2017门头沟区初三二模数学试卷及答案
2017-2018学年北京市门头沟区初三数学二模试卷(含答案)
门头沟区2018年初三年级综合练习(二)数 学 试 卷 2018.6一、选择题(本题共16分,每小题2分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.在2018政府工作报告中,总理多次提及大数据、人工智能等关键词, 经过数年的爆发式发展,我国人工智能在2017年迎来发展的“应用元年”,预计2020年中国人工智能核心产业规模超1500亿元,将150 000 000 000用科学计数法表示应为 A .1.5×102B .1.5×1010C .1.5×1011D .1.5×10122.如果代数式221x x -+的结果是负数,则实数x 的取值范围是 A .2x > B .2x <C .1x ≠-D .21x x <≠-且3. 下列各式计算正确的是A .3423a a a += B .236a a a ⋅= C .624a a a ÷= D .238()a a = 4.边长相等的正五边形与正六边形按如图所示拼接在一起,则∠ABO 的度数为6.数轴上分别有A 、B 、C 三个点,对应的实数分别为a 、b 、c 且满足,a c >,0b c ⋅<,则原点的位置A .点A 的左侧B .点A 点B 之间C .点B 点C 之间D .点C 的右侧 7. 如图,已知点A ,B ,C ,D 是边长为1的正方形的顶点,连接任意两点均可得到一条线段,以下的树状图是所有可能发生的结果,在连接两点所得的所有线段中任取一条线段,取到长度为1的线段的概率为A .14B .13C .12 D .238.某中学举办运动会,在1500米的项目中,参赛选手在200米的环形跑道上进行,下图记录了跑得最快的一位选手与最慢的一位选手的跑步全过程(两人都跑完了全程),其中x 代表的是最快的选手全程的跑步时间,y 代表的是这两位选手之间的距离,下列说不合理的是 AB 第二次相遇的用时短;C .最快的选手到达终点时,最慢的选手还有415米未跑;D .跑的最慢的选手用时446′″.二、填空题(本题共16分,每小题2分) 9.两个三角形相似,相似比是12,如果小三角形的面积是9,那么大三角形的面积是______. 10. 写出一个不过原点,且y 随x 的增大而增大的函数_________. 11. 如果23410a a +-=,那么2(21)(2)(2)a aa +--+的结果是 .12.某生产商生产了一批节能灯,共计10000个,为了测试节能灯的使用寿命(使用寿命大于等于6000小时为合格产品),从中随机挑选了100个产品进行测试,有5个不合格产品,预计这批节能灯有_________个不合格产品.a AB CCAD)DDCD C B 另一顶点1个顶点开始13. 如图,⊙O的直径CD垂直弦AB于点E,且CE=2,AB=8,则OB的长为________.14. 某校为学生购买名著《三国演义》100套、《西游记》80套,共用了12000元,《三国演义》每套比《西游记》每套多16元,求《三国演义》和《西游记》每套各多少元?设西游记每套x元,可列方程为_____________________.15.如图:已知Rt ABC请利用学过的变换(平移、旋转、轴对称)知识经过若干次图形变化,使得点A与点E重合、点B与点D重合,写出一种变化的过程_____.16.以下是通过折叠正方形纸片得到等边三角形的步骤依据是________________________.三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26、27题7分,第28题8分)解答应写出文字说明,演算步骤或证明过程. 17.计算:()032232cos30π-++-+︒.18. 解不等式组:30229+2.xx x ⎧-⎪⎨⎪+⎩≤,≤4()19.已知:如图,在Rt △ABC 中,∠C =90°,点D 在CB 边上,∠DAB =∠B ,点E 在AB 边上且满足∠CAB =∠BDE . 求证: AE =BE .20. 如图,在平面直角坐标系xOy 中,一次函数y x =与反比例函数ky x=(k ≠0)的图象相交于点(2,2)M .(1)求k 的值;(2)点(0,)P a 是y 轴上一点,过点P 且平行于x 轴的直线分别与一次函数y x =、反比例函数ky x=的图象相交于点1(,)A x b 、2(,)B x b , 当12x x <时,画出示意图并直接写出a 的取值范围.21.如图,以BC 为底边的等腰△ABC ,点D ,E ,G 分别在BC ,AB ,AC 上,且EG ∥BC ,DE ∥AC ,延长GE 至点F ,使得BF =BE . (1)求证:四边形BDEF 为平行四边形;(2)当∠C =45°,BD =2时,求D ,F 两点间的距离.22.已知:关于x 的一元二次方程22(1)20(0)ax a x a a --+-=>. (1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中1x >2x ).若y 是关于a 的函数,且212y ax x =-,求这个函数的表达式.23.如图,BC 为⊙O 的直径,CA 是⊙O 的切线,连接AB 交⊙O 于点D ,连接CD ,∠BAC 的平分线交BC 于点E ,交CD 于点F . (1)求证:CE =CF ;(2)若BD =43DC ,求DF CF的值.24. 在“朗读者”节目的影响下,某中学在暑期开展了“好书伴我成长”读书话动,并要求读书要细读,最少要读完2本书,最多不建议超过5本。
2017-2018北京市各区初三数学期末考试-门头沟区答案
门头沟区2017~2018学年度第一学期期末调研评分标准九年级数学一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)三、解答题(本题共68分,第17题-24题,每小题5分,第25题6分,第26题7分,第27题7分, 第28题8分)解答应写出文字说明、演算步骤或证明过程 17.(本小题满分5分) 解:原式124=+-…………………………………………………………………………4分 3.=………………………………………………………………………………………………5分18.(本小题满分5分) 证明:∵ AB =AC ,BD =CD∴ AD BC ⊥, ……………………………………2分∵ CE ⊥AB∴90ADB BEC ∠=∠=︒……………………………………4分 ∵B B ∠=∠ABD CBE ∴△∽△ ……………………………………5分19.(本小题满分5分) 解:(1)y =x 2+2x -3=x 2+2x +1-1-3 ……………………………………………………………………………2分 =(x +1)2-4. …………………………………………………………………… …………3分 (2)∵y =(x +1)2-4,∴该二次函数图象的顶点坐标是(-1,-4).…………………………………………5分20.(本小题满分5分)原式=22211m m m m m ++⋅+ =22(1)1m m m m +⋅+ =2m m +. ………………3分 ∵ m 是方程230x x +-=的根,∴ 230m m +-=.∴ 23m m +=. ………………………5分21.(本小题满分5分) 解:(1)∵反比例函数2my x=(0k ≠)的图象过(2,2), ∴22m=, ……………………………………………………………1分 解得4m = ∵直线10y kx k =≠()的图象过(2,2), ∴22k =,解得1k = ……………………………………………………………2分(2)示意图:正确 ……………………………………………………………3分p p 或 …………………………………………………5分22.(本小题满分5分)解:根据题意补全图形如下:(1)可知60MN =,30NQ =,∠AMQ =30°,∠BMQ =60° …1分(2)在Rt △ADB 中,由MN =60,∠AMQ =30°,根据三角函数可得AN = ………………………………………2分(3)过点A 作 AK ⊥BQ 于K ,可得四边形AKQN 是矩形,进而得出AK =NQ =30,KQ =AN = ………………………………………3分 (4)在Rt △BMQ 中,由MQ =MN+NQ=90,∠BMQ =60°,根据三角函数可得BQ =,进而可求出BK =………………………………………4分(5)在Rt △AKB 中,根据勾股定理可以求出AB 的长度. …………………………5分 23.(本小题满分5分)(1)证明:令y =0,可得2(1)10kx k x +++=∵11a k b k c ==+=,,∴△=221k k -+……………………………………………………………………………1分=2(1)k - …………………………………………………………………………………2分 ∵2(1)0k -≥∴此二次函数的图象与x 轴总有交点.………………………………………………………3分(2)解:令y =0,得2(1)10kx k x +++=解得 x 1=1(1)12k k k k --+-=-,x 2=1(1)12k k k----=-………………………………4分∵k 为整数,解为整数∴1k =±. ………………………………………………………………………………5分24.(本小题满分5分) (1)证明:连接OE ,∵AC 与圆O 相切,∴OE ⊥AC ,…………….1分 ∵BC ⊥AC ,∴OE ∥BC ,又∵O 为DB 的中点,∴E 为DF 的中点,即OE 为△DBF 的中位线, ∴OE =BF , 又∵OE =BD ,∴BF =BD ;……………………………………….2分 (2)设BC =3x ,4tan 3B ∠=可得:AB =5x , 又∵CF =2, ∴BF =3x +2,由(1)得:BD =BF , ∴BD =3x +2, ∴OE =OB =322x +,AO =AB ﹣OB =3272522x x x +--=∵OE ∥BF ,∴∠AOE =∠B , ……………………………………………………………………………………4分 ∴cos ∠AOE =cos B ,即32232725OE x AO x +=⋅=-, 解得: 83x =则圆O 的半径为3210522x +==………………………………………………………………………5分25.(本小题满分6分)(1)2.3 ……………………………………………………………………1分 (2)坐标系正确 ……………………………………………………3分 描点正确 ……………………………………………………4分 连线正确 ……………………………………………………5分 (3)2.6 ……………………………………………………………………6分 26. (本小题满分7分)(1)选择坐标代入正确 ………………………………………………1分 得出表达式243y x x =-+………………………………………………3分(2)找到位置画出示意图 ① 214x x -=………………………………………………4分②由图象易得当y=0时212x x -=由于该函数图象的对称轴为2x =, 1(,)P x y ,2(,)Q x y ,在对称轴左右两侧对称分布,所以两点到对称轴的距离相等 所以,当213x x -=时即PQ =3 ∴MP = MN -PN =31222-=………………………………………………5分 ∴112x =代入243y x x =-+,解得54y =………………………………………6分 综上所述:504y ≤≤………………………………………7分27.(本小题满分7分)(1) AD CB AB += ……………………………………………1分(2)补全图形正确 ………………………………………2分 结论:AD CB AB +>………………………………………3分 理由:如图:将线段AB 沿AD 方向平移AD 的长度,得到线段DE ,联结BE 、CE ,且可得AB DE ∥且AB DE =∴四边形A 、B 、E 、D 是平行四边形………………………4分 ∴AD BE = ∵AB CD = ∴DE CD =∵AB DE ∥,60AOD ∠=︒∴DCE △是等边三角形……………………………………5分 ∴CE AB =由于AD 与CB 不平行,所以C 、B 、E 构成三角形∴BE CB CE +>……………………………………………6分 ∴AD CB AB +>(3)AD CB AB +≥ …………………………………………7分 28.(本小题满分8分)解:(1)点B ,点C ; …………………………………………2分 (2)90°………………………………………………………3分 (3)当⊙W 运动到摇摆角的内部,与PF 左边的射线相切时如图28-1∵点(2,3)P 的摇摆角为60° ∴30KPF ∠=︒,3PF =在Rt △PFK 中, tan tan 30KFKPF PF∠=∠︒=在可求得KF = ∵30KPF ∠=︒, ∴60PKF ∠=︒在Rt △PFK 中, sin sin 60QW QKF KW∠=∠︒=,可求得KW ∴22OW OF KF KW =-+= 当⊙W 运动到摇摆角的内部,与PF 右边的射线相切时如图28-2 同理可求得OW∴2a ≤说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。
北京市门头沟区2017年中考一模数学试题(含答案)
门头沟区2017~2017学年度初三一模试卷数 学一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.-5的倒数是A .5B .15C .-5D .15-2.2017年3月5日,李克强总理在政府工作报告中指出:2017年全国城镇新增就业人数约13 100 000人,创历史新高.将数字13 100 000用科学记数法表示为 A .13.1×106B .1.31×107C .1.31×108D .0.131×1083.在五张完全相同的卡片上,分别写有数字0,-1,-2,1,3,现从中随机抽取一张,抽到写有负数的卡片的概率是A.15B .45 C .35D .254.在下面四个几何体中,俯视图是三角形的是①②③④A .①B .②C .③D . ④5.已知反比例函数的表达式为1k y x-=,它的图象在各自象限内具有y 随x 增大而减小的特点,那么k 的取值范围是A .k >1B .k <1C .k >0D .k <0DABCE 6.如图,直线AB ∥CD ,BE 平分∠ABC ,交CD 于D , ∠CDB =30°,那么∠C 的度数为 A .120°B .130°C .100°D .150°7.小明同学在社会实践活动中调查了20户家庭六月份的用水量,具体数据如下表所示:A .5,7B .7,7C .7,8D .3,78.如图,⊙O 的直径AB 与弦CD (不是直径)交于点E , 且CE =DE ,∠A =30°,OC = 4,那么CD 的长为 A . B .4 C .D .89.如图是某一正方体的展开图,那么该正方体是A B C D10.如图1,一个电子蜘蛛从点A 出发匀速爬行,它先沿线段AB 爬到点B ,再沿半圆经过点M 爬到点C .如果准备在M 、N 、P 、Q 四点中选定一点安装一台记录仪,记录电子蜘蛛爬行的全过程.设电子蜘蛛爬行的时间为x ,电子蜘蛛与记录仪之间的距离为y ,表示y 与x 函数关系的图象如图2所示,那么记录仪可能位于图1中的CBA MN PQOx y图1 图2A. 点MB. 点NC. 点PD. 点Q二、填空题(本题共18分,每小题3分) 11.5的算术平方根是 . 12.当分式21x x -+的值为0时,x 的值为 . 13.分解因式:21025ax ax a -+= .14光线从点A 出发经平面镜反射后刚好射到城墙CD 已知AB ⊥BD ,CD ⊥BD ,AB =1.2米,BP =1.8米, PD =12米, 那么该城墙高度CD= 米.15.学习了三角形的有关内容后,张老师请同学们交流这样一个问题:“已知一个等腰三角形的周长是12,其中一条边长为3,求另两条边的长”.同学们经过片刻思考和交流后,小明同学举手讲:“另两条边长为3、6或4.5、4.5” ,你认为小明回答是否正确: ,理由是 . 16.如图,在平面直角坐标系xOy 中,二次函数y =-x 2-2x 图象位于x 轴上方的部分记作F 1 ,与x 轴交于点P 1 和O ;F 2与F 1关于点O 对称,与x 轴另一个交点为P 2;F 3与F 2关于点P 2对称,与x 轴另一个交点为P 3;….这样依次得到F 1,F 2,F 3,…,F n ,则其中F 1的顶点坐标为 , F 8的顶点坐标为 ,F n 的顶点坐标为 (n 为正整数,用含n 的代数式表示).Ox…y P 1P 2P 3P 4F 1F 2F 3F 4P 5F 5三、解答题(本题共30分,每小题5分)17.如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,∠A =∠F ,AB =FD . 求证:AE =FC .18.计算:(01112cos30()4-+-︒+.EA DFB C19.解不等式组32,2.3x xxx+⎧⎪+⎨⎪⎩>≥20.已知x2-2x-7=0,求(x-2)2+(x-3)(x+3) 的值.21.已知关于x的一元二次方程x2+2x+k-2=0有两个不相等的实数根.(1)求k的取值范围;(2)当k为正整数,且该方程的根都是整数时,求k的值.22.列方程或方程组解应用题:EDBOCA北京快速公交4号线开通后,为响应“绿色出行”的号召,家住门头沟的李明上班由自驾车改为乘公交.已知李明家距上班地点18千米,他乘公交平均每小时行驶的路程比他自驾车平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交所用时间是自驾车所用时间的37,问李明自驾车上班平均每小时行驶多少千米?四、解答题(本题共20分,每小题5分)23. 如图,菱形ABCD 的对角线AC 和BD 交于点O ,分别过点C 、D 作CE ∥BD ,DE ∥AC ,CE 和DE 交于点E . (1)求证:四边形ODEC 是矩形;(2)当∠ADB =60°,AD=时,求tan ∠EAD 的值.24.2017年1月10日,国内成品油价格迎来了首次降低,某调查员就“汽油降价对用车的影响”这一问题向有机动车的私家车车主进行了问卷调查,并制作了统计图表的一部分如下:汽油降价对用车影响的BCDE A24%52%10%4%扇形统计图人数汽油降价对用车影响的条形统计图500(1)结合上述统计图表可得:p = ,m = ; (2)根据以上信息,补全条形统计图;(3)2017年1月末,某市有机动车的私家车车主约200 000人,根据上述信息,请你估计一下持有“影响不大”这种态度的车主约有多少人?25.如图,在△ABC 中,AB=AC ,以AC 为直径作⊙O 交BC 于点D ,过点D 作⊙O 的切线EF ,交AB 和AC 的延长线于E 、F . (1)求证:FE ⊥AB ;(2)当AE =6,sin ∠CFD =35时,求EB 的长.26.阅读下面材料:小明遇到这样一个问题:如图1,在Rt △ABC 中,∠ACB =90°,∠A =60°,CD 平分∠ACB ,试判断BC 和AC 、AD 之间的数量关系.小明发现,利用轴对称做一个变化,在BC 上截取CA′=CA ,连接DA′,得到一对全等的三角形,从而将问题解决(如图2).A'DDCCAA图1 图2请回答:(1)在图2中,小明得到的全等三角形是△ ≌△ ;(2)BC 和AC 、AD 之间的数量关系是 .参考小明思考问题的方法,解决问题:如图3,在四边形ABCD 中,AC 平分∠BAD ,BC =CD =10,AC =17,AD =9. 求AB 的长.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)图3DCBAOyx27.已知:关于x 的一元二次方程-x 2+(m +1)x +(m +2)=0(m >0).(1)求证:该方程有两个不相等的实数根; (2)当抛物线y =-x 2+(m +1)x +(m +2)经过点(3,0),求该抛物线的表达式;(3)在(2)的条件下,记抛物线y =-x 2+(m +1)x +(m +2)在第一象限之间的部分为图象G ,如果直线 y =k (x +1)+4与图象G 有公共点,请结合函数的图象,求直线y =k (x +1)+4与y 轴交点的纵坐标t 的取值范围.28.在Rt △ABC 中,∠ACB =90°,D 是AB 的中点,DE ⊥BC 于E ,连接CD .(1)如图1,如果∠A =30°,那么DE 与CE 之间的数量关系是 . (2)如图2,在(1)的条件下,P 是线段CB 上一点,连接DP ,将线段DP 绕点D逆时针旋转60°,得到线段DF ,连接BF ,请猜想DE 、BF 、BP 三者之间的数量关系,并证明你的结论.(3)如图3,如果∠A =α(0°<α<90°),P 是射线CB 上一动点(不与B 、C 重合),连接DP ,将线段DP 绕点D 逆时针旋转2α,得到线段DF ,连接BF ,请直接写出DE 、BF 、BP 三者之间的数量关系(不需证明).DBFE DAB E DAB C C CP AE图1 图2 图329.如图,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c (a >0)的顶点为M ,直线y =m与x 轴平行,且与抛物线交于点A 和点B ,如果△AMB 为等腰直角三角形,我们把抛物线上A 、B 两点之间部分与线段AB 围成的图形称为该抛物线的准蝶形,顶点M 称为碟顶,线段AB 的长称为碟宽.AABBMMOxyy=m准蝶形AMB(1)抛物线212y x的碟宽为 ,抛物线y =ax 2(a >0)的碟宽为 . (2)如果抛物线y =a (x -1)2-6a (a >0)的碟宽为6,那么a = .(3)将抛物线y n =a n x 2+b n x +c n (a n >0)的准蝶形记为F n (n =1,2,3,…),我们定义F 1,F 2,…,F n 为相似准蝶形,相应的碟宽之比即为相似比.如果F n 与F n -1的相似比为12,且F n 的碟顶是F n -1的碟宽的中点,现在将(2)中求得的抛物线记为y 1,其对应的准蝶形记为F 1. ① 求抛物线y 2的表达式;② 请判断F 1,F 2,…,F n 的碟宽的右端点是否在一条直线上?如果是,直接写出该直线的表达式;如果不是,说明理由.门头沟区2017~2017学年度初三一模数学评分参考三、解答题(本题共30分,每小题5分)17.(本小题满分5分)证明:∵BE∥DF,∴∠ABE=∠D.……………………………………………………………1分在△ABE和△FDC中,∴△ABE≌△FDC.…………………………………………………………4分∴AE=FC.……………………………………………………………………5分18.(本小题满分5分)解:原式=124+………………………………………………4分(每个1分)=5.……………………………………………………………………………5分19.(本小题满分5分)解:322.3x xxx⎧+⎪⎨+⎪⎩>,①≥②解不等式①,得3x<.………………………………………………………2分解不等式②,得 1.x≥……………………………………………………4分∴不等式组的解集为13x≤<.……………………………………………………5分20.(本小题满分5分)解:原式22449x x x=-++-…………………………………………………………2分224 5.x x=--………………………………………………………………3分∠ABE=∠DAB=FD∠A=∠FEA DFBC∵ x 2-2x =7,∴ 原式()2225x x =--……………………………………………………4分 9.=………………………………………………………………………5分 21.(本小题满分5分) 解:(1)∵ 原方程有两个不相等的实数根,∴ △>0,……………………………………………………………………1分 即22-4(k -2)>0,∴ k <3.……………………………………………………………………2分 (2)∵k 为正整数,∴ k =1,k =2.………………………………………………………………3分 当k =1时,△=8,此时原方程的根是无理数,∴ k =1不合题意,舍去;…………………………………………………4分 当k =2时,原方程为x 2+2x =0,解得x 1=0,x 2=-2.∴ k =2.………………………………………………………………………5分22.(本小题满分5分)解:设李明自驾车上班平均每小时行使x 千米. ……………………………………1分 依题意,得xx 18739218⨯=+ ………………………………………………………2分 解得 27=x . ………………………………………………………………3分 经检验,27=x 是原方程的解,且符合题意.………………………………4分 答:李明自驾车上班平均每小时行使27千米.………………………………………5分四、解答题(本题共20分,每小题5分) 23.(本小题满分5分)(1)证明:∵ CE ∥BD ,DE ∥AC ,∴ 四边形ODEC 是平行四边形. ……………………………………1分 又 ∵菱形ABCD ,∴ AC ⊥BD ,∴ ∠DOC =90°.∴ 四边形ODEC 是矩形.………………………………………………2分(2)如图,过点E 作EF ⊥AD ,交AD 的延长线于F .∵ AC ⊥BD ,∠ADB =60°,AD=,∴ ODAO =OC =3.……………3分 ∵ 四边形ODEC 是矩形, ∴ DE =OC =3,∠ODE =90°.又∵ ∠ADO +∠ODE +∠EDF =180°, ∴ ∠EDF =30°.在Rt △DEF 中,∠F =90°,∠EDF =30°.∴ EF =1322DE =.∴ DF=………………………………………………………………………4分 在Rt △AFE 中,∠DFE =90°, ∴tan ∠EAD=32EF EF AF AD DF ===+.………………………………5分 24.(本小题满分5分) 解:(1)p =24%,m =10%;……………………………………………………2分 (2)补全条形统计图;……………………………………………………………4分 (3)48000人.