2018上海初三数学二模-长宁区2017学年第二学期九年级数学试卷及评分标准
(完整版)2018上海初三数学二模-长宁区2017学年第二学期九年级数学试卷及评分标准
2017学年第二学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.函数12-=x y 的图像不经过( ▲ )(A ) 第一象限; (B ) 第二象限; (C ) 第三象限; (D ) 第四象限. 2.下列式子一定成立的是( ▲ )(A ) a a a 632=+; (B )428x x x =÷; (C ) aa 121=; (D )6321)(aa-=--. 3.下列二次根式中,2的同类二次根式是( ▲ ) (A )4; (B )x 2; (C )92; (D )12. 4.已知一组数据2、x 、8、5、5、2的众数是2,那么这组数据的中位数是( ▲ ) (A ) 3.5; (B ) 4; (C ) 2; (D )6.5.5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点, 那么d 的值可以取( ▲ )(A ) 11; (B ) 6; (C ) 3; (D )2.6.已知在四边形ABCD 中,AD //BC ,对角线AC 、BD 交于点O ,且AC =BD , 下列四个命题中真命题是( ▲ )(A ) 若AB =CD ,则四边形ABCD 一定是等腰梯形; (B ) 若∠DBC =∠ACB ,则四边形ABCD 一定是等腰梯形; (C ) 若ODCOOB AO =,则四边形ABCD 一定是矩形; (D ) 若AC ⊥BD 且AO =OD ,则四边形ABCD 一定是正方形.二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7. 计算:=--︒0)3(30sin ▲ . 8. 方程6+=-x x 的解是 ▲ .9. 不等式组⎪⎩⎪⎨⎧≥-<+-1)12(303x x 的解集是 ▲ .10.已知反比例函数xky =的图像经过点(-2017,2018),当0>x 时,函数值y 随 自变量x 的值增大而 ▲ .(填“增大”或“减小”)11.若关于x 的方程032=--m x x 有两个相等的实数根,则m 的值是 ▲ . 12.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是 ▲ .13.抛物线522++=mx mx y 的对称轴是直线 ▲ . 14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的 通话次数的频率是 ▲ .15.如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点,BC =15,CD =9,EF =6,∠AFE =50°,则∠ADC 的度数为 ▲ . 16.如图,在梯形ABCD 中,AB //CD ,∠C=90°,BC =CD =4,52=AD ,若a AD =,b DC =,用a 、b 表示=DB ▲ . 17.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC 是半高三角形,且斜边5=AB ,则它的周长等于 ▲ . 18.如图,在矩形ABCD 中,对角线BD 的长为1,点P 是线段BD上的一点,联结CP ,将△BCP 沿着直线CP 翻折,若点B 落在 边AD 上的点E 处,且EP //AB ,则AB 的长等于 ▲ .第14题图 AB CDE F第15题图第16题图D CBA第18题图AB CD三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)先化简,再求值:12341311222+-++÷-+-+x x x x x x x ,其中121+=x .20.(本题满分10分)解方程组:⎩⎨⎧=-=-+②12①06522 . ,y x y xy x21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,135sin =∠ABC .(1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.22.(本题满分10分,第(1)小题5分,第(2)小题5分)某旅游景点的年游客量y (万人)是门票价格x (元)的一次函数,其函数图像如下图. (1)求y 关于x 的函数解析式;(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不得高于230元,该年的门票价格应该定为多少元?23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点 G 、F ,且AG GF BE AD =.(1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.ACDB第21题图第22题图ACDEF GB第23题图24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)如图在直角坐标平面内,抛物线32-+=bx ax y 与y 轴交于点A ,与x 轴分别交于点B (-1,0)、点C (3,0),点D 是抛物线的顶点. (1)求抛物线的表达式及顶点D 的坐标; (2)联结AD 、DC ,求ACD ∆的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标.25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,yS S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.备用图第24题图OAC DB图1 O BA C D图2 BAO备用图第25题图长宁区2017学年第二学期初三数学参考答案和评分建议2018.3一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C . 二.填空题:(本大题共12题,满分48分) 7.21-; 8.2-=x ; 9.3>x ; 10.增大; 11.43-=m ; 12.53; 13.1-=x ;14.7.0;15.︒140; 16.→→-a b 21; 17.255或535++; 18.215-.三、(本大题共7题,第19、20、21、22每题10分,第23、24每题12分,第25题14分,满分78分)19. (本题满分10分)解:原式= )1)(3()1()1)(1(3112++-⨯-++-+x x x x x x x (3分) =2)1(111+--+x x x (2分) =2)1(11++-+x x x (1分)=2)1(2+x (1分) 当12121-=+=x 时,原式=2)1(2+x =2)112(2+- =2)2(2=1 (3分) 20.(本题满分10分)解:方程①可变形为0))(6(=-+y x y x得06=+y x 或0=-y x (2分)将它们与方程②分别组成方程组,得(Ⅰ)⎩⎨⎧=-=+1206y x y x 或(Ⅱ)⎩⎨⎧=-=-120y x y x (2分)解方程组(Ⅰ)⎪⎩⎪⎨⎧-==131136y x , 解方程组(Ⅱ)⎩⎨⎧==11y x (4分) 所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x , ⎩⎨⎧==1122y x . (2分)另解:由②得12-=x y ③ (1分) 把③代入①,得0)12(6)12(522=---+x x x x (1分)整理得:0619132=+-x x (2分)解得:1,13621==x x (2分)分别代入③,得1,13121=-=y y (2分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x ,⎩⎨⎧==1122y x . (2分)21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE ∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE //∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分) ∴BF BC CF -= 即61824=-=CF (1分)在DCF Rt ∆中,︒=∠90DFC ,542156cot ===∠DF CF DCB (1分)22.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)设)0(≠+=k b kx y ,函数图像过点(200,100), (50,250) (1分)代入解析式得:⎩⎨⎧=+=+25050100200b k b k (2分)解之得:⎩⎨⎧=-=3001b k (1分)所以y 关于x 的解析式为:300+-=x y (1分) (2)设门票价格定为x 元,依题意可得:11500)300)(20(=+--x x (2分)整理得: 0175003202=+-x x 解之得:x =70或者x =250(舍去) (2分)答:门票价格应该定为70元. (1分) 23.(本题满分12分,第(1)小题5分,第(2)小题7分)证明:(1)∵BC AD // ∴BGDG BE AD = (2分)∵AG GFBE AD =∴AGGF BG DG = (1分) ∴ CD AB // (2分)(2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分)∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分)∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分) 24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)解:(1) 点B (-1,0)、C (3,0)在抛物线32-+=bx ax y 上∴⎩⎨⎧=-+=--033903b a b a ,解得⎩⎨⎧-==21b a ( 2分)∴抛物线的表达式为322--=x x y ,顶点D 的坐标是(1,-4) ( 2分) (2)∵A (0,-3),C (3,0),D (1,-4) ∴23=AC ,52=CD ,2=AD∴222AD AC CD += ∴︒=∠90CAD ( 2分)∴.32232121=⨯⨯=⋅⋅=∆AD AC S ACD (1分) (3)∵︒=∠=∠90AOB CAD ,2==AOACBO AD , ∴△CAD ∽△AOB ,∴OAB ACD ∠=∠∵OA =OC ,︒=∠90AOC ∴︒=∠=∠45OCA OAC∴ACD OCA OAB OAC ∠+∠=∠+∠,即BCD BAC ∠=∠ ( 1分) 若以O 、P 、C 为顶点的三角形与△ABC 相似 ,且△ABC 为锐角三角形 则POC ∆也为锐角三角形,点P 在第四象限由点C (3,0),D (1,-4)得直线CD 的表达式是62-=x y ,设)62,(-t t P (30<<t ) 过P 作PH ⊥OC ,垂足为点H ,则t OH =,t PH 26-=①当ABC POC ∠=∠时,由ABC POC ∠=∠tan tan 得BO AO OH PH =,∴326=-t t ,解得56=t , ∴)518,56(1-P (2分) ②当ACB POC ∠=∠时,由145tan tan tan =︒=∠=∠ACB POC 得1=OHPH ,∴126=-tt,解得2=t ,∴)2,2(2-P ( 2分) 综上得)518,56(1-P 或)2,2(2-P 25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB =8,∴OD ⊥AB ,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO Θ,AO =5,∴322=-=AC AO CO (1分)5=OD Θ,2=-=∴OC OD CD (1分)(2)过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH =4,OH =3∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO Θ,AO =5, ∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO xx x x 5402582-+-= (80<<x ) (3分)(3)①当OB //AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,则OF =AE , AE OB OH AB S ABO ⋅=⋅=∆2121Θ ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO Θ,AO =5,∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分)②当OA //BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO Θ,DO =5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG ,在Rt △GAD 中,︒=∠90DGA Θ,∴622=+=DG AG AD ( 3分)综上得6514或=AD。
上海市长宁区2017年中考二模数学试卷含答案
2017学年第二学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.函数12-=x y 的图像不经过( ▲ )(A ) 第一象限; (B ) 第二象限; (C ) 第三象限; (D ) 第四象限. 2.下列式子一定成立的是( ▲ )(A ) a a a 632=+; (B )428x x x =÷;(C ) aa 121=; (D )6321)(aa-=--. 3.下列二次根式中,2的同类二次根式是( ▲ ) (A )4; (B )x 2; (C )92; (D )12. 4.已知一组数据2、x 、8、5、5、2的众数是2,那么这组数据的中位数是( ▲ ) (A ) 3.5; (B ) 4; (C ) 2; (D )6.5.5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点, 那么d 的值可以取( ▲ )(A ) 11; (B ) 6; (C ) 3; (D )2.6.已知在四边形ABCD 中,AD //BC ,对角线AC 、BD 交于点O ,且AC =BD , 下列四个命题中真命题是( ▲ )(A ) 若AB =CD ,则四边形ABCD 一定是等腰梯形; (B ) 若∠DBC =∠ACB ,则四边形ABCD 一定是等腰梯形; (C ) 若ODCOOB AO =,则四边形ABCD 一定是矩形; (D ) 若AC ⊥BD 且AO =OD ,则四边形ABCD 一定是正方形. 二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7. 计算:=--︒0)3(30sin ▲ . 8. 方程6+=-x x 的解是 ▲ .9. 不等式组⎪⎩⎪⎨⎧≥-<+-1)12(303x x 的解集是 ▲ .10.已知反比例函数xky =的图像经过点(-2017,2018),当0>x 时,函数值y 随 自变量x 的值增大而 ▲ .(填“增大”或“减小”)11.若关于x 的方程032=--m x x 有两个相等的实数根,则m 的值是 ▲ . 12.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是 ▲ .13.抛物线522++=mx mx y 的对称轴是直线 ▲ . 14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的 通话次数的频率是 ▲ .15.如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点,BC =15,CD =9,EF =6,∠AFE =50°,则∠ADC 的度数为 ▲ . 16.如图,在梯形ABCD 中,AB //CD ,∠C=90°,BC =CD =4,52=AD , 若a AD =,b DC =,用、表示= ▲ . 17.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC 是半高三角形,且斜边5=AB ,则它的周长等于 ▲ . 18.如图,在矩形ABCD 中,对角线BD 的长为1,点P 是线段BD上的一点,联结CP ,将△BCP 沿着直线CP 翻折,若点B 落在 边AD 上的点E 处,且EP //AB ,则AB 的长等于 ▲ .三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)先化简,再求值:12341311222+-++÷-+-+x x x x x x x ,其中121+=x . 20.(本题满分10分)解方程组:⎩⎨⎧=-=-+②12①06522 . ,y x y xy x21.(本题满分10分,第(1)小题4分,第(2)小题6分)第14题图 A BCD EF第15题图第16题图D CBA 第18题图ABCD如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,135sin =∠ABC .(1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.22.(本题满分10分,第(1)小题5分,第(2)小题5分)某旅游景点的年游客量y (万人)是门票价格x (元)的一次函数,其函数图像如下图. (1)求y 关于x 的函数解析式;(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不得高于230元,该年的门票价格应该定为多少元?23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点 G 、F ,且AG GF BE AD =.(1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)如图在直角坐标平面内,抛物线32-+=bx ax y 与y 轴交于点A ,与x 轴分别交于点B (-1,0)、点C (3,0),点D 是抛物线的顶点. (1)求抛物线的表达式及顶点D 的坐标; (2)联结AD 、DC ,求ACD ∆的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标.ADB第21题图第22题图ACDEF GB第23题图25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.长学年第二参考答案2018.3一、选择题:(本大题共6题,每题41.B ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C . 二.填空题:(本大题共12题,满分48分) 7.21-; 8.2-=x ; 9.3>x ; 10.增大; 11.43-=m ; 12.53;13.1-=x ;14.7.0;15.︒140; 16.→→-a b 21; 17.255或535++;18.215-.三、(本大题共7题,第19、20、21、22每题10分,第23、24每题12分,第25题14分,满分78分)19. (本题满分10分)解:原式= )1)(3()1()1)(1(3112++-⨯-++-+x x x x x x x (3分) =2)1(111+--+x x x (2分) =2)1(11++-+x x x (1分) =2)1(2+x (1分) 当12121-=+=x 时,原式=2)1(2+x =2)112(2+- =2)2(2=1 (3分) 20.(本题满分10分)O A C BO BA C DBAO解:方程①可变形为0))(6(=-+y x y x得06=+y x 或0=-y x (2分)将它们与方程②分别组成方程组,得(Ⅰ)⎩⎨⎧=-=+1206y x y x 或(Ⅱ)⎩⎨⎧=-=-120y x y x (2分)解方程组(Ⅰ)⎪⎩⎪⎨⎧-==131136y x , 解方程组(Ⅱ)⎩⎨⎧==11y x (4分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x , ⎩⎨⎧==1122y x . (2分)另解:由②得12-=x y ③ (1分) 把③代入①,得0)12(6)12(522=---+x x x x (1分)整理得:0619132=+-x x (2分)解得:1,13621==x x (2分)分别代入③,得1,13121=-=y y (2分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x , ⎩⎨⎧==1122y x . (2分)21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE ∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE //∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分) ∴BF BC CF -= 即61824=-=CF (1分)在DCF Rt ∆中,︒=∠90DFC ,5426cot ===∠DF CF DCB (1分)22.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)设)0(≠+=k b kx y ,函数图像过点(200,100), (50,250) (1分)代入解析式得:⎩⎨⎧=+=+25050100200b k b k (2分)解之得:⎩⎨⎧=-=3001b k (1分)所以y 关于x 的解析式为:300+-=x y (1分)(2)设门票价格定为x 元,依题意可得:11500)300)(20(=+--x x (2分)整理得: 0175003202=+-x x 解之得:x =70或者x =250(舍去) (2分)答:门票价格应该定为70元. (1分)23.(本题满分12分,第(1)小题5分,第(2)小题7分)证明:(1)∵BC AD // ∴BGDG BE AD = (2分)∵AG GF BE AD = ∴AGGF BG DG = (1分) ∴ CD AB // (2分) (2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分)∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGD BD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分) ∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分) 24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分) 解:(1) 点B (-1,0)、C (3,0)在抛物线32-+=bx ax y 上∴⎩⎨⎧=-+=--033903b a b a ,解得⎩⎨⎧-==21b a ( 2分)∴抛物线的表达式为322--=x x y ,顶点D 的坐标是(1,-4) ( 2分)(2)∵A (0,-3),C (3,0),D (1,-4) ∴23=AC ,52=CD ,2=AD∴222AD AC CD += ∴︒=∠90CAD ( 2分)∴.32232121=⨯⨯=⋅⋅=∆AD AC S ACD (1分)(3)∵︒=∠=∠90AOB CAD ,2==AOACBO AD ,∴△CAD ∽△AOB ,∴OAB ACD ∠=∠∵OA =OC ,︒=∠90AOC ∴︒=∠=∠45OCA OAC∴ACD OCA OAB OAC ∠+∠=∠+∠,即BCD BAC ∠=∠ ( 1分) 若以O 、P 、C 为顶点的三角形与△ABC 相似 ,且△ABC 为锐角三角形 则POC ∆也为锐角三角形,点P 在第四象限由点C (3,0),D (1,-4)得直线CD 的表达式是62-=x y ,设)62,(-t t P (30<<t ) 过P 作PH ⊥OC ,垂足为点H ,则t OH =,t PH 26-=①当ABC POC ∠=∠时,由ABC POC ∠=∠tan tan 得BOAO OH PH =,∴326=-t t ,解得56=t , ∴)518,56(1-P (2分) ②当ACB POC ∠=∠时,由145tan tan tan =︒=∠=∠ACB POC 得1=OHPH ,∴126=-tt,解得2=t ,∴)2,2(2-P ( 2分) 综上得)518,56(1-P 或)2,2(2-P 25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) 解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB =8, ∴OD ⊥AB ,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO ,AO =5,∴322=-=AC AO CO (1分)5=OD ,2=-=∴OC OD CD (1分) (2)过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH =4,OH =3 ∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO ,AO =5,∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO xx x x 5402582-+-= (80<<x ) (3分)(3)①当OB //AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,则OF =AE , AE OB OH AB S ABO ⋅=⋅=∆2121 ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO ,AO =5,∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分)②当OA //BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO ,DO =5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG ,在Rt △GAD 中,︒=∠90DGA ,∴622=+=DG AG AD ( 3分)综上得6514或=AD。
2018届长宁区中考数学二模
