接近常数m,直接写出k 的取值范围及m的值(用含k,b的代数式表示)参考答案与试题解析一.选择题(共16小题)1.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0B.a﹣b>0C.ab>0D.<0【解答】解:∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A错误,a﹣b<0,故B错误,ab<0,故C错误,<0,故D正确.故选:D.2.一次函数y=kx+b(k,b是常数,k≠0)的图象,如图所示,则不等式kx+b>0的解集是()A.x<2B.x<0C.x>0D.x>2【解答】解:函数y=kx+b的图象经过点(2,0),并且函数值y随x的增大而减小,所以当x<2时,函数值大于0,即关于x的不等式kx+b>0的解集是x<2.故选:A.3.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0【解答】解:∵一次函数y=kx+b的图象经过一、三象限,∴k>0,又该直线与y轴交于正半轴,∴b>0.综上所述,k>0,b>0.故选:A.4.对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.例如:min={2,﹣1}=﹣1,若关于x的函数y=min{2x ﹣1,﹣x+3},则该函数的最大值为()A.B.1C.D.【解答】解:由题意得:,解得:,当2x﹣1≥﹣x+3时,x≥,∴当x≥时,y=min{2x﹣1,﹣x+3}=﹣x+3,由图象可知:此时该函数的最大值为;当2x﹣1≤﹣x+3时,x≤,∴当x≤时,y=min{2x﹣1,﹣x+3}=2x﹣1,由图象可知:此时该函数的最大值为;综上所述,y=min{2x﹣1,﹣x+3}的最大值是当x=所对应的y的值,如图所示,当x=时,y=,故选:D.5.已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y1【解答】解:∵点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,∴y1=﹣5,y2=10,∵10>0>﹣5,∴y1<0<y2.故选:B.6.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A.B.C.D.【解答】解:由题意得,2x+y=10,所以,y=﹣2x+10,由三角形的三边关系得,,解不等式①得,x>2.5,解不等式②的,x<5,所以,不等式组的解集是2.5<x<5,正确反映y与x之间函数关系的图象是D选项图象.故选:D.7.在平面直角坐标系中,一次函数y=x﹣1的图象是()A.B.C.D.【解答】解:一次函数y=x﹣1,其中k=1,b=﹣1,其图象为,故选:B.8.将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1B.x>1C.x>﹣2D.x>2【解答】解:∵将y=2x的图象向上平移2个单位,∴平移后解析式为:y=2x+2,当y=0时,x=﹣1,故y>0,则x的取值范围是:x>﹣1.故选:A.9.把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A.y=2x﹣2B.y=2x+1C.y=2x D.y=2x+2【解答】解:根据题意,将直线y=2x﹣1向左平移1个单位后得到的直线解析式为:y=2(x+1)﹣1,即y=2x+1,故选:B.10.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y (m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=960;④a=34.以上结论正确的有()A.①②B.①②③C.①③④D.①②④【解答】解:①当x=0时,y=1200,∴A、B之间的距离为1200m,结论①正确;②乙的速度为1200÷(24﹣4)=60(m/min),甲的速度为1200÷12﹣60=40(m/min),60÷40=1.5,∴乙行走的速度是甲的1.5倍,结论②正确;③b=(60+40)×(24﹣4﹣12)=800,结论③错误;④a=1200÷40+4=34,结论④正确.故选:D.11.已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则kb的值为()A.12B.﹣6C.﹣6或﹣12D.6或12【解答】解:(1)当k>0时,y随x的增大而增大,即一次函数为增函数,∴当x=0时,y=﹣2,当x=2时,y=4,代入一次函数解析式y=kx+b得:,解得,∴kb=3×(﹣2)=﹣6;(2)当k<0时,y随x的增大而减小,即一次函数为减函数,∴当x=0时,y=4,当x=2时,y=﹣2,代入一次函数解析式y=kx+b得:,解得,∴kb=﹣3×4=﹣12.所以kb的值为﹣6或﹣12.故选:C.12.从2,3,4,5这四个数中,任取两个数p和q(p≠q),构成函数y=px﹣2和y=x+q,并使这两个函数图象的交点在直线x=2的右侧,则这样的有序数对(p,q)共有()A.12对B.6对C.5对D.3对【解答】解:令px﹣2=x+q,解得x=,因为交点在直线x=2右侧,即>2,整理得q>2p﹣4.把p=2,3,4,5分别代入即可得相应的q的值,有序数对为(2,2),(2,3),(2,4),(2,5),(3,3),(3,4),(3,5),(4,5),又因为p≠q,故(2,2),(3,3)舍去,满足条件的有6对.故选:B.13.如图,直线AB:y=x+1分别与x轴、y轴交于点A,点B,直线CD:y=x+b=4,则分别与x轴,y轴交于点C,点D.直线AB与CD相交于点P,已知S△ABD点P的坐标是()A.(3,)B.(8,5)C.(4,3)D.(,)【解答】解:由直线AB:y=x+1分别与x轴、y轴交于点A,点B,可知A,B的坐标分别是(﹣2,0),(0,1),由直线CD:y=x+b分别与x轴,y轴交于点C,点D,可知D的坐标是(0,b),C的坐标是(﹣b,0),=4,得BD•OA=8,根据S△ABD∵OA=2,∴BD=4,那么D的坐标就是(0,﹣3),C的坐标就应该是(3,0),CD的函数式应该是y=x﹣3,P点的坐标满足方程组,解得,即P的坐标是(8,5).故选:B.14.如图,在x轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作x轴的垂线与三条直线y=ax,y=(a+1)x,y=(a+2)x相交,其中a>0.则图中阴影部分的面积是()A.12.5B.25C.12.5a D.25a【解答】解:把x=1分别代入y=ax,y=(a+1)x,y=(a+2)x得:AW=a+2,WQ=a+1﹣a=1,∴AQ=a+2﹣(a+1)=1,同理:BR=RK=2,CH=HP=3,DG=GL=4,EF=FT=5,2﹣1=1,3﹣2=1,4﹣3=1,5﹣4=1,∴图中阴影部分的面积是×1×1+×(1+2)×1+×(2+3)×1+×(3+4)×1+×(4+5)×1=12.5,故选:A.15.甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若其中一人的总价算错了,则此人是谁()甲乙丙丁红豆棒冰(枝)18152427桂圆棒冰(枝)254045总价(元)396330528585A.甲B.乙C.丙D.丁【解答】解:设红豆和桂圆的单价分别为x、y,假设甲是对的,那么有18x+30y=396即3x+5y=66,将此式代入乙,丙,丁中,我们发现乙,丙都和甲相同,因此,甲是正确的,丁是错误的.故选D.16.在平面直角坐标系内,直线y=x+3与两坐标轴交于A、B两点,点O为坐标原点,若在该坐标平面内有以点P(不与点A、B、O重合)为顶点的直角三角形与Rt△ABO全等,且这个以点P为顶点的直角三角形与Rt△ABO有一条公共边,则所有符合条件的P点个数为()A.9个B.7个C.5个D.3个【解答】解:如图,图中的P1、P2、P3、P4、P5、P6、P7,就是符合要求的点P,注意以P1为公共点的直角三角形有3个.⊋故选:B.二.填空题(共5小题)17.甲、乙两动点分别从线段AB的两端点同时出发,甲从点A出发,向终点B运动,乙从点B出发,向终点A运动.已知线段AB长为90cm,甲的速度为2.5cm/s.设运动时间为x(s),甲、乙两点之间的距离为y(cm),y与x的函数图象如图所示,则图中线段DE所表示的函数关系式为y=4.5x﹣90(20≤x≤36).(并写出自变量取值范围)【解答】解:∵=36(s),观察图象可知乙的运动时间为45s,∴乙的速度==2cm/s,相遇时间==20,∴图中线段DE所表示的函数关系式:y=(2.5+2)(x﹣20)=4.5x﹣90(20≤x≤36).故答案为y=4.5x﹣90(20≤x≤36).18.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示放置,点A1,A2,A3和C1,C2,C3,…分别在直线y=x+1和x轴上,则点B2018的纵坐标是22017.【解答】解:当x=0时,y=x+1=1,∴点A1的坐标为(0,1).∵A1B1C1O为正方形,∴点C1的坐标为(1,0),点B1的坐标为(1,1).同理,可得:B2(3,2),B3(7,4),B4(15,8),∴点B n的坐标为(2n﹣1,2n﹣1),∴点B2018的坐标为(22018﹣1,22017).故答案为:22017.19.如图,点A1(1,)在直线l1:y=x上,过点A1作A1B1⊥l1交直线l2:y=x于点B1,以A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A 2B2C2,…按此规律进行下去,则第n个等边三角形A n B n C n的面积为.(用含n的代数式表示)【解答】解:∵点A1(1,),∴OA1=2.∵直线l1:y=x,直线l2:y=x,∴∠A1OB1=30°.在Rt△OA1B1中,OA1=2,∠A1OB1=30°,∠OA1B1=90°,∴A1B1=OB1,∴A1B1=.∵△A1B1C1为等边三角形,∴A1A2=A1B1=1,同理,可得出:A 3B3=,A4B4=,…,A n B n=,∴第n个等边三角形A n B n C n的面积为×A n B n2=.故答案为:.20.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x 交于点Q,则点Q的坐标为(,).【解答】解:过P作MN⊥y轴,交y轴于M,交AB于N,过D作DH⊥y轴,交y轴于H,∠CMP=∠DNP=∠CPD=90°,∴∠MCP+∠CPM=90°,∠MPC+∠DPN=90°,∴∠MCP=∠DPN,∵P(1,1),在△MCP和△NPD中∴△MCP≌△NPD(AAS),∴DN=PM,PN=CM,∵BD=2AD,∴设AD=a,BD=2a,∵P(1,1),∴DN=2a﹣1,则2a﹣1=1,a=1,即BD=2.∵直线y=x,∴AB=OB=3,在Rt△DNP中,由勾股定理得:PC=PD==,在Rt△MCP中,由勾股定理得:CM==2,则C的坐标是(0,3),设直线CD的解析式是y=kx+3,把D(3,2)代入得:k=﹣,即直线CD的解析式是y=﹣x+3,即方程组得:,即Q的坐标是(,),②当点C在y轴的负半轴上时,作PN⊥AD于N,交y轴于H,此时不满足BD=2AD,故答案为:(,).21.如图,直线l1⊥x轴于点A(2,0),点B是直线l1上的动点.直线l2:y=x+1交l1于点C,过点B作直线l3垂直于l2,垂足为D,过点O,B的直线l4交l2于点E,当直线l1,l2,l3能围成三角形时,设该三角形面积为S1,当直线l2,l3,l4能围成三角形时,设该三角形面积为S2.(1)若点B在线段AC上,且S1=S2,则B点坐标为(2,0);(2)若点B在直线l1上,且S2=S1,则∠BOA的度数为15°或75°.【解答】解:(1)设B的坐标是(2,m),∵直线l2:y=x+1交l1于点C,∴∠ACE=45°,∴△BCD是等腰直角三角形.BC=|3﹣m|,则BD=CD=BC=|3﹣m|,S1=×(|3﹣m|)2=(3﹣m)2.设直线l4的解析式是y=kx,过点B,则2k=m,解得:k=,则直线l4的解析式是y=x.根据题意得:,解得:,则E的坐标是(,).S△BCE=BC•||=|3﹣m|•||=.∴S2=S△BCE﹣S1=﹣(3﹣m)2.=S2时,﹣(3﹣m)2=(3﹣m)2.当S1解得:m1=4或m2=0,易得点C坐标为(2,3),即AC=3,∵点B在线段AC上,∴m1=4不合题意舍去,则B的坐标是(2,0);(2)分三种情况:①当点B在线段AC上时当S2=S1时,﹣(3﹣m)2=(3﹣m)2.解得:m=4﹣2或2(不在线段AC上,舍去),或m=3(l2和l4重合,舍去).则AB=4﹣2.在OA上取点F,使OF=BF,连接BF,设OF=BF=x.则AF=2﹣x,根据勾股定理,,解得:,∴sin∠BFA=,∴∠BFA=30°,∴∠BOA=15°;或由s1=s2可得CD=DE,所以BD是CE的中垂线,所以BC=BE,根据∠BCD=45°即可知CB⊥BO,所以B必须与A重合,所以B(2,0),②当点B在AC延长线上时,此时,当S2=S1时,得:,解得符合题意有:AB=4+2.