平面直角坐标系与函数的概念
平面直角坐标系与函数的概念
专题四 函数第一节 平面直角坐标系与函数的概念一【知识梳理】1.平面直角坐标系如图所示:注意:坐标原点、x 轴、y 轴不属于任何象限。
2.点的坐标的意义:平面中,点的坐标是由一个“有序实数对”组成,如(-2,3),横坐标是-2,纵坐标是-3,横坐标表示点在平 面内的左右位置,纵坐标表示点的上下位置。
3.各个象限内和坐标轴的点的坐标的符号规律①各个象限内的点的符号规律如下表。
说明:由上表可知x 轴的点可记为(x , 0) ,y 轴上的点可记做(0 , y )。
⒋ 对称点的坐标特征:点P (y x ,)①关于x 轴对称的点P 1(y x -,);②关于y 轴对称的点P 2(y x ,-);③关于原点对称的点P 3(y x --,)。
5.坐标平面内的点和“有序实数对” (x , y)建立了___________关系。
6.第一、三象限角平分线上的点到_____轴、_____轴的距离相等,可以用直线___________表示;第二、四象限角平线线上的点到_____轴、_____轴的距离也相等,可以用直线___________表示。
7.函数基础知识(1) 函数: 如果在一个变化过程中,有两个变量x 、y ,对于x 的 ,y 都有与之对应,此时称y是x的,其中x是自变量,y 是.(2)自变量的取值范围:①使函数关系式有意义;②在实际问题的函数式中,要使实际问题有意义。
(3)常量:在某变化过程中的量。
变量:在某变化过程中的量。
(4) 函数的表示方法:①;②;③。
能力培养:从图像中获取信息的能力;用函数来描述实际问题的数学建模能力。
二【巩固练习】1. 点P(3,-4)关于y轴的对称点坐标为_______,它关于x轴的对称点坐标为_______.它关于原点的对称点坐标为_____.2.龟兔赛跑,它们从同一地点同时出发,不久兔子就把乌龟远远地甩在后面,于是兔子便得意洋洋地躺在一棵大树下睡起觉来.乌龟一直在坚持不懈、持之以恒地向终点跑着,兔子一觉醒来,看见乌龟快接近终点了,这才慌忙追赶上去,但最终输给了乌龟.下列图象中能大致反映龟兔行走的路程S随时间t变化情况的是( ).3.如图,所示的象棋盘上,若○帅位于点(1,-2)上,○相位于点(3,-2)上,则○炮位于点()A.(-1,1)B.(-1,2)C.(-2,1)D.(-2,2)4.如果点M(a+b,ab)在第二象限,那么点N(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限5.图中的三角形是有规律地从里到外逐层排列的.设y为第n层(n为正整数)三角形的个数,则下列函数关系式中正确的是().A、y=4n-4B、y=4nC、y=4n+4D、y=n26.函数13xyx+=-中自变量x的取值范围是()A.x≥1-B.x≠3 C.x≥1-且x≠3 D.1x<-7.如图,方格纸上一圆经过(2,5),(-2,l),(2,-3),( 6,1)四点,则该圆的圆心的坐标为()A.(2,-1)B.(2,2)C.(2,1) D.(3,l)8.右图是韩老师早晨出门散步时,离家的距离y与时间x的函数图象.若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是()图3相帅炮9.已知M(3a -9,1-a)在第三象限,且它的坐标都是整数,则a 等于( )A .1B .2C .3D .010.如图, △ABC 绕点C 顺时针旋转90○后得到△A ′B ′C ′, 则A 点的对应点A ′点的坐标是( )A .(-3,-2);B .(2,2);C .(3,0);D .(2,l )11.在平面直角坐标系中,点(34)P -,到x 轴的距离为( )A.3 B.3- C.4 D.4-12.线段CD 是由线段AB 平移得到的。
第9讲 平面直角坐标系与函数
度或函数增减性的变化规律.
[变式5] (2022武汉)匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h随时间t的
变化规律如图所示(图中O-A-B-C为一折线).这个容器的形状可能是(
A
B
C
D
)
A
1
(1)点的对称规律:关于横(或纵)轴对称的点,横(或纵)坐标不变,纵(或横)坐标变号;关于原点对称,
则横、纵坐标都变号.
(2)点的平移规律:左右移,纵不变,横减加;上下移,横不变,纵加减.
(3)有时需要根据点在坐标系中的位置,建立不等式(组)或方程(组),把点的坐标问题转化为不等式
(组)或方程(组)的问题解决.