……………………………………………………………………5分25.(本小题满分5分)(1)证明:连接OD . (如图) ∵ OC =OD ,∴ ∠OCD =∠ODC .∵ AB =AC , ∴∠ACB =∠B .∴ ∠ODC =∠B .∴ OD ∥AB . ………………………………………………………………1分∴ ∠ODF =∠AEF . ∵ EF 与⊙O 相切.∴ OD ⊥EF ,∴ ∠ODF =90°. ∴∠AEF =∠ODF =90°.∴ EF ⊥AB . (2)分(2)解:由(1)知:OD ∥AB ,OD ⊥EF .FEDBOCA在Rt △AEF 中,sin ∠CFD =AE AF = 35,AE =6. ∴ AF =10. …………………………………………………………………3分 ∵ OD ∥AB ,∴ △ODF ∽△AEF .∴ AE ODAF OF =. ∴10106r r -= .解得r =154. ………………………………………………………………4分 ∴ AB = AC =2r =152. ∴ EB =AB -AE =152 -6= 32. ……………………………………………5分26.(本小题满分5分)解:阅读材料(1)△ADC ≌△A ′DC ;………………………………………………………………1分(2)BC =AC +AD .……………………………………………………………………2分解决问题如图,在AB 上截取AE =AD ,连接CE . ∵ AC 平分∠BAD , ∴ ∠DAC =∠EAC . 又 ∵AC =AC , ∴ △ADC ≌△AEC . ………………………3分 ∴ AE =AD =9,CE=CD =10=BC . 过点C 作CF ⊥AB 于点F .∴ EF =BF .设EF =BF =x .在Rt △CFB 中,∠CFB =90°,由勾股定理得CF 2=CB 2-BF 2=102-x 2. 在Rt △CF A 中,∠CF A =90°,由勾股定理得CF 2=AC 2-AF 2=172-(9+x )2. ∴ 102-x 2=172-(9+x )2,解得x =6.……………………………………………………………………………4分 ∴ AB =AE +EF +FB =9+6+6=21.∴ AB 的长为21. (5)分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.(本小题满分7分)D C FE B A(1)证明:∵△= (m+1)2-4×(-1)×(m+2)=(m+3)2. ……………………………………………………………1分∵m>0,∴(m+3)2>0,即△>0,∴原方程有两个不相等的实数根. …………………………………2分(2)解:∵抛物线抛物线y=-x2+(m+1)x+(m+2)经过点(3,0),∴-32+3(m+1)+(m+2)=0,………………………………………………3分∴m=1.∴y=-x2+2x+3. ………………………………………………………4分(3)解:∵y=-x2+2x+3=-(x-1)2+4,∴该抛物线的顶点为(1,4).∴当直线y=k(x+1)+4经过顶点(1,4)时,∴4=k(1+1)+4,∴k=0,∴y=4.∴此时直线y=k(x+1)+4与y轴交点的纵坐标为4. ………………………5分∵y=-x2+2x+3,∴当x=0时,y=3,∴该抛物线与y轴的交点为(0,3).∴此时直线y=k(x+1)+4与y轴交点的纵坐标为3. ………………………6分∴3<t≤4. …………………………………………………………………7分28.(本小题满分7分)解:(1)DE.……………………………………………………………………1分(2)DE、BF、BP三者之间的数量关系是BF+BP DE.…………………2分理由如下:∵∠ACB=90°,D是AB的中点,∠A=30°∴DC=DB,∠CDB=60°.∵线段DP绕点D逆时针旋转60°得到线段DF,∴∠PDF=60°,DP=DF.又∵∠CDB=60°,∴∠CDB-∠PDB=∠PDF-∠PDB,∴∠CDP=∠BDF.∴△DCP≌△DBF.………………………………………………………3分∴ CP=BF.而CP=BC-BP,∴BF+BP=BC,……………………………………………………………4分在Rt△CDE中,∠DEC=90°,∴tanDE DCECE∠=,∴CE DE,∴ BC =2CEDE , ∴ BF +BP=DE ................................................................5分 (3)BF +BP =2DE tan α,BF -BP =2DE tan α. (7)分29.(本小题满分8分)解:(1)4,2a ; (2)分 (2)13; (3)分(3)① ∵ F 1的碟宽︰F 2的碟宽=2:1,∴12222:1a a =. ∵ a 1=13,∴ a 2=23 (4)分 又∵ 由题意得F 2的碟顶坐标为(1,1), (5)分 ∴ ()222113y x =-+ (6)分 ② F 1,F 2,...,F n 的碟宽的右端点在一条直线上;........................7分 其解析式为y =-x +5. (8)分说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。
2017-2018届北京市门头沟区九年级上学期期末考试数学试题及答案
门头沟区2017-2018学年度第一学期期末测试试卷九年级数学一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.已知325x,则x的值是A.103B.152C.310D.2152.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定3.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,则sin B 的值是A.54B.53C.45D.35AB C4.如果反比例函数1m y x+=在各自象限内,y 随x 的增大而减小,那么m 的取值范围是A .m <0B .m >0C .m <-1D .m >-15.如图,⊙O 是△ABC 的外接圆,如果o100AOB ∠=,那么 ∠ACB 的度数是 A .40° B .50° C .60°D .80°6.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6的点数,掷这个骰子一次,则掷得面朝上的点数为奇数的概率是 A .14B .16C .12D .137.将抛物线25y x =先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是 A .25(2)3y x =++ B . 25(2)3y x =-+C .25(2)3y x =--D .25(2)3y x =+-8.如图,等边三角形ABC 边长为2,动点P 从点A 出发,以每秒1个单位长度的速度,沿A →B →C →A 的方向运动,到达点A 时停止.设运动时间为x 秒,y =PC ,则y 关于x 函数的图象大致为A B CD二、填空题:(本题共16分,每小题4分)9. 扇形的半径为9,圆心角为120°,则它的弧长为_______. 10.三角尺在灯泡O 的照射下在墙上形成的影子如图所示. 如果OA =20cm ,OA ′=50cm ,那么这个三角尺的周长与它在墙上形成影子的周长的比是 .11. 如图,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c (a ≠0)的对称轴是直线13x =,在下列结论中,唯一正确的是 . (请将正确的序号填在横线上) ① a <0;② c <-1; ③ 2a +3b =0;④ b 2-4ac <0;⑤ 当x =13时,y 的最大值为99c a -.12.如图,在平面直角坐标系xOy 中,正方形ABCD 顶点A(-1,-1)、B (-3,-1). 我们规定“把正方形ABCD 先沿x 轴翻折,再向右平移2个单位”为一次变换. (1)如果正方形ABCD 经过1次这样的变换得到正方形A 1B 1C 1D 1,那么B 1的坐标是 .影子三角尺灯泡OA A'(2)如果正方形ABCD 经过2017-2018次这样的变换得到正方形A 2017-2018B 2017-2018C 2017-2018D 2017-2018,那么B 2017-2018的坐标是 .三、解答题:(本题共30分,每题5分) 13.计算:tan 30cos 60tan 45sin 30.︒-︒⨯︒+︒14.已知抛物线y =x 2-4x +3.(1)用配方法将y =x 2-4x +3化成y =a (x -h )2+k 的形式; (2)求出该抛物线的对称轴和顶点坐标; (3)直接写出当x 满足什么条件时,函数y <0.15.如图,在△ABC 中,D 是AB 上一点,且∠ABC =∠ACD . (1)求证:△ACD ∽△ABC ;(2)若AD =3,AB =7,求AC 的长.[来16.如图,热气球的探测器显示,从热气球看一栋高楼的顶部B 的仰角为45°,看这栋高楼底部C 的俯角为60°,热气球与高楼的水平距离AD为20m ,求这栋楼的高度.(结果保留根号)ABCD17.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB 于点E.(1)求证:∠BCO=∠D;AE=2,求⊙O的半径.(2)若CD=18.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数my的图象的一个交点为A(2,3).x(1)分别求反比例函数和一次函数的表达式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,请直接写出点P的坐标.四、解答题:(本题共20分,每题5分).19.如图,在锐角△ABC中,AB=AC,BC=10,sin A=35(1)求tan B的值;(2)求AB的长.20.在平面直角坐标系xOy中,抛物线y=-x2+bx+c经过点(-3,0)和(1,0).(1)求抛物线的表达式;(2)在给定的坐标系中,画出此抛物线;(3)设抛物线顶点关于y轴的对称点为A,记抛物线在第二象限之间的部分为图象G.点B是抛物线对称轴上一动点,如果直线AB与图象G有公共点,请结合函数的图象,直接写出点B纵坐标t的取值范围.21.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O的切线,BF交AC的延长线于F.(1)求证:∠CBF=1∠CAB.2(2)若AB=5,sin∠CBF BC和BF的长.22.阅读下面材料:小明遇到这样一个问题:如图1,在等边三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB度数.小明发现,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决(如图2).图1 图2请回答:图1中∠APB的度数等于,图2中∠PP′C的度数等于.参考小明思考问题的方法,解决问题:如图3,在平面直角坐标系xOy中,点A坐标为(1),连接AO.如果点B是x轴上的一动点,以AB为边作等边三角形ABC. 当C(x,y)在第一象限内时,求y与x之间的函数表达式.五、解答题:(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x的方程mx2+(3m+1)x+3=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值;(3)在(2)的条件下,将关于x的二次函数y= mx2+(3m+1)x+3的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请结合这个新的图象回答:当直线y=x+b与此图象有两个公共点时,b的取值范围.24.矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B 落在CD边上的点P处.图1 图2 (1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长.(2)如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M、N在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,说明理由.25.我们规定:函数ax k y x b+=+(a 、b 、k 是常数,k ≠ab )叫奇特函数.当a =b =0时,奇特函数ax k y x b+=+就是反比例函数ky x=(k 是常数,k ≠0).(1)如果某一矩形两边长分别是2和3,当它们分别增加x 和y 后,得到新矩形的面积为8.求y 与x 之间的函数表达式,并判断它是否为奇特函数; (2)如图,在平面直角坐标系xOy 中,矩形OABC 的顶点A 、C 坐标分别为(6,0)、(0,3),点D 是OA 中点,连接OB 、CD 交于E ,若奇特函数4ax k y x +=-的图象经过点B 、E ,求该奇特函数的表达式;(3)把反比例函数2y x=的图象向右平移4个单位,再向上平移 个单位就可得到(2)中得到的奇特函数的图象;(4)在(2)的条件下,过线段BE 中点M 的一条直线l与这个奇特函数图象交于P ,Q 两点(P 在Q 右侧),如果以B 、E 、P 、Q 为顶点组成的四边形面积为16,请直接写出点P的坐标.以下为草稿纸门头沟区2017-2018学年度第一学期调研参考答案九 年 级 数 学一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)三、解答题(本题共30分,每题5分)13.解:tan 30cos 60tan 45sin 30︒-︒⨯︒+︒11122=-⨯+ …………………………………………………………………4分 =. …………………………………………………………………5分14.解:(1)y =x2-4x +4-4+3 …………………………………………………………1分=(x -2)2-1 (2)分(2)对称轴为直线2x =,顶点坐标为(2,-1). (4)分 (3)1<x<3. …………………………………………………………………5分15.(1)证明:∵∠A =∠A ,∠ABC =∠ACD ,…………………………………………1分∴ △A C D ∽△ABC. ……………………………………………………2分(2)解:∵ △ACD ∽△ABC ,∴.AC AD AB AC= (3)分∴ 3.7AC AC= (4)分∴AC ………………………………………………………………5分16.解:在Rt△ABD中,∠BDA=90°,∠BAD=45°,∴BD=AD=20.………………………………………………………………2分在Rt△ACD中,∠ADC=90°,∠CAD=60°,∴CD=…4分∴B C=B D+C D=20+(m).………………………………………………5分m.答:这栋楼高为(20+∴∠B C O=∠B.…………………………………………………………1分∵AC AC=,∴∠B=∠D,∴∠B C O=∠D.…………………………………………………………2分(2)解:∵AB是⊙O的直径,CD⊥AB,∴CE=11CD=⨯ (3)22分在Rt △OCE 中,OC 2=CE 2+OE 2,设⊙O 的半径为r ,则OC =r ,OE =OA -AE =r -2, ∴(()2222r r =+-,…………………………………………………4分解得:r =3,∴⊙O 的半径为3.………………………………………………………5分18.解:(1)把A (2,3)代入m y x =,∴ 32m =. ∴ m =6.∴6y x=.…………………………………………………………………1分把A (2,3)代入y =kx +2,∴2k +2=3,……………………………………………………………………2分∴ 12k =. ∴122y x =+.………………………………………………………………3分(2)P 1(1,6)或P 2(-1,-6).…………………………………………5分四、解答题(本题共20分,每题5分)19.解:(1)如图,过点C 作C D ⊥A B ,垂足为D . (1)分∵ 在Rt △ADC 中,∠ADC =90°, ∴3sin 5CD A AC ==. 设CD =3k ,则AB =AC =5k .∴AD4k ,…2分∴BD =AB -AD =5k -4k =k ,∴3tan 3CD k B BD k===. (3)分 (2)在Rt △BDC 中,∠BDC =90°, ∴BC =. ∵B C =10,∴10=, (4)分 ∴k =∴AB =5k =…5分 20.解:(1)∵抛物线y =-x 2+bx +c 经过点(-3,0)和(1,0).∴930,10.b c b c --+=⎧⎨-++=⎩………………………………………………………1分 解得2,3.b c =-⎧⎨=⎩……………………………………………………………2分∴抛物线的表达式为y =-x 2-2x +3.……………………………………3分(2)正确画出图象.…………………………………………………………4分(3)2<t ≤4.……………………………………………………………………5分21.(1)证明:连结AE .∵AB 是⊙O 的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵BF 是⊙O 的切线,∴BF ⊥AB ,∴∠CBF +∠2=90°.∴∠C B F =∠1. …………………………………………………………1分∵AB=AC ,∠AEB=90°,∴∠1=21∠CAB . ∴∠C B F =21∠CAB . ……………………………………………………2分(2)解:过点C 作CG ⊥AB 于点G .∵sin ∠CBF=55,∠1=∠CBF , ∴sin ∠1=55.∵∠AEB=90°,AB =5.∴BE=AB ·sin ∠1=5.∵AB=AC ,∠AEB=90°,∴BC=2BE =52.…………………………………………………………3分在Rt △ABE 中,由勾股定理得5222=-=BE AB AE . ∴sin ∠2=552,cos ∠2=55.在Rt △CBG 中,可求得GC=4,GB=2.∴AG=3. ……………………………………………………………………4分∵GC ∥BF ,∴△AGC ∽△ABF . ∴ABAG BF GC =, ∴320=⋅=AG AB GC BF .…………………………………………………5分22.解:图1中∠P P ′C 的度数等于90°.………………………………………………1分图1中∠A P B 的度数等于150°.………………………………………………3分如图,在y 轴上截取OD =2,作CF ⊥y 轴于F ,AE ⊥x 轴于E ,连接AD 和CD .∵点A 的坐标为(1),∴tan ∠AOE=,∴AO =OD =2,∠AOE =30°,∴∠AOD =60°.∴△A O D 是等边三角形. ………………………………………………………4分又∵△ABC 是等边三角形,∴AB =AC ,∠CAB =∠OAD =60°,∴∠CAD =∠OAB ,∴△ADC ≌△AOB .∴∠ADC =∠AOB =150°,又∵∠ADF =120°,∴∠CDF=30°..∴DF,∴y-∴y=五、解答题:(本题共22分,第23题7分,第24题7分,第25题8分)23.(1)证明:∵m≠0,∴mx2+(3m+1)x+3=0是关于x的一元二次方程.∴△=(3m+1)2-12m………………………………………………………1分=(3m-1)2.∵ (3m-1)2≥0,∴方程总有两个实数根.………………………………………………2分(2)解:由求根公式,得x1=-3,x2=1.……………………………………3分m∵方程的两个根都是整数,且m为正整数,∴m=1.……………………………………………………………………4分(3)解:∵m=1时,∴y=x2+4x+3.∴抛物线y=x2+4x+3与x轴的交点为A(-3,0)、B(-1,0).依题意翻折后的图象如图所示.…………………………………………5分当直线y=x+b经过A点时,可得b=3.当直线y=x+b经过B点时,可得b=1.∴1<b<3.…………………6分当直线y=x+b与y=-x2-4x-3的图象有唯一公共点时,可得x+b=-x2-4x-3,∴x2+5x+3+b=0,∴△=52-4(3+b) =0,.∴b=134∴b>13. (4)…7分综上所述,b的取值范围是1<b<3,b>13.4 24.解:(1)①如图1,∵四边形ABCD是矩形,∴∠C =∠D =90°.………………………………………………………1分∴∠1+∠3=90°.∵由折叠可得∠APO =∠B =90°,∴∠1+∠2=90°.∴∠2=∠3.……………………2分又∵∠D =∠C ,∴△OCP ∽△PDA .……………………………………………………3分② 如图1,∵△OCP 与△PDA 的面积比为1:4,∴12OPCP PA DA ==.∴CP =12AD =4. 设OP =x ,则CO =8-x .在Rt△PCO 中,∠C =90°,由勾股定理得 x 2=(8-x )2+42.…………………………………………4分解得:x =5.∴AB =AP =2OP =10.………………………………………………………5分∴边AB 的长为10.(2)作MQ ∥AN ,交PB 于点Q ,如图2.∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP .∴MP =MQ .又BN =PM ,∴BN =QM .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ . ∵MQ ∥AN ,∴∠QMF =∠BNF .又∵∠QFM =∠NFB ,∴△MFQ ≌△NFB .∴QF =12QB . ∴EF =EQ +QF =12PQ +12QB =12PB .……………………………………6分由(1)中的结论可得:PC =4,BC =8,∠C =90°.∴PB=EF =12PB =.∴在(1)的条件下,当点M 、N 在移动过程中,线段EF 的长度不变,它的长度为 (7)分25.解:(1)由题意得,(2+x )(3+y )=8. ∴832y x +=+. ∴832y x =-+322x x -+=+.…………………………………………………1分根据定义,322x y x -+=+是奇特函数. (2)分 (2)由题意得,B (6,3)、D (3,0),∴点E (2,1). (3)分将点B (6,3)和E (2,1)代入4ax k y x +=-得 63,6421.24a k a k +⎧=⎪⎪-⎨+⎪=⎪⎩- ……………………………………………………………4分 解得2,6.a k =⎧⎨=-⎩ ∴奇特函数的表达式为264x y x -=-.……………………………………5分(3)2.……………………………………………… (6)分 (4)P1(,4)、P 2(8,). (8)分说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分,谢谢!。
市门头沟区初三二模数学试题及答案
市门头沟区初三二模数学试题及答案Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT2011年门头沟区初三年级第二次统一练习数 学 试 卷考生须知1.本试卷共6页,共五道大题,25道小题,满分120分。
考试时间120分钟。
