2018徐汇区初三数学二模卷及答案解析

合集下载

【精选3份合集】2017-2018学年上海市徐汇区某名校中考二模数学试题

【精选3份合集】2017-2018学年上海市徐汇区某名校中考二模数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y 值随x 值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是() A .3y x = B .3y x=C .1y x=-D .2yx【答案】B【解析】y=3x 的图象经过一三象限过原点的直线,y 随x 的增大而增大,故选项A 错误;y=3x 的图象在一、三象限,在每个象限内y 随x 的增大而减小,故选项B 正确; y=−1x的图象在二、四象限,故选项C 错误;y=x²的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D 错误; 故选B.2.已知二次函数y =ax 2+bx+c (a≠0)的图象如图所示,则下列结论: ① a bc <0;② 2a +b =0; ③ b 2-4ac <0;④ 9a+3b+c >0; ⑤ c+8a <0.正确的结论有( ).A .1个B .2个C .3个D .4个【答案】C【解析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】解:抛物线开口向下,得:a <0;抛物线的对称轴为x=-2ba=1,则b=-2a ,2a+b=0,b=-2a ,故b >0;抛物线交y 轴于正半轴,得:c >0. ∴abc <0, ①正确; 2a+b=0,②正确;由图知:抛物线与x 轴有两个不同的交点,则△=b 2-4ac >0,故③错误;由对称性可知,抛物线与x 轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故④错误; 观察图象得当x=-2时,y <0, 即4a-2b+c <0 ∵b=-2a , ∴4a+4a+c <0即8a+c <0,故⑤正确. 正确的结论有①②⑤, 故选:C 【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.3.已知M ,N ,P ,Q 四点的位置如图所示,下列结论中,正确的是( )A .∠NOQ =42°B .∠NOP =132°C .∠PON 比∠MOQ 大D .∠MOQ 与∠MOP 互补【答案】C【解析】试题分析:如图所示:∠NOQ=138°,选项A 错误;∠NOP=48°,选项B 错误;如图可得∠PON=48°,∠MOQ=42°,所以∠PON 比∠MOQ 大,选项C 正确;由以上可得,∠MOQ 与∠MOP 不互补,选项D 错误.故答案选C . 考点:角的度量.4.使用家用燃气灶烧开同一壶水所需的燃气量y (单位:3m )与旋钮的旋转角度x (单位:度)(090x <≤)近似满足函数关系y=ax 2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )A .18B .36C .41D .58【答案】C【解析】根据已知三点和近似满足函数关系y=ax 2+bx+c(a≠0)可以大致画出函数图像,并判断对称轴位置在36和54之间即可选择答案.【详解】解:由图表数据描点连线,补全图像可得如图,抛物线对称轴在36和54之间,约为41℃∴旋钮的旋转角度x在36°和54°之间,约为41℃时,燃气灶烧开一壶水最节省燃气.故选:C,【点睛】本题考查了二次函数的应用,二次函数的图像性质,熟练掌握二次函数图像对称性质,判断对称轴位置是解题关键.综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点.5.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.23【答案】C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:A B CA (A,A)(B,A)(C,A)B (A,B)(B,B)(C,B)C (A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为31 = 93.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.6.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为().A.50°B.40°C.30°D.25°【答案】B【解析】解:如图,由两直线平行,同位角相等,可求得∠3=∠1=50°,根据平角为180°可得,∠2=90°﹣50°=40°.故选B.【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键.7.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店()A.赚了10元B.赔了10元C.赚了50元D.不赔不赚【答案】A【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用8.青藏高原是世界上海拔最高的高原,它的面积是2500000 平方千米.将2500000 用科学记数法表示应为()A.72.510⨯C.6⨯D.52.5100.2510⨯B.7⨯2510【答案】C【解析】分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.解答:解:根据题意:2500000=2.5×1.故选C.9.如图所示,在长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是()A .28cm 2B .27cm 2C .21cm 2D .20cm 2【答案】B【解析】根据题意,剩下矩形与原矩形相似,利用相似形的对应边的比相等可得.【详解】解:依题意,在矩形ABDC 中截取矩形ABFE , 则矩形ABDC ∽矩形FDCE , 则AB BDDF DC= 设DF=xcm ,得到:68=x 6解得:x=4.5,则剩下的矩形面积是:4.5×6=17cm 1. 【点睛】本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键.10.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .8374y x y x -=⎧⎨-=⎩B .8374y x x y -=⎧⎨-=⎩C .8374x y y x -=⎧⎨-=⎩D .8374x y x y -=⎧⎨-=⎩【答案】C【解析】分析题意,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱,”可分别列出方程. 【详解】设合伙人数为x 人,物价为y 钱,根据题意得8x-y 3y 7x 4=⎧⎨-=⎩故选C【点睛】本题考核知识点:列方程组解应用题.解题关键点:找出相等关系,列出方程. 二、填空题(本题包括8个小题) 11.如图,点A 为函数y =9x (x >0)图象上一点,连接OA ,交函数y =1x(x >0)的图象于点B ,点C 是x 轴上一点,且AO =AC ,则△ABC 的面积为______.【答案】6.【解析】作辅助线,根据反比例函数关系式得:S △AOD =92, S △BOE =12,再证明△BOE ∽△AOD ,由性质得OB 与OA 的比,由同高两三角形面积的比等于对应底边的比可以得出结论. 【详解】如图,分别作BE ⊥x 轴,AD ⊥x 轴,垂足分别为点E 、D ,∴BE ∥AD , ∴△BOE ∽△AOD ,∴22BOE AODSOB SOA=, ∵OA=AC , ∴OD=DC ,∴S △AOD =S △ADC =12S △AOC , ∵点A 为函数y=9x(x >0)的图象上一点,∴S △AOD =92, 同理得:S △BOE =12, ∴112992BOE AOD S S ==, ∴13OB OA =,∴23AB OA=, ∴23ABC AOCS S=, ∴2963ABCS⨯==, 故答案为6.12.将一副三角板如图放置,若20AOD ∠=,则BOC ∠的大小为______.【答案】160°【解析】试题分析:先求出∠COA 和∠BOD 的度数,代入∠BOC=∠COA+∠AOD+∠BOD 求出即可. 解:∵∠AOD=20°,∠COD=∠AOB=90°, ∴∠COA=∠BOD=90°﹣20°=70°,∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°, 故答案为160°. 考点:余角和补角.13.一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有________个红球. 【答案】1【解析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设袋中有x 个红球,列出方程30x=20%, 求得x=1. 故答案为1.点睛:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.14.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.【答案】8【解析】证明△AEC≌△FBA,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.【详解】∵四边形ACDF是正方形,∴AC=FA,∠CAF=90°,∴∠CAE+∠FAB=90°,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠ACE=∠FAB,又∵∠AEC=∠FBA=90°,∴△AEC≌△FBA,∴CE=AB=4,∴S阴影=1·AB CE=8,2故答案为8.【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出CE=AB是解题的关键.15.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高_____________米(结果保留根号).【答案】43【解析】设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可.解:如图所示,在RtABC 中,tan ∠ACB=ABBC,∴BC=0tan tan 60AB x ACB =∠, 同理:BD=tan 30x,∵两次测量的影长相差8米,∴00tan 30tan 60x x-=8,∴x=43, 故答案为43.“点睛”本题考查了平行投影的应用,太阳光线下物体影子的长短不仅与物体有关,而且与时间有关,不同时间随着光线方向的变化,影子的方向也在变化,解此类题,一定要看清方向.解题关键是根据三角函数的几何意义得出各线段的比例关系,从而得出答案. 16.计算:﹣1﹣2=_____. 【答案】-3【解析】-1-2=-1+(-2)=-(1+2)=-3, 故答案为-3.17.每一层三角形的个数与层数的关系如图所示,则第2019层的三角形个数为_____.【答案】2.【解析】设第n 层有a n 个三角形(n 为正整数),根据前几层三角形个数的变化,即可得出变化规律“a n =2n ﹣2”,再代入n =2029即可求出结论. 【详解】设第n 层有a n 个三角形(n 为正整数), ∵a 2=2,a 2=2+2=3,a 3=2×2+2=5,a 4=2×3+2=7,…, ∴a n =2(n ﹣2)+2=2n ﹣2.∴当n =2029时,a 2029=2×2029﹣2=2. 故答案为2. 【点睛】本题考查了规律型:图形的变化类,根据图形中三角形个数的变化找出变化规律“a n =2n ﹣2”是解题的关键.18.将一个含45°角的三角板ABC ,如图摆放在平面直角坐标系中,将其绕点C 顺时针旋转75°,点B 的对应点'B 恰好落在轴上,若点C 的坐标为(1,0),则点'B 的坐标为____________.【答案】()12,0+【解析】先求得∠ACO=60°,得出∠OAC=30°,求得AC=2OC=2,解等腰直角三角形求得直角边为2,从而求出B′的坐标.【详解】解:∵∠ACB=45°,∠BCB′=75°, ∴∠ACB′=120°, ∴∠ACO=60°, ∴∠OAC=30°, ∴AC=2OC ,∵点C 的坐标为(1,0), ∴OC=1, ∴AC=2OC=2,∵△ABC 是等腰直角三角形,2AB BC ∴== 2B C A B '''∴== 12OB '∴=+∴B′点的坐标为(12,0)+ 【点睛】此题主要考查了旋转的性质及坐标与图形变换,同时也利用了直角三角形性质,首先利用直角三角形的性质得到有关线段的长度,即可解决问题. 三、解答题(本题包括8个小题)19.如图,小明的家在某住宅楼AB 的最顶层(AB ⊥BC ),他家的后面有一建筑物CD (CD ∥AB ),他很想知道这座建筑物的高度,于是在自家阳台的A 处测得建筑物CD 的底部C 的俯角是43°,顶部D 的仰角是25°,他又测得两建筑物之间的距离BC 是28米,请你帮助小明求出建筑物CD 的高度(精确到1米).【答案】39米【解析】过点A 作AE ⊥CD ,垂足为点E , 在Rt △ADE 中,利用三角函数求出 DE 的长,在Rt △ACE 中,求出 C E 的长即可得.【详解】解:过点A 作AE ⊥CD ,垂足为点E ,由题意得,AE= BC=28,∠EAD =25°,∠EAC =43°,在Rt △ADE 中,∵tan DE EAD AE ∠=,∴tan25280.472813.2DE =︒⨯=⨯≈, 在Rt △ACE 中,∵tan CE EAC AE ∠=,∴tan43280.932826CE =︒⨯=⨯≈, ∴13.22639DC DE CE =+=+≈(米),答:建筑物CD 的高度约为39米.20.如图,已知A (﹣4,n ),B (2,﹣4)是一次函数y =kx+b 的图象和反比例函数y =m x的图象的两个交点.求反比例函数和一次函数的解析式;求直线AB 与x 轴的交点C 的坐标及△AOB 的面积;直接写出一次函数的值小于反比例函数值的x 的取值范围.【答案】(1)y =﹣x ﹣2;(2)C (﹣2,0),△AOB=6,,(3)﹣4<x <0或x >2.【解析】(1)先把B 点坐标代入代入y =m x,求出m 得到反比例函数解析式,再利用反比例函数解析式确定A 点坐标,然后利用待定系数法求一次函数解析式;(2)根据x 轴上点的坐标特征确定C 点坐标,然后根据三角形面积公式和△AOB 的面积=S △AOC +S △BOC 进行计算;(3)观察函数图象得到当﹣4<x <0或x >2时,一次函数图象都在反比例函数图象下方.【详解】解:∵B (2,﹣4)在反比例函数y =m x 的图象上, ∴m =2×(﹣4)=﹣8,∴反比例函数解析式为:y =﹣8x , 把A (﹣4,n )代入y =﹣8x,得﹣4n =﹣8,解得n =2,则A 点坐标为(﹣4,2).把A (﹣4,2),B (2,﹣4)分别代入y =kx+b ,得4224k b k b -+=⎧⎨+=-⎩,解得12k b =-⎧⎨=-⎩, ∴一次函数的解析式为y =﹣x ﹣2;(2)∵y =﹣x ﹣2,∴当﹣x ﹣2=0时,x =﹣2,∴点C 的坐标为:(﹣2,0),△AOB 的面积=△AOC 的面积+△COB 的面积 =12×2×2+12×2×4 =6;(3)由图象可知,当﹣4<x <0或x >2时,一次函数的值小于反比例函数的值.【点睛】本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.21.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【答案】(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.【解析】(1)设第一批饮料进货单价为x 元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为m 元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【详解】(1)设第一批饮料进货单价为x 元,则:1600600032x x ⨯=+ 解得:8x =经检验:8x =是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为m 元,则: ()()8200106001200m m -⋅+-⋅≥,化简得:()()2861012m m -+-≥,解得:11m ≥,答:销售单价至少为11元.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.22.有A 、B 两组卡片共1张,A 组的三张分别写有数字2,4,6,B 组的两张分别写有3,1.它们除了数字外没有任何区别,随机从A 组抽取一张,求抽到数字为2的概率;随机地分别从A 组、B 组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?【答案】(1)P (抽到数字为2)=13;(2)不公平,理由见解析. 【解析】试题分析:(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解.试题解析: (1)P=13; (2)由题意画出树状图如下:一共有6种情况,甲获胜的情况有4种,P=4263=, 乙获胜的情况有2种,P=2163=, 所以,这样的游戏规则对甲乙双方不公平.考点:游戏公平性;列表法与树状图法.23.如图,在直角坐标系xOy 中,直线y mx =与双曲线n y x=相交于A (-1,a )、B 两点,BC ⊥x 轴,垂足为C ,△AOC 的面积是1. 求m 、n 的值;求直线AC 的解析式.【答案】(1)m =-1,n =-1;(2)y =-12x +12 【解析】(1)由直线y mx =与双曲线n y x=相交于A(-1,a)、B 两点可得B 点横坐标为1,点C 的坐标为(1,0),再根据△AOC 的面积为1可求得点A 的坐标,从而求得结果;(2)设直线AC 的解析式为y =kx +b ,由图象过点A (-1,1)、C (1,0)根据待定系数法即可求的结果.【详解】(1)∵直线y mx =与双曲线n y x =相交于A(-1,a)、B 两点, ∴B 点横坐标为1,即C(1,0)∵△AOC 的面积为1,∴A(-1,1)将A(-1,1)代入y mx =,n y x=可得m =-1,n =-1; (2)设直线AC 的解析式为y =kx +b∵y =kx +b 经过点A (-1,1)、C (1,0)∴1,{0,k b k b -+=+=解得k =-12,b =12. ∴直线AC 的解析式为y =-12x +12. 【点睛】本题考查了一次函数与反比例函数图象的交点问题,此类问题是初中数学的重点,在中考中极为常见,熟练掌握待定系数法是解题关键.24.如图,直线y=12x+2与双曲线y=k x相交于点A (m ,3),与x 轴交于点C .求双曲线的解析式;点P 在x 轴上,如果△ACP 的面积为3,求点P 的坐标.【答案】(1)6y x=(2)(-6,0)或(-2,0). 【解析】分析:(1)把A 点坐标代入直线解析式可求得m 的值,则可求得A 点坐标,再把A 点坐标代入双曲线解析式可求得k 的值,可求得双曲线解析式;(2)设P (t ,0),则可表示出PC 的长,进一步表示出△ACP 的面积,可得到关于t 的方程,则可求得P 点坐标.详解:(1)把A 点坐标代入y=12x+2,可得:3=12m+2,解得:m=2,∴A (2,3).∵A 点也在双曲线上,∴k=2×3=6,∴双曲线解析式为y=6x; (2)在y=12x+2中,令y=0可求得:x=﹣4,∴C (﹣4,0).∵点P 在x 轴上,∴可设P 点坐标为(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=12×3|t+4|.∵△ACP的面积为3,∴12×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P点坐标为(﹣6,0)或(﹣2,0).点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.25.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.甲、乙两工程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?【答案】(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.【解析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为32x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作12006040m-天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为32x米,根据题意得:360360332x x-=,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴32x=32×40=60,答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;(2)设安排甲队工作m天,则安排乙队工作12006040m-天,根据题意得:7m+5×12006040m-≤145,解得:m≥10,答:至少安排甲队工作10天.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.26.在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.【答案】这种测量方法可行,旗杆的高为21.1米.【解析】分析:根据已知得出过F作FG⊥AB于G,交CE于H,利用相似三角形的判定得出△AGF∽△EHF,再利用相似三角形的性质得出即可.详解:这种测量方法可行.理由如下:设旗杆高AB=x.过F作FG⊥AB于G,交CE于H(如图).所以△AGF∽△EHF.因为FD=1.1,GF=27+3=30,HF=3,所以EH=3.1﹣1.1=2,AG=x﹣1.1.由△AGF∽△EHF,得AG GF EH HF=,即1.530 23x-=,所以x﹣1.1=20,解得x=21.1(米)答:旗杆的高为21.1米.点睛:此题主要考查了相似三角形的判定与性质,根据已知得出△AGF∽△EHF是解题关键.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.一、单选题二次函数的图象如图所示,对称轴为x=1,给出下列结论:①abc<0;②b 2>4ac ;③4a+2b+c<0;④2a+b=0..其中正确的结论有:A .4个B .3个C .2个D .1个【答案】B 【解析】试题解析:①∵二次函数的图象的开口向下,∴a<0,∵二次函数的图象y 轴的交点在y 轴的正半轴上,∴c>0,∵二次函数图象的对称轴是直线x=1,12b a,∴-= ∴2a+b=0,b>0 ∴abc<0,故正确;②∵抛物线与x 轴有两个交点,240b ac ∴->,24b ac ∴>, 故正确;③∵二次函数图象的对称轴是直线x=1,∴抛物线上x=0时的点与当x=2时的点对称,即当x=2时,y>0∴4a+2b+c>0,故错误;④∵二次函数图象的对称轴是直线x=1,12b a,∴-=∴2a+b=0, 故正确.综上所述,正确的结论有3个.故选B.2.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( )A .13x =-,21x =-B .11x =,23x =C .11x =-,23x =D .13x =-,21x =【答案】C 【解析】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =.故选C .考点:抛物线与x 轴的交点. 3.若数a 使关于x 的不等式组()3x a 2x 11x 2x 2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y 的分式方程y 51y --+3=a y 1-有整数解,则满足条件的所有整数a 的个数是( ) A .5B .4C .3D .2【答案】D【解析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a 的值即可. 【详解】不等式组整理得:13x a x ≥-⎧⎨≤⎩, 由不等式组有解且都是2x+6>0,即x >-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a ,即y=22a -, 由分式方程有整数解,得到a=0,2,共2个,故选:D .【点睛】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.4.空气的密度为0.00129g/cm 3,0.00129这个数用科学记数法可表示为( )A .0.129×10﹣2B .1.29×10﹣2C .1.29×10﹣3D .12.9×10﹣1【答案】C【解析】试题分析:0.00129这个数用科学记数法可表示为1.29×10﹣1.故选C .考点:科学记数法—表示较小的数.5)A .9B .±9C .±3D .3【答案】D【解析】根据算术平方根的定义求解.【详解】∵81=9,又∵(±1)2=9,∴9的平方根是±1,∴9的算术平方根是1.即81的算术平方根是1.故选:D .【点睛】考核知识点:算术平方根.理解定义是关键.6.一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是( )A .13B .14C .15D .16【答案】C 【解析】解:如图所示,分别作直线AB 、CD 、EF 的延长线和反向延长线使它们交于点G 、H 、I .因为六边形ABCDEF 的六个角都是120°,所以六边形ABCDEF 的每一个外角的度数都是60°.所以AFI BGC DHE GHI 、、、都是等边三角形.所以31AI AF BG BC ====,.3317GI GH AI AB BG ∴==++=++=,7232DE HE HI EF FI ==--=--=,7124CD HG CG HD .=--=--= 所以六边形的周长为3+1+4+2+2+3=15;故选C .。

2018届中考数学上海市各区二模试卷专题汇编四【综合计算题】含答案解析

2018届中考数学上海市各区二模试卷专题汇编四【综合计算题】含答案解析

2
2
2 …………………(1 分)

ME

5 2

m

2

5 2

m

9 2
,∴
M
(1

9) 2 .……………………(1
分)
10
2018 届中考数学上海市各区二模试卷专题汇编四【综合计算题】含答案解析 普陀区 21.(本题满分 10 分)
结 BE 并延长,交边 AD 于点 F.
(1)求证:DC=EC;
A
F
D
(2)求△EAF 的面积.
E H
B
C
第 21 题图
21.(本题满分 10 分, 第(1)小题 5 分,第(2)小题 5 分)
解:(1)∵正方形 ABCD,
∴DC=BC=BA=AD, ∠BAD=∠ADC=∠DCB=∠CBA=90°
A
F
D
AH=DH=CH=BH, AC⊥BD, ∴∠ADH=∠HDC=∠DCH=∠DAE= 45°.
…………(2 分)
E H
又∵DE 平分∠AD B ∴∠ADE=∠EDH
∵∠DAE+∠ADE=∠DEC, ∠EDH+∠HDC=∠EDC…………(1 分) B 第 21 题图 C
∴∠EDC=∠DEC
…………(1 分)
6
2018 届中考数学上海市各区二模试卷专题汇编四【综合计算题】含答案解析
2 在△ABH 中,AB=6,cosB= 3 ,∠AHB=90°,
26 4
得 BH= 3
,AH=
62 42 2
5 ,————————————(2 分)
则 BC=8,
12 58 8 5