D.若x-y=0,则点P(x,y)一定在第一、第三象限角平分线上
3.(2022雅安)在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,-b),则ab的值为(
A.-4
B.4
C.12
D.-12
D)
4.小明从家到学校,先匀速步行到车站,等了几分后坐上了公交车,公交车沿着公路匀速行驶一段时间
后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是(
停止.若点 P 的运动速度为 1 cm/s,设点 P 的运动时间为 t(s),AP 的长度为 y(cm),y 与 t 的函数图象
如图②所示.则当 AP 恰好平分∠BAC 时,t 的值为
①
②
2 +2
.
1.(2022常州)在平面直角坐标系xOy中,点A与点A1关于x轴对称,点A与点A2关于y轴对称.已知点
2
A-D-C 向终点 C 运动,设点 Q 的运动时间为 x(s),△APQ 的面积为 y(cm ),若 y 与 x 之间的函数关系的
七年级下册平面直角坐标系知识点
七年级下册平面直角坐标系知识点一、平面直角坐标系的概念1.定义:在平面内,以一个点为原点,以一条直线为轴,用有序数对表示物体的位置的坐标系称为平面直角坐标系。
2.坐标轴:在平面直角坐标系中,通过原点的一条直线称为x 轴,另一条直线称为y轴。
原点称为坐标原点,两轴的交点称为坐标原点。
3.象限:在平面直角坐标系中,两条坐标轴将平面分为四个象限,每个象限内的点的坐标符号分别为(+,+)、(-,+)、(-,-)、(+,-)。
4.坐标:在平面直角坐标系中,对于一个点P,我们可以用一对有序数对(x,y)来表示它的位置。
其中x称为横坐标,y称为纵坐标。
二、平面直角坐标系的建立1.选择一个点作为原点,确定横轴和纵轴的方向。
2.建立坐标系,将选择的点与横轴和纵轴上的点对应起来。
3.根据需要绘制网格线,以便更清晰地表示点的位置。
三、平面直角坐标系的应用1.确定点的位置:通过坐标可以确定一个点的具体位置。
2.表示形状和大小:在平面直角坐标系中,可以通过坐标表示形状和大小。
例如,一个矩形的四个顶点可以通过给出它们的坐标来描述。
3.计算距离和面积:在平面直角坐标系中,可以通过坐标计算两点之间的距离以及矩形的面积。
4.函数图像:函数图像可以在平面直角坐标系中绘制出来,以便更好地理解函数的性质和变化趋势。
四、平面直角坐标系的扩展1.三维坐标系:通过增加一个维度,我们可以扩展平面直角坐标系为三维坐标系。
在三维空间中,一个点可以用三个坐标(x,y,z)来表示。
2.极坐标系:另一种表示位置的方式是使用极坐标系。
在极坐标系中,一个点的位置由它到极点的距离和它相对于极轴的方向来确定。
中考数学复习考点知识归类讲解与练习01 平面直角坐标系与函数基本概念
中考数学复习考点知识归类讲解与练习专题01 平面直角坐标系与函数基本概念知识对接考点一、平面直角坐标系1.相关概念(1)平面直角坐标系(2)象限(3)点的坐标2.各象限内点的坐标的符号特征3.特殊位置点的坐标(1)坐标轴上的点(2)一三或二四象限角平分线上的点的坐标(3)平行于坐标轴的直线上的点的坐标(4)关于x轴、y轴、原点对称的点的坐标4.距离(1)平面上一点到x轴、y轴、原点的距离(2)坐标轴或平行于坐标轴的直线上两点间的距离(3)平面上任意两点间的距离5.坐标方法的简单应用(1)利用坐标表示地理位置(2)利用坐标表示平移1 / 27要点补充:点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于;(2)点P(x,y)到y 轴的距离等于;(3)点P(x,y)到原点的距离等于.考点二、函数及其图象1.变量与常量2.函数的概念3.函数的自变量的取值范围4.函数值5.函数的表示方法(解析法、列表法、图象法)6.函数图象要点补充:由函数解析式画其图像的一般步骤:(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.专项训练一、单选题1.已知点P (a ,a+3)在第二象限,且点P 到x 轴的距离为2,则a 的值为()A .1-B .5-C .2-D .2y x 22y x +【答案】A【分析】先判断a的取值,进而根据点P到x轴的距离为2得到a+3=2,解得即可.【详解】解:∵点P(a,a+3)在第二象限,∴30aa<⎧⎨+>⎩,∴-3<a<0,∵点P到x轴的距离为2,∴|a+3|=2,∴a+3=2,∴a=-1,故选:A.