在AB上取点G,使BG=OG,连接OG,设BG=OG=x,则AG=4+2﹣x.根据勾股定理,得,解得:x=4,∴sin∠OGA=,∴∠OGA=30°,∴∠OBA=15°,∴∠BOA=75°;③当点B在CA延长线上时,S1>S2,此时满足条件的点B不存在,综上所述,∠BOA的度数为15°或75°.三.解答题(共8小题)22.某蔬菜加工公司先后两批次收购蒜薹(tái)共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?【解答】解:(1)设第一批购进蒜薹x吨,第二批购进蒜薹y吨.由题意,解得,答:第一批购进蒜薹20吨,第二批购进蒜薹80吨.(2)设精加工m吨,总利润为w元,则粗加工(100﹣m)吨.由m≤3(100﹣m),解得m≤75,利润w=1000m+400(100﹣m)=600m+40000,∵600>0,∴w随m的增大而增大,∴m=75时,w有最大值为85000元.23.某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式,若小敏家某月交水费81元,则这个月用水量为多少立方米?【解答】解:(1)由纵坐标看出,某月用水量为18立方米,则应交水费45元;(2)由81元>45元,得用水量超过18立方米,设函数解析式为y=kx+b (x>18),∵直线经过点(18,45)(28,75),∴,解得,∴函数的解析式为y=3x﹣9 (x>18),当y=81时,3x﹣9=81,解得x=30.答:这个月用水量为30立方米.24.如图,在平面直角坐标系中,四边形ABCD的边AD在x轴上,点C在y轴的负半轴上,直线BC∥AD,且BC=3,OD=2,将经过A、B两点的直线l:y=﹣2x ﹣10向右平移,平移后的直线与x轴交于点E,与直线BC交于点F,设AE的长为t(t≥0).(1)四边形ABCD的面积为20;(2)设四边形ABCD被直线l扫过的面积(阴影部分)为S,请直接写出S关于t的函数解析式;(3)当t=2时,直线EF上有一动点P,作PM⊥直线BC于点M,交x轴于点N,将△PMF沿直线EF折叠得到△PTF,探究:是否存在点P,使点T恰好落在坐标轴上?若存在,请求出点P的坐标;若不存在,请说明理由.【解答】解:(1)在y=﹣2x﹣10中,当y=0时,x=﹣5,∴A(﹣5,0),∴OA=5,∴AD=7,把x=﹣3代入y=﹣2x﹣10得,y=﹣4∴OC=4,∴四边形ABCD的面积=(3+7)×4=20;故答案为:20;(2)①当0≤t≤3时,∵BC∥AD,AB∥EF,∴四边形ABFE是平行四边形,∴S=AE•OC=4t;②当3≤t <7时,如图1,∵C (0,﹣4),D (2,0),∴直线CD 的解析式为:y=2x ﹣4,∵E′F′∥AB ,BF′∥AE′∴BF′=AE=t ,∴F′(t ﹣3,﹣4),直线E′F′的解析式为:y=﹣2x +2t ﹣10,解得, ∴G (,t ﹣7),∴S=S 四边形A BCD ﹣S △DE′G =20﹣×(7﹣t )×(7﹣t )=﹣t 2+7t ﹣,③当t ≥7时,S=S 四边形ABCD =20,综上所述:S 关于t 的函数解析式为:S=; (3)当t=2时,点E ,F 的坐标分别为(﹣3,0),(﹣1,﹣4), 此时直线EF 的解析式为:y=﹣2x ﹣6,设动点P 的坐标为(m ,﹣2m ﹣6),∵PM ⊥直线BC 于M ,交x 轴于N ,∴M (m ,﹣4),N (m ,0),∴PM=|(﹣2m ﹣6)﹣(﹣4)|=2|m +1|,PN=|﹣2m ﹣6|=2|m +3|,FM=|m ﹣(﹣1)|=|m +1|,①假设直线EF 上存在点P ,使点T 恰好落在x 轴上,如图2,连接PT ,FT ,则△PFM ≌△PFT ,∴PT=PM=2|m +1|,FT=FM=|m +1|,∴=2,作FK ⊥x 轴于K ,则KF=4,由△TKF ∽△PNT 得,=2, ∴NT=2KF=8,∵PN 2+NT 2=PT 2,∴4(m+3)2+82=4(m+1)2,解得:m=﹣6,∴﹣2m﹣6=6,此时,P(﹣6,6);②假设直线EF上存在点P,使点T恰好落在y轴上,如图3,连接PT,FT,则△PFM≌△PFT,∴PT=PM=2|m+1|,FT=FM=|m+1|,∴=2,作PH⊥y轴于H,则PH=|m|,由△TFC∽△PTH得,,∴HT=2CF=2,∵HT2+PH2=PT2,即22+m2=4(m+1)2,解得:m=﹣,m=0(不合题意,舍去),∴m=﹣时,﹣2m﹣6=﹣,∴P(﹣,﹣),综上所述:直线EF上存在点P(﹣6,6)或P(﹣,﹣)使点T恰好落在坐标轴上.25.平面直角坐标系xOy中,点P的坐标为(m+1,m﹣1).(1)试判断点P是否在一次函数y=x﹣2的图象上,并说明理由;(2)如图,一次函数y=﹣x+3的图象与x轴、y轴分别相交于点A、B,若点P 在△AOB的内部,求m的取值范围.【解答】解:(1)∵当x=m+1时,y=m+1﹣2=m﹣1,∴点P(m+1,m﹣1)在函数y=x﹣2图象上.(2)∵函数y=﹣x+3,∴A(6,0),B(0,3),∵点P在△AOB的内部,∴0<m+1<6,0<m﹣1<3,m﹣1<﹣(m+1)+3∴1<m<.26.A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发.图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是l2(填l1或l2);甲的速度是30km/h,乙的速度是20km/h;(2)甲出发多少小时两人恰好相距5km?【解答】解:(1)由题意可知,乙的函数图象是l2,甲的速度是=30km/h,乙的速度是=20km/h.故答案为l2,30,20.(2)设甲出发x小时两人恰好相距5km.由题意30x+20(x﹣0.5)+5=60或30x+20(x﹣0.5)﹣5=60解得x=1.3或1.5,答:甲出发1.3小时或1.5小时两人恰好相距5km.27.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲、y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?【解答】解:(1)设y甲=kx,把(2000,1600)代入,得2000k=1600,解得k=0.8,所以y甲=0.8x;当0<x<2000时,设y乙=ax,把(2000,2000)代入,得2000a=2000,解得a=1,所以y乙=x;当x≥2000时,设y乙=mx+n,把(2000,2000),(4000,3400)代入,得,所以y乙=;(2)当0<x<2000时,0.8x<x,到甲商店购买更省钱;当x≥2000时,若到甲商店购买更省钱,则0.8x<0.7x+600,解得x<6000;若到乙商店购买更省钱,则0.8x>0.7x+600,解得x>6000;若到甲、乙两商店购买一样省钱,则0.8x=0.7x+600,解得x=6000;故当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.28.如图,直角坐标系xOy中,A(0,5),直线x=﹣5与x轴交于点D,直线y=﹣x﹣与x轴及直线x=﹣5分别交于点C,E,点B,E关于x轴对称,连接AB.(1)求点C,E的坐标及直线AB的解析式;(2)设面积的和S=S△CDE +S四边形ABDO,求S的值;(3)在求(2)中S时,嘉琪有个想法:“将△CDE沿x轴翻折到△CDB的位置,而△CDB与四边形ABDO拼接后可看成△AOC,这样求S便转化为直接求△AOC 的面积不更快捷吗?”但大家经反复演算,发现S△AOC≠S,请通过计算解释他的想法错在哪里.【解答】解:(1)在直线y=﹣x﹣中,令y=0,则有0=﹣x﹣,∴x=﹣13,∴C(﹣13,0),令x=﹣5,则有y=﹣×(﹣5)﹣=﹣3,∴E(﹣5,﹣3),∵点B,E关于x轴对称,∴B(﹣5,3),∵A(0,5),∴设直线AB的解析式为y=kx+5,∴﹣5k+5=3,∴k=,∴直线AB的解析式为y=x+5;(2)由(1)知,E(﹣5,﹣3),∴DE=3,∵C(﹣13,0),∴CD=﹣5﹣(﹣13)=8,∴S△CDE=CD×DE=12,由题意知,OA=5,OD=5,BD=3,∴S四边形ABDO=(BD+OA)×OD=20,∴S=S△CDE +S四边形ABDO=12+20=32,(3)由(2)知,S=32,在△AOC中,OA=5,OC=13,=OA×OC==32.5,∴S△AOC,∴S≠S△AOC理由:由(1)知,直线AB的解析式为y=x+5,令y=0,则0=x+5,∴x=﹣≠﹣13,∴点C不在直线AB上,即:点A,B,C不在同一条直线上,∴S≠S.△AOC29.【操作发现】在计算器上输入一个正数,不断地按“”键求算术平方根,运算结果越来越接近1或都等于1.【提出问题】输入一个实数,不断地进行“乘常数k,再加上常数b”的运算,有什么规律?【分析问题】我们可用框图表示这种运算过程(如图a).也可用图象描述:如图1,在x轴上表示出x1,先在直线y=kx+b上确定点(x1,y1),再在直线y=x上确定纵坐标为y1的点(x2,y1),然后在x轴上确定对应的数x2,…,以此类推.【解决问题】研究输入实数x1时,随着运算次数n的不断增加,运算结果x n,怎样变化.(1)若k=2,b=﹣4,得到什么结论?可以输入特殊的数如3,4,5进行观察研究;(2)若k>1,又得到什么结论?请说明理由;(3)①若k=﹣,b=2,已在x轴上表示出x1(如图2所示),请在x轴上表示x2,x3,x4,并写出研究结论;②若输入实数x1时,运算结果x n互不相等,且越来越接近常数m,直接写出k 的取值范围及m的值(用含k,b的代数式表示)【解答】解:(1)若k=2,b=﹣4,y=2x﹣4,取x1=3,则x2=2,x3=0,x4=﹣4,…取x1=4,则x2x3=x4=4,…取x1=5,则x2=6,x3=8,x4=12,…由此发现:当x1<4时,随着运算次数n的增加,运算结果x n越来越小.当x1=4时,随着运算次数n的增加,运算结果x n的值保持不变,都等于4.当x1>4时,随着运算次数n的增加,运算结果x n越来越大.(2)当x1>时,随着运算次数n的增加,x n越来越大.当x1<时,随着运算次数n的增加,x n越来越小.当x1=时,随着运算次数n的增加,x n保持不变.理由:如图1中,直线y=kx+b与直线y=x的交点坐标为(,),当x1>时,对于同一个x的值,kx+b>x,∴y1>x1∵y1=x2,∴x1<x2,同理x2<x3<…<x n,∴当x1>时,随着运算次数n的增加,x n越来越大.同理,当x1<时,随着运算次数n的增加,x n越来越小.当x1=时,随着运算次数n的增加,x n保持不变.(3)①在数轴上表示的x1,x2,x3如图2所示.随着运算次数的增加,运算结果越来越接近.②由(2)可知:﹣1<k<1且k≠0,由消去y得到x=∴由①探究可知:m=.。
中考数学专项复习《一次函数》练习题及答案
中考数学专项复习《一次函数》练习题及答案一、单选题1.如图,在一次函数y=﹣x+10的图象上取一点P,作PA⊥x轴,PB⊥y轴,垂足为B,且矩形PBOA的面积为9,则这样的点P个数共有()A.1个B.2个C.3个D.4个2.在同一坐标系内,函数y=kx2和y=kx+2(k≠0)的图象大致如图()A.B.C.D.3.有甲、乙两个不同的水箱,容量分别为a升和b升,且已各装了一些水.若将甲中的水全倒入乙箱之后,乙箱还可以继续装20升水才会满;若将乙箱中的水倒入甲箱,装满甲箱后,乙箱里还剩10升水,则a,b之间的数量关系是()A.b=a+15B.b=a+20C.b=a+30D.b=a+404.关于一次函数y=5x-3的描述,下列说法正确的是()A.图象经过第一、二、三象限B.向下平移3个单位长度,可得到y=5xC.y随x的增大而增大D.图象经过点(-3,0)5.已知函数y=kx(k≠0)的大致图象如图所示,则函数y=kx-k的图象大致是()A.B.C.D.6.防汛期间,下表记录了某水库16h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8h时,达到警戒水位,开始开闸放水,此时,y与xx/h012810121416y/m1414.5151814.412119)A.第1小时B.第10小时C.第14小时D.第16小时7.若点P(2,4)在正比例函数y=kx的图象上,则下列各点在此函数图象上的是()A.(−3,4)B.(−2,−4)C.(0.5,4)D.(1,5)8.已知直线y=kx+b(k≠0)与x轴的交点在x轴的正半轴,下列结论:①k>0,b>0;②k>0,b<0;③k<0,b>0;④k<0,b<0.其中正确的结论的个数是()A.1B.2C.3D.49.下列y关于x的函数中是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,一次函数y=kx+b与y=﹣x+4的图象相交于点P(m,1),则关于x、y的二元一次方程组{y=kx+by=−x+4的解是()A .{x =3y =1B .{x =2.6y =1C .{x =2y =1D .{x =1y =111.关于函数y=ax 2和函数y=ax+a (a≠0)在同一坐标系中的图象,A ,B ,C ,D 四位同学各画了一种,你认为可能画对的图象是( )A .B .C .D .12.