2018徐汇区初三数学二模卷及答案解析

2018徐汇区初三数学二模卷及答案解析

2018年徐汇区初三数学二模卷(满分150分,考试时间100分钟) 2018.4考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列算式的运算结果正确的是 A. 326m m m ⋅=; B. 532m m m ÷=(0m ≠);C. 235()m m --=;D. 422m m m -=.2.直线31y x =+不经过的象限是A .第一象限;B .第二象限;C .第三象限;D .第四象限.3 .如果关于x 的方程210x +=有实数根,那么k 的取值范围是A .0k >;B .0k ≥;C .4k >;D .4k ≥. 4.某射击选手10次射击的成绩统计结果如下表,这10次成绩的众数、中位数分别是A .45°;B .60°;C .120°;D .135°. 6.下列说法中,正确的个数共有(1)一个三角形只有一个外接圆; (2)圆既是轴对称图形,又是中心对称图形; (3)在同圆中,相等的圆心角所对的弧相等; (4)三角形的内心到该三角形三个顶点距离相等.A .1个;B .2个;C .3个;D .4个. 二、填空题:(本大题共12题,每题4分,满分48分) [请将结果直接填入答题纸的相应位置]7.函数12y x =-的定义域是 ▲ . 8.在实数范围内分解因式:22x y y - = ▲ .92=的解是 ▲ .10.不等式组2672x x -≥⎧⎨+>-⎩的解集是 ▲ .11.已知点1(,)A a y 、2(,)B b y 在反比例函数3y x=的图像上.如果0a b <<,那么1y 与2y 的大小关系是:1y ▲ 2y .12.抛物线2242y x x =+-的顶点坐标是 ▲ .13.四张背面完全相同的卡片上分别写有0.3g、227四个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,那么抽到有理数的概率为 ▲ .14.在△ABC 中,点D 在边BC 上,且BD:DC=1:2.如果设a AB =,AC b =uuu r r,那么BD uuu r 等于 ▲ (结果用a r 、b r的线性组合表示).15.如图,为了解全校300名男生的身高情况,随机 抽取若干男生进行身高测量,将所得数据(精确到1cm ) 整理画出频数分布直方图(每组数据含最低值,不含 最高值),估计该校男生的身高在170cm ﹣175cm 之间 的人数约有 ▲ 人.16.已知两圆相切,它们的圆心距为3,一个圆的半径是4,那么另一个圆的半径是 ▲ . 17.从三角形(非等腰三角形)一个顶点引出一条射线与对边相交,该顶点与该交点间的线段把这个三角形分割成两个小三角形.如果其中一个小三角形是等腰三角形,另一个与原三角形相似,那么我们把这条线段叫做这个三角形的完美分割线.如图,在△ ABC 中,DB =1,BC =2,CD 是△ ABC 的完美分割线,且△ ACD 是以CD 为底边的等腰三角形,则CD 的长为 ▲ .18.如图,在Rt △ABC 中,∠C =90°,AB =5,BC =3.点P 、Q 分别在边BC 、AC 上,PQ ∥AB .把△PCQ 绕点P 旋转得到△PDE (点C 、Q 分别与点D 、E 对应),点D 落在线段PQ 上,若AD 平分∠BAC ,则CP 的长为 ▲ .三、解答题:(本大题共7题,满分78分)19.(本题满分10分)()011() 3.1442π-+--+.20.(本题满分10分)解分式方程:2216124xx x-+=+-.21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)如图,在Rt△ABC中,∠C=90°,3AC=,4BC=,AD平分∠BAC交BC于点D.(1)求tan∠DAB;(2)若⊙O过A、D两点,且点O在边AB上,用尺规作图的方法确定点O的位置并求出⊙O的半径(保留作图痕迹,不写作法).22.(本题满分10分,第(1)小题满分3分,第(2)小题满分7分)“五一”期间小明和小丽相约到苏州乐园游玩,小丽乘私家车从上海出发30分钟后,小明乘坐火车从上海出发,先到苏州北站,然后再乘出租车去游乐园(换乘时间忽略不计),两人恰好同时到达苏州乐园,他们离上海的距离y(千米)与乘车时间t(小时)的关系如图所示.请结合图像信息解决下面问题:(1)本次火车的平均速度是▲千米/小时?(2)当小明到达苏州北站时,小丽离苏州乐园的距离还有多少千米?l3ll23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)在梯形ABCD中,AD∥BC,AB=CD,BD=BC.点E在对角线BD上,且∠DCE=∠DBC.(1)求证:AD=BE;(2)延长CE交AB于点F,如果CF⊥AB,求证:4EF⋅FC=DE⋅BD.24.(本题满分12分,第(1)小题满分3分,第(2)小题满分3分,第(3)小题满分6分)如图,已知直线122y x=-+与x轴、y轴分别交于点B、C,抛物线212y x bx c=-++过点B、C,且与x轴交于另一点A.(1)求该抛物线的表达式;(2)点M是线段BC上一点,过点M作直线l∥y轴交该抛物线于点N,当四边形OMNC是平行四边形时,求它的面积;(3)联结AC,设点D是该抛物线上的一点,且满足∠DBA=∠CAO,求点D的坐标.25.(本题满分14分,第(1)小题满分4分,第(2)小题①满分4分,第(2)小题②满分6分)已知四边形ABCD是边长为10的菱形,对角线AC、BD相交于点E,过点C作CF//DB交AB延长线于点F,联结EF交BC于点H.(1)如图1,当EF⊥BC时,求AE的长;(2)如图2,以EF为直径作⊙O,⊙O经过点C交边CD于点G(点C、G不重合),设AE的长为x,EH的长为y.①求y关于x的函数关系式,并写出定义域;②联结EG,当△DEG是以DG为腰的等腰三角形时,求AE的长.第24题图第25题图2018年第二学期徐汇区学习能力诊断卷参考答案2018.4一、选择题:(本大题共6题,每题4分,满分24分)1.B;2.D;3.D;4.B;5.A;6.C.二、填空题:(本大题共12题,每题4分,满分48分)7.2x≠的一切实数;8.(y x x;9.7x=;10.93x-<≤-;11.>;12.(1,4)--;13.34;14.1133a b-+r r;15.72;16.1或7;17.32;18.2.三、解答题:(本大题共7题,满分78分)19.解:原式214=+-+-………………………………………(8分)32+=……………………………………………………………(2分)20.解:方程两边同时乘以(2)(2)x x+-得:2280x x--=…………………………………………………………(3分)解得:12x=-,24x=………………………………………………(3分)经检验,2x=-是原方程的增根,4x=是原方程的根………………(2分)所以,原方程的解是4x=21.解:(1)在Rt△ABC中,∠C=90°,过点D作DE⊥AB于点E,∵AD平分∠BAC,∠C=90°,AD=AD∴()ACD AED A A S∆≅⋅⋅V∴DC=DE,AC=AE=3,∴BE=2Rt△ABC中,3tan4ACBBC==在Rt△BDE中,3tan4DEBBE==,∴DE =32…………………………………(1分)∴1tan 2DE DAB AE ∠==………………………………………………………(1分) (2)作图正确……………………………………………………………………………(2分)联结OD ,设⊙O 的半径为r ,∵AO =OD ,∴∠OAD =∠ODA ,∵AD 平分∠BAC ,∴∠OAD =∠DAC ,∴∠ODA =∠DAC ,∴OD ∥AC …………………………………………………(2分) ∴OB OD AB AC =,即553r r -=,解得15.8r =……………………………………(1分)22.解:(1)180千米/小时……………………………………………………………(3分)(2)设2l 的解析式为(0)y kt b k =+≠,当0.5t =时,y=0;当t=1时,y=90,得:0.5090k b k b +=⎧⎨+=⎩解得:18090k b =⎧⎨=-⎩,18090y t =-.…………………………(3分)故把56t =代入18090y t =-,得y =60, ……………………………………(1分) 设1l 的解析式(0)y at a =≠,当56t =时,y =60,得:5606a =∴a =72,∴y =72t ,………………………………………………………………(1分) 当t =1,y =72,∴120-72=48(千米)…………………………………………(2分) 答:当小明到达苏州北站时,小丽离苏州乐园的距离还有48千米……………(2分) 23.证明:(1)∵在梯形ABCD 中,AD ∥BC ,AB =CD ,∴∠ABC =∠DCB ,………………………………………………………………(1分) ∵∠DCE =∠DBC ,∴∠ABD =∠ECB .………………………………………(1分) ∵AD ∥BC ,∴∠ADB =∠EBC ,……………………………………………(1分) ∵BD =BC ,∴ABD ∆≌()ECB A S A ⋅⋅V …………………………………(2分) ∴AD BE =.(2)联结AC ,∵AD ∥BC ,AB =CD ,∴AC =BD ,∵BD =BC ,∴AC=BC .………………………………………(1分)∵CF ⊥AB ,∴AF =BF =1122AB CD =,……………………………………(1分) 又∵∠BFE =∠CFB =90°,由(1)∠ABD =∠ECB ,∴BFE V ∽CFB V ,∴2BF EF FC =⋅.…………………………………(2分) 同理可证:2DC DE BD =⋅……………………………………………………(2分)∴4EF FC DE BD ⋅=⋅.…………………………………………………………(1分) 24.解:(1)∵122y x =-+与x 轴、y 轴分别交于点B (4,0)、C (0,2)……(1分) 由题意可得1164022b c c ⎧-⨯++=⎪⎨⎪=⎩,解得322b c ⎧=⎪⎨⎪=⎩, ∴抛物线表达式为213222y x x =-++.………………………………………(2分)(2)设M 1(,2)2t t -+,N 213(,2)22t t t -++,MN =2122t t -+当OMNC 是平行四边形时,MN =21222t t OC -+==,122t t ==……(2分)∴平行四边形OMNC 的面积22 4.S =⨯=.……………………………(1分)(3)由2132022y x x =-++=,解得121,4x x =-=,∴A (-1,0).……………………(1分)当点D 在x 轴上方时,过C 作CD ∥AB 交抛物线于点D ,∵A 、B 关于对称轴对称,C 、D 关于对称轴对称,∴四边形ABDC 为等腰梯形, ∴∠CAO =∠DBA ,即点D 满足条件,∴D (3,2);……………………………(2分) 当点D 在x 轴下方时,∵∠DBA =∠CAO ,∴tan ∠DBA =tan ∠CAO =2,……(1分)∵设点D 213(,2)22d d d -++,过点D 作DE ⊥直线AB 于点E , ∴由题意可得BE =4d -,DE =213222d d --,21322224d d d--=-,125,4d d =-=(舍),∴D (﹣5,﹣18) ……………(2分) 综上可知满足条件的点D 的坐标为(3,2)或(﹣5,﹣18) 25.解:(1)∵四边形ABCD 是菱形∴DC ∥AB ,AB =BC ,DB 和AC 互相垂直平分.………………………………(1分) ∵CF //DB ,∴四边形DBFC 是平行四边形,∴BF =DC =AB=10,∴∠CAB =∠BCA ………………………………………………(1分) 当EF ⊥BC 时,∠CAB =∠BCA =∠CFE ,∴Rt △AFC ∽Rt FEC V ,∴2FC CE AC =⋅,即222FC AE =…………………(1分) Rt △ACF 中,222CF AC AF +=,2224400AE AE +=,AE =…………(1分)(2)①联结OB ,AB=BF ,OE=OF ,∴OB //AC ,且111222OB AE EC x ===……(1分) ∴12OH OB EH EC ==,∴23EH EO =…………………………………………………(1分)在Rt △EBO 中,2222212EO BE OB x ⎛⎫=+=+ ⎪⎝⎭,∴23y EO ==10x <).……………………………………(2分)(说明:当C 、G 两点重合时有EF ⊥BD ,x =②当GD =GE 时,有∠GDE =∠GED ,又∵AC ⊥DB ,∠DEC=90°,∴∠GCE =∠GEC , ∴GE =GC ,∴GD =GC ,即G 为DC 的中点, 又∵EO =FO ,∴GO 是梯形EFCD 的中位线,∴GO 322DE CF DE +==,…………………………………………………………(1分)∴32y ==………………………………(1分)解得x =1分)法一:当DE =DG 时,联结OD 、OC 、GO .∵GO=EO ,DO=DO ,∴△OED ≌△OGD (SSS),…………………………………(1分) ∴∠DEO=∠DGO ,∴∠CGO=∠BEO=∠OFC ,∴∠CGO=∠OCG=∠OFC=∠OCF ,∴GC=CF …………………………………(1分)∴DC=DG +GC=DE+2DE=10,即10=,解得x =1分)法二:当DE =DG 时,过点D 作DM ⊥GE 于点M ,延长交EC 于点N ,联结GN . ∴∠EDN =∠GDN ,又∵DN=DN ,∴△NDE ≌△NDG (SAS),∴∠DGN=∠DEN=90°,14NE NG x ==,34NC x =……………………………(1分)即sinDE GNDCADC NC∠==,即143104xx=,……………………………………(1分)解得x=1分)综上,当△DEG是以DG为腰的等腰三角形时,AE.。

(完整版)2018年上海市中考数学二模试卷

(完整版)2018年上海市中考数学二模试卷

2018年上海市中考数学二模试卷一、选择题(每小题4分,共24分)1.(4分)(2018?上海)计算的结果是()A.B.C.D.32.(4分)(2018?上海)据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为()A.608×108B.60.8×109C.6.08×1010D.6.08×10113.(4分)(2018?上海)如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)24.(4分)(2018?上海)如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠55.(4分)(2018?上海)某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和406.(4分)(2018?上海)如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍二、填空题(每小题4分,共48分)7.(4分)(2018?上海)计算:a(a+1)=_________.8.(4分)(2018?上海)函数y=的定义域是_________.9.(4分)(2018?上海)不等式组的解集是_________.10.(4分)(2018?上海)某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔_________支.11.(4分)(2018?上海)如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是_________.12.(4分)(2018?上海)已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.(4分)(2018?上海)如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是_________.14.(4分)(2018?上海)已知反比例函数y=(k是常数,k≠0),在其图象所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是_________(只需写一个).15.(4分)(2018?上海)如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设=,=,那么=_________(结果用、表示).16.(4分)(2018?上海)甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么三人中成绩最稳定的是_________.17.(4分)(2018?上海)一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为_________.18.(4分)(2018?上海)如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为_________(用含t的代数式表示).三、解答题(本题共7题,满分78分)19.(10分)(2018?上海)计算:﹣﹣+||.20.(10分)(2018?上海)解方程:﹣=.21.(10分)(2018?上海)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm) 4.2 …8.2 9.8体温计的读数y(℃)35.0 …40.0 42.0(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为 6.2cm,求此时体温计的读数.22.(10分)(2018?上海)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=,求BE的值.23.(12分)(2018?上海)已知:如图,梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD相交于点F,点E 是边BC延长线上一点,且∠CDE=∠ABD.(1)求证:四边形ACED是平行四边形;(2)连接AE,交BD于点G,求证:=.24.(12分)(2018?上海)在平面直角坐标系中(如图),已知抛物线y=x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,﹣2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t,0),且t>3,如果△BDP和△CDP的面积相等,求t的值.25.(14分)(2018?上海)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)连接AP,当AP∥CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.2018年上海市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共24分)1.(4分)(2018?上海)计算的结果是()A.B.C.D.3考点:二次根式的乘除法.专题:计算题.分析:根据二次根式的乘法运算法则进行运算即可.解答:解:?=,故选:B.点评:本题主要考查二次根式的乘法运算法则,关键在于熟练正确的运用运算法则,比较简单.2.(4分)(2018?上海)据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为()A.608×108B.60.8×109C.6.08×1010D.6.08×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:60 800 000 000=6.08×1010,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)(2018?上海)如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)2考点:二次函数图象与几何变换.专题:几何变换.分析:先得到抛物线y=x2的顶点坐标为(0,0),再得到点(0,0)向右平移1个单位得到点的坐标为(1,0),然后根据顶点式写出平移后的抛物线解析式.解答:解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向右平移1个单位得到点的坐标为(1,0),所以所得的抛物线的表达式为y=(x﹣1)2.故选:C.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.4.(4分)(2018?上海)如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠5考点:同位角、内错角、同旁内角.分析:根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角可得答案.解答:解:∠1的同位角是∠5,故选:D.点评:此题主要考查了同位角的概念,关键是掌握同位角的边构成“F“形.5.(4分)(2018?上海)某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和40考点:众数;中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答:解:从小到大排列此数据为:37、40、40、50、50、50、75,数据50出现了三次最多,所以50为众数;50处在第4位是中位数.故选:A.点评:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(4分)(2018?上海)如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍考点:菱形的性质.专题:几何图形问题.分析:分别利用菱形的性质结合各选项进而求出即可.解答:解:A、∵四边形ABCD是菱形,∴AB=BC=AD,∵AC<BD,∴△ABD与△ABC的周长不相等,故此选项错误;B 、∵S △ABD =S 平行四边形ABCD ,S △ABC =S 平行四边形ABCD,∴△ABD 与△ABC 的面积相等,故此选项正确;C 、菱形的周长与两条对角线之和不存在固定的数量关系,故此选项错误;D 、菱形的面积等于两条对角线之积的,故此选项错误;故选:B .点评:此题主要考查了菱形的性质应用,正确把握菱形的性质是解题关键.二、填空题(每小题4分,共48分)7.(4分)(2018?上海)计算:a (a+1)=a 2+a.考点:单项式乘多项式.专题:计算题.分析:原式利用单项式乘以多项式法则计算即可得到结果.解答:解:原式=a 2+a .故答案为:a 2+a点评:此题考查了单项式乘以多项式,熟练掌握运算法则是解本题的关键.8.(4分)(2018?上海)函数y=的定义域是x ≠1.考点:函数自变量的取值范围.分析:根据分母不等于0列式计算即可得解.解答:解:由题意得,x ﹣1≠0,解得x ≠1.故答案为:x ≠1.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.9.(4分)(2018?上海)不等式组的解集是3<x <4.考点:解一元一次不等式组.专题:计算题.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.解答:解:,解①得:x >3,解②得:x <4.则不等式组的解集是:3<x <4.故答案是:3<x <4点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x 介于两数之间.10.(4分)(2018?上海)某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔352支.考点:有理数的混合运算.专题:应用题.分析:三月份销售各种水笔的支数比二月份增长了10%,是把二月份销售的数量看作单位“1”,增加的量是二月份的10%,即三月份生产的是二月份的(1+10%),由此得出答案.解答:解:320×(1+10%)=320×1.1=352(支).答:该文具店三月份销售各种水笔352支.故答案为:352.点评:此题考查有理数的混合运算,理解题意,列出算式解决问题.11.(4分)(2018?上海)如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是k<1.考点:根的判别式.分析:根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式的意义得到△>0,即(﹣2)2﹣4×1×k>0,然后解不等式即可.解答:解:∵关于x的方程x2﹣3x+k=0(k为常数)有两个不相等的实数根,∴△>0,即(﹣2)2﹣4×1×k>0,解得k<1,∴k的取值范围为k<1.故答案为:k<1.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.12.(4分)(2018?上海)已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为26米.考点:解直角三角形的应用-坡度坡角问题.专题:应用题.分析:首先根据题意画出图形,根据坡度的定义,由勾股定理即可求得答案.解答:解:如图,由题意得:斜坡AB的坡度:i=1:2.4,AE=10米,AE⊥BD,∵i==,∴BE=24米,∴在Rt△ABE中,AB==26(米).故答案为:26.点评:此题考查了坡度坡角问题.此题比较简单,注意掌握数形结合思想的应用,注意理解坡度的定义.13.(4分)(2018?上海)如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是.考点:概率公式.分析:由从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,直接利用概率公式求解即可求得答案.解答:解:∵从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,∴恰好抽到初三(1)班的概率是:.故答案为:.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.(4分)(2018?上海)已知反比例函数y=(k是常数,k≠0),在其图象所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是y=﹣(只需写一个).考点:反比例函数的性质.专题:开放型.分析:首先根据反比例函数的性质可得k<0,再写一个符合条件的数即可.解答:解:∵反比例函数y=(k是常数,k≠0),在其图象所在的每一个象限内,y的值随着x的值的增大而增大,∴k<0,∴y=﹣,故答案为:y=﹣.点评:此题主要考查了反比例函数的性质,关键是掌握对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.15.(4分)(2018?上海)如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设=,=,那么=﹣(结果用、表示).考点:*平面向量.分析:由点E在边AB上,且AB=3EB.设=,可求得,又由在平行四边形ABCD中,=,求得,再利用三角形法则求解即可求得答案.解答:解:∵AB=3EB.=,∴==,∵平行四边形ABCD中,=,∴==,∴=﹣=﹣.故答案为:﹣.点评:此题考查了平面向量的知识.此题难度不大,注意掌握三角形法则与平行四边形法则的应用,注意掌握数形结合思想的应用.16.(4分)(2018?上海)甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么三人中成绩最稳定的是乙.考点:方差;折线统计图.专题:图表型.分析:根据方差的意义数据波动越小,数据越稳定即可得出答案.解答:解:根据图形可得:乙的成绩波动最小,数据最稳定,则三人中成绩最稳定的是乙;故答案为:乙.点评:本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.(4分)(2018?上海)一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为﹣9.考点:规律型:数字的变化类.分析:根据“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,首先建立方程2×3﹣x=7,求得x,进一步利用此规定求得y即可.解答:解:解法一:常规解法∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b∴2×3﹣x=7∴x=﹣1则2×(﹣1)﹣7=y解得y=﹣9.解法二:技巧型∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b∴7×2﹣y=23∴y=﹣9故答案为:﹣9.点评:此题考查数字的变化规律,注意利用定义新运算方法列方程解决问题.18.(4分)(2018?上海)如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F 与BE交于点G.设AB=t,那么△EFG的周长为2t(用含t的代数式表示).考点:翻折变换(折叠问题).专题:几何图形问题.分析:根据翻折的性质可得CE=C′E,再根据直角三角形30°角所对的直角边等于斜边的一半判断出∠EBC′=30°,然后求出∠BGD′=60°,根据对顶角相等可得∠FGE=∠∠BGD′=60°,根据两直线平行,内错角相等可得∠AFG=∠FGE,再求出∠EFG=60°,然后判断出△EFG是等边三角形,根据等边三角形的性质表示出EF,即可得解.解答:解:由翻折的性质得,CE=C′E,∵BE=2CE,∴BE=2C′E,又∵∠C′=∠C=90°,∴∠EBC′=30°,∵∠FD′C′=∠D=90°,∴∠BGD′=60°,∴∠FGE=∠BGD′=60°,∵AD∥BC,∴∠AFG=∠FGE=60°,∴∠EFG=(180°﹣∠AFG)=(180°﹣60°)=60°,∴△EFG是等边三角形,∵AB=t,∴EF=t÷=t,∴△EFG的周长=3×t=2t.故答案为:2t.点评:本题考查了翻折变换的性质,直角三角形30°角所对的直角边等于斜边的一半,等边三角形的判定与性质,熟记性质并判断出△EFG是等边三角形是解题的关键.三、解答题(本题共7题,满分78分)19.(10分)(2018?上海)计算:﹣﹣+||.考点:实数的运算;分数指数幂.专题:计算题.分析:本题涉及绝对值、二次根式化简两个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=2﹣﹣2+2﹣=.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(10分)(2018?上海)解方程:﹣=.考点:解分式方程.专题:计算题;转化思想.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:(x+1)2﹣2=x﹣1,整理得:x2+x=0,即x(x+1)=0,解得:x=0或x=﹣1,经检验x=﹣1是增根,分式方程的解为x=0.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.(10分)(2018?上海)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm) 4.2 …8.2 9.8体温计的读数y(℃)35.0 …40.0 42.0(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为 6.2cm,求此时体温计的读数.考点:一次函数的应用.专题:应用题;待定系数法.分析:(1)设y关于x的函数关系式为y=kx+b,由统计表的数据建立方程组求出其解即可;(2)当x=6.2时,代入(1)的解析式就可以求出y的值.解答:解:(1)设y关于x的函数关系式为y=kx+b,由题意,得,解得:,∴y=x+29.75.∴y关于x的函数关系式为:y=+29.75;(2)当x=6.2时,y=×6.2+29.75=37.5.答:此时体温计的读数为37.5℃.点评:本题考查了待定系数法求一次函数的解析式的运用,由解析式根据自变量的值求函数值的运用,解答时求出函数的解析式是关键.22.(10分)(2018?上海)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=,求BE的值.考点:解直角三角形;直角三角形斜边上的中线.专题:几何图形问题.分析:(1)根据∠ACB=90°,CD是斜边AB上的中线,可得出CD=BD,则∠B=∠BCD,再由AE⊥CD,可证明∠B=∠CAH,由AH=2CH,可得出CH:AC=1:,即可得出sinB的值;(2)根据sinB的值,可得出AC:AB=1:,再由AB=2,得AC=2,则CE=1,从而得出BE.解答:解:(1)∵∠ACB=90°,CD是斜边AB上的中线,∴CD=BD,∴∠B=∠BCD,∵AE⊥CD,∴∠CAH+∠ACH=90°,又∠ACB=90°∴∠BCD+∠ACH=90°∴∠B=∠BCD=∠CAH,即∠B=∠CAH,∵AH=2CH,∴由勾股定理得AC=CH,∴CH:AC=1:,∴sinB=;(2)∵sinB=,∴AC:AB=1:,∴AC=2.∵∠CAH=∠B,∴sin∠CAH=sinB==,设CE=x(x>0),则AE=x,则x2+22=(x)2,∴CE=x=1,AC=2,在Rt△ABC中,AC2+BC2=AB2,∴BC=4,∴BE=BC﹣CE=3.点评:本题考查了解直角三角形,以及直角三角形斜边上的中线,注意性质的应用,难度不大.23.(12分)(2018?上海)已知:如图,梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD相交于点F,点E 是边BC延长线上一点,且∠CDE=∠ABD.(1)求证:四边形ACED是平行四边形;(2)连接AE,交BD于点G,求证:=.考点:相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的判定.专题:证明题.分析:(1)证△△BAD≌△CDA,推出∠ABD=∠ACD=∠CDE,推出AC∥DE即可;(2)根据平行得出比例式,再根据比例式的性质进行变形,即可得出答案.解答:证明:(1)∵梯形ABCD,AD∥BC,AB=CD,∴∠BAD=∠CDA,在△BAD和△CDA中∴△BAD≌△CDA(SAS),∴∠ABD=∠ACD,∵∠CDE=∠ABD,∴∠ACD=∠CDE,∴AC∥DE,∵AD∥CE,∴四边形ACED是平行四边形;(2)∵AD∥BC,∴=,=,∴=,∵平行四边形ACED,AD=CE,∴=,∴=,∴=,∴=.点评:本题考查了比例的性质,平行四边形的判定,平行线的判定的应用,主要考查学生运用定理进行推理的能力,题目比较好,难度适中.24.(12分)(2018?上海)在平面直角坐标系中(如图),已知抛物线y=x 2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,﹣2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t,0),且t>3,如果△BDP和△CDP的面积相等,求t的值.考点:二次函数综合题.专题:代数几何综合题;压轴题.分析:(1)根据待定系数法可求抛物线的表达式,进一步得到对称轴;(2)因为AC与EF不平行,且四边形ACEF为梯形,所以CE∥AF.分别求出直线CE、AF的解析式,进而求出点F的坐标;(3)△BDP和△CDP的面积相等,可得DP∥BC,根据待定系数法得到直线BC的解析式,根据两条平行的直线k值相同可得直线DP的解析式,进一步即可得到t的值.解答:解:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),点C(0,﹣2),∴,解得.故抛物线的表达式为:y=x2﹣x﹣2=(x﹣1)2﹣,对称轴为直线x=1;(2)设直线CE的解析式为:y=kx+b,将E(1,0),C(0,﹣2)坐标代入得:,解得,∴直线CE的解析式为:y=2x﹣2.∵AC与EF不平行,且四边形ACEF为梯形,∴CE∥AF.∴设直线AF的解析式为:y=2x+n.∵点A(﹣1,0)在直线AF上,∴﹣2+n=0,∴n=2.∴设直线AF的解析式为:y=2x+2.当x=1时,y=4,∴点F的坐标为(1,4).(3)点B(3,0),点D(1,﹣),若△BDP和△CDP的面积相等,则DP∥BC,则直线BC的解析式为y=x﹣2,∴直线DP的解析式为y=x﹣,当y=0时,x=5,∴t=5.点评:考查了二次函数综合题,涉及的知识点有:待定系数法求抛物线的表达式,待定系数法求直线的解析式,两条平行的直线之间的关系,三角形面积,分类思想的运用,综合性较强,有一定的难度.25.(14分)(2018?上海)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)连接AP,当AP∥CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.考点:圆的综合题.专题:压轴题.分析:(1)当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,直接利用勾股定理求出AC进而得出答案;(2)首先得出四边形APCE是菱形,进而得出CM的长,进而利用锐角三角函数关系得出CP以及EF的长;(3)∠GAE≠∠BGC,只能∠AGE=∠AEG,利用AD∥BC,得出△GAE∽△GBC,进而求出即可.解答:解:(1)如图1,设⊙O的半径为r,当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,∴BH=AB?cosB=4,∴AH=3,CH=4,∴AC==5,∴此时CP=r=5;(2)如图2,若AP∥CE,APCE为平行四边形,∵CE=CP,∴四边形APCE是菱形,连接AC、EP,则AC⊥EP,∴AM=CM=,由(1)知,AB=AC,则∠ACB=∠B,∴CP=CE==,∴EF=2=;(3)如图3:过点C作CN⊥AD于点N,∵cosB=,∴∠B<45°,∵∠BCG<90°,∴∠BGC>45°,∴∠BGC>∠B=∠GAE,即∠BGC≠∠GAE,又∠AEG=∠BCG≥∠ACB=∠B=∠GAE,∴当∠AEG=∠GAE时,A、E、G重合,则△AGE不存在.即∠AEG≠∠GAE∴只能∠AGE=∠AEG,∵AD∥BC,∴△GAE∽△GBC,∴=,即=,解得:AE=3,EN=AN﹣AE=1,∴CE===.点评:此题主要考查了相似三角形的判定与性质以及勾股定理以及锐角三角函数关系等知识,利用分类讨论得出△AGE是等腰三角形时只能∠AGE=∠AEG进而求出是解题关键.。