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.在平面直角坐标系中,点P(3,4)关于y轴对称点的坐标为()A.(﹣3,4)B.(3,4)C.(﹣3,﹣4)D.(4,﹣3)【答案】A【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】3 / 27解:点P (3,4)关于y 轴对称点的坐标为(-3,4),故选:A .【点睛】此题主要考查了关于y 轴对称点的坐标,关键是掌握点的坐标的变化规律.3.如图,一个机器人从点O 出发,向正西方向走2m 到达点1A ;再向正北方向走4m 到达点2A ,再向正东方向走6m 到达点3A ,再向正南方向走8m 到达点4A ,再向正西方向走10m 到达点5A ,…按如此规律走下去,当机器人走到点20A 时,点20A 的坐标为()A .(20,20)-B .(20,20)C .(22,20)--D .(22,22)-【答案】A【分析】 先求出A 1,A 2,A 3,…A 8,发现规律,根据规律求出A 20的坐标即可.【详解】解:∵一个机器人从点O 出发,向正西方向走2m 到达点1A ,点A 1在x 轴的负半轴上,∴A 1(-2,0)从点A 2开始,由点1A 再向正北方向走4m 到达点2A ,A 2(-2,4),由点2A 再向正东方向走6m 到达点3A ,A 3(6-2,4)即(4,4),由点3A 再向正南方向走8m 到达点4A ,A 4(4,4-8)即(4,-4),由点A 4再向正西方向走10m 到达点5A ,A 5(4-10,-4)即(-6,-4),由点A 5再向正北方向走12m 到达点A 6,A 6(-6,12-4)即(-6,8),5 / 27由点A 6再向再向正东方向走14m 到达点A 7,A 7(14-6,8)即(8,8),由点A 7再向正南方向走16m 到达点8A ,A 8(8,8-16)即(8,-8),观察图象可知,下标为偶数时在二四象限,下标为奇数时(除1外)在一三象限,下标被4整除在第四象限.且横坐标与下标相同,因为2054=⨯,所以20A 在第四象限,坐标为(20,20)-.故选择A .【点睛】本题考查平面直角坐标系点的坐标规律问题,掌握求点的坐标方法与过程,利用下标与坐标的关系找出规律是解题关键.4.小娜驾车从哈尔滨到大庆.设她出发第x min 时的速度为y km/h ,图中的折线表示她在整个驾车过程中y 与x 之间的函数关系式.下列说法:(1)在77≤x ≤88时,小娜在休息;(2)小娜驾车的最高速度是120km/h ;(3)小娜出发第16.5min 时的速度为48km/h ;(4)如果汽车每行驶100km 耗油10升,那么小娜驾车在33≤x ≤66时耗油6.6升. 其中正确的个数是( )A .1个B .2个C .3个D .4个【答案】C【分析】根据函数图象对每个选项进行分析判断,最后得出结论.①观察图象在77≤x ≤88时,小娜在以时速96千米在行驶;②观察图象小娜的最高时速为120千米;③用待定系数法求出11≤x ≤22时的函数关系式,可求小娜出发第16.5min 时的速度;④小娜驾车在33≤x ≤66时时速为120千米/小时,依次求出小娜驾车在33≤x ≤66时行驶的路程,从而耗油量可求.【详解】解:①观察图象在77≤x ≤88时,小娜在以时速96千米在行驶;故①错误; ②观察图象小娜的最高时速为120千米,故②正确;③在11≤x ≤22时,设y =kx +b .将(11,24)和(22,72)代入上式:11242272k b k b +=⎧⎨+=⎩, 解得:481124k b ⎧=⎪⎨⎪=-⎩. ∴482411y x =-. 当x =16.5min 时,y =48.∴小娜出发第16.5min 时的速度为48km /h .故③正确;④由图象可知:小娜驾车在33≤x ≤66时时速为120千米/小时,∴车在33≤x ≤66时小娜行驶了66331206660-⨯=(千米). ∴耗油为:66×10100=6.6(升).7 / 27故④正确;综上,正确的有②③④共三个.故选:C .【点睛】本题主要考查了一次函数的应用.理解函数图象上的点的实际意义是解题的关键.另外待定系数法是确定函数解析式的重要方法.5.下列不能表示y 是x 的函数的是()A .B .21y x =+C .D .【答案】C【分析】根据函数的定义(给定一个x 值都有唯一确定的y 值与它对应),对选项逐个判断即可.