已知一次函数y=kx ﹣k 与反比例函数 y =k x在同一直角坐标系中的大致图象是( )A .B .C .D .二、填空题13.如图,直线y =kx −3与x 轴、y 轴分别交于点B 与点A ,OB =13OA ,点C 是直线AB 上的一点,且位于第二象限,当⊥OBC 的面积为3时,点C 的坐标为 .14.如图,直线y=kx+b(k>0)与x轴的交点为(﹣2,0),则关于x的不等式kx+b<0的解集是.15.若直线y=kx+b平行直线y=3x+4,且过点(1,﹣2),则直线的关系式为.16.若函数y=−x+3与y=2x+b的图象相交于x轴上的一点,则b的值为.17.在平面直角坐标系中将直线y=x+2沿着y轴向下平移3个单位长度,平移后的直线所对应的函数解析式为.18.某自行车存车处在星期日的存车为4000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元,若普通车存车数为x辆次,存车总收入y(元)与x的函数关系式是.三、综合题19.作出函数y=2x+6的图象并回答:(1)x取何值时,y=0;(2)x取何值时,y>0?(3)x取何值时,y<0?20.某家电集团公司研制生产的新家电,前期投资200万元,每生产一台这种新家电,后期还需投资0.3万元,已知每台新家电售价为0.5万元.设总投资为P万元,总利润为Q万元(总利润=总产值-总投资),新家电总产量为x台.(假设可按售价全部卖出)(1)试用x的代数式表示P和Q;(2)当总产量达到900台时,该公司能否盈利?(3)当总产量达到多少台时,该公司开始盈利?21.如图所示,已知二次函数y1=−x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,与y轴的交点为点C.(1)求m的值;(2)若经过点B的一次函数y2=kx+b平分⊥ABC的面积.求k、b的值.22.阅读下列材料:实验数据显示,一般成人喝250毫升低度白酒后,其血液中酒精含量(毫克/百毫升)随时间的增加逐步增高达到峰值,之后血液中酒精含量随时间的增加逐渐降低.小带根据相关数据和学习函数的经验,对血液中酒精含量随时间变化的规律进行了探究,发现血液中酒精含量y是时间x的函数,其中y表示血液中酒精含量(毫克/百毫升),x表示饮酒后的时间(小时).下表记录了6小时内11个时间点血液中酒精含量y(毫克/百毫升)随饮酒后的时间x(小时)(x >0)的变化情况.下面是小带的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中以上表中各对数值为坐标描点,图中已给出部分点,请你描出剩余的点,画出血液中酒精含量y随时间x变化的函数图象;(2)观察表中数据及图象可发现此函数图象在直线x=32两侧可以用不同的函数表达式表示,请你任选其中一部分写出表达式;(3)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:30在家喝完250毫升低度白酒,第二天早上7:00能否驾车去上班?请说明理由.23.在平面直角坐标系xOy中直线l1:y1=kx+b与直线y=2x平行,且经过点(1,0).(1)求直线l1的解析式;(2)已知直线l2:y2=mx+1,过点p(n,0)作x轴的垂线,与直线l1交于点M,与直线l2交于点N.结合图象回答:①若m=1,当点M在点N的上方时,直接写出n的取值范围;②若对任意的n>2,都有点M在点N的上方,直接写出m的取值范围.24.如图,已知直线y=﹣2x+12分别与Y轴,X轴交于A,B两点,点M在Y轴上,以点M为圆心的⊥M与直线AB相切于点D,连接MD.(1)求证:⊥ADM⊥⊥AOB;(2)如果⊥M的半径为2 √5,请写出点M的坐标,并写出以(﹣52,292)为顶点,且过点M的抛物线的解析式;(3)在(2)条件下,试问在此抛物线上是否存在点P使以P、A、M三点为顶点的三角形与⊥AOB相似?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.参考答案1.【答案】D2.【答案】D3.【答案】C4.【答案】C5.【答案】A6.【答案】C7.【答案】B8.【答案】B9.【答案】C10.【答案】A11.【答案】D12.【答案】B13.【答案】(−3,6)14.【答案】x<﹣215.【答案】y=3x﹣316.【答案】-617.【答案】y=x-118.【答案】y=-0.1x+120019.【答案】(1)解答: 由图象得:x=-3时,y=0;(2)解答:y=2x+6>0,解x>-3当x>-3时,y>0;(3)解答:y=2x+6<0,解x<-3当x<-3时,y<0.20.【答案】(1)解:P=200+0.3x,Q=0.5x-(200+0.3x)=0.2 x-200.(2)解:当x=900时即当总产量达到900台时,没有盈利,亏了20万元.(3)解:当Q >0时,开始盈利,即0.2x −200>0,解得x >1000 当总产量超过1000台时,公司开始盈利.21.【答案】(1)解:∵ 二次函数y 1=−x 2+2x +m 的图象与x 轴的一个交点为A (3,0)∴0=−9+6+m ∴ m=3; (2)解:如图∵一次函数y 2=kx +b 平分⊥ABC 的面积 ∴一次函数y 2=kx +b 平分线段AC ∴ 一次函数y 2=kx +b 经过AC 的中点E ∵m=3∴−x 2+2x +3=0时,解得x 1=−1 x 2=3 ∴ 点B 的坐标为B (-1,0) 当x =0时,y =3∴ 点C 的坐标为C (0,3) ∴ 点E 的坐标为E (32,32)∵ 一次函数y 2=kx +b 经过点B ∴{0=−k +b32=32k +b 解得:{k =35b =3522.【答案】(1)解:图象如图所示.(2)解:y=-200x2+400x(0≤x≤ 32)或y=225x(x> 32)(3)解:不能.理由如下:把y=20代入反比例函数y=225x得x=11.25.∵晚上20:30经过11.25小时为第二天早上7:45∴第二天早上7:45以后才可以驾车上路∴第二天早上7:00不能驾车去上班23.【答案】(1)解:∵直线l1:y1=kx+b与直线y=2x平行∴k=2把点(1,0)代入直线y=2x+b中得到0=2+b解得b=−2∴直线l1的解析式为y=2x−2;(2)解:如图①若m=1,则直线l2:y2=x+1联立{y=x+1y=2x−2解得{x=3y=4由图象可知当n>3时,点M在点N的上方;②把x=2代入y=2x−2求得y=2把x=2,y=2代入y=mx+1得解得m=1 2∴若对任意的n>2,都有点M在点N的上方,m的取值范围是m⩽12.24.【答案】(1)证明:∵AB是⊥M切线,D是切点∴MD⊥AB.∴⊥MDA=⊥AOB=90°又⊥MAD=⊥BAO∴⊥ADM⊥⊥AOB(2)解:设M(0,m)由直线y=2x+12得,OA=12,OB=6则AM=12﹣m,而DM=2 √5在Rt⊥AOB中AB= √OA2+OB2= √122+62=6 √5∵⊥ADM⊥⊥AOB∴AMDM=ABOB即2√5= 6√56,解得m=2∴M(0,2)设顶点为(﹣52,292)的抛物线解析式为y=a(x+52)2+ 292将M点坐标代入,得a(0+ 52)2+ 292=2解得a=﹣2所以,抛物线解析式为y=﹣2(x+ 52)2+ 292(3)解:存在.①当顶点M为直角顶点时,M、P两点关于抛物线对称轴x=﹣52轴对称此时MP=5,AM=12﹣2=10,AM:MP=2:1,符合题意∴P(﹣5,2);②当顶点A为直角顶点时,P点纵坐标为12,代入抛物线解析式,得﹣2(x+ 52)2+ 292=12解得x=﹣52± √52,此时AP=﹣52± √52,AM=10,不符合题意;③当顶点P为直角顶点时,则由相似三角形的性质可知,P(n,﹣2n+2 )或(2n,﹣n+2)若P(n,2n+2),则﹣2n﹣12n=10,解得n=﹣4,当x=﹣4,y=﹣2(﹣4+52)2+292=10,﹣2n+2=10,符合题意若P(2n,﹣n+2),则﹣n﹣4n=10,解得n=﹣2,而当x=2n=﹣4时,y=﹣2(﹣4+ 52)2+292=10,﹣n+2=4,不符合题意所以,符合条件的P点坐标为(5,2),(4,10).。
中考数学复习基本过关训练综合训练5。正比例函数,一次函数,反比例函数
卷5 :正比例函数 一次函数 反比例函数班级: 姓名: 分数:一、选择题(8⨯3′=2 4′ )1. 在正比例函数y=kx 中,如果 y 随x 的增大而增大,那么应满足的条件是-( ) (A )0<k (B )0>k (C )0≥k (D )0≤k 2.对于函数y =xk ,下列说法正确的是--------------------------------------------( )(A ) 当k =2时,y 随x 的增大而增大;(B ) 当k = 一2时,在每一象限内,y 随x 的增大而增大; (C ) 当k =2时,图象位于第二四象限; (D ) 当k = 一2时,图象位于第一三象限.3.一次函数y =3一4x 的图象不经过---------------------------------------------( ) (A )第一象限 (B )第二象限 (C )第三象限 ( D )第四象限 4.已知函数y =ax 和反比例函数y =xb ,它们的图象在同一坐标系内没有交点,则a 与b 的关系是 -----------------------------------------------------------------( ) ( A )同号 (B ) 异号 (C )互为倒数 (D ) 互为相反数5.在函数y = 一3x +2的图象上的点是-----------------------------------------( ) (A )(1,0) (B )(1,2) (C )(一1,3) (D )(一1,5)6.下列命题中,正确的是--------------------------------------------------------( )(A ) xy =2中,y 与x 不成正比例函数,也不成反比例;(B ) 正比例函数y =kx ,y 随x 的增大而增大; (C ) 反比例函数xy 4-=中,y 随x 的增大而增小;(D ) 圆面积公式A =πR 2中,A 与R 2成比例.7.下列问题中,两个变量成正比例的是---------------------------- --------( )(A )等腰三角形的面积一定,它的底边和底边上的高;(B )等边三角形的面积和它的边长;(C )长方形的一边长确定,它的周长与另一边长; (D )长方形的一边长确定,它的面积与另一边长. 8.如果点A (1x ,1y )、B (2x ,2y )在反比例函数y =xk (k <0)的图象上,若1x ﹥2x ﹥0,则1y 与2y 的大小关系是-------------------------------( ) (A )1y ﹥2y (B )1y ﹤2y (C )1y =2y (D )不能确定 二 、填空题(16⨯4′=64′)9.正比例函数的图象过点(一2,6),则此正比例函数的解析式为 . 10.反比例函数xm y -=2的图象过点(1,一3),则m= .11.正比例函数)0(≠=k kx y ,当图象(除原点外)在第 象限时,y 随x的增大而增大. 12.反比例函数)0(≠=k xk y , 在每一象限内时y 随x 的增大而增大时,图象在第 象限.13.一次函数y =kx+b 的图象位于第一二四象限时,那么y 的值随x 的增大而 . 14.直线b x y +=2不经过第二象限,那么b o .15.一次函数的图象在y 轴上截距为4,且平行于直线y = 一3x ,则一次函数解析式为 . 16.直线2x+y+m =0在y 轴上截距为6,则m = .17.y 与x 2成正比例且当x =1时,y =2,则当y =32,x = .18.y 一1与x 成反比例,若当x=1时,y=3,则当y=8,x= . 19.若()1023--=mx m y 是反比例函数,则m= .20.当a ,b 时,函数3)5(++-=b x a y 是正比例函数.21.已知y 与x 成正比例,x 与 z 成反比例,则y 与z 成 比例关系.22.直线y =2x +1沿y 轴向上平移4个单位得到 ,再沿x 轴向右平移3 个单位得到直线解析式为 .23.等腰三角形的周长为12cm ,腰长为xcm ,其底边长y = cm ,其中x 的取值范围为 .24.正比例函数图象过点A (4,一2)和B (m ,3),则线段AB 的长等于 . 三.解答题(25~31题,4⨯8′+3⨯10′=62′)25.已知一次函数y=kx+b 平行于直线y= 一6x ,且与双曲线 y= 一x2 的一个交点为A (2,m ),求此函数解析式.x26.已知A 城与B 城相距200千米,一列火车以每小时60千米的速度从A城驶向B 城,求:(1)火车与B 城的距离S (千米)与行驶的时间t (小时)的函数关系式; (2)t (小时)的取值范围; (3)画出函数的图象.27.已知△ABC 中,BD 平分∠ABC ,过D 作AB 平行线交BC 于E ,BC =6,BE =x ,AB=y ,求y 关于x 的函数并写出自变量x 的取值范围.28.已知一次函数图象经过点(一1,2),图象与y 轴的交点到原点的距离等于4,求这个一次函数解析式.29.