(完整word版)2018年徐汇区初三数学二模卷及答案(2).docx

(完整word版)2018年徐汇区初三数学二模卷及答案(2).docx

2018 年徐汇区初三数学二模卷(满分 150 分,考试时间 100 分钟)2018 .4考生注意:1.本试卷含三个大题,共25 题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共 6 题,每题 4 分,满分24 分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列算式的运算结果正确的是A . m3m2m6;B . m5m3m2(m 0);C. ( m2)3m 5; D .m4m2m2.2.直线 y 3x 1 不经过的象限是A .第一象限;B.第二象限;C.第三象限;D.第四象限.3 .如果关于x的方程x2kx 1 0有实数根,那么k 的取值范围是A .k 0;B .k 0;C.k 4;D.k 4.4.某射击选手10 次射击的成绩统计结果如下表,这10 次成绩的众数、中位数分别是成绩78910(环)次数1432A .8、8;B.8、8.5;C.8、9;D.8、10.5.如果一个正多边形内角和等于1080 °,那么这个正多边形的每一个外角等于A . 45°;B. 60°;C.120 °;D. 135 °.6.下列说法中,正确的个数共有(1)一个三角形只有一个外接圆;(2)圆既是轴对称图形,又是中心对称图形;(3)在同圆中,相等的圆心角所对的弧相等;(4)三角形的内心到该三角形三个顶点距离相等.A . 1 个;B . 2 个;C. 3 个;D. 4 个.二、填空题:(本大题共 12 题,每题 4 分,满分48 分)[请将结果直接填入答题纸的相应位置]1的定义域是▲.7.函数yx28.在实数范围内分解因式:x2 y 2 y =▲.9.方程x 3 2 的解是▲.10.不等式组2x6的解集是▲. x 7211.已知点A(a, y1)、 B(b, y2 ) 在反比例函数3的图像上 .如果a b 0 ,那么y1与y2 yx的大小关系是:y1▲y2.12.抛物线y2x24x 2 的顶点坐标是▲.13.四张背面完全相同的卡片上分别写有g22 0.3 、9 、 2 、7下随意放在桌子上,任意取一张,那么抽到有理数的概率为四个实数,如果将卡片字面朝▲.14.在△ABC 中,点 D 在边 BC 上,且 BD:DC= 1: 2 . 如果设ABuuur r uuur a ,AC b ,那么 BD 等r r于▲(结果用 a 、b的线性组合表示).人数15.如图,为了解全校300 名男生的身高情况,随机抽取若干男生进行身高测量,将所得数据(精确到1cm)整理画出频数分布直方图(每组数据含最低值,不含最高值),估计该校男生的身高在170cm﹣ 175cm 之间的人数约有▲人.1612106身高( cm)155 160 165 170 175 180第15 题图16.已知两圆相切,它们的圆心距为3,一个圆的半径是4,那么另一个圆的半径是▲.17.从三角形(非等腰三角形)一个顶点引出一条射线与对边相交,该顶点与该交点间的线段把这个三角形分割成两个小三角形.如果其中一个小三角形是等腰三角形,另一个与原三角形相似,那么我们把这条线段叫做这个三角形的完美分割线.如图,在△ ABC 中, DB=1,BC=2, CD 是△ ABC 的完美分割线,且△ ACD 是以 CD 为底边的等腰三角形,则 CD 的长为▲ .18.如图,在 Rt △ABC 中,∠C=90 °,AB=5,BC =3.点 P、Q 分别在边 BC、AC 上,PQ∥ AB.把△PCQ 绕点 P 旋转得到△ PDE(点 C、Q 分别与点 D、E 对应),点 D 落在线段 PQ 上,若 AD平分∠ BAC,则 CP 的长为▲.ACQA DBC P B图2第 18 题图第 17题图三、解答题:(本大题共7 题,满分78 分)19.(本题满分 10 分)计算: 12 ( 1) 11 03.142 3 4 .23 120.(本题满分 10 分)解分式方程:x2 1 16 . x2 x 2 421.(本题满分 10 分,第( 1)小题满分 5 分,第( 2)小题满分 5 分)如图,在 Rt △ABC 中,∠ C=90°, AC 3 , BC 4 , AD 平分∠ BAC 交 BC 于点 D .( 1)求 tan ∠ DAB ;( 2)若⊙ O 过 A 、D 两点,且点 O 在边 AB 上,用尺规作图的方法确定点O 的位置并求出⊙ O 的半径(保留作图痕迹,不写作法).AC DB第 21 题图22.(本题满分 10 分,第( 1)小题满分 3 分,第( 2)小题满分 7 分)“五一”期间小明和小丽相约到苏州乐园游玩,小丽乘私家车从上海出发30 分钟后,小明乘坐火车从上海出发,先到苏州北站,然后再乘出租车去游乐园(换乘时间忽略不计),两人恰好同时到达苏州乐园,他们离上海的距离 y (千米)与乘车时间t (小时)的关系如图所示.请结合图像信息解决下面问题:( 1)本次火车的平均速度是▲千米 /小时?( 2)当小明到达苏州北站时,小丽离苏州乐园的距离还有多少千米?y (千米)苏州乐园120苏州北站90私家车出租车火车00.551t (小时)6第 22 题图23.(本题满分 12 分,第( 1)小题满分 5 分,第( 2)小题满分 7 分)在梯形 ABCD 中,AD ∥ BC ,AB =CD ,BD=BC .点 E 在对角线 BD 上,且∠ DCE=∠ DBC .( 1)求证: AD=BE ;AD( 2)延长 CE 交 AB 于点 F ,如果 CF ⊥ AB ,求证: 4EF FC=DE BD .EBC第 23 题图24.( 本题满分 12 分,第( 1)小题满分 3 分,第( 2)小题满分3 分,第( 3)小题满分6 分)如图,已知直线 y1 x2点 B 、 C ,且与 x 轴交于另一点( 1)求该抛物线的表达式;2 与 x 轴、 y 轴分别交于点B 、C ,抛物线 y1x 2 bx c 过2A .y( 2)点 M 是线段 BC 上一点,过点 M 作直线 l ∥ y 轴交该抛物 C线于点 N ,当四边形 OMNC 是平行四边形时,求它的面积;AB( 3)联结 AC ,设点 D 是该抛物线上的一点,且满足∠ DBA =∠ CAO ,Ox第 24 题图求点 D 的坐标.25.(本题满分 14 分,第( 1)小题满分 4 分,第( 2)小题①满分 4 分,第( 2)小题②满分 6 分)已知四边形 ABCD 是边长为 10 的菱形,对角线 AC 、BD 相交于点 E ,过点 C 作 CF//DB交 AB 延长线于点 F ,联结 EF 交 BC 于点H .( 1)如图 1,当 EF ⊥BC 时,求 AE 的长;( 2)如图 2,以 EF 为直径作⊙ O ,⊙ O 经过点 C 交边 CD 于点 G (点 C 、G 不重合),设 AE的长为 x , EH 的长为 y .①求 y 关于 x 的函数关系式,并写出定义域;②联结 EG ,当 △DEG 是以 DG 为腰的等腰三角形时,求AE 的长.DCDGCEEHHOABFABF图 1第 25 题图图 22018 年第二学期徐汇区学习能力诊断卷参考答案2018.4一、:(本大共 6 ,每 4 分,分24 分)1. B;2. D;3. D;4.B;5.A ; 6. C.二、填空:(本大共12 ,每 4 分,分48 分)7.x 2的一切数; 8.y(x2)(x2); 9. x7 ; 10. 9 x 3 ;11.;12. ( 1,4) ; 13.3; 14.1r1r43a b; 15.72;316. 1 或 7; 17.3; 18. 2.2三、解答题:(本大题共7 题,满分 78 分)19.解:原式232312 3 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(8 分)1 4233⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 2 分)220.解:方程两同乘以( x2)( x 2)得:x 2 2 x 80 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 3 分)解得: x12, x2 4⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 3 分), x 2 是原方程的增根,x 4是原方程的根⋯⋯⋯⋯⋯⋯( 2 分)所以,原方程的解是 x 4 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 2 分)21.解:()在Rt△中,∠ C=90 °,AC 3,BC4,∴ AB AC2 BC25,1ABC点 D 作 DE⊥AB 于点 E,A∵ AD 平分∠ BAC,∠ C=90°, AD =AD ,O∴ACD V AED ( A A S)C D B∴ DC =DE,AC=AE= 3,∴ BE=2.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 2 分)Rt△ABC 中,tanB AC3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)BC4在 Rt△BDE 中,tan B DE3,∴ DE =3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)BE42∴tan DAB DE1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)AE2( 2)作 正确⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2 分)OD , ⊙ O 的半径 r ,∵ AO=OD ,∴∠ OAD =∠ ODA ,∵ AD 平分∠ BAC ,∴∠ OAD =∠DAC ,∴∠ ODA =∠ DAC ,∴ OD ∥ AC ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 2 分)∴ OBOD ,即 5 r r,解得 r15 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分) ABAC53822. 解:( 1) 180 千米 /小 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3 分)( 2) l 2 的解析式 ykt b(k 0) ,当 t 0.5 , y=0;当 t=1 , y=90,得:0.5k b 0k180180 t 90.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3 分)k b90解得:b, y90故把 t5 代入 y 180 t 90 ,得 y=60 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)6l 1 的解析式 yat ( a0),当 t5, y=60 ,得: 605 a66∴ a=72 ,∴ y=72t ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)当 t=1, y=72 ,∴ 120-72=48 (千米)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 2 分)答:当小明到达 州北站 ,小 离 州 园的距离 有48 千米⋯⋯⋯⋯⋯(2 分)23. 明: (1)∵在梯形 ABCD 中, AD ∥ BC , AB=CD ,∴∠ ABC=∠ DCB ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)∵∠ DCE=∠ DBC ,∴∠ ABD=∠ ECB .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∵ AD ∥ BC ,∴∠ ADB =∠EBC ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∵ BD=BC ,∴ ABD ≌ V ECB( A SA) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2 分)∴ ADBE .(2)AC ,∵ AD ∥BC ,AB=CD ,∴ AC=BD ,∵ BD =BC ,∴ AC=BC .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分) ∵ CF ⊥ AB ,∴ AF=BF= 1 AB1CD ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)22又∵∠ BFE =∠ CFB =90°,由( 1)∠ ABD =∠ ECB ,∴ VBFE ∽ V CFB ,∴ BF 2EF FC .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2 分)同理可 : DC 2 DE BD ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2 分)∴ 4EFFC DE BD .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)24. 解:( 1)∵ y1 x2 与 x 、 y 分 交于点 B ( 4, 0)、C ( 0,2)⋯⋯( 1 分)21c 0 ,解得 b3由 意可得16 4b2,2c2c2∴抛物 表达式y1 x23 x 2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2 分)22( 2) M ( t,1 t 2) , N ( t, 1 t 23t 2) ,MN =1 t2 2t22 2 2当 OMNC 是平行四 形 ,MN = 1 t 22t OC2 , t 1 t 2 2 ⋯⋯( 2 分)2∴平行四 形 OMNC 的面 S 2 2 4. .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)( 3)由 y1 x23 x 2 0 ,解得 x 11,x 24 ,∴ A ( -1, 0).⋯⋯⋯⋯⋯⋯⋯⋯(1 分)2 2当点 D 在 x 上方 ,C 作 CD ∥ AB 交抛物 于点 D ,∵A 、 B 关于 称 称,C 、D 关于 称 称,∴四 形 ABDC 等腰梯形,∴∠ CAO=∠DBA ,即点 D 足条件,∴ D ( 3, 2);⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2 分)当点 D 在 x 下方 ,∵∠ DBA =∠ CAO ,∴ tan ∠ DBA =tan ∠ CAO = 2,⋯⋯( 1 分)∵ 点 D (d ,1 d23 d 2) , 点 D 作 DE ⊥直 AB 于点 E ,22∴由 意可得 BE= 4d , DE=1d 23 d 2 ,221 d23 d22 22 , d 15, d 24 (舍),∴ D ( 5, 18) ⋯⋯⋯⋯⋯(2 分)4 d上可知 足条件的点 D 的坐 (3, 2)或( 5, 18)25. 解:( 1)∵四 形 ABCD 是菱形∴ DC ∥ AB , AB=BC , DB 和 AC 互相垂直平分.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∵ CF //DB ,∴四 形 DBFC 是平行四 形,∴BF=DC=AB= 10,∴∠ CAB=∠ BCA ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)当 EF ⊥ BC ,∠ CAB=∠ BCA=∠ CFE ,∴ Rt △AFC ∽ RtV FEC ,∴ FC 2 CE AC ,即 FC 22 AE 2 ⋯⋯⋯⋯⋯⋯⋯( 1 分)Rt △ACF 中, CF2AC 2AF 2 , 2 AE 24 AE 2400 , AE106 ⋯⋯⋯⋯( 1 分)3( 2)① OB , AB=BF , OE=OF ,∴ OB//AC ,且 OB1AE1EC1x ⋯⋯( 1 分)222∴ OHOB 1,∴ EH 2EO ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)EHEC 232 2在 Rt △EBO 中, EO2BE2OB21x ,100 x22∴ y2EO400 3x 2 ( 106 x 10).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2 分)333( 明:当 C 、G 两点重合 有EF ⊥BD , x106 )3②当 GD =GE ,有∠ GDE =∠GED ,又∵ AC ⊥ DB ,∠ DEC= 90°,∴∠ GCE=∠ GEC ,∴GE=GC ,∴ GD=GC ,即 GDC 的中点,又∵ EO=FO ,∴ GO 是梯形 EFCD 的中位 ,∴GODECF31 分)2DE ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2∴3y3100 x2,∴ 400 3 x 23 100 x 2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)2 222解得 x5 30 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)3法一:当 DE=DG , OD 、 OC 、GO .∵GO=EO , DO=DO ,∴ △OED ≌ △OGD (SSS),⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∴∠ DEO= ∠ DGO ,∴∠ CGO= ∠ BEO= ∠ OFC ,∴∠ CGO= ∠ OCG= ∠ OFC= ∠OCF ,∴ GC=CF ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∴DC=DG +GC=DE+2DE=10 ,即 3 100 x210,解得x20 2.⋯⋯⋯⋯( 1 分)3法二:当 DE=DG , 点 D 作 DM ⊥GE 于点 M ,延 交 EC 于点 N , GN .∴∠ EDN =∠GDN ,又∵ DN=DN ,∴ △NDE ≌△NDG(SAS) ,∴∠ DGN= ∠ DEN= 90°, NE NG1x , NC 3x ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)44DE GN21 x即 sin100 x4,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)DCA,即DC NC10 3 x4解得x 20 2.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)3上,当△DEG 是以 DG 腰的等腰三角形,AE 的530 或20 2.33。

(完整版)2018年徐汇区初三数学二模卷及答案(最新整理)

(完整版)2018年徐汇区初三数学二模卷及答案(最新整理)

徐汇区初三数学 本卷共4页 第1页2018年徐汇区初三数学二模卷(满分150分,考试时间100分钟) 2018.4考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列算式的运算结果正确的是 A . ;B . (); 326m m m ⋅=532m m m ÷=0m ≠C . ;D . .235()m m --=422m m m -=2.直线不经过的象限是31y x =+A .第一象限;B .第二象限;C .第三象限;D .第四象限.3 .如果关于的方程有实数根,那么k 的取值范围是x 210x +=A .;B .;C .;D ..0k >0k ≥4k >4k ≥4.某射击选手10次射击的成绩统计结果如下表,这10次成绩的众数、中位数分别是5.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于A .45°;B .60°;C .120°;D .135°.徐汇区初三数学 本卷共4页 第26.下列说法中,正确的个数共有(1)一个三角形只有一个外接圆; (2)圆既是轴对称图形,又是中心对称图形; (3)在同圆中,相等的圆心角所对的弧相等;(4)三角形的内心到该三角形三个顶点距离相等.A .1个;B .2个;C .3个;D .4个.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.函数的定义域是 ▲ .12y x =-8.在实数范围内分解因式: = ▲.22x y y -9的解是▲ .2=10.不等式组的解集是▲ .2672x x -≥⎧⎨+>-⎩11.已知点、在反比例函数的图像上.如果,那么与1(,)A a y 2(,)B b y 3y x=0a b <<1y 2y 的大小关系是: ▲.1y 2y 12.抛物线的顶点坐标是▲.2242y x x =+-13.四张背面完全相同的卡片上分别写有、四个实数,如果将卡片字面朝0.3g227下随意放在桌子上,任意取一张,那么抽到有理数的概率为▲.14.在△ABC 中,点D 在边BC 上,且BD:DC=.如果设,,那么等1:2a AB =AC b =u u u r rBD u u u r 于▲(结果用、的线性组合表示).a rb r15.如图,为了解全校300名男生的身高情况,随机抽取若干男生进行身高测量,将所得数据(精确到1cm )乐cm 乐第15题图整理画出频数分布直方图(每组数据含最低值,不含最高值),估计该校男生的身高在170cm﹣175cm之间的人数约有▲人.16.已知两圆相切,它们的圆心距为3,一个圆的半径是4,那么另一个圆的半径是▲.17.从三角形(非等腰三角形)一个顶点引出一条射线与对边相交,该顶点与该交点间的线段把这个三角形分割成两个小三角形.如果其中一个小三角形是等腰三角形,另一个与原三角形相似,那么我们把这条线段叫做这个三角形的完美分割线.如图,在△ABC中,DB=1,BC=2,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,则CD的长为▲.18.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3.点P、Q分别在边BC、AC上,PQ∥AB.把△PCQ绕点P旋转得到△PDE(点C、Q分别与点D、E对应),点D落在线段PQ上,若AD平分∠BAC,则CP的长为▲.三、解答题:(本大题共7题,满分78分)19.(本题满分10分).()011( 3.1442π--+--20.(本题满分10分)解分式方程:.2216124xx x-+=+-乐21C第17题图第18题图徐汇区初三数学 本卷共4页 第3页徐汇区初三数学 本卷共4页 第4页21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)如图,在Rt △ABC 中,∠C =90°,,,AD 平分∠BAC 交BC 于点D .3AC =4BC =(1)求tan ∠DAB ;(2)若⊙O 过A 、D 两点,且点O 在边AB 上,用尺规作图的方法确定点O 的位置并求出⊙O 的半径(保留作图痕迹,不写作法).22.(本题满分10分,第(1)小题满分3分,第(2)小题满分7分)“五一”期间小明和小丽相约到苏州乐园游玩,小丽乘私家车从上海出发30分钟后,小明乘坐火车从上海出发,先到苏州北站,然后再乘出租车去游乐园(换乘时间忽略不计),两人恰好同时到达苏州乐园,他们离上海的距离y (千米)与乘车时间t (小时)的关系如图所示.请结合图像信息解决下面问题:(1)本次火车的平均速度是 ▲ 千米/小时?(2)当小明到达苏州北站时,小丽离苏州乐园的距离还有多少千米?第21题图6第22题图徐汇区初三数学 本卷共4页 第5页23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)在梯形ABCD 中,AD ∥BC ,AB =CD ,BD =BC .点E 在对角线BD 上,且∠DCE =∠DBC .(1)求证:AD=BE ;(2)延长CE 交AB 于点F ,如果CF ⊥AB ,求证:4EF FC=DE BD .⋅⋅24.(本题满分12分,第(1)小题满分3分,第(2)小题满分3分,第(3)小题满分6分)如图,已知直线与x 轴、y 轴分别交于点B 、C ,抛物线过122y x =-+212y x bx c =-++点B 、C ,且与x 轴交于另一点A .(1)求该抛物线的表达式;(2)点M 是线段BC 上一点,过点M 作直线∥轴交该抛物l y 线于点N ,当四边形OMNC 是平行四边形时,求它的面积;(3)联结AC ,设点D 是该抛物线上的一点,且满足∠DBA =∠求点D 的坐标.25.(本题满分14分,第(1)小题满分4分,第(2分)第23题图徐汇区初三数学 本卷共4页 第6页已知四边形ABCD 是边长为10的菱形,对角线AC 、BD 相交于点E ,过点C 作CF //DB 交AB 延长线于点F ,联结EF 交BC 于点H .(1)如图1,当EF ⊥BC 时,求AE 的长;(2)如图2,以EF 为直径作⊙O ,⊙O 经过点C 交边CD 于点G (点C 、G 不重合),设AE 的长为,EH 的长为.x y ①求关于的函数关系式,并写出定义域;y x ②联结EG ,当△DEG 是以DG 为腰的等腰三角形时,求AE 的长.2018年第二学期徐汇区学习能力诊断卷参考答案2018.4一、选择题:(本大题共6题,每题4分,满分24分)1.B ;2.D ;3.D ;4.B ;5.A ;6.C .二、填空题:(本大题共12题,每题4分,满分48分)7.的一切实数;8.;9.;10.;2x≠(y x x +-7x =93x -<≤-11.;12.;13.;14.;15.72;>(1,4)--341133a b -+r r图2第25图116.1或7;17.;18.2.32三、解答题:(本大题共7题,满分78分)19.解:原式………………………………………(8分)214=++-……………………………………………………………(2分)=20.解:方程两边同时乘以得:(2)(2)x x+-…………………………………………………………(3分)2280x x--=解得:,………………………………………………(3分)12x=-24x=经检验,是原方程的增根,是原方程的根………………(2分)2x=-4x=所以,原方程的解是.……………………………………………(2分)4x=21.解:(1)在Rt△ABC中,∠C=90°,过点D作DE⊥AB于点E,∵AD平分∠BAC,∠C=90°,AD=∴()ACD AED A A S∆≅⋅⋅V∴DC=DE,AC=AE=3,∴BE=2.…………………………………………………(2分)Rt△ABC中,…………………………………………………(1分)3tan4ACBBC==在Rt△BDE中,,∴DE =…………………………………(1分)3tan4DEBBE==32徐汇区初三数学 本卷共4页 第7页徐汇区初三数学 本卷共4页 第8页∴………………………………………………………(1分)1tan 2DE DAB AE ∠==(2)作图正确……………………………………………………………………………(2分)联结OD ,设⊙O 的半径为r ,∵AO =OD ,∴∠OAD =∠ODA ,∵AD 平分∠BAC ,∴∠OAD =∠DAC ,∴∠ODA =∠DAC ,∴OD ∥AC …………………………………………………(2分)∴,即,解得……………………………………(1分)OB OD AB AC =553r r -=15.8r =22.解:(1)千米/小时……………………………………………………………(3分)180(2)设的解析式为,当时,y=0;当t=1时,y=90,2l (0)y kt b k =+≠0.5t =得:解得:,.…………………………(3分)0.5090k b k b +=⎧⎨+=⎩18090k b =⎧⎨=-⎩18090y t =-故把代入,得y =60, ……………………………………(1分)56t =18090y t =-设的解析式,当时,y =60,得:1l (0)y at a =≠56t =5606a =∴a =72,∴y =72t ,………………………………………………………………(1分)当t =1,y =72,∴120-72=48(千米)…………………………………………(2分)答:当小明到达苏州北站时,小丽离苏州乐园的距离还有48千米……………(2分)23.证明:(1)∵在梯形ABCD 中,AD ∥BC ,AB =CD ,∴∠ABC =∠DCB ,………………………………………………………………(1分)∵∠DCE =∠DBC ,∴∠ABD =∠ECB .………………………………………(1分)∵AD ∥BC ,∴∠ADB =∠EBC ,……………………………………………(1分)徐汇区初三数学 本卷共4页 第9页∵BD =BC ,∴≌…………………………………(2分)ABD ∆()ECB A S A ⋅⋅V ∴.AD BE =(2)联结AC ,∵AD ∥BC ,AB =CD ,∴AC =BD ,∵BD =BC ,∴AC=BC .………………………………………(1分)∵CF ⊥AB ,∴AF =BF =,……………………………………(1分)1122AB CD =又∵∠BFE =∠CFB =90°,由(1)∠ABD =∠ECB ,∴∽,∴.…………………………………(2分)BFE V CFB V 2BF EF FC =⋅同理可证:……………………………………………………(2分)2DC DE BD =⋅∴.…………………………………………………………(1分)4EF FC DE BD ⋅=⋅24.解:(1)∵与x 轴、y 轴分别交于点B (4,0)、C (0,2)……(1分)122y x =-+由题意可得,解得,1164022b c c ⎧-⨯++=⎪⎨⎪=⎩322b c ⎧=⎪⎨⎪=⎩∴抛物线表达式为.………………………………………(2分)213222y x x =-++(2)设M ,N ,MN =1(,2)2t t -+213(,2)22t t t -++2122t t -+当OMNC 是平行四边形时,MN =,……(2分)21222t t OC -+==122t t ==∴平行四边形OMNC 的面积.……………………………(1分)22 4.S =⨯=(3)由,解得,∴A (-1,0).……………………(1分)2132022y x x =-++=121,4x x =-=当点D 在x 轴上方时,过C 作CD ∥AB 交抛物线于点D ,∵A 、B 关于对称轴对称,C 、D 关于对称轴对称,∴四边形ABDC 为等腰梯形,徐汇区初三数学 本卷共4页 第10页∴∠CAO =∠DBA ,即点D 满足条件,∴D (3,2);……………………………(2分)当点D 在x 轴下方时,∵∠DBA =∠CAO ,∴tan ∠DBA =tan ∠CAO =2,……(1分)∵设点D ,过点D 作DE ⊥直线AB 于点E ,213(,2)22d d d -++∴由题意可得BE =,DE =,4d -213222d d --,(舍),∴D (﹣5,﹣18) ……………(2分)21322224d d d--=-125,4d d =-=综上可知满足条件的点D 的坐标为(3,2)或(﹣5,﹣18)25.解:(1)∵四边形ABCD 是菱形∴DC ∥AB ,AB =BC ,DB 和AC 互相垂直平分.………………………………(1分)∵CF //DB ,∴四边形DBFC 是平行四边形,∴BF =DC =AB=10,∴∠CAB =∠BCA ………………………………………………(1分)当EF ⊥BC 时,∠CAB =∠BCA =∠CFE ,∴Rt △AFC ∽,∴,即…………………(1分)Rt FEC V 2FC CE AC =⋅222FC AE =Rt △ACF 中,,,…………(1分)222CF AC AF +=2224400AE AE +=AE =(2)①联结OB ,AB=BF ,OE=OF ,∴OB //AC ,且……(1分)111222OB AE EC x ===∴,∴…………………………………………………(1分)12OH OB EH EC ==23EH EO =在Rt △EBO中,,2222212EO BE OB x ⎛⎫=+=+ ⎪⎝⎭徐汇区初三数学 本卷共4页 第11页∴).……………………………………(2分)23y EO=10x <<(说明:当C 、G 两点重合时有EF ⊥BD ,x =②当GD =GE 时,有∠GDE =∠GED ,又∵AC ⊥DB ,∠DEC=90°,∴∠GCE =∠GEC ,∴GE =GC ,∴GD =GC ,即G 为DC 的中点,又∵EO =FO ,∴GO 是梯形EFCD的中位线,∴GO ,…………………………………………………………(1分)322DE CF DE +==∴,∴………………………………(1分)32y ==解得1分)x =法一:当DE =DG 时,联结OD 、OC 、GO .∵GO=EO ,DO=DO ,∴△OED ≌△OGD (SSS),…………………………………(1分)∴∠DEO=∠DGO ,∴∠CGO=∠BEO=∠OFC ,∴∠CGO=∠OCG=∠OFC=∠OCF ,∴GC=CF …………………………………(1分)∴DC=DG +GC=DE+2DE=10,即,解得…………(1分)10=x =法二:当DE =DG 时,过点D 作DM ⊥GE 于点M ,延长交EC 于点N ,联结GN .∴∠EDN =∠GDN ,又∵DN=DN ,∴△NDE ≌△NDG (SAS),徐汇区初三数学 本卷共4页 第12页∴∠DGN=∠DEN=90°,,……………………………(1分)14NE NG x ==34NC x =即,即,……………………………………(1分)sin DE GN DCA DC NC ∠==1434x x =解得…………………………………………………………………………(1分)x综上,当△DEG 是以DG 为腰的等腰三角形时,AE 的长为.。