2017学年长宁区第二学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.函数12-=x y 的图像不经过( )(A ) 第一象限; (B ) 第二象限; (C ) 第三象限; (D ) 第四象限. 2.下列式子一定成立的是( )(A ) a a a 632=+; (B )428x x x =÷; (C ) aa 121=; (D )6321)(a a -=--. 3.下列二次根式中,2的同类二次根式是( ) (A )4; (B )x 2; (C )92; (D )12. 4.已知一组数据2、x 、8、5、5、2的众数是2,那么这组数据的中位数是( ) (A ) 3.5; (B ) 4; (C ) 2; (D )6.5.5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点, 那么d 的值可以取( )(A ) 11; (B ) 6; (C ) 3; (D )2.6.已知在四边形ABCD 中,AD //BC ,对角线AC 、BD 交于点O ,且AC =BD , 下列四个命题中真命题是( )(A ) 若AB =CD ,则四边形ABCD 一定是等腰梯形; (B ) 若∠DBC =∠ACB ,则四边形ABCD 一定是等腰梯形; (C ) 若ODCOOB AO =,则四边形ABCD 一定是矩形; (D ) 若AC ⊥BD 且AO =OD ,则四边形ABCD 一定是正方形.二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7. 计算:=--︒0)3(30sin . 8. 方程6+=-x x 的解是 .9. 不等式组⎪⎩⎪⎨⎧≥-<+-1)12(303x x 的解集是 .10.已知反比例函数xky =的图像经过点(-2017,2018),当0>x 时,函数值y 随 自变量x 的值增大而 .(填“增大”或“减小”)11.若关于x 的方程032=--m x x 有两个相等的实数根,则m 的值是 . 12.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是 .13.抛物线522++=mx mx y 的对称轴是直线 . 14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的 通话次数的频率是 .15.如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点,BC =15,CD =9,EF =6,∠AFE =50°,则∠ADC 的度数为 . 16.如图,在梯形ABCD 中,AB //CD ,∠C=90°,BC =CD =4,52=AD ,若AD a =,DC b =,用a 、b 表示DB = . 17.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC 是半高三角形,且斜边5=AB ,则它的周长等于 . 18.如图,在矩形ABCD 中,对角线BD 的长为1,点P 是线段BD上的一点,联结CP ,将△BCP 沿着直线CP 翻折,若点B 落在 边AD 上的点E 处,且EP //AB ,则AB 的长等于 .第14题图 AB CDE F第15题图第16题图D CBA第18题图AB CD三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)先化简,再求值:12341311222+-++÷-+-+x x x x x x x ,其中121+=x .20.(本题满分10分)解方程组:⎩⎨⎧=-=-+②12①06522 . ,y x y xy x21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,135sin =∠ABC .(1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.ACDB 第21题图22.(本题满分10分,第(1)小题5分,第(2)小题5分)某旅游景点的年游客量y (万人)是门票价格x (元)的一次函数,其函数图像如下图. (1)求y 关于x 的函数解析式;(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不得高于230元,该年的门票价格应该定为多少元?23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点 G 、F ,且AG GF BE AD =.(1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.第22题图ACDEF GB第23题图如图在直角坐标平面内,抛物线32-+=bx ax y 与y 轴交于点A ,与x 轴分别交于点B (-1,0)、点C (3,0),点D 是抛物线的顶点. (1)求抛物线的表达式及顶点D 的坐标; (2)联结AD 、DC ,求ACD ∆的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标.备用图第24题图在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.O AC DB图1 O BA C D图2 BAO备用图第25题图长宁区参考答案和评分建议一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C . 二.填空题:(本大题共12题,满分48分) 7.21-; 8.2-=x ; 9.3>x ; 10.增大; 11.43-=m ; 12.53; 13.1-=x ;14.7.0;15.︒140; 16.→→-a b 21; 17.255或535++; 18.215-.三、(本大题共7题,第19、20、21、22每题10分,第23、24每题12分,第25题14分,满分78分)19. (本题满分10分)解:原式= )1)(3()1()1)(1(3112++-⨯-++-+x x x x x x x (3分) =2)1(111+--+x x x (2分) =2)1(11++-+x x x (1分) =2)1(2+x (1分)当12121-=+=x 时,原式=2)1(2+x =2)112(2+- =2)2(2=1 (3分) 20.(本题满分10分)解:方程①可变形为0))(6(=-+y x y x 得06=+y x 或0=-y x (2分)将它们与方程②分别组成方程组,得(Ⅰ)⎩⎨⎧=-=+1206y x y x 或(Ⅱ)⎩⎨⎧=-=-120y x y x (2分)解方程组(Ⅰ)⎪⎩⎪⎨⎧-==131136y x , 解方程组(Ⅱ)⎩⎨⎧==11y x (4分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x ,⎩⎨⎧==1122y x . (2分) 另解:由②得12-=x y ③ (1分) 把③代入①,得0)12(6)12(522=---+x x x x (1分) 整理得:0619132=+-x x (2分)解得:1,13621==x x (2分) 分别代入③,得1,13121=-=y y (2分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x , ⎩⎨⎧==1122y x . (2分21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分) 设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE ∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F ∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE //∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分)∴BF BC CF -= 即61824=-=CF (1分) 在DCF Rt ∆中,︒=∠90DFC ,542156cot ===∠DF CF DCB (1分)22.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)设)0(≠+=k b kx y ,函数图像过点(200,100), (50,250) (1分)代入解析式得:⎩⎨⎧=+=+25050100200b k b k (2分)解之得:⎩⎨⎧=-=3001b k (1分)所以y 关于x 的解析式为:300+-=x y (1分) (2)设门票价格定为x 元,依题意可得:11500)300)(20(=+--x x (2分)整理得: 0175003202=+-x x 解之得:x =70或者x =250(舍去) (2分)答:门票价格应该定为70元. (1分)23.(本题满分12分,第(1)小题5分,第(2)小题7分)证明:(1)∵BC AD // ∴BGDG BE AD = (2分)∵AG GFBE AD =∴AGGF BG DG = (1分) ∴ CD AB // (2分)(2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分)∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分)∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分)24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)解:(1) 点B (-1,0)、C (3,0)在抛物线32-+=bx ax y 上∴⎩⎨⎧=-+=--033903b a b a ,解得⎩⎨⎧-==21b a ( 2分)∴抛物线的表达式为322--=x x y ,顶点D 的坐标是(1,-4) ( 2分) (2)∵A (0,-3),C (3,0),D (1,-4) ∴23=AC ,52=CD ,2=AD∴222AD AC CD += ∴︒=∠90CAD ( 2分)∴.32232121=⨯⨯=⋅⋅=∆AD AC S ACD (1分) (3)∵︒=∠=∠90AOB CAD ,2==AOACBO AD ,∴△CAD ∽△AOB ,∴OAB ACD ∠=∠∵OA =OC ,︒=∠90AOC ∴︒=∠=∠45OCA OAC∴ACD OCA OAB OAC ∠+∠=∠+∠,即BCD BAC ∠=∠ ( 1分) 若以O 、P 、C 为顶点的三角形与△ABC 相似 ,且△ABC 为锐角三角形 则POC ∆也为锐角三角形,点P 在第四象限由点C (3,0),D (1,-4)得直线CD 的表达式是62-=x y ,设)62,(-t t P (30<<t ) 过P 作PH ⊥OC ,垂足为点H ,则t OH =,t PH 26-=①当ABC POC ∠=∠时,由ABC POC ∠=∠tan tan 得BO AO OH PH =,∴326=-t t ,解得56=t , ∴)518,56(1-P (2分) ②当ACB POC ∠=∠时,由145tan tan tan =︒=∠=∠ACB POC 得1=OHPH ,∴126=-tt,解得2=t ,∴)2,2(2-P ( 2分) 综上得)518,56(1-P 或)2,2(2-P第 11 页 25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB =8,∴OD ⊥AB ,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO ,AO =5, ∴322=-=AC AO CO (1分)5=OD ,2=-=∴OC OD CD (1分)(2)过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH =4,OH =3∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO ,AO =5, ∴258|4|322222+-=-+=+=x x x HC HO CO , (1分) ∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO xx x x 5402582-+-= (80<<x ) (3分) (3)①当OB //AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,则OF =AE , AE OB OH AB S ABO ⋅=⋅=∆2121 ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO ,AO =5, ∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分) ②当OA //BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G , 则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO ,DO =5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG , 在Rt △GAD 中,︒=∠90DGA ,∴622=+=DG AG AD ( 3分) 综上得6514或=AD。
上海市长宁区2017年中考二模数学试卷含答案
2017学年第二学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.函数12-=x y 的图像不经过( ▲ )(A ) 第一象限; (B ) 第二象限; (C ) 第三象限; (D ) 第四象限. 2.下列式子一定成立的是( ▲ )(A ) a a a 632=+; (B )428x x x =÷; (C ) aa 121=; (D )6321)(aa-=--. 3.下列二次根式中,2的同类二次根式是( ▲ ) (A )4; (B )x 2; (C )92; (D )12. 4.已知一组数据2、x 、8、5、5、2的众数是2,那么这组数据的中位数是( ▲ ) (A ) 3.5; (B ) 4; (C ) 2; (D )6.5.5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点, 那么d 的值可以取( ▲ )(A ) 11; (B ) 6; (C ) 3; (D )2.6.已知在四边形ABCD 中,AD //BC ,对角线AC 、BD 交于点O ,且AC =BD , 下列四个命题中真命题是( ▲ )(A ) 若AB =CD ,则四边形ABCD 一定是等腰梯形; (B ) 若∠DBC =∠ACB ,则四边形ABCD 一定是等腰梯形; (C ) 若ODCOOB AO =,则四边形ABCD 一定是矩形; (D ) 若AC ⊥BD 且AO =OD ,则四边形ABCD 一定是正方形.二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7. 计算:=--︒0)3(30sin ▲ . 8. 方程6+=-x x 的解是 ▲ .9. 不等式组⎪⎩⎪⎨⎧≥-<+-1)12(303x x 的解集是 ▲ .10.已知反比例函数xky =的图像经过点(-2017,2018),当0>x 时,函数值y 随 自变量x 的值增大而 ▲ .(填“增大”或“减小”)11.若关于x 的方程032=--m x x 有两个相等的实数根,则m 的值是 ▲ . 12.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是 ▲ .13.抛物线522++=mx mx y 的对称轴是直线 ▲ . 14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的 通话次数的频率是 ▲ .15.如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点,BC =15,CD =9,EF =6,∠AFE =50°,则∠ADC 的度数为 ▲ . 16.如图,在梯形ABCD 中,AB //CD ,∠C=90°,BC =CD =4,52=AD ,若a AD =,b DC =,用a 、b 表示=DB ▲ . 17.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC 是半高三角形,且斜边5=AB ,则它的周长等于 ▲ . 18.如图,在矩形ABCD 中,对角线BD 的长为1,点P 是线段BD上的一点,联结CP ,将△BCP 沿着直线CP 翻折,若点B 落在 边AD 上的点E 处,且EP //AB ,则AB 的长等于 ▲ .第14题图 AB CDE F第15题图第16题图D CBA第18题图AB CD三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)先化简,再求值:12341311222+-++÷-+-+x x x x x x x ,其中121+=x .20.(本题满分10分)解方程组:⎩⎨⎧=-=-+②12①06522 . ,y x y xy x21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,135sin =∠ABC .(1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.22.(本题满分10分,第(1)小题5分,第(2)小题5分)某旅游景点的年游客量y (万人)是门票价格x (元)的一次函数,其函数图像如下图. (1)求y 关于x 的函数解析式;(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不得高于230元,该年的门票价格应该定为多少元?23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点 G 、F ,且AG GF BE AD =.(1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.ACDB第21题图第22题图ACDEF GB第23题图24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)如图在直角坐标平面内,抛物线32-+=bx ax y 与y 轴交于点A ,与x 轴分别交于点B (-1,0)、点C (3,0),点D 是抛物线的顶点. (1)求抛物线的表达式及顶点D 的坐标; (2)联结AD 、DC ,求ACD ∆的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标.25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,yS S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.备用图第24题图OAC DB图1 O BA C D图2 BAO备用图第25题图长宁区2017学年第二学期初三数学参考答案和评分建议2018.3一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C . 二.填空题:(本大题共12题,满分48分) 7.21-; 8.2-=x ; 9.3>x ; 10.增大; 11.43-=m ; 12.53; 13.1-=x ;14.7.0;15.︒140; 16.→→-a b 21; 17.255或535++; 18.215-.三、(本大题共7题,第19、20、21、22每题10分,第23、24每题12分,第25题14分,满分78分)19. (本题满分10分)解:原式= )1)(3()1()1)(1(3112++-⨯-++-+x x x x x x x (3分) =2)1(111+--+x x x (2分) =2)1(11++-+x x x (1分) =2)1(2+x (1分)当12121-=+=x 时,原式=2)1(2+x =2)112(2+- =2)2(2=1 (3分) 20.(本题满分10分)解:方程①可变形为0))(6(=-+y x y x得06=+y x 或0=-y x (2分)将它们与方程②分别组成方程组,得(Ⅰ)⎩⎨⎧=-=+1206y x y x 或(Ⅱ)⎩⎨⎧=-=-120y x y x (2分)解方程组(Ⅰ)⎪⎩⎪⎨⎧-==131136y x , 解方程组(Ⅱ)⎩⎨⎧==11y x (4分) 所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x , ⎩⎨⎧==1122y x . (2分)另解:由②得12-=x y ③ (1分) 把③代入①,得0)12(6)12(522=---+x x x x (1分)整理得:0619132=+-x x (2分)解得:1,13621==x x (2分)分别代入③,得1,13121=-=y y (2分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x ,⎩⎨⎧==1122y x . (2分)21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE ∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE //∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分) ∴BF BC CF -= 即61824=-=CF (1分)在DCF Rt ∆中,︒=∠90DFC ,542156cot ===∠DF CF DCB (1分)22.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)设)0(≠+=k b kx y ,函数图像过点(200,100), (50,250) (1分)代入解析式得:⎩⎨⎧=+=+25050100200b k b k (2分)解之得:⎩⎨⎧=-=3001b k (1分)所以y 关于x 的解析式为:300+-=x y (1分) (2)设门票价格定为x 元,依题意可得:11500)300)(20(=+--x x (2分) 整理得: 0175003202=+-x x 解之得:x =70或者x =250(舍去) (2分)答:门票价格应该定为70元. (1分) 23.(本题满分12分,第(1)小题5分,第(2)小题7分) 证明:(1)∵BC AD // ∴BGDG BE AD = (2分)∵AG GFBE AD =∴AGGF BG DG = (1分) ∴ CD AB // (2分) (2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分) ∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分) ∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分) 24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)解:(1) 点B (-1,0)、C (3,0)在抛物线32-+=bx ax y 上∴⎩⎨⎧=-+=--033903b a b a ,解得⎩⎨⎧-==21b a ( 2分)∴抛物线的表达式为322--=x x y ,顶点D 的坐标是(1,-4) ( 2分) (2)∵A (0,-3),C (3,0),D (1,-4) ∴23=AC ,52=CD ,2=AD∴222AD AC CD += ∴︒=∠90CAD ( 2分)∴.32232121=⨯⨯=⋅⋅=∆AD AC S ACD (1分) (3)∵︒=∠=∠90AOB CAD ,2==AOACBO AD , ∴△CAD ∽△AOB ,∴OAB ACD ∠=∠∵OA =OC ,︒=∠90AOC ∴︒=∠=∠45OCA OAC∴ACD OCA OAB OAC ∠+∠=∠+∠,即BCD BAC ∠=∠ ( 1分) 若以O 、P 、C 为顶点的三角形与△ABC 相似 ,且△ABC 为锐角三角形 则POC ∆也为锐角三角形,点P 在第四象限由点C (3,0),D (1,-4)得直线CD 的表达式是62-=x y ,设)62,(-t t P (30<<t ) 过P 作PH ⊥OC ,垂足为点H ,则t OH =,t PH 26-=①当ABC POC ∠=∠时,由ABC POC ∠=∠tan tan 得BO AO OH PH =,∴326=-t t ,解得56=t , ∴)518,56(1-P (2分) ②当ACB POC ∠=∠时,由145tan tan tan =︒=∠=∠ACB POC 得1=OHPH ,∴126=-tt,解得2=t ,∴)2,2(2-P ( 2分) 综上得)518,56(1-P 或)2,2(2-P 25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) 解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB =8,∴OD ⊥AB ,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO Θ,AO =5,∴322=-=AC AO CO (1分)5=OD Θ,2=-=∴OC OD CD (1分)(2)过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH =4,OH =3 ∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO Θ,AO =5, ∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO xx x x 5402582-+-= (80<<x ) (3分)(3)①当OB //AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,则OF =AE , AE OB OH AB S ABO ⋅=⋅=∆2121Θ ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO Θ,AO =5,∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分)②当OA //BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO Θ,DO =5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG ,在Rt △GAD 中,︒=∠90DGA Θ,∴622=+=DG AG AD ( 3分)综上得6514或=AD。
上海市长宁区2017年中考二模数学试卷包含答案解析
【每题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂】
1.函数 的图像不经过(▲)
(A) 第一象限; (B) 第二象限; (C) 第三象限; (D) 第四象限.
2.下列式子一定成立的是(▲)
(A) ; (B) ;
(C) ; (D) .
那么d的值可以取(▲)
(A)11;(B)6;(C)3;(D)2.
6.已知在四边形ABCD中,AD//BC,对角线AC、BD交于点O,且AC=BD,
下列四个命题中真命题是(▲)
(A) 若AB=CD,则四边形ABCD一定是等腰梯形;
(B) 若∠DBC=∠ACB,则四边形ABCD一定是等腰梯形;
(C) 若 ,则四边形ABCD一定是矩形;
在圆O中,C是弦AB上的一点,联结OC并延长,交劣弧AB于点D,联结AO、BO、AD、BD.已知圆O的半径长为5,弦AB的长为8.