2.在试卷和答题卡的密封线内准确填写学校、班级和姓名。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.2的倒数是 A .12B .2C .12-D .2- 2.一种细胞的直径约为0.00000156米.将用科学记数法表示应为 A .61.5610⨯ B .61.5610-⨯ C .51.5610-⨯ D .415.610-⨯ 3.两圆的半径分别为5cm 和2cm ,圆心距为7cm ,则这两圆的位置关系是 A .内切 B .外切 C .外离 D .内含4.右图所示的是一个几何体的三视图,则这个几何体是 A .长方体 B .正方体 C .圆柱体 D .三棱柱 5.已知一组数据1,4,5,2,3,则这组数据的极差和方差分别是A .4,2B .4,3C .2,3D .1,56.若圆锥侧面展开图的扇形面积为65πcm 2,扇形的弧长为10πcm ,则圆锥的母线长是A .5cmB .10cmC .12cmD .13cm7.桌面上有三张背面相同的卡片,正面分别写有数字1、2、3.先将卡片背面朝上洗匀, 然后从中同时抽取两张,则抽到的两张卡片上的数字之积为奇数的概率是 A .16B .23C . 13D . 128.如图,正方形ABCD 的边长为2,动点P 从点C 出发, 在正方形的边上沿着C B A →→的方向运动(点P 与A 不重合). 设点P 的运动路程为x , 则下列图象中,表BA CP 主视图左视图俯视图示△ADP 的面积y 与x 的函数关系的是二、填空题(本题共16分,每小题4分)9.在函数2y x =-中,自变量x 的取值范围是 .10.如图,在△ABC 中,DE ∥BC ,AD =3,BD =6,AE =4,则EC 的长是 . 11.已知一个多边形的内角和是外角和的2倍,则这个多边形的边数是 . 12.如图,在矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在矩形ABCD 的内部, 延长BG 交DC 于点F .若DC =2DF ,则AD AB= ;若DC=nDF ,则AD AB= (用含n 的式子表示).三、解答题(本题共30分,每小题5分)131184sin 45(3)4-⎛⎫-︒+-π+ ⎪⎝⎭.14.解不等式组245(2),3(1)3,x x x x +≤+⎧⎨-<+⎩ 并求它的正整数解.4 3 2 1 0 1 2 3 x yC 43 2 1 0 12 3 x yB43 2 1 0 12 3 x y A4 3 2 1 0 1 2 3 xyDED CBAGEDCBAF15.已知:如图,DB ∥AC ,且12DB AC =,E 是AC 的中点.求证:BC=DE .16.已知20y x -=,求y x y y x y x y xy x x-++-⋅+-2222222的值.17.列方程或方程组解应用题:AECB D为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工产品的数量是甲工厂每天加工产品数量的倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品18.已知二次函数m x x y ++=22的图象与x 轴有且只有一个公共点. (1)求m 的值;(2)若此二次函数图象的顶点为A ,与y 轴的交点为B ,求A 、B 两点的坐标;(3)若1(,)P n y 、2(2,)Q y 是二次函数图象上的两点,且12y y >,请你直接写出n 的取值范围.图1A B C D四、解答题(本题共20分,每小题5分)19.如图,在梯形ABCD 中,AD 343O ⊙BC BD =O ⊙CD BF ∥O ⊙3cos 4BCD ∠= 小明把本年级学生400人的捐款情况进行了统计,并绘制成了如下不完整的频数分布表和频数分布直方图.请你根据以上图表提供的信息,解答下列问题: (1)补全频数分布表和频数分布直方图; (2)捐款金额的中位数落在哪个组内(3)若该校共有学生1600人,请你估计该校学生捐款金额不低于40元的有多少人22.如图1,有一张菱形纸片ABCD ,AC =8,BD =6.(1)若沿着AC 剪开,把它分成两部分,把剪开的两部分拼成一个平行四边形,请在图2中用实线画出你所拼成的平行四边形,并直接写出这个平行四边形的面积;(2)若沿着BD 剪开,把它分成两部分,把剪开的两部分拼成一个平行四边形,请在图3中用实线画出你所拼成的平行四边形,并直接写出这个平行四边形的周长;(3)沿着一条直线剪开,把它分成两部分,把剪开的两部分拼成与上述两种都不全等的平行四边形,请在图4中用实线画出你所拼成的平行四边形. (注:上述所画的平行四边形都不能与原菱形全等)五、解答题(本题共22分,第23、24题各7分,第25题8分)23.已知抛物线y =ax 2+bx -4a 经过A (-1,0)、C (0,4)两点,与x 轴交于另一点B .分组/元频数 频率 10≤x <20 40 20≤x <30 80 30≤x <40 40≤x <50 100 50≤x <60 20 合 计400A D FBCO EA B CD周长为DCBA图3D CBA图4图2AB CD 面积为102030405060频数(1)求抛物线的解析式;(2)若点D (m ,m +1)在第一象限的抛物线上, 求点D 关于直线BC 对称的点的坐标; (3)在(2)的条件下,连结BD ,若点P 为抛物线上一点,且∠DBP =45°,求点P 的坐标.24.已知在△ABC 和△DBE 中,AB =AC ,DB =DE ,且∠BAC =∠BDE .(1)如图1,若∠BAC =∠BDE =60°,则线段CE 与AD 之间的数量关系是 ;(2)如图2,若∠BAC =∠BDE =120°,且点D 在线段AB 上,则线段CE 与AD 之 间的数量关系是__________________;(3)如图3,若∠BAC =∠BDE =α,请你探究线段CE 与AD 之间的数量关系(用含α的式子表示),并证明你的结论.A C DB图1BACDE图3E BAC D图211yxO25.如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA = 3,AB = 5.点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A 后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BO-OP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(2)在点P从O向A运动的过程中,求△积S与t之间的函数关系式(不必写出t范围);(3)在点E从B向O运动的过程中,四边形能否成为直角梯形若能,请求出t能,请说明理由;(4)当DE经过点O时,请你直接写出t2011年门头沟区初三年级第二次统一练习数学试卷评分参考一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)C题号 9 10 11 12答案x ≥28六22n n三、解答题(本题共30分,每小题5分)13.计算: 10184sin 45(3)4-⎛⎫-︒+-π+ ⎪⎝⎭.解:1184sin 45(3)4-⎛⎫-︒+-π+ ⎪⎝⎭2224142=-⨯++ 4分 5=. 5分14.解不等式组245(2),3(1)3,x x x x +≤+⎧⎨-<+⎩ 并求它的正整数解. 解: 245(2),3(1)3,x x x x +≤+⎧⎨-<+⎩由①,得x ≥-2. 1分 由②,得x <3.2分不等式组的解集在数轴上表示如下:3分 所以原不等式组的解集为-2≤x <3. 4分 所以原不等式组的正整数解为1,2. 5分15. 证明:∵E 是AC 的中点, ∴EC=21AC .…………………………………………………………………… 1分 ∵12DB AC =,∴DB = EC . ……………………………………2分 ∵DB ∥AC ,①②·AECBD∴DB ∥EC .……………………………………… 3分 ∴四边形DBCE 是平行四边形. ……………… 4分 ∴BC=DE . ……………………………………… 5分16.解:y x y y x y x yxy x x-++-⋅+-2222222 =yx y y x y x y x y x x -+++-⋅-2))(()(222分= 22x yx y x y +-- =22x yx y+-. 3分 当20y x -=时,x y 2=. 4分原式=242x xx x+-=-6. 5分17.解:设甲工厂每天加工x 件新产品,则乙工厂每天加工件新产品. ………………1分 依题意,得1200120010.1.5x x-=…………………………………………………………3分 解得x=40. …………………………………………………………………………4分经检验,40x =是所列方程的解,且符合实际问题的意义. 当x=40时,=60.答:甲、乙两个工厂每天分别能加工新产品40件、60件. ………………………………5分 18. 解:(1)根据题意,得△=2240m -=.解得1m =. ……………………………………………………………………1分 (2)当1m =时,221y x x =++.二次函数图象的顶点A 的坐标为(-1,0), ………………………………2分 与y 轴的交点B 的坐标为(0,1). …………………………………………3分 (3)n 的取值范围是2n >或4n <-. ………………………………………………5分 四、解答题(本题共20分,每小题5分)19. 解:如图,分别过点A 、D 作AE ⊥BC 于点E ,DF ⊥BC 于点F . ……………………1分∴AE12=12=3=BE BC EF =-AB CDAB CD⊥BF O ⊙AB O ⊙AB BF ∴⊥CD BF ∴∥BD 90ADB ∴∠=°.在Rt ADB △中,3cos cos 4A C ==,428AB =⨯=, 3cos 864AD AB A ∴=⋅=⨯=.4分在Rt AED △中,39cos 642AE AD A =⋅=⨯=, ∴=.由直径AB 平分CD , 可求2CD DE == 5分21.解:(1)补全频数分布表和频数分布直方图. …………………………3分 (每个1分) (2)捐款金额的中位数落在30≤x <40这个组内. ………………………………4分 (3)该校学生捐款数额不低于40元的有100201600480400+⨯=(人). ……………5分 22.解:(1)画出图形、面积为24. ………………………………………………2分(每个1分) (2)画出图形、周长为22. ……………………………………………4分(每个1分) (3)画出图形(答案不唯一). ……………………………………………5分五、解答题(本题共22分,第23、24题各7分,第25题8分)23.解:(1)抛物线24y ax bx a =+-经过(10)A -,,(04)C ,两点, 404 4.a b a a --=⎧∴⎨-=⎩,B解得13.a b =-⎧⎨=⎩,………………………………………………………………………1分∴抛物线的解析式为234y x x =-++. ………………………………………2分(2)点(1)D m m +,在抛物线上,2134m m m ∴+=-++.∴2230m m --=. 1m ∴=-或3m =.点D 在第一象限,1m ∴=-舍去.∴点D 的坐标为(34),. …………………………………………………3分 抛物线234y x x =-++与x 轴的另一交点B 的坐标为(4),0,(04)C ,, ∴.45OC OB CBO BCO =∴∠=∠=°. 设点D 关于直线BC 的对称点为点E .CD AB ∥,45ECB CBO DCB ∴∠=∠=∠=°.∴E 点在y 轴上,且3CE CD ==. ∴OE =1.(01)E ∴,. ………………………………………………………………4分即点D 关于直线BC 对称的点的坐标为(0,1).(3)过点D 作BD 的垂线交直线PB 于点Q ,过点D 作DH x ⊥轴于H ,过点Q 作QG DH ⊥于G . ∴90QDB QGD DHB ∠=∠=∠=°..45PBD ∠=°,45BQD ∴∠=°..QD BD ∴= QDG BDH ∠+∠90=°,90DQG QDG ∠+∠=°, DQG BDH ∴∠=∠.QDG DBH ∴△≌△. 4QG DH ∴==,1DG BH ==. (13)Q ∴-,.………………………………………………………………………5分设直线BP 的解析式为y kx b +=.由点(13)Q -,,点(40)B ,,求得直线BP 的解析式为31255y x =-+.…………6yOA BC DE解方程组234,31255y x x y x ⎧=-++⎪⎨=-+⎪⎩得112,566;25x y ⎧=-⎪⎪⎨⎪=⎪⎩2240.x y =⎧⎨=⎩,(舍) ∴点P 的坐标为266525⎛⎫- ⎪⎝⎭,. ……………………………………………………7分24.解:(1)CE= AD . …………………………………………………………………………2分 (2)AD . ……………………………………………………………………4分 (3)CE 与AD 之间的数量关系是 α2sin 2CE AD =. 证明:∵AB =AC ,DB =DE , ∴.AB ACDB DE= ∵∠BAC =∠BDE , ∴△ABC ∽△DBE . ∴,.AB BCABC DBE DB BE=∠=∠ ∴,AB DBBC BE =.ABD ABC DBC DBE DBC CBE ∠=∠-∠=∠-∠=∠ ∴△ABD ∽△CBE .…………………………………………………………5分∴ .AD BD CE BE =过点D 作DF ⊥BE 于点F .∴1α.22BDF BDE ∠=∠=∴α22sin 2sin .2BE BF BD BDF BD ==⋅∠=⋅ …………………………6分 ∴1.α2sin2AD CE=∴α2sin 2CE AD =.…………………………………………………………7分25.解:(1)在Rt △AOB 中,OA = 3,AB = 5,由勾股定理得4OB =.F图3EDCAB∴A (3,0),B (0,4). 设直线AB 的解析式为y kx b +=.∴30,4.k b b +=⎧⎨=⎩ 解得 4,34.k b ⎧=-⎪⎨⎪=⎩ ∴直线AB 的解析式为443y x +=-.…………1分 (2)如图,过点Q 作QF ⊥AO 于点F. ∵ AQ = OP= t ,∴3AP t =-. 由△AQF ∽△ABO ,得QF AQBO AB=. ∴45QF t =.∴45QF t =. …………2分 ∴14(3)25S t t =-⋅,∴22655S t t =-+.………………………3分(3)四边形QBED 能成为直角梯形. ①如图,当DE ∥QB 时, ∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP=90°. 由△APQ?∽△ABO ,得AQ APAO AB=. ∴335t t-=. 解得98t =. ……………………………5分 ②如图,当PQ ∥BO 时, ∵DE ⊥PQ ,∴DE ⊥BO ,四边形QBED 是直角梯形.此时∠APQ =90°.由△AQP?∽△ABO ,得.AQ APAB AO= 即353t t-=. y xEDQ POB AF A BOPQ DExy ABOP QDE xy解得158t =. ………………………6分 (4)52t =或4514t =. ………………………8分。
门头沟区2016-2017学年第一学期九年级期末数学试题及答案
CBA门头沟区2016~2017学年度第一学期期末调研试卷九年级数学一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1. 如果23a b=(a ≠0、b ≠0),那么下列比例式变形错误的是 A .23a b = B .32b a = C .32a b = D .32a b = 2.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点 均在格点上,则sin ∠ABC 的值为A . 3B . 13C 10D . 310 3. ⊙O 的半径为4,点P 到圆心O 的距离为d ,如果点P 在圆内,则d A . 4d < B . =4d C . 4d > D . 4d 0≤<4. 甲、乙、丙三名运动员参加了射击预选赛,他们射击的平均环数-x 及其方差2s 如下表所示.需要选一个成绩较好且状态稳定的人去参赛,如果选定的是乙,则乙的情况应为 A .8x =,20.7S = B . 8x = ,2 1.2S =C .9x =,21S =D . 9x = ,2 1.5S =5. 将抛物线y = x 2的图像向左平移2个单位后得到新的抛物线,那么新抛物线的表达式是A .()22y x =- B .()22y x =+甲 乙 丙-x892s11.2E DCBA xyMO PoA BC .22y x =-D .22y x =+6.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E , 若AD =2,DB =1,4ADE S ∆=,则DBCE S 四边形A . 3B . 5C . 7D . 97.在正三角形、正四边形、正五边形、正六边形、正八边形5个图形中既是轴对称又是 中心对称的图形有A . 2B . 3C . 4D . 58. 如图,已知⊙O 的半径为5,弦AB 长为8,则点O 到弦AB 的距离是 A . 2 B . 3C . 4D . 179. 如图:反比例函数6y x=的图像如下,在图像上任取一点P ,过P 点作x 轴的垂线交x 轴于M ,则三角形OMP 的面积为A . 2B . 3C . 6D . 不确定ABCDE10.在学完二次函数的图像及其性质后,老师让学生们说出223y x x =--的图像的一些性质,小亮说:“此函数图像开口向上,且对称轴是1x =”;小丽说:“此函数肯定与x 轴有两个交点”;小红说:“此函数与y 轴的交点坐标为(0,-3)”;小强说:“此函数有最小值,3y =-”……请问这四位同学谁说的结论是错误的A . 小亮B . 小丽C .小红 D. 小强二、填空题(本题共18分,每小题3分)11.若25a b a -=,则ab = .12.为了测量校园内水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律, 利用一面镜子和一根皮尺,设计如图所示的测量方案: 把一面很小的镜子放在离树底()10B 米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得 2.0DE =米,观察者目高 1.6CD =米,则树()AB 的高度约为 米.13.请写出一个过(2,1),且与x 轴无交点的函数表达式_____________________. 14. 扇面用于写字作画,是我国古代书法、绘画特有 的形式之一,扇面一般都是由两个半径不同的 同心圆按照一定的圆心角裁剪而成,如右图,此扇面的圆心角是120°,大扇形的半径为20cm,小扇形的半径为5cm,则这个扇面的面积是.15.记者随机在北京某街头调查了100名路人使用手机的情况,使用的品牌及人数统计如右图,则本组数据的众数为________.16.在进行垂径定理的证明教学中,老师设计了如下活动:先让同学们在圆中作了一条直径MN,然后任意作了一条弦(非直径),如图1,接下来老师提出问题:在保证弦AB长度不变的情况下,如何能找到它的中点?在同学们思考作图验证后,小华说了自己的一种想法:只要将弦AB与直径MN保持垂直关系,如图2,它们的交点就是弦AB的中点.请你说出小华此想法的依据是_____________________.三、解答题(本题共30分,每小题5分)17.计算:(11π2184sin452-⎛⎫+- ⎪⎝⎭.18.如图,将①∠BAD = ∠C;②∠ADB = ∠CAB;③BCBDAB⋅=2;④DBABADCA=;⑤ACDABABC=中的一个作为条件,另一个作为结论,组成一个真命题.(1)条件是__________,结论是_______;(注:填序号) (2)写出你的证明过程.19.已知二次函数 y = x 2-2x -8.(1)将y = x 2-2x -8用配方法....化成y = a (x -h )2 + k 的形式; (2)求该二次函数的图象的顶点坐标; (3)请说明在对称轴左侧图像的变化趋势.20. 如图,ABC △在方格纸中(1)请在方格纸上建立平面直角坐标系,使2,342A C (),(,),并求出B 点坐标; (2)以原点O 为位似中心,相似比为2,在第一象限内将ABC △放大,画出放大后的图形A B C '''△.21.在平面直角坐标系xOy 中,反比例函数ky x=(0k ≠)的图象过(2,3). (1)求反比例函数ky x=的表达式;(2)有一次函数(0)y mx m=≠的图像与反比例函数kyx=在第一象限交于点A,第三象限交于点B,过点A作AM x M⊥轴于点,过点B作BN y N⊥轴于点,当两条垂线段满足2倍关系时,请在坐标系中作出示意图并直接写出m的取值.22.亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M,颖颖的头顶B及亮亮的眼睛A恰在一条直线上时,两人分别标定自己的位置C,D.然后测出两人之间的距离 1.25CD m=,颖颖与楼之间的距离30DN m=(C,D,N在一条直线上),颖颖的身高 1.6BD m=,亮亮蹲地观测时眼睛到地面的距离0.8AC m=;请根据以上测量数据帮助他们求出住宅楼的高度.四、解答题(本题共20分,每小题5分)23.已知二次函数y = x2+m x+m-2.(1)求证:此二次函数的图象与x轴总有两个交点;MNBAC D21题备用图EBODA(2)如果此二次函数的图象与x 轴两个交点的横坐标之和等于3,求m 的值.24.已知:如图,ABC △中,D E 、分别是边BC AB 、的中点,AD CE 、相交于G ,请写出:GE CE 的比值,并加以证明.25.已知二次函数2(1)2(3)y m x mx m =-+++.(1)如果该二次函数的图象与x 轴无交点,求m 的取值范围;(2)在(1)的前提下如果m 取最小的整数,求此二次函数表达式.26.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,CE ⊥AD ,交AD 的延长线于点E .(1)求证:∠BDC =∠A ;(2)若CE =4,DE =2,求⊙O 的直径.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.在平面直角坐标系xOy 中,二次函数图像所在的位置如图所示: (1)请根据图像信息求该二次函数的表达式;BCDG E Ax1234–1–2–3–41234–1OP A M PA(2)将该图像(x >0)的部分,沿y 轴翻折得到新的图像,请直接写出翻折后的二次函数表达式;(3)在(2)的条件下与原有二次函数图像构成了新的图像,记为图象G ,现有一次函数23y x b =+的图像与图像G 有4个交点, 请画出图像G 的示意图并求出b 的取值范围.28.已知在Rt △ABC 中,∠ABC =90°,点P 是AC 的中点.(1)当∠A=30°且点M 、N 分别在线段AB 、BC 上时,∠MPN =90°,请在图1中将图形补充完整,并且直接写出PM 与PN 的比值;(2)当∠A=23°且点M 、N 分别在线段AB 、BC 的延长线上时,(1)中的其他条件不变,请写出PM 与PN 比值的思路.29.在平面直角坐标系xOy 中,对于点P (x ,y )(x ≥0)的每一个整数点,给出如下定义:如果'()P x y ,也是整数点,则称点'P 为点P 的“整根点”.例如:点(25,36)的“整根点”为点(5,6).(1)点A (4,8),B (0,16),C (25,-9)的整根点是否存在,若存在请写出整根点的坐标 ;(2) 如果点M 对应的整根点'M 的坐标为(2,3),则点M 的坐标 ; (3)在坐标系内有一开口朝下的二次函数24(0y ax x a =+≠),如果在第一象限内的二次函数图像内部(不在图像上),若存在整根点的点只有三个 请求出实数a 的取值范围.图1图2备用图门头沟区2016~2017学年度第一学期期末调研评分标准九年级数学一、选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案 C D D C B B B B B D二、填空题(本题共18分,每小题3分)题号11 12 13 14 15 16答案538答案不唯一(一次函数要加定义域)1252cm华为半径相等(构成的三角形是等腰三角形);等腰三角形三线合一三、解答题(本题共30分,每小题5分)17.(本小题满分5分)解:原式132222=+……………………………………………………………4分2 1.………………………………………………………………………5分18.(本小题满分5分)(1)证明:条件正确;………………………………………1分CxyC'A'B'CA BO 结论;(条件支持的结论)………………………………2分 (2)条件正确 ……………………………………………3分得出△ABD ∽△CBA , ……………………………………………4分 得出结论:……………………………………………………………5分 19.(本小题满分5分) 解:(1)y =x 2-2x -8=x 2-2x +1-9 …………………………………………………………2分=(x -1)2-9. ……………………………………………………………………3分 (2)∵y =(x -1)2-9,∴该二次函数图象的顶点坐标是(1,-9). ………………………………………4分 (3)在对称轴左侧,y 随x 的增大而减小. ……………………………5分20.(本小题满分5分)解:(1)坐标系正确,如图所示 , …………………1分点B 的坐标为(1,1); …………………2分 (2)画位似图形正确 ………………………5分21.(本小题满分5分)解:(1)∵反比例函数ky x(0k ≠)的图象过(2,3),∴32k=, ……………………………………………1分 解得6k = …………………………………………2分 ∴反比例函数表达式为6y x=(2)草图:正确 ……………………………………………3分122m m ==或 ………………………………………………5分 22.(本小题满分5分)解:过A 作CN 的平行线交BD 于E ,交MN 于F .…………………………………………………1分由已知可得FN =ED =AC =0.8m ,AE =CD =1.25m ,EF =DN =30m , ∠AEB =∠AFM =90°. 又∵∠BAE=∠MAF ,∴△ABE ∽△AMF .…………………………………………………………2分 ∴.AE BEAF MF= …………………………………………………………3分1.250.8.1.2530MF=+解得MF =20m . ……………………………………………………4分∴MN=MF+FN=20+0.8=20.8m.………………………………………5分答:住宅楼的高度为20.8m.四、解答题(本题共20分,每小题5分)23.(本小题满分5分)(1)证明:∵12a b m c m===-,,∴△=m2-4m+8………………………………………………………1分=(m-2)2+4…………………………………………………………2分∵(m-2)2≥0,∴(m-2)2+4>0∴此二次函数的图象与x轴总有两个交点.…………………………………3分(2)解:令y=0,得x2+m x+m-2=0,解得x1=()224m m-+-+x2()224m m---+………………………4分∵二次函数的图象与x轴两个交点的横坐标之和等于3∴-m=3,解得,m=-3 …………………………………………………………………5分24.(本小题满分5分)(1)结论::1:3GE CE=……………………………………1分(2)证明:连结ED,…………………………………2分D E∵、分别是边BC AB、的中点,B CDGEA12DE DE AC AC =∴∥,, ……………………………………3分ACG DEG ∴△∽△, ……………………………………4分12GE DE GC AC ==∴,13GE CE =∴. ……………………………………5分 25.(本小题满分5分)解:(1)∵二次函数2(1)2(3)y m x mx m =-+++的图象与x 轴无交点,∴△<0, ………………………………………………1分 ∴244(1)(3)0m m m --+<, …………………………………………………………2分 解得32m >. ……………………………………………………3分(2)根据题意得 解得m =2.∴二次函数的表达式是245y x x =++.……………………………………………………5分26.(本小题满分5分)(1)证明:连接OD ,∵CD 是⊙O 切线,∴∠ODC =90°,即∠ODB +∠BDC =90°, ∵AB 为⊙O 的直径,∴∠ADB =90°,即∠ODB +∠ADO =90°,∴∠BDC =∠ADO , …………………………………………1分 ∵OA =OD ,∴∠ADO =∠A ,∴∠BDC =∠A ;…………………………………………2分 (2)∵CE ⊥AE ,∴∠E =∠ADB =90°,x12345–1–2–3–4–512345–1O ∴DB ∥EC ,∴∠DCE =∠BDC , …………………………………………3分 ∴∠DCE =∠A ,∵CE =4,DE =21tan tan 2A DCE ∴∠=∠=∴在Rt △ACE 中,可得AE =8∴AD=6 ……4分 在在Rt △ADB 中 可得BD =3∴根据勾股定理可得35AB = …………………………………………5分 五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.(本小题满分7分)解:(1)∵根据图像特征设出解析式代入正确 ………………………1分∴得出表达式:234x y x =-+. …………………………………………2分 (2)表达式为234x y x =++ (0x <)…………………………………………………3分 (3)示意图正确 ………………………………………………………4分另22334x b x x ++=+整理得:230103x b x +-=+△=21041(3)03b ⎛⎫-⨯⋅- ⎪⎝⎭>解得:29b > ………………5分当23y x b =+过(0,3)时,3b = ………………6分 所以综上所述符合题意的b 的取值范围是EFNPACM239b << ……………………………………………7分28.(本小题满分7分)(1)补充图形正确 ……………………………………………1分3PM PN =……………………………………………2分 (2)作出示意图 ……………………………………………3分思路:在Rt △ABC 中,过点P 作PE ⊥AB 于E ,PF ⊥BC 于点F ………………………4分 由PF ⊥BC 和∠ABC =90º可以得到AB PF ∥,∠PFC =90º进而得到∠A =∠FPC ;由∠PFC =∠AEP= 90º, AP=PC 可以得到△AEP ≌ △PFC ,进而推出AE=PF ;由点P 处的两个直角可以得到∠EPM =∠FPN ,进而可以得到△MEP ∽ △NPF ,由此可以得到PF PE =PN PM等量代换可以得到PM PEPN AE=;在Rt △AEP 中 tan PE A AE ∠=,可以得到tan 23PMPN=︒………………7分NPACM29.(本小题满分8分)解:(1)B’(0,4),C’(5,3); …………………………………………………………2分 (2)M (4,9)或M (4,﹣9);…………………………………………………3分(3)由于图像开口向下,根据表达式特点及对称轴所在位置的变化,将分为以下两种情况进行讨论当图像经过(4,4)时,如图:根据轴对称性,此时恰有1个整根点在图像上,2个整根点在图像内部因此:代入表达式得:41616a =+解得a =34-………………………………………………5分当图像过(4,9)时, 代入表达式得:91616a =+解得a =716-根据图像的轴对称性可以验证(1,4) (9,1)都不在图像内部, 因此此时有3个整根点在图像内部,………………………7分 综合上述分析当37416a --<≤………………………………8分说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。