中考数学试题-徐汇10初三数学二模定稿 最新

中考数学试题-徐汇10初三数学二模定稿 最新

2018学年第二学期徐汇区初三年级数学学科学习能力诊断卷2018.4 (时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题,每题4分,满分24分) 1.下列运算结果为2m 的式子是( ▲ )A .63m m ÷B .42m m -⋅C .12()m -D .42m m -2.据上海世博会官方网统计,截至2018年3月29日为止,上海世博会门票已实现销售约22 170 000张.将22 170 000用科学记数法表示为( ▲ )A .610217.2⨯ B .6102217.0⨯ C .710217.2⨯ D .61017.22⨯ 3.把不等式组2020x x +>⎧⎨-≤⎩的解集表示在数轴上,正确的是( ▲ )4.已知反比例函数的图象经过点(21)P -,,则这个函数的图像位于( ▲ )A .第一、三象限B .第二、三象限C.第二、四象限D .第三、四象限5.如图,AB ∥DF , AC ⊥BC 于C ,CB 的延长线与DF 交于点E ,若∠A = 20°,则∠CEF等于( ▲ )A . 110°B . 100°C . 80°D . 70°6. 一艘轮船和一艘快艇沿相同路线从甲港出发到乙港,行驶过程随时间变化的图像如图所示,下列结论错误..的是( ▲ ) A .轮船的速度为20千米/小时 B .快艇的速度为380千米/小时 ABCD第5题 第6题C .轮船比快艇先出发2小时D .快艇比轮船早到2小时 二、填空题(本大题共12题,每题4分,满分48分) 7.在实数范围内分解因式:a a 43- = __ ▲__. 8x =的解是 ▲ .9.方程062=++a x x 有两个不相等的实数根,则a 的取值范围是 ▲ . 10.抛物线422+-=x x y 的顶点坐标是 ▲ .11.函数b kx y +=的图像如图所示,下列结论正确..的有 ▲(填序号)①0>b ; ③当2<x 时,0>y ; ②0>k ; ④方程0=+b kx 的解是2=x .12.2018年上海城市绿化覆盖率达到了38%,人均公共绿地面积12.5米;到2018年年底绿化覆盖率将达到40%,人均公共绿地面积将达到15米2。

2018上海中考数学二模第18题

2018上海中考数学二模第18题

2018上海中考数学二模第18题1.(徐汇)如图,在ABC Rt ∆中,3,5,90===∠BC AB C.点Q P 、分别在边AC BC 、上,AB PQ //,把PCQ ∆绕点P 旋转得到PDE ∆(点Q C 、分别与点E D 、对应),点D 落在线段PQ 上,若AD 平分BAC ∠,则CP 的长为_________.2.(杨浦)当关于x 的一元二次方程02=++c bx ax 有实数根,且其中一个根为另一个根的2倍时,称之为“倍根方程”,如果关于x 的一元二次方程()0222=--+m x m x 是“倍根方程”,那么m 的值为_______.3.如图,将矩形ABCD 沿对角线AC 折叠,使点B 翻折到点E 处,如果3:1:=AC DE ,那么._______:=AB AD 4.(奉贤)如图,将ABC ∆的边AB 绕着点A 顺时针旋转()900<<αα得到'AB ,边AC 绕着点A 逆时针旋转()900<<ββ得到'AC ,联结''C B ,当90=+βα时,我们称''C AB ∆是ABC ∆的“双旋三角形”,如果等边ABC ∆的边长为a ,那么它的“双旋三角形”的面积是___________(用含a 的代数式表示)5.(闵行)在直角梯形ABCD 中,135cos ,7,12,90,//=∠===∠ABC DC AB DAB CD AB,点E 在线段AD 上,将ABE ∆沿BE 翻折,点A 恰巧落在对角线BD 上点P 处,那么.________=PD 6.(宝山)如图,在ABC ∆中,6,5===BC AC AB ,点D 在边AB 上,且90=∠BDC ,如果ACD ∆绕点A 顺时针旋转,使点C 与点B 重合,点D 旋转至点1D ,那么线段1DD 的长为_______.7.(长宁)如图,在矩形ABCD 中,对角线BD 的长为1,点P 是线段BD 上的一点,联结CP ,将BCP ∆沿着直线CP 翻折,若点B 落在边AD 上的点E 处,且AB EP //,则AB 的长等于___________.y xOABC8.(崇明)如图,ABC ∆中,,8,6,90===∠AC AB BAC点D 是BC 的中点,将ABD ∆沿AD 翻折得到AED ∆,联结CE ,那么线段CE 的长等于.9.(金山)如图,Rt △ABC 中,∠C =90°,AC =6,BC =8,D 是AB 的中点,P 是直线BC 上一点,把△BDP 沿PD 所在的直线翻折后,点B 落在点Q 处,如果QD ⊥BC ,那么点P 和点B 间的距离等于.10.(普陀)如图,在平面直角坐标系xOy 中,△ABC 的顶点A 、C 在坐标轴上,点B 的坐标是(2,2).将△ABC 沿x 轴向左平移得到△111A B C ,点1B 落在函数6y x=-的图像上.如果此时四边形11AA C C 的面积等于552,那么点1C 的坐标是.11(青浦)已知,在ABC Rt ∆中,12,9,90===∠BC AC C,点E D 、分别在边BC AC 、上,且CE CD :4:3=.将CDE ∆绕点D 顺时针旋转,当点C 落在线段DE 上的点F 处时,BF 恰好是ABC∠的平分线,此时线段CD 的长是.DCBAEC12.(松江)如图,已知平行四边形ABCD 中,45,=∠=ACB BC AC ,将三角形ABC 沿着AC 翻折,点B 落在点E 处,联结DE ,那么DEAC的值为.13.等腰ABC ∆中,AC AB =,它的外接圆圆O 半径为1,如果线段OB 绕点O 旋转90后可与线段OC 重合,那么ABC ∠的余切值是___________.1.2;2.1,4--;3.1:2;4.42a ;5.12212-;6.2542;7.215-;8.514;9.10,25;10.⎪⎭⎫ ⎝⎛-211,5;11.6;12.12-;13.12±;ADCB。

上海市徐汇区中考数学二模试卷(含解析)

上海市徐汇区中考数学二模试卷(含解析)

中考数学二模试卷一、选择题(本大题共 6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项 是正确的】1.如果数轴上表示 2和-4的两点分别是点 A 和点B ,那么点A 和点B 之间的距离是( )A .— 2 B. 2 C.— 6 D. 6.2 .已知点M (1- 2m m- 1)在第四象限内,那么 m 的取值范围是( )A . m> 1B .— C.m< 1 D .或 m> 1如图所示的条形统计图,根据图中相关信息,这次调查获取的样本数据的众数和中位数分别是()人数A . 12 和 10B . 30 和 50 C. 10 和 12 D. 50 和 30.6 .如图,在△ ABC 中,AC=BC 点 D E 分别是边 AB AC 的中点,延长 DE 到F ,使得EF=DE 那么 四边形ADCF 是()A .等腰梯形B .直角梯形C .矩形D .菱形那么/ ABE 的大小是(A . x= - 3 5. 某校开展 y=ax+b ( 0)经过点 A (- 3,B . x= - 1 C. x=0 D. x=2“阅读季”活动,小明调查了班级里0)和点B (0, 2),那么关于 x 的方程ax+b=0的解40名同学计划购书的花费情况,并将结果绘制成已知直线 4. / C=36 ,、填空题(本大题共12题,每题4分,满分48 分)7 •人体中成熟的红细胞的平均直径为0.0000077m, 0.0000077用科学记数法表示为 ______&方程」:上的解是_•9 .如果反比例函数丫=(k z 0)的图象经过点P (- 1, 4),那么k的范围是K ------10 .如果关于x的方程X2+3X - k=0有两个不相等的实数根,那么k的取值范围是.11. 将抛物线y=x2- 2X+1向上平移2个单位后,所得抛物线的顶点坐标是_ .12. 在实数! , n , 3°, tan60 ° , 2中,随机抽取一个数,抽得的数大于2的概率是13. 甲,乙,丙,丁四名跳高运动员赛前几次选拔赛成绩如表所示,根据表中的信息,如果要从中,选择一名成绩好又发挥稳定的运动员参加比赛,那么应选甲乙丙丁平均数(cm)185180185180方差 3.6 3.67.98.214. __________________________________________________________ 如果t是方程X2-2X-仁0的根,那么代数式2t2-4t的值是 ____________________________________________ .15. 如图,四边形DEFG^A ABC的内接矩形,其中D、G分别在边AB, AC上,点E、F在边BC上,AH=15那么矩形DEFG勺周长是AE丄CD 垂足为E,AF丄BC,垂足为F,AD=4 BF=3, / EAF=60,设"=一,如果向量匚L=k - (k丰0),那么k的值是317.如图,在△ ABC中,AD平分/ BAC交边BC于点D, BD=AD AB=3 AC=2,那么AD的长是318.如图,在△ ABC中,/ ACB=a (90°v aV 180°),将△ ABC绕着点A逆时针旋转2 3 (0°<3 < 90°)后得△ AED其中点E、D分别和点B C对应,联结CD如果CDLED,请写出一个关于a与3的等量关系的式子_______ .三、(本大题共7题,第19-22题每题10分;第23、24每题12分;第25题14分;满分78分),-3自X 时3 」19.先化简,再求值:一十.--厂:(其中a= )3十日\-2y=320.解方程组:「4,-12 耳y+g/二I©21•某足球特色学校在商场购买甲、乙两种品牌的足球•已知乙种足球比甲种足球每只贵20元,该校分别花费2000元、1400元购买甲、乙两种足球,这样购得甲种足球的数量是购得乙种足球数量的2倍,求甲、乙两种足球的单价各是多少元?22 .如图,已知梯形ABCD中, ADBC, AC BD相交于点O, AB丄AC,AD=CD AB=3, BC=5.求:(1) tan / ACD的值;23.如图1,在Rt△ ABC中,/ ACB=90,点D是边AB的中点,点E在边BC上, AE=BE点M是AE的中点,联结CM,点G在线段CM上,作/ GDN M AEB交边BC于N.(1)如图2,当点G和点M重合时,求证:四边形DMEN是菱形;(2) 如图1,当点G和点M C不重合时,求证:DG=DN24 .如图,已知抛物线y=ax2+4 (a^ 0)与x轴交于点A和点B (2, 0),与y轴交于点C,点D是抛物线在第一象限的点.(2)梯形ABCD勺面积.C图2(1)当厶ABD的面积为4时,①求点D的坐标;②联结0D点M是抛物线上的点,且/ MDO W BOD求点M的坐标;(2)直线BD AD分别与y轴交于点E、F,那么OE+OF勺值是否变化,请说明理由.25.如图,已知△ ABC中,AB=AC=5 BC=6点O是边BC上的动点,以点O为圆心,OB为半径作圆O,交AB边于点D,过点D作/ ODP2 B,交边AC于点P,交圆O与点E.设OB=x(1)当点P与点C重合时,求PD的长;(2)设AP- EP=y,求y关于x的解析式及定义域;(3)联结OP当OP丄OD时,试判断以点P为圆心,PC为半径的圆P与圆O的位置关系.参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.如果数轴上表示2和-4的两点分别是点A和点B,那么点A和点B之间的距离是( )A.- 2B. 2C.- 6D. 6.【考点】13:数轴.【分析】本题可以米用两种方法:( 1)在数轴上直接数出表示- 4和表示2的两点之间的距离.(2)用较大的数减去较小的数.【解答】解:根据较大的数减去较小的数得: 2 -( - 4) =6, 故选D.【点评】本题考查了数轴,掌握数轴上两点间的距离的计算方法是解题的关键.2 .已知点M( 1 - 2m m- 1)在第四象限内,那么 m 的取值范围是( )1 1 —A . m> 1B .— C. =v m< 1 D .或 m> 1【考点】CB:解一元一次不等式组; D1:点的坐标. 【分析】根据坐标系内点的横纵坐标符号特点列出关于m 的不等式组求解可得.[l-2m>0 ①【解答】解:根据题意,可得::….解不等式①,得:m < 解不等式②,得:m < 1, 1•••* , 故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大; 同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【考点】JA :平行线的性质;IJ :角平分线的定义. 1【分析】先根据平行线的性质,得出/ ABC=36,再根据 BE 平分/ ABC 即可得出/ ABE 冃/ ABC【解答】解:••• AB// CD / C=36 ,•••/ ABC=36 ,/ C=36,那么/ ABE 的大小是(又••• BE平分/ ABC•••/ ABE=: / ABC=18 ,故选:A.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.4 .已知直线y=ax+b( 0)经过点A (- 3, 0)和点B (0, 2),那么关于x的方程ax+b=O的解是( )A. x= - 3B. x= - 1C. x=0D. x=2【考点】FC: —次函数与一元一次方程.【分析】直线y=ax+b与x轴交点的横坐标的值即为关于x的方程ax+b=0的解.【解答】解:T直线y=ax+b (0)经过点A (- 3, 0),•关于x的方程ax+b=0的解是x= - 3.故选A.【点评】本题本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0 (a, b为常数,a丰0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.5.某校开展“阅读季”活动,小明调查了班级里40名同学计划购书的花费情况,并将结果绘制成如图所示的条形统计图,根据图中相关信息,这次调查获取的样本数据的众数和中位数分别是( ) 人数A. 12 和10B. 30 和50C. 10 和12D. 50 和30.【考点】VC:条形统计图;W4中位数;W5众数.【分析】众数就是出现次数最多的数,据此即可判断,中位数就是大小处于中间位置的数,根据定义判断. 【解答】解:这组数据中30元出现次数最多,故众数是:30元;40个数据中位数是第20个数据50元与第21个数据50元的平均数,故中位数是:50元. 故选B.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.6 .如图,在△ ABC中,AC=BC点D E分别是边AB AC的中点,延长DE到F,使得EF=DE那么四边形ADCF^( )A.等腰梯形B •直角梯形C •矩形D.菱形【考点】LI :直角梯形;L9:菱形的判定;LC:矩形的判定.【分析】先证明四边形ADCF是平行四边形,再证明AC=DF即可.【解答】解:••• E是AC中点,••• AE=EC•/ DE=EF•四边形ADCF是平行四边形,•/ AD=DB AE=EC1•DE=-BC,•DF=BC•/ CA=CB•AC=DF•四边形ADCF是矩形;故选:C.【点评】本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理;熟记对角线相等的平行四边形是矩形是解决问题的关键.、填空题(本大题共12题,每题4分,满分48 分)7•人体中成熟的红细胞的平均直径为0.0000077m , 0.0000077用科学记数法表示为7.7 X 10【考点】1J :科学记数法一表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a x 10「n,与较大数的科学记数法不同的是其所使用的是负指数幕,指数由原数左边起第一个不为零的数字前面的0的个数所决疋.【解答】解:0.0000077=7.7 X 10—6,故答案为:7.7 X 10「.【点评】本题考查用科学记数法表示较小的数,一般形式为a x 10「n,其中1 w|a| v 10, n为由原数左边起第一个不为零的数字前面的0的个数所决定.&方程t工_龙=w £的解是X[=2, x?=— 1 .【考点】AG无理方程.【分析】将方程两边平方整理得到关于x的一元二次方程,然后求解即可.【解答】解:方程两边平方得,x2—x=2 ,整理得,x2—x—2=0,解得X1=2, X2=—1,经检验,X1=2, X2=- 1都是原方程的根,所以,方程的解是X1=2, X2=—1 .故答案为:X1=2, X2= —1.【点评】本题主要考查解无理方程的知识点,去掉根号把无理式化成有理方程是解题的关键,注意观察方程的结构特点,把无理方程转化成一元二次方程的形式进行解答,需要同学们仔细掌握.k9 .如果反比例函数y=:( k z 0)的图象经过点P (—1, 4),那么k的范围是 -4【考点】G6:反比例函数图象上点的坐标特征.k【分析】直接把点P (—1, 4 )代入反比例函数y=—( k工0),求出k的值即可.k【解答】解:•••反比例函数y=:( k z0)的图象经过点P (—1, 4),k4= _,解得k=—4.故答案为:-4.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.、2910. 如果关于x的方程x+3x - k=0有两个不相等的实数根,那么k的取值范围是k>^ —.--------- 4—【考点】AA根的判别式.【专题】11 :计算题.2【分析】禾U用判别式的意义得到△=3 - 4 (- k)> 0,然后解不等式即可.【解答】解:根据题意得厶=32- 4 (- k )> 0,9解得k>- ,| .故答案为k >-.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0 (0)的根与△ =b2- 4ac有如下关系:当厶>0时,方程有两个不相等的两个实数根;当厶=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.11. 将抛物线y=x2- 2x+1向上平移2个单位后,所得抛物线的顶点坐标是(1, 2).【考点】H6:二次函数图象与几何变换.【分析】根据配方法先化为顶点式,再根据上加下减左加右减的原则得出解析式,最后确定顶点坐标即可.【解答】解:y=x2-2x+仁(x - 1) 2,平移后的解析式为y= (x - 1) 2+2,•••顶点的坐标为(1 , 2),故答案为(1, 2).【点评】本题考查了二次函数的图象与几何变换,掌握用配方法把一般式化为顶点式以及顶点坐标的求法是解题的关键.VE 212. 在实数,n , 3°, tan60 ° , 2中,随机抽取一个数,抽得的数大于2的概率是_「一.【考点】X4:概率公式.【分析】先找出大于2的数,再根据概率公式即可得出答案.【解答】解:在实数 \ n , 3°, tan60 ° ,2中,大于2的数有厂,n ,2则抽得的数大于2的概率是| ;2故答案为:| .5【点评】本题考查了概率的知识•用到的知识点为:概率=所求情况数与总情况数之比.13•甲,乙,丙,丁四名跳高运动员赛前几次选拔赛成绩如表所示,根据表中的信息,如果要从中, 选择一名成绩好又发挥稳定的运动员参加比赛,那么应选甲.【考点】W7方差;W2加权平均数.【分析】先确定平均数较大的运动员,再选出方差较小的运动员.【解答】解:因为甲的平均数较大,且甲的方差较小,比较稳定,所以选择甲参加比赛.故答案为:甲.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量•方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好14•如果t是方程x2- 2x-仁0的根,那么代数式2t2-4t的值是2.【考点】A3: —元二次方程的解.【专题】11 :计算题.【分析】根据一元二次方程的解的定义得到t2-2t -仁0,则t2-2t=1,然后利用整体代入的方法计算代数式2t2- 4t的值.【解答】解:当x=t时,t2- 2t - 1=0,则t2- 2t=1 ,所以2t2- 4t=2 (t2- 2t ) =2.故答案为2.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15. 如图,四边形DEFG^A ABC的内接矩形,其中D、G分别在边AB, AC上,点E、F在边BC上,【考点】S9:相似三角形的判定与性质;LB:矩形的性质.【分析】根据相似三角形的判定和性质结论得到结论.【解答】解:••• DGII BC AHL BC ••• AHL DG △AD3A ABCDG 二AH-DE 2DE 二15-DE口,即」| -,•DE=6•DG=2DE=12•矩形DEFG的周长=2X( 6+12) =36.故答案为:36.【点评】本题考查了相似三角形的判定和性质,矩形的性质,熟练掌握相似三角形的判定和性质是解题的关键.16. 如图,在平行四边形ABCD中, AE L CD垂足为E, AF L BC,垂足为F , AD=4 BF=3, / EAF=60设「= •,如果向量::=k (k工0),那么k的值是 -【考点】LM *平面向量;L5 :平行四边形的性质.【分析】根据AE L CD AF L BC及/ EAF=60可得/ C=120,由平行四边形得出/ B=Z D=60、// CD且AB=CD利用三角函数求得DE=2 AB=6, CE=4最后可得狂冷肛=—彳Dl= 一彳AB.【解答】解:••• AE L CD AF L BC• / AEC=Z AFC=90 ,•••/ EAF=60 ,• / C=360 —Z AEC-Z AFC=120 ,BC=20 AH=15那么矩形DEFG的周长是36AB•••四边形ABCD是平行四边形,•••/ B=Z D=60 ,1 BF 3_• DE=ADcosD=4 _=2, AB=---:T=」.=6,T则CE=CD- DE=AB- DE=6- 2=4,•/ AB// CD 且AB=CD•瓦_2饭__ 2瓦__2忑__ 2;=「=-=;=;,2故答案为:-【点评】本题主要考查四边形内角和、平行四边形的性质、三角函数的应用及平面向量的计算,熟练掌握平行四边形的性质是解题的关键.17. 如图,在厶ABC中,AD平分/ BAC交边BC于点D, BD=AD AB=3, AC=2那么AD的长是【点评】本题考查相似三角形的判定与性质,解答本题的关键是明确题意,找出三角形相似的条件.18. 如图,在△ ABC中,/ ACB=a (90°v aV 180°),将△ ABC绕着点A逆时针旋转2 3 (0°<3 < 90°)后得△ AED其中点E、D分别和点B C对应,联结CD如果CDLED,请写出一个关于a与3的等量关系的式子 a + 3 =180°【考点】R2:旋转的性质;K7:三角形内角和定理;KH等腰三角形的性质.【分析】先过A作AF丄CD根据旋转的性质,得出/ ADE=/ ACB=a , AC=AD / CAD=3,再根据等腰三角形的性质,即可得到Rt △ ADF中,/ DAF+Z ADF=3 +a - 90° =90°,据此可得a与3的等曰.¥ W 量关糸.S9:相似三角形的判定与性质.【分析】根据题意得到△ ACD^A BCA然后根据题目中的数据即可求得AD的长.【解答】解:•••在△ ABC中,AD平分/ BAC交边BC于点D, BD=AD•••/ BAD=Z CAD / BAD=/ ABD•••/ ABC=Z CAD又•••/ ACD=/ BCA• △AC3A BCAAD _ AC 二CD•/ BD=AD AB=3, AC=2AD_ 2 _CD~~BD+CD ~ 2 ?解得,3V10AD=,CD「—【考故答案为:【解答】解:如图,过A作AF丄CD由旋转可得,Z ADE=Z ACB=a ,•/ CDL DE,•••Z ADC=a - 90°,由旋转可得,AC=AD Z CAD=2p ,•Z DAF=3 ,•Rt△ ADF中,Z DAF+Z ADF=90,即3 +a - 90° =90°,• a + 3 =180°.故答案为:a + 3 =180°.B【点评】本题主要考查了旋转的性质,三角形内角和定理以及等腰三角形的性质的综合应用,解决问题的关键是作辅助线构造直角三角形,依据等腰三角形三线合一的性质进行计算.三、(本大题共7题,第19-22题每题10分;第23、24每题12分;第25题14分;满分78 分)【点评】本题考查的是分式的化简求值,此类题型的特点是:利用方程解的定义找到相等关系,再 把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即 可求出代数式的值.鼻吃尸320 •解方程组:[q/TNy+g/二 IE , 【考点】AF :高次方程.【分析】由②得出(2x -3y ) 2=16,求出2x -3y= ±4,把原方程组转化成两个二元一次方程组,求 出方程组的解即可.(x-2y=3®【解答】解:一,--1 i ■■ ■ -j r,二 由②得:(2x - 3y ) 2=16, 2x - 3y= ± 4,解得:即原方程组的解为:【点评】本题考查了解高次方程组,能把高次方程组转化成二元一次方程组是解此题的关键.19•先化简,再求值:-3 a 3i —3 西土3, 1 2 ,—十 - a+1 (其中 a=、他T ) a J丄【考点】6D:分式的化简求值.【分析】先算除法,再算减法,最后把 a 的值代入进行计算即可.a -3 (a+1) (a _l )3 (a+1)【解答】解:原式=「 」 --- 已一 3 a+1=(a - 1)- 3 =a - 1 - 3 =a - 4 • 当a 八.时,原式4= I 3.即原方程组化为1x-2y=3和2s-3y=4J x-2y=3 I 2x-3y=-421 •某足球特色学校在商场购买甲、乙两种品牌的足球•已知乙种足球比甲种足球每只贵 校分别花费2000元、1400元购买甲、乙两种足球,这样购得甲种足球的数量是购得乙种足球数量 的2倍,求甲、乙两种足球的单价各是多少元? 【考点】B7:分式方程的应用. 【分析】设购买一个甲品牌的足球需 x 元,则购买一个乙品牌的足球需( x+20)元,根据购买甲种足球数量是购买乙种足球数量的2倍列出方程解答即可.【解答】解:(1)设购买一个甲种足球需要 x 元,解得,x=50, 经检验,x=50是原分式方程的解, 所以 x+20=70 (元),答:购买一个甲种足球需 50元,一个乙种足球需 70元.【点评】本题考查分式方程的应用,关键是根据数量作为等量关系列出方程.22 .如图,已知梯形 ABCD 中, ADBC, AC BD 相交于点 O, AB 丄 AC,AD=CD AB=3, BC=5.求:(1) tan / ACD 的值; (2) 梯形ABCD 勺面积.C【考点】LH:梯形;T7:解直角三角形.【分析】(1)作DE// AB 交BC 于E ,交AC 于 M 证出DEL AC,由等腰三角形的性质得出AM=CM 证明四边形ABED 是平行四边形,得出DE=AB=3在Rt △ ABC 中,由勾股定理求出 AC=4,得出AM=CM=213 DM 3由平行线分线段成比例定理得出DM=EM= DE 十,即可求出tan / ACD^.=,;(2)梯形ABCD 勺面积=△ ABC 的面积+△ ACD 的面积,即可得出答案. 【解答】解:(1 )作DE / AB 交BC 于E ,交AC 于M 如图所示: •/ AB 丄 AC, DE// AB, ••• DEL AC, •/ AD=CD20元,该 2000 =1400x x+20 X 2,••• AM=CM•/ AD// BC, DE// AB,•四边形ABED是平行四边形,• DE=AB=3在Rt △ ABC中, AC= 1 2 1 L「= =4,• AM=CM=2•/ AD// BC,• DM EM=AM CM=1 1 , • DM=EM= DE=.:,DM 3_• tan / ACD="=三=;2(2)梯形ABCD的面积=△ ABC的面积+△ ACD的面积=-X 3X 4+,:X 4X - =9.【点评】本题考查了梯形的性质、等腰三角形的性质、勾股定理、平行线的性质、平行线分线段成比例定理、梯形和三角形面积的计算等知识;本题综合性强,有一定难度.23.如图1,在Rt△ ABC中,/ ACB=90,点D是边AB的中点,点E在边BC上, AE=BE点M是AE的中点,联结CM点G在线段CM上,作/ GDN M AEB交边BC于N.【分析】(1)如图2中,首先证明四边形DMEN是平行四边形,再证明ME=MD卩可证明.(2)如图1中,取BE的中点F,连接DM DF.只要证明厶DM QA DFN即可.1如图2,当点G和点M重合时,求证:四边形DMEN是菱形;2如图1,当点G和点M C不重合时,求证:DG=DN【考点】LA:菱形的判定与性质.C图2【解答】证明:(1)如图2中,•/ AM=ME AD=DB••• DIM/ BE,•••/ GDN社DNE=180 ,•••/ GDN2 AEB•••/ AEB+Z DNE=180 ,• AE// DN•四边形DMEN H平行四边形,11•/ DM= BE,EM=:AE, AE=BE• DM=EM•四边形DMEN H菱形.(2)如图1中,取BE的中点F,连接DM DF.由(1)可知四边形EMDF是菱形,•Z AEB=Z MDF DM=DF•Z GDN Z AEB•Z MDF Z GDN•Z MDG Z FDNvZ DFN=Z AEB=/ MCE Z GMD Z EMD-Z CME、在Rt△ ACE中,T AM=ME••• CM=M,•••/ MCE2 CEM M EMD•••/ DMG M DFN•△ DMG^ DFN•DG=DN【点评】本题考查菱形的判定和性质、全等三角形的判定和性质、直角三角形斜边中线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.24 .如图,已知抛物线y=ax2+4 (0)与x轴交于点A和点B (2, 0),与y轴交于点C,点D是抛物线在第一象限的点.(1)当厶ABD的面积为4时,①求点D的坐标;②联结OD点M是抛物线上的点,且/ MDO M BOD求点M的坐标;(2)直线BD AD分别与y轴交于点E、F,那么OE+OF勺值是否变化,请说明理由.【考点】HF:二次函数综合题.【分析】(1)先确定出抛物线解析式,①设出点D坐标,用三角形ABD的面积建立方程即可得出点D坐标;②分点M在OD上方,禾I」用内错角相等,两直线平行,即可得出点M的纵坐标,即可得出M的坐标, 带你M在OD下方时,求出直线DG的解析式,和抛物线解析式联立求出直线和抛物线的交点即可判断不存在;(2)设出点D的坐标,利用平行线分线段成比例定理表示出OE OF求和即可得出结论.【解答】解:(1 )•••抛物线y=ax2+4 (0)与x轴交于点A和点B (2,0),• A (- 2,0),4a+4=0,/• a=— 1, AB=4,•••抛物线的解析式为 y=- X 3+4, ① 设 D ( m — m+4), •••△ ABD 的面积为4, 1 24= x 4 (— m+4) • m=± ,•••点D 在第一象限, • m=, • Dr _, 2),② 如图1,点M 在OD 上方时, •••/ MDO M BOD • DIM/ AB, • M(— ,7, 2),当M 在OD 下方时, 设DM 交X 轴于G,设G (n , 0), • OG=n•••D(「,2),•DG = -rbU•••/ MDO M BOD • OG=DG •一 (i)•直线DG 的解析式为y= — 2 ' X +6①, •••抛物线的解析式为 y=- X 2+4②,联立①②得,x=「,y=2,此时交点刚好是 D 点, 所以在OD 下方不存在点M3 OE+OF 勺值不发生变化,…n=3^2 3^2~T 0),理由:如图2,过点D作DH L AB于H,••• OF// DH.OF OA•r :-■,设 D (b , - b2+4),• AH=b+2 DH=- b2+4 , •/ OA=2.OF 二2…:-i 」i-i ,• OF= : "「b+2同理:OE=2(2+b),• OE+OF=2(2 - b) +2 (2+b) =8.【点评】此题是二次函数综合题,主要考查了待定系数法,平行线的判定,平行线分线段成比例定理,解(1)的关键是求出抛物线解析式,难点是分情况求出点M的坐标,解(2)的关键是作出辅助线.25.如图,已知△ ABC中,AB=AC=5 BC=6点O是边BC上的动点,以点O为圆心,OB为半径作圆O,交AB边于点D,过点D作/ ODP2 B,交边AC于点P,交圆O与点E.设OB=x(1)当点P与点C重合时,求PD的长;=2(2-b),(2) 设AP- EP=y,求y关于x的解析式及定义域;(3) 联结0P当0P丄0D时,试判断以点P为圆心,PC为半径的圆P与圆0的位置关系.图I•/ AB=AC=5 AH丄BC, ••• BH=CH=3 AH=4,1 1•/ - ?BC?AH= ?AB?CG24 -CG 『• CG= :, AG= ' =「,3--cos / B= I ,7cos /BAC=L:-,如图2中,当点P与C重合时,【考点】MR圆的综合题.【分析】(1)如图1中,首先求出cos/B, cos / A,如图2中,当点P与C重合时,只要证明PA=PD 即可;(2)如图2中,作CGL AB于G OH丄BD于H.分两种情形①当丄丄w x<625」土命亠一「625■:时,如图4中.②当<X V :时,如图5中,作PGL AB于G.(3)如图6PC 3中,连接OP•根据cos / C=cos Z 話,列出方程,求出两圆的半径,圆心距即可判断.【解答】解:(1)如图1中,作AH丄BC于H, CGL AB于G•••/ B=Z ODB M ACB•••/ ADO=/ B+Z BOD=/ CDO y ADR / ODP M B, •••/ ADP=Z BOD Z BAC• PA=PD=5(2)如图2中,作CGL AB于G OH L BD于H.14•/ AD=2AG= -,6•/ BD=2BH=2OB?coS B=-x ,6 14x+ =5,11• x=,G•/ OB=OD根据对称性可知,B、E 关于直线0D 对称, DB=DE=AE= x ,5当点D 与A 重合时;-x=5 ,25…x=625 234 6••• y 「x ,解得x=6257 256时,如图4中,■/ y=PA- PE=PD- PE=DE=BD=x ,625 25当…:v X V .,时,如图5中,作PGLAB于G.PC 3_• • cos / C=cos / B= = i ,25••• AP=AO cos / A=-- y=AP- EP= . (5 6 6 25 6 x )-[Y - : (5 - x )]=192125''x+ .,综上所述, J普峠%严) 黔W 务)2346(3)如图6中,连接0P.35 * 75 “ 25 ••• x「”,PA”,0P「,25 35 75---- <r+■ < , •••以点P为圆心,PC为半径的圆P与圆0的位置关系是相交.【点评】本题考查圆综合题、锐角三角函数、等腰三角形的判定和性质等知识,解题的关键是寻找特殊点解决问题,学会构建方程的解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