【详解】解:根据函数的定义(给定一个x 值都有唯一确定的y 值与它对应),对选项逐个判断, A :观察列表数据发现,符合函数的定义,不符合题意;B :观察x 与y 的等式发现,符合函数的定义,不符合题意;C :观察函数图像发现,不符合函数的定义,符合题意;D :观察函数图像发现,符合函数的定义,不符合题意;故选:C .【点睛】此题主要考查了函数的定义,涉及到了函数的表示方法(解析法,图像法和列表法),熟练掌握函数的基础知识是解题的关键.x的函数的是()6.下列各图象中,y不是..A.B.C.D.【答案】B【分析】对于自变量x的每一个确定的值y都有唯一的确定值与其对应,则y是x的函数,根据函数的定义解答即可.【详解】根据函数的定义,选项A、C、D图象表示y是x的函数,B图象中对于x的一个值y有两个值对应,故B中y不是x的函数,故选:B.【点睛】此题考查函数的定义,函数图象,结合函数图象正确理解函数的定义是解题的关键.9 / 277.如图,在平面直角坐标系中,//AB DC ,AC BC ⊥,5CD AD ==,6AC =,将四边形ABCD向左平移m 个单位后,点B 恰好和原点O 重合,则m 的值是()A .11.4B .11.6C .12.4D .12.6【答案】A【分析】 由题意可得,m 的值就是线段OB 的长度,过点D 作DE AC ⊥,过点C 作CF OB ⊥,根据勾股定理求得DE 的长度,再根据三角形相似求得BF ,矩形的性质得到OF ,即可求解.【详解】解:由题意可得,m 的值就是线段OB 的长度,过点D 作DE AC ⊥,过点C 作CF OB ⊥,如下图:∵5CD AD ==,DE AC ⊥ ∴132CE AC ==,90DEC ∠=︒由勾股定理得4DE =∵//AB DC∴DCE BAC ∠=∠,90ODC BOD ∠=∠=︒又∵AC BC⊥∴90 ACB CED∠=∠=︒∴DEC BCA△∽△∴DE CE CDBC AC AB==,即4356BC AB==解得8BC=,10AB=∵CF OB⊥∴90 ACB BFC∠=∠=︒∴BCF BAC∽△△∴BC BFAB BC=,即8108BF=解得 6.4BF=由题意可知四边形OFCD为矩形,∴5OF CD==11.4OB BF OF=+=故选A【点睛】此题考查了相似三角形的判定与性质,图形的平移,矩形的判定与性质,勾股定理等,熟练掌握相关基本性质是解题的关键.8.在平面直角坐标系中,已知点A(0,0)、B(2,2)、C(3,0),若以点A、B、C、D为顶点的四边形是平行四边形,则点D的坐标不可能为()A.(﹣1,2) B.(5,2) C.(1,﹣2) D.(2,﹣2)【答案】D【分析】分三种情况:①BC为对角线时,②AB为对角线时,③AC为对角线时;由平行四边形的11 / 27性质容易得出点D 的坐标. 【详解】解:分三种情况:①BC 为对角线时,点D 的坐标为(5,2) ②AB 为对角线时,点D 的坐标为(﹣1,2), ③AC 为对角线时,点D 的坐标为(1,﹣2),综上所述,点D 的坐标可能是(5,2)或(﹣1,2)或(1,﹣2). 故选:D . 【点睛】本题考查了平行四边形的性质、坐标与图形的性质;熟练掌握平行四边形的性质是解决问题的关键.9.半径是R 的圆的周长C 2R π=,下列说法正确的是() A .C ,π,R 是变量,2是常量 B .C 是变量,2,π,R 是常量 C .R 是变量,2,π,C 是常量 D .C ,R 是变量,2π是常量【答案】D 【分析】根据变量和常量的概念解答即可. 【详解】解:在半径是R 的圆的周长2C R π=中,C ,R 是变量,2π是常量. 故选D . 【点睛】本题主要考查了变量和常量,在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.10.关于变量x ,y 有如下关系:①6-=x y ;②24y x =;③2y x =;④3y x =.其中y 是x 函数的是() A .①③ B .①②③④ C .①③④ D .①②③【答案】C 【分析】根据函数的定义可知,满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,据此即可确定函数的个数. 【详解】解:y 是x 函数的是①x -y =6;③y =2|x |;④3y x =; ∵x =1时,y =±2,∴对于y 2=4x ,y 不是x 的函数; 故选:C . 【点睛】本题考查了函数的定义,函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量. 二、填空题11.若点()25,4P a a --到两坐标轴的距离相等,则点P 的坐标是______. 