如图平行四边形ABCD 中,CD =8,BC =7,E 是AB 边上不与点B 重合的一动点,AE =x ,DE 的延长线 交CB 的延长线于 F ,设CF =y ,求y 关于x 的函数解析式.30.已知函数y =y 1+y 2,y 1与x 成正比例,y 2与(x 一2)成反比例,当x =1时,1-=y ;当x =3时y =5,求此函数解析式.31.反比例函数xy 4=的图象上两点M 、N 的坐标分别为M (1,m ),N (n ,一1)经过点M 、N 作直线b kx y +=,求(1)k ,b 的值 ; (2)O 为坐标原点,求△MNO 的面积 .( 10分)FEDCA卷5参考答案:一、选择题(1)B (2)B (3)C (4)B (5)D (6)D (7)D (8) A 二填空题(9)x y 3-=;( 10)5 ; (11)一、三;(12)二、四;(13)减小; (14) b ≤0;(15)y= 一3x+4 ; (16)一6; (17)4±;(18)72 ;(19)一3 ;(20)a ≠5,b= 一3; (21) 反; (22)y=2x+5, y=2x —1; (23)y=12—2x , 63<<x ;(24)55三.解答题25、 解: ∵一次函数y=kx+b 平行于直线y= 一6x , ∴k= 一6∵双曲线 y= 一x2 过点A (2,m )∴m= 一1 ∴A (2,一1) ∵y= 一6x+b 过点A (2,一1), ∴b=11 ∴一次函数解析式为y= 一6x+11.26、(1)t S 60200-=; (2)3100≤≤t ;(3)图略.27、解:∵BD 平分∠ABC∴∠ABD=∠DBE∵AB ∥DE , ∴∠ABD=∠BDE ∴∠BDE=∠DBE , ∴BE=DE=x ∵DE ∥AB , ∴ABDE = BC EC∴yx = 66x -, ∴y= xx -66∴x 取值范围为60<<x .28、解:设一次函数解析式y=kx+b则它的图象与Y 轴的交点为(0,b ),交点到原点的距离为∣b ∣由已知得∣b ∣=4 ∴b=4,或b= 一4∵函数图象过点(一1,2)∴一k+b=2∴当b=4时,k=2 ; 当b= 一4时,k= 一6 ∴所求一次函数解析式为y=2x+4或y= 一6x 一4.29、解:∵平行四边形ABCD ∴AD ∥FC ,∠A=∠C∴∠ADF=∠F ∴△AED ∽△CDF ∴CFAD =CDAE∵AD=BC=7,AE=x ,CF=y ,CD=8, ∴y7=8x , ∴y=x56 (80<<x ).30、22-+=x x y ;31、解:(1)反比例函数y= x4 的图象上两点分别为M (1,m ),N (n ,一1)∴m=4,n= 一4∴M (1,4) N (一4,一1)∵过点M ,N 作直线y=kx+bk+b=4∴ 解得 k=1 一4k+b= 一1b=3(2)215=∆MNO S .。
中考数学专题复习《一次函数几何分类专题(平移问题)》测试卷-附带答案
中考数学专题复习《一次函数几何分类专题(平移问题)》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一 单选题1.将直线22y x =-向上平移3个单位长度 所得直线经过点()6,a - 则a 的值为( ) A .11- B .8- C .7 D .132.在平面直角坐标系中 已知()0,2A ()0,4B 若把直线2y x =-向上平移k 个单位长度后与线段AB 有交点 则k 的取值范围是( )A .46k ≤≤B .46k <≤C .35k ≤≤D .13k ≤≤3.将直线y =3x ﹣1向上平移2个单位长度 平移后的直线所对应的函数解析式为( ) A .y =3x +5 B .y =3x ﹣3 C .y =3x +1 D .y =3x +34.如图 直线13y x =-与双曲线(0,0)k y k x x =<<交于点A 将直线13y x =-向上平移2个单位长度后 与y 轴交于点C 与双曲线交于点B 若3OA BC = 则k 的值为( )A .274-B .7-C .658-D .2716- 5.在平面直角坐标系中 将函数21y x =-的图象向左平移1个单位长度 则平移后的图象与y 轴的交点坐标为( )A .()0,2B .()0,2-C .()0,1D .()0,1-6.在平面直角坐标系中 将函数1y x =-的图象向下平移4个单位 平移后的图象与函数2y x b =-+的图象的交点恰好在第四象限 则b 的最大整数值为( )A .8B .9C .10D .11 7.如图 直线122y x =-与x 轴交于点A 以OA 为斜边在x 轴上方作等腰直角三角形OAB 将直线沿x 轴向左平移 当点B 落在平移后的直线上时 则直线平移的距离是( )A .6B .5C .4D .38.在平面直角坐标系中 将直线1l :22y x =--平移后得到直线2l :24y x =-+ 则下列平移作法正确的是( )A .将1l 向左平移3个单位长度B .将1l 向右平移6个单位长度C .将1l 向上平移2个单位长度D .将1l 向上平移6个单位长度二 填空题9.如果将一次函数y x r =- 的图象沿y 轴向上平移1个单位 那么平移后所得图象的函数解析式为 .10.把函数21y x =+的图象沿y 轴向下平移5个单位后所得图象与y 轴的交点坐标是 . 11.一次函数21y x =+向下平移2个单位长度 得到新的一次函数表达式是 一次函数21y x =+经过平移过程 (填向上或向下平移几个单位长度)得到一个正比例函数. 12.在平面直角坐标系中 ABCO 的边OC 落在x 轴的正半轴上 且点()()5,0,8,4C B 直线21y x =+以每秒1个单位的速度向下平移 经过 秒 该直线平分ABCO 的面积.13.如图 点()2,2A 在双曲线(0)k y x x=>上 将直线OA 向上平移若干个单位长度交y 轴于点B 交双曲线于点C .若2BC = 则点C 的坐标是 .三解答题14.在平面直角坐标系xOy中已知点C(m+2 3m﹣1)直线l经过点A(2 2)B(1 3).(1)求直线l的解析式(2)若A B C三点共线求m的值(3)若将直线l先沿y轴向上平移2个单位再沿x轴向右平移3个单位后经过点C求点C 的坐标.15.如图将直线AO向上平移1个单位得到一个一次函数的图象1l.l的表达式(1)求直线1(2)求直线1l 与x 轴 y 轴的交点的坐标.16.已知正比例函数的图像如图所示.(1)求此正比例函数的解析式(2)若一次函数图像是由(1)中的正比例函数的图像平移得到的 且经过点()1,2 求此一次函数的解析式.17.已知直线12:l y kx +=经过点A 将直线1l 向右平移4个单位后 得到的直线2l 与y 轴相交于点B 且经过点()23C ,点P 为x 轴正半轴上的一个动点.(1)请求出直线1l 与2l 的函数表达式(2)当四边形ABCP 的周长最小时 求四边形ABCP 的面积(3)在直线l 2上是否存在一点Q 使得以A C P Q 为顶点的四边形是平行四边形?若存在 若不存在 请说明理由.18.如图 在平面直角坐标系中 直线1l :32y x m =+与直线2l 交于点()2,3A - 直线2l 与x 轴交于点()4,0C 与y 轴交于点B 将直线2l 向下平移5个单位长度得到直线3l 3l 与y 轴交于点D 与1l 交于点E 连接AD .(1)求直线2l 的解析式(2)求△ADE 的面积参考答案:1.A2.A3.C4.D5.C6.B7.A8.D9.1y x r =-+10.()0,4-11. 21y x =- 向下平移一个单位 12.713. 14.(1)直线l 的解析式为4y x =-+ (2)34m =(3)()4,515.(1)21y x =+(2)直线1l 与x 轴 y 轴的交点分别为1,02⎛⎫- ⎪⎝⎭ ()0,116.(1)正比例函数的解析式为:2y x =-(2)一次函数的解析式为:24y x =-+.17.(1)直线1l 函数表达式为122y x =-+ 2l 函数表达式为142y x =-+ (2)225(3)存在 Q 的坐标为(2),5-或((10,1)-或(6,1)18.(1)122y x =-+ (2)454。
中考数学总复习《与一次函数相关的规律问题》专项测试卷-附参考答案
中考数学总复习《与一次函数相关的规律问题》专项测试卷-附参考答案一、单选题(共12题;共24分)1.对于一次函数y=kx+b(k,b为常数),下表中给出5组自变量及其对应的函数值:x……-10123y……-214810……A.1B.4C.8D.102.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是()A.(2n﹣1,2n﹣1)B.(2n﹣1+1,2n﹣1)C.(2n﹣1,2n﹣1)D.(2n﹣1,n)3.彼此相似的矩形A1B1C1D1,A2B2C2D2,A3B3C3D3,…,按如图所示的方式放置.点A1,A2,A3,…,和点C1,C2,C3,…,分别在直线y=kx+b(k>0)和x轴上,已知点B1、B2的坐标分别为(1,2),(3,4),则B n的坐标是().A.(2n−1,2n)B.(2n- 12,2n)C.(2n−1- 12,2n−1)D.(2n−1-1,2n−1)4.下表中的每一对x,y的值都是二元一次方程ax+by=10的一个解,则下列结论中正确的是()x……-3-2-10123……y……131********……B.当y<10时,则x的最小值是1C.当x取任何实数时,则均有y≥0D.当x的值越来越大时,则y的值越来越小5.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃-20-100102030声速/m/s318324330336342348A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,则声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s6.在《科学》课上,老师讲到温度计的使用方法及液体的沸点时,则好奇的王红同学准备测量食用油的沸点,已知食用油的沸点温度高于水的沸点温度(100℃),王红家只有刻度不超过100℃的温度计,她的方法是在锅中倒入一些食用油,用煤气灶均匀加热,并每隔10s测量一次锅中油温,测量得到的数据如下表:时间t/s010203040油温y/℃1030507090().A.没有加热时,则油的温度是10℃B.加热50s,油的温度是110℃C.估计这种食用油的沸点温度约是230℃D.加热100s,油的温度是220℃,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线7.如图,直线l:y=√33x交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…按此作法继续下去,则点A2015的坐标为()A.(0,42015)B.(0,42014)C.(0,32015)D.(0,32014)8.正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1.A2.A3…在直线y =x +1上,点C1.C2.C3…在x轴上,则A2019的坐标是()A.(2019,2019)B.(22018−1,22019)C.(22019,22018)D.以上都不对9.在平面直角坐标系中,点A1(−1,1)在直线y=x+b上,过点A1作A1B1⊥x轴于点B1,作等腰直角三角形A1B1B2( B2与原点O重合),再以A1B2为腰作等腰直角三角形A2A1B2,以A2B2为腰作等腰直角三角形A2B2B3,…按照这样的规律进行下去,那么A2020的坐标为()A.(22019−1,22019)B.(22019−2,22019)C.(22020−1,22020)D.(22020−2,22020)10.在平面直角坐标系中,将一次函数y=2x+4的图象沿x轴向右平移m(m>0)个单位后,经过点(1,−2),则m的值为()A.4B.6C.8D.1011.如图,平面直角坐标系中,在直线y=x+1和x轴之间由小到大依次画出若干个等腰直角三角形(图中所示的阴影部分),其中一条直角边在x轴上,另一条直角边与x轴垂直,则第100个等腰直角三角形的面积是()A.298B.299C.2197D.219812.如图,在平面直角坐标系中,直线l是y=x的图象,点A1在x轴正半轴上,OA1=1.作A1B1⊥x轴交直线l于点B1,以O为圆心,OB1为半径画弧,交x轴正半轴于点A2.作A2B2⊥x轴交直线l于点B2,以O为圆心,OB2为半径画弧,交x轴正半轴于点A3.作A3B3⊥x轴交直线l于点B3,以O为圆心,OB3为半径画弧,交x轴正半轴于点A4…….按此作法进行下去,则点A2019的横坐标为().A.21009B.21010C.22018D.22019二、填空题(共6题;共6分)13.如图,在平面直角坐标系xOy中,直线l:y=x+1交y轴于点A1,点A2,A3,…,A n在直线l上,点B1,B2,B3,…,B n在x轴的正半轴上,若△OA1B1,△A2B1B2,A3B2B3,…,△A n B n−1B n,依次均为等腰直角三角形,点B n的坐标是.14.观察表格中按规律排列的两行数据,若用x,y表示表格中间一列的两个数,则x,y满足的数量关系是.15.