门头沟区2017~2018学年度第一学期期末九年级数学试题及答案(WORD版)
门头沟区2017~2018学年度第一学期期末调研试卷九年级数学一、选择题(本题共16分,每小题2分)下列各题均有四个选项,其中只有一个..是符合题意的. 1. 如果23a b =,那么a bb -的结果是 A .12- B .13- C .13 D .122.将抛物线y = x 2的图象向上平移3个单位后得到新的图象,那么新图象的表达式是 A .()23y x =- B .()23y x =+C .23y x =-D .23y x =+3. 如图,DCE ∠是圆内接四边形ABCD 的一个外角,如果75DCE ∠=︒,那么BAD ∠的度数是A .65︒B .75︒C .85︒D .105︒4. 在平面直角坐标系xOy 中,点A 的坐标为(4,3)-,如果射线OA 与x 轴正半轴的夹角为α,那么α∠的正弦值是A .35B .34C .45D .435. 右图是某个几何体,它的主视图是AB C D6.已知ABC △,AC =3,CB =4,以点C 为圆心r 为半径作圆,如果点A 、点B 只有一个点在圆内,那么半径r 的取值范围是 A .3r > B .4r ≥ C .34r <≤ D .34r ≤≤7. 一个不透明的盒子中装有20张卡片,其中有5张卡片上写着“三等奖”;3张卡片上写着“ 二等奖”,2张卡片上写着“一等奖”,其余卡片写着“谢谢参与”,这些卡片除写的字以外,没有其他差别,从这个盒子中随机摸出一张卡片,能中奖的概率为A .12 B .14 C .320D . 110 8.李师傅一家开车去旅游,出发前查看了油箱里有50升油,出发后先后走了城市路、高速路、山路最终到达旅游地点,下面的两幅图分别描述了行驶里程及耗油情况,下面的描述错误的是A .此车一共行驶了210公里B .此车高速路一共用了12升油C .此车在城市路和山路的平均速度相同D .以此车在这三个路段的综合油耗判断 50升油可以行驶约525公里二、填空题(本题共16分,每小题2分)9.二次函数2351y x x =++-的图象开口方向__________.10.已知线段5AB cm =,将线段AB 以点A 为旋转中心,逆时针旋转90°得到线段'AB 则点B 、点'B 的距离为__________.11. 如图,在平面直角坐标系xOy 中有一矩形,顶点坐标分别为(1,1)、(4,1)、(4,3)、(1,3),有一反比例函数(0)ky k x=≠ 它的图象与此矩形没有交点,该表达式可以为_______.12. 如图,在△ABC 中, DE 分别与AB 、AC 相交于点D 、E , 且DE ∥BC ,如果23AD DB =,那么DEBC=__________. 13. 如图,在△ABC 中,∠A =60°,⊙O 为△ABC 的外接圆.如果BC =,那么⊙O 的半径为________.14. 如图,是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线,∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点C 上升的高度h 是_________m .15. 如图,在平面直角坐标系xOy 中,图形L 2可以看作是由图形L 1经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由图形L 1得到图形L 2的过程____.16.下面是“作已知圆的内接正方形”的尺规作图过程 .请回答:该尺规作图的依据是______________________________________________. 三、解答题(本题共68分,第17题-24题,每小题5分,第25题6分,第26题7分,第27题7分, 第28题8分)解答应写出文字说明、演算步骤或证明过程17.计算:(21π2sin 602-⎛⎫︒- ⎪⎝⎭.18. 如图,在△ABC 中,AB =AC ,BD =CD ,CE ⊥AB 于E .求证:△ABD ∽△CBE .19.已知二次函数 y = x 2+2x -3.(1)将y = x 2+2x -3用配方法....化成y = a (x -h )2+ k 的形式; (2)求该二次函数的图象的顶点坐标. 20. 先化简,再求值: 2211m m m m m++⎛⎫+÷ ⎪⎝⎭,其中m 是方程230x x +-=的根. 21.在平面直角坐标xOy 中的第一象限内,直线10y kx k =≠()与双曲20my m x =≠()的一个交点为A (2,2). (1) 求k 、m 的值;(2) 过点(0)P x ,且垂直于x 轴的直线与1y kx =、2my x =的图象分别相交于点M 、N ,点M 、N 的距离为1d ,点M 、N 中的某一点与点P 的距离为2d ,如果12d d =,在下图中画出示意图.....并且直接写出点P 的坐标.22. 如图,小明想知道湖中两个小亭A 、B 之间的距离,他在与小亭A 、B 位于同一水平面且东西走向的湖边小道上某一观测点M 处,测得亭A 在点M 的北偏东60°, 亭B 在点M 的北偏东30°,当小明由点M 沿小道向东走60米时,到达点N 处,此时测得亭A 恰好位于点N 的正北方向,继续向东走30米时到达点Q 处,此时亭B 恰好位于点Q 的正北方向.根据以上数据,请你帮助小明写出湖中两个小亭A 、B 之间距离的思路.23. 已知二次函数2(1)1(0)y kx k x k =+++≠.(1)求证:无论k 取任何实数时,该函数图象与x 轴总有交点;(2)如果该函数的图象与x 轴交点的横坐标均为整数,且k 为整数,求k 值. 24. 如图,在Rt △ABC 中,∠ACB =90°,点D 是AB 边上一点,以BD 为直径的⊙O 与边AC 相切于点 E ,连接DE 并延长DE 交BC 的延长线于点F . (1)求证:BD =BF ; (2)若CF =2,4tan 3B =,求⊙O 的半径.25. 如图25-1,点C 是⊙O 中直径AB 上的一个动点,过点C 作CD AB ⊥交⊙O 于点D ,点M 是直径AB 上一固定点,作射线DM 交⊙O 于点N .已知6cm AB =, 2cm AM =,设线段AC 的长度为xcm ,线段MN 的长度为ycm .小东根据学习函数的经验,对函数y 随自变量的变化而变化的规律进行了探索. 下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了与y 的几组值,如下表:(说明:补全表格时相关数值保留一位小数)(2)在图25-2中建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画 出该函数的图象;(3)结合画出的函数图象,解决问题:当AC MN =时,的取值约为__________cm .图25-1 图25-226. 在平面直角坐标系xOy 中,二次函数2y x bx c =++的图象如图所示. (1)求二次函数的表达式;(2)函数图象上有两点1(,)P x y ,2(,)Q x y ,且满足12x x <,结合函数图象回答问题; ①当3y =时,直接写出21x x -的值; ②当213x x -2≤≤,求y 的取值范围.27.如图27-1有两条长度相等的相交线段AB 、CD ,它们相交的锐角中有一个角为60°,为了探究AD 、CB 与CD (或AB )之间的关系,小亮进行了如下尝试:(1)在其他条件不变的情况下使得AD BC ∥,如图27-2,将线段AB 沿AD 方向平移AD 的长度,得到线段DE ,然后联结BE ,进而利用所学知识得到AD 、CB 与CD (或AB )之间的关系:____________________;(直接写出结果)(2)根据小亮的经验,请对图27-1的情况(AD 与CB 不平行)进行尝试,写出AD 、CB 与CD (或AB )之间的关系,并进行证明;(3)综合(1)、(2)的证明结果,请写出完整的结论: __________________________.图27-1图27-228.以点P 为端点竖直向下的一条射线PN ,以它为对称轴向左右对称摆动形成了射线1PN ,2PN ,我们规定:12N PN ∠为点P 的“摇摆角”, 射线PN 摇摆扫过的区域叫作点P 的“摇摆区域”(含1PN ,2PN ). 在平面直角坐标系xOy 中,点(2,3)P .(1)当点P 的摇摆角为60︒时,请判断(0,0)O 、(1,2)A 、(2,1)B 、(20)C 属于点P的摇摆区域内的点是______________________(填写字母即可);(2)如果过点(1,0)D ,点(5,0)E 的线段完全在点P 的摇摆区域内,那么点P 的摇摆角至少为_________°;(3)⊙W 的圆心坐标为(,0)a ,半径为,如果⊙W 上的所有点都在点P 的摇摆角为60︒时的摇摆区域内,求a 的取值范围.备用图门头沟区2017~2018学年度第一学期期末调研评分标准九年级数学一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)三、解答题(本题共68分,第17题-24题,每小题5分,第25题6分,第26题7分,第27题7分, 第28题8分)解答应写出文字说明、演算步骤或证明过程 17.(本小题满分5分) 解:原式1232=+-⨯ (4)分3.=………………………………………………………………………………………………5分18.(本小题满分5分) 证明:∵ AB =AC ,BD =CD∴ AD BC ⊥, ……………………………………2分∵ CE ⊥AB∴90ADB BEC ∠=∠=︒……………………………………4分∵B B ∠=∠ABD CBE ∴△∽△ ……………………………………5分19.(本小题满分5分) 解:(1)y =x 2+2x -3=x 2+2x +1-1-3 ……………………………………………………………………………2分=(x +1)2-4. …………………………………………………………………… …………3分 (2)∵y =(x +1)2-4,∴该二次函数图象的顶点坐标是(-1,-4).…………………………………………5分20.(本小题满分5分)原式=22211m m m m m ++⋅+ =22(1)1m m m m +⋅+ =2m m +. ………………3分∵ m 是方程230x x +-=的根,∴ 230m m +-=.∴ 23m m +=. ………………………5分21.(本小题满分5分) 解:(1)∵反比例函数2my x=(0k ≠)的图象过(2,2), ∴22m=, ……………………………………………………………1分解得4m=∵直线10y kx k=≠()的图象过(2,2),∴22k=,解得1k=……………………………………………………………2分(2)示意图:正确p p或…………………………………………………5分22.(本小题满分5分)解:根据题意补全图形如下:(1)可知60MN=,30NQ=,∠AMQ=30°,∠BMQ=60°…1分(2)在Rt△ADB中,由MN=60,∠AMQ=30°,根据三角函数可得AN=………………………………………2分(3)过点A作AK⊥BQ于K,可得四边形AKQN是矩形,进而得出AK=NQ=30,KQ=AN= (3)分(4)在Rt△BMQ中,由MQ=MN+NQ=90,∠BMQ=60°,根据三角函数可得BQ=BK= (4)分(5)在Rt△AKB中,根据勾股定理可以求出AB的长度 (5)x x分23.(本小题满分5分)(1)证明:令y =0,可得2(1)10kx k x +++=∵11a k b k c ==+=,, ∴△=221k k -+……………………………………………………………………………1分=2(1)k - …………………………………………………………………………………2分∵2(1)0k -≥ ∴此二次函数的图象与x轴总有交点.………………………………………………………3分(2)解:令y =0,得2(1)10kx k x +++=解得 x 1=1(1)12k k k k--+-=-,x 2=1(1)12k k k----=-………………………………4分∵k 为整数,解为整数 ∴1k =±. (5)分24.(本小题满分5分) (1)证明:连接OE ,∵AC 与圆O 相切,∴OE ⊥AC ,…………….1分 ∵BC ⊥AC ,∴OE ∥BC ,又∵O 为DB 的中点,∴E 为DF 的中点,即OE 为△DBF 的中位线,∴OE =BF , 又∵OE =BD ,∴BF =BD ;……………………………………….2分 (2)设BC =3x ,4tan 3B ∠=可得:AB =5x , 又∵CF =2, ∴BF =3x +2,由(1)得:BD =BF , ∴BD =3x +2, ∴OE =OB =322x +,AO =AB ﹣OB =3272522x x x +--= ∵OE ∥BF ,∴∠AOE =∠B , ……………………………………………………………………………………4分 ∴cos ∠AOE =cos B ,即32232725OE x AO x +=⋅=-, 解得: 83x =则圆O 的半径为3210522x +==………………………………………………………………………5分 25.(本小题满分6分)(1)2.3 ……………………………………………………………………1分 (2)坐标系正确 ……………………………………………………3分 描点正确 ……………………………………………………4分 连线正确 ……………………………………………………5分 (3)2.6 ……………………………………………………………………6分 26. (本小题满分7分)(1)选择坐标代入正确 ………………………………………………1分 得出表达式243y x x =-+………………………………………………3分(2)找到位置画出示意图y① 214x x -=………………………………………………4分②由图象易得当y=0时212x x -=由于该函数图象的对称轴为2x =, 1(,)P x y ,2(,)Q x y ,在对称轴左右两侧对称分布,所以两点到对称轴的距离相等 所以,当213x x -=时即PQ =3 ∴MP = MN -PN =31222-=………………………………………………5分∴112x =代入243y x x =-+,解得54y =………………………………………6分 综上所述:504y ≤≤………………………………………7分27.(本小题满分7分)(1) AD CB AB += ……………………………………………1分 (2)补全图形正确 ………………………………………2分 结论:AD CB AB +>………………………………………3分理由:如图:将线段AB 沿AD 方向平移AD 的长度,得到线段DE ,联结BE 、CE ,且可得AB DE ∥且AB DE =∴四边形A 、B 、E 、D 是平行四边形………………………4分∴AD BE =∵AB CD = ∴DE CD =∵AB DE ∥,60AOD ∠=︒∴DCE △是等边三角形……………………………………5分∴CE AB =由于AD 与CB 不平行,所以C 、B 、E 构成三角形∴BE CB CE +>……………………………………………6分∴AD CB AB +>(3)AD CB AB +≥ …………………………………………7分 28.(本小题满分8分)解:(1)点B ,点C ; …………………………………………2分 (2)90°………………………………………………………3分 (3)当⊙W 运动到摇摆角的内部,与PF 左边的射线相切时如图28-1∵点(2,3)P 的摇摆角为60° ∴30KPF ∠=︒,3PF =在Rt △PFK 中, tan tan 30KFKPF PF∠=∠︒=在可求得KF = ∵30KPF ∠=︒, ∴60PKF ∠=︒在Rt △PFK 中, sin sin 60QW QKF KW∠=∠︒=,可求得KW =∴22OW OF KF KW =-+== 当⊙W 运动到摇摆角的内部,与PF 右边的射线相切时如图28-2同理可求得OW∴2a ≤说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。
2017年北京门头沟区初三二模考试word版 含答案
2017年门头沟区初三二模考试化学试卷2017.6可能用到的相对原子质量: H 1 C 12 N 14 O 16 Na 23 Cl 35.5 K 39 Fe 56第一部分选择题(共20分)(每小题只有1个选项符合题意。
每小题1分)1.下列空气的成分中,体积分数最多的气体是A. 氧气B.氮气C.二氧化碳D.稀有气体2.下列金属活动性最强的是A. Mg B.Ag C.Cu D.Zn3. 下列物质中,属于氧化物的是A.MnO2B.NaOH C.O2 D.H2SO44.下列物质在氧气中燃烧,产生大量白烟的是A. 木炭B.甲烷C.蜡烛D.红磷5.为了防止骨质疏松,人体必须摄入的元素是A. 钙B.铁C.锌D.碘6.下列图标中,表示“禁止烟火”的是A B C D7.下列数据是一些物质的pH,其中呈碱性的是A.液体肥皂B.西瓜汁C.酱油D.柠檬8.能闻到花香的主要原因是A. 分子的质量很小 B .分子间有间隔 C .分子在不断运动 D .分子由原子构成9.下列物质必须密封保存的是A .木炭B .浓盐酸C .石灰石D .氯化钠10.已知一种碳原子可用于测定文物的年代,该原子的原子核内含有6个质子和8个中子,则核外电子数为A .2B .6C .8D .1411.下列符号中,表示2个氢分子的是A .H 2B .2HC .2H 2D .2H +12.下列实验操作中,正确的是A .滴加液体B .稀释浓硫酸C .检查气密性D .熄灭酒精灯13.钋广泛用于抗静电刷。
钋元素的信息如右图所示,下列对其说法不正确...的是 A .属于金属元素B .质子数为84C .相对原子质量为 209D .元素符号为PO 14.下列物质的用途中,利用其化学性质的是A .液氮用作冷冻剂B .干冰用于人工降雨C .氧气用于气焊D .浓硫酸用作干燥剂15. 下列关于2CO + O 2 ==== 2CO 2的理解不正确...的是 A .表示一氧化碳与氧气在点燃条件下反应生成二氧化碳B .参加反应的一氧化碳与氧气的质量比为5:4C .反应前后碳原子、氧原子的个数均不变D .参加反应的氧气与生成的二氧化碳的分子个数比为1:216.甲和乙在一定条件下反应生成丙和丁。
门头沟区二模数学初三试卷
一、选择题(本大题共10小题,每小题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. √-1D. 0.1010010001……2. 若a,b是方程x²-2ax+a²=0的两个实数根,则a+b的值是()A. 2B. 1C. 0D. -23. 在下列各式中,正确的是()A. (a+b)² = a² + 2ab + b²B. (a-b)² = a² - 2ab + b²C. (a+b)³ = a³ + 3a²b + 3ab² + b³D. (a-b)³ =a³ - 3a²b + 3ab² - b³4. 若一个数的平方根是-3,则这个数是()A. 9B. -9C. 3D. -35. 在直角坐标系中,点A(2,3),点B(-2,3),则线段AB的长度是()A. 2B. 4C. 6D. 86. 若等差数列{an}的首项a1=3,公差d=2,则第10项an的值是()A. 19B. 20C. 21D. 227. 下列函数中,有最小值的是()A. y = x²B. y = x³C. y = 1/xD. y = -x²8. 若x²+2x+1=0,则x的值为()A. 1B. -1C. 2D. -29. 在平面直角坐标系中,点P(2,3)关于y轴的对称点是()A. (2,3)B. (-2,3)C. (2,-3)D. (-2,-3)10. 下列不等式中,正确的是()A. 2x + 3 > 5B. 2x - 3 < 5C. 2x + 3 < 5D. 2x - 3 > 5二、填空题(本大题共10小题,每小题3分,共30分)11. 已知数列{an}的通项公式为an = 3n-2,则第7项an的值为______。
2017北京中考数学各区二模26题汇编