(1)如图1,当点D是弧AB的中点时,求CD的长;
(2)如图2,设AC=x, ,求y关于x的函数解析式并写出定义域;
(3)若四边形AOBD是梯形,求AD的长.
长宁区2017学年第二学期初三数学参考答案和评分建议
那么我们把这个三角形叫做半高三角形.已知直角三角形ABC
是半高三角形,且斜边 ,则它的周长等于▲.
18.如图,在矩形ABCD中,对角线BD的长为1,点P是线段BD
上的一点,联结CP,将△BCP沿着直线CP翻折,若点B落在
边AD上的点E处,且EP//AB,则AB的长等于▲.
三、解答题(本大题共7题, 满分78分)
解:(1)∵OD过圆心,点D是弧AB的中点,AB=8,
∴OD⊥AB, (2分)
上海初三数学二模长宁区学年第二学期九年级数学考试及评分标准
上海初三数学二模长宁区学年第二学期九年级数学考试及评分标准————————————————————————————————作者:————————————————————————————————日期:2017学年第二学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.函数12-=x y 的图像不经过( ▲ )(A ) 第一象限; (B ) 第二象限; (C ) 第三象限; (D ) 第四象限. 2.下列式子一定成立的是( ▲ )(A ) a a a 632=+; (B )428x x x =÷; (C ) aa 121=; (D )6321)(aa-=--. 3.下列二次根式中,2的同类二次根式是( ▲ ) (A )4; (B )x 2; (C )92; (D )12. 4.已知一组数据2、x 、8、5、5、2的众数是2,那么这组数据的中位数是( ▲ ) (A ) 3.5; (B ) 4; (C ) 2; (D )6.5.5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点, 那么d 的值可以取( ▲ )(A ) 11; (B ) 6; (C ) 3; (D )2.6.已知在四边形ABCD 中,AD //BC ,对角线AC 、BD 交于点O ,且AC =BD , 下列四个命题中真命题是( ▲ )(A ) 若AB =CD ,则四边形ABCD 一定是等腰梯形; (B ) 若∠DBC =∠ACB ,则四边形ABCD 一定是等腰梯形; (C ) 若ODCOOB AO =,则四边形ABCD 一定是矩形; (D ) 若AC ⊥BD 且AO =OD ,则四边形ABCD 一定是正方形.二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7. 计算:=--︒0)3(30sin ▲ . 8. 方程6+=-x x 的解是 ▲ .9. 不等式组⎪⎩⎪⎨⎧≥-<+-1)12(303x x 的解集是 ▲ .10.已知反比例函数xky =的图像经过点(-2017,2018),当0>x 时,函数值y 随 自变量x 的值增大而 ▲ .(填“增大”或“减小”)11.若关于x 的方程032=--m x x 有两个相等的实数根,则m 的值是 ▲ . 12.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是 ▲ .13.抛物线522++=mx mx y 的对称轴是直线 ▲ . 14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的 通话次数的频率是 ▲ .15.如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点, BC =15,CD =9,EF =6,∠AFE =50°,则∠ADC 的度数为 ▲ . 16.如图,在梯形ABCD 中,AB //CD ,∠C=90°,BC =CD =4,52=AD ,若a AD =,b DC =,用a 、b 表示=DB ▲ .17.如果一个三角形有一条边上的高等于这条边的一半, 那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边5=AB ,则它的周长等于 ▲ . 18.如图,在矩形ABCD 中,对角线BD 的长为1,点P 是线段BD上的一点,联结CP ,将△BCP 沿着直线CP 翻折,若点B 落在 边AD 上的点E 处,且EP //AB ,则AB 的长等于 ▲ .第14ABCDE F第15第16D CBA 第18AB CD三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)先化简,再求值:12341311222+-++÷-+-+x x x x x x x ,其中121+=x .20.(本题满分10分)解方程组:⎩⎨⎧=-=-+②12①06522 . ,y x y xy x21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,135sin =∠ABC .(1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.22.(本题满分10分,第(1)小题5分,第(2)小题5分)某旅游景点的年游客量y (万人)是门票价格x (元)的一次函数,其函数图像如下图. (1)求y 关于x 的函数解析式;(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不得高于230元,该年的门票价格应该定为多少元?23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点 G 、F ,且AG GF BE AD =.(1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.ACDB第21题第22ACDEF GB第23题24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)如图在直角坐标平面内,抛物线32-+=bx ax y 与y 轴交于点A ,与x 轴分别交于点B (-1,0)、点C (3,0),点D 是抛物线的顶点. (1)求抛物线的表达式及顶点D 的坐标; (2)联结AD 、DC ,求ACD ∆的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标.25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知圆O 的半径长为5 ,弦AB 的长为8. (1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.备用第24OAC DB图1O BA C D图2 BAO备第25长宁区2017学年第二学期初三数学参考答案和评分建议2018.3一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C . 二.填空题:(本大题共12题,满分48分) 7.21-; 8.2-=x ; 9.3>x ; 10.增大; 11.43-=m ; 12.53; 13.1-=x ;14.7.0;15.︒140; 16.→→-a b 21; 17.255或535++; 18.215-.三、(本大题共7题,第19、20、21、22每题10分,第23、24每题12分,第25题14分,满分78分)19. (本题满分10分)解:原式= )1)(3()1()1)(1(3112++-⨯-++-+x x x x x x x (3分) =2)1(111+--+x x x (2分) =2)1(11++-+x x x (1分) =2)1(2+x (1分) 当12121-=+=x 时,原式=2)1(2+x =2)112(2+- =2)2(2=1 (3分)20.(本题满分10分)解:方程①可变形为0))(6(=-+y x y x得06=+y x 或0=-y x (2分)将它们与方程②分别组成方程组,得(Ⅰ)⎩⎨⎧=-=+1206y x y x 或(Ⅱ)⎩⎨⎧=-=-120y x y x (2分)解方程组(Ⅰ)⎪⎩⎪⎨⎧-==131136y x , 解方程组(Ⅱ)⎩⎨⎧==11y x (4分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x ,⎩⎨⎧==1122y x . (2分) 另解:由②得12-=x y ③ (1分) 把③代入①,得0)12(6)12(522=---+x x x x (1分)整理得:0619132=+-x x (2分)解得:1,13621==x x (2分)分别代入③,得1,13121=-=y y (2分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x ,⎩⎨⎧==1122y x . (2分) 21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE ∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE //∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分)∴BF BC CF -= 即61824=-=CF (1分)在DCF Rt ∆中,︒=∠90DFC ,542156cot ===∠DF CF DCB (1分)22.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)设)0(≠+=k b kx y ,函数图像过点(200,100), (50,250) (1分)代入解析式得:⎩⎨⎧=+=+25050100200b k b k (2分)解之得:⎩⎨⎧=-=3001b k (1分)所以y 关于x 的解析式为:300+-=x y (1分) (2)设门票价格定为x 元,依题意可得:11500)300)(20(=+--x x (2分)整理得: 0175003202=+-x x 解之得:x =70或者x =250(舍去) (2分)答:门票价格应该定为70元. (1分)23.(本题满分12分,第(1)小题5分,第(2)小题7分)证明:(1)∵BC AD // ∴BGDG BE AD = (2分)∵AG GFBE AD =∴AGGF BG DG = (1分) ∴ CD AB // (2分)(2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分)∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分)∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分) 24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)解:(1) 点B (-1,0)、C (3,0)在抛物线32-+=bx ax y 上∴⎩⎨⎧=-+=--033903b a b a ,解得⎩⎨⎧-==21b a ( 2分)∴抛物线的表达式为322--=x x y ,顶点D 的坐标是(1,-4) ( 2分)(2)∵A (0,-3),C (3,0),D (1,-4) ∴23=AC ,52=CD ,2=AD∴222AD AC CD += ∴︒=∠90CAD ( 2分) ∴.32232121=⨯⨯=⋅⋅=∆AD AC S ACD (1分) (3)∵︒=∠=∠90AOB CAD ,2==AOACBO AD , ∴△CAD ∽△AOB ,∴OAB ACD ∠=∠∵OA =OC ,︒=∠90AOC ∴︒=∠=∠45OCA OAC∴ACD OCA OAB OAC ∠+∠=∠+∠,即BCD BAC ∠=∠ ( 1分)若以O 、P 、C 为顶点的三角形与△ABC 相似 ,且△ABC 为锐角三角形 则POC ∆也为锐角三角形,点P 在第四象限 由点C (3,0),D (1,-4)得直线CD 的表达式是62-=x y ,设)62,(-t t P (30<<t ) 过P 作PH ⊥OC ,垂足为点H ,则t OH =,t PH 26-=①当ABC POC ∠=∠时,由ABC POC ∠=∠tan tan 得BO AO OH PH =,∴326=-t t ,解得56=t , ∴)518,56(1-P (2分) ②当ACB POC ∠=∠时,由145tan tan tan =︒=∠=∠ACB POC 得1=OHPH ,∴126=-tt,解得2=t ,∴)2,2(2-P ( 2分) 综上得)518,56(1-P 或)2,2(2-P 25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB =8,∴OD ⊥AB ,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO ,AO =5,∴322=-=AC AO CO (1分)5=OD ,2=-=∴OC OD CD (1分)(2)过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH =4,OH =3∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO ,AO =5, ∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACOxx x x 5402582-+-= (80<<x ) (3分) (3)①当OB //AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,则OF =AE , AE OB OH AB S ABO ⋅=⋅=∆2121 ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO ,AO =5, ∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分) ②当OA //BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G , 则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO ,DO =5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG , 在Rt △GAD 中,︒=∠90DGA ,∴622=+=DG AG AD ( 3分) 综上得6514或=AD。
2017学年长宁区九年级第二学期数学试卷(二模)
2017学年第二学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.函数12-=x y 的图像不经过( ▲ )(A ) 第一象限; (B ) 第二象限; (C ) 第三象限; (D ) 第四象限. 2.下列式子一定成立的是( ▲ )(A ) a a a 632=+; (B )428x x x =÷;(C ) aa 121=; (D )6321)(aa-=--. 3.下列二次根式中,2的同类二次根式是( ▲ ) (A )4; (B )x 2; (C )92; (D )12. 4.已知一组数据2、x 、8、5、5、2的众数是2,那么这组数据的中位数是( ▲ ) (A ) 3.5; (B ) 4; (C ) 2; (D )6.5.5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点, 那么d 的值可以取( ▲ )(A ) 11; (B ) 6; (C ) 3; (D )2.6.已知在四边形ABCD 中,AD //BC ,对角线AC 、BD 交于点O ,且AC =BD , 下列四个命题中真命题是( ▲ )(A ) 若AB =CD ,则四边形ABCD 一定是等腰梯形; (B ) 若∠DBC =∠ACB ,则四边形ABCD 一定是等腰梯形; (C ) 若ODCOOB AO =,则四边形ABCD 一定是矩形; (D ) 若AC ⊥BD 且AO =OD ,则四边形ABCD 一定是正方形.二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7. 计算:=--︒0)3(30sin ▲ . 8. 方程6+=-x x 的解是 ▲ .9. 不等式组⎪⎩⎪⎨⎧≥-<+-1)12(303x x 的解集是 ▲ .10.已知反比例函数xky =的图像经过点(-2017,2018),当0>x 时,函数值y 随 自变量x 的值增大而 ▲ .(填“增大”或“减小”)11.若关于x 的方程032=--m x x 有两个相等的实数根,则m 的值是 ▲ . 12.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是 ▲ .13.抛物线522++=mx mx y 的对称轴是直线 ▲ . 14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的 通话次数的频率是 ▲ .15.如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点,BC =15,CD =9,EF =6,∠AFE =50°,则∠ADC 的度数为 ▲ . 16.如图,在梯形ABCD 中,AB //CD ,∠C=90°,BC =CD =4,52=AD ,若a AD =,b DC =,用、表示= ▲ . 17.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边5=AB ,则它的周长等于 ▲ . 18.如图,在矩形ABCD 中,对角线BD 的长为1,点P 是线段BD上的一点,联结CP ,将△BCP 沿着直线CP 翻折,若点B 落在 边AD 上的点E 处,且EP //AB ,则AB 的长等于 ▲ .第14题图AB CDE F第15题图第16题图DCBA第18题图AB CD三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)先化简,再求值:12341311222+-++÷-+-+x x x x x x x ,其中121+=x .20.(本题满分10分)解方程组:⎩⎨⎧=-=-+②12①06522 . ,y x y xy x21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,135sin =∠ABC .(1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.22.(本题满分10分,第(1)小题5分,第(2)小题5分)某旅游景点的年游客量y (万人)是门票价格x (元)的一次函数,其函数图像如下图. (1)求y 关于x 的函数解析式;(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不得高于230元,该年的门票价格应该定为多少元?23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点 G 、F ,且AG GF BE AD =.(1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.ACDB第21题图第22题图ACDEF GB第23题图24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)如图在直角坐标平面内,抛物线32-+=bx ax y 与y 轴交于点A ,与x 轴分别交于点B (-1,0)、点C (3,0),点D 是抛物线的顶点. (1)求抛物线的表达式及顶点D 的坐标; (2)联结AD 、DC ,求ACD ∆的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标.25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.备用图第24题图OAC BO BA C DBAO长宁区2017学年第二学期初三数学参考答案和评分建议2018.3一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C . 二.填空题:(本大题共12题,满分48分) 7.21-; 8.2-=x ; 9.3>x ; 10.增大; 11.43-=m ; 12.53; 13.1-=x ;14.7.0;15.︒140; 16.→→-a b 21; 17.255或535++; 18.215-.三、(本大题共7题,第19、20、21、22每题10分,第23、24每题12分,第25题14分,满分78分)19. (本题满分10分)解:原式= )1)(3()1()1)(1(3112++-⨯-++-+x x x x x x x (3分) =2)1(111+--+x x x (2分) =2)1(11++-+x x x (1分) =2)1(2+x (1分)当12121-=+=x 时,原式=2)1(2+x =2)112(2+- =2)2(2=1 (3分) 20.(本题满分10分)解:方程①可变形为0))(6(=-+y x y x得06=+y x 或0=-y x (2分)将它们与方程②分别组成方程组,得(Ⅰ)⎩⎨⎧=-=+1206y x y x 或(Ⅱ)⎩⎨⎧=-=-120y x y x (2分)解方程组(Ⅰ)⎪⎩⎪⎨⎧-==131136y x , 解方程组(Ⅱ)⎩⎨⎧==11y x (4分) 所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x , ⎩⎨⎧==1122y x . (2分)另解:由②得12-=x y ③ (1分) 把③代入①,得0)12(6)12(522=---+x x x x (1分)整理得:0619132=+-x x (2分)解得:1,13621==x x (2分)分别代入③,得1,13121=-=y y (2分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x ,⎩⎨⎧==1122y x . (2分)21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE //∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分) ∴BF BC CF -= 即61824=-=CF (1分)在DCF Rt ∆中,︒=∠90DFC ,5426cot ===∠DF CF DCB (1分)22.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)设)0(≠+=k b kx y ,函数图像过点(200,100), (50,250) (1分)代入解析式得:⎩⎨⎧=+=+25050100200b k b k (2分)解之得:⎩⎨⎧=-=3001b k (1分)所以y 关于x 的解析式为:300+-=x y (1分) (2)设门票价格定为x 元,依题意可得:11500)300)(20(=+--x x (2分) 整理得: 0175003202=+-x x 解之得:x =70或者x =250(舍去) (2分)答:门票价格应该定为70元. (1分) 23.(本题满分12分,第(1)小题5分,第(2)小题7分) 证明:(1)∵BC AD // ∴BG DG BE AD = (2分)∵AG GFBE AD =∴AGGF BG DG = (1分) ∴ CD AB // (2分) (2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分) ∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分) ∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分) 24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分) 解:(1) 点B (-1,0)、C (3,0)在抛物线32-+=bx ax y 上∴⎩⎨⎧=-+=--033903b a b a ,解得⎩⎨⎧-==21b a ( 2分)∴抛物线的表达式为322--=x x y ,顶点D 的坐标是(1,-4) ( 2分) (2)∵A (0,-3),C (3,0),D (1,-4) ∴23=AC ,52=CD ,2=AD∴222AD AC CD += ∴︒=∠90CAD ( 2分)∴.32232121=⨯⨯=⋅⋅=∆AD AC S ACD (1分) (3)∵︒=∠=∠90AOB CAD ,2==AOACBO AD , ∴△CAD ∽△AOB ,∴OAB ACD ∠=∠∵OA =OC ,︒=∠90AOC ∴︒=∠=∠45OCA OAC∴ACD OCA OAB OAC ∠+∠=∠+∠,即BCD BAC ∠=∠ ( 1分)若以O 、P 、C 为顶点的三角形与△ABC 相似 ,且△ABC 为锐角三角形 则POC ∆也为锐角三角形,点P 在第四象限由点C (3,0),D (1,-4)得直线CD 的表达式是62-=x y ,设)62,(-t t P (30<<t ) 过P 作PH ⊥OC ,垂足为点H ,则t OH =,t PH 26-=①当ABC POC ∠=∠时,由ABC POC ∠=∠tan tan 得BO AO OH PH =,∴326=-t t ,解得56=t , ∴)518,56(1-P (2分) ②当ACB POC ∠=∠时,由145tan tan tan =︒=∠=∠ACB POC 得1=OHPH ,∴126=-tt,解得2=t ,∴)2,2(2-P ( 2分) 综上得)518,56(1-P 或)2,2(2-P 25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) 解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB =8,∴OD ⊥AB ,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO ,AO =5,∴322=-=AC AO CO (1分)5=OD ,2=-=∴OC OD CD (1分) (2)过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH =4,OH =3∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO ,AO =5, ∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO xx x x 5402582-+-= (80<<x ) (3分)(3)①当OB //AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,则OF =AE , AE OB OH AB S ABO ⋅=⋅=∆2121 ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO ,AO =5,∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分)②当OA //BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO ,DO =5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG ,在Rt △GAD 中,︒=∠90DGA ,∴622=+=DG AG AD ( 3分)综上得6514或=AD。