如图,在平面直角坐标系中,点A1,A2,A3,…,A n在x轴上,B1,B2,B3,…,B n在直上,若A1(2,0),且△A1B1A2,△A2B2A3,…,△A n B n A n+1都是等边三角形,从左到线y=√33x右的小三角形(阴影部分)的面积分别记为S1,S2,S3,…,S n.则S n可表示为.16.正方形A1B1C1A2,A2B2C2A3,A3B3C3A4,…按如图所示的方式放置,点A1,A2,A3,…和点B1,B2,B3,…分别在直线y=kx+b(k>0)和x轴上.已知点A1(0,1),点B1(1,0),则C5的坐标是.17.如图,已知直线l:y=√3x,过点M(2,0)作x轴的垂线交直线l于点N,过点N作直线1的垂线交x轴于点M1;过点M1作x轴的垂线交直线1于N1,过点N1作直线1的垂线交x轴于点M2,…;按此作法继续下去,则点M2018的坐标为.的直线b如图所18.在平面直角坐标系中,解析式为y=√3x+1的直线a、解析式为y=√33x示,直线a交y轴于点A,以OA为边作第一个等边三角形ΔOAB,过点B作y轴的平行线交直线a于点A1,以A1B为边作第二个等边三角形ΔA1BB1,……顺次这样做下去,第2020个等边三角形的边长为.三、综合题(共5题;共34分)交x轴于点B,交y轴于点C.在ΔABC内依次作等边三角形19.如图,直线y=−√33x+1使一边在x轴上,另一个顶点在BC边上,作出的等边三角形第一个是ΔAA1B1,第二个是ΔB1A2B2,第三个是ΔB2A3B3…(1)ΔB2A3B3的边长等于;(2)ΔB2017A2018B2018的边长等于20.正方形A1B1C1O、A2B2C2C1、A3B3C3C2、…按如图所示的方式放置点A1、A2、A3、…和点C1、C2、C3、…分别在直线y=ka+b(k>0)和x轴上,已知点B1(1,1),B2(3,2).(1)求k、b的值;(2)填写下列各点的坐标:B3(,),B n(,).21.对于点P(x,y),规定x+y=a,那么就把a叫点P的亲和数.例如:若P(2,3),则2+3=5,那么5叫P的亲和数.(1)在平面直角坐标系中,已知,点A(﹣2,6)①B(1,3),C(3,2),D(2,2),与点A的亲和数相等的点;②若点E在直线y=x+6上,且与点A的亲和数相同,则点E的坐标是;(2)如图点P是矩形GHMN边上的任意点,且点H(2,3),N(﹣2,﹣3),点Q是直线y=﹣x+b上的任意点,若存在两点P、Q的亲和数相同,那么求b的取值范围?22.如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B (5,3)、C(-2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为(不必证明);(3)已知两点D(1,−3)、E(−1,−4),试在直线L上画出点Q,使点Q到D、E两点的距离之和最小,求QD+QE的最小值.23.下列图案由边长相等的黑,白两色正方形按一定规律拼接而成,设第x个图案中白色小正方形的个数为y.(1)第2个图案中有个白色的小正方形;第3个图案中有个白色的小正方形;y与x之间的函数表达式为(直接写出结果).(2)是否存在这样的图案,使白色小正方形的个数为2019个?如果存在,请指出是第几个图案;如果不存在,说明理由.参考答案1.【答案】C 2.【答案】A 3.【答案】A 4.【答案】D 5.【答案】C 6.【答案】D 7.【答案】A 8.【答案】D 9.【答案】B 10.【答案】A 11.【答案】C 12.【答案】A13.【答案】(2n −1,0) 14.【答案】x =2+2y 15.【答案】22n−1√3 16.【答案】(47,16) 17.【答案】(24037,0) 18.【答案】2201919.【答案】(1)√38(2)√32201820.【答案】(1)解:∵点B 1(1,1),B 2(3,2)∴A 1(0,1),A 2(1,2)将点A 1,A 2代入直线y =kx +b (k >0)得: {b =1k +b =2 解得: {k =1b =1 ;(2)7;4;2n ﹣1;2n ﹣121.【答案】(1)B ,D ;(﹣1,5)(2)解:点P 是矩形GHMN 边上的任意点,点Q 是直线y =﹣x+b 上的任意点,若存在两点P 、Q 的亲和数相同∴直线y =﹣x+b 与矩形GHMN 的边有交点,如图当直线y=﹣x+b过点N(﹣2,﹣3)时2+b=﹣3∴b=﹣5当直线y=﹣x+b过点H(2,3)时﹣2+b=3∴b=5∴﹣5≤b≤5,存在两点P、Q的亲和数相同22.【答案】(1);(2)(3)由(2)得,D(1,-3)关于直线l的对称点D'的坐标为(-3,1),连接D'E交直线l于点Q,此时点Q到D、E两点的距离之和最小,D'E= √D′M2+ME2=√22+52= √29∴QD+QE的最小值为:√29.23.【答案】(1)13;18;y=5x+3(2)解:依题意得,5x+3=2019解得x=403.2(不是整数)∴不存在这样的图案,使白色小方形的个数为2019个.。
中考数学复习《一次函数的应用练习题(解答题)》专项检测卷(附带答案)
中考数学复习《一次函数的应用练习题(解答题)》专项检测卷(附带答案) 1.蓄电池发展水平是制约新能源汽车发展的关键要素.小明爸爸根据自家电动汽车仪表显示,感觉蓄电池充满电后,用前半部分电量所行驶的路程,总要比用后半部分电量行驶的路程更远一些.于是小明细心观察了充满电后汽车的行驶情况,并将蓄电池剩余电量y(千瓦时)和已行驶路程x(千米)的相关数据,用函数图象表示如下.(1)根据图象,直接写出剩余电量为35千瓦时时,汽车已行驶的路程为千米;(2)求该汽车剩余电量为30千瓦时时,已行驶的路程是多少?(3)根据小明提供的数据,这辆汽车用前半部分电量比用后半部分电量,能多行驶千米.2.如图,l1反映了某品牌手机一天的销售收入与销售量之间的函数关系,l2反映了该品牌手机一天的销售成本与销售量之间的函数关系,请根据图象回答下列问题:(1)分别求出l1与l2所对应的函数解析式;(2)当销售量为20部时,该品牌手机所获利润为多少元?(利润=销售收入﹣销售成本)3.为鼓励实习员工工作积极性,某公司提供了两种实习员工月工资方案,方案一如图所示,方案二每生产一件产品25元,实习员工可以任选一种方案与公司签订合同.(1)方案一中,当x≥30时,求月工资y(元)与生产产品x(件)的关系式;(2)某实习员工发现,当月选择方案一比选择方案二月工资多450元,求该实习员工生产产品的件数.4.某校与部队联合开展红色之旅研学活动,上午7:00,部队官兵乘坐军车从营地出发,同时学校师生乘坐大巴从学校出发,沿公路(如图1)到爱国主义教育基地进行研学.上午8:00,军车在离营地60km的地方追上大巴并继续前行,到达仓库后,部队官兵下车领取研学物资,然后乘坐军车按原速前行,最后和师生同时到达基地,军车和大巴离营地的路程s(km)与所用时间t(h)的函数关系如图2所示.(1)求大巴离营地的路程s与所用时间t的函数表达式及a的值.(2)求部队官兵在仓库领取物资所用的时间.5.一辆巡逻车从A地出发沿一条笔直的公路匀速驶向B地,小时后,一辆货车从A地出发,沿同一路线每小时行驶80千米匀速驶向B地,货车到达B地填装货物耗时15分钟,然后立即按原路匀速返回A地.巡逻车、货车离A地的距离y(千米)与货车出发时间x(小时)之间的函数关系如图所示,请结合图象解答下列问题:(1)A,B两地之间的距离是千米,a=;(2)求线段FG所在直线的函数解析式;(3)货车出发多少小时两车相距15千米?(直接写出答案即可)6.2023年,哈尔滨的“冰雪大世界”吸引了众多游客,小明的爸爸将容量为60升的私家车油箱加满后,带着全家从大连自驾到哈尔滨游玩.行驶过程中,车离哈尔滨的路程s(千米)与行驶时间t(小时)的关系如图所示(中途休息、加油的时间不计).当油箱中剩余油量不超过10升时,车会自动显示加油提醒.设车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出大连到哈尔滨的路程千米;(2)求s关于t的函数表达式;(3)当车显示加油提醒后,问行驶时间t在怎样的范围内车应进站加油?7.2023年12月18日,甘肃积石山县发生6.2级地震,全国各地连夜出发实施紧急救援.一辆货车先从甲地出发运送赈灾物资到灾区,稍后一辆轿车从甲地急送医疗团队到灾区,已知甲地与灾区的路程是330km,货车行驶时的速度是60km/h.两车离甲地的路程s(km)与时间t(h)的函数图象如图.(1)求出a的值;(2)求轿车离甲地的路程s(km)与时间t(h)的函数表达式;(3)问轿车比货车早多少时间到达灾区?8.小强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快.在一段时间内,水温y(℃)与加热时间x(s)之间近似满足一次函数关系.根据记录的数据,画函数图象如图.(1)求乙壶中水温y关于加热时间x的函数解析式;(2)当甲壶中水温刚达到80℃时,求此刻乙壶中水的温度?9.“低碳生活,绿色出行”是一种环保、健康的生活方式,小丽从甲地匀速步行前往乙地,同时,小明从乙地沿同一路线匀速步行前往甲地,两人之间的距离y(m)与步行时间x(min)之间的函数关系式如图中折线段AB﹣BC﹣CD所示.(1)小丽与小明出发min相遇;(2)在步行过程中,若小明先到达甲地.①求小丽和小明步行的速度各是多少?②计算出点C的坐标,并解释点C的实际意义.10.洛阳牡丹饼是河南省洛阳市的一道传统小吃,入口酥松绵软,而且具有促进人体代谢,降低胆固醇及防止细胞老化功能,深受老百姓喜爱.刘小姐假期去洛阳游玩,准备回去时带点牡丹饼给家人和朋友品尝.已知甲、乙两家超市都以20元/盒的价格销售同一种牡丹饼,并且同时在做促销活动:甲超市:办理本超市会员卡(卡费50元),食品全部打七折销售;乙超市:购买同种商品超过一定数量后,超过的部分打折销售.活动期间,若刘小姐购买牡丹饼x袋,在甲、乙超市所需费用分别为y1元、y2元,y2与x之间的函数图象如图所示,回答下列问题:(1)分别求出y1、y2与x之间的函数关系式;(2)当x的值为多少时,在两家超市购买的费用一样?(3)若刘小姐准备购买20盒牡丹饼,你认为在哪家超市购买更划算?参考答案1.解:(1)由图象可知,B点表示充满电后行驶150千米时,剩余电量为35千瓦时;故答案为:150;(2)当150≤x≤200时,设y关于x的函数表达式y=kx+b(k≠0),把点(150,35),(200,10)代入得,∴∴y=﹣0.5x+110即当150≤x≤200时,函数表达式为y=﹣0.5x+110当x=30时,﹣0.5x+110=30,解得x=160答:该汽车剩余电量为30千瓦时时,已行驶的路程是160千米;(3)当y=0时,﹣0.5x+110=0,解得x=220160﹣(220﹣160)=100(千米)即这辆汽车用前半部分电量比用后半部分电量,能多行驶100千米.故答案为:100.2.解:(1)设l1所对应的函数解析式为y=k1x(k1为常数,且k1≠0).将坐标(5,1000)代入y=k1x得5k1=1000解得k1=200∴l1所对应的函数解析式为y=200x;设l2所对应的函数解析式为y=k2x+b(k2、b为常数,且k2≠0).将坐标(0,800)和(5,1000)代入y=k2x+b得,解得∴l2所对应的函数解析式为y=40x+800.(2)当x=20时,y=200x=200×20=4000;当x=20时,y=40x+800=40×20+800=1600;4000﹣1600=2400(元)∴销售20部分该品牌的手机获利润为2400元.3.解:(1)方案一中,当x≥30时,设月工资y(元)与生产产品x(件)的关系式为y=kx+b(k ≠0)将A(30,600),(50,1400)代入y=kx+b得:,解得:∴方案一中,当x≥30时,月工资y(元)与生产产品x(件)的关系式为y=40x﹣600;(2)根据题意得:40x﹣600﹣25x=450解得:x=70∴该实习员工生产产品的件数为70件.4.解:(1)由函数图象可得,大巴速度为=40(km/h)∴s=20+40t;当s=100时,100=20+40t解得t=2∴a=2;∴大巴离营地的路程s与所用时间t的函数表达式为s=20+40t,a的值为2;(2)由函数图象可得,军车速度为60÷1=60(km/h)设部队官兵在仓库领取物资所用的时间为x h根据题意得:60(2﹣x)=100解得:x=答:部队官兵在仓库领取物资所用的时间为h.5.解:(1)∵80×=60(千米)∴A,B两地之间的距离是60千米;∵货车到达B地填装货物耗时15分钟∴a=+=1故答案为:60,1;(2)设线段FG所在直线的解析式为y=kx+b(k≠0),将F(1,60),G(2,0)代入得:,解得∴线段FG所在直线的函数解析式为y=﹣60x+120;(3)巡逻车速度为60÷(2+)=25(千米/小时)∴线段CD的解析式为y=25x+25×=25x+10(0≤x≤2)当货车第一次追上巡逻车后,80x﹣(25x+10)=15解得x=;当货车返回与巡逻车未相遇时,(﹣60x+120)﹣(25x+10)=15解得x=;当货车返回与巡逻车相遇后,(25x+10)﹣(﹣60x+120)=15解得x=;综上所述,货车出发小时或小时或小时,两车相距15千米.6.