()(1) 当k =1时,使得原等式成立的x 的个数为 _______; (2) 当0<k <1时,使得原等式成立的x 的个数为_______; (3) 当k >1时,使得原等式成立的x 的个数为 _______. 参考小明思考问题的方法,解决问题:关于x 的不等式240 ()x a a x+-<>0只有一个整数解,求a 的取值范围. 26.(1)小明遇到下面一道题:如图1,在四边形ABCD 中,AD∥BC ,∠ABC =90º,∠ACB =30º,BE ⊥AC 于点E ,且=CDEACB ∠∠.如果AB =1,求CD 边的长.小明在解题过程中发现,图1中,△CDE 与△ 相似,CD 的长度等于,线段CD 与线段 的长度相等;他进一步思考:如果ACB α∠=(α是锐角),其他条件不变,那么CD 的长度可以表示为CD = ;(用含α的式子表示)(2)受以上解答过程的启发,小明设计了如下的画图题:在Rt △OMN 中,∠MON =90º,OM <ON ,OQ ⊥MN 于点Q ,直线l 经过点M ,且l ∥ON .请在直线l 上找出点P 的位置,使得NPQ ONM ∠=∠.请写出画图步骤,并在答题卡上完成相应的画图过程.(画一个即可,保留痕迹,不必证明)26 .阅读材料如图1,若点P 是⊙O 外的一点,线段PO 交⊙O 于点A,则PA 长是点P 与⊙O 上各点之间的最短距离.图1 图2 证明:延长PO 交⊙O 于点B ,显然PB>PA .如图2,在⊙O 上任取一点C (与点A ,B 不重合),连结PC ,OC .,,,,PO PC OC PO PA OA OA OC PA PC <+=+=∴<且∴PA 长是点P 与⊙O 上各点之间的最短距离.由此可以得到真命题:圆外一点与圆上各点之间的最短距离是这点到圆心的距离与半径的差. 请用上述真命题解决下列问题.(1)如图3,在Rt △ABC 中,∠ACB =90°,AC =BC =2,以BC 为直径的半圆交AB 于D ,P 是上的一个动点,连接AP ,则AP 长的最小值是.图3(2)如图4,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,点N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△MN A ',连接C A ',①求线段A ’M 的长度; ②求线段C A '长的最小值. 图426.问题背景:在△ABC 中,AB ,BC ,AC,小军同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需要求出△ABC 的高,借用网格就能计算出它的面积.CBA图1 图2 (1)请你直接写出△ABC 的面积________; 26.阅读下面材料:小玲遇到这样一个问题:如图1,在等腰三角形ABC 中,AC AB =,︒=∠45BAC ,22=BC ,BC AD ⊥于点D ,求AD 的长.图3小玲发现:分别以AB ,AC 为对称轴,分别作出△ABD ,△ACD 的轴对称图形,点D 的对称点分别为E ,F ,延长EB ,FC 交于点G ,得到正方形AEGF ,根据勾股定理和正方形的性质就能求出AD 的长.(如图2) 请回答:BG 的长为,AD 的长为; 参考小玲思考问题的方法,解决问题:如图3,在平面直角坐标系xOy 中,点()0,3A ,()4,0B ,点P 是△OAB 的外角的角平分线AP和BP 的交点,求点P 的坐标. E FB图1 图226.阅读下面材料:小凯遇到这样一个问题:如图1,在四边形ABCD 中,对角线AC 、BD 相交于点O , AC =4,BD =6,∠AOB =30°,求四边形ABCD 的面积.小凯发现,分别过点A 、C 作直线BD 的垂线,垂足分别为点E 、F ,设AO 为m ,通过计算△ABD 与△BCD 的面积和使问题得到解决(如图2).请回答:(1)△ABD 的面积为 (用含m 的式子表示). (2)求四边形ABCD 的面积.参考小凯思考问题的方法,解决问题:如图3,在四边形ABCD 中,对角线AC 、BD 相交于 点O ,AC =a ,BD =b ,∠AOB =α(0°<α<90°),则四边形ABCD 的面积为 (用含a 、b 、α的式子表示).26.【阅读学习】 刘老师提出这样一个问题:已知α为锐角,且tan α=13,求sin2α的值.小娟是这样解决的:如图1,在⊙O 中,AB 是直径,点C 在⊙O 上,∠BAC =α,所以∠ACB =90°,tan α=BC AC =13. 易得∠BOC =2α.设BC =x ,则AC =3x ,则AB.作CD ⊥AB 于D ,求出CD = (用含x 的式子表示),可求得sin2α=CDOC= . 【问题解决】已知,如图2,点M 、N 、P 为圆O 上的三点,且∠P =β,tan β =12,求sin2β的值.图1图2图3图1图226. 如图,在平面直角坐标系xOy 中,矩形ABCD 各边都平行于坐标轴,且A (-2,2),C (3,-2).对矩形ABCD 及其内部的点进行如下操作:把每个点的横坐标乘以a ,纵坐标乘以b ,将得到的点再向右平移k (0k >)个单位,得到矩形''''A B C D 及其内部的点(''''A B C D 分别与ABCD 对应).E (2,1)经过上述操作后的对应点记为'E .(1)若a =2,b =-3,k =2,则点D 的坐标为 ,点'D 的坐标为 ; (2)若'A (1,4),'C (6,-4),求点'E 的坐标.26.阅读下面的材料:小明遇到一个问题:如图1,在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G . 如果3AF EF =,求CDCG的值. 他的做法是:过点E 作EH ∥AB 交BG 于点H ,那么可以得到△BAF ∽△HEF . 请回答:(1)AB 和EH 之间的数量关系是 ,CG 和EH 之间的数量关系是 ,CDCG的值为 . (2)参考小明思考问题的方法,解决问题:如图2,在四边形ABCD 中,DC ∥AB ,点E 是BC 延长线上一点,AE 和BD 相交于点F .如果2ABCD=,2BC AFH G F ECD BAFECB A D图1 图2个角度26.在平面内,将一个图形G 以任意点O 为旋转中心,逆时针...旋转一θ,得到图形'G ,再以O 为中心将图形'G 放大或缩小得到图形''G ,使图形''G 与图形G 对应线段的比为k ,并且图形G 上的任一点P ,它的对应点''P 在线段'OP 或其延长线上;我们把这种图形变换叫做旋转相似变换,记为()O θ,k ,其中点O 叫做旋转相似中心,θ叫做旋转角,k 叫做相似比. 如图1中的线段''OA 便是由线段OA 经过()302︒O ,得到的.(1)如图2,将△A B C 经过☆ ()901,︒后得到△'''A B C ,则横线上“☆”应填下列四个点()00O ,、()01D ,、()0E ,-1、()12C ,中的点 .(2)如图3,△ADE 是△ABC 经过()A θ,k 得到的,90︒=EAB ∠,12cos EAC =∠ 则这个图形变换可以表示为(),A .26.如图1,在□ABCD 中,点E 是BC 边上的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G ,若AB =6,3AF EF =,求DG 的长.小米的发现,过点E 作EH AB ∥交BG 于点H (如图2),经过推理和计算能够使问题得到解决.则图2图3O如图3,四边形ABCD 中,AD ∥BC ,点E 是射线DM 上的一点,连接BE 和AC 相交于点F ,若BC aAD =,CD bCE =,求BFEF的值(用含,a b26.如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,在△P AB 、△PBC和△P AC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点.(1)如图②,已知Rt △ABC 中,∠ACB =90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点. (2)如图③,在△ABC 中,∠A <∠B <∠C .①利用尺规作出△ABC 的自相似点P (不写出作法,保留作图痕迹);②如果△ABC 的内心P 是该三角形的自相似点,请直接写出该三角形三个内角的度数.参考答案26. (本小题满分5分)解:(1)当k =1时,使得原等式成立的x 分(2)当0<k <1时,使得原等式成立的分(3)当k >1时,使得原等式成立的x 图1图2图3 BBC ①②CBC③解决问题:将不等式240 ()x a a x +-<>0转化为24()x a a x+<>0, 研究函数2(0)y x a a =+>与函数4y x=的图象的交点. ∵函数4y x=的图象经过点A (1,4),B (2,2), 函数2y x =的图象经过点C (1,1),D (2,4),若函数2(0)y x a a =+>经过点A (1,4),则3a =, ………………………………………………4分 结合图象可知,当03a <<时,关于x 的不等式24(0)x a a x+<>只有一个整数解.也就是当03a <<时,关于x 的不等式240 ()x a a x+-<>0只有一个整数解. ………………5分26.解:(1)CAD,BC . …………………………………………………………… 3分1tan α.……………………………………………………………………………4分 (2)方法1:如图8,以点N 为圆心,ON 为半径作圆,交直线l 于点1P ,2P ,则点 1P ,2P 为符合题意的点.……………………………………………… 5分 方法2:如图9,过点N 画NO 的垂线1m ,画NQ 的垂直平分线2m ,直线1m 与2m 交于点R ,以点R 为圆心,RN 为半径作圆,交直线l 于点1P ,2P ,则点1P ,2P 为符合题意的点. ……………………………………… 5分26. 解:(1)△ABC 的面积是4.5;…….2分(2)如右图: …….4分△MNP 的面积是7. …….5分26.解:BG 的长为2,AD 的长为22+;…………………2分如图,过点P 分别作x PC ⊥轴于点C ,y PD ⊥轴于点D ,AB PE ⊥于点E …………………3分∵AP 和BP 是△OAB 的外角的角平分线 ∴CAP EAP ∠=∠,EBP DBP ∠=∠ ∴PD PE PC ==∴四边形OCPD 是正方形,AE AC =,BE BD =…………4分∴DO PD CP OC === ∵()0,3A ,()4,0B ∴5=AB∴12=++=+BO AB OA OD OC∴6==OD OC ,∴6==PD CP ∴()6,6P ……………………5分26. 解:(1)3m ;……………………………………………………………………………1分∵ AO = m ,∠AOB =30°, ∴AE =12m . ∴S △ABD =m AE BD 2321=⋅. 同理,CF =1(4)2m -. ∴S △BCD =m CF BD 23621-=⋅.…………………………………………………2分 ∴S 四边形ABCD = S △ABD +S △BCD 6=.…………………………………………………3分 解决问题:αsin 21⋅ab .………………………………………………………………5分26.解:10103xCD =. ……………………………………………………………………… 1分Sin2α=CD OC =53. ……………………………………………………………………… 2分如图,连接NO ,并延长交⊙O 于Q ,连接MQ ,MO ,作NO MH ⊥于H . 在⊙O 中,∠NMQ =90°. ∵ ∠Q=∠P =β,OM=ON,∴ ∠MON=2∠Q=2β. ………………………………………… 3分∵ tan β=21,∴ 设MN =k ,则MQ =2k , ∴ NQ =k MQ MN 522=+.∴ OM=21NQ=k 25. ∵ MH NQ MQ MN S NMQ ⋅=⋅=∆2121, ∴ MH k k k ⋅=⋅52 .∴ MH=k 552. ………………………………………………………………………………… 4分N在MHO Rt ∆中,sin2β=sin ∠MON =5425552==kkOM MH . …………………………………… 5分 26. 解:(1)D (3,2),'D (8,-6),..................................................................................2分(2)依题可列:21,3 6.a k a k -+=⎧⎨+=⎩则a =1,k =3,2b =4,b =2,.........................................................4分(a ,b ,k 求出一个给1分) ∵点E (2,1),∴'E (5,2)......................................................................................................5分26.(本小题满分5分)解:(1)A B =3E H ,C G =2E H ,32.………………………………………………3分 (2)如图,过点E 作EH ∥AB 交BD 的延长线于点H .∴ EH ∥AB ∥CD . ∵ EH ∥CD , ∴23CD BC EH BE ==, ∴ CD =23EH . 又∵2AB CD =,∴ AB =2CD =43EH . ∵ EH ∥AB ,∴ △ABF ∽△EHF . ∴4433AF AB EH EH EF EH ===.……………………………………5分 26.(1)E ………………………………………………………………………………2分 (2)60,k︒………………………………………………………5分26.答案:DG =2;……………………………………………………………………………………2 如图(画图正确,正确标出点E 、F )………………………………………………………………3 过E 作EG ∥AD ,延长CA 交于点G ∴△CAD ∽△CGE .HF E CB AD∴AD CD GE CE=.∵CD bCE=,∴ADb GE=.∴AD bEG=. (4)∵AD∥BC,∴BC∥EG.∴△GEF∽△CBF.∴BC BF EG EF=.∵BC aAD=,∴BC abEG=.∴BFabEF= (5)26.解:⑴在Rt△ABC中,∠ACB=90°,CD是AB上的中线,∴12CD AB=,∴CD=BD.∴∠BCE=∠ABC.……………………………….(1分)∵BE⊥CD,∴∠BEC=90°,∴∠BEC=∠ACB.……………………………….(2分)∴△BCE∽△ABC.∴E是△ABC的自相似点.………………………….(3分)⑵①作图略.(方法不唯一)……………………….(5分)②连接PB、PC.∵P为△ABC的内心,∴12PBC ABC∠=∠,12PCB ACB∠=∠.∵P为△ABC的自相似点,∴△BCP∽△ABC.∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC =2∠A,∠ACB=2∠BCP=4∠A.∵∠A+∠ABC+∠ACB=180°.∴∠A+2∠A+4∠A=180°.∴1807A∠=.∴该三角形三个内角的度数分别为1807、3607、7207.…………….(6分)。
2016-2017学年北京市门头沟区九年级二模数学试卷(含答案)
2017年门头沟区初三二模考试数 学 试 卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.将284231︒′″保留到“′”为 A .2842︒′ B .2843︒′C .2842︒′30″D .2900︒′ 2.如图,实数1-,a ,1,b 在数轴上的对应点分别为E ,F ,M ,N ,这四个数中绝对值最小的数对应的点是A .点EB .点FC .点MD .点N3.下列运算中,正确的是 A .235x x x+=B .347()x x = C .623x x x ÷= D .22232x x x-=4.以下是关于正多边形的描述①正多边形的每条边都相等; ②正多边形都是轴对称图形; ③正多边形的外角和是360°;④正多边形都是中心对称图形. 其中正确的描述是A .①②③B .①②④C .②③④D .①②③④5.如图,在△ABC 中,点D 是BC 边上一点且CD CA =,过点A 作MN BC ∥,48CAN ∠=︒, 41B ∠=︒,BAD ∠=A .23°B .24°C .25°D .26°6.分式方程211x x x-=-的解为 A .x =1 B .x =2 C .x =3 D .x =2或 x=32017.6FN M E7.一个不透明的盒子中装有3个红球,2个白球,这些球除颜色外,没有任何其他区别,从这个盒子中同时..随机摸出两个球,所有的可能性如下表:摸到两个红球的概率为A.110B.15C.310D.258.数分别为105°、155°,则BAC的大小为A.55°B.50°C.27.5°D.25°9.甲、乙两名射箭运动员在某次测试中各射箭10次,两人的测试成绩如下表,则这两个人本次测试成绩的方差比较A.S甲<S乙B.S甲=S乙C.S甲>S乙D.无法比较10. 如图所示的立方体,如果把它展开,可以是下列图形中的A.B.C.D.二、填空题(本题共18分,每小题3分)11.如果242xx--的值为0,那么x满足的条件是.12.如果一个函数的图象在纵轴的右侧满足函数值随自变量的取值的增大而增大,那么它的表达式可以为_______.13. 2016年11月—2017年4月某省“共享单车”的用户使用情况如图,根据统计表中提供的信息,预估2017年5月该省共享单车的使用用户约____万人,你的预估理由是__________________________.14.在平面直角坐标系xOy中有一矩形ABCD,如果10A(,)、50B(,)、53C(,),那么该矩形对角线交点P的坐标为__________.15.“多米诺骨牌效应”告诉我们:一个最小的力量能够引起的或许只是察觉不到的渐变,但是它所引发的却可能是翻天覆地的变化,依次推倒的能量一个比一个大……下图是设计者开始摆放大小相同的骨牌,骨牌之间平行摆放,长、宽、高(单位:cm)如图所示,若要求第一张骨牌那么两张骨牌的间距是___________.16.学完一元一次不等式的解法后,老师布置了如下练习:101.54/月用户量/万人解不等式:1532x-≥7x -,并把它的解集在数轴上表示出来. 以下是小明的解答过程:第一步:去分母,得 1532(7)x x --≥, 第二步:去括号,得 153142x x --≥, 第三步:移项,得 321415x x -+-≥, 第四步:合并同类项,得 1x --≥,第五步:系数化为1,得 1x ≥.第六步:把它的解集在数轴上表示为:请指出从第几步开始出现了错误________,你判断的依据是__________________.三、解答题(本题共72分,第17-26题,每小题5分,第27、28题,每小题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程. 17.计算:011tan 6021)()3-︒--.18.如图,已知AD 是△ABC 的中线,∠ADC =45°,把△ADC 沿直线AD 翻折,使得点C落在点E 的位置,BC =6;求线段BE 的长.19. 已知2430x x --=,求代数式2(23)(2)(2)x x x --+-的值.20. 如图,在平面直角坐标系xOy 中,直线(0)y kx b k =+≠与反比例函数 (0)m y m x=≠交(1)求证:无论m取任何实数时,原方程总有两个实数根;(2)如果对于原方程的每一个整数根,都满足两根之商也是整数,直接写出m的取值.22.通过初中阶段的学习,二元一次方程从函数的视角去分析就可以形成函数图象.如图,在平面直角坐标系中的图象来自于生活中的问题,其中一个图象的表达式为(0)y ax a=>,并且结合y ax=给出了如下情境:①出发后,甲车以每小时60公里的速度行驶;②打电话每分钟支付0.12元;③…….请根据这两个图象提供的信息及上述情景之一或自主选择新的情景完成下面的问题:(1)写出一个符合题意的二元一次方程与方程y ax=组成二元一次方程组;(2)在(1)的条件下完成情境创设(不需要解方程组)23.如图,在菱形ABCD中,延长BD到E使得BD=DE,连接AE,延长CD交AE于点F. x(1)求证:AD =2DF(2)如果FD =2,∠C =60°,求菱形ABCD 的面积.24.阅读下列材料:为了了解某市初中生的视力情况,随机抽取了3000名学生进行检测,收集数据后,绘制了以下三幅统计图表,请根据图表中提供的信息解答下列问题:调查人数 视力不良视力不良率(精确到0.01)男生 1400 750 54% 女生1600m n根据统计图表回答下列问题:(1 )统计表中m = ,n = ;(2)补全条形统计图,并通过计算估计该市80000名初中生的视力不良情况的人数; (3)通过统计图表中的信息,写出一条关于视力不良的正确结论.25. 如图,AB 为⊙O 的直径,直线CD 切⊙O 于点M ,BE ⊥CD 于点E .FEA DCB年级人数各年级视力不良人数680530初三初二初一800100200300400500600700O(1)求证:∠BME =∠MAB ; (2)如果BE =185,sin ∠BAM =35,求⊙O 的半径.26. 小鹏遇到这样一个问题,已知实数a 、b (0,0a b >>),请问2a bab +-是否有最小值,如果有请写出最小值并说明理由.他找不到思路,开始翻阅笔记,发现此题可以用以前老师讲的“配方”来解决 笔记中写到:求26+9x x +的最小值步骤如下: 22226+963(3)x x x x x +=++=+∵无论x 取任意实数,2(3)0x +≥ ∴26+9x x +的最小值是0(1)小鹏发现代数式2233a a -+可以用上面的方法找到最小值,请问最小值是多少,并说明理由;(2)小鹏通过笔记和问题(1)的方案很快解决了上面的问题,请你完成解答过程.27. 在平面直角坐标系xOy 中,抛物线22234y x mx m m =-+-+-的对称轴是直线x =1(1)求抛物线的表达式;(2)点1()D n y ,,2(3)E y ,在抛物线上,若12y y >,请直接写出n 的取值范围; (3)设点()M p q ,为抛物线上的一个动点,当12p -<<时,点M 关于y 轴的对称点形成的图象与直线4y k x =-(0k ≠)有交点,求k 的取值范围.28. 已知:△ABC ,AB =4,AC =3,以CB 为边作等边三角形△CBP ,连接AP ,求AP 的值.这道题目难到了小明,首先没有图形,然后发现△ABC 不是一个固定的图形,等边三角形△CBP 也没有指定在BC 所在直线的哪一侧,这两个不确定的因素会使得AP 的值不一定是固定的长度,为此小明从特殊情况出发研究这个问题,按如下步骤进行了解决: 步骤1:取∠CAB =30°,以CB 为边作等边三角形△CBP ,使点A 与点P 在BC 所在直线的异侧;步骤2:要想建立AB ,AC ,AP 的联系,需要将这三条线段进行转移处理,由于图中有等边三角形,可以通过旋转来完成线段与角的转移,因此将△ACP 以P 点为旋转中心,逆时针旋转60°,得到△P BP ′,通过推理与计算得到了此位置时AP 的值.(1)请结合小明的步骤补全图形; (2)结合补全后的图形求出AP 的值;(3)根据上述经验,改变∠CAB 的度数,发现∠CAB 在变化到某一角度时,AP 有最大值,画出这个特殊角度时的示意图,写出AP 的最大值,并说明取得最大值的思路.B29.我们给出如下定义:两个图形G 1和G 2,对于G 1上的任意一点11()P x y ,与G 2上的任意一点22()Q x y ,,如果线段PQ 的长度最短,我们就称线段PQ 为“最佳线段”. (1)如图29-1,点P 在线段AB ((10)A ,,(30)B ,)上,点Q 在线段CD 上,如果PQ 为最佳线段, 那么PQ 的长为____________;(2)有射线EF ((40)E ,,(04)F ,)和线段AB ,点P 在线段AB 上,点Q 在 射线EF 上;①如图29-2,当A (1,0),B (3,0)时,最佳线段PQ 的长为____________; ②保持线段AB 在x 轴上(点A 在点B 的左侧),且AB 为2个单位长度,(0)A m ,, 最佳线段PQ的长满足0PQ ≤,在图29-3中画出示意图,写出m 的取值范围; (3)有⊙M ,圆心为(a ,0),半径为2,点P 在⊙M 上,点Q 在(2)中的射线EF 上,最佳线段PQ 的长满足01PQ ≤≤时,画出示意图,写出 a 的取值范围.2017年门头沟区初三二模考试29-3备用图数学答案及评分参考2017.6一、选择题(本题共30分,每小题3分)29题8分)17.(本小题满分5分)解:原式=13-, (4)分=2-.………………………………………………………………………5分18.(本小题满分5分)由题意可知∠EDA 是由∠CDA 翻折得到∴∠EDA =∠CDA =45°. ……………………………………1分ED =CD . ∴ ∠EDB =90° ……………………………………∵ AD 是△ABC 的中线,BC =6∴ BD =CD =3.∴ ED =BD =3. ………………………………4分 在Rt BDE ∆中,根据勾股定理可得∴BE = ………………………5分 19. (本小题满分5分)原式=2241294x x x -+-+……………………………………2分=231213x x -+ …………………3分=23(4)13x x -+ …………………………4分 ∵2430x x --= …………………………5分 ∴原式=331322⨯+= 20.(本小题满分5分) 解:(1)∵ (0)m y m x=≠过点(24)B -,, ∴2(4)8m =⨯-=- ∴反比例函数的表达式为8y x =- …………………………………………………2分∵ (0)my m x =≠过点(4)A n -,∴ 824n -==- ……………………………………………3分(2)40x -<<或2x >…………………………………………5分21. (本小题满分5分)解:(1)证明:Δ=)4(14)]15([22m m m +⨯⨯-+- =1692++m m=2)13(+m ……………………………………1分∵无论m 取任何实数时,∴2)13(+m ≥0. ………………………………………2分 即无论m 取任何实数时,原方程总有两个实数根.(2)解:解关于x 的一元二次方程04)15(22=+++-m m x m x ,得 1241x m x m ,==+. …………………………3分∴当1241x mx m =+时,0m =; 当214+1x m x m =时,4+114m m m=+ ,1m =±综上所述0m =或1m =±………………………………………………5分 22. (本小题满分5分)(1)答案不唯一.满足(0,0)y kx b k b =+>≠,且 a k > …………2分 (2)情景编写符合图像信息即可,无需求解 ……………5分23. (本小题满分5分) (1) ∵ 四边形ABCD 是菱形,∴ AD =AB , CD ∥AB . ………………………………1分 ∵BD =DE ∴EF =FA∴FD 是△EAB 的中位线 ∴AB =2FD∴AD =2FD …………………………2分 (2)过点D 作DM ⊥AB ∵FD =2∴AB =4 …………………………3分 ∵∠C =60°∴ ∠ADB =∠60°. △DAB 为等边三角形 ∴∠ADM =30°,AM =2 ∴ DM=tan 60AM︒,可得23DM = …………………………4分∴42383ABCD S AB DM =⋅=⨯=菱形……………………5分24. (本小题满分5分)(1) m =1050;n =66% …………………………………………………2分(2)初二视力不良人数590人,补图正确 ; …………………………3分 该市视力不良人数:180080000=480003000⨯………………………4分 (3)可以结合视力不良人数在年级的增长趋势或男女生视力不良的比例去描述…5分25. (本小题满分5分)(1)如图,连接OM . ∵直线CD 切⊙O 于点M .∴∠OMD =90°.∴∠BME +∠OMB =90°. ∵AB 为⊙O 的直径.∴∠AMB =90°. ∴∠AMO +∠OMB =90°. ∴∠BME =∠AMO .∵OA =OM .∴∠MAB =∠AMO .∴∠BME =∠MAB .…………………………………………………2分(3)由(1)可得,∠BME =∠MAB . ∵sin ∠BAM =35,∴sin ∠BME =35. ………………………………3分 在Rt △BEM 中,BE =185. ∴sin ∠BME =BE BM =35. ∴BM =6,在Rt △ABM 中,sin ∠BAM =35. ∴sin ∠BAM =BM AB =35.∴AB =53BM =10. ………………………………5分∴⊙O 的半径=526. (本小题满分5分)(1)最小值是0 …………………………………………………………………………1分理由:22223=(a a a -+-+=∵2(0a ≥∴23a -+的最小值是0. …………………………………………………2分(2)最小值是0 …………………………3分 理由:2222220,0a b a ba b +=+->>=+-=∵∴原式4分∵20≥………………………………………5分27. (本小题满分7分)(1)∵222234=)43y x mx m m x m m =-+--+--+-(…………………………1分 对称轴是对称轴是直线x =1 ∴m =1,∴2y 2x x =-+……………………………………………………2分(2)图像正确, ………………………………3分 -1<n <3 …………………………………4分 (3)由题意可得M’(-p ,q ),翻折后的函数表达式为2y 2x x =-- ∴结合-1<p <2,确定动点M 及M’,当1x =-时,3y =-;当2x =时,0y =因为动点M 与M’ 关于y 轴对称,所以图像确定如下当过(13)-,时,代入 4y kx =- ,1k = 当过(20)-,时,代入 4y kx =- ,2k =-综上所述:1k >,或2k <- ………………………7分28. (本小题满分7分)(1)补全图形正确 ………………………………1分 (2)∵△ACP 以P 点为旋转中心,逆时针旋转60°,得到△P ′BP∴△A C P ≌△P ′BP∴∠ACP =∠P ′BP ,AP = P ′P , ∠CP A =∠P ′PBAC = P ′B =3 …………………………………2分 ∵△CBP 为等边三角形 ∴∠APP ′=60°∠CBP =60° ∴△P ′AP 为等边三角形∴AP = AP ′ 3分∵∠CAB =30°∴∠ACB +∠ABC =150°∴∠ABP ′=360°-150°-120°=90° 在Rt △ABP ′中AP = AP5 …………………………………4分(3)当∠CAB =120°,最大值是7.图形正确 …………5分 思路:A①由∠CAB=120°,可得∠ACB+∠ABC=60°②由(2)中的旋转后的全等,可得∠ACP=∠P′BP,AP=P′P,AC=P′B③由∠CBP=60°,进而推出∠ABC+∠CBP+∠P′BP =180°(即点A、B、P共线) …6分④由AC=3,AB=4,可得AP= AP′=AB+BP′=7 …………………7分29. (本小题满分7分)(1)最佳线段PQ …………………………1分(2)①辅助线正确 …………………………2分2…………………………3分 ②图形正确 …………………………4分0m ≤≤…………………………5分(3)补图正确 ………………………………………………………………7分7a ≤………………………8分。