(完整版)2018上海初三数学二模-长宁区2017学年第二学期九年级数学试卷及评分标准
2017学年第二学期初三数学教学质量检测试卷(考试时间:100分钟满分:150分)考生注意:1. 本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效•2. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤•一、选择题(本大题共6题,每题4分,满分24分)【每题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂】1.函数y 2x 1的图像不经过(▲)(A)第一象限;(B)第二象限;2.下列式子一定成立的是(▲)(C)第三象限; (D)第四象限.(A) 2a 3a 6a;11(C) a2;Ja (B) x8 x2 (D) ( a 2)3(A) ,4 ;(B)2x;(C ;\ 9(D) ,12 .4.已知一组数据2、X、8、5、5、2的众数是2, 那么这组数据的中位数是(▲)(A) 3.5;(B) 4;(C) 2;(D) 6.5.5.已知圆A的半径长为4,圆B的半径长为7, 它们的圆心距为d,要使这两圆没有公共点,那么d的值可以取(▲)(A) 11;(B) 6;(C) 3 ;(D) 2.3 •下列二次根式中,2的同类二次根式是(▲)6 .已知在四边形ABCD中,AD//BC,对角线AC、BD交于点O,且AC=BD ,F列四个命题中真命题是(▲)(A)若AB=CD,则四边形ABCD 一定是等腰梯形;(B)若/ DBC = Z ACB,则四边形ABCD 一定是等腰梯形;AO CO(C)若电,则四边形ABCD 一定是矩形;OB OD(D)若AC丄BD且AO=OD,则四边形ABCD 一定是正方形.二、填空题(本大题共12题,每题4分,满分48分)【在答题纸相应题号后的空格内直接填写答案】计算:sin30 ( 3)0▲.方程x . x 6的解是▲.x 3 0不等式组x的解集是▲3(— 1) 12k.已知反比例函数y —的图像经过点(-2017, 2018),当x 0时,函数值y随x自变量x的值增大而▲.(填“增大”或“减小”).若关于x的方程x2. 3x m 0有两个相等的实数根,则m的值是▲.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是▲.2.抛物线y mx 2mx 5的对称轴是直线▲..小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的通话次数的频率是▲..如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,BC=15 , CD=9, EF=6,/ AFE=50 °,则/ ADC 的度数为▲ ..女口图,在梯形ABCD 中,AB//CD,/ C=90°, BC=CD=4, AD 2jE ,若AD a , DC b,用a、b 表示DB ▲..如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC 是半高三角形,且斜边AB 5,则它的周长等于▲. .如图,在矩形ABCD中,对角线BD的长为1,点P是线段BD上的一点,联结CP,将△ BCP沿着直线CP翻折,若点B落在边AD上的点E处,且EP//AB,则AB的长等于▲. 第16题图7.8.9.101112131415161718第18题图三、解答题(本大题共7题,满分78 分)【将下列各题的解答过程做在答题纸的相应位置上】先化简,再求值:1x 1x3 X 4x 3其中x2 ,八i入1 x 2x 112x.2 120.(本题满分10 分)解方程组: 2x5xy6y20 , ①2x y 1•②如图,在等腰三角形5 sin ABC13 (1 )求AB的长;(2)若AD=6.5,求ABC中,AB=AC,点D在BA的延长线上,BC=24 ,DCB的余切值.第21题图22 .(本题满分10分,第(1)小题5分,第(2)小题5分)某旅游景点的年游客量y (万人)是门票价格x (元)的一次函数,(1 )求y关于x的函数解析式;(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不23 .(本题满分12分,第(1)小题5分,第(2)小题7 分)如图,在四边形ABCD中,AD//BC, E在BC的延长线,联结AE分别交BD、CD于点G、F,且AD 匪.BE AG(1)求证:AB//CD;(2)若BC2 GD BD , BG=GE,求证:四边形ABCD是菱形.19 .(本题满分10分)第25题图24. (本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5 分)点C (3, 0),点D 是抛物线的顶点.知圆O 的半径长为5,弦AB 的长为&S如图 2,设 AC=x , —AC°SOBD(1) 如图1,当点D 是弧AB 的中点时,求 CD 的长;(3)备用图图2 如图在直角坐标平面内,抛物线 y ax 2 bx3与y 轴交于点A ,与x 轴分别交于点B (-1, 0)、(1) 求抛物线的表达式及顶点 D 的坐标;(2) (3)第24题图(本题满分14分,第(1)小题4分,第(2)小题 4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长, 交劣弧 AB 于点D ,联结AO 、BO 、AD 、BD .已(2) y ,求y 关于x 的函数解析式并写出定义域; 联结AD 、DC ,求 ACD 的面积;P 、 求点P 的坐标.、选择题: 1 . B; 2. 二•填空题:2 ;7.13.分)19. 长宁区2017 (本大题共D;3. C;(本大题共x 1; 14. 0.7 ;(本大题共7题,第(本题满分学年第二学期初三数学参考答案和评分建议2018.3 每题4分,满分24分)A ; 5. D ; 6. C.6题,4.12题,满分48分)9. x 3 ; 10 .增大;15. 140 ;16.a;219、20、21、22 每题10分, 17. 5;12.3,. 5或523、24每题12分,10分)解:原式=1x 1 (x 1)(x 1)(x 1)2 (x 3)(x 1)x 1(x 1)22(x 1)2----- 、21时,原式=、2 12(x 1)2(.2 1 1)2I:2」120.(本题满分10 分)解:方程①可变形为(x 6y)(x y) 得x 6y 0或x y将它们与方程②分别组成方程组, x 6y 2x解方程组(I)y §13113解方程组所以原方程组的解是y1 §13丄X2y25. 2 ;x y2x y18.丄225题14分,满分78(3分)(2分)(1分)(1分)(3分)(2 分)(2 分)(4分)(2 分)13解:(1 )设 y kx b (k 0),函数图像过点(200,100) ,(50,250)另解:由②得y 2x1③(1分)把③代入①,得x 2 5x (2x 1) 6(2x 1)2(1 分)整理得:13x 2 19x 6 0(2 分)解得:x-1 —, x 2113分别代入③,得y 11 13,y 2 16片 13 x 2y 11 , y2 113所以原方程组的解是21 . (本题满分10分,第(1)小题4分,第(2)小题6 分) (1)过点A 作AE 丄BC ,垂足为点 E 又•• AB=AC••• BE 1BC2•/ BC=24.BE=12AE5在 Rt ABE 中,AEB 90,sin ABCAB 13(2 分)(2 分)(2 分)(1 分)(1 分)• k 1 , • AE 5k 5 , AB 13k 13(2 分)(2)过点D 作DF 丄BC , 垂足为点F•/ AD= 6.5,AB= 13 BD=AB+AD= 19.5•/ AE 丄 BC , DF 丄 BC •AEB1 DF B90 • AE // DF•AE BE AB又•/ AE=5, BE=12, AB=13,DBF BD15 “•- DF ,BF 18 2(4分) •-CFBC BF 即 CF 24 186(1 分)在Rt DCF 中,DFC90 , cotDC BCF 6 4 (1 分)DF22.(本题满分10分,第(1)小题5分,第(2)设 AE=5k,AB=13k •/ AB 2 AE 2 15 5 2小题5 分)BE 2BE 12k 12 (1 分)200k b 100 代入解析式得: 50k b 250"、+k1b 300所以y 关于x 的解析式为:y x 300 (2 )设门票价格定为 x 元,依题意可得:(x 20)( x 300)115002x 320x 17500 0 解之得:x=70 或者 x=250 (舍去)解:(1) 点 B (-1,0)、C ( 3,0)在抛物线 y ax 2 bx 3 上a b 3 0 一a 1• ,解得(2 分) 9a 3b 3 0 b2抛物线的表达式为 y x2x3,顶点D 的坐标是(1, - 4)(2分)(2)T A (0, -3) , C (3, 0), D (1, -4) /• AC 3j2 , CD 2真,AD 运23.(本题满分12分,第(1)小题5分,第(2)小题7分)(2分)证明:(1)v AD//BCAD BEDG BGAD GF• DG GF(1分)BE AG BAG• AB//CD(2分) (2 )T AD // BC , AB//CD四边形ABCD 是平行四边形•BC=AD(1 分)2 2•- BCGD BD •- ADGD BD 即ADGDBDAD又 • ADGBDA DAGABDAD Gs BDA(1分)AB//CD • ABDBDCAD // BC • DAG EBG=GE • DBC E • BDCDBC(3 分)BC=CD(1 分)四边形ABCD 是平行四边形•平行四边形 ABCD 是菱形. (1 分)24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)答:门票价格应该定为 70元.(1 分)整理得:(2分)(1 分) (1 分)(2 分) (2 分)2 2 2••• CD AC AD ••• CAD 90 (2 分)1 …S ACDAC AD213.2 2 3. 2(1 分)(3)v CADAOB 90 , ADAC2,B O AO• △ CADAOB , • ACD OAB•/ OA=OC , AOC 90 • OACOCA 45• OAC OAB OCA ACD , 即 BAC BCD(1 分)若以O 、P 、 C 为顶点的三角形与△ ABC 相似,且△ ABC 为锐角三角形则 POC 也为锐角三角形,点 P 在第四象限综上得 P (6, 18)或 P 2(2, 2)5 525. (本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)解:(1)v OD 过圆心,点 D 是弧AB 的中点,AB=8,1••• OD 丄 AB , AC —AB 4(2 分)2在 Rt △ AOC 中, ACO 90 , AO=5, • CO 、AO 2 AC 23(1 分) OD 5, CD OD OC 2(1 分)(2)过点O 作OH 丄AB ,垂足为点H ,则由(1)可得AH=4, OH=3••• AC=x , • CH | x 4 |在 Rt过P 作PH 丄OC ,垂足为点H ,则OH t , PH 6 2t①当 POCABC 时,由 tanPOC ta n ABC 得PH AOOH BO '•62t 66 匹)3解得t•- R (2t555②当POCACB 时,由 ta nPOC tan ACB tan 451 得PH1,OH•6 2t 1解得 t 2 , • P 2(2, 2)(2 分)t由点C (3, 0), D (1 , -4)得直线CD 的表达式是 y 6)( 0 t 3)2x 6,设 P (t,2t(3贝UOF=AE,在Rt △ AOF 中,•- AF ..AO2②当OA//BD时,则由①的方法可得1 i A B OHS ABO丄AB OH 丄OB AE /. AE2 2 OBAFO 90 , AO=5,----- 27OF 一•/ OF 过圆心,OF 丄AD,5过点B作BM丄OA交AO延长线于点24 亠出,在Rt A GOD 中,524OF5••• AD 2AF14(3分)5M,过点D作DG丄AO ,垂足为点G , DG BM DGO 90 , DO=5,•- GO .DO2 DG2AG AO7GO 5 -5185在Rt △ GAD 中,DGA 90 , • AD AG2DG2 6 (3 分)14综上得AD 14或65初三数学试卷共4页第11页。
上海市长宁区2017年中考二模数学试卷含答案
2017学年第二学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.函数12-=x y 的图像不经过( ▲ )(A ) 第一象限; (B ) 第二象限; (C ) 第三象限; (D ) 第四象限. 2.下列式子一定成立的是( ▲ )(A ) a a a 632=+; (B )428x x x =÷;(C ) aa 121=; (D )6321)(aa-=--. 3.下列二次根式中,2的同类二次根式是( ▲ ) (A )4; (B )x 2; (C )92; (D )12. 4.已知一组数据2、x 、8、5、5、2的众数是2,那么这组数据的中位数是( ▲ ) (A ) 3.5; (B ) 4; (C ) 2; (D )6.5.5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点, 那么d 的值可以取( ▲ )(A ) 11; (B ) 6; (C ) 3; (D )2.6.已知在四边形ABCD 中,AD //BC ,对角线AC 、BD 交于点O ,且AC =BD , 下列四个命题中真命题是( ▲ )(A ) 若AB =CD ,则四边形ABCD 一定是等腰梯形; (B ) 若∠DBC =∠ACB ,则四边形ABCD 一定是等腰梯形; (C ) 若ODCOOB AO =,则四边形ABCD 一定是矩形; (D ) 若AC ⊥BD 且AO =OD ,则四边形ABCD 一定是正方形.二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7. 计算:=--︒0)3(30sin ▲ . 8. 方程6+=-x x 的解是 ▲ .9. 不等式组⎪⎩⎪⎨⎧≥-<+-1)12(303x x 的解集是 ▲ .10.已知反比例函数xky =的图像经过点(-2017,2018),当0>x 时,函数值y 随 自变量x 的值增大而 ▲ .(填“增大”或“减小”)11.若关于x 的方程032=--m x x 有两个相等的实数根,则m 的值是 ▲ . 12.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是 ▲ .13.抛物线522++=mx mx y 的对称轴是直线 ▲ . 14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的 通话次数的频率是 ▲ .15.如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点,BC =15,CD =9,EF =6,∠AFE =50°,则∠ADC 的度数为 ▲ . 16.如图,在梯形ABCD 中,AB //CD ,∠C=90°,BC =CD =4,52=AD ,若a AD =,b DC =,用、表示= ▲ . 17.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边5=AB ,则它的周长等于 ▲ . 18.如图,在矩形ABCD 中,对角线BD 的长为1,点P 是线段BD上的一点,联结CP ,将△BCP 沿着直线CP 翻折,若点B 落在 边AD 上的点E 处,且EP //AB ,则AB 的长等于 ▲ .第14题图AB CDE F第15题图第16题图DCBA第18题图AB CD三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)先化简,再求值:12341311222+-++÷-+-+x x x x x x x ,其中121+=x .20.(本题满分10分)解方程组:⎩⎨⎧=-=-+②12①06522 . ,y x y xy x21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,135sin =∠ABC .(1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.22.(本题满分10分,第(1)小题5分,第(2)小题5分)某旅游景点的年游客量y (万人)是门票价格x (元)的一次函数,其函数图像如下图. (1)求y 关于x 的函数解析式;(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不得高于230元,该年的门票价格应该定为多少元?23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点 G 、F ,且AG GF BE AD =.(1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.ACDB第21题图第22题图ACDEF GB第23题图24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)如图在直角坐标平面内,抛物线32-+=bx ax y 与y 轴交于点A ,与x 轴分别交于点B (-1,0)、点C (3,0),点D 是抛物线的顶点. (1)求抛物线的表达式及顶点D 的坐标; (2)联结AD 、DC ,求ACD ∆的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标.25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.备用图第24题图OAC BO BA C DBAO长宁区2017学年第二学期初三数学参考答案和评分建议2018.3一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C . 二.填空题:(本大题共12题,满分48分) 7.21-; 8.2-=x ; 9.3>x ; 10.增大; 11.43-=m ; 12.53; 13.1-=x ;14.7.0;15.︒140; 16.→→-a b 21; 17.255或535++; 18.215-.三、(本大题共7题,第19、20、21、22每题10分,第23、24每题12分,第25题14分,满分78分)19. (本题满分10分)解:原式= )1)(3()1()1)(1(3112++-⨯-++-+x x x x x x x (3分) =2)1(111+--+x x x (2分) =2)1(11++-+x x x (1分) =2)1(2+x (1分)当12121-=+=x 时,原式=2)1(2+x =2)112(2+- =2)2(2=1 (3分) 20.(本题满分10分)解:方程①可变形为0))(6(=-+y x y x得06=+y x 或0=-y x (2分)将它们与方程②分别组成方程组,得(Ⅰ)⎩⎨⎧=-=+1206y x y x 或(Ⅱ)⎩⎨⎧=-=-120y x y x (2分)解方程组(Ⅰ)⎪⎩⎪⎨⎧-==131136y x , 解方程组(Ⅱ)⎩⎨⎧==11y x (4分) 所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x , ⎩⎨⎧==1122y x . (2分)另解:由②得12-=x y ③ (1分) 把③代入①,得0)12(6)12(522=---+x x x x (1分)整理得:0619132=+-x x (2分)解得:1,13621==x x (2分)分别代入③,得1,13121=-=y y (2分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x ,⎩⎨⎧==1122y x . (2分)21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE //∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分) ∴BF BC CF -= 即61824=-=CF (1分)在DCF Rt ∆中,︒=∠90DFC ,5426cot ===∠DF CF DCB (1分)22.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)设)0(≠+=k b kx y ,函数图像过点(200,100), (50,250) (1分)代入解析式得:⎩⎨⎧=+=+25050100200b k b k (2分)解之得:⎩⎨⎧=-=3001b k (1分)所以y 关于x 的解析式为:300+-=x y (1分) (2)设门票价格定为x 元,依题意可得:11500)300)(20(=+--x x (2分) 整理得: 0175003202=+-x x 解之得:x =70或者x =250(舍去) (2分)答:门票价格应该定为70元. (1分) 23.(本题满分12分,第(1)小题5分,第(2)小题7分) 证明:(1)∵BC AD // ∴BG DG BE AD = (2分)∵AG GFBE AD =∴AGGF BG DG = (1分) ∴ CD AB // (2分) (2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分) ∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分) ∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分) 24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分) 解:(1) 点B (-1,0)、C (3,0)在抛物线32-+=bx ax y 上∴⎩⎨⎧=-+=--033903b a b a ,解得⎩⎨⎧-==21b a ( 2分)∴抛物线的表达式为322--=x x y ,顶点D 的坐标是(1,-4) ( 2分) (2)∵A (0,-3),C (3,0),D (1,-4) ∴23=AC ,52=CD ,2=AD∴222AD AC CD += ∴︒=∠90CAD ( 2分)∴.32232121=⨯⨯=⋅⋅=∆AD AC S ACD (1分) (3)∵︒=∠=∠90AOB CAD ,2==AOACBO AD , ∴△CAD ∽△AOB ,∴OAB ACD ∠=∠∵OA =OC ,︒=∠90AOC ∴︒=∠=∠45OCA OAC∴ACD OCA OAB OAC ∠+∠=∠+∠,即BCD BAC ∠=∠ ( 1分)若以O 、P 、C 为顶点的三角形与△ABC 相似 ,且△ABC 为锐角三角形 则POC ∆也为锐角三角形,点P 在第四象限由点C (3,0),D (1,-4)得直线CD 的表达式是62-=x y ,设)62,(-t t P (30<<t ) 过P 作PH ⊥OC ,垂足为点H ,则t OH =,t PH 26-=①当ABC POC ∠=∠时,由ABC POC ∠=∠tan tan 得BO AO OH PH =,∴326=-t t ,解得56=t , ∴)518,56(1-P (2分) ②当ACB POC ∠=∠时,由145tan tan tan =︒=∠=∠ACB POC 得1=OHPH ,∴126=-tt,解得2=t ,∴)2,2(2-P ( 2分) 综上得)518,56(1-P 或)2,2(2-P 25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) 解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB =8,∴OD ⊥AB ,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO ,AO =5,∴322=-=AC AO CO (1分)5=OD ,2=-=∴OC OD CD (1分) (2)过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH =4,OH =3∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO ,AO =5, ∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO xx x x 5402582-+-= (80<<x ) (3分)(3)①当OB //AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,则OF =AE , AE OB OH AB S ABO ⋅=⋅=∆2121 ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO ,AO =5,∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分)②当OA //BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO ,DO =5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG ,在Rt △GAD 中,︒=∠90DGA ,∴622=+=DG AG AD ( 3分)综上得6514或=AD。