解:(1)由图象,得t=0时,s=900工厂离目的地的路程为900千米答:工厂离目的地的路程为900千米;故答案为:900;(2)设s=kt+b(k≠0)将(0,900)和(4,600)代入解得:∴s关于t的函数表达式:s=﹣75t+900(0≤x≤12)答:s关于t的函数表达式:s=﹣75t+900(0≤t≤12);(3)当油箱中剩余油量为10升时s=900﹣(60﹣10)÷0.1=400(千米)∴400=﹣75t+900解得:t=(小时)当油箱中剩余油量为0升时s=900﹣60÷0.1=300(千米)300=﹣75t+900解得:t=8∵k=﹣75<0∴s随t的增大而减小∴t的取值范围为≤t<8.7.解:(1)∵货车的速度是60km/h∴a==1.5(h);(2)由图象可得点(1.5,0),(3,150)设直线的表达式为s=kt+b,把(1.5,0),(3,150)代入得:,解得∴s=100t﹣150(1.5≤t≤4.8);(3)由图象可得货车走完全程需要+0.5=6(h)∴货车到达乙地需6h∵s=100t﹣150,s=330解得t=4.8∴两车相差时间为6﹣4.8=1.2(h)∴货车还需要1.2h才能到达即轿车比货车早1.2h到达灾区.8.解:(1)设乙壶中水温y关于加热时间x的函数解析式为y=kx+b将(0,20),(160,80)代入y=kx+b得,解得∴y=x+20.(2)甲水壶的加热速度为(60﹣20)÷80=℃/s∴甲水壶中温度为80℃时,加热时间为(80﹣20)÷=120s将x=120代入y=x+20得y=65即此刻乙壶中水的温度为65℃.9.解:(1)由图象可得小丽与小明出发30min相遇故答案为:30;(2)①设小丽步行的速度为V1m/min,小明步行的速度为V2m/min,且V2>V1 则,解得:答:小丽步行的速度为80m/min,小明步行的速度为100m/min;②解法一:设点C的坐标为(x,y)则可得方程(100+80)(x﹣30)+80(67.5﹣x)=5400解得x=54,y=(100+80)(54﹣30)=4320m解法二:5400÷100=54,54×80=4320∴点C(54,4320)点C表示:两人出发54min时,小明到达甲地,此时两人相距4320m.10.解:(1)根据题意得:y1=50+20×0.7x=14x+50;当0≤x≤10时,y2=20x;当x>10时,y2=200+(x﹣10)=12x+80;∴y1=14x+50;y2=;(2)当x≤10时,14x+50=20x解得:x=(不符合题意,舍去);当x≥10时,14x+50=12x+80解得:x=15∴x的值为15时,在两家超市购买的费用一样;(3)当x=20时,y1=14×20+50=330,y2=12×20=80=320 ∵330>320∴在乙超市购买更划算.。
中考数学高频考点《一次函数》专项测试卷-附答案
中考数学高频考点《一次函数》专项测试卷-附答案学校:___________班级:___________姓名:___________考号:___________1.(10分)某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由;(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价;(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a元,请直接写出a的取值范围.2.(9分)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A 种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.3.(9分)猕猴嬉戏是王屋山景区的一大特色,猕猴玩偶非常畅销.小李在某网店选中A,B两款猕猴玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶类别价格进货价(元/个)4030销售价(元/个)5645(1)第一次小李用1100元购进了A,B两款玩偶共30个,求两款玩偶各购进多少个.(2)第二次小李进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半.小李计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?(3)小李第二次进货时采取了(2)中设计的方案,并且两次购进的玩偶全部售出,请从利润率的角度分析,对于小李来说哪一次更合算?(注:利润率=×100%)4.(9分)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.5.(9分)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的.请设计出最省钱的购买方案,并说明理由.6.(9分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m87518751875875日销售利润w(元)(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?7.(9分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.按买3个A种魔方和买4个B种魔方钱数相同解答8.(9分)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元?(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.9.(9分)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.10.(9分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.11.(9分)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售,设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.12.(9分)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m0<m≤100100<m≤200m>200收费标准(元/人)908575甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20800元,若两校联合组团只需花费18000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人?13.(9分)为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A,B两种食品作为午餐.这两种食品每包质量均为50g,营养成分表如下.(1)若要从这两种食品中摄入4600kJ热量和70g蛋白质,应选用A,B两种食品各多少包?(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90g,且热量最低,应如何选用这两种食品?参考答案1.【答案】解:(1)选择活动一更合算.理由如下:选择活动一需付款:450×0.8=360(元)选择活动二需付款:450﹣80=370(元)∵360<370∴选择活动一更合算;(2)设一件这种健身器材的原价为x元当0<x<300时,则活动一按原价打八折,活动二按原价,此时付款金额不可能相等;当300≤x<500时,由题意,得∴0.8x=x﹣80解得x=400答:一件这种健身器材的原价是400元;当300≤a<600时,a﹣80<0.8a解得a<400;∴300≤a<400;当600≤a<900时,a﹣160<0.8a解得a<800;∴600≤a<800;综上所述,300≤a<400或600≤a<800.2.【答案】解:(1)设菜苗基地每捆A种菜苗的价格是x元根据题意得:=+3解得x=20经检验,x=20是原方程的解,且符合题意.答:菜苗基地每捆A种菜苗的价格是20元;设购买A种菜苗m捆,则购买B种菜苗(100﹣m)捆∵A种菜苗的捆数不超过B种菜苗的捆数∴m≤100﹣m解得m≤50设本次购买花费w元∴w=20×0.9m+30×0.9(100﹣m)=﹣9m+2700∵﹣9<0∴w随m的增大而减小∴m=50时,w取最小值w最小=-9×50+2700=2250(元)答:本次购买最少花费2250元.3.【答案】解:(1)设A款玩偶购进x个,B款玩偶购进(30﹣x)个由题意,得40x+30(30﹣x)=1100解得:x=20.30﹣20=10(个).答:A款玩偶购进20个,B款玩偶购进10个;(2)设A款玩偶购进a个,B款玩偶购进(30﹣a)个,获利y元∵A款玩偶进货数量不得超过B款玩偶进货数量的一半.∴a≤(30﹣a)解得a≤10由题意,得y=(56﹣40)a+(45﹣30)(30﹣a)=a+450.∵k=1>0∴y随a的增大而增大.∴当a=10时,y最大=460元.∴此时B款玩偶为:30﹣10=20(个).答:按照A款玩偶购进10个、B款玩偶购进20个的方案进货才能获得最大利润,最大利润是460元;(3)第一次的利润率=×100%≈42.7%第二次的利润率=×100%=46%∵46%>42.7%∴对于小李来说第二次的进货方案更合算.4.【答案】解:(1)∵y1=k1x+b的图象过点(0,30)与(10,180)∴,解得k1=15表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元(2)b=30表示的实际意义是:购买一张学生暑期专享卡的费用为30元;(3)由题意可得,打折前的每次健身费用为15÷0.6=25(元)则k2=25×0.8=20;(3)选择方案一所需费用更少.理由如下:由题意可知,y1=15x+30,y2=20x.当健身8次时选择方案一所需费用:y1=15×8+30=150(元)选择方案二所需费用:y2=20×8=160(元)∵150<160∴选择方案一所需费用更少.5.【答案】解:(1)设A的单价为x元,B的单价为y元根据题意,得,解得答:A的单价30元,B的单价15元;(2)设购买A奖品m个,则购买B奖品为(30﹣m)个,购买奖品的花费为W元由题意可知,m≥(30﹣m)∴m≥,且m为正整数.∴W=30m+15(30﹣m)=15m+450∵15>0∴当m=8时,W有最小值答:购买A奖品8个,购买B奖品22个,花费最少.6.【答案】解:(1)设y关于x的函数解析式为y=kx+b,得即y关于x的函数解析式是y=﹣5x+600当x=115时,y=﹣5×115+600=25即m的值是25;(2)设成本为a元/个当x=85时,875=175×(85﹣a),得a=80w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000∴当x=100时,w取得最大值,此时w=2000(3)设科技创新后成本为b元当x=90时,(﹣5×90+600)(90﹣b)≥3750解得b≤65答:该产品的成本单价应不超过65元.7.【答案】解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个根据题意得:,解得:.答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个根据题意得:活动一w=20m×0.8+15(100﹣m)×0.4=10m+600;活动二w=20m+15(100﹣m﹣m)=-10m+1500.当w活动一<w活动二时,有10m+600<﹣10m+1500解得:m<45;当w活动一=w活动二时,有10m+600=﹣10m+1500解得:m=45;当w活动一>w活动二时,有10m+600>﹣10m+1500解得:45<m≤50.综上所述:当0<m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠.(按购买3个A种魔方和4个B种魔方需要130元解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个根据题意得:,解得:.答:A种魔方的单价为26元/个,B种魔方的单价为13元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个根据题意得:w活动一=26m×0.8+13(100﹣m)×0.4=15.6m+520;w活动二=26m+13(100﹣m﹣m)=1300.当w活动一<w活动二时,有15.6m+520<1300解得:m<50;当w活动一=w活动二时,有15.6m+520=1300解得:m=50;当w活动一>w活动二时,有15.6m+520>1300不等式无解.综上所述:当0<m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同.8.