2018届中考数学二模试卷(带答案) (18)

2018届中考数学二模试卷(带答案)  (18)

2018年中考数学二模试卷一、.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分1.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b62.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=33.在实数﹣,0,,,,中,无理数有()A.1个B.2个C.3个D.4个4.如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°5.如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.6.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D.20157.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是内切圆,E,F,D分别为切点,则tan∠OBD=()A.B.C.D.8.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.49.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是()A.B.C.D.10.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c11.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.B. C. D.712.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.因式分解:x2﹣2xy+y2=.14.将三角板(不是等腰的)顶点放置在直线AB上的O点处,使AB∥CD,则∠2的余弦值是.15.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为.16.方程x2﹣2x﹣1=0的解是.17.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.18.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.三、选修题、本小题满分6分,请在下列两个小题中,任选其一完成即可19.(1)解方程组:(2)解不等式组:.四、解答题:本大题共7个小题,满分54分.解答时请写出必要的演推过程.20.计算﹣2sin45°+(﹣2)﹣3+()0.21.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(2007•台州)如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)23.海丰塔是无棣灿烂文化的象征(如图①),喜爱数学实践活动的小伟查资料得知:海丰塔,史称唐塔,原名大觉寺塔,始建于唐贞观十三年(公元639年),碑记为“尉迟敬德监建”,距今已1300多年,被誉为冀鲁三胜之一.小伟决定用自己所学习的知识测量海丰塔的高度.如图②,他利用测角仪站在B处测得海丰塔最高点P的仰角为45°,又前进了18米到达A处,在A处测得P的仰角为60°.请你帮助小伟算算海丰塔的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).24.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.25.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,点M为圆心,A点坐标为(﹣2,0),B点坐标为(4,0),D点的坐标为(0,﹣4).(1)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(2)请你求出“蛋圆”抛物线部分的解析式,并写出自变量x的取值范围.(3)你能求出经过点D的“蛋圆”切线的解析式吗?能,请写出过程,不能,请说明理由.参考答案与试题解析一、.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分1.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b6【考点】幂的乘方与积的乘方.【分析】根据积的乘方的性质进行计算,然后直接选取答案即可.【解答】解:(ab2)3=a3•(b2)3=a3b6.故选D.【点评】本题考查积的乘方,把积中的每一个因式分别乘方,再把所得的幂相乘.2.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=3【考点】绝对值.【分析】根据绝对值的意义选择.【解答】解:A中|﹣3|=3,正确;B中﹣|3|=﹣3,正确;C中|﹣3|=|3|=3,正确;D中﹣|﹣3|=﹣3,不成立.故选D.【点评】本题考查绝对值的化简:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.在实数﹣,0,,,,中,无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的三种形式求解.【解答】解:=3,=﹣2,无理数有:,,共2个.故选B.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.4.如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°【考点】圆周角定理.【专题】压轴题.【分析】先根据邻补角的定义求出∠BOC,再利用圆周角定理求解.【解答】解:∵∠AOC=130°,∴∠BOC=180°﹣∠AOC=180°﹣130°=50°,∴∠D=×50°=25°.故选B.【点评】本题利用了圆周角定理和邻补角的概念求解.5.如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层中间有1个正方形.故选C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D.2015【考点】抛物线与x轴的交点.【分析】把x=m代入方程x2﹣x﹣1=0求得m2﹣m=1,然后将其整体代入代数式m2﹣m+2014,并求值.【解答】解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,解得m2﹣m=1.∴m2﹣m+2014=1+2014=2015.故选:D.【点评】本题考查了抛物线与x轴的交点.解题时,注意“整体代入”数学思想的应用,减少了计算量.7.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是内切圆,E,F,D分别为切点,则tan∠OBD=()A.B.C.D.【考点】三角形的内切圆与内心;切线长定理.【专题】压轴题.【分析】首先根据切线的性质和切线长定理证得四边形OECD是正方形,那么AC+BC﹣AB即为2R(⊙O 的半径R)的值,由此可得到OD、CD的值,进而可在Rt△OBD中求出∠OBD的正切值.【解答】解:∵BC、AC、AB都是⊙O的切线,∴CD=CE、AE=AF、BF=BD,且OD⊥BC、OE⊥AC;易证得四边形OECD是矩形,由OE=OD可证得四边形OECD是正方形;设OD=OE=CD=R,则:AC+BC﹣AB=AE+R+BD+R﹣AF﹣BF=2R,即R=(AC+BC﹣AB)=1,∴BD=BC﹣CD=3﹣1=2;在Rt△OBD中,tan∠OBD==.故选C.【点评】此题考查的是三角形的外切圆,切线长定理以及锐角三角形函数的定义,难度适中.8.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.4【考点】平行四边形的性质;三角形中位线定理.【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OC=OA,又由点E 是BC边的中点,根据三角形中位线的性质,即可求得AB的长.【解答】解:∵四边形ABCD是平行四边形,∴OC=OA,∵点E是BC边的中点,即BE=CE,∴OE=AB,∵OE=1,∴AB=2.故选B.【点评】此题考查了平行四边形的性质与三角形中位线的性质.注意平行四边形的对角线互相平分,三角形的中位线平行于三角形的第三边且等于第三边的一半.9.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是()A.B.C.D.【考点】概率公式.【分析】让不含辣椒的盒饭数除以总盒饭数即为从中任选一盒,不含辣椒的概率.【解答】解:配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒,全部是80盒,不含辣椒的有70盒,所以从中任选一盒,不含辣椒的概率是=.故选A .【点评】本题比较容易,考查等可能条件下的概率.用到的知识点为:概率=所求情况数与总情况数之比.10.定义:如果一元二次方程ax 2+bx+c=0(a ≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax 2+bx+c=0(a ≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( ) A .a=c B .a=b C .b=c D .a=b=c 【考点】根的判别式. 【专题】压轴题;新定义.【分析】因为方程有两个相等的实数根,所以根的判别式△=b 2﹣4ac=0,又a+b+c=0,即b=﹣a ﹣c ,代入b 2﹣4ac=0得(﹣a ﹣c )2﹣4ac=0,化简即可得到a 与c 的关系.【解答】解:∵一元二次方程ax 2+bx+c=0(a ≠0)有两个相等的实数根, ∴△=b 2﹣4ac=0,又a+b+c=0,即b=﹣a ﹣c ,代入b 2﹣4ac=0得(﹣a ﹣c )2﹣4ac=0,即(a+c )2﹣4ac=a 2+2ac+c 2﹣4ac=a 2﹣2ac+c 2=(a ﹣c )2=0, ∴a=c . 故选A【点评】一元二次方程根的情况与判别式△的关系: (1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根; (3)△<0⇔方程没有实数根.11.如图,已知△ABC 中,∠ABC=90°,AB=BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,则AC 的长是( )A.B. C. D.7【考点】勾股定理;全等三角形的性质;全等三角形的判定.【专题】计算题;压轴题.【分析】过A、C点作l3的垂线构造出直角三角形,根据三角形全等和勾股定理求出BC的长,再利用勾股定理即可求出.【解答】解:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,,∴△ABD≌△BCE∴BE=AD=3在Rt△BCE中,根据勾股定理,得BC==,在Rt△ABC中,根据勾股定理,得AC=×=2;故选A.【点评】此题要作出平行线间的距离,构造直角三角形.运用全等三角形的判定和性质以及勾股定理进行计算.12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③【考点】二次函数图象与系数的关系.【专题】计算题;压轴题.【分析】①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.【解答】解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x=﹣=1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,∴=﹣3,则a=﹣.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.故③正确;④根据题意知,a=﹣,﹣=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,∴≤c≤4,即≤n≤4.故④错误.综上所述,正确的说法有①③.故选D.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.因式分解:x2﹣2xy+y2=(x﹣y)2.【考点】因式分解-运用公式法.【专题】计算题.【分析】根据完全平方公式直接解答即可.【解答】解:原式=(x﹣y)2.故答案为(x﹣y)2.【点评】本题考查了因式分解﹣﹣运用公式法,熟悉因式分解是解题的关键.14.将三角板(不是等腰的)顶点放置在直线AB上的O点处,使AB∥CD,则∠2的余弦值是.【考点】特殊角的三角函数值;平行线的性质.【专题】探究型.【分析】先根据平行线的性质及直角三角板的特点求出∠2的度数,再根据特殊角的三角函数值进行解答即可.【解答】解:由三角板的特点可知,∠D=60°,∵AB∥CD,∴∠D=∠2=60°,∴cos∠2=cos60°=.故答案为:.【点评】本题考查的是直角三角板的特点及平行线的性质、特殊角的三角函数值,熟记特殊角的三角函数值是解答此题的关键.15.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为45°.【考点】线段垂直平分线的性质.【专题】计算题.【分析】首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.【解答】解:∵AB=AC,∠A=30°(已知)∴∠ABC=∠ACB==75°∵DE垂直平分AC,∴AD=CD;∴∠A=∠ACD=30°,∴∠BCD=∠ACB﹣∠ACD,∴∠BCD=45°;故答案为:45°.【点评】本题主要考查了线段垂直平分线的性质以及等腰三角形的性质,难度一般.16.方程x2﹣2x﹣1=0的解是x1=1+,x2=1﹣.【考点】解一元二次方程-配方法.【分析】首先把常数项2移项后,然后在左右两边同时加上一次项系数﹣2的一半的平方,然后开方即可求得答案.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴x2﹣2x+1=2,∴(x﹣1)2=2,∴x=1±,∴原方程的解为:x1=1+,x2=1﹣.故答案为:x1=1+,x2=1﹣.【点评】此题考查了配方法解一元二次方程.解题时注意配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.17.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是76.【考点】勾股定理;正方形的性质.【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【解答】解:∵在Rt△AEB中,∠AEB=90°,AE=6,BE=8,∴由勾股定理得:AB==10,∴正方形的面积是10×10=100,∵△AEB的面积是AE×BE=×6×8=24,∴阴影部分的面积是100﹣24=76,故答案是:76.【点评】本题考查了正方形的性质,三角形的面积,勾股定理的应用,主要考查学生的计算能力和推理能力.18.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.【考点】规律型:数字的变化类.【分析】根据分数的分子是2n,分母是2n+3,进而得出答案即可.【解答】解:∵分数的分子分别是:2 2=4,23=8,24=16,…分数的分母分别是:2 2+3=7,23+3=11,24+3=19,…∴第n个数是.故答案为:.【点评】此题主要考查了数字变化规律,根据已知得出分子与分母的变化规律是解题关键.三、选修题、本小题满分6分,请在下列两个小题中,任选其一完成即可19.(1)解方程组:(2)解不等式组:.【考点】解二元一次方程组;解一元一次不等式组.【专题】计算题.【分析】(1)方程组利用加减消元法求出解即可;(2)求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)①+②得:4x=20,即x=5,把x=5代入①得:y=1,则方程组的解为;(2),由①得:x<﹣1,由②得:x≤2,则不等式组的解集为x<﹣1.【点评】此题考查了解二元一次方程组,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.四、解答题:本大题共7个小题,满分54分.解答时请写出必要的演推过程.20.计算﹣2sin45°+(﹣2)﹣3+()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用二次根式性质化简,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=﹣1﹣2×﹣+1=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(2)易知选择音乐类的有4人,选择美术类的有3人.记选择音乐类的4人分别是A1,A2,A,小丁;选择美术类的3人分别是B1,B2,小李.可画出树状图如下:由树状图可知共有12种选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是或列表:由表可知共有12中选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是;(3)由(1)可知问卷中最喜欢体育运动的学生占40%,由样本估计总体得得500×40%=200名.所以该年级中最喜欢体育运动的学生约有200名.【点评】本题考查的是条形统计图和扇形统计图及用样本估计总体等知识的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)【考点】切线的判定;扇形面积的计算.【专题】几何综合题.【分析】(1)由已知可证得OC⊥CD,OC为圆的半径所以直线CD与⊙O相切;(2)根据已知可求得OC,CD的长,则利用S阴影=S△COD﹣S扇形OCB求得阴影部分的面积.【解答】解:(1)直线CD 与⊙O 相切, ∵在⊙O 中,∠COB=2∠CAB=2×30°=60°, 又∵OB=OC , ∴△OBC 是正三角形, ∴∠OCB=60°, 又∵∠BCD=30°, ∴∠OCD=60°+30°=90°, ∴OC ⊥CD , 又∵OC 是半径, ∴直线CD 与⊙O 相切.(2)由(1)得△OCD 是Rt △,∠COB=60°, ∵OC=1, ∴CD=,∴S △COD =OC •CD=,又∵S 扇形OCB =,∴S 阴影=S △COD ﹣S 扇形OCB =.【点评】此题主要考查学生对切线的性质及扇形的面积公式的理解及运用.23.海丰塔是无棣灿烂文化的象征(如图①),喜爱数学实践活动的小伟查资料得知:海丰塔,史称唐塔,原名大觉寺塔,始建于唐贞观十三年(公元639年),碑记为“尉迟敬德监建”,距今已1300多年,被誉为冀鲁三胜之一.小伟决定用自己所学习的知识测量海丰塔的高度.如图②,他利用测角仪站在B 处测得海丰塔最高点P 的仰角为45°,又前进了18米到达A 处,在A 处测得P 的仰角为60°.请你帮助小伟算算海丰塔的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).【考点】解直角三角形的应用-仰角俯角问题.【分析】设海丰塔的高OP=x,在Rt△POB中表示出OB,在Rt△POA中表示出OA,再由AB=18米,可得出方程,解出即可得出答案.【解答】解:设海丰塔的高OP=x,在Rt△POB中,∠OBP=45°,则OB=OP=x,在Rt△POA中,∠OAP=60°,则OA==x,由题意得,AB=OB﹣OA=18m,即x﹣x=18,解得:x=27+9,故海丰塔的高度OP=27+9≈42米.答:海丰塔的高度约为42米.【点评】本题考查了解直角三角形的应用,要求学生能借助仰角构造直角三角形并解直角三角形,注意方程思想的运用.24.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质;相似三角形的判定与性质.【专题】证明题.【分析】(1)利用两角对应相等可证出△ABE∽△ADF;(2)利用(1)的结论,先证出△ABG≌△ADH,得到AB=AD,那么平行四边形ABCD是菱形.【解答】证明:(1)∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90度.∵四边形ABCD是平行四边形,∴∠ABE=∠ADF.∴△ABE∽△ADF.(2)∵△ABE∽△ADF,∴∠BAG=∠DAH.∵AG=AH,∴∠AGH=∠AHG,从而∠AGB=∠AHD,∴△ABG≌△ADH,∴AB=AD.∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.【点评】本题利用了相似三角形的判定和性质,全等三角形的判定和性质以及菱形的判定.25.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,点M为圆心,A点坐标为(﹣2,0),B点坐标为(4,0),D点的坐标为(0,﹣4).(1)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(2)请你求出“蛋圆”抛物线部分的解析式,并写出自变量x的取值范围.(3)你能求出经过点D的“蛋圆”切线的解析式吗?能,请写出过程,不能,请说明理由.【考点】二次函数综合题.【分析】(1)易得点A、B的坐标,用交点式设出二次函数解析式,把D坐标代入即可.自变量的取值范围是点A、B之间的数.(2)先设出切线与x轴交于点E.利用直角三角形相应的三角函数求得EM的长,进而求得点E坐标,把C、E坐标代入一次函数解析式即可求得所求的解析式.(3)设出所求函数解析式,让它与二次函数组成方程组,消除y,让跟的判别式为0,即可求得一次函数的比例系数k.【解答】解:(1)如图,设经过点C“蛋圆”的切线CE交x轴于点E,连结CM,∴CM⊥CE,又∵A点坐标为(﹣2,0),B点坐标为(4,0),AB为半圆的直径,点M为圆心,∴M点的坐标为(1,0),∴AO=2,BO=4,OM=1.又因为CO⊥x轴,所以CO2=AO•OB,解得:CO=2,又∵CM⊥CE,CO⊥x轴,∴CO2=EO•OM,解之得:EO=8,∴E点的坐标是(﹣8,0),∴切线CE的解析式为:y=x+2;(2)根据题意可得:A(﹣2,0),B(4,0);则设抛物线的解析式为y=a(x+2)(x﹣4)(a≠0),又∵点D(0,﹣4)在抛物线上,∴a=;∴y=x2﹣x﹣4自变量取值范围:﹣2≤x≤4;(3)设过点D(0,﹣4),“蛋圆”切线的解析式为:y=kx﹣4(k≠0),由题意可知方程组只有一组解.即kx﹣4=x2﹣x﹣4有两个相等实根,∴k=﹣1,∴过点D“蛋圆”切线的解析式y=﹣x﹣4;【点评】本题以半圆与抛物线合成的封闭图形“蛋圆”为背景,考查一次函数、二次函数有关性质,解题过程中涉及解一元一次方程、一元二次方程、方程组相关知识与技能,是一道综合性很强的试题.。