上海市长宁区2017年中考二模数学试卷(含答案)
2017学年第二学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.函数12-=x y 的图像不经过( ▲ )(A ) 第一象限; (B ) 第二象限; (C ) 第三象限; (D ) 第四象限. 2.下列式子一定成立的是( ▲ )(A ) a a a 632=+; (B )428x x x =÷;(C ) aa 121=; (D )6321)(aa-=--. 3.下列二次根式中,2的同类二次根式是( ▲ ) (A )4; (B )x 2; (C )92; (D )12. 4.已知一组数据2、x 、8、5、5、2的众数是2,那么这组数据的中位数是( ▲ ) (A ) 3.5; (B ) 4; (C ) 2; (D )6.5.5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点, 那么d 的值可以取( ▲ )(A ) 11; (B ) 6; (C ) 3; (D )2.6.已知在四边形ABCD 中,AD //BC ,对角线AC 、BD 交于点O ,且AC =BD , 下列四个命题中真命题是( ▲ )(A ) 若AB =CD ,则四边形ABCD 一定是等腰梯形; (B ) 若∠DBC =∠ACB ,则四边形ABCD 一定是等腰梯形; (C ) 若ODCOOB AO =,则四边形ABCD 一定是矩形; (D ) 若AC ⊥BD 且AO =OD ,则四边形ABCD 一定是正方形.二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7. 计算:=--︒0)3(30sin ▲ . 8. 方程6+=-x x 的解是 ▲ .9. 不等式组⎪⎩⎪⎨⎧≥-<+-1)12(303x x 的解集是 ▲ .10.已知反比例函数xky =的图像经过点(-2017,2018),当0>x 时,函数值y 随 自变量x 的值增大而 ▲ .(填“增大”或“减小”)11.若关于x 的方程032=--m x x 有两个相等的实数根,则m 的值是 ▲ . 12.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是 ▲ .13.抛物线522++=mx mx y 的对称轴是直线 ▲ . 14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的 通话次数的频率是 ▲ .15.如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点,BC =15,CD =9,EF =6,∠AFE =50°,则∠ADC 的度数为 ▲ . 16.如图,在梯形ABCD 中,AB //CD ,∠C=90°,BC =CD =4,52=AD ,若a AD =,b DC =,用、表示= ▲ . 17.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边5=AB ,则它的周长等于 ▲ . 18.如图,在矩形ABCD 中,对角线BD 的长为1,点P 是线段BD上的一点,联结CP ,将△BCP 沿着直线CP 翻折,若点B 落在 边AD 上的点E 处,且EP //AB ,则AB 的长等于 ▲ .第14题图AB CDE F第15题图第16题图DCBA第18题图AB CD三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)先化简,再求值:12341311222+-++÷-+-+x x x x x x x ,其中121+=x .20.(本题满分10分)解方程组:⎩⎨⎧=-=-+②12①06522 . ,y x y xy x21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,135sin =∠ABC .(1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.22.(本题满分10分,第(1)小题5分,第(2)小题5分)某旅游景点的年游客量y (万人)是门票价格x (元)的一次函数,其函数图像如下图. (1)求y 关于x 的函数解析式;(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不得高于230元,该年的门票价格应该定为多少元?23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点 G 、F ,且AG GF BE AD =.(1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.ACDB第21题图第22题图ACDEF GB第23题图24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)如图在直角坐标平面内,抛物线32-+=bx ax y 与y 轴交于点A ,与x 轴分别交于点B (-1,0)、点C (3,0),点D 是抛物线的顶点. (1)求抛物线的表达式及顶点D 的坐标; (2)联结AD 、DC ,求ACD ∆的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标.25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.备用图第24题图OAC BO BA C DBAO长宁区2017学年第二学期初三数学参考答案和评分建议2018.3一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C . 二.填空题:(本大题共12题,满分48分) 7.21-; 8.2-=x ; 9.3>x ; 10.增大; 11.43-=m ; 12.53; 13.1-=x ;14.7.0;15.︒140; 16.→→-a b 21; 17.255或535++; 18.215-.三、(本大题共7题,第19、20、21、22每题10分,第23、24每题12分,第25题14分,满分78分)19. (本题满分10分)解:原式= )1)(3()1()1)(1(3112++-⨯-++-+x x x x x x x (3分) =2)1(111+--+x x x (2分) =2)1(11++-+x x x (1分) =2)1(2+x (1分)当12121-=+=x 时,原式=2)1(2+x =2)112(2+- =2)2(2=1 (3分) 20.(本题满分10分)解:方程①可变形为0))(6(=-+y x y x得06=+y x 或0=-y x (2分)将它们与方程②分别组成方程组,得(Ⅰ)⎩⎨⎧=-=+1206y x y x 或(Ⅱ)⎩⎨⎧=-=-120y x y x (2分)解方程组(Ⅰ)⎪⎩⎪⎨⎧-==131136y x , 解方程组(Ⅱ)⎩⎨⎧==11y x (4分) 所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x , ⎩⎨⎧==1122y x . (2分)另解:由②得12-=x y ③ (1分) 把③代入①,得0)12(6)12(522=---+x x x x (1分)整理得:0619132=+-x x (2分)解得:1,13621==x x (2分)分别代入③,得1,13121=-=y y (2分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x ,⎩⎨⎧==1122y x . (2分)21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE //∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分) ∴BF BC CF -= 即61824=-=CF (1分)在DCF Rt ∆中,︒=∠90DFC ,5426cot ===∠DF CF DCB (1分)22.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)设)0(≠+=k b kx y ,函数图像过点(200,100), (50,250) (1分)代入解析式得:⎩⎨⎧=+=+25050100200b k b k (2分)解之得:⎩⎨⎧=-=3001b k (1分)所以y 关于x 的解析式为:300+-=x y (1分) (2)设门票价格定为x 元,依题意可得:11500)300)(20(=+--x x (2分) 整理得: 0175003202=+-x x 解之得:x =70或者x =250(舍去) (2分)答:门票价格应该定为70元. (1分) 23.(本题满分12分,第(1)小题5分,第(2)小题7分) 证明:(1)∵BC AD // ∴BG DG BE AD = (2分)∵AG GFBE AD =∴AGGF BG DG = (1分) ∴ CD AB // (2分) (2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分) ∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分) ∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分) 24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分) 解:(1) 点B (-1,0)、C (3,0)在抛物线32-+=bx ax y 上∴⎩⎨⎧=-+=--033903b a b a ,解得⎩⎨⎧-==21b a ( 2分)∴抛物线的表达式为322--=x x y ,顶点D 的坐标是(1,-4) ( 2分) (2)∵A (0,-3),C (3,0),D (1,-4) ∴23=AC ,52=CD ,2=AD∴222AD AC CD += ∴︒=∠90CAD ( 2分)∴.32232121=⨯⨯=⋅⋅=∆AD AC S ACD (1分) (3)∵︒=∠=∠90AOB CAD ,2==AOACBO AD , ∴△CAD ∽△AOB ,∴OAB ACD ∠=∠∵OA =OC ,︒=∠90AOC ∴︒=∠=∠45OCA OAC∴ACD OCA OAB OAC ∠+∠=∠+∠,即BCD BAC ∠=∠ ( 1分)若以O 、P 、C 为顶点的三角形与△ABC 相似 ,且△ABC 为锐角三角形 则POC ∆也为锐角三角形,点P 在第四象限由点C (3,0),D (1,-4)得直线CD 的表达式是62-=x y ,设)62,(-t t P (30<<t ) 过P 作PH ⊥OC ,垂足为点H ,则t OH =,t PH 26-=①当ABC POC ∠=∠时,由ABC POC ∠=∠tan tan 得BO AO OH PH =,∴326=-t t ,解得56=t , ∴)518,56(1-P (2分) ②当ACB POC ∠=∠时,由145tan tan tan =︒=∠=∠ACB POC 得1=OHPH ,∴126=-tt,解得2=t ,∴)2,2(2-P ( 2分) 综上得)518,56(1-P 或)2,2(2-P 25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) 解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB =8,∴OD ⊥AB ,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO ,AO =5,∴322=-=AC AO CO (1分)5=OD ,2=-=∴OC OD CD (1分) (2)过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH =4,OH =3∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO ,AO =5, ∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO xx x x 5402582-+-= (80<<x ) (3分)(3)①当OB //AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,则OF =AE , AE OB OH AB S ABO ⋅=⋅=∆2121 ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO ,AO =5,∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分)②当OA //BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO ,DO =5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG ,在Rt △GAD 中,︒=∠90DGA ,∴622=+=DG AG AD ( 3分)综上得6514或=AD。
(完整)上海市长宁区2017年中考二模数学试卷--附答案
2017学年第二学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效。
2。
除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.函数12-=x y 的图像不经过( ▲ )(A ) 第一象限; (B ) 第二象限; (C) 第三象限; (D ) 第四象限. 2.下列式子一定成立的是( ▲ )(A) a a a 632=+; (B )428x x x =÷; (C ) aa 121=; (D )6321)(aa -=--. 3.下列二次根式中,2的同类二次根式是( ▲ ) (A )4; (B)x 2; (C )92; (D )12. 4.已知一组数据2、x 、8、5、5、2的众数是2,那么这组数据的中位数是( ▲ ) (A ) 3。
5; (B ) 4; (C ) 2; (D)6.5.5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点,那么d 的值可以取( ▲ )(A ) 11; (B) 6; (C ) 3; (D)2.6.已知在四边形ABCD 中,AD //BC ,对角线AC 、BD 交于点O ,且AC =BD ,下列四个命题中真命题是( ▲ )(A ) 若AB =CD ,则四边形ABCD 一定是等腰梯形; (B) 若∠DBC =∠ACB ,则四边形ABCD 一定是等腰梯形; (C ) 若ODCOOB AO =,则四边形ABCD 一定是矩形; (D ) 若AC ⊥BD 且AO =OD ,则四边形ABCD 一定是正方形. 二、填空题(本大题共12题, 每题4分, 满分48分)【在答题纸相应题号后的空格内直接填写答案】 7. 计算:=--︒0)3(30sin ▲ . 8. 方程6+=-x x 的解是 ▲ .9. 不等式组⎪⎩⎪⎨⎧≥-<+-1)12(303x x 的解集是 ▲ .10.已知反比例函数xky =的图像经过点(-2017,2018),当0>x 时,函数值y 随 自变量x 的值增大而 ▲ .(填“增大”或“减小”)11.若关于x 的方程032=--m x x 有两个相等的实数根,则m 的值是 ▲ . 12.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是 ▲ .13.抛物线522++=mx mx y 的对称轴是直线 ▲ . 14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的 通话次数的频率是 ▲ .15.如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点,BC =15,CD =9,EF =6,∠AFE =50°,则∠ADC 的度数为 ▲ .16.如图,在梯形ABCD 中,AB //CD ,∠C=90°,BC =CD =4,52=AD ,若a AD =,b DC =,用a 、b 表示=DB ▲ .17.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边5=AB ,则它的周长等于 ▲ .18.如图,在矩形ABCD 中,对角线BD 的长为1,点P 是线段BD上的一点,联结CP ,将△BCP 沿着直线CP 翻折,若点B 落在 边AD 上的点E 处,且EP //AB ,则AB 的长等于 ▲ .三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】第14题图 ABCDE F第15题图第16题图DCBA第18题图ABCD19.(本题满分10分)先化简,再求值:12341311222+-++÷-+-+x x x x x x x ,其中121+=x .20.(本题满分10分)解方程组:⎩⎨⎧=-=-+②12①06522 . ,y x y xy x21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,135sin =∠ABC .(1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.22.(本题满分10分,第(1)小题5分,第(2)小题5分)某旅游景点的年游客量y (万人)是门票价格x (元)的一次函数,其函数图像如下图. (1)求y 关于x 的函数解析式;(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不得高于230元,该年的门票价格应该定为多少元?23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点G 、F ,且AGGF BE AD =.(1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)如图在直角坐标平面内,抛物线32-+=bx ax y 与y 轴交于点A ,与x 轴分别交于点B (—1,0)、点C (3,ACDB第21题图第22题图AC DEF GB第23题图0),点D 是抛物线的顶点.(1)求抛物线的表达式及顶点D 的坐标; (2)联结AD 、DC ,求ACD ∆的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标.25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.长宁区2017学年第二学期初三数学参考答案和评分建议2018.3一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.D; 3.C ; 4.A; 5.D ; 6.C .备用图第24题图OAC DB图1 O BA C D图2 BAO备用图第25题图二.填空题:(本大题共12题,满分48分)7.21-; 8.2-=x ; 9.3>x ; 10.增大; 11.43-=m ; 12.53;13.1-=x ;14.7.0;15.︒140; 16.→→-a b 21; 17.255或535++; 18.215-.三、(本大题共7题,第19、20、21、22每题10分,第23、24每题12分,第25题14分,满分78分)19。
上海市长宁区年中考二模数学试卷含答案
2018学年第二学期初三数学教学质量检测试卷201804(考试时间:100分钟 满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】1.函数12-=x y 的图像不经过( ▲ )(A ) 第一象限; (B ) 第二象限; (C ) 第三象限; (D ) 第四象限.2.下列式子一定成立的是( ▲ )(A ) a a a 632=+; (B )428x x x =÷;(C ) a a 121=; (D )6321)(aa -=--. 3.下列二次根式中,2的同类二次根式是( ▲ )(A )4; (B )x 2; (C )92; (D )12. 4.已知一组数据2、x 、8、5、5、2的众数是2,那么这组数据的中位数是( ▲ )(A ) ; (B ) 4; (C ) 2; (D ).5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点,那么d 的值可以取( ▲ )(A ) 11; (B ) 6; (C ) 3; (D )2.6.已知在四边形ABCD 中,AD OD CO OB AO ==--︒0)3(30sin 6+=-x x ⎪⎩⎪⎨⎧≥-<+-1)12(303x x x k y =0>x 032=--m x x 522++=mx mx y 52=AD a AD =b DC ==5=AB 12341311222+-++÷-+-+x x x x x x x 第14题图 第15题图 16第18题图121+=x ⎩⎨⎧=-=-+② 12① 06522 . ,y x y xy x 135sin =∠ABC DCB ∠AG GF BE AD =BDGD BC ⋅=232-+=bx ax y (1)求抛物线的表达式及顶点D 的坐标;(2)联结AD 、DC ,求ACD ∆的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标.25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长;(2)如图2,设AC =x ,y S S OBDACO =∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.长宁区2017学年第二学期初三数学参考答案和评分建议第21题图第22题图第23题图 备用图 第24题图一、选择题:(本大题共6题,每题4分,满分24分)1.B; 2.D; 3.C; 4.A; 5.D; 6.C.二.填空题:(本大题共12题,满分48分)7.; 8.; 9.; 10.增大; 11.; 12.;13.;14.;15.; 16.; 17.; 18..三、(本大题共7题,第19、20、21、22每题10分,第23、24每题12分,第25题14分,满分78分)19. (本题满分10分)解:原式= (3分)= (2分)= (1分)= (1分)当时,原式== ==1 (3分)20.(本题满分10分)解:方程①可变形为得或(2分)将它们与方程②分别组成方程组,得(Ⅰ)或(Ⅱ)(2分)解方程组(Ⅰ),解方程组(Ⅱ)(4分)所以原方程组的解是, . (2分)另解:由②得③(1分)把③代入①,得(1分)整理得:(2分)解得:(2分)分别代入③,得(2分)所以原方程组的解是, . (2分)21.(本题满分10分,第(1)小题4分,第(2)小题6分)解:(1)过点A作AE⊥BC,垂足为点E又∵AB=AC∴∵BC=24 ∴BE=12 (1分)在中,,(1分)设AE=5k,AB=13k ∵∴∴,∴,(2分)(2)过点D作DF⊥BC,垂足为点F∵AD=,AB=13 ∴BD=AB+AD=∵AE⊥BC,DF⊥BC ∴∴∴又∵AE=5,BE=12,AB=13,∴(4分)∴即(1分)在中,,(1分)22.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)设,函数图像过点(200,100),(50,250)(1分)代入解析式得:(2分)解之得:(1分)所以y关于x的解析式为:(1分)(2)设门票价格定为x元,依题意可得:(2分)整理得:解之得:x=70或者x=250(舍去)(2分)答:门票价格应该定为70元. (1分)23.(本题满分12分,第(1)小题5分,第(2)小题7分)证明:(1)∵∴(2分)∵∴(1分)∴(2分)(2)∵,∴四边形ABCD是平行四边形∴BC=AD (1分)∵∴即又∵∴∽(1分)∴∵∴∵∴∵BG=GE ∴∴(3分)∴BC=CD (1分)∵四边形ABCD是平行四边形∴平行四边形ABCD是菱形. (1分)24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)解:(1)点B(-1,0)、C(3,0)在抛物线上∴,解得( 2分)∴抛物线的表达式为,顶点D的坐标是(1,-4)( 2分)(2)∵A(0,-3),C(3,0),D(1,-4)∴,,∴∴( 2分)∴(1分)(3)∵,,∴△CAD∽△AOB,∴∵OA=OC,∴∴,即( 1分)若以O、P、C为顶点的三角形与△ABC相似,且△ABC为锐角三角形则也为锐角三角形,点P在第四象限由点C(3,0),D(1,-4)得直线CD的表达式是,设()过P作PH⊥OC,垂足为点H,则,①当时,由得,∴,解得,∴(2分)②当时,由得,∴,解得,∴( 2分)综上得或25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)解:(1)∵OD过圆心,点D是弧AB的中点,AB=8,∴OD⊥AB,(2分)在Rt△AOC中,,AO=5,∴ (1分),(1分)(2)过点O作OH⊥AB,垂足为点H,则由(1)可得AH=4,OH=3∵AC=x,∴在Rt△HOC中,,AO=5,∴,(1分)∴()(3分)(3)①当OB(3分)②当OA//BD时,过点B作BM⊥OA交AO延长线于点M,过点D作DG⊥AO,垂足为点G,则由①的方法可得,在Rt△GOD中,,DO=5,∴,,在Rt△GAD中,,∴( 3分)综上得。