【答案】解:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元根据题意,得:,解得:答:一只A型节能灯的售价是5元,一只B型节能灯的售价是7元;(2)设购进A型节能灯m只,总费用为W元由题意m≤3(50-m)解得:m≤37.5,且m为正整数根据题意,得:W=5m+7(50-m)=-2m+350∵﹣2<0∴W随m的增大而减小∴当m=37时,W最小=﹣2×37+350=276此时50﹣37=13答:当购买A型灯37只,B型灯13只时,最省钱.9.【答案】解:(1)由题意可得:银卡消费:y=10x+150,普通消费:y=20x;(2)由题意可得:当10x+150=20x解得:x=15,则y=300∴B(15,300)当y=10x+150,x=0时,y=150∴A(0,150)当y=10x+150=600解得:x=45,则y=600∴C(45,600);(3)如图所示:由A,B,C的坐标可得:当0<x<15时,普通消费更划算;当x=15时,银卡、普通票的总费用相同,均比金卡合算;当15<x<45时,银卡消费更划算;当x=45时,金卡、银卡的总费用相同,均比普通票合算;当x>45时,金卡消费更划算.10.【答案】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=-50x+15000②据题意得,100﹣x≤2x解得x≥33,且x为正整数.∵-50<0∴y随x的增大而减小∵x为正整数∴当x=34时,y取最大值,则100﹣x=66即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),=(m﹣50)x+15000(33≤x≤70且x为正整数)①当0<m<50时m﹣50<0,y随x的增大而减小∴当x=34时,y取最大值即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时m﹣50>0,y随x的增大而增大∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.11.【答案】解:(1)设A、B两种品牌的计算器的单价分别为a元、b元根据题意得,,解得:答:A种品牌计算器30元/个,B种品牌计算器32元/个;(2)A品牌:y1=30x•0.8=24x;B品牌:①当0≤x≤5时,y2=32x②当x>5时,y2=5×32+32×(x﹣5)×0.7=22.4x+48综上所述:y1=24xy2=;(3)当y1=y2时,24x=22.4x+48,解得x=30,即购买30个计算器时,两种品牌都一样;当y1>y2时,24x>22.4x+48,解得x>30,即购买超过30个计算器时,B品牌更合算;当y1<y2时,24x<22.4x+48,解得x<30,即购买不足30个且大于5个计算器时,A品牌更合算.12.【答案】解:(1)这两所学校报名参加旅游的学生人数之和超过200人,理由为:设两校人数之和为a若a>200,则a=18000÷75=240;若100<a≤200,则a=18000÷85=211>200,不合题意则这两所学校报名参加旅游的学生人数之和等于240人,超过200人.(2)设甲学校报名参加旅游的学生有x人,乙学校报名参加旅游的学生有y人,则①当100<x≤200时,得解得(6分)---------------------------②当x>200时,得解得不合题意,舍去.答:甲学校报名参加旅游的学生有160人,乙学校报名参加旅游的学生有80人.13.解:(1)设选用A 种食品x 包,B 种食品y 包根据题意得:7009004600101570x y x y +=⎧⎨+=⎩解得:42x y =⎧⎨=⎩. 答:应选用A 种食品4包,B 种食品2包;(2)设选用A 种食品m 包,则选用B 种食品(7)m -包根据题意得:1015(7)90m m +-解得:3m .设每份午餐的总热量为w kJ ,则700900(7)w m m =+-即2006300w m =-+2000-<w ∴随m 的增大而减小∴当3m =时,w 取得最小值,此时7734m -=-=.答:应选用A 种食品3包,B 种食品4包.。
专题05一次函数的图象和性质(练)-2019年中考数学二轮复习
备战2019年中考二轮讲练测(精选重点典型题)专题5 一次函数的图象和性质(练案)一练基础——基础掌握1.定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”.例如:M(1,1),N(﹣2,﹣2)都是“平衡点”.当﹣1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是()A.0≤m≤1B.﹣3≤m≤1C.﹣3≤m≤3D.﹣1≤m≤0【答案】B.【分析】根据x=y,﹣1≤x≤3可得出关于m的不等式,求出m的取值范围即可.【解析】∵x=y,∴x=2x+m,即x=﹣m.∵﹣1≤x≤3,∴﹣1≤﹣m≤3,∴﹣3≤m≤1.故选B.考点:一次函数图象上点的坐标特征;新定义.2.已知直线l1:y=﹣3x+b与直线l2:y=﹣kx+1在同一坐标系中的图象交于点(1,﹣2),那么方程组31 x y b kx y+=⎧⎨+=⎩的解是()A.12xy=⎧⎨=-⎩B.12xy=⎧⎨=⎩C.12xy=-⎧⎨=-⎩D.12xy=-⎧⎨=⎩【答案】A.考点:一次函数与二元一次方程(组).学科@网3.一次函数y=kx+b与y=bx+k在同一坐标系中的图象大致是()【答案】C【解析】考点:一次函数图像与系数的关系学科@网 4. 如图,直线323y x =-+与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转60°后得到△AO ′B ′,则点B ′的坐标是( )A .(4,23)B .(23,4)C .(3,3)D .(232+,23) 【答案】B . 【解析】考点:一次函数综合题;压轴题. 5.已知函数2)2(1+-=-m x m y 是关于x 的一次函数,则m= 。
【答案】0 【解析】试题分析:根据一次函数的自变量指数为1,可得|m1|=1,m=2或m=0,系数不为0可m2≠0,m≠2,所以得m=0.考点:一次函数的定义. 学科@网6.如图,已知函数b x y +=2与函数3-=kx y 的图象交于点P ,则不等式b x kx +>-23的解是 .【答案】x <4. 【解析】考点:一次函数与一元一次不等式.7.如图,在平面直角坐标系xOy 中,直线l 的表达式是33y x =,点A 1坐标为(0,1),过点A 1作y 轴的垂线交直线l 于点B 1,以原点O 为圆心,OB 1长为半径画弧交y 轴于点A 2;再过点A 2作y 轴的垂线交直线l 于点B 2,以原点O 为圆心,OB 2长为半径画弧交y 轴于点A 3,…,按此作法进行下去,点B 4的坐标为 ,OA 2015= .【答案】(83,8),20142.【解析】直线33y x =,点A 1坐标为(0,1),过点A 1作y 轴的垂线交直线l 于点B 1,可知B 1点的坐标为(3,1),以原点O 为圆心,OB 1长为半径画弧交y 一轴于点A 2,OA 2=OB 1=2OA 1=2,点A 2的坐标为(0,2),这种方法可求得B 2的坐标为(23,2),故点A 3的坐标为(0,4),B 3的坐标为(434),3-=kx y xybx y +=24 6O P点A 4的坐标为(0,8),B 4的坐标为(83,8),此类推便可求出点A n 的坐标为(0,12n -).所以点A 2015的坐标为(0,20142).所以OA 2015=20142.故答案为:(83,8),20142.考点:一次函数图象上点的坐标特征;规律型.学科@网 8. 已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,直线l 1:y =x +5与直线l 2:112y x =--的交点坐标为 . 【答案】(﹣4,1).【分析】根据一次函数与二元一次方程组的关系进行解答即可.【解析】∵二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,∴直线l 1:y =x +5与直线l 2:112y x =--的交点坐标为(﹣4,1),故答案为:(﹣4,1). 考点:一次函数与二元一次方程(组).9. 我们规定:若m =(a ,b ),n =(c ,d ),则m n ⋅=ac +bd .如m =(1,2),n =(3,5),则m n ⋅=1×3+2×5=13. (1)已知m =(2,4),n =(2,﹣3),求m n ⋅;(2)已知m =(x ﹣a ,1),n =(x ﹣a ,x +1),求y =m n ⋅,问y =m n ⋅的函数图象与一次函数y =x ﹣1的图象是否相交,请说明理由. 【答案】(1)﹣8;(2)不相交.【分析】(1)直接利用m =(a ,b ),n =(c ,d ),则m n ⋅=ac +bd ,进而得出答案; (2)利用已知的出y 与x 之间的函数关系式,再联立方程,结合根的判别式求出答案. 【解析】(1)∵m =(2,4),n =(2,﹣3),∴m n ⋅=2×2+4×(﹣3)=﹣8;(2)∵m =(x ﹣a ,1),n =(x ﹣a ,x +1),∴y =m n ⋅=2()(1)x a x -++=22(21)1x a x a --++,∴22(21)1y x a x a =--++,联立方程:22(21)11x a x a x --++=-,化简得:22220x ax a -++=,∵△=24b ac -=﹣8<0,∴方程无实数根,两函数图象无交点.考点:二次函数的性质;根的判别式;一次函数的性质;新定义.10. 已知点P (0x ,0y )和直线y =kx +b ,则点P 到直线y =kx +b 的距离证明可用公式d 0021kx y b k-++计算.例如:求点P (﹣1,2)到直线y =3x +7的距离. 解:因为直线y =3x +7,其中k =3,b =7. 所以点P (﹣1,2)到直线y =3x +7的距离为:d =0021kx y b k -++=23(1)271k ⨯--++=210=105. 根据以上材料,解答下列问题:(1)求点P (1,﹣1)到直线y =x ﹣1的距离;(2)已知⊙Q 的圆心Q 坐标为(0,5),半径r 为2,判断⊙Q 与直线39y x =+的位置关系并说明理由; (3)已知直线y =﹣2x +4与y =﹣2x ﹣6平行,求这两条直线之间的距离. 【答案】(1)22;(2)相切;(3)25. 【分析】(1)根据点P 到直线y =kx +b 的距离公式直接计算即可;(2)先利用点到直线的距离公式计算出圆心Q 到直线39y x =+,然后根据切线的判定方法可判断⊙Q 与直线39y x =+相切;(3)利用两平行线间的距离定义,在直线y =﹣2x +4上任意取一点,然后计算这个点到直线y =﹣2x ﹣6的距离即可.考点:一次函数综合题;综合题;阅读型.学科@网二练能力——综合运用1.P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数12y x =-图象上的两点,下列判断中,正确的是( )A .y 1>y 2,B .y 1<y 2C .当x 1<x 2时,y 1<y 2D .当x 1<x 2时,y 1>y 2 【答案】D.考点:一次函数图象上点的坐标特征.2.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),则不等式2x < ax + 4的解集为( )A .23<x B .3<x C .23>x D .3>x 【答案】A 【解析】试题分析:由图象可知不等式2x < ax + 4的解集为x <m ,因为函数y=2x 和y=ax+4的图象相交于点A (m ,3),所以把点A (m ,3)代入y=2x 得m=23,所以x<23,故选A.考点:1.函数图象的交点;2.函数图像与不等式的关系.3. 已知k 、b 是一元二次方程(21)(31)0x x +-=的两个根,且k >b ,则函数y kx b =+的图象不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】B .考点:1.一次函数图象与系数的关系;2.解一元二次方程因式分解法.4.如图,点A 1(2,2)在直线y =x 上,过点A 1作A 1B 1∥y 轴交直线12y x =于点B 1,以点A 1为直角顶点,A 1B 1为直角边在A 1B 1的右侧作等腰直角△A 1B 1C 1,再过点C 1作A 2B 2∥y 轴,分别交直线y =x 和12y x =于A 2,B 2两点,以点A 2为直角顶点,A 2B 2为直角边在A 2B 2的右侧作等腰直角△A 2B 2C 2…,按此规律进行下去,则等腰直角△A n B n C n 的面积为 .(用含正整数n 的代数式表示)【答案】222132n n --.【分析】先根据点A 1的坐标以及A 1B 1∥y 轴,求得B 1的坐标,进而得到A 1B 1的长以及△A 1B 1C 1面积,再根据A 2的坐标以及A 2B 2∥y 轴,求得B 2的坐标,进而得到A 2B 2的长以及△A 2B 2C 2面积,最后根据根据变换规律,求得A n B n 的长,进而得出△A n B n C n 的面积即可. 