初中数学北京门头沟区初三年级第二次模拟考试数学考试卷
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:2的倒数是A. B.2 C. D.试题2:一种细胞的直径约为0.00000156米.将0.00000156用科学记数法表示应为A. B. C. D.试题3:两圆的半径分别为5cm和2cm,圆心距为7cm,则这两圆的位置关系是A.内切 B.外切C.外离 D.内含试题4:右图所示的是一个几何体的三视图,则这个几何体是A.长方体 B.正方体C.圆柱体 D.三棱柱试题5:已知一组数据1,4,5,2,3,则这组数据的极差和方差分别是A.4,2 B.4,3 C.2,3 D.1,5试题6:若圆锥侧面展开图的扇形面积为65cm2,扇形的弧长为10cm,则圆锥的母线长是A.5cm B.10cm C.12cm D .13cm试题7:桌面上有三张背面相同的卡片,正面分别写有数字1、2、3.先将卡片背面朝上洗匀,然后从中同时抽取两张,则抽到的两张卡片上的数字之积为奇数的概率是A.B.C.D.试题8:如图,正方形的边长为2,动点从点出发,在正方形的边上沿着的方向运动(点与不重合). 设点的运动路程为, 则下列图象中,表示△的面积与的函数关系的是试题9:在函数中,自变量x的取值范围是.试题10:如图,在△ABC中,DE∥BC ,AD=3,BD=6,AE=4,则EC的长是.试题11:已知一个多边形的内角和是外角和的2倍,则这个多边形的边数是.试题12:如图,在矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD的内部,延长BG交DC于点F.若DC=2DF,则;若DC=nDF,则(用含n的式子表示).试题13:计算:.试题14:解不等式组并求它的正整数解.试题15:已知:如图,DB∥AC,且,E是AC的中点.求证:BC=DE.试题16:已知,求的值.试题17:列方程或方程组解应用题:为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工产品的数量是甲工厂每天加工产品数量的1.5倍根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?试题18:已知二次函数的图象与x轴有且只有一个公共点.(1)求m的值;(2)若此二次函数图象的顶点为A,与y轴的交点为B,求A、B两点的坐标;(3)若、是二次函数图象上的两点,且,请你直接写出n的取值范围.试题19:如图,在梯形ABCD中,AD//BC,BD ⊥CD,∠C =60°,AD=,BC=,求AB 的长.试题20:已知:如图,的直径AB 与弦CD相交于点E,,的切线BF与弦AD 的延长线相交于点F.(1)求证:;(2)连结BC ,若的半径为4,,求线段AD、CD的长.试题21:某校初三年级的学生积极参加“博爱在京城”的募捐活动. 小明把本年级学生400人的捐款情况进行了统计,并绘制成了如下不完整的频数分布表和频数分布直方图.分组/元频数频率10≤x<20 40 0.1 020≤x<30 80 0.2 030≤x<40 0.4 040≤x<50 10 050≤x<60 20 0.0 5合计401.0请你根据以上图表提供的信息,解答下列问题:(1)补全频数分布表和频数分布直方图;(2)捐款金额的中位数落在哪个组内?(3)若该校共有学生1600人,请你估计该校学生捐款金额不低于40元的有多少人?试题22:如图1,有一张菱形纸片ABCD,AC=8,BD=6.(1)若沿着AC剪开,把它分成两部分,把剪开的两部分拼成一个平行四边形,请在图2中用实线画出你所拼成的平行四边形,并直接写出这个平行四边形的面积;(2)若沿着BD剪开,把它分成两部分,把剪开的两部分拼成一个平行四边形,请在图3中用实线画出你所拼成的平行四边形,并直接写出这个平行四边形的周长;(3)沿着一条直线剪开,把它分成两部分,把剪开的两部分拼成与上述两种都不全等的平行四边形,请在图4中用实线画出你所拼成的平行四边形.(注:上述所画的平行四边形都不能与原菱形全等)试题23:已知抛物线y=ax 2+bx-4a经过A(-1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)若点D(m,m+1)在第一象限的抛物线上, 求点D关于直线BC对称的点的坐标;(3)在(2)的条件下,连结BD,若点P为抛物线上一点,且∠DBP=45°,求点P的坐标.试题24:已知在△ABC和△DBE中,AB=AC,DB=DE,且∠BAC=∠BDE.(1)如图1,若∠BAC=∠BDE=60°,则线段CE与AD之间的数量关系是;(2)如图2,若∠BAC=∠BDE=120°,且点D在线段AB上,则线段CE与AD之间的数量关系是__________________;(3)如图3,若∠BAC=∠BDE=,请你探究线段CE与AD之间的数量关系(用含的式子表示),并证明你的结论.试题25:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA = 3,AB = 5.点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ 于点D,交折线QB-BO-OP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q 运动的时间是t秒(t >0).(1)求直线AB的解析式;(2)在点P从O向A运动的过程中,求△APQ的面积S与t之间的函数关系式(不必写出t的取值范围);(3)在点E从B向O运动的过程中,四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,请说明理由;(4)当DE经过点O时,请你直接写出t的值.试题1答案:A试题2答案:B试题3答案:B试题4答案:C试题5答案:A试题6答案:D试题7答案:C试题8答案:D试题9答案:X≥2试题10答案:8试题11答案:六试题12答案:,试题13答案:解:4分. 5分试题14答案:解不等式组并求它的正整数解.解:由①,得x≥-2.由②,得x<3.不等式组的解集在数轴上表示如下:所以原不等式组的解集为-2≤x<3.所以原不等式组的正整数解为1,2.试题15答案:证明:∵E是AC的中点, ∴EC=AC.∵,∴DB = EC.∵DB∥AC,∴DB∥EC.∴四边形DBCE是平行四边形.∴BC=DE.试题16答案:解:= 2分== . 3分当时,. 4分原式==-6. 5分试题17答案:解:设甲工厂每天加工x件新产品,则乙工厂每天加工1.5x件新产品.依题意,得解得x=40.经检验,是所列方程的解,且符合实际问题的意义.当x=40时,1.5x=60.答:甲、乙两个工厂每天分别能加工新产品40件、60件.试题18答案:解:(1)根据题意,得△=.解得.(2)当时,.二次函数图象的顶点A的坐标为(-1,0),与y轴的交点B的坐标为(0,1).(3)n的取值范围是或.试题19答案:解:如图,分别过点A、D作AE⊥BC于点E ,DF⊥BC于点F.∴ AE // DF.又∵ AD // BC,∴四边形AEFD是矩形.∴ EF=AD=.∵ BD⊥CD,∠C=60°,BC=,∴ DC=BC·cos60°=.∴ CF=DC·cos60°=.∴ AE=DF= DC·sin60°=.∴.在Rt△ABE中,∠AEB=90°,∴ AB=.试题20答案:解:(1)由直径平分,可证. 1分与相切,是的直径,. 2分. 3分(2)连结.是的直径,.在中,,,. 4分在中,,∴ DE=.由直径平分,可求.试题21答案:解:(1)补全频数分布表和频数分布直方图.(2)捐款金额的中位数落在30≤<40这个组内.(3)该校学生捐款数额不低于40元的有(人).试题22答案:解:(1)画出图形、面积为24.(2)画出图形、周长为22.(3)画出图形(答案不唯一).试题23答案:解:(1)抛物线经过,两点,解得抛物线的解析式为.(2)点在抛物线上,.∴. 或.点D在第一象限,舍去.点D的坐标为.抛物线与轴的另一交点的坐标为,,∴.设点关于直线的对称点为点.,.∴E点在轴上,且.∴OE=1.即点关于直线对称的点的坐标为(0,1).(3)过点作的垂线交直线于点,过点作轴于,过点作于.∴...,,.. ,..设直线的解析式为.由点,点,求得直线的解析式为.解方程组得(舍)点的坐标为.试题24答案:解:(1)CE= AD.(2)CE=AD.(3)CE与AD之间的数量关系是.证明:∵AB=AC,DB=DE,∴∵∠BAC=∠BDE,∴△ABC∽△DBE.∴∴∴△ABD∽△CBE.∴过点D作DF⊥BE于点F . ∴∴∴∴.试题25答案:解:(1)在Rt△AOB中,OA = 3,AB = 5,由勾股定理得.∴A(3,0),B(0,4).设直线AB的解析式为.∴解得(2)如图,过点Q作QF⊥AO于点F.∵ AQ = OP= t,∴.由△AQF∽△ABO,得.∴.∴.∴,∴.(3)四边形QBED能成为直角梯形.①如图,当DE∥QB时,∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.此时∠AQP=90°.由△APQ ∽△ABO,得.∴.解得.②如图,当PQ∥BO时,∵DE⊥PQ,∴DE⊥BO,四边形QBED是直角梯形.此时∠APQ =90°.由△AQP ∽△ABO,得即.解得.(4)或.。
北京市门头沟区初三二模数学试题及答案.doc
2011年门头沟区初三年级第二次统一练习数 学 试 卷考生须知1.本试卷共6页,共五道大题,25道小题,满分120分。
考试时间120分钟。
2.在试卷和答题卡的密封线内准确填写学校、班级和姓名。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.2的倒数是A .12 B .2 C .12- D .2- 2.一种细胞的直径约为0.00000156米.将0.00000156用科学记数法表示应为 A .61.5610⨯ B .61.5610-⨯ C .51.5610-⨯ D .415.610-⨯ 3.两圆的半径分别为5cm 和2cm ,圆心距为7cm ,则这两圆的位置关系是 A .内切 B .外切 C .外离 D .内含 4.右图所示的是一个几何体的三视图,则这个几何体是 A .长方体 B .正方体 C .圆柱体 D .三棱柱 5.已知一组数据1,4,5,2,3,则这组数据的极差和方差分别是A .4,2B .4,3C .2,3D .1,56.若圆锥侧面展开图的扇形面积为65πcm 2,扇形的弧长为10πcm ,则圆锥的母线长是 A .5cm B .10cm C .12cm D .13cm7.桌面上有三张背面相同的卡片,正面分别写有数字1、2、3.先将卡片背面朝上洗匀, 然后从中同时抽取两张,则抽到的两张卡片上的数字之积为奇数的概率是A .16B .23C . 13D . 128.如图,正方形ABCD 的边长为2,动点P 从点C 出发,在正方形的边上沿着C B A →→的方向运动(点P 与 A 不重合). 设点P 的运动路程为x , 则下列图象中,表示△ADP 的面积y 与x 的函数关系的是错误!未指定书签。
北京市门头沟区区初三数学二模试卷
门头沟二模一、选择题1.4的平方根是( )A .2 B .2± C .2 D .2±2.实验表明,人体内某种细胞的形状可近似地看作球,它的直径约为0.00000156m ,将0.00000156用科学记数法表示是( )A .50.15610-⨯B .50.15610⨯C .61.5610-⨯D .61.5610⨯3.如图是一圆柱,则它的左视图是( )4.如图,AB ∥CD ,点E 在CB 的延长线上,若∠ABE=60°,则∠ECD 的度数为( )A .120B .100C .60D .205.在函数y=321-x 中, x 的取值范围是( )A .0≠x B .23≥x C .23>x D .23≠x6.若关于x 的方程0)1(222=+-+k x k x 没有实数根,则k 的取值范围是( )A. 12k <B. 12k ≤ C. 12k >D. k ≥127.某青年排球队11名队员的年龄情况如下:则这个队队员年龄的众数和中位数是( )A.19,20 B.19,19 C.19,20.5 D.20,198.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到距离A 地18km 的B 地,他们离出发地的距离S (km )和行驶时间t(h)之间的函数关系的图象如图所示.根据图中提供的信息,符合图象描述的说法是( )A. 甲在行驶的过程中休息了一会B.乙在行驶的过程中没有追上甲C. 乙比甲先到了B 地D. 甲的行驶速度比乙的行驶速度大 9. 因式分解:x x x9623+-= .10. 某市从经济收入中划拨出780万元,对教育、文化、卫生等社会事业按比例进行投入,其中对教育投入这一数据丢失了,请结合图中的信息,该市对教育投入的资金为 万元. 11.将图①所示的正六边形进行分割得到图②,再将图②中最小的某一个正六边形按同样的方式进行分割得到图③,再将图③中最小的某一个正六边形按同样的方式进行分割,…,则第5个图形 中共有 个正六边形.E DC BA12.如图,半圆的直径AB=10,P 为AB 上一点,点C ,D 为半圆的三等分点,则阴影部分的面积等于_______.13.计算:︒⋅--+-60tan 3)13()2(0214.解⎪⎩⎪⎨⎧+<<-4210112x x x ,并求其正整数解.15.解方程:03122=--x x 17.当a= -1,b=2时,求:)(22a bb a a ab a -÷-的值16.等腰梯形ABCD 中,AD ∥BC ,AB =CD ,DE ⊥BC 于E ,AC =BC ,BF ⊥AC 于F ,线段BF 与图中的哪一条线段相等. 先写出你的猜想,再加以证明. 猜想:BF = . 证明:18.如图,小明想测量塔BC 的高度.他在楼底A 处测得塔顶B 的 仰角为60;爬到楼顶D 处测得大楼AD 的高度为18米,同时测得 塔顶B 的仰角为30,求塔BC 的高度.DFECBA19. 如图,已知⊙O的弦AB垂直于直径CD,垂足为F,点E在AB上,且EA = EC.⑴求证:AC 2 = AE·AB;⑵延长EC到点P,连结PB,若PB = PE,试判断PB与⊙O的位置关系,并说明理由.20.将分别标有数字3,4,5的三张质地,大小完全一样的卡片背面朝上放在桌面上.(1)任意抽取一张卡片,求抽到卡片上的数字是奇数的概率;(2)任意抽取一张作为十位上的数字, 放回洗匀后再抽取一张作为个位上的数字,请你列表或画树状图分析并求出组成的两位数中恰好是35的概率.21.某市平均每天生产垃圾700吨,由甲、乙两个垃圾厂处理,如果甲厂每小时可以处理垃圾55吨,需花费550元;乙厂每小时可以处理垃圾45吨,需花费495元. 如果规定该城市每天用于处理垃圾费用的和不超过7150元. 请为该市设计垃圾处理方案.22.如图,正方形ABCD绕点A逆时针旋转n°后得到正方形AEFG,边EF与CD交于点O.(1)请在图中连结两条线段(正方形的对角线除外).要求:①所连结的两条线段是以图中已标有字母的点为端点;②所连结的两条线段互相垂直.(2)若正方形的边长为2cm,重叠部分(四边形AEOD)的面积为23,旋转的角度n是多少度?请说明理由.P23.如图1,P 为Rt △ABC 所在平面内任一点(不在直线AC 上),∠ACB=90°,M 为AB 的中点. 操作:以PA 、PC 为邻边作平行四边形PADC ,连结PM 并延长到点E ,使ME=PM ,连结DE. (1)请你猜想与线段DE 有关的三个结论,并证明你的猜想; (2)若将“Rt △ABC ”改为“任意△ABC ”,其他条件不变,利用图2操作,并写出与线段DE 有关的结论(直接写答案).24. 已知:抛物线x ax y +=2经过点A(4,0).(1)求此抛物线的解析式及顶点坐标;(2)若点B 在抛物线的对称轴上,点C 在抛物线上,且以O 、B 、C 、A 四点为顶点的四边形为平行四边形,求点C 的坐标.25. 如图,把一副三角板如图1放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm ,DC=7cm ,把三角板DCE 绕点C 顺时针旋转15得到△D /CE /如图2.这时AB 与CD /相交于点O ,D /E /与AB 相交于点F .(1)求∠OFE /的度数; (2)求线段AD /的长. (3)若把三角形D /CE /绕着点C 顺时针再旋转30得△D //CE //,这时点B 在△D //CE //的内部、外部、还是边上?证明你的判断.门头沟二模答案图1E M PD CBA图2BAACBED图1一、BCBADC A C 9、x (x-3)2 10、265.2 11、13 12、π62513. 解:︒⋅--+-60tan 3)13()2(02=4+1-3⨯3 =4+1-3 =214.由(1)解得,211<x , 由(2)解得,x<8∴不等式组的解集是211<x ∴它的正整数解是1,2,3,4,5 15.解:a=1,b=-12,c=-3 b 2-4ac=(-12)2-4×1×(-3)=156>0∴x=215612±=639±方程的解为x 1=6+39,x 2=6-3916. 猜想:BF = DE证明:∵AB=CD, ∴∠ABC=∠DCB. ∵AC=BC,∴∠BAC=∠ABC.∴∠BAC=∠DCE.∵BF ⊥AC,DE ⊥BC,∴∠BFA=∠DEC=90°∴△ABF ≌△CDE ∴BF=DE. 17. 解:)(22a b b a a ab a -÷- =)()(222ab b a a b a a -÷- =))(()(2b a b a aba b a a -+⨯-=b a b + 当a=-1,b=2时,原式=212+-=2 18. 解: 设BE=x 米.在Rt △BDE 中,∵ tan 30BE DE =,∴x DE =.∴DE=.∵ 四边形ACED 是矩形,∴AC=DE=,CE=AD=18.在Rt △ABC 中,∵ tan 60BCAC =,= x=9.∴ BC=BE+CE=9+18=27(米). 19∵AB ⊥CD ,CD 为⊙O 的直径∴BC = ∴∠1=∠2∵AE =CE ,∴∠1=∠3∴∠2=∠3.又∵∠1=∠1 ∴△AEC ∽△ACB ∴ACAEAB AC =. 即AC 2=A B ·AE ⑵PB 与⊙O 相切连结OB ,∵PB =PE ∴∠PBE =∠PEB ∵∠1=∠2=∠3∴∠PEB =∠1+∠3=2∠1=2∠2∵∠PBE =∠2+∠PBC ∴∠PBC=∠PBE-∠2=∠2=∠1∵∠OBC =∠OCB 在Rt △BCF 中,∴∠OCB =90°-∠2=90°-∠1∴∠OBC =90°-∠1∴∠OBP =∠OBC +∠PBC =∠1+(90°-∠1)=90°∴PB ⊥OB ,即PB 为⊙O 的切线20. (1)P (抽奇数)=32(2)能组成9个不同的两位数:33, 34,35,43,44, 45,53,54,55. D45354353543D FECB AP(两位数恰好为35)=91 21.解:设该市的垃圾甲厂处理x 吨,则乙厂处理(700-x)吨.71504954570055055≤⨯-+⨯x x 解得,x 550≥ 答:甲厂处理垃圾至少550吨,其余由乙厂处理 22.(1) (或连结BE 和DG)(2)n=30°证明:四边形ABCD 和四边形AEFG 是正方形,∴∠ADO=∠AEO=∠DAB=90°,AD=AE.∵ AO=AO ∴Rt △ADO ≌Rt △AEO ∴∠DAO=∠EAO四边形AEOD,∴△ADO 的面积=2AD DO ⨯=,∵AD=2,∴DO=332,∴tan ∠DAO=AD DO=33∴∠DAO=30°.∴∠EAB=30°23.解: (1)DE ∥BC,DE=BC,DE ⊥AC 连结BE.延长ED 与AC 交于点F. PM=ME,AM=BM,∠PMA=∠EMB,∴△PMA ≌△EMB ∴PA=EB,∠MPA=∠MEB. ∴PA ∥BE. 四边形APCD 是平行四边形, ∴PA ∥CD,PA=CD. ∴BE ∥CD,BE=CD. ∴四边形DCBE 是平行四边形.∴DE ∥BC,DE=BC∴∠EFA=∠ACB. ∠ACB=90°∴∠EFA=90°.∴DE ⊥AC (2) DE ∥BC,DE=BC24. 解: (1)∵抛物线x ax y +=2经过点A(4,0), ∴a=41-∴抛物线的解析式为x x y +-=241∴ 顶点坐标为(2,1) (2)如图,当四边形OBCA 是平行四边形时, BC ∥OA ,BC=OA ∵A (4,0)∴OA=4∴C 的横坐标是6 ∵点C 在抛物线上∴y=66412+⨯-解得,y=-3∴C (6,-3)根据 抛物线的对称性可知,在对称轴的左侧抛物线上存在点C ,使得四边形 OCBA 是平行四边形,此时C 的坐标为(-2,-3)当四边形OBAC 是 平行四边形时,C 点即为抛物线的顶点,此时C 的坐标为(2,1)25. 解:(1)315∠=,90E '∠=,12∠=∠, 175∴∠=.又45B ∠=,F图1EM PDCBA BA1457512O F E B '∴∠=∠+∠=+=(2)120OFE '∠=,60D FO '∴∠=,又30CD E ''∠=,490∴∠=.又AC BC =,6AB =,3OA OB ∴==, 90ACB ∠=,116322CO AB ∴==⨯=.又7CD '=,734OD CD OC ''∴=-=-=.在Rt AD O '△中,5AD '==.(3)点B 在D CE ''''△内部. 理由如下:设CB (或延长线)交D E ''''于点B '.153045B CE '''∠=+=,在Rt B CE '''△中,2CB '''==,又32CB =<,即CB CB '<,∴点B 在D CE ''''△内部.C A '。
10.2016-2017第2学期初2数学期末考试题答案 门头沟