上海市长宁区2017年中考二模数学试卷(含答案)
2017学年第二学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.函数12-=x y 的图像不经过( ▲ )(A ) 第一象限; (B ) 第二象限; (C ) 第三象限; (D ) 第四象限. 2.下列式子一定成立的是( ▲ )(A ) a a a 632=+; (B )428x x x =÷; (C ) aa 121=; (D )6321)(a a-=--. 3.下列二次根式中,2的同类二次根式是( ▲ ) (A )4; (B )x 2; (C )92; (D )12. 4.已知一组数据2、x 、8、5、5、2的众数是2,那么这组数据的中位数是( ▲ ) (A ) 3.5; (B ) 4; (C ) 2; (D )6.5.5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点, 那么d 的值可以取( ▲ )(A ) 11; (B ) 6; (C ) 3; (D )2.6.已知在四边形ABCD 中,AD //BC ,对角线AC 、BD 交于点O ,且AC =BD , 下列四个命题中真命题是( ▲ )(A ) 若AB =CD ,则四边形ABCD 一定是等腰梯形; (B ) 若∠DBC =∠ACB ,则四边形ABCD 一定是等腰梯形; (C ) 若ODCOOB AO =,则四边形ABCD 一定是矩形; (D ) 若AC ⊥BD 且AO =OD ,则四边形ABCD 一定是正方形. 二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】7. 计算:=--︒0)3(30sin ▲ . 8. 方程6+=-x x 的解是 ▲ .9. 不等式组⎪⎩⎪⎨⎧≥-<+-1)12(303x x 的解集是 ▲ .10.已知反比例函数xky =的图像经过点(-2017,2018),当0>x 时,函数值y 随 自变量x 的值增大而 ▲ .(填“增大”或“减小”)11.若关于x 的方程032=--m x x 有两个相等的实数根,则m 的值是 ▲ . 12.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是 ▲ .13.抛物线522++=mx mx y 的对称轴是直线 ▲ . 14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的 通话次数的频率是 ▲ .15.如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点,BC =15,CD =9,EF =6,∠AFE =50°,则∠ADC 的度数为 ▲ . 16.如图,在梯形ABCD 中,AB //CD ,∠C=90°,BC =CD =4,52=AD ,若=,=,用a 、b 表示= ▲ . 17.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边5=AB ,则它的周长等于 ▲ . 18.如图,在矩形ABCD 中,对角线BD 的长为1,点P 是线段BD上的一点,联结CP ,将△BCP 沿着直线CP 翻折,若点B 落在 边AD 上的点E 处,且EP //AB ,则AB 的长等于 ▲ .三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)先化简,再求值:12341311222+-++÷-+-+x x x x x x x ,其中121+=x .第14题图AB CDE F第15题图第16题图DCBA第18题图AB CD20.(本题满分10分)解方程组:⎩⎨⎧=-=-+②12①06522 . ,y x y xy x21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,135sin =∠ABC .(1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.22.(本题满分10分,第(1)小题5分,第(2)小题5分)某旅游景点的年游客量y (万人)是门票价格x (元)的一次函数,其函数图像如下图. (1)求y 关于x 的函数解析式;(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不得高于230元,该年的门票价格应该定为多少元?23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点 G 、F ,且AG GF BE AD =.(1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)如图在直角坐标平面内,抛物线32-+=bx ax y 与y 轴交于点A ,与x 轴分别交于点B (-1,0)、点C (3,0),点D 是抛物线的顶点.(1)求抛物线的表达式及顶点D 的坐标; (2)联结AD 、DC ,求ACD ∆的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标.ADB第21题图第22题图AC DEFGB 第23题图25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.长宁区2017学年第二学期初三数学参考答案和评分建议2018.3一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C . 二.填空题:(本大题共12题,满分48分) 7.21-; 8.2-=x ; 9.3>x ; 10.增大; 11.43-=m ; 12.53; 13.1-=x ;14.7.0;15.︒140; 16.→→-a b 21; 17.255或535++; 18.215-.三、(本大题共7题,第19、20、21、22每题10分,第23、24每题12分,第25题14分,满分78分)OAC DBO BA C DBAO19. (本题满分10分)解:原式= )1)(3()1()1)(1(3112++-⨯-++-+x x x x x x x (3分) =2)1(111+--+x x x (2分) =2)1(11++-+x x x (1分)=2)1(2+x (1分)当12121-=+=x 时,原式=2)1(2+x =2)112(2+- =2)2(2=1 (3分) 20.(本题满分10分)解:方程①可变形为0))(6(=-+y x y x得06=+y x 或0=-y x (2分)将它们与方程②分别组成方程组,得(Ⅰ)⎩⎨⎧=-=+1206y x y x 或(Ⅱ)⎩⎨⎧=-=-120y x y x (2分)解方程组(Ⅰ)⎪⎩⎪⎨⎧-==131136y x , 解方程组(Ⅱ)⎩⎨⎧==11y x (4分) 所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x , ⎩⎨⎧==1122y x . (2分)另解:由②得12-=x y ③ (1分) 把③代入①,得0)12(6)12(522=---+x x x x (1分)整理得:0619132=+-x x (2分)解得:1,13621==x x (2分)分别代入③,得1,13121=-=y y (2分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x ,⎩⎨⎧==1122y x . (2分)21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE ∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE //∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分)∴BF BC CF -= 即61824=-=CF (1分)在DCF Rt ∆中,︒=∠90DFC ,542156cot ===∠DF CF DCB (1分)22.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)设)0(≠+=k b kx y ,函数图像过点(200,100), (50,250) (1分)代入解析式得:⎩⎨⎧=+=+25050100200b k b k (2分)解之得:⎩⎨⎧=-=3001b k (1分)所以y 关于x 的解析式为:300+-=x y (1分) (2)设门票价格定为x 元,依题意可得:11500)300)(20(=+--x x (2分) 整理得: 0175003202=+-x x 解之得:x =70或者x =250(舍去) (2分)答:门票价格应该定为70元. (1分)23.(本题满分12分,第(1)小题5分,第(2)小题7分) 证明:(1)∵BC AD // ∴BGDG BE AD = (2分)∵AG GF BE AD = ∴AGGF BG DG = (1分)∴ CD AB // (2分) (2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分)∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分) ∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分) 24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分) 解:(1) 点B (-1,0)、C (3,0)在抛物线32-+=bx ax y 上∴⎩⎨⎧=-+=--033903b a b a ,解得⎩⎨⎧-==21b a ( 2分)∴抛物线的表达式为322--=x x y ,顶点D 的坐标是(1,-4) ( 2分) (2)∵A (0,-3),C (3,0),D (1,-4) ∴23=AC ,52=CD ,2=AD∴222AD AC CD += ∴︒=∠90CAD ( 2分) ∴.32232121=⨯⨯=⋅⋅=∆AD AC S ACD (1分) (3)∵︒=∠=∠90AOB CAD ,2==AOACBO AD , ∴△CAD ∽△AOB ,∴OAB ACD ∠=∠∵OA =OC ,︒=∠90AOC ∴︒=∠=∠45OCA OAC∴ACD OCA OAB OAC ∠+∠=∠+∠,即BCD BAC ∠=∠ ( 1分) 若以O 、P 、C 为顶点的三角形与△ABC 相似 ,且△ABC 为锐角三角形 则POC ∆也为锐角三角形,点P 在第四象限由点C (3,0),D (1,-4)得直线CD 的表达式是62-=x y ,设)62,(-t t P (30<<t ) 过P 作PH ⊥OC ,垂足为点H ,则t OH =,t PH 26-=①当ABC POC ∠=∠时,由ABC POC ∠=∠tan tan 得BO AO OH PH =,∴326=-t t ,解得56=t , ∴)518,56(1-P (2分) ②当ACB POC ∠=∠时,由145tan tan tan =︒=∠=∠ACB POC 得1=OH PH ,∴126=-tt,解得2=t ,∴)2,2(2-P ( 2分)综上得)518,56(1-P 或)2,2(2-P 25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) 解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB =8,∴OD ⊥AB ,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO ,AO =5,∴322=-=AC AO CO (1分)5=OD ,2=-=∴OC OD CD (1分)(2)过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH =4,OH =3 ∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO ,AO =5, ∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO xx x x 5402582-+-= (80<<x ) (3分)(3)①当OB //AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,则OF =AE , AE OB OH AB S ABO ⋅=⋅=∆2121 ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO ,AO =5,∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分)②当OA //BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO ,DO =5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG ,在Rt △GAD 中,︒=∠90DGA ,∴622=+=DG AG AD ( 3分)综上得6514或=AD。
上海市长宁区2017年中考二模数学试卷有答案
2017学年第二学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.函数12-=x y 的图像不经过( )(A ) 第一象限; (B ) 第二象限; (C ) 第三象限; (D ) 第四象限. 2.下列式子一定成立的是( )(A ) a a a 632=+; (B )428x x x =÷; (C ) aa 121=; (D )6321)(aa-=--. 3.下列二次根式中,2的同类二次根式是( ) (A )4; (B )x 2; (C )92; (D )12. 4.已知一组数据2、x 、8、5、5、2的众数是2,那么这组数据的中位数是( ) (A ) 3.5; (B ) 4; (C ) 2; (D )6.5.5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点, 那么d 的值可以取( )(A ) 11; (B ) 6; (C ) 3; (D )2.6.已知在四边形ABCD 中,AD //BC ,对角线AC 、BD 交于点O ,且AC =BD , 下列四个命题中真命题是( )(A ) 若AB =CD ,则四边形ABCD 一定是等腰梯形; (B ) 若∠DBC =∠ACB ,则四边形ABCD 一定是等腰梯形; (C ) 若ODCOOB AO =,则四边形ABCD 一定是矩形; (D ) 若AC ⊥BD 且AO =OD ,则四边形ABCD 一定是正方形. 二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7. 计算:=--︒0)3(30sin . 8. 方程6+=-x x 的解是 .9. 不等式组⎪⎩⎪⎨⎧≥-<+-1)12(303x x 的解集是 .10.已知反比例函数xky =的图像经过点(-2017,2018),当0>x 时,函数值y 随 自变量x 的值增大而 .(填“增大”或“减小”)11.若关于x 的方程032=--m x x 有两个相等的实数根,则m 的值是 . 12.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是 .13.抛物线522++=mx mx y 的对称轴是直线 . 14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的 通话次数的频率是 .15.如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点,BC =15,CD =9,EF =6,∠AFE =50°,则∠ADC 的度数为 . 16.如图,在梯形ABCD 中,AB //CD ,∠C=90°,BC =CD =4,52=AD , 若a AD =,b DC =,用a 、b 表示=DB . 17.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC 是半高三角形,且斜边5=AB ,则它的周长等于 . 18.如图,在矩形ABCD 中,对角线BD 的长为1,点P 是线段BD上的一点,联结CP ,将△BCP 沿着直线CP 翻折,若点B 落在 边AD 上的点E 处,且EP //AB ,则AB 的长等于 .三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)先化简,再求值:12341311222+-++÷-+-+x x x x x x x ,其中121+=x .20.(本题满分10分)解方程组:⎩⎨⎧=-=-+② 12①06522 . ,y x y xy x21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,135sin =∠ABC .(1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.22.(本题满分10分,第(1)小题5分,第(2)小题5分)ACDB 第21题图第14题图 A BCD EF第15题图 第16题图 D CBA 第18题图ABCD某旅游景点的年游客量y (万人)是门票价格x (元)的一次函数,其函数图像如下图. (1)求y 关于x 的函数解析式;(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不得高于230元,该年的门票价格应该定为多少元?23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点 G 、F ,且AG GF BE AD =.(1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)如图在直角坐标平面内,抛物线32-+=bx ax y 与y 轴交于点A ,与x 轴分别交于点B (-1,0)、点C (3,0),点D 是抛物线的顶点.(1)求抛物线的表达式及顶点D 的坐标; (2)联结AD 、DC ,求ACD ∆的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标.25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知圆O 的半径长为5 ,弦AB 的长为8. (1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.第22题图ACDEF GB第23题图备用图第24题图长宁区2017学年第二学期初三数学参考答案和评分建议2018.3一、选择题:(本大题共6题,每题41.B ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C . 二.填空题:(本大题共12题,满分48分) 7.21-; 8.2-=x ; 9.3>x ; 10.增大; 11.43-=m ; 12.53; 13.1-=x ;14.7.0;15.︒140; 16.→→-a b 21; 17.255或535++; 18.215-.三、(本大题共7题,第19、20、21、22每题10分,第23、24每题12分,第25题14分,满分78分)19. (本题满分10分)解:原式= )1)(3()1()1)(1(3112++-⨯-++-+x x x x x x x (3分) =2)1(111+--+x x x (2分) =2)1(11++-+x x x (1分)=2)1(2+x (1分)当12121-=+=x 时,原式=2)1(2+x =2)112(2+- =2)2(2=1 (3分)20.(本题满分10分)解:方程①可变形为0))(6(=-+y x y x得06=+y x 或0=-y x (2分) 将它们与方程②分别组成方程组,得(Ⅰ)⎩⎨⎧=-=+1206y x y x 或(Ⅱ)⎩⎨⎧=-=-120y x y x (2分)解方程组(Ⅰ)⎪⎩⎪⎨⎧-==131136y x , 解方程组(Ⅱ)⎩⎨⎧==11y x (4分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x , ⎩⎨⎧==1122y x . (2分)另解:由②得12-=x y ③ (1分)把③代入①,得0)12(6)12(522=---+x x x x (1分)整理得:0619132=+-x x (2分)解得:1,13621==x x (2分)O A C B图1 O BA C D图2 BAO备用图第25题图分别代入③,得1,13121=-=y y (2分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x ,⎩⎨⎧==1122y x . (2分)21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE ∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE // ∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分)∴BF BC CF -= 即61824=-=CF (1分)在DCF Rt ∆中,︒=∠90DFC ,542156cot ===∠DF CF DCB (1分)22.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)设)0(≠+=k b kx y ,函数图像过点(200,100), (50,250) (1分)代入解析式得:⎩⎨⎧=+=+25050100200b k b k (2分)解之得:⎩⎨⎧=-=3001b k (1分)所以y 关于x 的解析式为:300+-=x y (1分)(2)设门票价格定为x 元,依题意可得:11500)300)(20(=+--x x (2分)整理得: 0175003202=+-x x 解之得:x =70或者x =250(舍去) (2分)答:门票价格应该定为70元. (1分) 23.(本题满分12分,第(1)小题5分,第(2)小题7分) 证明:(1)∵BC AD // ∴BGDG BE AD = (2分)∵AG GF BE AD = ∴AGGF BG DG = (1分) ∴ CD AB // (2分) (2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分)∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分) ∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分) 24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)解:(1) 点B (-1,0)、C (3,0)在抛物线32-+=bx ax y 上∴⎩⎨⎧=-+=--033903b a b a ,解得⎩⎨⎧-==21b a ( 2分)∴抛物线的表达式为322--=x x y ,顶点D 的坐标是(1,-4) ( 2分) (2)∵A (0,-3),C (3,0),D (1,-4) ∴23=AC ,52=CD ,2=AD∴222AD AC CD += ∴︒=∠90CAD ( 2分)∴.32232121=⨯⨯=⋅⋅=∆AD AC S ACD (1分)(3)∵︒=∠=∠90AOB CAD ,2==AOACBO AD , ∴△CAD ∽△AOB ,∴OAB ACD ∠=∠∵OA =OC ,︒=∠90AOC ∴︒=∠=∠45OCA OAC∴ACD OCA OAB OAC ∠+∠=∠+∠,即BCD BAC ∠=∠ ( 1分) 若以O 、P 、C 为顶点的三角形与△ABC 相似 ,且△ABC 为锐角三角形 则POC ∆也为锐角三角形,点P 在第四象限 由点C (3,0),D (1,-4)得直线CD 的表达式是62-=x y ,设)62,(-t t P (30<<t ) 过P 作PH ⊥OC ,垂足为点H ,则t OH =,t PH 26-=①当ABC POC ∠=∠时,由ABC POC ∠=∠tan tan 得BOAO OH PH =,∴326=-t t ,解得56=t , ∴)518,56(1-P (2分) ②当ACB POC ∠=∠时,由145tan tan tan =︒=∠=∠ACB POC 得1=OHPH ,∴126=-tt,解得2=t ,∴)2,2(2-P ( 2分) 综上得)518,56(1-P 或)2,2(2-P 25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) 解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB =8, ∴OD ⊥AB ,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO Θ,AO =5,∴322=-=AC AO CO (1分) 5=OD Θ,2=-=∴OC OD CD (1分)(2)过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH =4,OH =3 ∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO Θ,AO =5, ∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO xx x x 5402582-+-= (80<<x ) (3分)(3)①当OB //AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,则OF =AE , AE OB OH AB S ABO ⋅=⋅=∆2121Θ ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO Θ,AO =5,∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分) ②当OA //BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO Θ,DO =5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG ,在Rt △GAD 中,︒=∠90DGA Θ,∴622=+=DG AG AD ( 3分)综上得6514或=AD。