【答案】()1,1或()3,3-; 【分析】根据题意可得关于a 的绝对值方程,解方程可得a 的值,进一步即得答案. 【详解】解:∵P (2a -5,4-a )到两坐标轴的距离相等, ∴254a a -=-.13 / 27∴254a a -=-或25(4)a a -=--, 解得3a =或1a =,当3a =时,P 点坐标为(1,1); 当1a =时,P 点坐标为(-3,3). 故答案为:(1,1)或(-3,3). 【点睛】本题考查了直角坐标系中点的坐标特征,根据题意列出方程是解题的关键.12.在平行四边形ABCD 中,点A 的坐标是(﹣1,0),点B 的坐标是(2,3),点D 的坐标是(3,1),则点C 的坐标是___. 【答案】(6,4). 【分析】根据四边形ABCD 是平行四边形,可得AB∥DC ,且AB =DC ,根据坐标间关系可得2-(-1)=x C -3,3-0=y C -1,解得x C =6,y C =4即可. 【详解】解:∵四边形ABCD 是平行四边形, ∴AB∥DC ,且AB =DC , ∴2-(-1)=x C -3,3-0=y C -1, ∴x C =6,y C =4, 点C (6,4) 故答案为(6,4).【点睛】本题考查平行四边形的性质,点的坐标关系建构方程,掌握平行四边形的性质,点的坐标关系建构方程.13.函数y=182xx+-的自变量的取值范围是______.【答案】x≠4【分析】当表达式的分母中含有自变量时,自变量取值要使分母不为零,据此可得结论.【详解】解:由题可得,8﹣2x为分母,8﹣2x≠0,解得x≠4,∴函数182xyx+=-的自变量的取值范围是x≠4,故答案为:x≠4.【点睛】本题考查的是自变量的取值范围,由于此题表达式为分式,根据分式有意义的条件,分母不为零,得到自变量的取值范围.14.若一个函数图象经过点A(1,3),B(3,1),则关于此函数的说法:①该函数可能是一次函数;②点P(2,2.5),Q(2,3.5)不可能同时在该函数图象上;15 / 27③函数值y 一定随自变量x 的增大而减小;④可能存在自变量x 的某个取值范围,在这个范围内函数值y 随自变量x 增大而增大. 所有正确结论的序号是 ___. 【答案】①②④ 【分析】根据函数的定义,一次函数的图象及函数的性质一一分析即可求解. 【详解】解:①因为一次函数的图象是一条直线,由两点确定一条直线,故该函数可能是一次函数,故正确;②由函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量,所以点P (2,2.5),Q (2,3.5)不可能同时在该函数图象上,故正确;③因为函数关系不确定,所以函数值y 不一定一直随自变量x 的增大而减小,故错误; ④可能存在自变量x 的某个取值范围,在这个范围内函数值y 随自变量x 增大而增大,故正确; 故答案为①②④. 【点睛】本题主要考查函数的定义及一次函数的图象与性质,熟练掌握函数的定义及一次函数的图象与性质是解题的关键.15.在圆周长公式2C r π=中,常量是__________. 【答案】2π 【分析】根据常量的定义即可解答. 【详解】解:圆周长公式2C r π=中,常量是2π, 故答案为:2π. 【点睛】本题考查了常量的定义,正确理解定义是关键.16.如图,平面直角坐标系中O 是原点,等边△OAB 的顶点A 的坐标是(2,0),点P 以每秒1个单位长度的速度,沿O →A →B →O →A …的路线作循环运动,点P 的坐标是__________________.【答案】12⎛ ⎝⎭【分析】计算前面7秒结束时的各点坐标,得出规律,再按规律进行解答便可. 【详解】解:由题意得,第1秒结束时P 点运动到了线段OA 的中点C 的位置,所以P 1的坐标为P 1(1,0);第2秒结束时P 点运动到了点A 的位置,所以P 2的坐标为P 2(2,0);第3秒结束时P 点运动到了线段AB 的中点D 的位置,如下图所示,过D点作x轴的垂线交于x2处,∵△OAB是等边三角形,且OA=2,∴在Rt△AD x2中,∠DA x2=60°,AD=1,∴21 2Ax=,2Dx=故D点的坐标为32⎛⎝⎭,即P332⎛⎝⎭;第4秒结束时P点运动到了点B的位置,同理过B点向x轴作垂线恰好交于点C,在Rt△OBC中,∠BOC =60°,2OB=,1OC=,BC故B点的坐标为(1,即P4(1;第5秒结束时P点运动到了线段OB的中点E的位置,根据点D即可得出E点的坐标为12⎛⎝⎭,即 P512⎛⎝⎭;第6秒结束时运动到了点O的位置,所以P6的坐标为P6(0,0);第7秒结束时P点的坐标为P7(1,0),与P1相同;……17 / 27由上可知,P 点的坐标按每6秒进行循环, ∵2021÷8=336……5,∴第2021秒结束后,点P 的坐标与P 5相同为12⎛ ⎝⎭,故答案为:12⎛ ⎝⎭.