【解析】∵点A 1(2,2),A 1B 1∥y 轴交直线12y x =于点B 1,∴B 1(2,1) ∴A 1B 1=2﹣1=1,即△A 1B 1C 1面积=2112⨯=12; ∵A 1C 1=A 1B 1=1,∴A 2(3,3),又∵A 2B 2∥y 轴,交直线12y x =于点B 2,∴B 2(3,32),∴A 2B 2=3﹣32=32,即△A 2B 2C 2面积=213()22⨯=98; 以此类推,A 3B 3=94,即△A 3B 3C 3面积=219()24⨯=8132;A 4B 4=278,即△A 4B 4C 4面积=2127()28⨯=729128;…∴A n B n =13()2n -,即△A n B n C n 的面积=1213[()]22n -⨯=222132n n --.故答案为:222132n n --.考点:一次函数图象上点的坐标特征;等腰直角三角形;规律型;综合题.5. 在直角坐标系中,直线1y x =+与y 轴交于点A ,按如图方式作正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 1C 2…,A 1、A 2、A 3…在直线1y x =+上,点C 1、C 2、C 3…在x 轴上,图中阴影部分三角形的面积从左到游依次记为1S 、2S 、3S 、…n S ,则n S 的值为 (用含n 的代数式表示,n 为正整数).【答案】232n -.6. 如图所示,在平面直角坐标系中,过点A (3-0)的两条直线分别交y 轴于B 、C 两点,且B 、C 两点的纵坐标分别是一元二次方程2230x x --=的两个根.(1)求线段BC 的长度;(2)试问:直线AC 与直线AB 是否垂直?请说明理由; (3)若点D 在直线AC 上,且DB =DC ,求点D 的坐标;(4)在(3)的条件下,直线BD 上是否存在点P ,使以A 、B 、P 三点为顶点的三角形是等腰三角形?若存在,请直接写出P 点的坐标;若不存在,请说明理由.【答案】(1)4;(2)垂直;(3)D (23-,1);(4)P (33-,0),(3-,2),(﹣3,33-),(3,33+). 【分析】(1)解出方程后,即可求出B 、C 两点的坐标,即可求出BC 的长度;(2)由A 、B 、C 三点坐标可知2OA =OC •OB ,所以可证明△AOC ∽△BOA ,利用对应角相等即可求出∠CAB =90°;(3)容易求得直线AC 的解析式,由DB =DC 可知,点D 在BC 的垂直平分线上,所以D 的纵坐标为1,将其代入直线AC 的解析式即可求出D 的坐标;(4)A 、B 、P 三点为顶点的三角形是等腰三角形,可分为以下三种情况:①AB =AP ;②A B =BP ;③AP =BP ;然后分别求出P 的坐标即可.【解析】(1)∵2230x x --=,∴x =3或x =﹣1,∴B (0,3),C (0,﹣1),∴BC =4;(2)∵A (3-0),B (0,3),C (0,﹣1),∴OA 3OB =3,OC =1,∴2OA =OB •OC ,∵∠AOC =∠BOA =90°,∴△AOC ∽△BOA ,∴∠CAO =∠ABO ,∴∠CAO +∠BAO =∠ABO +∠BAO =90°,∴∠BAC =90°,∴AC ⊥AB ;(3)设直线AC 的解析式为y =kx +b ,把A (3-0)和C (0,﹣1)代入y =kx +b ,∴103b k b-=⎧⎪⎨=+⎪⎩,解得:31k b ⎧=⎪⎨⎪=-⎩,∴直线AC 的解析式为:313y x =--,∵DB =DC ,∴点D 在线段BC 的垂直平分线上,∴D 的纵坐标为1,∴把y =1代入313y x =--,∴x =23-,∴D 的坐标为(23-,1); (4)设直线BD 的解析式为:y =mx +n ,直线BD 与x 轴交于点E ,把B (0,3)和D (23-,1)代入y =mx +n ,∴3123n m n =⎧⎪⎨=-+⎪⎩,解得:333m n ⎧=⎪⎨⎪=⎩,∴直线BD 的解析式为:333y x =+,令y =0代入333y x =+,∴x =33-,∴E (33-,0),∴OE =33,∴tan ∠BEC =OB OE =33,∴∠BEO =30°,同理可求得:∠ABO =30°,∴∠ABE =30°.当P A =AB 时,如图1,此时,∠BEA =∠ABE =30°,∴EA =AB ,∴P 与E 重合,∴P 的坐标为(33-,0);当P A =PB 时,如图2,此时,∠P AB =∠PBA =30°,∵∠ABE =∠ABO =30°,∴∠P AB =∠ABO ,∴P A ∥BC ,∴∠P AO =90°,∴点P 的横坐标为3-,令x =3-代入333y x =+,∴y =2,∴P (3-,2); 当PB =AB 时,如图3,∴由勾股定理可求得:A B =23,EB =6,若点P 在y 轴左侧时,记此时点P 为P 1,过点P 1作P 1F ⊥x 轴于点F ,∴P 1B =AB =23,∴EP 1=6﹣23,∴sin ∠BEO =11FP EP ,∴FP 1=33-,令y =33-代入333y x =+,∴x =﹣3,∴P 1(﹣3,33-);若点P 在y 轴的右侧时,记此时点P 为P 2,过点P 2作P 2G ⊥x 轴于点G ,∴P 2B =A B =23,∴EP 2=6+23,∴sin ∠BEO =22GP EP ,∴GP 2=33+,令y =33+代入333y x =+,∴x =3,∴P 2(3,33+). 综上所述,当A 、B 、P 三点为顶点的三角形是等腰三角形时,点P 的坐标为(33-,0),(3-,2),(﹣3,33-),(3,33+).考点:一次函数综合题;存在型;分类讨论;压轴题.学科@网7. 为加强公民的节水意识,合理利用水资源.某市对居民用水实行阶梯水价,居民家庭每月用水量划分为三个阶梯,一、二、三级阶梯用水的单价之比等于1:1.5:2.如图折线表示实行阶梯水价后每月水费y (元)与用水量xm3之间的函数关系.其中线段AB表示第二级阶梯时y与x之间的函数关系.(1)写出点B的实际意义;(2)求线段AB所在直线的表达式;(3)某户5月份按照阶梯水价应缴水费102元,其相应用水量为多少立方米?【答案】(1)图中B点的实际意义表示当用水25m3时,所交水费为90元;(2)94522y x=-;(3)27.考点:1.一次函数的应用;2.分段函数;3.综合题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数自我检测
(考试时间为90分钟,满分100分)
班级:_________ 姓名: ____________ 得分: ___________
一、选择题(每题3分,共30分)
1. 直线y=9_3x与x轴交点的坐标是___________ ,与y轴交点的坐标是 _________ .
1 1 、
2. 把直线y = — x _1向上平移一个单位,可得到函数 _____________________ .
2 2
3. 若点P1 (- 1, 3)和P2 (1, b)关于y轴对称,则b= ________ .
4. 若一次函数y = mx(m2)过点(0,3),贝U m _____ .
5. 函数y = x-5的自变量x的取值范围是 __________________ .
6. 如果直线y=ax+b经过一、二、三象限,那么ab _______ 0 (或“=”).
7.若直线y=2x_1和直线y = m-x的交点在第三象限,则m的取值范围是 _______________
8. 函数y= - x+2的图象与x轴,y轴围成的三角形面积为_____________ .
9. 某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10立方米的,
按每立方米m元水费收费;用水超过10立方米的,超过部分加倍收费.某职工某月缴水费16m 元,则该职工这个月实际用水为__________________ 立方米.
10. 有边长为1的等边三角形卡片若干张,使用这些三角形卡片拼出边长分别是2、3、4…的等边三角形(如图).根据图形推断每个等边三角形卡片总数S与边长n的关系式.
二、选择题(每题3分,共18分)
x-2
11. 函数y= 的自变量x的取值范围是(
A. x>-2 B .x>-2 C. x W -2
12. 一根弹簧原长12cm它所挂的重量不超过10kg,并且挂重
后弹簧长度y (cm与挂重x(kg)之间的函数关系式是(
A. y= 1.5 (x+12)(0 W x W 10)
B.
C. y= 1.5x+10 (0 W x)
D. x v -2
D.
y = 1.5 x+12 (0
y = 1.5( x —12)
1kg就伸长1.5cm,写出挂重
)
W x W 10)
(0 W x W 10)
13.无论m 为何实数,直线 y = x • 2m 与y = 14.某兴趣小组做实验,将一个装满水的啤酒瓶倒置(如图), 并设法使瓶里的水从瓶中匀速流出.那么该倒置啤酒瓶内水面 高度h 随水流出的时间t 变化的图象大致是
-x 4的交点不可能在(
D.第四象限
h h h h
O O O
A.第一象限
B.第二象限
C.第三象限
3
A. B. C. D.
1 c 「 y x
2 ,当-1 3
_
3
y ::
_ 2 2 2 2 16.某学校组织团员举行申奥成功宣传活动, 出发,先上坡到达 宣传8分钟返回, 度仍保持不变,在 返回学校用的时间是( A.45.2分钟 15.已知函数 V X W 1
时,
的取值范围是( A.2y" B.
A 地后,宣传8分钟; 行程情况如图•若返回时
A 地仍要宣传8分钟,
) 分钟 C.
一 v y 兰一
D. —
2
2 2 从学校骑车
y
然后下坡到 B 地 EuJ
,上、下坡速 T
O
那么他们从 B 地
36 A
3 5
B.48
46时|町廿、
C.46分钟
D.33 分钟 三、解答题(第17—20题每题10分,第21题12分,共52分) 17.观察图,先填空,然后回答问题: (1) ___________________________
由上而下第n 行,白球有 个;黑球有 个. (2) 若第n 行白球与黑球的总数记作 y ,则请你用含n 的代数式表示y ,并指出其中n 的取 值范围. O O O
O
•
18.已知,直线 y =2x +3与直线y =-2 x -1. (1) 求两直线与y 轴交点A ,B 的坐标; (2) 求两直线交点 C 的坐标; (3 )求厶ABC 的面积. 19.旅客乘车按规定可以免费携带一定重量的行李•如果所带行李超过了规定的重量,就
已知旅客所付行李费 y (元)可以看成他们携带的行 1
y x -5 .画出这个函数的图象,并求旅客最多可以
6
20. 某医药研究所开发一种
新药
,如果成人按规定的剂
每毫升血液中含药量 y 与时间t 之间近似满足如图
1 1
(1) 分别求出t " 和t 时,y 与t 之间的函
2 2
数关系式;
(2) 据测定:每毫升血液中含药量不少于 4微克 时治疗疾病有效,假如某病人一天中第一次服药 为7:00,那么服药后几点到几点有效
?
21. 某军加油飞机接到命令,立即给另一架正在飞行 的运
输飞机进行空中加油.在加油的过程中, 设运输飞机的油箱余油量为
Q 吨,加油飞机的
加油油箱的余油量为 Q 吨,加油时间为t 分钟, Q 、
Q 与t 之间的函数关系如图.回答问题:
(1) 加油飞机的加油油箱中装载了多少吨油? 将这些油全部加给运输飞机需要多少分钟? (2) 求加油过程中,运输飞机的余油量
Q (吨)
与时间t (分钟)的函数关系式;
(3) 运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用? 请通过计算说明理由.
要按超重的千克收取超重行李费. 李质量x (千克)的一次函数为 免费携带多少千克的行李?
四、附加题(做对另加10分,若整卷总分超过 100分以100分计算)
22•将长为30cm 宽为10cm 的长方形白纸,按如图所示的方发粘合起来,粘合部分的宽为 3cm 设x 张白纸粘合后的总长度为 ycm 写出y 与x 的函数关系式,并求出当x =20时,y 的值•
J —30 —
答案
19. (1) y =12x (0W t 乞丄);y =-0.8 x +6.4
(t-1)
2 2
1
⑵ 若y 》4时,贝V
- x 乞3,所以7:00服药后,7:20到10:00有效
3
1
20. 函数y X -5(X A 30)的图象如右图所示.
6
当 y = 0 时,x = 30. 所以旅客最多可以免费携带 30千克的行李.
21. (1) 30 吨油,需10分钟
(2)设Q = kt + b ,由于过(0,30)和(10,65)点,可求得:
7. R K -1 8. 2 9. 13 10.
2
s 二 n
11. B
12. B 13. C
14. A 15. D 16. A
17.(1) n ,2 n -1; (2) y = 3 n -1 ( n 为正整数)
18. (1) A ( 0, 3) ,B (0, -1 )
1
;(2) C(-
1,1); △ ABC 的面积=(3+1) 1 -=2 1. (3,0)( 0,9) 2. y =0.5x -0.5 3. 3 4.
—1 5. x >5 6. >
2
Q = 2.9 t +
10
3
创如 沂克
36(0 w t w 10)
(3) 根据图象可知运输飞机的耗油量为每分钟0.1 吨,因此10 小时耗油量为
10X 60X 0.1 = 60 (吨)v 65 (吨),所以油料够用
22. y=27x+3 , 当x=20 时,y=543.。