上海市徐汇区中考二模数学试题 配套同步检测题

上海市徐汇区中考二模数学试题  配套同步检测题

2018年上海市徐汇区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(4分)下列计算正确的是()A.a2•a3=a6B.a+a=a2C.(a2)3=a6D.a8÷a2=a4考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂相乘,底数不变指数相加;合并同类项法则;幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相减;对各选项分析判断后利用排除法求解.解答:解:A、a2•a3=a2+3=a5,故本选项错误;B、a+a=2a,故本选项错误;C、(a2)3=a2×3=a6,故本选项正确;D、a8÷a2=a8﹣2=a6,故本选项错误.故选C.点评:本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方的性质,熟练掌握运算性质,理清指数的变化是解题的关键.2.(4分)一次函数y=2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数图象与系数的关系.分析:根据k,b的取值范围来确定图象在坐标平面内的位置.解答:解:∵一次函数y=2x+1中的2>0,∴该直线经过第一、三象限.又∵一次函数y=2x+1中的1>0,∴该直线与y轴交于正半轴,∴该直线经过第一、二、三象限,即不经过第四象限.故选:D.点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.3.(4分)如图,AF是∠BAC的平分线,EF∥AC交AB于点E.若∠1=25°,则∠BAF的度数为()A.15°B.50°C.25°D.12.5°考点:平行线的性质;角平分线的定义.分析:根据两直线平行,同位角相等求出∠2,再根据角平分线的定义解答.解答:解:∵EF∥AC,∠1=25°,∴∠2=∠1=25°,∵AF是∠BAC的平分线,∴∠BAF=∠2=25°.故选C.点评:本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质并准确识图是解题的关键.4.(4分)在△ABC中,∠A、∠B都是锐角,且sinA=cosB=,那么△ABC的形状是()A.钝角三角形B.直角三角形C.锐角三角形D.无法确定考点:特殊角的三角函数值.分析:根据∠A、∠B都是锐角,且sinA=cosB=,可得出∠A和∠B的度数,继而可得出三角形ABC的形状.解答:解:在△ABC中,∵∠A、∠B都是锐角,且sinA=cosB=,∴∠A=30°,∠B=60°,则∠A=180°﹣30°﹣60°=90°.故△ABC为直角三角形.故选B.点评:本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.5.(4分)“大衣哥”朱之文是从“我是大明星”这个舞台走出来的民间艺人.受此影响,卖豆腐的老张也来参加节目的海选,当天共有15位选手参加决逐争取8个晋级名额.已知他们的分数互不相同,老张要判断自己是否能够晋级,只要知道下列15名选手成绩统计量中的()A.众数B.方差C.中位数D.平均数考点:统计量的选择.分析:由于比赛设置了8个获奖名额,共有15名选手参加,故应根据中位数的意义分析.解答:解:因为6位获奖者的分数肯定是15名参赛选手中最高的,而且15个不同的分数按从小到大排序后,中位数及中位数之后的共有8个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选C.点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.6.(4分)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,联结BC,若∠A=36°,则∠C 等于()A.36°B.54°C.60°D.27°考点:切线的性质.分析:根据题目条件易求∠BOA,根据圆周角定理求出∠C=∠BOA,即可求出答案.解答:∵AB与⊙O相切于点B,∴∠ABO=90°,∵∠A=36°,∴∠BOA=54°,∴由圆周角定理得:∠C=∠BOA=27°,故选D.点评:本题考查了三角形内角和定理,切线的性质,圆周角定理的应用,关键是求出∠BOA度数.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.(4分)函数y=的定义域是x≥﹣1.考点:函数自变量的取值范围.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.点评:本题考查的知识点为:二次根式的被开方数是非负数.8.(4分)分解因式:a3﹣ab2=a(a+b)(a﹣b).考点:提公因式法与公式法的综合运用.专题:因式分解.分析:观察原式a3﹣ab2,找到公因式a,提出公因式后发现a2﹣b2是平方差公式,利用平方差公式继续分解可得.解答:解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).点评:本题是一道典型的中考题型的因式分解:先提取公因式,然后再应用一次公式.本题考点:因式分解(提取公因式法、应用公式法).9.(4分)如果反比例函数的图象经过点(1,﹣2),那么这个函数的解析式是y=﹣.考点:待定系数法求反比例函数解析式.分析:设反比例函数解析式为(k≠0),把点(1,﹣2)代入函数解析式(k≠0),即可求得k的值.解答:解:设反比例函数的解析式为(k≠0).由图象可知,函数经过点(1,﹣2),∴﹣2=,得k=﹣2.∴反比例函数解析式为y=﹣.故答案为:y=﹣.点评:此题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.10.(4分)2014年政府报告中安排财政赤字约为13500亿元,13500亿用科学记数法表示为 1.35×104亿.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.解答:解:将13500用科学记数法表示为:1.35×104.故答案为:1.35×104.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.11.(4分)不等式组的解集是<x≤2.考点:解一元一次不等式组.专题:计算题.分析:分别求出不等式组中两不等式的解集,找出解集的公共部分即可确定出不等式组的解集.解答:解:,由①得:x>;由②得:x≤2,则不等式组的解集为<x≤2.故答案为:点评:此题考查了解一元一次不等式组,熟练掌握不等式组取解集的方法是解本题的关键.12.(4分)若关于x的方程ax2﹣4x+3=0有两个相等的实数根,则常数a的值是.考点:根的判别式.分析:根据判别式的意义得到△=(﹣4)2﹣4a×3=0,然后求解即可.解答:解:根据题意得△=(﹣4)2﹣4a×3=0,解得a=.故答案为.点评:本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.13.(4分)掷一个材质均匀的骰子,向上一面的点数是3的倍数的概率是.考点:概率公式.分析:由掷一个材质均匀的骰子,共有6种等可能的结果,其中向上一面的点数是3的倍数的有,3和6;直接利用概率公式求解即可求得答案.解答:解:∵掷一个材质均匀的骰子,共有6种等可能的结果,其中向上一面的点数是3的倍数的有,3和6;∴掷一个材质均匀的骰子,向上一面的点数是3的倍数的概率是:=.故答案为:.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.14.(4分)如图,在△ABC中,D是BC的中点,设=,=,则=﹣.考点:*平面向量.分析:由=,=,利用三角形法则可求得,又由在△ABC中,D是BC的中点,即可求得答案.解答:解:∵=,=,∴=﹣=﹣,∵在△ABC中,D是BC的中点,∴==(﹣)=﹣.故答案为:﹣.点评:此题考查了平面向量的知识.此题难度不大,注意掌握三角形法则的应用,注意掌握数形结合思想的应用.15.(4分)解放军某部承担一段长1500米的清除公路冰雪任务.为尽快清除冰雪,该部官兵每小时比原计划多清除20米,结果提前24小时完成任务.若设原计划每小时清除公路冰雪x米,则可列出方程﹣=24.考点:由实际问题抽象出分式方程.分析:设原计划每小时清除公路冰雪x米,则实际每小时清除(x+20)米,根据提前24小时完成任务,列出方程即可.解答:解:设原计划每小时清除公路冰雪x米,则实际每小时清除(x+20)米,由题意得,﹣=24.故答案为:﹣=24.点评:本题考查了由实际问题抽象出分式方程,解答本题的关键是设出未知数,找出合适的等量关系列方程.16.(4分)如图,△ABC中,AC、BC上的中线交于点O,且BE⊥AD.若BD=5,BO=4,则AO 的长为6.考点:三角形的重心;勾股定理.分析:先根据勾股定理得到OD的长,再根据重心的性质即可得到AO的长.解答:解:∵BE⊥AD,BD=5,BO=4,∴OD==3,∵AC、BC上的中线交于点O,∴AO=2OD=6.故答案为:6.点评:此题主要考查了勾股定理的应用以及重心的性质,根据已知得出各边之间的关系进而求出是解题关键.17.(4分)如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣2x﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为3+.考点:二次函数综合题.分析:连接AC,BC,有抛物线的解析式可求出A,B,C的坐标,进而求出AO,BO,DO的长,在直角三角形ACB中,利用射影定理可求出CO的长,进而可求出CD的长.解答:解:连接AC,BC,∵抛物线的解析式为y=x2﹣2x﹣3,∴点D的坐标为(0,﹣3),∴OD的长为3,设y=0,则0=x2﹣2x﹣3,解得:x=﹣1或3,∴A(﹣1,0),B(3,0)∴AO=1,BO=3,∵AB为半圆的直径,∴∠ACB=90°,∵CO⊥AB,∴CO2=AO•BO=3,∴CO=,∴CD=CO+OD=3+,故答案为:3+.点评:本题是二次函数综合题型,主要考查了抛物线与坐标轴的交点问题、解一元二次方程、圆周角定理、射影定理,读懂题目信息,理解“果圆”的定义是解题的关键.18.(4分)如图,已知△ABC中,∠B=90°,BC=3,AB=4,D是边AB上一点,DE∥BC交AC于点E,将△ADE沿DE翻折得到△A′DE,若△A′EC是直角三角形,则AD长为.考点:翻折变换(折叠问题).分析:先根据勾股定理得到AC=5,再根据平行线分线段成比例得到AD:AE=AB:AC=4:5,设AD=x,则AE=A′E=x,EC=5﹣x,A′B=2x﹣4,在Rt△A′BC中,根据勾股定理得到A′C,再根据△A′EC是直角三角形,根据勾股定理得到关于x的方程,解方程即可求解.解答:解:在△ABC中,∠B=90°,BC=3,AB=4,∴AC=5,∵DE∥BC,∴AD:AB=AE:AC,即AD:AE=AB:AC=4:5,设AD=x,则AE=A′E=x,EC=5﹣x,A′B=2x﹣4,在Rt△A′BC中,A′C=,∵△A′EC是直角三角形,∴()2+(5﹣x)2=(x)2,解得x1=4(不合题意舍去),x2=.故AD长为.故答案为:.点评:此题主要考查了图形的翻折变换,以及勾股定理的应用,关键是掌握翻折后哪些线段是对应相等的.三、解答题:(本大题共7题,满分78分)19.(10分)计算:÷+(2﹣)0﹣(﹣1)2014+|﹣2|+(﹣)﹣1.考点:实数的运算;零指数幂;负整数指数幂.分析:分别进行零指数幂、绝对值的化简、负整数指数幂等运算,然后合并.解答:解:原式=2+1﹣1+2﹣﹣2=2﹣.点评:本题考查了实数的运算,涉及了零指数幂、绝对值的化简、负整数指数幂等知识,属于基础题.20.(10分)先化简,再求值:(1+)÷(x﹣),其中x=.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加减法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.解答:解:原式=÷=•=,当x=时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.(10分)如图,在△ABC中,AB=AC=10,sinC=,点D是BC上一点,且DC=AC.(1)求BD的长;(2)求tan∠BAD.考点:解直角三角形.分析:(1)过点A作AE⊥BC于点E,求出CE,BE,再由CD=AC,可求出BD的长度.(2)过点D作DF⊥AB于点F,在Rt△BDF中求出DF,BF,继而可得AF,从而可求tan∠BAD.解答:解:(1)过点A作AE⊥BC于点E,∵AB=AC,∴BE=CE,在Rt△ACE中,AC=10,sin∠C=,∴AE=6,∴CE==8,∴CD=2CE=16,∴BD=BC﹣BD=BC﹣AC=6.(2)过点D作DF⊥AB于点F,在Rt△BDF中,BD=6,sin∠B=sin∠C=,∴DF=,∴BF==,∴AF=AB﹣BF=,∴tan∠BAD==.点评:本题考查了解直角三角形的知识,解答本题的关键是作出辅助线,构造直角三角形,注意熟练掌握锐角三角函数的定义.22.(10分)春季流感爆发,某校为了解全体学生患流感情况,随机抽取部分班级对患流感人数的进行调查,发现被抽查各班级患流感人数只有1名、2名、3名、4名、5名、6名这六种情况,并制成如下两幅不完整的统计图:(1)抽查了20个班级,并将该条形统计图(图2)补充完整;(2)扇形图(图1)中患流感人数为4名所在扇形的圆心角的度数为72°;(3)若该校有45个班级,请估计该校此次患流感的人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据患流感人数有6名的班级有4个,占20%,可求得抽查的班级数,再减去其它班级数,即可补全统计图;(2)用患流感人数为4名的班级4个除以抽查的班级数,再乘以360°即可;(3)先求出该校平均每班患流感的人数,再利用样本估计总体的思想,用这个平均数乘以45即可.解答:解:(1)抽查的班级个数为4÷20%=20(个),患流感人数只有2名的班级个数为:20﹣(2+3+4+5+4)=2(个),补图如下:(2)×360°=72°;(3)∵该校平均每班患流感的人数为:(1×2+2×2+3×3+4×4+5×5+6×4)÷20=4,∴若该校有45个班级,则此次患流感的人数为:4×45=180.点评:本题考查了条形统计图和扇形统计图以及利用样本估计总体的思想,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(12分)已知:如图,在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,点E是BC的中点、F是CD上的点,联结AE、EF、AC.(1)求证:AO•OF=OC•OE;(2)若点F是DC的中点,联结BD交AE于点G,求证:四边形EFDG是菱形.考点:相似三角形的判定与性质;菱形的判定;梯形.分析:(1)由BC=2AD,点E是BC的中点,可得AD=CE,又由AD∥BC,可得四边形AECD 是平行四边形,即可得AE∥CD,继而证得△AOE∽△COF,即可判定AO•OF=OC•OE;(2)易得EF是△BCD的中位线,则可判定四边形EFDG是平行四边形,又由直角三角形斜边上的中线的性质,证得DG=EG,继而证得四边形EFDG是菱形.解答:证明:(1)∵BC=2AD,点E是BC的中点,∴AD=EC=BC,∵在梯形ABCD中,AD∥BC,∴四边形AECD是平行四边形,∴AE∥CD,∴△AOE∽△COF,∴OA:OC=OE:OF,∴AO•OF=OC•OE;(2)∵E是BC的中点,F是CD的中点,∴EF是△BCD的中位线,∴EF∥BD,∵AE∥CD,∴四边形EFDG是平行四边形,∵AD∥BC,∴△ADG∽△EBG,∴DG:BG=AD:EB=AG:EG,∵AD=BE=BC,∴AG=EG,DG=BG,∵∠ABC=90°,∴BG=GE=AE,∴EG=DG,∴四边形EFDG是菱形.点评:此题考查了相似三角形的判定与性质、平行四边形的判定与性质、三角形中位线的性质以及直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.24.(12分)如图,直线y=4x+4与x轴、y轴相交于B、C两点,抛物线y=ax2﹣2ax+c(a≠0)过点B、C,且与x轴另一个交点为A,以OC、OA为边作矩形OADC,CD交抛物线于点G.(1)求抛物线的解析式以及点A的坐标;(2)已知直线x=m交OA于点E,交CD于点F,交AC于点M,交抛物线(CD上方部分)于点P,请用含m的代数式表示PM的长;(3)在(2)的条件下,联结PC,若△PCF和△AEM相似,求m的值.考点:二次函数综合题.分析:(1)根据直线的解析式易求B,C的坐标将,再把其坐标分别代入y=ax2﹣2ax+c,即可求出抛物线的解析式,设y=0,解方程即可求出A的坐标;(2)先根据A、C的坐标,用待定系数法求出直线AC的解析式,进而根据抛物线和直线AC的解析式分别表示出点P、点M的坐标,即可得到PM的长;(3)由于∠PFC和∠AEM都是直角,F和E对应,则若以P、C、F为顶点的三角形和△AEM相似时,分两种情况进行讨论:①△PFC∽△AEM,②△CFP∽△AEM;可分别用含m的代数式表示出AE、EM、CF、PF的长,根据相似三角形对应边的比相等列出比例式,求出m的值.解答:解:(1)∵直线y=4x+4与x轴、y轴相交于B、C两点,∴C坐标为(0,4),设y=0,则x=﹣1,∴B坐标为(﹣1,0),∵抛物线y=ax2﹣2ax+c(a≠0)过点B、C,∴,解得:,∴抛物线的解析式为y=﹣x2+x+4,设y=0,0=﹣x2+x+4,解得:x=﹣1或3,∴A的坐标为:(3,0);(2)设直线AC的解析式为y=kx+b,∵A(3,0),点C(0,4),∴,解得,∴直线AC的解析式为y=﹣x+4.∵点M的横坐标为m,点M在AC上,∴M点的坐标为(m,﹣m+4),∵点P的横坐标为m,点P在抛物线y=﹣x2+x+4上,∴点P的坐标为(m,﹣m2+m+4),∴PM=PE﹣ME=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+4m,即PM=﹣m2+4m(0<m<3);(3)在(2)的条件下,连结PC,在CD上方的抛物线部分存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似.理由如下:由题意,可得AE=3﹣m,EM=﹣m+4,CF=m,PF=﹣m2+m+4﹣4=﹣m2+m.若以P、C、F为顶点的三角形和△AEM相似,分两种情况:①若△PFC∽△AEM,则PF:AE=FC:EM,即(﹣m2+m):(3﹣m)=m:(﹣m+4),∵m≠0且m≠3,∴m=.②若△CFP∽△AEM,则CF:AE=PF:EM,即m:(3﹣m)=(﹣m2+m):(﹣m+4),∵m≠0且m≠3,∴m=1.综上所述,存在这样的点P使△PFC与△AEM相似.此时m的值为或1.点评:此题是二次函数的综合题,其中涉及到运用待定系数法求二次函数、一次函数的解析式,矩形的性质,相似三角形的判定和性质,直角三角形、等腰三角形的判定,难度适中.要注意的是当相似三角形的对应边和对应角不明确时,要分类讨论,以免漏解.25.(14分)如图,已知∠MON两边分别为OM、ON,sin∠O=且OA=5,点D为线段OA上的动点(不与O重合),以A为圆心、AD为半径作⊙A,设OD=x.(1)若⊙A交∠O 的边OM于B、C两点,BC=y,求y关于x的函数解析式,并写出函数的定义域;(2)将⊙A沿直线OM翻折后得到⊙A′.①若⊙A′与直线OA相切,求x的值;②若⊙A′与以D为圆心、DO为半径的⊙D相切,求x的值.考点:圆的综合题.专题:综合题.分析:(1)作AH⊥OM于H,如图1,在Rt△OAH中,根据正弦的定义求出AH=3,根据垂径定理由AH⊥BC得CH=BH=BC=y,由于OD=x,则AD=5﹣x,然后在Rt△ACH中利用勾股定理得到(y)2=(5﹣x)2﹣32,再整理即可得到y与x的函数关系;(2)作A′E⊥OA于E,根据折叠的性质得A′H=AH=3,⊙A′的半径为5﹣x,在Rt△OAH中,利用勾股定理计算出OH=4;由于⊙A′与直线OA相切,根据切线的性质得A′E=5﹣x,再证明Rt△OAH∽Rt△A′AE,利用相似比得到5:6=4:(5﹣x),然后解方程可得到x的值;(3)作A′G⊥OA于G,连结A′D,根据两圆相切的性质得A′D=x+5﹣x=5,再证明Rt△OAH∽Rt△A′AG,利用相似比可计算出AG=,A′G=,则DG=AG﹣AD=x﹣,然后在Rt△A′GD中,根据勾股定理得到()2+(x﹣)2=52,整理得x2﹣x=0,然后解方程即可.解答:解:(1)作AH⊥OM于H,如图1,在Rt△OAH中,OA=5,sin∠AOH==,∴AH=3,∵AH⊥BC,∴CH=BH=BC=y,∵OD=x,∴AD=5﹣x,在Rt△ACH中,AC=5﹣x,AH=3,CH=y,∴(y)2=(5﹣x)2﹣32,∴y=2(0<x<5);(2)作A′E⊥OA于E,如图,∵⊙A沿直线OM翻折后得到⊙A′,∴A′H=AH=3,⊙A′的半径为5﹣x,在Rt△OAH中,OH==4,∵⊙A′与直线OA相切,∴A′E=5﹣x,∵∠HAO=∠EAA′,∴Rt△OAH∽Rt△A′AE,∴OA:AA′=OH:A′E,即5:6=4:(5﹣x),∴x=;(3)作A′G⊥OA于G,连结A′D,如图3,∵⊙A′与以D为圆心、DO为半径的⊙D相切,∴A′D=x+5﹣x=5,∵∠HAO=∠GAA′,∴Rt△OAH∽Rt△A′AG,∴==,即==,∴AG=,A′G=,∴DG=AG﹣AD=﹣(5﹣x)=x﹣,在Rt△A′GD中,∵A′G2+GD2=A′D2,∴()2+(x﹣)2=52,整理得x2﹣x=0,解得x1=0(舍去),x2=,∴x的值为.点评:本题考查了圆的综合题:熟练掌握垂径定理、切线的性质和两圆相切的性质;会运用锐角三角函数、相似比和勾股定理进行几何计算.。

上海市徐汇区2018届九年级下学期第二次模拟数学试卷(含答案)

上海市徐汇区2018届九年级下学期第二次模拟数学试卷(含答案)