上海市长宁区2017年中考二模数学试卷有答案
2017学年第二学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.函数12-=x y 的图像不经过( ▲ )(A ) 第一象限; (B ) 第二象限; (C ) 第三象限; (D ) 第四象限. 2.下列式子一定成立的是( ▲ )(A ) a a a 632=+; (B )428x x x =÷; (C ) aa 121=; (D )6321)(aa-=--. 3.下列二次根式中,2的同类二次根式是( ▲ ) (A )4; (B )x 2; (C )92; (D )12. 4.已知一组数据2、x 、8、5、5、2的众数是2,那么这组数据的中位数是( ▲ ) (A ) 3.5; (B ) 4; (C ) 2; (D )6.5.5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点, 那么d 的值可以取( ▲ )(A ) 11; (B ) 6; (C ) 3; (D )2.6.已知在四边形ABCD 中,AD //BC ,对角线AC 、BD 交于点O ,且AC =BD , 下列四个命题中真命题是( ▲ )(A ) 若AB =CD ,则四边形ABCD 一定是等腰梯形; (B ) 若∠DBC =∠ACB ,则四边形ABCD 一定是等腰梯形; (C ) 若ODCOOB AO =,则四边形ABCD 一定是矩形; (D ) 若AC ⊥BD 且AO =OD ,则四边形ABCD 一定是正方形. 二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7. 计算:=--︒0)3(30sin ▲ . 8. 方程6+=-x x 的解是 ▲ .9. 不等式组⎪⎩⎪⎨⎧≥-<+-1)12(303x x 的解集是 ▲ .10.已知反比例函数xky =的图像经过点(-2017,2018),当0>x 时,函数值y 随 自变量x 的值增大而 ▲ .(填“增大”或“减小”)11.若关于x 的方程032=--m x x 有两个相等的实数根,则m 的值是 ▲ . 12.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是 ▲ .13.抛物线522++=mx mx y 的对称轴是直线 ▲ . 14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的 通话次数的频率是 ▲ .15.如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点,BC =15,CD =9,EF =6,∠AFE =50°,则∠ADC 的度数为 ▲ . 16.如图,在梯形ABCD 中,AB //CD ,∠C=90°,BC =CD =4,52=AD , 若a AD =,b DC =,用a 、b 表示=DB ▲ . 17.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC 是半高三角形,且斜边5=AB ,则它的周长等于 ▲ . 18.如图,在矩形ABCD 中,对角线BD 的长为1,点P 是线段BD上的一点,联结CP ,将△BCP 沿着直线CP 翻折,若点B 落在 边AD 上的点E 处,且EP //AB ,则AB 的长等于 ▲ .三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)先化简,再求值:12341311222+-++÷-+-+x x x x x x x ,其中121+=x .20.(本题满分10分)解方程组:⎩⎨⎧=-=-+②12①06522 . ,y x y xy x21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,AD第14题图 A BCD EF第15题图 第16题图 D CBA 第18题图ABCD135sin =∠ABC . (1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.22.(本题满分10分,第(1)小题5分,第(2)小题5分)某旅游景点的年游客量y (万人)是门票价格x (元)的一次函数,其函数图像如下图. (1)求y 关于x 的函数解析式;(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不得高于230元,该年的门票价格应该定为多少元?23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点 G 、F ,且AG GF BE AD =.(1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)如图在直角坐标平面内,抛物线32-+=bx ax y 与y 轴交于点A ,与x 轴分别交于点B (-1,0)、点C (3,0),点D 是抛物线的顶点. (1)求抛物线的表达式及顶点D 的坐标; (2)联结AD 、DC ,求ACD ∆的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标.25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知第22题图ACDEF GB第23题图备用图圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.学年第二学参考答案议2018.3一、选择题:(本大题共6题,每题41.B ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C . 二.填空题:(本大题共12题,满分48分) 7.21-; 8.2-=x ; 9.3>x ; 10.增大; 11.43-=m ; 12.53; 13.1-=x ;14.7.0;15.︒140; 16.→→-a b 21; 17.255或535++; 18.215-.三、(本大题共7题,第19、20、21、22每题10分,第23、24每题12分,第25题14分,满分78分)19. (本题满分10分)解:原式= )1)(3()1()1)(1(3112++-⨯-++-+x x x x x x x (3分) =2)1(111+--+x x x (2分) =2)1(11++-+x x x (1分)=2)1(2+x (1分)当12121-=+=x 时,原式=2)1(2+x =2)112(2+- =2)2(2=1 (3分)20.(本题满分10分)解:方程①可变形为0))(6(=-+y x y x得06=+y x 或0=-y x (2分) 将它们与方程②分别组成方程组,得(Ⅰ)⎩⎨⎧=-=+1206y x y x 或(Ⅱ)⎩⎨⎧=-=-120y x y x (2分)解方程组(Ⅰ)⎪⎩⎪⎨⎧-==131136y x , 解方程组(Ⅱ)⎩⎨⎧==11y x (4分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x , ⎩⎨⎧==1122y x . (2分)O A C BO BA C DBAO另解:由②得12-=x y ③ (1分) 把③代入①,得0)12(6)12(522=---+x x x x (1分)整理得:0619132=+-x x (2分)解得:1,13621==x x (2分)分别代入③,得1,13121=-=y y (2分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x ,⎩⎨⎧==1122y x . (2分)21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE ∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE // ∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分)∴BF BC CF -= 即61824=-=CF (1分)在DCF Rt ∆中,︒=∠90DFC ,542156cot ===∠DF CF DCB (1分)22.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)设)0(≠+=k b kx y ,函数图像过点(200,100), (50,250) (1分)代入解析式得:⎩⎨⎧=+=+25050100200b k b k (2分)解之得:⎩⎨⎧=-=3001b k (1分)所以y 关于x 的解析式为:300+-=x y (1分)(2)设门票价格定为x 元,依题意可得:11500)300)(20(=+--x x (2分)整理得: 0175003202=+-x x 解之得:x =70或者x =250(舍去) (2分)答:门票价格应该定为70元. (1分) 23.(本题满分12分,第(1)小题5分,第(2)小题7分) 证明:(1)∵BC AD // ∴BGDG BE AD = (2分)∵AG GF BE AD = ∴AGGF BG DG = (1分)∴ CD AB // (2分) (2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分)∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分) ∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分) 24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)解:(1) 点B (-1,0)、C (3,0)在抛物线32-+=bx ax y 上∴⎩⎨⎧=-+=--033903b a b a ,解得⎩⎨⎧-==21b a ( 2分)∴抛物线的表达式为322--=x x y ,顶点D 的坐标是(1,-4) ( 2分) (2)∵A (0,-3),C (3,0),D (1,-4) ∴23=AC ,52=CD ,2=AD∴222AD AC CD += ∴︒=∠90CAD ( 2分)∴.32232121=⨯⨯=⋅⋅=∆AD AC S ACD (1分)(3)∵︒=∠=∠90AOB CAD ,2==AOACBO AD , ∴△CAD ∽△AOB ,∴OAB ACD ∠=∠∵OA =OC ,︒=∠90AOC ∴︒=∠=∠45OCA OAC∴ACD OCA OAB OAC ∠+∠=∠+∠,即BCD BAC ∠=∠ ( 1分) 若以O 、P 、C 为顶点的三角形与△ABC 相似 ,且△ABC 为锐角三角形 则POC ∆也为锐角三角形,点P 在第四象限 由点C (3,0),D (1,-4)得直线CD 的表达式是62-=x y ,设)62,(-t t P (30<<t ) 过P 作PH ⊥OC ,垂足为点H ,则t OH =,t PH 26-=①当ABC POC ∠=∠时,由ABC POC ∠=∠tan tan 得BOAO OH PH =,∴326=-t t ,解得56=t , ∴)518,56(1-P (2分) ②当ACB POC ∠=∠时,由145tan tan tan =︒=∠=∠ACB POC 得1=OHPH ,∴126=-tt,解得2=t ,∴)2,2(2-P ( 2分) 综上得)518,56(1-P 或)2,2(2-P 25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) 解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB =8, ∴OD ⊥AB ,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO Θ,AO =5,∴322=-=AC AO CO (1分)5=OD Θ,2=-=∴OC OD CD (1分)(2)过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH =4,OH =3 ∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO Θ,AO =5, ∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO xx x x 5402582-+-= (80<<x ) (3分)(3)①当OB //AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,则OF =AE , AE OB OH AB S ABO ⋅=⋅=∆2121Θ ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO Θ,AO =5,∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分)②当OA //BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO Θ,DO =5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG ,在Rt △GAD 中,︒=∠90DGA Θ,∴622=+=DG AG AD ( 3分)综上得6514或=AD。
上海市长宁区2017年中考二模数学试卷有答案
2017学年第二学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.函数12-=x y 的图像不经过( ▲ )(A ) 第一象限; (B ) 第二象限; (C ) 第三象限; (D ) 第四象限. 2.下列式子一定成立的是( ▲ )(A ) a a a 632=+; (B )428x x x =÷; (C ) aa 121=; (D )6321)(aa-=--. 3.下列二次根式中,2的同类二次根式是( ▲ ) (A )4; (B )x 2; (C )92; (D )12. 4.已知一组数据2、x 、8、5、5、2的众数是2,那么这组数据的中位数是( ▲ ) (A ) 3.5; (B ) 4; (C ) 2; (D )6.5.5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点, 那么d 的值可以取( ▲ )(A ) 11; (B ) 6; (C ) 3; (D )2.6.已知在四边形ABCD 中,AD //BC ,对角线AC 、BD 交于点O ,且AC =BD , 下列四个命题中真命题是( ▲ )(A ) 若AB =CD ,则四边形ABCD 一定是等腰梯形; (B ) 若∠DBC =∠ACB ,则四边形ABCD 一定是等腰梯形; (C ) 若ODCOOB AO =,则四边形ABCD 一定是矩形; (D ) 若AC ⊥BD 且AO =OD ,则四边形ABCD 一定是正方形. 二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7. 计算:=--︒0)3(30sin ▲ . 8. 方程6+=-x x 的解是 ▲ .9. 不等式组⎪⎩⎪⎨⎧≥-<+-1)12(303x x 的解集是 ▲ .10.已知反比例函数xky =的图像经过点(-2017,2018),当0>x 时,函数值y 随 自变量x 的值增大而 ▲ .(填“增大”或“减小”)11.若关于x 的方程032=--m x x 有两个相等的实数根,则m 的值是 ▲ . 12.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是 ▲ .13.抛物线522++=mx mx y 的对称轴是直线 ▲ . 14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的 通话次数的频率是 ▲ .15.如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点,BC =15,CD =9,EF =6,∠AFE =50°,则∠ADC 的度数为 ▲ . 16.如图,在梯形ABCD 中,AB //CD ,∠C=90°,BC =CD =4,52=AD , 若a AD =,b DC =,用a 、b 表示=DB ▲ . 17.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC 是半高三角形,且斜边5=AB ,则它的周长等于 ▲ . 18.如图,在矩形ABCD 中,对角线BD 的长为1,点P 是线段BD上的一点,联结CP ,将△BCP 沿着直线CP 翻折,若点B 落在 边AD 上的点E 处,且EP //AB ,则AB 的长等于 ▲ .三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)先化简,再求值:12341311222+-++÷-+-+x x x x x x x ,其中121+=x .20.(本题满分10分)解方程组:⎩⎨⎧=-=-+②12①06522 . ,y x y xy x21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,AD第14题图 A BCD EF第15题图 第16题图 D CBA 第18题图ABCD135sin =∠ABC . (1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.22.(本题满分10分,第(1)小题5分,第(2)小题5分)某旅游景点的年游客量y (万人)是门票价格x (元)的一次函数,其函数图像如下图. (1)求y 关于x 的函数解析式;(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不得高于230元,该年的门票价格应该定为多少元?23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点 G 、F ,且AG GF BE AD =.(1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)如图在直角坐标平面内,抛物线32-+=bx ax y 与y 轴交于点A ,与x 轴分别交于点B (-1,0)、点C (3,0),点D 是抛物线的顶点. (1)求抛物线的表达式及顶点D 的坐标; (2)联结AD 、DC ,求ACD ∆的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标.25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知第22题图ACDEF GB第23题图备用图圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.学年第二学参考答案议2018.3一、选择题:(本大题共6题,每题41.B ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C . 二.填空题:(本大题共12题,满分48分) 7.21-; 8.2-=x ; 9.3>x ; 10.增大; 11.43-=m ; 12.53; 13.1-=x ;14.7.0;15.︒140; 16.→→-a b 21; 17.255或535++; 18.215-.三、(本大题共7题,第19、20、21、22每题10分,第23、24每题12分,第25题14分,满分78分)19. (本题满分10分)解:原式= )1)(3()1()1)(1(3112++-⨯-++-+x x x x x x x (3分) =2)1(111+--+x x x (2分) =2)1(11++-+x x x (1分)=2)1(2+x (1分)当12121-=+=x 时,原式=2)1(2+x =2)112(2+- =2)2(2=1 (3分)20.(本题满分10分)解:方程①可变形为0))(6(=-+y x y x得06=+y x 或0=-y x (2分) 将它们与方程②分别组成方程组,得(Ⅰ)⎩⎨⎧=-=+1206y x y x 或(Ⅱ)⎩⎨⎧=-=-120y x y x (2分)解方程组(Ⅰ)⎪⎩⎪⎨⎧-==131136y x , 解方程组(Ⅱ)⎩⎨⎧==11y x (4分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x , ⎩⎨⎧==1122y x . (2分)O A C BO BA C DBAO另解:由②得12-=x y ③ (1分) 把③代入①,得0)12(6)12(522=---+x x x x (1分)整理得:0619132=+-x x (2分)解得:1,13621==x x (2分)分别代入③,得1,13121=-=y y (2分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x ,⎩⎨⎧==1122y x . (2分)21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE ∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE // ∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分)∴BF BC CF -= 即61824=-=CF (1分)在DCF Rt ∆中,︒=∠90DFC ,542156cot ===∠DF CF DCB (1分)22.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)设)0(≠+=k b kx y ,函数图像过点(200,100), (50,250) (1分)代入解析式得:⎩⎨⎧=+=+25050100200b k b k (2分)解之得:⎩⎨⎧=-=3001b k (1分)所以y 关于x 的解析式为:300+-=x y (1分)(2)设门票价格定为x 元,依题意可得:11500)300)(20(=+--x x (2分)整理得: 0175003202=+-x x 解之得:x =70或者x =250(舍去) (2分)答:门票价格应该定为70元. (1分) 23.