门头沟区2016—2017学年度第二学期期末调研试卷八年级数学答案及评分参考三、解答题(本题共27分,第17~19题,每小题5分,第20、21每小题6分)17.解:(1)∵DE⊥AB于E,∴∠DEB=90º.又∵∠C=90º,∴∠D E B=∠C.…………………………………………………1分又∵∠B=∠B,…………………………………………………2分∴△BED∽△BCA.……………………………………………………3分(2)∵△BED∽△BCA,∴DE BDAC AB=.……………………………………………………4分∴2610BD =,∴BD=103.……………………………………………………………………5分18.解:(1)答案不唯一,条件正确………………………………………………………1分(2)证明:∵四边形ABCD是正方形,∴AB∥CD ,AB=CD ………………………………………………2分∴∠ABD=∠BDC ………………………………………………3分又∵_______________(添加)∴△ABE≌△CDF.………………………………………………4分∴AE=CF.…………………………………………………………5分第 1 页共6 页19.解:(1)设甲车离开A 城的距离s 甲与甲车行驶的时间t 之间的函数表达式为1s k t =甲(1k ≠0)根据题意得:300=51k , ∴1k =60,∴甲车离开A 城的距离s 甲与甲车行驶的时间t 之间的函数表达式为60s t =甲.……………………………………………………………………1分设乙车离开A 城的距离s 乙与甲车行驶的时间t 之间的函数表达式为22(0)s k t b k =+≠乙,根据题意得:224300k b k b +=⎧⎨+=⎩∴解得2100100k b =⎧⎨=-⎩∴…………………………………………………………2分∴乙车离开A 城的距离s 乙与甲车行驶的时间t 之间的函数表达式为100100s t =-乙………………………………………………………………………3分(2)由题意得:60(100100)50t t --=,(100100)6050t t --= 解得:54t =,154t =,………………………………………………………………5分 20.解:(1)正比例函数2y x =的图象过点A (m ,4).∴ 4=2 m ,∴ m =2 .………………………………………………………………………1分 又∵一次函数+n y x =-的图象过点A (m ,4).∴ 4=-2+ n ,∴ n =6.………………………………………………………………………2分 (2)一次函数+n y x =-的图象与x 轴交于点B ,∴令y =0,0+6x =-∴x =6 点B 坐标为(6,0).…………………………………………………4分∴△AOB的面积164122=⨯⨯=.…………………………………………5分(3)x>2.…………………………………………………………………………6分21.证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC.……………………………………………………………1分又∵DE∥AC,∴四边形ADEC是平行四边形.………………………………………2分又∵AC⊥BC,∴∠ACE=90º.∴四边形ADEC是矩形.………………………………………………3分解:(2)∵AC⊥BC,∴∠ACB=90º.∵M是AB的中点,∴AB=2CM=10.…………………………………………………………4分∵AC=8,∴6BC==.又∵四边形ABCD是平行四边形,∴BC=AD.又∵四边形ADEC是矩形,∴EC=AD.∴EC= BC=6.……………………………………………………………5分∴矩形ADEC的面积=6848⨯=.……………………………………6分四、解答题(本题共25分,第22题5分,第23、24每小题6分,第25题8分)22.解:(1)正确画出图形:略…………………………………………………………3分(2)A1(3,4),B1(6,4)或A1(7,8),B1(4,8)或A1(3,8),B1(3,5)或A1(7,4),B1(7,7).…………………………………………………5分23.解:(1)8,12,0.24;………………………………………………………………3分(2)补全图形;……………………………………………………………………5分(3)216 .………………………………………………………………………6分24.解:(1)甲同学的想法:过点F作FG∥AB交AC于点G.∴∠GFE=∠ADE,∠FGE=∠DAE∴△AED∽△GEF.∴AD EDGF EF=.………………………1分∵E为DF的中点,第 3 页共6 页∴ED =EF .∴AD =GF .………………………2分 ∵FG ∥AB ,∴△CGF ∽△CAB .∴GF CFAB CB=.………………………3分 ∵12CF BF =, ∴13CF CB = .………………………………………………………4分 ∴13AD GF CF AB AB CB === .………………………………………5分 乙同学的想法:过点F 作FG ∥AC 交AB 于点G∴AD ED AG EF= .………………………1分∵E 为DF 的中点,∴ED =EF.∴AD =AG .………………………2分 ∵FG ∥AC ,∴AG CFAB CB=.………………………3分 ∵12CF BF =, ∴13CF CB = .………………………………………………………4分 ∴13AD AG CF AB AB CB === .………………………………………5分 丙同学的想法:过点D 作DG ∥BC 交CA 延长线于点G . ∴∠C =∠G ,∠CFE =∠GDE ∴△GDE ∽△CFE . ∴GD ED CF EF= .………………………1分 ∵E 为DF 的中点,∴ED =EF .∴DG =FC .………………………2分 ∵DG ∥BC ,∴∠C =∠G ,∠B =∠ADG ∴△ADG ∽△ABC .第 5 页 共 6 页∴AD DGAB BC=.………………………3分 ∵12CF BF =, ∴13CF BC = .………………………………………………………4分 ∴13AD DG CF AB BC BC === .………………………………………5分 (2)3AD a AB =.……………………………………………………………6分25. 解:(1)①四边形OABC 是平行四边形 ∴AO ∥BC ,AO =BC . 又∵点A 落在y 轴上, ∴AO ⊥x 轴, ∴BC ⊥x 轴.∵A (0,-2)C (6,0), ∴B (6,-2).……………………………………………………………1分又∵边OA 沿x 轴翻折得到线段OA ', ∴A '(0,2).……………………………………………………………2分设直线A B '的函数表达式为(0)y kx b k =+≠ ,2,6 2.b k b =⎧⎨+=-⎩∴ ………………………………………………………………3分 解得2,2.3b k =⎧⎪⎨=-⎪⎩∴∴ A B '所在直线的函数表达式为223y x =-+. …………………4分 证明:②∵四边形OABC 是平行四边形, ∴AO ∥BC ,AO =BC .∴∠OA B '=∠DBC .又∵边OA 沿x 轴翻折得到线段OA ', ∴AO =OA '. ∴OA '=BC .又∵∠A DO '=∠BDC ,∴△A DO '≌△BDC . ……………………………………………………5分 ∴A D '=BD ,∴点D 为线段A B '的中点. ……………………………………………6分解:(2)2OD BM =7分 思路:连接AA '交x 轴于F 点证明F 为AA '的中点;∴ 得出点D 为线段A B '的中点∵边OA 沿x 轴翻折得到线段OA '且45AOC ∠=︒,∴45A OD ∠=︒', 90A OA ∠=︒'.∵AO ∥BC , ∴90M ∠=︒.过点D 作DE ∥BM 交OM 于点E ,可得12DE A D BM A B '==', 还可得到等腰直角△ODE .∴OD DE =. ∴2OD BM =8分说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分,谢谢!x。
2016-2017学年北京市门头沟区九年级(上)期末数学试卷含答案解析
2016-2017学年北京市门头沟区九年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.(3分)(2017秋•湛江期末)如果(a≠0、b≠0),那么下列比例式变形错误的是()A.B.C.D.3a=2b2.(3分)(2016秋•门头沟区期末)如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则sin∠ABC的值为()A.3B.C.D.3.(3分)(2018秋•卢龙县期末)⊙O的半径为4,点P到圆心O的距离为d,如果点P在圆内,则d()A.d<4B.d=4C.d>4D.0≤d<44.(3分)(2016秋•门头沟区期末)甲、乙、丙三名运动员参加了射击预选赛,他们射击的平均环数及其方差s2如表所示.需要选一个成绩较好且状态稳定的人去参赛,如果选定的是乙,则乙的情况应为()A.,S2=0.7B.,S2=1.2C.,S2=1D.,S2=1.5 5.(3分)(2016秋•门头沟区期末)将抛物线y=x2的图象向左平移2个单位后得到新的抛物线,那么新抛物线的表达式是()A.y=(x﹣2)2B.y=(x+2)2C.y=x2﹣2D.y=x2+26.(3分)(2016秋•门头沟区期末)如图,在△ABC中,DE∥BC,DE分别与AB、AC相交于点D、E,若AD=2,DB=1,S△ADE=4,则S四边形DBCE()A.3B.5C.7D.97.(3分)(2018秋•卢龙县期末)在正三角形、正四边形、正五边形、正六边形、正八边形5个图形中既是轴对称又是中心对称的图形有()A.2B.3C.4D.58.(3分)(2018秋•卢龙县期末)如图,已知⊙O的半径为5,弦AB长为8,则点O到弦AB的距离是()A.2B.3C.4D.9.(3分)(2016秋•门头沟区期末)如图:反比例函数y的图象如下,在图象上任取一点P,过P点作x轴的垂线交x轴于M,则三角形OMP的面积为()A.2B.3C.6D.不确定10.(3分)(2018秋•卢龙县期末)在学完二次函数的图象及其性质后,老师让学生们说出y=x2﹣2x﹣3的图象的一些性质,小亮说:“此函数图象开口向上,且对称轴是x=1”;小丽说:“此函数肯定与x轴有两个交点”;小红说:“此函数与y轴的交点坐标为(0,﹣3)”;小强说:“此函数有最小值,y=﹣3”…请问这四位同学谁说的结论是错误的()A.小亮B.小丽C.小红D.小强二、填空题(本题共18分,每小题3分)11.(3分)(2016秋•门头沟区期末)若,则.12.(3分)(2017秋•庆云县期末)为了测量校园内水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜子放在离树底(B)10米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A再用皮尺量得DE=2.0米,观察者目高CD=1.6米,则树(AB)的高度约为米.13.(3分)(2016秋•门头沟区期末)请写出一个过(2,1),且与x轴无交点的函数表达式.14.(3分)(2016秋•门头沟区期末)扇面用于写字作画,是我国古代书法、绘画特有的形式之一,扇面一般都是由两个半径不同的同心圆按照一定的圆心角裁剪而成,如图,此扇面的圆心角是120°,大扇形的半径为20cm,小扇形的半径为5cm,则这个扇面的面积是.15.(3分)(2016秋•门头沟区期末)记者随机在北京某街头调查了100名路人使用手机的情况,使用的品牌及人数统计如右图,则本组数据的众数为.16.(3分)(2016秋•门头沟区期末)在进行垂径定理的证明教学中,老师设计了如下活动:先让同学们在圆中作了一条直径MN,然后任意作了一条弦(非直径),如图1,接下来老师提出问题:在保证弦AB长度不变的情况下,如何能找到它的中点?在同学们思考作图验证后,小华说了自己的一种想法:只要将弦AB与直径MN保持垂直关系,如图2,它们的交点就是弦AB的中点.请你说出小华此想法的依据是.三、解答题(本题共30分,每小题5分)17.(5分)(2016秋•门头沟区期末)计算:(π )04sin45°﹣()﹣1.18.(5分)(2016秋•门头沟区期末)如图,将①∠BAD=∠C;②∠ADB=∠CAB;③AB2=BD•BC;④;⑤中的一个作为条件,另一个作为结论,组成一个真命题.(1)条件是,结论是;(注:填序号)(2)写出你的证明过程.19.(5分)(2016秋•门头沟区期末)已知二次函数y=x2﹣2x﹣8.(1)将y=x2﹣2x﹣8用配方法化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的顶点坐标;(3)请说明在对称轴左侧图象的变化趋势.20.(5分)(2016秋•门头沟区期末)如图,△ABC在方格纸中(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(4,2),并求出B点坐标;(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A'B'C'.21.(5分)(2016秋•门头沟区期末)在平面直角坐标系xOy中,反比例函数y(k≠0)的图象过(2,3).(1)求反比例函数y的表达式;(2)有一次函数y=mx(m≠0)的图象与反比例函数y在第一象限交于点A,第三象限交于点B,过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,当两条垂线段满足2倍关系时,请在坐标系中作出示意图并直接写出m的取值.22.(5分)(2009•德城区)亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M,颖颖的头顶B及亮亮的眼睛A恰在一条直线上时,两人分别标定自己的位置C,D.然后测出两人之间的距CD=1.25m,颖颖与楼之间的距离DN=30m(C,D,N在一条直线上),颖颖的身高BD=1.6m,亮亮蹲地观测时眼睛到地面的距离AC=0.8m.你能根据以上测量数据帮助他们求出住宅楼的高度吗?四、解答题(本题共20分,每小题5分)23.(5分)(2016秋•门头沟区期末)已知二次函数y=x2+mx+m﹣2.(1)求证:此二次函数的图象与x轴总有两个交点;(2)如果此二次函数的图象与x轴两个交点的横坐标之和等于3,求m的值.24.(5分)(2016秋•门头沟区期末)已知:如图,△ABC中,D、E分别是边BC、AB的中点,AD、CE相交于G,请写出GE:CE的比值,并加以证明.25.(5分)(2016秋•门头沟区期末)已知二次函数y=(m﹣1)x2+2mx+(m+3).(1)如果该二次函数的图象与x轴无交点,求m的取值范围;(2)在(1)的前提下如果m取最小的整数,求此二次函数表达式.26.(5分)(2016秋•门头沟区期末)如图,AB是⊙O的直径,点C在AB的延长线上,CD 与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求⊙O的直径.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.(7分)(2016秋•门头沟区期末)在平面直角坐标系xOy中,二次函数图象所在的位置如图所示:(1)请根据图象信息求该二次函数的表达式;(2)将该图象(x>0)的部分,沿y轴翻折得到新的图象,请直接写出翻折后的二次函数表达式;(3)在(2)的条件下与原有二次函数图象构成了新的图象,记为图象G,现有一次函数y x+b的图象与图象G有4个交点,请画出图象G的示意图并求出b的取值范围.28.(7分)(2016秋•门头沟区期末)已知在Rt△ABC中,∠ABC=90°,点P是AC的中点.(1)当∠A=30°且点M、N分别在线段AB、BC上时,∠MPN=90°,请在图1中将图形补充完整,并且直接写出PM与PN的比值;(2)当∠A=23°且点M、N分别在线段AB、BC的延长线上时,(1)中的其他条件不变,请写出PM与PN比值的思路.29.(8分)(2016秋•门头沟区期末)在平面直角坐标系xOy中,对于点P(x,y)(x≥0)的每一个整数点,给出如下定义:如果P'(,)也是整数点,则称点P'为点P 的“整根点”.例如:点(25,36)的“整根点”为点(5,6).(1)点A(4,8),B(0,16),C(25,﹣9)的整根点是否存在,若存在请写出整根点的坐标;(2)如果点M对应的整根点M'的坐标为(2,3),则点M的坐标;(3)在坐标系内有一开口朝下的二次函数y=ax2+4x(a≠0),如果在第一象限内的二次函数图象内部(不在图象上),若存在整根点的点只有三个,请求出实数a的取值范围.2016-2017学年北京市门头沟区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.(3分)(2017秋•湛江期末)如果(a≠0、b≠0),那么下列比例式变形错误的是()A.B.C.D.3a=2b【解答】解:由得,3a=2b,A、由得3a=2b,所以变形正确,故本选项错误;B、由得3a=2b,所以变形正确,故本选项错误;C、由可得2a=3b,所以变形错误,故本选项正确;D、3a=2b变形正确,故本选项错误.故选:C.2.(3分)(2016秋•门头沟区期末)如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则sin∠ABC的值为()A.3B.C.D.【解答】解:如图,BC,sin∠ABC,故选:D.3.(3分)(2018秋•卢龙县期末)⊙O的半径为4,点P到圆心O的距离为d,如果点P在圆内,则d()A.d<4B.d=4C.d>4D.0≤d<4【解答】解:∵点P在圆内,且⊙O的半径为4,∴0≤d<4,故选:D.4.(3分)(2016秋•门头沟区期末)甲、乙、丙三名运动员参加了射击预选赛,他们射击的平均环数及其方差s2如表所示.需要选一个成绩较好且状态稳定的人去参赛,如果选定的是乙,则乙的情况应为()A.,S2=0.7B.,S2=1.2C.,S2=1D.,S2=1.5【解答】解:∵需要选一个成绩较好且状态稳定的人去参赛,∴乙的平均成绩要高,且方差要小,故选:C.5.(3分)(2016秋•门头沟区期末)将抛物线y=x2的图象向左平移2个单位后得到新的抛物线,那么新抛物线的表达式是()A.y=(x﹣2)2B.y=(x+2)2C.y=x2﹣2D.y=x2+2【解答】解:抛物线y=x2的顶点坐标为(0,0),把(0,0))向左平移2个单位后所得对应点的坐标为(﹣2,0),所以新抛物线的表达式为y=(x+2)2.故选:B.6.(3分)(2016秋•门头沟区期末)如图,在△ABC中,DE∥BC,DE分别与AB、AC相交于点D、E,若AD=2,DB=1,S△ADE=4,则S四边形DBCE()A.3B.5C.7D.9【解答】解:∵在△ABC中,DE∥BC,DE分别与AB、AC相交于点D、E,AD=2,DB=1,S△ADE=4,∴△ADE∽△ABC,AB=AD+DB=3,∴,∴S△ABC=9,∴S四边形DBCE=9﹣4=5,故选:B.7.(3分)(2018秋•卢龙县期末)在正三角形、正四边形、正五边形、正六边形、正八边形5个图形中既是轴对称又是中心对称的图形有()A.2B.3C.4D.5【解答】解:正四边形、正六边形、正八边形既是轴对称又是中心对称的图形,故选:B.8.(3分)(2018秋•卢龙县期末)如图,已知⊙O的半径为5,弦AB长为8,则点O到弦AB的距离是()A.2B.3C.4D.【解答】解:作OC⊥AB于C,连接OA,则AC=BC AB=4,在Rt△OAC中,OC3,故选:B.9.(3分)(2016秋•门头沟区期末)如图:反比例函数y的图象如下,在图象上任取一点P,过P点作x轴的垂线交x轴于M,则三角形OMP的面积为()A.2B.3C.6D.不确定【解答】解:设P(x、y),则xy=6,三角形OMP的面积为OM•PM xy6=3;故选:B.10.(3分)(2018秋•卢龙县期末)在学完二次函数的图象及其性质后,老师让学生们说出y=x2﹣2x﹣3的图象的一些性质,小亮说:“此函数图象开口向上,且对称轴是x=1”;小丽说:“此函数肯定与x轴有两个交点”;小红说:“此函数与y轴的交点坐标为(0,﹣3)”;小强说:“此函数有最小值,y=﹣3”…请问这四位同学谁说的结论是错误的()A.小亮B.小丽C.小红D.小强【解答】解:抛物线y=x2﹣2x﹣3的对称轴为x1,故小亮说法正确;△=b2﹣4ac=(﹣2)2﹣4×1×(﹣3)=4+12=16,故小丽说法正确;当x=0时,y=﹣3,故小红的说法正确;y=x2﹣2x﹣3=(x﹣1)2﹣4,所以抛物线的最小值为y=﹣4,故小强说法错误,与要求相符.故选:D.二、填空题(本题共18分,每小题3分)11.(3分)(2016秋•门头沟区期末)若,则.【解答】解:∵,∴,∴,∴,∴.故答案为:.12.(3分)(2017秋•庆云县期末)为了测量校园内水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜子放在离树底(B)10米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A再用皮尺量得DE=2.0米,观察者目高CD=1.6米,则树(AB)的高度约为8米.【解答】解:根据题意,易得∠CDE=∠ABE=90°,∠CED=∠AEB,则△ABE∽△CDE,则,即,解得:AB=8米.故答案为:8.13.(3分)(2016秋•门头沟区期末)请写出一个过(2,1),且与x轴无交点的函数表达式y.【解答】解:设该函数表达式为y(k≠0).∵点(2,1)在函数y的图象上,∴1,解得:k=2,∴该函数表达式为y.故答案为:y.14.(3分)(2016秋•门头沟区期末)扇面用于写字作画,是我国古代书法、绘画特有的形式之一,扇面一般都是由两个半径不同的同心圆按照一定的圆心角裁剪而成,如图,此扇面的圆心角是120°,大扇形的半径为20cm,小扇形的半径为5cm,则这个扇面的面积是125cm2.【解答】解:扇面的面积=S大扇形﹣S小扇形125cm2.故答案为:125cm2.15.(3分)(2016秋•门头沟区期末)记者随机在北京某街头调查了100名路人使用手机的情况,使用的品牌及人数统计如右图,则本组数据的众数为华为.【解答】解:根据图表可以看出,华为出现了36次,出现的次数最多,则本组数据的众数为华为;故答案为:华为.16.(3分)(2016秋•门头沟区期末)在进行垂径定理的证明教学中,老师设计了如下活动:先让同学们在圆中作了一条直径MN,然后任意作了一条弦(非直径),如图1,接下来老师提出问题:在保证弦AB长度不变的情况下,如何能找到它的中点?在同学们思考作图验证后,小华说了自己的一种想法:只要将弦AB与直径MN保持垂直关系,如图2,它们的交点就是弦AB的中点.请你说出小华此想法的依据是等腰三角形三线合一定理.【解答】解:连接OA、OB,则△OAB是等腰三角形,当MB过AB的中点时,一定有MN⊥AB,依据三线合一定理可得.故答案是:等腰三角形三线合一定理.三、解答题(本题共30分,每小题5分)17.(5分)(2016秋•门头沟区期末)计算:(π )04sin45°﹣()﹣1.【解答】解:原式=1+3221.18.(5分)(2016秋•门头沟区期末)如图,将①∠BAD=∠C;②∠ADB=∠CAB;③AB2=BD•BC;④;⑤中的一个作为条件,另一个作为结论,组成一个真命题.(1)条件是①,结论是③④;(注:填序号)(2)写出你的证明过程.【解答】解:(1)因为若∠BAD=∠C,则△ABC∽△DBA,故AB2=BD•BC;;故答案为:①,结论是③或④;(2)∵∠BAD=∠C,∠B=∠B,∴△ABD∽△ABC,∴,;∴AB2=BD•BC.19.(5分)(2016秋•门头沟区期末)已知二次函数y=x2﹣2x﹣8.(1)将y=x2﹣2x﹣8用配方法化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的顶点坐标;(3)请说明在对称轴左侧图象的变化趋势.【解答】解:(1)y=x2﹣2x﹣8=x2﹣2x+1﹣9=(x﹣1)2﹣9.(2)∵y=(x﹣1)2﹣9,∴该二次函数图象的顶点坐标是(1,﹣9).(3)∵a=1>0,∴在对称轴左侧,y随x的增大而减小.20.(5分)(2016秋•门头沟区期末)如图,△ABC在方格纸中(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(4,2),并求出B点坐标;(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A'B'C'.【解答】解:(1)如图所示:点B的坐标为(1,1);(2)如图所示:△A'B'C',即为所求.21.(5分)(2016秋•门头沟区期末)在平面直角坐标系xOy中,反比例函数y(k≠0)的图象过(2,3).(1)求反比例函数y的表达式;(2)有一次函数y=mx(m≠0)的图象与反比例函数y在第一象限交于点A,第三象限交于点B,过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,当两条垂线段满足2倍关系时,请在坐标系中作出示意图并直接写出m的取值.【解答】解:(1)∵反比例函数(k≠0)的图象过(2,3),∴,解得k=6,∴反比例函数表达式为(2)分两种情况:①如图1所示:AM=2BN,由对称的性质得:点A和B关于原点O对称,则OA=OB,OM=BN,∴AM=2OM,∴m=2;②如图2所示:BN=2AM,由对称的性质得:点A和B关于原点O对称,则OA=OB,OM=BN,∴AM=2OM,∴m∴m=2或m.22.(5分)(2009•德城区)亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M,颖颖的头顶B及亮亮的眼睛A恰在一条直线上时,两人分别标定自己的位置C,D.然后测出两人之间的距CD=1.25m,颖颖与楼之间的距离DN=30m(C,D,N在一条直线上),颖颖的身高BD=1.6m,亮亮蹲地观测时眼睛到地面的距离AC=0.8m.你能根据以上测量数据帮助他们求出住宅楼的高度吗?【解答】解:过A作CN的平行线交BD于E,交MN于F.由已知可得FN=ED=AC=0.8m,AE=CD=1.25m,EF=DN=30m,∠AEB=∠AFM=90°.又∠BAE=∠MAF,∴△ABE∽△AMF.∴.即.解得MF=20m.∴MN=MF+FN=20+0.8=20.8m.所以住宅楼的高度为20.8m.四、解答题(本题共20分,每小题5分)23.(5分)(2016秋•门头沟区期末)已知二次函数y=x2+mx+m﹣2.(1)求证:此二次函数的图象与x轴总有两个交点;(2)如果此二次函数的图象与x轴两个交点的横坐标之和等于3,求m的值.【解答】(1)证明:∵a=1,b=m,c=m﹣2,∴△=m2﹣4m+8,=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,∴此二次函数的图象与x轴总有两个交点;(2)解:令y=0,得x2+m x+m﹣2=0,解得x1,x2,∵二次函数的图象与x轴两个交点的横坐标之和等于3∴﹣m=3,解得,m=﹣3.24.