【点睛】本题主要考查了点的坐标特征,等边三角形的性质,数字规律,关键是求出前面几个点坐标,得出规律.17.平面直角坐标系中,点()5,3A -,()0,3B ,()5,0C -,在y 轴左侧一点(),P a b (0b ≠且点P 不在直线AB 上).若40APO ∠=︒,BAP ∠与COP ∠的角平分线所在直线交于D 点.则ADO ∠的度数为______°.【答案】110或70 【分析】分两种情况,①点P 在AO 下方,设AP 与CO 交于点N ,过点N 作//NM AD ,先证明NM 平分PNO ∠,根据“三角形两内角平分线的夹角与第三个角的关系”,可以得出1902NMO P ∠=+∠,即可求解;②点P 在AO 上方,设PO 与AB 交于点M,过点M 作//NM OD ,先证明NM 平分PNA ∠,根据“三角形两内角平分线的夹角与第三个角的关系”,可以得出1902NMA P ∠=+∠,即可求解. 【详解】19 / 27解:分两种情况, ①点P 在AO 下方时,设AP 与CO 交于点N ,过点N 作//NM AD ,PAD PNM ∴∠=∠, //AB NO , BAN ONP ∴∠=∠,AD 平分BAN ∠,12PAD BAN ∴∠=∠,12PNM ONP ∴∠=∠,NM∴平分ONP ∠,OM 平分NOP ∠,111(180)70222MNO NOM ONP PON NPO ∴∠+∠=∠+∠=-∠=︒,110NMO ∴∠=︒, //NM AD ,110ADO NMO ∴∠=∠=︒;①点P 在AO 上方时,设AB 与PO 交于点N ,过点N 作//NM OD ,POD PNM ∴∠=∠,//AB CO ,PNA POC ∴∠=∠,DO 平分POC ∠,12POD POC ∴∠=∠,12PNM PNA ∴∠=∠,NM∴平分ANP ∠,直线CD 平分NAP ∠,111(180)70222MNA NAM PNA PAN NPA ∴∠+∠=∠+∠=-∠=︒,110NMA ∴∠=︒, //NM AD ,18070ADO NMO ∴∠=-∠=, 70ADO ∴∠=︒或110︒.故答案为:70或110.【点睛】本题主要考查了三角形双内角平分线模型,平行线的性质,解题的关键是找基本模型. 18.一个三角形的底边长是3,高x 可以任意伸缩,面积为y ,y 随x 的变化变化,则其中的常量为________,y 随x 变化的解析式为______________. 【答案】3 32y x = 【分析】先根据变量与常量的定义,得到3为常量,x 和y 为变量,再根据三角形面积公式得到21 / 27y =12×3×x =32x (x >0), 【详解】解:数值发生变化的量为变量,数值始终不变的量为常量,因此常量为底边长3,由三角形的面积公式得y 随x 变化的解析式为32y x =. 故答案为:3;32y x =. 【点睛】本题考查主要函数关系式中的变量与常量和列函数关系式解决本题的关键是要理解函数关系中常量和变量. 三、解答题19.已知一个圆柱的底面半径是3cm ,当圆柱的高(cm)h 变化时,圆柱的体积()3cm V 也随之变化.(1)在这个变化过程变量h 、V 中,自变量是______,因变量是______; (2)在这个变化过程中,写出圆柱的体积V 与高h 之间的关系式;(3)当圆柱的高h 由3cm 变化到6cm 时,圆柱的体积V 由______变化到______. 【答案】(1)h ,V ;(2)9V h π=;(3)327cm π,354cm π 【分析】(1)利用函数的概念进行回答;(2)利用圆柱的体积公式求解;(3)分别计算出h =3和6对应的函数值可得到V 的变化情况. 【详解】解:(1)在这个变化过程中,自变量是h ,因变量是V ;故答案为h ,V ;(2)V =π•32•h =9πh ;(3)当h =3cm 时,V =27πcm 3;当h =6cm 时,V =54πcm 3;所以当h 由3cm 变化到6cm 时,V 是由27πcm 3变化到54πcm 3.故答案为:27πcm3;54πcm3.【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式,也称为函数关系式.函数解析式是等式.解决此题的关键是圆柱的体积公式.20.