2018年上海市徐汇区九年级下学期数学第二次模拟试卷一、选择题1.下列算式的运算结果正确的是()A. m3•m2=m6B. m5÷m3=m2(m≠0)C. (m﹣2)3=m﹣5D. m4﹣m2=m22.直线y=3x+1不经过的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.如果关于x的方程x2﹣x+1=0有实数根,那么k的取值范围是()A. k>0B. k≥0C. k>4D. k≥44.某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是()A. 8、8B. 8、8.5C. 8、9D. 8、105.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于()A. 45°B. 60°C. 120°D. 135°6.下列说法中,正确的个数共有()(1)一个三角形只有一个外接圆;(2)圆既是轴对称图形,又是中心对称图形;(3)在同圆中,相等的圆心角所对的弧相等;(4)三角形的内心到该三角形三个顶点距离相等;A. 1个B. 2个C. 3个D. 4个二.填空题7.函数y=的定义域是________.8.在实数范围内分解因式:x2y﹣2y=__________.9.方程的解是__________.10.不等式组的解集是____________;11.已知点A(a,y1)、B(b,y2)在反比例函数y=的图象上,如果a<b<0,那么y1与y2的大小关系是:y1__y2;12.抛物线y=2x2+4x﹣2的顶点坐标是_______________.13.四张背面完全相同的卡片上分别写有0、、、、四个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,那么抽到有理数的概率为___________.14.在△ABC中,点D在边BC上,且BD:DC=1:2,如果设=,=,那么等于__(结果用、的线性组合表示).15.如图,为了解全校300名男生的身高情况,随机抽取若干男生进行身高测量,将所得数据(精确到1cm)整理画出频数分布直方图(每组数据含最低值,不含最高值),估计该校男生的身高在170cm﹣175cm之间的人数约有_______人.学&科&网...16.已知两圆相切,它们的圆心距为3,一个圆的半径是4,那么另一个圆的半径是_______.17.从三角形(非等腰三角形)一个顶点引出一条射线与对边相交,该顶点与该交点间的线段把这个三角形分割成两个小三角形,如果其中一个小三角形是等腰三角形,另一个与原三角形相似,那么我们把这条线段叫做这个三角形的完美分割线,如图,在△ABC中,DB=1,BC=2,CD是△ABC的完美分割线,且△ACD 是以CD为底边的等腰三角形,则CD的长为_________.18.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,点P、Q分别在边BC、AC上,PQ∥AB,把△PCQ 绕点P旋转得到△PDE(点C、Q分别与点D、E对应),点D落在线段PQ上,若AD平分∠BAC,则CP 的长为_________.三.简答题19.计算:﹣()﹣1+﹣(π﹣3.14)0+|2﹣4|.20.解分式方程:+1=.21.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,AD平分∠BAC交BC于点D.(1)求tan∠DAB;(2)若⊙O过A、D两点,且点O在边AB上,用尺规作图的方法确定点O的位置并求出的⊙O半径.(保留作图轨迹,不写作法)22.“五一”期间小明和小丽相约到苏州乐园游玩,小丽乘私家车从上海出发30分钟后,小明乘坐火车从上海出发,先到苏州北站,然后再乘出租车去游乐园(换乘时间忽略不计),两人恰好同时到达苏州乐园,他们离上海的距离y(千米)与乘车时间t(小时)的关系如图所示,请结合图象信息解决下面问题:(1)本次火车的平均速度_________千米/小时?(2)当小明到达苏州北站时,小丽离苏州乐园的距离还有多少千米?23.在梯形ABCD中,AD∥BC,AB=CD,BD=BC,点E在对角线BD上,且∠DCE=∠DBC.(1)求证:AD=BE;(2)延长CE交AB于点F,如果CF⊥AB,求证:4EF•FC=DE•BD.24.如图,已知直线y=﹣x+2与x轴、y轴分别交于点B、C,抛物线y=﹣+bx+c过点B、C,且与x轴交于另一个点A.(1)求该抛物线的表达式;(2)点M是线段BC上一点,过点M作直线l∥y轴交该抛物线于点N,当四边形OMNC是平行四边形时,求它的面积;(3)联结AC,设点D是该抛物线上的一点,且满足∠DBA=∠CAO,求点D的坐标.25.已知四边形ABCD是边长为10的菱形,对角线AC、BD相交于点E,过点C作CF∥DB交AB延长线于点F,联结EF交BC于点H.(1)如图1,当EF⊥BC时,求AE的长;(2)如图2,以EF为直径作⊙O,⊙O经过点C交边CD于点G(点C、G不重合),设AE的长为x,EH 的长为y;①求y关于x的函数关系式,并写出定义域;②联结EG,当△DEG是以DG为腰的等腰三角形时,求AE的长.2018年上海市徐汇区九年级下学期数学第二次模拟试卷一、选择题1.下列算式的运算结果正确的是()A. m3•m2=m6B. m5÷m3=m2(m≠0)C. (m﹣2)3=m﹣5D. m4﹣m2=m2【答案】B【解析】【分析】直接利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则分别化简得出答案.【详解】A、m3•m2=m5,故此选项错误;B、m5÷m3=m2(m≠0),故此选项正确;C、(m-2)3=m-6,故此选项错误;D、m4-m2,无法计算,故此选项错误;故选:B.【点睛】此题主要考查了同底数幂的除法运算以及合并同类项法则、积的乘方运算,正确掌握运算法则是解题关键.2.直线y=3x+1不经过的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】利用两点法可画出函数图象,则可求得答案.【详解】在y=3x+1中,令y=0可得x=-,令x=0可得y=1,∴直线与x轴交于点(-,0),与y轴交于点(0,1),其函数图象如图所示,学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...∴函数图象不过第四象限,故选:D.【点睛】本题主要考查一次函数的性质,正确画出函数图象是解题的关键.3.如果关于x的方程x2﹣x+1=0有实数根,那么k的取值范围是()A. k>0B. k≥0C. k>4D. k≥4【答案】D【解析】【分析】由被开方数非负结合根的判别式△≥0,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围.【详解】∵关于x的方程x2-x+1=0有实数根,∴,解得:k≥4.故选:D.【点睛】本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.4.某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是()A. 8、8B. 8、8.5C. 8、9D. 8、10【答案】B【解析】【分析】根据众数和中位数的概念求解.【详解】由表可知,8环出现次数最多,有4次,所以众数为8环;这10个数据的中位数为第5、6个数据的平均数,即中位数为=8.5(环),故选:B.【点睛】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于()A. 45°B. 60°C. 120°D. 135°【答案】A【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.【详解】设此多边形为n边形,根据题意得:180(n-2)=1080,解得:n=8,∴这个正多边形的每一个外角等于:360°÷8=45°.故选:A.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.6.下列说法中,正确的个数共有()(1)一个三角形只有一个外接圆;(2)圆既是轴对称图形,又是中心对称图形;(3)在同圆中,相等的圆心角所对的弧相等;(4)三角形的内心到该三角形三个顶点距离相等;A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】根据外接圆的性质,圆的对称性,三角形的内心以及圆周角定理即可解出.【详解】(1)一个三角形只有一个外接圆,正确;(2)圆既是轴对称图形,又是中心对称图形,正确;(3)在同圆中,相等的圆心角所对的弧相等,正确;(4)三角形的内心是三个内角平分线的交点,到三边的距离相等,错误;故选:C.【点睛】此题考查了外接圆的性质,三角形的内心及轴对称和中心对称的概念,要求学生对这些概念熟练掌握.二.填空题7.函数y=的定义域是________.【答案】【解析】分析:根据分式有意义的条件是分母不为0,即可求解.详解:由题意得:x-2≠0,即.故答案为:点睛:本题考查了使函数有意义的自变量的取值范围的确定.函数是整式型,自变量去全体实数;函数是分式型,自变量是使分母不为0 的实数;根式型的函数的自变量去根号下的式子大于或等于0的实数;当函数关系式表示实际问题时,自变量不仅要使函数关系式有意义,还要使实际问题有意义.8.在实数范围内分解因式:x2y﹣2y=__________.【答案】y(x+)(x﹣)【解析】【分析】先提取公因式y后,再把剩下的式子写成x2-()2,符合平方差公式的特点,可以继续分解.【详解】x2y-2y=y(x2-2)=y(x+)(x-).故答案为:y(x+)(x-).【点睛】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.9.方程的解是__________.【答案】x=7【解析】【分析】将方程两边平方后求解,注意检验.【详解】将方程两边平方得x-3=4,移项得:x=7,代入原方程得=2,原方程成立,故方程=2的解是x=7.故本题答案为:x=7.【点睛】在解无理方程是最常用的方法是两边平方法及换元法,解得答案时一定要注意代入原方程检验.10.不等式组的解集是____________;【答案】﹣9<x≤﹣3【解析】【分析】分别求出两个不等式的解集,再求其公共解集.【详解】,解不等式①,得:x≤-3,解不等式②,得:x>-9,所以不等式组的解集为:-9<x≤-3,故答案为:-9<x≤-3.【点睛】本题考查一元一次不等式组的解法,属于基础题.求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.已知点A(a,y1)、B(b,y2)在反比例函数y=的图象上,如果a<b<0,那么y1与y2的大小关系是:y1__y2;【答案】>【解析】【分析】根据反比例函数的性质求解.【详解】反比例函数y=的图象分布在第一、三象限,在每一象限y随x的增大而减小,而a<b<0,所以y1>y2故答案为:>【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.12.抛物线y=2x2+4x﹣2的顶点坐标是_______________.【答案】(﹣1,﹣4)【解析】【分析】利用顶点的公式首先求得横坐标,然后把横坐标的值代入解析式即可求得纵坐标.【详解】x=-=-1,把x=-1代入得:y=2-4-2=-4.则顶点的坐标是(-1,-4).故答案是:(-1,-4).【点睛】本题考查了二次函数的顶点坐标的求解方法,可以利用配方法求解,也可以利用公式法求解.13.四张背面完全相同的卡片上分别写有0、、、、四个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,那么抽到有理数的概率为___________.【答案】【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】∵在0.、、、这四个实数种,有理数有0.、、这3个,∴抽到有理数的概率为,故答案为:.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.在△ABC中,点D在边BC上,且BD:DC=1:2,如果设=,=,那么等于__(结果用、的线性组合表示).【答案】【解析】【分析】根据三角形法则求出即可解决问题;【详解】如图,∵=,=,∴=+=-,∵BD=BC,∴=.故答案为:.【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.15.如图,为了解全校300名男生的身高情况,随机抽取若干男生进行身高测量,将所得数据(精确到1cm)整理画出频数分布直方图(每组数据含最低值,不含最高值),估计该校男生的身高在170cm﹣175cm之间的人数约有_______人.【答案】72【解析】【分析】用总人数300乘以样本中身高在170cm-175cm之间的人数占被调查人数的比例.【详解】估计该校男生的身高在170cm-175cm之间的人数约为300×=72(人),故答案为:72.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.16.已知两圆相切,它们的圆心距为3,一个圆的半径是4,那么另一个圆的半径是_______.【答案】1或7【解析】【分析】由两圆相切,它们的圆心距为3,其中一个圆的半径为4,即可知这两圆内切,然后分别从若大圆的半径为4与若小圆的半径为4去分析,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可求得另一个圆的半径.【详解】∵两圆相切,它们的圆心距为3,其中一个圆的半径为4,∴这两圆内切,∴若大圆的半径为4,则另一个圆的半径为:4-3=1,若小圆的半径为4,则另一个圆的半径为:4+3=7.故答案为:1或7【点睛】此题考查了圆与圆的位置关系.此题难度不大,解题的关键是注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系,注意分类讨论思想的应用.17.从三角形(非等腰三角形)一个顶点引出一条射线与对边相交,该顶点与该交点间的线段把这个三角形分割成两个小三角形,如果其中一个小三角形是等腰三角形,另一个与原三角形相似,那么我们把这条线段叫做这个三角形的完美分割线,如图,在△ABC中,DB=1,BC=2,CD是△ABC的完美分割线,且△ACD 是以CD为底边的等腰三角形,则CD的长为_________.【答案】【解析】【分析】设AB=x,利用△BCD∽△BAC,得=,列出方程即可解决问题.【详解】∵△BCD∽△BAC,∴=,设AB=x,∴22=x,∵x>0,∴x=4,∴AC=AD=4-1=3,∵△BCD∽△BAC,∴==,∴CD=.故答案为:【点睛】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是利用△BCD∽△BAC 解答.18.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,点P、Q分别在边BC、AC上,PQ∥AB,把△PCQ 绕点P旋转得到△PDE(点C、Q分别与点D、E对应),点D落在线段PQ上,若AD平分∠BAC,则CP 的长为_________.【答案】2【解析】【分析】连接AD,根据PQ∥AB可知∠ADQ=∠DAB,再由点D在∠BAC的平分线上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根据勾股定理可知,AQ=12-4x,故可得出x的值,进而得出结论. 【详解】连接AD,∵PQ∥AB,∴∠ADQ=∠DAB,∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ,在Rt△ABC中,∵AB=5,BC=3,∴AC=4,∵PQ∥AB,∴△CPQ∽△CBA,∴CP:CQ=BC:AC=3:4,设PC=3x,CQ=4x,在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=2x,∵AQ=4-4x,∴4-4x=2x,解得x=,∴CP=3x=2;故答案为:2.【点睛】本题考查平行线的性质、旋转变换、等腰三角形的判定、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.三.简答题19.计算:﹣()﹣1+﹣(π﹣3.14)0+|2﹣4|.【答案】;【解析】【分析】根据二次根式的性质、负整数指数幂的性质、分母有理化的方法、零指数幂的性质及绝对值的性质依次计算各项后,再利用实数的运算法则计算即可解答.【详解】原式=2﹣2+﹣1+4﹣2=.【点睛】本题考查了二次根式的性质、负整数指数幂的性质、分母有理化的方法、零指数幂的性质、绝对值的性质及实数的运算法则,熟知性质及运算法则是解决问题的关键.20.解分式方程:+1=.【答案】x=4【解析】分析:首先进行去分母将其转化为整式方程,然后求出整式方程的解,最后对解进行验根得出答案.详解:化为整式方程得:x2﹣4x+4+x2﹣4=16,x2﹣2x﹣8=0,解得:x1=﹣2,x2=4经检验x=﹣2时,x+2=0,所以x=4是原方程的解.点睛:本题主要考查的是分式方程的解法,属于基础题型.解分式方程的时候我们一定不要忘记最后要验根.21.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,AD平分∠BAC交BC于点D.(1)求tan∠DAB;(2)若⊙O过A、D两点,且点O在边AB上,用尺规作图的方法确定点O的位置并求出的⊙O半径.(保留作图轨迹,不写作法)【答案】(1);(2)作图见解析;r=.【解析】【分析】(1)过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得CD=DE,再利用“HL”证明Rt△ACD和Rt△AED全等,根据全等三角形对应边相等可得AE=AC,再利用勾股定理列式求出AB,然后求出BE,设CD=DE=x,表示出BD,然后利用勾股定理列出方程求解即可得到CD的长,进而得出结论.(2)要使⊙O过A、D两点,即OA=OD,所以点O在线段AD的垂直平分线上,且圆心O在AC边上,所以作出AD的垂直平分线与AC的交点即为点O;利用相似三角形的性质,即可得到⊙O的半径.【详解】(1)过点D作DE⊥AB于E,∵AD平分∠BAC,∴CD=DE,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AE=AC=3,由勾股定理得,AB==5,∴BE=AB﹣AE=5﹣3=2,设CD=DE=x,则BD=4﹣x,在Rt△BDE中,DE2+BE2=BD2,x2+22=(4﹣x)2,解得x=,即CD的长为,∴Rt△ACD中,tan∠DAC=,∴tan∠DAB=;(2)如图,点O即为所求,连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠CAD,∴∠CAD=∠ODA,∴OD∥AC,∴△BDO∽△BCA,∴,设OD=AO=r,则BO=5﹣r,∴,∴r=,即⊙O半径为.【点睛】本题主要考查了复杂作图以及相似三角形的判定与性质、勾股定理的综合运用,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.22.“五一”期间小明和小丽相约到苏州乐园游玩,小丽乘私家车从上海出发30分钟后,小明乘坐火车从上海出发,先到苏州北站,然后再乘出租车去游乐园(换乘时间忽略不计),两人恰好同时到达苏州乐园,他们离上海的距离y(千米)与乘车时间t(小时)的关系如图所示,请结合图象信息解决下面问题:(1)本次火车的平均速度_________千米/小时?(2)当小明到达苏州北站时,小丽离苏州乐园的距离还有多少千米?【答案】(1)180;(2)48千米.【解析】【分析】(1)由图象可知,火车0.5小时行驶90千米,利用路程除以时间得出速度即可;(2)首先分别求出两函数解析式,进而求出小时小丽行驶的距离,进而得出离苏州乐园的距离.【详解】(1)v==180.故本次火车的平均速度是每小时180千米.故答案为180;(2)设l2的解析式为y=kt+b,∵当t=0.5时,y=0,当t=1时,y=90,∴,解得:,∴l2的解析式为y=180t﹣90,把t=代入,得y=180×﹣90=60,∵(,60)在直线l1上,∴直线l1的解析式为y=72t,∴当t=1时,y=72,120﹣72=48(千米),故当小明到达苏州北站时,小丽离苏州乐园的距离还有48千米.【点睛】此题主要考查了一次函数的应用,根据题意结合函数图象得出一次函数解析式是解题关键.23.在梯形ABCD中,AD∥BC,AB=CD,BD=BC,点E在对角线BD上,且∠DCE=∠DBC.(1)求证:AD=BE;(2)延长CE交AB于点F,如果CF⊥AB,求证:4EF•FC=DE•BD.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)证明△ABD≌△ECB,可得结论;(2)连接AC,根据四边形ABCD是等腰梯形,得AC=BD,则BD=BC,由等腰三角形三线合一得:BF= AB,证明△DCE∽△DBC,得CD2=DB•DE,再证明△BFE∽△CFB,得BF2=CF•EF,由BF2=AB2=CD2代入可得结论.【详解】(1)∵AB=CD,AD∥BC,∴∠ABC=∠DCB,∠ADB=∠EBC.∵∠DCE=∠DBC,∠ABC=∠ABD+∠DBC,∠DCB=∠DCE+∠ECB,∴∠ABD=∠ECB.在△ABD和△ECB中,,∴△ABD≌△ECB(ASA),∴AD=BE;(2)连接AC,∵AD∥BC,AB=CD,∴四边形ABCD是等腰梯形,∴AC=BD,∵BD=BC,∴AC=BC,∵CF⊥AB,∴BF=AF,∴BF=AB,∵∠DCE=∠DBC,∴△DCE∽△DBC,∴,∴CD2=DB•DE,∵∠DCE=∠DBC,∴∠FBE=∠FCB,∴△BFE∽△CFB,∴,∴BF2=CF•EF,∵BF2==,∴=CF•EF,∴DE•DB=CF•EF,∴4EF•FC=DE•BD.【点睛】本题考查了全等、相似三角形的性质和判定、等腰梯形的性质,第二问有难度,证明△BFE∽△CFB 和△DCE∽△DBC是关键.24.如图,已知直线y=﹣x+2与x轴、y轴分别交于点B、C,抛物线y=﹣+bx+c过点B、C,且与x轴交于另一个点A.(1)求该抛物线的表达式;(2)点M是线段BC上一点,过点M作直线l∥y轴交该抛物线于点N,当四边形OMNC是平行四边形时,求它的面积;(3)联结AC,设点D是该抛物线上的一点,且满足∠DBA=∠CAO,求点D的坐标.【答案】(1);(2)4;(3)(﹣5,﹣18)或(3,2).【解析】【分析】(1)根据直线解析式求出点B、C的坐标,然后利用待定系数法求二次函数解析式列式求解即可;(2)设M(m,-m+2),则N(m,-m2+m+2),则MN=(-m2+m+2)-(-m+2)=-m2+2m,根据MN=OC=2列方程可得M的横坐标,根据平行四边形的面积公式可得结论;(3)分两种情况:①当D在x轴的下方:根据AC∥BD,直线解析式k相等可设直线BD的解析式为:y=2x+b,把B(4,0)代入得直线BD的解析式为:y=2x-8,联立方程可得D的坐标;②当D在x轴的上方,根据对称可得M的坐标,利用待定系数法求直线BM的解析式,与二次函数的交点,联立方程可得D的坐标.【详解】(1)当x=0时,y=2,∴C(0,2),当y=0时,﹣x+2=0,x=4,∴B(4,0),把C(0,2)和B(4,0)代入抛物线y=﹣+bx+c中得:,解得:,∴该抛物线的表达式:y=;(2)如图1,∵C(0,2),∴OC=2,设M(m,﹣m+2),则N(m,),∴MN=(+2)﹣(﹣m+2)=﹣m2+2m,∵MN∥y轴,当四边形OMNC是平行四边形时,MN=OC,即﹣m2+2m=2,解得:m1=m2=2,∴S▱OCMN=OC×2=2×2=4;(3)分两种情况:当y=0时,﹣+2=0,解得:x1=4,x2=﹣1,∴A(﹣1,0),易得直线AC的解析式为:y=2x+2,①当D在x轴的下方时,如图2,∵AC∥BD,∴设直线BD的解析式为:y=2x+b,把B(4,0)代入得:0=2×4+b,b=﹣8,∴直线BD的解析式为:y=2x﹣8,则2x﹣8=+2,解得:x1=﹣5,x2=4(舍),∴D(﹣5,﹣18);②当D在x轴的上方时,如图3,作抛物线的对称轴交直线BD于M,将BE(图2中的点D)于N,对称轴是:x=﹣=,∵∠CAO=∠ABE=∠DAB,∴M与N关于x轴对称,直线BE的解析式:y=2x﹣8,当x=时,y=﹣5,∴N(,﹣5),M(,5),直线BM的解析式为:y=﹣2x+8,﹣2x+8=﹣+2,解得:x1=3,x2=4(舍),∴D(3,2),综上所述,点D的坐标为:(﹣5,﹣18)或(3,2).【点睛】本题是对二次函数的综合考查,主要有直线与坐标轴的交点的求解,待定系数法求二次函数和一次函数解析式,两直线平行的关系,对称性等知识,(3)题有难度,采用分类讨论的思想解决问题.25.已知四边形ABCD是边长为10的菱形,对角线AC、BD相交于点E,过点C作CF∥DB交AB延长线于点F,联结EF交BC于点H.(1)如图1,当EF⊥BC时,求AE的长;(2)如图2,以EF为直径作⊙O,⊙O经过点C交边CD于点G(点C、G不重合),设AE的长为x,EH 的长为y;①求y关于x的函数关系式,并写出定义域;②联结EG,当△DEG是以DG为腰的等腰三角形时,求AE的长.【答案】(1);(2)①y=(<x<10);②或.【解析】【分析】(1)由菱形性质知DC∥AB、AB=DC、DB和AC互相垂直平分,证平行四边形DBFC得BF=DC=AB=10及∠CAB=∠BCA,由EF⊥BC知∠CAB=∠BCA=∠CFE,据此知△AFC∽△FEC,从而得出FC2=CE•AC,即FC2=2AE2,据此可得答案;(2)①连接OB,由AB=BF、OE=OF知OB∥AC、OB=AE=EC=x,据此得==及EH=EO,根据EO2=BE2+OB2=-x2+100可得答案;②分GD=GE和DE=DG两种情况分别求解可得.【详解】(1)∵四边形ABCD是菱形,∴DC∥AB、AB=DC、DB和AC互相垂直平分,∵CF∥DB,∴四边形DBFC是平行四边形,∴BF=DC=AB=10,∴∠CAB=∠BCA,当EF⊥BC时,∠CAB=∠BCA=∠CFE,∴Rt△AFC∽Rt△FEC,∴FC2=CE•AC,即FC2=2AE2,Rt△ACF中,CF2+AC2=AF2,2AE2+4AE2=400,解得:AE=;(2)①如图,连接OB,则AB=BF、OE=OF,∴OB∥AC,且OB=AE=EC=x,∴==,∴EH=EO,在Rt△EBO中,EO2=BE2+OB2=()2+(x)2=﹣x2+100,∴y=EO=(<x<10);②当GD=GE时,有∠GDE=∠GED,∵AC⊥DB,∠DEC=90°,∴∠GCE=∠GEC,∴GE=GC,∴GD=GC,即G为DC的中点,又∵EO=FO,∴GO是梯形EFCD的中位线,∴GO==DE,∴y=,∴=,解得:x=;如图2,当DE=DG时,连接OD、OC、GO,在△GDO和△EDO中,∵,∴△GDO≌△EDO(SSS),∴∠DEO=∠DGO,∴∠CGO=∠BEO=∠OFC,∴∠CGO=∠OCG=∠OFC=∠OCF,∴GC=CF,∴DC=DG+GC=DE+2DE=10,即3=10,解得:x=,综上,AE的长为或.【点睛】本题主要考查圆的综合问题,解题的关键是掌握掌握菱形的性质、平行四边形的判定与性质、相似三角形和全等三角形的判定与性质等知识点.。