(5分)(2016秋•门头沟区期末)已知:如图,△ABC中,D、E分别是边BC、AB的中点,AD、CE相交于G,请写出GE:CE的比值,并加以证明.【解答】解:GE:CE=1:3;理由如下:连结ED,如图所示:∵D、E分别是边BC、AB的中点,∴DE∥AC,DE AC,∴△ACG∽△DEG,∴,∴.25.(5分)(2016秋•门头沟区期末)已知二次函数y=(m﹣1)x2+2mx+(m+3).(1)如果该二次函数的图象与x轴无交点,求m的取值范围;(2)在(1)的前提下如果m取最小的整数,求此二次函数表达式.【解答】解:(1)∵二次函数y=(m﹣1)x2+2mx+(m+3)的图象与x轴无交点,∴△=4m2﹣4(m﹣1)(m+3)<0且m﹣1≠0,解得>;(2)根据题意得,解得m=2.∴二次函数的表达式是y=x2+4x+5.26.(5分)(2016秋•门头沟区期末)如图,AB是⊙O的直径,点C在AB的延长线上,CD 与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求⊙O的直径.【解答】(1)证明:连接OD,∵CD是⊙O切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB为⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A;(2)解:∵CE⊥AE,∴∠E=∠ADB=90°,∴DB∥EC,∴∠DCE=∠BDC,∴∠DCE=∠A,∵CE=4,DE=2,∴tan∠A=tan∠DCE,∴在Rt△ACE中,可得AE=8,∴AD=6,在在Rt△ADB中可得BD=3,∴根据勾股定理可得AB=3五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.(7分)(2016秋•门头沟区期末)在平面直角坐标系xOy中,二次函数图象所在的位置如图所示:(1)请根据图象信息求该二次函数的表达式;(2)将该图象(x>0)的部分,沿y轴翻折得到新的图象,请直接写出翻折后的二次函数表达式;(3)在(2)的条件下与原有二次函数图象构成了新的图象,记为图象G,现有一次函数y x+b的图象与图象G有4个交点,请画出图象G的示意图并求出b的取值范围.【解答】解:(1)由图象可知抛物线经过点(1,0),(3,0),(0,3),设抛物线的解析式为y=a(x﹣1)(x﹣3),代入(0,3)得,3a=3,解得a=1,∴y=(x﹣1)(x﹣3),即:y=x2﹣4x+3.(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∵顶点为(2,﹣1),∴沿y轴翻折得到新的图象顶点为(﹣2,﹣1),∴翻折后的二次函数表达式y=x2+4x+3(x<0);(3)示意图正确解整理得:∵△>解得:>,当过(0,3)时,b=3,所以综上所述符合题意的b的取值范围是<<.28.(7分)(2016秋•门头沟区期末)已知在Rt△ABC中,∠ABC=90°,点P是AC的中点.(1)当∠A=30°且点M、N分别在线段AB、BC上时,∠MPN=90°,请在图1中将图形补充完整,并且直接写出PM与PN的比值;(2)当∠A=23°且点M、N分别在线段AB、BC的延长线上时,(1)中的其他条件不变,请写出PM与PN比值的思路.【解答】解:(1)补充图形如图1所示,过P作PE⊥AB于E,PF⊥BC于F,∵∠ABC=90°,∴四边形PEBF是矩形,∴PE∥BC,PF∥AB,∵P是AC的中点,∴PE BC,PF AB,∵∠A=30°,∴,∵∠EPF=∠MPN=90°,∴∠MPE=∠NPF,∴△PEM∽△PFN,∴;(2)思路:在Rt△ABC中,过点P作PE⊥AB于E,PF⊥BC于点F,由PF⊥BC和∠ABC=90°可以得到AB∥PF,∠PFC=90°进而得到∠A=∠FPC;由∠PFC=∠AEP=90°,AP=PC可以得到△AEP≌△PFC,进而推出AE=PF;由点P处的两个直角可以得到∠EPM=∠FPN,进而可以得到△MEP∽△NPF,由此可以得到等量代换可以得到;在Rt△AEP中,可以得到.解:点P作PE⊥AB于E,PF⊥BC于点F,则四边形PEBF是矩形,∴PF∥AB,∠EPF=90°,∴∠A=∠CPF=23°,在△AEP与△PFC中,,∴△AEP≌△PFC,∴AE=PF,∵∠EPF=∠MPN=90°,∴∠EPM=∠FPN,∴△MEP∽△NPF,∴,∴,∵tan∠A,∴tan23°.29.(8分)(2016秋•门头沟区期末)在平面直角坐标系xOy中,对于点P(x,y)(x≥0)的每一个整数点,给出如下定义:如果P'(,)也是整数点,则称点P'为点P 的“整根点”.例如:点(25,36)的“整根点”为点(5,6).(1)点A(4,8),B(0,16),C(25,﹣9)的整根点是否存在,若存在请写出整根点的坐标B′(0,4),C′(5,3);(2)如果点M对应的整根点M'的坐标为(2,3),则点M的坐标M(4,9)或M(4,﹣9);(3)在坐标系内有一开口朝下的二次函数y=ax2+4x(a≠0),如果在第一象限内的二次函数图象内部(不在图象上),若存在整根点的点只有三个,请求出实数a的取值范围.【解答】解:(1)A不存在整根点;因为B′(,)即(0,4)也是整数点,所以B点的整根点坐标是B′(0,4).同理C点的整根点坐标是C′(5,3).故答案是:B′(0,4),C′(5,3);(2)设M(x,y)(x≥0)依题意得:M'(,),∵M'(2,3),∴M(4,9)或M(4,﹣9);故答案是:M(4,9)或M(4,﹣9);(3)由于图象开口向下,根据表达式特点及对称轴所在位置的变化,将分为以下两种情况进行讨论:当图象经过(4,4)时,如图:根据轴对称性,此时恰有1个整根点在图象上,2个整根点在图象内部因此:代入表达式得:4=16a+16解得a;当图象过(4,9)时,代入表达式得:9=16a+16解得a根据图象的轴对称性可以验证(1,4)(9,1)都不在图象内部,因此此时有3个整根点在图象内部;综合上述分析当<.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年门头沟区初三年级第二次统一练习数 学 试 卷一、选择题(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.-6的倒数是A .6B .6-C .16 D .16- 2.PM2.5是大气中粒径小于等于2.5微米的颗粒物,称为细颗粒物,是表征环境空气质量的主要污染物指标.2.5微米等于0.0000025米,把0.0000025用科学记数法表示为 A .62.510⨯ B .50.2510-⨯ C . 62.510-⨯ D .72510-⨯ 3.右图所示的是一个几何体的三视图,则这个几何体是A .球B .圆锥C .圆柱D .三棱柱4.已知一个多边形的内角和是外角和的3倍,则这个多边形的边数是 A .8B .6C .5D .35.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为A .15B .13C .58 D .38 6.已知圆锥侧面展开图的扇形半径为2cm ,面积是24cm 3π,则扇形的弧长和圆心角的度数分别为A .4πcm 1203,︒B.2πcm 1203,︒C .4πcm 603,︒D .2πcm 603,︒左视图 俯视图7.甲、乙两人进行射击比赛,他们5次射击的成绩(单位:环)如下表所示:设甲、乙两人射击成绩的平均数依次为x 甲、x 乙,射击成绩的方差依次为2S 甲、2S 乙,则下列判断中正确的是A .x x =乙甲,22S S =乙甲B .x x =乙甲, 22>S S 乙甲C .x x =乙甲,22<S S 乙甲D .<x x 乙甲, 22<S S 乙甲8.如图,在平行四边形ABCD 中,AC = 12,BD = 8,P 是AC 上的一个动点,过点P 作EF ∥BD ,与平行四边形的 两条边分别交于点E 、F .设CP=x ,EF=y ,则下列图象 中,能表示y 与x 的函数关系的图象大致是A .B .C .D . 二、填空题(本题共16分,每小题4分)9. 在函数y =x 的取值范围是 . 10.分解因式:216ax a -= . 11.某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB 的高度.如图,他们先在 点C 处测得建筑物AB 的顶点A 的仰角为30︒,然后 向建筑物AB 前进20m 到达点D 处,又测得点 A 的 仰角为60︒,则建筑物AB 的高度是 m . 12.如图,将边长为2的正方形纸片ABCD 折叠,使点B落在CD 上,落点记为E (不与点C ,D 重合),点A 落在点F 处,折痕MN 交AD 于点M ,交BC 于点N . 若12CE CD =,则BN 的长是 ,AM BN 的值 等于 ;若1CE CD n=(2n ≥,且n 为整数), 则AM BN的值等于 (用含n 的式子表示).A BCDEFMN PF E D CBAADB30︒60︒三、解答题(本题共30分,每小题5分)13114sin45(3)4-⎛⎫︒+-π+ ⎪⎝⎭.14.已知关于x的一元二次方程2630x x m-+-=有两个相等的实数根,求m的值及方程的根.15.已知13xy=,求2222332x y yxx y x y x xy y--⋅+-++的值.16.已知:如图,在△ABC中,∠ABC=90º,BD⊥AC 于点D,点E在BC的延长线上,且BE=AB,过点E 作EF⊥BE,与BD的延长线交于点F.求证:BC=EF.17.如图,在平面直角坐标系xOy中,一次函数y=3x的图象与反比例函数kyx=的图象的一个交点为A(1, m).(1)求反比例函数kyx=的解析式;(2)若点P在直线OA上,且满足P A=2OA,直接写出点P的坐标.18.列方程或方程组解应用题:为帮助地震灾区人民重建家园,某校学生积极捐款.已知第一次捐款总额为9000元,第二次捐款总额为12000元,且两次人均捐款额相等,但第二次捐款人数比第一次多50人.求该校第二次捐款的人数.四、解答题(本题共20分,每小题5分)19.如图,在四边形ABCD中,∠DAB=60º,AC平分∠DAB,BC⊥AC,AC与BD交于点E,AD=6,CEtan BEC∠BC、DE的长及四边形ABCD的面积.AB CDFE A BCDE20.如图,AB 是⊙O 的直径,C 是AB 延长线上一点,点D 在⊙O 上,且∠A=30°,∠ABD =2∠BDC . (1)求证:CD 是⊙O 的切线;(2)过点O 作OF ∥AD ,分别交BD 、CD 于点E 、F .若OB =2,求 OE 和CF 的长.21.某校为了了解该校初二年级学生阅读课外书籍的情况,随机抽取了该年级的部分学生,对他们某月阅读课外书籍的情况进行了调查,并根据调查的结果绘制了如下的统计图表.请你根据以上信息解答下列问题:(1)这次共调查了学生多少人?E 组人数在这次调查中所占的百分比是多少? (2)求出表1中a 的值,并补全图1;(3)若该年级共有学生300人,请你估计该年级在这月里阅读课外书籍的时间不少于12小时的学生约有多少人.表1 阅读课外书籍人数分组统计表DF 阅读课外书籍人数分组统计图图1人数阅读课外书籍人数分组所占百分比统计图图26%26%30%20%AB C D E F22. 如图1,矩形MNPQ 中,点E 、F 、G 、H 分别在NP 、PQ 、QM 、MN 上,若4321∠=∠=∠=∠,则称四边形EFGH 为矩形MNPQ 的反射四边形.在图2、图3中,四边形ABCD 为矩形,且4=AB ,8=BC .(1)在图2、图3中,点E 、F 分别在BC 、CD 边上,图2中的四边形EFGH 是利用正方形网格在图上画出的矩形ABCD 的反射四边形.请你利用正方形网格在图3上画出矩形ABCD 的反射四边形EFGH ;(2)图2、图3中矩形ABCD 的反射四边形EFGH 的周长是否为定值?若是定值,请直接写出这个定值;若不是定值,请直接写出图2、图3中矩形ABCD 的反射四边形EFGH 的周长各是多少;(3)图2、图3中矩形ABCD 的反射四边形EFGH 的面积是否为定值?若是定值,请直接写出这个定值;若不是定值,请直接写出图2、图3中矩形ABCD 的反射四边形EFGH 的面积各是多少.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23. 在平面直角坐标系xOy 中,抛物线224276883m m y x x m m --=-++-+经过原点O ,点B (-2,n )在这条抛物线上.(1)求抛物线的解析式;(2)将直线2y x =-沿y 轴向下平移b 个单位后得到直线l , 若直线l 经过B 点,求n 、b 的值;(3)在(2)的条件下,设抛物线的对称轴与x 轴交于点C ,直线l 与y 轴交于点D ,且与抛物线的对称轴交于点E .若P 是抛物线上一点,且PB =PE ,求P 点的坐标.MNPQ GHEF1 23 4图1图3图2F24.已知:在△AOB 与△COD 中,OA =OB ,OC =OD ,︒=∠=∠90COD AOB . (1)如图1,点C 、D 分别在边OA 、OB 上,连结AD 、BC ,点M 为线段BC 的中点,连结OM ,则线段AD 与OM 之间的数量关系是 ,位置关系是 ;(2)如图2,将图1中的△COD 绕点O 逆时针旋转,旋转角为α (︒<<︒900α).连结AD 、BC ,点M 为线段BC 的中点,连结OM .请你判断(1)中的两个结论是否仍然成立.若成立,请证明;若不成立,请说明理由;(3)如图3,将图1中的 △COD 绕点 O 逆时针旋转到使 △COD 的一边OD 恰好与△AOB 的边OA 在同一条直线上时,点C 落在OB 上,点M 为线段BC 的中点. 请你判断(1)中线段AD 与OM 之间的数量关系是否发生变化,写出你的猜想,并加以证明.25. 如图,在平面直角坐标系xOy 中, 已知矩形ABCD 的两个顶点B 、C 的坐标分别是B (1,0)、C (3,0).直线AC 与y 轴交于点G (0,6).动点P 从点A 出发,沿线段AB 向点B 运动.同时动点 Q 从点C 出发,沿线段CD 向点D 运动.点P 、Q 的运动速度均为每秒1个单位,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E . (1)求直线AC 的解析式;(2)当t 为何值时,△CQE 的面积最大?最大值为多少?(3)在动点P 、Q 运动的过程中,当t 为何值时,在矩形ABCD 内(包括边界)存在点H ,使得以C 、Q 、E 、H 为顶点的四边形是菱形?图1O MABCD图2DCB MO 图3A2017年门头沟区初三年级第二次统一练习数学试卷评分参考二、填空题(本题共16分,每小题4分)说明:12题第一、二空各1分,第三空2分三、解答题(本题共30分,每小题5分)13114sin45(3)4-⎛⎫︒+-π+ ⎪⎝⎭.解:114s i n45(3)4-⎛⎫︒+-π+ ⎪⎝⎭=414+……………………………………………………………………4分=5.……………………………………………………………………………5分14.解:由题意可知∆=0,即(-6)2-4(m-3)=0. ………………………………………………2分解得m=12. ………………………………………………………………………………3分当m=12时,原方程化为x2-6x+9=0. …………………………………………………4分解得x1=x2=3. ……………………………………………………………………………5分所以原方程的根为x1=x2=3.15.解:2222332x y yxx y x y x xy y--⋅+-++=()()233()x y x y y x x y x y x y +--⋅+-+ ···························································· 2分 = 33x y x y x y-++ =33x yx y -+. ························································································· 3分 当13x y =时,3y x =. ················································································· 4分 ∴原式=393x x x x-+=32-. ·············································································· 5分16.证明:∵EF BE ⊥,90ABC ∠=°,∴90BEF ABC ∠=∠=°.………………………………………………………1分∴90F EBF ∠+∠=°. 又∵BD AC ⊥,∴90EBF ACB ∠+∠=°.∴ACB F ∠=∠.………………………2分 在ABC △和BEF △中,∴ABC △≌BEF △.……………………4分 ∴BC EF =.………………………………5分17.解:(1)∵ 点A (1, m )在一次函数y =3x 的图象上, ∴m =3. …………………………… 1分 ∴ 点A 的坐标为(1, 3).∵ 点A (1, 3)在反比例函数ky x=的图象上,∴ 3k =. ………………………………2分 ∴反比例函数的3y x=. …………………………………………………3分 (2)点P 的坐标为P (3, 9) 或P (-1, -3) . ………………………………………5分18.解:设该校第二次有x 人捐款,则第一次有(x –50)人捐款. …………………………1分 根据题意,得ABCDFEACB F ABC BEF AB BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,90001200050x x=-. ……………………………………………………………3分解这个方程,得x =200. …………………………………………………………………4分 经检验,x =200是所列方程的解,并且符合实际问题的意义.答:该校第二次有200人捐款. …………………………………………………………5分四、解答题(本题共20分,每小题5分) 19.解:如图,过点D 作DF ⊥AC 于F .∵∠DAB =60º,AC 平分∠DAB , ∴∠DAC =∠BAC =30°. ∵BC AC ⊥,∴∠AFD =∠ACB =90°. ∴116322DF AD ==⨯=,………………………………………………………………1分 BC =CE ⋅tan BEC ∠.………………………………………………2分∴3tan tan DF DF EF DEF BEC ===÷∠∠44tan tan 30BC AC BAC ====∠︒…3分∴DE =4分∴ACD ACB ABCD S S S ∆∆=+四边形1122AC DF AC BC =⋅+⋅11422=⨯3+⨯= …………………………………………………………………………………………5分 20.(1)证明:连结OD .∵AB 是⊙O 的直径, ∴∠ADB=90°. ………………………………………………………………1分F EDC BA∵∠A=30°, ∴∠ABD=60°. ∵∠ABD=2∠BDC ,∴∠BDC =1302ABD ∠=︒.∵OD=OB ,∴△ODB 是等边三角形. ∴∠ODB=60°.∴∠ODC=∠ODB+∠BDC =90°.∴CD 是⊙O 的切线.……………………………………………………………2分(2)解: ∵OF ∥AD ,∠ADB=90°,∴OF ⊥BD ,∠BOE=∠ A=30°. ………………………………………………3分∵BD=OB =2,∴112DE BE BD ===.∴OE ……………………………………………………4分∵OD=OB=2,∠DOC =60°,∠DOF=30°,∴tan 60CD OD =⋅︒=tan 30DF OD =⋅︒=. ∴CF CD DF =-== ……………………………………5分21.解:(1)这次共调查了学生50人,E 组人数在这次调查中所占的百分比是8%.……2分(2)表1中a 的值是15,………………………………………………………………3分补全图1. …………………………………………………………………………4分(3)54人. (5)分22.解:(1)利用正方形网格在图3上画出矩形ABCD 的反射四边形EFGH . ……………2分(2)图2、图3中矩形ABCD 的反射四边形EFGH 的周长是定值,定值是…3分(3)图2、图3中矩形ABCD 的反射四边形EFGH 的面积不是定值,它们的面积分别是16、12……………………………………………………………………………5分五、解答题(本题共22分,第23、24题各7分,第25题8分)23.解:(1)∵拋物线224276883m m y x x m m --=-++-+经过原点,∴m 2-6m +8=0.解得m 1=2,m 2=4. 由题意知m ≠4,∴m =2.………………………………………………………………………………1分∴拋物线的解析式为x x y -=241. ………………………………………………2分 (2)∵点B (-2,n )在拋物线x x y -=241上,∴n =3.………………………………………………………………………………3分 ∴B 点的坐标为(–2,3) .∵直线l 的解析式为2y x b =--,直线l 经过B 点, ∴()322b =---.∴1b =.……………………………………………………………………………4分(3)∵拋物线x x y -=241的对称轴为直线x =2,直线l 的解析式为y =-2x -1, ∴拋物线x x y -=241的对称轴与x 轴的交点C 的坐标为(2,0),直线l 与y 轴、直线x =2的交点坐标分别为 D (0,-1)、E (2,-5).过点B 作BG ⊥直线x =2于G ,与y 轴交于则BG =4.在Rt △BGC 中,5CB =. ∵CE =5,∴ CB =CE .过点E 作EH ⊥y 轴于H . 则点H 的坐标为 (0,-5).∵点F 、D 的坐标为F (0,3)、D (0,-1),∴FD =DH =4,BF =EH =2,∠BFD =∠EHD =∴△DFB ≌△DHE .∴DB =DE .∵PB =PE ,∴点P 在直线CD 上.∴符合条件的点P 是直线CD 与该抛物线的交点. 设直线CD 的解析式为y =kx +a .将D (0,-1)、C (2,0)代入,得120a ,k a .=-⎧⎨+=⎩ 解得 112a ,k .=-⎧⎪⎨=⎪⎩∴直线CD的解析式为112y x =-. ………………………………………………5分 设点P 的坐标为(x ,x x -241),∴112x -=x x -241. 解得 531+=x ,532-=x .∴2511+=y,2y ∴点P 的坐标为(53+,251+)或(53-,251-).…………………………7分24.解:(1)线段AD 与OM 之间的数量关系是AD =2OM ,位置关系是AD OM ⊥.………2分(2)(1)的两个结论仍然成立.证明:如图2,延长BO 到F ,使FO =BO ,连结CF .∵M 为BC 中点,O 为BF 中点,∴MO 为BCF ∆的中位线. ∴FC =2OM . ………………………………3分 ∵∠AOB =∠AOF =∠COD =90°, ∴∠AOD =∠FOC .∵AO =FO ,CO =DO ,∴△AOD ≌△FOC .∴FC =AD .∴AD =2OM . ………………………………………4分 ∵MO 为BCF ∆的中位线,∴MO ∥CF . ∴∠MOB =∠F .又∵AOD △≌FOC △,∴DAO ∠=F ∠. ∵MOB ∠+AOM ∠=90°, ∴DAO ∠+AOM ∠=90°. 即AD OM ⊥. ……………………………………………………………………5分(3)(1)中线段AD 与OM 之间的数量关系没有发生变化. 证明:如图3,延长DC 交AB 于E ,连结ME ,FOMABCD 图2过点E 作EN AD ⊥于N .∵OA =OB ,OC =OD ,︒=∠=∠90COD AOB , ∴45A D B BCE DCO ∠=∠=∠=∠=∠=︒. ∴AE =DE ,BE =CE ,∠AED =90°. ∴DN=AN . ∴AD =2NE .∵M 为BC 的中点,∴EM BC ⊥.∴四边形ONEM 是矩形. ∴NE =OM . ∴AD =2OM . ………………………………………………………………………7分 25. 解:(1) 设直线AC 的解析式为.y kx b =+∵直线AC 经过G (0,6)、C (3,0)两点,∴6,30.b k b =⎧⎨+=⎩ 解这个方程组,得2,6.k b =-⎧⎨=⎩ …………………………………1分 ∴直线AC 的解析式为26y x =-+. ……………………………………………2分(2) 当x =1时,y =4. ∴A (1,4).∵AP =CQ = t ,∴点P (1,4-t ).……………………………………………………………………3分将y =4–t 代入26y x =-+中,得点E 的横坐标为x =12t+. ∴点E 到CD 的距离为22t -. ∴S△CQE =1222t t ⎛⎫⋅⋅- ⎪⎝⎭=214t t -+=()21214t .--+ ……………………………4分 ∴当t =2时,S △CQE 最大,最大值为1.……………………………………………5分(3) 过点E 作FM ∥DC ,交AD 于F ,交BC 于M . 当点H 在点E 的下方时,连结CH . ∵4EM t =-,∴42HM t =-.∵12t OM =+,∴22tCM =-.∵四边形CQEH 为菱形,∴CH CQ t ==.在Rt △HMC 中,由勾股定理得222CH HM CM =+. ∴()2224222t t t ⎛⎫=-+- ⎪⎝⎭.整理得 21372800t t -+=.解得 12013t =,24t =(舍).∴当2013t =时,以C ,Q ,E ,H 为顶点的四边形是菱形. ……………………7分当点H 在点E 的上方时,同理可得当20t =-. 以C ,Q ,E ,H 为顶点的四边形是菱形. ……………………………………………………………………8分∴t 的值是2013t =或20t =-。