一辆大客车和一辆小轿车同时从甲地出发去乙地,匀速而行,大客车到达乙地后停止,小轿车到达乙地后停留4小时,再按照原速从乙地出发返回甲地,小轿车返回甲地后停止,已知两车距甲地的路程s千米与所用的时间t小时的关系如图所示,请结合图象解答下列问题:(1)在上述变化过程中,自变量是________;因变量是________;(2)小轿车的速度是________km/h,大客车的速度是________ km/h;(3)两车出发多少小时后两车相遇,两车相遇时,距离甲地的路程是多少?【答案】(1)t,s;(2)50,30;(3)15小时,450km【分析】(1)根据函数图像可得;(2)根据函数图象中的数据,可以计算出小轿车和大客车的速度;(3)设两车出发xh时,两车相遇,根据题意列出方程,解之可得x,再乘以大客车的速度可得到甲地的距离.【详解】解:(1)自变量是时间t;因变量是路程s;(2)由图象可得,小轿车的速度为:500÷10=50(km/h),大客车的速度为:500÷503=30(km/h),故答案为:50,30;(3)设两车出发x小时,两车相遇,30x+50(x-14)=500,解得,x=15,30x=30×15=450,即两车出发15h后两车相遇,两车相遇时,距离甲地的路程是450km,故答案为:15,450.【点睛】本题考查了从函数图像获取信息,一元一次方程的应用,解答本题的关键是明确题意,结合函数图像得到必要信息.21.在平面直角坐标系中,O为坐标原点,C(4,0),A(a,3),B(a+4,3)(1)求ΔOAC的面积;(2)若aOABC是菱形.【答案】(1)6;(2)见解析【分析】(1)过点A(a,3)作AE⊥x轴于点E,根据A(a,3),C(4,0)求出AE和OC的长度,23 / 27然后根据三角形面积公式求解即可;(2)首先根据点A 和点B 的纵坐标相同得到//AB OC ,然后结合AB OC =得到四边形OABC 是平行四边形,然后根据勾股定理求出OA 的长度,得到OA =OB ,根据菱形的判定定理即可证明. 【详解】解:(1)如图所示,过点A (a ,3)作AE ⊥x 轴于点E ,则AE =3, 又∵C (4,0), ∴OC =4,∴S △OAC =11=43622OC AE ⨯⨯⨯⨯=.(2)若a =)A ,)43B ,, ∵A B y y =, ∴//AB OC , ∵44AB OC ==,, ∴AB OC =.∴四边形OABC 是平行四边形, 过点A 作AE ⊥x 轴,则90AEO ∠=︒,3AE OE ==,∴4OA =,∴OA AB=,∴四边形OABC是菱形.【点睛】此题考查了三角形面积的求法,菱形的判定,解题的关键是根据题意找到坐标和线段的关系.22.定义:平面直角坐标系中,点M(a,b)和点N(m,n)的距离为MN,例如:点(3,2)和(4,0(1)在平面直角坐标系中,点(2,5-)和点(2,1)的距离是,点(72,3)和点(12,1-)的距离是;(2)在平面直角坐标系中,已知点M(2-,4)和N(6,3-),将线段MN平移到M ′ N′,点M的对应点是M′,点N的对应点是N′,若M′的坐标是(8-,m),且MM′=10,求点N′的坐标;(3)在平面直角坐标系中,已知点A在x轴上,点B在y轴上,点C的坐标是(12,5),若BC=13,且△ABC的面积是20,直接写出点A的坐标.【答案】(1)6,5;(2)当M′(-8,12)时,N′(0,5),当M′(-8,-4)时,N′(0,-11);(3)(8,0)或(-8,0)或(16,0)或(32,0)【分析】(1)分别利用两点间距离公式求解即可.(2)构建方程求出m的值,可得结论.(3)设(0,)B t,构建方程求出t的值,可得结论.【详解】解:(1)点(2,5)-和点(2,1)的距离6,25 / 27点7(2,3)和点1(2,1)-的距离5=, 故答案为:6,5. (2)由题意,10MM '=,∴10=,12m =∴或4-,(8,12)M ∴'-或(8,4)--,当(8,12)M '-时,(0,5)N ', 当(8,4)M '--时,(0,11)N '-. (3)设(0,)B t ,(12,5)C ,13BC =,∴13,解得0t =或10,(0,0)B ∴或(0,10),当(0,0)B 时,20ABC S ∆=,∴15202OA ⨯⨯=, 8OA ∴=,(8,0)A ∴或(8,0)-.当(0,10)B 时,20ABC BOC AOC AOB S S S S ∆∆∆∆=+-=或20ABC AOC AOB BOC S S S S ∆∆∆∆=--=,∴111101*********OA OA ⨯⨯+⨯⨯-⨯⨯=或111101012520222OA OA ⨯⨯-⨯⨯-⨯⨯=,16OA ∴=或32,∴或(32,0),A(16,0)综上所述,满足条件的点A的坐标为(8,0)或(8,0)-或(16,0)或(32,0).【点睛】本题属于三角形综合题,考查了两点间距离公式,三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.27 / 27。