(本题满分12分,第(1)小题5分,第(2)小题7分) 证明:(1)∵BC AD // ∴BGDG BE AD = (2分)∵AG GF BE AD = ∴AGGF BG DG = (1分)∴ CD AB // (2分) (2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分)∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分) ∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分) 24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)解:(1) 点B (-1,0)、C (3,0)在抛物线32-+=bx ax y 上∴⎩⎨⎧=-+=--033903b a b a ,解得⎩⎨⎧-==21b a ( 2分)∴抛物线的表达式为322--=x x y ,顶点D 的坐标是(1,-4) ( 2分) (2)∵A (0,-3),C (3,0),D (1,-4) ∴23=AC ,52=CD ,2=AD∴222AD AC CD += ∴︒=∠90CAD ( 2分)∴.32232121=⨯⨯=⋅⋅=∆AD AC S ACD (1分)(3)∵︒=∠=∠90AOB CAD ,2==AOACBO AD , ∴△CAD ∽△AOB ,∴OAB ACD ∠=∠∵OA =OC ,︒=∠90AOC ∴︒=∠=∠45OCA OAC∴ACD OCA OAB OAC ∠+∠=∠+∠,即BCD BAC ∠=∠ ( 1分) 若以O 、P 、C 为顶点的三角形与△ABC 相似 ,且△ABC 为锐角三角形 则POC ∆也为锐角三角形,点P 在第四象限 由点C (3,0),D (1,-4)得直线CD 的表达式是62-=x y ,设)62,(-t t P (30<<t ) 过P 作PH ⊥OC ,垂足为点H ,则t OH =,t PH 26-=①当ABC POC ∠=∠时,由ABC POC ∠=∠tan tan 得BOAO OH PH =,∴326=-t t ,解得56=t , ∴)518,56(1-P (2分) ②当ACB POC ∠=∠时,由145tan tan tan =︒=∠=∠ACB POC 得1=OHPH ,∴126=-tt,解得2=t ,∴)2,2(2-P ( 2分) 综上得)518,56(1-P 或)2,2(2-P 25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) 解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB =8, ∴OD ⊥AB ,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO Θ,AO =5,∴322=-=AC AO CO (1分)5=OD Θ,2=-=∴OC OD CD (1分)(2)过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH =4,OH =3 ∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO Θ,AO =5, ∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO xx x x 5402582-+-= (80<<x ) (3分)(3)①当OB //AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,则OF =AE , AE OB OH AB S ABO ⋅=⋅=∆2121Θ ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO Θ,AO =5,∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分)②当OA //BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO Θ,DO =5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG ,在Rt △GAD 中,︒=∠90DGA Θ,∴622=+=DG AG AD ( 3分)综上得6514或=AD。
2018届长宁区中考数学二模
2017学年长宁区第二学期初三数学教学质量检测试卷(考试时间:100分钟满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B铅笔正确填涂】1.函数的图像不经过()(A)第一象限;(B)第二象限;(C)第三象限;(D)第四象限.2.下列式子一定成立的是()(A);(B);(C);(D).3.下列二次根式中,的同类二次根式是()(A);(B);(C);(D).4.已知一组数据2、x、8、5、5、2的众数是2,那么这组数据的中位数是()(A)3.5;(B)4;(C)2;(D)6.5.5.已知圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,要使这两圆没有公共点,那么d的值可以取()(A)11;(B)6;(C)3;(D)2.6.已知在四边形ABCD中,AD//BC,对角线AC、BD交于点O,且AC=BD,下列四个命题中真命题是()(A)若AB=CD,则四边形ABCD一定是等腰梯形;(B)若∠DBC=∠ACB,则四边形ABCD一定是等腰梯形;(C)若,则四边形ABCD一定是矩形;(D)若AC⊥BD且AO=OD,则四边形ABCD一定是正方形.二、填空题(本大题共12题, 每题4分, 满分48分)【在答题纸相应题号后的空格内直接填写答案】7.计算:.8.方程的解是.9.不等式组的解集是.10.已知反比例函数的图像经过点(-2017,2018),当时,函数值y随自变量x的值增大而.(填“增大”或“减小”)11.若关于x的方程有两个相等的实数根,则m的值是.12.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是.13.抛物线的对称轴是直线.14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的通话次数的频率是.15.如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,BC=15,CD=9,EF=6,∠AFE=50°,则∠ADC的度数为.16.如图,在梯形ABCD中,AB//CD,∠C=90°,BC=CD=4,,若,,用、表示.17.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边,则它的周长等于.18.如图,在矩形ABCD中,对角线BD的长为1,点P是线段BD 上的一点,联结CP,将△BCP沿着直线CP翻折,若点B落在边AD上的点E处,且EP//AB,则AB的长等于.第14题图第15题图第16题图第18题图三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】19.(本题满分10分)先化简,再求值:,其中.20.(本题满分10分)解方程组:21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC中,AB=AC,点D在BA的延长线上,BC=24,.(1)求AB的长;(2)若AD=6.5,求的余切值.第21题图22.(本题满分10分,第(1)小题5分,第(2)小题5分)某旅游景点的年游客量y(万人)是门票价格x(元)的一次函数,其函数图像如下图.(1)求y关于x的函数解析式;(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不得高于230元,该年的门票价格应该定为多少元?第22题图23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD中,AD//BC,E在BC的延长线,联结AE分别交BD、CD于点G、F ,且.(1)求证:AB//CD;(2)若,BG=GE,求证:四边形ABCD是菱形.第23题图如图在直角坐标平面内,抛物线与y轴交于点A,与x轴分别交于点B(-1,0)、点C(3,0),点D是抛物线的顶点.(1)求抛物线的表达式及顶点D的坐标;(2)联结AD、DC ,求的面积;(3)点P在直线DC上,联结OP,若以O、P、C为顶点的三角形与△ABC相似,求点P的坐标.备用图第24题图在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,,求y 关于x 的函数解析式并写出定义域;(3)若四边形AOBD 是梯形,求AD 的长.图1图2 备用图第25题图长宁区参考答案和评分建议一、选择题:(本大题共6题,每题4分,满分24分)1.B;2.D;3.C;4.A;5.D;6.C.二.填空题:(本大题共12题,满分48分)7.;8.;9.;10.增大;11.;12.;13.;14.;15.;16.;17.;18..三、(本大题共7题,第19、20、21、22每题10分,第23、24每题12分,第25题14分,满分78分)19. (本题满分10分)解:原式= (3分)=(2分)=(1分)=(1分) 当时,原式====1 (3分)20.(本题满分10分)解:方程①可变形为得或(2分)将它们与方程②分别组成方程组,得(Ⅰ)或(Ⅱ)(2分)解方程组(Ⅰ),解方程组(Ⅱ)(4分)所以原方程组的解是,. (2分)另解:由②得③(1分)把③代入①,得(1分)整理得:(2分)解得:(2分)分别代入③,得(2分)所以原方程组的解是,. (2分21.(本题满分10分,第(1)小题4分,第(2)小题6分)解:(1)过点A作AE⊥BC,垂足为点E又∵AB=AC∴∵BC=24 ∴BE=12 (1分)在中,,(1分)设AE=5k,AB=13k ∵∴∴,∴,(2分)(2)过点D作DF⊥BC,垂足为点F∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE⊥BC,DF⊥BC ∴∴∴又∵AE=5,BE=12,AB=13,∴(4分)∴即(1分)在中,,(1分)22.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)设,函数图像过点(200,100),(50,250)(1分)代入解析式得:(2分)解之得:(1分)所以y关于x的解析式为:(1分)(2)设门票价格定为x元,依题意可得:(2分)整理得:解之得:x=70或者x=250(舍去)(2分)答:门票价格应该定为70元. (1分)23.(本题满分12分,第(1)小题5分,第(2)小题7分)证明:(1)∵∴(2分)∵∴(1分)∴(2分)(2)∵,∴四边形ABCD是平行四边形∴BC=AD (1分)∵∴即又∵∴∽(1分)∴∵∴∵∴∵BG=GE ∴∴(3分)∴BC=CD (1分)∵四边形ABCD是平行四边形∴平行四边形ABCD是菱形. (1分)24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)解:(1)点B(-1,0)、C(3,0)在抛物线上∴,解得(2分)∴抛物线的表达式为,顶点D的坐标是(1,-4)(2分)(2)∵A(0,-3),C(3,0),D(1,-4)∴,,∴∴(2分)∴(1分)(3)∵,,∴△CAD∽△AOB,∴∵OA=OC,∴∴,即(1分)若以O、P、C为顶点的三角形与△ABC相似,且△ABC为锐角三角形则也为锐角三角形,点P在第四象限由点C(3,0),D(1,-4)得直线CD的表达式是,设()过P作PH⊥OC,垂足为点H,则,①当时,由得,∴,解得,∴(2分)②当时,由得,∴,解得,∴(2分)综上得或25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)解:(1)∵OD过圆心,点D是弧AB的中点,AB=8,∴OD⊥AB ,(2分)在Rt△AOC 中,,AO=5,∴(1分),(1分)(2)过点O作OH⊥AB,垂足为点H,则由(1)可得AH=4,OH=3∵AC=x ,∴在Rt△HOC 中,,AO=5,∴,(1分)∴()(3分)(3)①当OB//AD时,过点A作AE⊥OB交BO延长线于点E,过点O作OF⊥AD,垂足为点F,则OF=AE,∴在Rt△AOF 中,,AO=5,∴∵OF过圆心,OF⊥AD ,∴. (3分)②当OA//BD时,过点B作BM⊥OA交AO延长线于点M,过点D作DG⊥AO,垂足为点G,则由①的方法可得,在Rt△GOD 中,,DO=5,∴,,在Rt△GAD 中,,∴(3分)综上得11 / 11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017学年第二学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.函数12-=x y 的图像不经过( ▲ )(A ) 第一象限; (B ) 第二象限; (C ) 第三象限; (D ) 第四象限. 2.下列式子一定成立的是( ▲ )(A ) a a a 632=+; (B )428x x x =÷; (C ) aa 121=; (D )6321)(aa-=--. 3.下列二次根式中,2的同类二次根式是( ▲ ) (A )4; (B )x 2; (C )92; (D )12. 4.已知一组数据2、x 、8、5、5、2的众数是2,那么这组数据的中位数是( ▲ ) (A ) 3.5; (B ) 4; (C ) 2; (D )6.5.5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点, 那么d 的值可以取( ▲ )(A ) 11; (B ) 6; (C ) 3; (D )2.6.已知在四边形ABCD 中,AD //BC ,对角线AC 、BD 交于点O ,且AC =BD , 下列四个命题中真命题是( ▲ )(A ) 若AB =CD ,则四边形ABCD 一定是等腰梯形; (B ) 若∠DBC =∠ACB ,则四边形ABCD 一定是等腰梯形; (C ) 若ODCOOB AO =,则四边形ABCD 一定是矩形; (D ) 若AC ⊥BD 且AO =OD ,则四边形ABCD 一定是正方形.二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7. 计算:=--︒0)3(30sin ▲ . 8. 方程6+=-x x 的解是 ▲ .9. 不等式组⎪⎩⎪⎨⎧≥-<+-1)12(303x x 的解集是 ▲ .10.已知反比例函数xky =的图像经过点(-2017,2018),当0>x 时,函数值y 随 自变量x 的值增大而 ▲ .(填“增大”或“减小”)11.若关于x 的方程032=--m x x 有两个相等的实数根,则m 的值是 ▲ . 12.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是 ▲ .13.抛物线522++=mx mx y 的对称轴是直线 ▲ . 14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的 通话次数的频率是 ▲ .15.如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点,BC =15,CD =9,EF =6,∠AFE =50°,则∠ADC 的度数为 ▲ . 16.如图,在梯形ABCD 中,AB //CD ,∠C=90°,BC =CD =4,52=AD ,若a AD =,b DC =,用a 、b 表示=DB ▲ . 17.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC 是半高三角形,且斜边5=AB ,则它的周长等于 ▲ . 18.如图,在矩形ABCD 中,对角线BD 的长为1,点P 是线段BD上的一点,联结CP ,将△BCP 沿着直线CP 翻折,若点B 落在 边AD 上的点E 处,且EP //AB ,则AB 的长等于 ▲ .第14题图 AB CDE F第15题图第16题图D CBA第18题图AB CD三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)先化简,再求值:12341311222+-++÷-+-+x x x x x x x ,其中121+=x .20.(本题满分10分)解方程组:⎩⎨⎧=-=-+②12①06522 . ,y x y xy x21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,135sin =∠ABC .(1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.22.(本题满分10分,第(1)小题5分,第(2)小题5分)某旅游景点的年游客量y (万人)是门票价格x (元)的一次函数,其函数图像如下图. (1)求y 关于x 的函数解析式;(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不得高于230元,该年的门票价格应该定为多少元?23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点 G 、F ,且AG GF BE AD =.(1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.ACDB第21题图第22题图ACDEF GB第23题图24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)如图在直角坐标平面内,抛物线32-+=bx ax y 与y 轴交于点A ,与x 轴分别交于点B (-1,0)、点C (3,0),点D 是抛物线的顶点. (1)求抛物线的表达式及顶点D 的坐标; (2)联结AD 、DC ,求ACD ∆的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标.25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.备用图第24题图OAC DB图1 O BA C D图2 BAO备用图第25题图长宁区2017学年第二学期初三数学参考答案和评分建议2018.3一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C . 二.填空题:(本大题共12题,满分48分) 7.21-; 8.2-=x ; 9.3>x ; 10.增大; 11.43-=m ; 12.53; 13.1-=x ;14.7.0;15.︒140; 16.→→-a b 21; 17.255或535++; 18.215-.三、(本大题共7题,第19、20、21、22每题10分,第23、24每题12分,第25题14分,满分78分)19. (本题满分10分)解:原式= )1)(3()1()1)(1(3112++-⨯-++-+x x x x x x x (3分) =2)1(111+--+x x x (2分) =2)1(11++-+x x x (1分)=2)1(2+x (1分) 当12121-=+=x 时,原式=2)1(2+x =2)112(2+- =2)2(2=1 (3分) 20.(本题满分10分)解:方程①可变形为0))(6(=-+y x y x得06=+y x 或0=-y x (2分)将它们与方程②分别组成方程组,得(Ⅰ)⎩⎨⎧=-=+1206y x y x 或(Ⅱ)⎩⎨⎧=-=-120y x y x (2分)解方程组(Ⅰ)⎪⎩⎪⎨⎧-==131136y x , 解方程组(Ⅱ)⎩⎨⎧==11y x (4分) 所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x , ⎩⎨⎧==1122y x . (2分)另解:由②得12-=x y ③ (1分) 把③代入①,得0)12(6)12(522=---+x x x x (1分)整理得:0619132=+-x x (2分)解得:1,13621==x x (2分)分别代入③,得1,13121=-=y y (2分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x ,⎩⎨⎧==1122y x . (2分)21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE ∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE //∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分) ∴BF BC CF -= 即61824=-=CF (1分)在DCF Rt ∆中,︒=∠90DFC ,542156cot ===∠DF CF DCB (1分)22.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)设)0(≠+=k b kx y ,函数图像过点(200,100), (50,250) (1分)代入解析式得:⎩⎨⎧=+=+25050100200b k b k (2分)解之得:⎩⎨⎧=-=3001b k (1分)所以y 关于x 的解析式为:300+-=x y (1分) (2)设门票价格定为x 元,依题意可得:11500)300)(20(=+--x x (2分)整理得: 0175003202=+-x x 解之得:x =70或者x =250(舍去) (2分)答:门票价格应该定为70元. (1分) 23.(本题满分12分,第(1)小题5分,第(2)小题7分)证明:(1)∵BC AD // ∴BGDG BE AD = (2分)∵AG GFBE AD =∴AGGF BG DG = (1分) ∴ CD AB // (2分)(2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分)∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分)∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分) 24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)解:(1) 点B (-1,0)、C (3,0)在抛物线32-+=bx ax y 上∴⎩⎨⎧=-+=--033903b a b a ,解得⎩⎨⎧-==21b a ( 2分)∴抛物线的表达式为322--=x x y ,顶点D 的坐标是(1,-4) ( 2分) (2)∵A (0,-3),C (3,0),D (1,-4) ∴23=AC ,52=CD ,2=AD∴222AD AC CD += ∴︒=∠90CAD ( 2分)∴.32232121=⨯⨯=⋅⋅=∆AD AC S ACD (1分) (3)∵︒=∠=∠90AOB CAD ,2==AOACBO AD , ∴△CAD ∽△AOB ,∴OAB ACD ∠=∠∵OA =OC ,︒=∠90AOC ∴︒=∠=∠45OCA OAC∴ACD OCA OAB OAC ∠+∠=∠+∠,即BCD BAC ∠=∠ ( 1分) 若以O 、P 、C 为顶点的三角形与△ABC 相似 ,且△ABC 为锐角三角形 则POC ∆也为锐角三角形,点P 在第四象限由点C (3,0),D (1,-4)得直线CD 的表达式是62-=x y ,设)62,(-t t P (30<<t ) 过P 作PH ⊥OC ,垂足为点H ,则t OH =,t PH 26-=①当ABC POC ∠=∠时,由ABC POC ∠=∠tan tan 得BO AO OH PH =,∴326=-t t ,解得56=t , ∴)518,56(1-P (2分) ②当ACB POC ∠=∠时,由145tan tan tan =︒=∠=∠ACB POC 得1=OHPH ,∴126=-tt,解得2=t ,∴)2,2(2-P ( 2分) 综上得)518,56(1-P 或)2,2(2-P 25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB =8,∴OD ⊥AB ,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO ,AO =5,∴322=-=AC AO CO (1分)5=OD ,2=-=∴OC OD CD (1分)(2)过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH =4,OH =3∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO ,AO =5, ∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO xx x x 5402582-+-= (80<<x ) (3分)(3)①当OB //AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,则OF =AE , AE OB OH AB S ABO ⋅=⋅=∆2121 ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO ,AO =5,∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分)②当OA //BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO ,DO =5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG ,在Rt △GAD 中,︒=∠90DGA ,∴622=+=DG AG AD ( 3分)综上得6514或=AD。