(完整版)2018年上海市中考数学二模试卷

(完整版)2018年上海市中考数学二模试卷

2018年上海市中考数学二模试卷一、选择题(每小题4分,共24分)1.(4分)(2018•上海)计算的结果是()A.B.C.D.32.(4分)(2018•上海)据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为()A.608×108B.60.8×109C.6.08×1010D.6.08×10113.(4分)(2018•上海)如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)24.(4分)(2018•上海)如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠55.(4分)(2018•上海)某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和406.(4分)(2018•上海)如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍二、填空题(每小题4分,共48分)7.(4分)(2018•上海)计算:a(a+1)=_________.8.(4分)(2018•上海)函数y=的定义域是_________.9.(4分)(2018•上海)不等式组的解集是_________.10.(4分)(2018•上海)某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔_________支.11.(4分)(2018•上海)如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是_________.12.(4分)(2018•上海)已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.(4分)(2018•上海)如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是_________.14.(4分)(2018•上海)已知反比例函数y=(k是常数,k≠0),在其图象所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是_________(只需写一个).15.(4分)(2018•上海)如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设=,=,那么=_________(结果用、表示).16.(4分)(2018•上海)甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么三人中成绩最稳定的是_________.17.(4分)(2018•上海)一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为_________.18.(4分)(2018•上海)如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为_________(用含t的代数式表示).三、解答题(本题共7题,满分78分)19.(10分)(2018•上海)计算:﹣﹣+||.20.(10分)(2018•上海)解方程:﹣=.21.(10分)(2018•上海)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm)4.2 …8.2 9.8体温计的读数y(℃)35.0 …40.0 42.0(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.22.(10分)(2018•上海)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=,求BE的值.23.(12分)(2018•上海)已知:如图,梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD相交于点F,点E 是边BC延长线上一点,且∠CDE=∠ABD.(1)求证:四边形ACED是平行四边形;(2)连接AE,交BD于点G,求证:=.24.(12分)(2018•上海)在平面直角坐标系中(如图),已知抛物线y=x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,﹣2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t,0),且t>3,如果△BDP和△CDP的面积相等,求t的值.25.(14分)(2018•上海)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)连接AP,当AP∥CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.2018年上海市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共24分)1.(4分)(2018•上海)计算的结果是()A.B.C.D.3考点:二次根式的乘除法.专题:计算题.分析:根据二次根式的乘法运算法则进行运算即可.解答:解:•=,故选:B.点评:本题主要考查二次根式的乘法运算法则,关键在于熟练正确的运用运算法则,比较简单.2.(4分)(2018•上海)据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为()A.608×108B.60.8×109C.6.08×1010D.6.08×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:60 800 000 000=6.08×1010,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)(2018•上海)如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)2考点:二次函数图象与几何变换.专题:几何变换.分析:先得到抛物线y=x2的顶点坐标为(0,0),再得到点(0,0)向右平移1个单位得到点的坐标为(1,0),然后根据顶点式写出平移后的抛物线解析式.解答:解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向右平移1个单位得到点的坐标为(1,0),所以所得的抛物线的表达式为y=(x﹣1)2.故选:C.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.4.(4分)(2018•上海)如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠5考点:同位角、内错角、同旁内角.分析:根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角可得答案.解答:解:∠1的同位角是∠5,故选:D.点评:此题主要考查了同位角的概念,关键是掌握同位角的边构成“F“形.5.(4分)(2018•上海)某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和40考点:众数;中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答:解:从小到大排列此数据为:37、40、40、50、50、50、75,数据50出现了三次最多,所以50为众数;50处在第4位是中位数.故选:A.点评:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(4分)(2018•上海)如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍考点:菱形的性质.专题:几何图形问题.分析:分别利用菱形的性质结合各选项进而求出即可.解答:解:A、∵四边形ABCD是菱形,∴AB=BC=AD,∵AC<BD,∴△ABD与△ABC的周长不相等,故此选项错误;B、∵S△ABD=S平行四边形ABCD,S△ABC=S平行四边形ABCD,∴△ABD与△ABC的面积相等,故此选项正确;C、菱形的周长与两条对角线之和不存在固定的数量关系,故此选项错误;D、菱形的面积等于两条对角线之积的,故此选项错误;故选:B.点评:此题主要考查了菱形的性质应用,正确把握菱形的性质是解题关键.二、填空题(每小题4分,共48分)7.(4分)(2018•上海)计算:a(a+1)=a2+a.考点:单项式乘多项式.专题:计算题.分析:原式利用单项式乘以多项式法则计算即可得到结果.解答:解:原式=a2+a.故答案为:a2+a点评:此题考查了单项式乘以多项式,熟练掌握运算法则是解本题的关键.8.(4分)(2018•上海)函数y=的定义域是x≠1.考点:函数自变量的取值范围.分析:根据分母不等于0列式计算即可得解.解答:解:由题意得,x﹣1≠0,解得x≠1.故答案为:x≠1.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.9.(4分)(2018•上海)不等式组的解集是3<x<4.考点:解一元一次不等式组.专题:计算题.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.解答:解:,解①得:x>3,解②得:x<4.则不等式组的解集是:3<x<4.故答案是:3<x<4点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x介于两数之间.10.(4分)(2018•上海)某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔352支.考点:有理数的混合运算.专题:应用题.分析:三月份销售各种水笔的支数比二月份增长了10%,是把二月份销售的数量看作单位“1”,增加的量是二月份的10%,即三月份生产的是二月份的(1+10%),由此得出答案.解答:解:320×(1+10%)=320×1.1=352(支).答:该文具店三月份销售各种水笔352支.故答案为:352.点评:此题考查有理数的混合运算,理解题意,列出算式解决问题.11.(4分)(2018•上海)如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是k<1.考点:根的判别式.分析:根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式的意义得到△>0,即(﹣2)2﹣4×1×k>0,然后解不等式即可.解答:解:∵关于x的方程x2﹣3x+k=0(k为常数)有两个不相等的实数根,∴△>0,即(﹣2)2﹣4×1×k>0,解得k<1,∴k的取值范围为k<1.故答案为:k<1.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.12.(4分)(2018•上海)已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为26米.考点:解直角三角形的应用-坡度坡角问题.专题:应用题.分析:首先根据题意画出图形,根据坡度的定义,由勾股定理即可求得答案.解答:解:如图,由题意得:斜坡AB的坡度:i=1:2.4,AE=10米,AE⊥BD,∵i==,∴BE=24米,∴在Rt△ABE中,AB==26(米).故答案为:26.点评:此题考查了坡度坡角问题.此题比较简单,注意掌握数形结合思想的应用,注意理解坡度的定义.13.(4分)(2018•上海)如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是.考点:概率公式.分析:由从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,直接利用概率公式求解即可求得答案.解答:解:∵从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,∴恰好抽到初三(1)班的概率是:.故答案为:.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.(4分)(2018•上海)已知反比例函数y=(k是常数,k≠0),在其图象所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是y=﹣(只需写一个).考点:反比例函数的性质.专题:开放型.分析:首先根据反比例函数的性质可得k<0,再写一个符合条件的数即可.解答:解:∵反比例函数y=(k是常数,k≠0),在其图象所在的每一个象限内,y的值随着x的值的增大而增大,∴k<0,∴y=﹣,故答案为:y=﹣.点评:此题主要考查了反比例函数的性质,关键是掌握对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.15.(4分)(2018•上海)如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设=,=,那么=﹣(结果用、表示).考点:*平面向量.分析:由点E在边AB上,且AB=3EB.设=,可求得,又由在平行四边形ABCD中,=,求得,再利用三角形法则求解即可求得答案.解答:解:∵AB=3EB.=,∴==,∵平行四边形ABCD中,=,∴==,∴=﹣=﹣.故答案为:﹣.点评:此题考查了平面向量的知识.此题难度不大,注意掌握三角形法则与平行四边形法则的应用,注意掌握数形结合思想的应用.16.(4分)(2018•上海)甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么三人中成绩最稳定的是乙.考点:方差;折线统计图.专题:图表型.分析:根据方差的意义数据波动越小,数据越稳定即可得出答案.解答:解:根据图形可得:乙的成绩波动最小,数据最稳定,则三人中成绩最稳定的是乙;故答案为:乙.点评:本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.(4分)(2018•上海)一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为﹣9.考点:规律型:数字的变化类.分析:根据“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,首先建立方程2×3﹣x=7,求得x,进一步利用此规定求得y即可.解答:解:解法一:常规解法∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b∴2×3﹣x=7∴x=﹣1则2×(﹣1)﹣7=y解得y=﹣9.解法二:技巧型∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b∴7×2﹣y=23∴y=﹣9故答案为:﹣9.点评:此题考查数字的变化规律,注意利用定义新运算方法列方程解决问题.18.(4分)(2018•上海)如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为2t(用含t的代数式表示).考点:翻折变换(折叠问题).专题:几何图形问题.分析:根据翻折的性质可得CE=C′E,再根据直角三角形30°角所对的直角边等于斜边的一半判断出∠EBC′=30°,然后求出∠BGD′=60°,根据对顶角相等可得∠FGE=∠∠BGD′=60°,根据两直线平行,内错角相等可得∠AFG=∠FGE,再求出∠EFG=60°,然后判断出△EFG是等边三角形,根据等边三角形的性质表示出EF,即可得解.解答:解:由翻折的性质得,CE=C′E,∵BE=2CE,∴BE=2C′E,又∵∠C′=∠C=90°,∴∠EBC′=30°,∵∠FD′C′=∠D=90°,∴∠BGD′=60°,∴∠FGE=∠BGD′=60°,∵AD∥BC,∴∠AFG=∠FGE=60°,∴∠EFG=(180°﹣∠AFG)=(180°﹣60°)=60°,∴△EFG是等边三角形,∵AB=t,∴EF=t÷=t,∴△EFG的周长=3×t=2t.故答案为:2t.点评:本题考查了翻折变换的性质,直角三角形30°角所对的直角边等于斜边的一半,等边三角形的判定与性质,熟记性质并判断出△EFG是等边三角形是解题的关键.三、解答题(本题共7题,满分78分)19.(10分)(2018•上海)计算:﹣﹣+||.考点:实数的运算;分数指数幂.专题:计算题.分析:本题涉及绝对值、二次根式化简两个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=2﹣﹣2+2﹣=.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(10分)(2018•上海)解方程:﹣=.考点:解分式方程.专题:计算题;转化思想.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:(x+1)2﹣2=x﹣1,整理得:x2+x=0,即x(x+1)=0,解得:x=0或x=﹣1,经检验x=﹣1是增根,分式方程的解为x=0.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.(10分)(2018•上海)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm)4.2 …8.2 9.8体温计的读数y(℃)35.0 …40.0 42.0(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.考点:一次函数的应用.专题:应用题;待定系数法.分析:(1)设y关于x的函数关系式为y=kx+b,由统计表的数据建立方程组求出其解即可;(2)当x=6.2时,代入(1)的解析式就可以求出y的值.解答:解:(1)设y关于x的函数关系式为y=kx+b,由题意,得,解得:,∴y=x+29.75.∴y关于x的函数关系式为:y=+29.75;(2)当x=6.2时,y=×6.2+29.75=37.5.答:此时体温计的读数为37.5℃.点评:本题考查了待定系数法求一次函数的解析式的运用,由解析式根据自变量的值求函数值的运用,解答时求出函数的解析式是关键.22.(10分)(2018•上海)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=,求BE的值.考点:解直角三角形;直角三角形斜边上的中线.专题:几何图形问题.分析:(1)根据∠ACB=90°,CD是斜边AB上的中线,可得出CD=BD,则∠B=∠BCD,再由AE⊥CD,可证明∠B=∠CAH,由AH=2CH,可得出CH:AC=1:,即可得出sinB的值;(2)根据sinB的值,可得出AC:AB=1:,再由AB=2,得AC=2,则CE=1,从而得出BE.解答:解:(1)∵∠ACB=90°,CD是斜边AB上的中线,∴CD=BD,∴∠B=∠BCD,∵AE⊥CD,∴∠CAH+∠ACH=90°,又∠ACB=90°∴∠BCD+∠ACH=90°∴∠B=∠BCD=∠CAH,即∠B=∠CAH,∵AH=2CH,∴由勾股定理得AC=CH,∴CH:AC=1:,∴sinB=;(2)∵sinB=,∴AC:AB=1:,∴AC=2.∵∠CAH=∠B,∴sin∠CAH=sinB==,设CE=x(x>0),则AE=x,则x2+22=(x)2,∴CE=x=1,AC=2,在Rt△ABC中,AC2+BC2=AB2,∴BC=4,∴BE=BC﹣CE=3.点评:本题考查了解直角三角形,以及直角三角形斜边上的中线,注意性质的应用,难度不大.23.(12分)(2018•上海)已知:如图,梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD相交于点F,点E 是边BC延长线上一点,且∠CDE=∠ABD.(1)求证:四边形ACED是平行四边形;(2)连接AE,交BD于点G,求证:=.考点:相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的判定.专题:证明题.分析:(1)证△△BAD≌△CDA,推出∠ABD=∠ACD=∠CDE,推出AC∥DE即可;(2)根据平行得出比例式,再根据比例式的性质进行变形,即可得出答案.解答:证明:(1)∵梯形ABCD,AD∥BC,AB=CD,∴∠BAD=∠CDA,在△BAD和△CDA中∴△BAD≌△CDA(SAS),∴∠ABD=∠ACD,∵∠CDE=∠ABD,∴∠ACD=∠CDE,∴AC∥DE,∵AD∥CE,∴四边形ACED是平行四边形;(2)∵AD∥BC,∴=,=,∴=,∵平行四边形ACED,AD=CE,∴=,∴=,∴=,∴=.点评:本题考查了比例的性质,平行四边形的判定,平行线的判定的应用,主要考查学生运用定理进行推理的能力,题目比较好,难度适中.24.(12分)(2018•上海)在平面直角坐标系中(如图),已知抛物线y=x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,﹣2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t,0),且t>3,如果△BDP和△CDP的面积相等,求t的值.考点:二次函数综合题.专题:代数几何综合题;压轴题.分析:(1)根据待定系数法可求抛物线的表达式,进一步得到对称轴;(2)因为AC与EF不平行,且四边形ACEF为梯形,所以CE∥AF.分别求出直线CE、AF的解析式,进而求出点F的坐标;(3)△BDP和△CDP的面积相等,可得DP∥BC,根据待定系数法得到直线BC的解析式,根据两条平行的直线k值相同可得直线DP的解析式,进一步即可得到t的值.解答:解:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),点C(0,﹣2),∴,解得.故抛物线的表达式为:y=x2﹣x﹣2=(x﹣1)2﹣,对称轴为直线x=1;(2)设直线CE的解析式为:y=kx+b,将E(1,0),C(0,﹣2)坐标代入得:,解得,∴直线CE的解析式为:y=2x﹣2.∵AC与EF不平行,且四边形ACEF为梯形,∴CE∥AF.∴设直线AF的解析式为:y=2x+n.∵点A(﹣1,0)在直线AF上,∴﹣2+n=0,∴n=2.∴设直线AF的解析式为:y=2x+2.当x=1时,y=4,∴点F的坐标为(1,4).(3)点B(3,0),点D(1,﹣),若△BDP和△CDP的面积相等,则DP∥BC,则直线BC的解析式为y=x﹣2,∴直线DP的解析式为y=x﹣,当y=0时,x=5,∴t=5.点评:考查了二次函数综合题,涉及的知识点有:待定系数法求抛物线的表达式,待定系数法求直线的解析式,两条平行的直线之间的关系,三角形面积,分类思想的运用,综合性较强,有一定的难度.25.(14分)(2018•上海)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)连接AP,当AP∥CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.考点:圆的综合题.专题:压轴题.分析:(1)当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,直接利用勾股定理求出AC进而得出答案;(2)首先得出四边形APCE是菱形,进而得出CM的长,进而利用锐角三角函数关系得出CP以及EF的长;(3)∠GAE≠∠BGC,只能∠AGE=∠AEG,利用AD∥BC,得出△GAE∽△GBC,进而求出即可.解答:解:(1)如图1,设⊙O的半径为r,当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,∴BH=AB•cosB=4,∴AH=3,CH=4,∴AC==5,∴此时CP=r=5;(2)如图2,若AP∥CE,APCE为平行四边形,∵CE=CP,∴四边形APCE是菱形,连接AC、EP,则AC⊥EP,∴AM=CM=,由(1)知,AB=AC,则∠ACB=∠B,∴CP=CE==,∴EF=2=;(3)如图3:过点C作CN⊥AD于点N,∵cosB=,∴∠B<45°,∵∠BCG<90°,∴∠BGC>45°,∴∠BGC>∠B=∠GAE,即∠BGC≠∠GAE,又∠AEG=∠BCG≥∠ACB=∠B=∠GAE,∴当∠AEG=∠GAE时,A、E、G重合,则△AGE不存在.即∠AEG≠∠GAE∴只能∠AGE=∠AEG,∵AD∥BC,∴△GAE∽△GBC,∴=,即=,解得:AE=3,EN=AN﹣AE=1,∴CE===.点评:此题主要考查了相似三角形的判定与性质以及勾股定理以及锐角三角函数关系等知识,利用分类讨论得出△AGE是等腰三角形时只能∠AGE=∠AEG进而求出是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年徐汇区初三数学二模卷(满分150分,考试时间100分钟) 2018.4考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列算式的运算结果正确的是 A. 326m m m ⋅=; B. 532m m m ÷=(0m ≠);C. 235()m m --=;D. 422m m m -=.2.直线31y x =+不经过的象限是A .第一象限;B .第二象限;C .第三象限;D .第四象限.3 .如果关于x 的方程210x +=有实数根,那么k 的取值围是A .0k >;B .0k ≥;C .4k >;D .4k ≥. 4.某射击选手10次射击的成绩统计结果如下表,这10次成绩的众数、中位数分别是5.如果一个正多边形角和等于1080°,那么这个正多边形的每一个外角等于A .45°;B .60°;C .120°;D .135°. 6.下列说法中,正确的个数共有(1)一个三角形只有一个外接圆; (2)圆既是轴对称图形,又是中心对称图形; (3)在同圆中,相等的圆心角所对的弧相等; (4)三角形的心到该三角形三个顶点距离相等.A .1个;B .2个;C .3个;D .4个. 二、填空题:(本大题共12题,每题4分,满分48分) [请将结果直接填入答题纸的相应位置]7.函数12y x =-的定义域是 ▲ . 8.在实数围分解因式:22x y y - = ▲ .92=的解是 ▲ .10.不等式组2672x x -≥⎧⎨+>-⎩的解集是 ▲ .11.已知点1(,)A a y 、2(,)B b y 在反比例函数3y x=的图像上.如果0a b <<,那么1y 与2y 的大小关系是:1y ▲ 2y .12.抛物线2242y x x =+-的顶点坐标是 ▲ .13.四背面完全相同的卡片上分别写有0.3227四个实数,如果将卡片字面朝下随意放在桌子上,任意取一,那么抽到有理数的概率为 ▲ .14.在△ABC 中,点D 在边BC 上,且BD:DC=1:2.如果设a AB =,AC b =,那么BD 等 于 ▲ (结果用a 、b 的线性组合表示).15.如图,为了解全校300名男生的身高情况,随机 抽取若干男生进行身高测量,将所得数据(精确到1cm ) 整理画出频数分布直方图(每组数据含最低值,不含 最高值),估计该校男生的身高在170cm ﹣175cm 之间 的人数约有 ▲ 人.16.已知两圆相切,它们的圆心距为3,一个圆的半径是4,那么另一个圆的半径是 ▲ . 17.从三角形(非等腰三角形)一个顶点引出一条射线与对边相交,该顶点与该交点间的线段把这个三角形分割成两个小三角形.如果其中一个小三角形是等腰三角形,另一个与原三角形相似,那么我们把这条线段叫做这个三角形的完美分割线.如图,在△ ABC 中,DB =1,BC =2,CD 是△ ABC 的完美分割线,且△ ACD 是以CD 为底边的等腰三角形,则CD 的长为 ▲ .18.如图,在Rt △ABC 中,∠C =90°,AB =5,BC =3.点P 、Q 分别在边BC 、AC 上,PQ ∥AB .把△PCQ 绕点P 旋转得到△PDE (点C 、Q 分别与点D 、E 对应),点D 落在线段PQ 上,若AD 平分∠BAC ,则CP 的长为 ▲ .三、解答题:(本大题共7题,满分78分)19.(本题满分10分)()011() 3.1442π-+--+ . 20.(本题满分10分) 解分式方程:2216124x x x -+=+-.21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)如图,在Rt △ABC 中,∠C =90°,3AC =,4BC =,AD 平分∠BAC 交BC 于点D . (1)求tan ∠DAB ;(2)若⊙O 过A 、D 两点,且点O 在边AB 上,用尺规作图的方法确定点O 的位置并求出 ⊙O 的半径(保留作图痕迹,不写作法).22.(本题满分10分,第(1)小题满分3分,第(2)小题满分7分)“五一”期间小明和小丽相约到乐园游玩,小丽乘私家车从出发30分钟后,小明乘坐火车从出发,先到北站,然后再乘出租车去游乐园(换乘时间忽略不计),两人恰好同时到达乐园,他们离的距离y (千米)与乘车时间t (小时)的关系如图所示.请结合图像信息解决下面问题:(1)本次火车的平均速度是 ▲ 千米/小时? (2)当小明到达北站时,小丽离乐园 的距离还有多少千米?3l23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)在梯形ABCD中,AD∥BC,AB=CD,BD=BC.点E在对角线BD上,且∠DCE=∠DBC.(1)求证:AD=BE;(2)延长CE交AB于点F,如果CF⊥AB,求证:4EF⋅FC=DE⋅BD.24.(本题满分12分,第(1)小题满分3分,第(2)小题满分3分,第(3)小题满分6分)如图,已知直线122y x=-+与x轴、y轴分别交于点B、C,抛物线212y x bx c=-++过点B、C,且与x轴交于另一点A.(1)求该抛物线的表达式;(2)点M是线段BC上一点,过点M作直线l∥y轴交该抛物线于点N,当四边形OMNC是平行四边形时,求它的面积;(3)联结AC,设点D是该抛物线上的一点,且满足∠DBA=∠CAO,求点D的坐标.25.(本题满分14分,第(1)小题满分4分,第(2)小题①满分4分,第(2)小题②满分6分)已知四边形ABCD是边长为10的菱形,对角线AC、BD相交于点E,过点C作CF//DB交AB延长线于点F,联结EF交BC于点H.(1)如图1,当EF⊥BC时,求AE的长;(2)如图2,以EF为直径作⊙O,⊙O经过点C交边CD于点G(点C、G不重合),设AE的长为x,EH的长为y.①求y关于x的函数关系式,并写出定义域;②联结EG,当△DEG是以DG为腰的等腰三角形时,求AE的长.第24题图第25题图2018年第二学期徐汇区学习能力诊断卷参考答案2018.4一、选择题:(本大题共6题,每题4分,满分24分)1.B;2.D;3.D;4.B;5.A ;6.C.二、填空题:(本大题共12题,每题4分,满分48分)7.2x≠的一切实数;8.(y x x;9.7x=;10.93x-<≤-;11.>;12.(1,4)--;13.34;14.1133a b-+;15.72;16.1或7;17.32;18.2.三、解答题:(本大题共7题,满分78分)19.解:原式214=-+-………………………………………(8分)32+=……………………………………………………………(2分)20.解:方程两边同时乘以(2)(2)x x+-得:2280x x--=…………………………………………………………(3分)解得:12x=-,24x=………………………………………………(3分)经检验,2x=-是原方程的增根,4x=是原方程的根………………(2分)所以,原方程的解是4x=21.解:(1)在Rt△ABC中,∠C=90°,过点D作DE⊥AB于点E,∵AD平分∠BAC,∠C=90°,AD=AD∴()ACD AED A A S∆≅⋅⋅∴DC=DE,AC=AE=3,∴BE=2Rt△ABC中,3tan4ACBBC==在Rt△BDE中,3tan4DEBBE==,∴DE =32…………………………………(1分)∴1tan2DEDABAE∠==………………………………………………………(1分)(2)作图正确……………………………………………………………………………(2分)联结OD,设⊙O的半径为r,∵AO=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠DAC,∴∠ODA=∠DAC,∴OD∥AC…………………………………………………(2分)∴OB ODAB AC=,即553r r-=,解得15.8r=……………………………………(1分)22.解:(1)180千米/小时……………………………………………………………(3分)(2)设2l的解析式为(0)y kt b k=+≠,当0.5t=时,y=0;当t=1时,y=90,得:0.5090k bk b+=⎧⎨+=⎩解得:18090kb=⎧⎨=-⎩,18090y t=-.…………………………(3分)故把56t=代入18090y t=-,得y=60,……………………………………(1分)设1l的解析式(0)y at a=≠,当56t=时,y=60,得:5606a=∴a=72,∴y=72t,………………………………………………………………(1分)当t=1,y=72,∴120-72=48(千米)…………………………………………(2分)答:当小明到达北站时,小丽离乐园的距离还有48千米……………(2分)23.证明:(1)∵在梯形ABCD中,AD∥BC,AB=CD,∴∠ABC=∠DCB,………………………………………………………………(1分)∵∠DCE=∠DBC,∴∠ABD=∠ECB.………………………………………(1分)∵AD∥BC,∴∠ADB=∠EBC,……………………………………………(1分)∵BD=BC,∴ABD∆≌()ECB A S A⋅⋅…………………………………(2分)∴AD BE=.(2)联结AC,∵AD∥BC,AB=CD,∴AC=BD,∵BD=BC,∴AC=BC.………………………………………(1分)∵CF⊥AB,∴AF=BF=1122AB CD=,……………………………………(1分)又∵∠BFE =∠CFB=90°,由(1)∠ABD=∠ECB,∴BFE∽CFB,∴2BF EF FC=⋅.…………………………………(2分)同理可证:2DC DE BD=⋅……………………………………………………(2分)∴4EF FC DE BD ⋅=⋅.…………………………………………………………(1分) 24.解:(1)∵122y x =-+与x 轴、y 轴分别交于点B (4,0)、C (0,2)……(1分) 由题意可得1164022b c c ⎧-⨯++=⎪⎨⎪=⎩,解得322b c ⎧=⎪⎨⎪=⎩, ∴抛物线表达式为213222y x x =-++.………………………………………(2分)(2)设M 1(,2)2t t -+,N 213(,2)22t t t -++,MN =2122t t -+当OMNC 是平行四边形时,MN =21222t t OC -+==,122t t ==……(2分)∴平行四边形OMNC 的面积22 4.S =⨯=.……………………………(1分)(3)由2132022y x x =-++=,解得121,4x x =-=,∴A (-1,0).……………………(1分)当点D 在x 轴上方时,过C 作CD ∥AB 交抛物线于点D ,∵A 、B 关于对称轴对称,C 、D 关于对称轴对称,∴四边形ABDC 为等腰梯形, ∴∠CAO =∠DBA ,即点D 满足条件,∴D (3,2);……………………………(2分) 当点D 在x 轴下方时,∵∠DBA =∠CAO ,∴tan ∠DBA =tan ∠CAO =2,……(1分)∵设点D 213(,2)22d d d -++,过点D 作DE ⊥直线AB 于点E , ∴由题意可得BE =4d -,DE =213222d d --,21322224d d d--=-,125,4d d =-=(舍),∴D (﹣5,﹣18) ……………(2分) 综上可知满足条件的点D 的坐标为(3,2)或(﹣5,﹣18) 25.解:(1)∵四边形ABCD 是菱形∴DC ∥AB ,AB =BC ,DB 和AC 互相垂直平分.………………………………(1分) ∵CF //DB ,∴四边形DBFC 是平行四边形,∴BF =DC =AB=10,∴∠CAB =∠BCA ………………………………………………(1分) 当EF ⊥BC 时,∠CAB =∠BCA =∠CFE ,∴Rt △AFC ∽Rt FEC ,∴2FC CE AC =⋅,即222FC AE =…………………(1分) Rt △ACF 中,222CF AC AF +=,2224400AE AE +=,AE =…………(1分)(2)①联结OB ,AB=BF ,OE=OF ,∴OB //AC ,且111222OB AE EC x ===……(1分) ∴12OH OB EH EC ==,∴23EH EO =…………………………………………………(1分)在Rt △EBO 中,2222212EO BE OB x ⎛⎫=+=+ ⎪⎝⎭,∴23y EO ==10x <).……………………………………(2分)(说明:当C 、G 两点重合时有EF ⊥BD ,x =②当GD =GE 时,有∠GDE =∠GED ,又∵AC ⊥DB ,∠DEC=90°,∴∠GCE =∠GEC , ∴GE =GC ,∴GD =GC ,即G 为DC 的中点, 又∵EO =FO ,∴GO 是梯形EFCD 的中位线,∴GO 322DE CF DE +==,…………………………………………………………(1分)∴32y ==………………………………(1分)解得x =1分)法一:当DE =DG 时,联结OD 、OC 、GO .∵GO=EO ,DO=DO ,∴△OED ≌△OGD (SSS),…………………………………(1分) ∴∠DEO=∠DGO ,∴∠CGO=∠BEO=∠OFC ,∴∠CGO=∠OCG=∠OFC=∠OCF ,∴GC=CF …………………………………(1分)∴DC=DG +GC=DE+2DE=10,即10=,解得x =1分)法二:当DE =DG 时,过点D 作DM ⊥GE 于点M ,延长交EC 于点N ,联结GN . ∴∠EDN =∠GDN ,又∵DN=DN ,∴△NDE ≌△NDG (SAS),∴∠DGN=∠DEN=90°,14NE NG x ==,34NC x =……………………………(1分)即sinDE GNDCADC NC∠==1434xx=,……………………………………(1分)解得x=1分)综上,当△DEG是以DG为腰的等腰三角形时,AE.。

相关文档
最新文档