函数概念与平面直角坐标系
第三章函数第1讲函数概念与平面直角坐标系考纲要求2017年命题趋势1.会画平面直角坐标系,并能根据点的坐标描出点的位置,由点的位置写出点的坐标.2.掌握坐标平面内点的坐标特征.3.了解函数的有关概念和函数的表示方法,并能结合图象对实际问题中的函数关系进行分析.4.能确定函数自变量的取值范围,并会求函数值.根据往年命题情况,选择题多为压轴题,复习时重点关注函数自变量的取值范围和实际背景下的函数图像的判断.课前回顾(要点基础知识梳理)一、平面直角坐标系与点的坐标特征1.平面直角坐标系如图,在平面内,两条互相的数轴的交点O称为,水平的数轴叫,竖直的数轴叫,整个坐标平面被x轴、y轴分割成四个象限.2.各象限内点的坐标的符号特征(如上图)3.坐标轴上的点的坐标特征点P(x,y)在x轴上⇔y=;点P(x,y)在y轴上⇔x=;点P(x,y)在坐标原点⇔x=,y= .(+ ,+)(,)(,)(,)二、特殊点的坐标特征1.和坐标轴平行的直线上点的坐标的特征:①平行于x 轴 相同;②平行于y 轴 相同. 2.点P(a ,b)对称点的坐标其关于x 轴的对称点P 1的坐标为( , );其关于y 轴的对称点P 2的坐标为( , );其关于原点的对称点P 3的坐标为( , ).3.点的平移 将点P(x ,y)向右(或向左)平移a 个单位,可以得到对应点( , )[或( , )];将点P(x ,y)向上(或向下)平移b 个单位,可以得到对应点( , )[或( , )].三、点与点、点与线之间的距离.1.点M (a ,b )到x 轴的距离为 .2.点M (a ,b )到y 轴的距离为 .3.点M 1(x 1,0)M 2(x 2,0)之间的距离为 .点M 1(x 1,y ),M 2(x 2,y )之间的距离为4.点 M 1(0,y 1),M 2 (0,y 2)之间的距离为 .点M 1(x ,y 1),M 2(x ,y 2)之间的距离为 .四.函数.(1)概念:在一个变化过程中,有两个变量x 和y ,对于x 的每一个值,y 都有 的值与其对应,那么就称x 是自变量,y 是x 的函数.(2)确定函数自变量的取值范围:① 使函数关系式 的自变量的取值的全体; ②一般原则为:整式为全体实数;分式的分母不为零;零次幂底数不为零;开偶次方的被开方数为非负数;使实际问题有意义.(3)函数的表示法:、 、 .⇔⇔考点1: 平面直角坐标系中点的坐标特征1.(2016 年广东)在平面直角坐标系中,点 P (-2,-3)所在的象限是 ( )A .第一象限B .第二象限C .第三象限D .第四象限2.(2016 年湖北武汉)已知点 A (a,1)与点 A ′(5,b )关于坐标原点对称,则实数 a ,b 的值是( )A.a =5,b =1B.a =-5,b =1C.a =5,b =-1D.a =-5,b =-13.(2016 年山东菏泽)如图,A ,B 的坐标为(2,0),(0,1),若将线段 AB 平移至 A 1B 1,则 a +b 的值为( )考点2:确定函数自变量的取值范围5.如图 ,数轴上表示的是某个函数自变量的取值范围则这个函数解析式为( )考点3:函数与图像的关系6.(2013·佛山)某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y 与时间x 的关系的大致图象是( ) A B C D4.函数y =x x -3-(x -2)0中,自变量x 的取值范围是 A.y =x +2 B.y =x 2+2 C.y =x +2 D.y =1x +2巩固提升1.(2016 年湖北荆门)在平面直角坐标系中,若点 A (a ,-b )在第一象限内,则点 B (a ,b )所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限当x=3时,函数值为3.(2016 年广东)如图,在正方形 ABCD 中,点 P 从点A 出发,沿着正方形的边顺时针方向运动一周,则△APC 的面积 y 与点 P 运动的路程 x 之间形成的函数关系的图象大致是( )A B C D 归纳总结:本节课你收获了什么?思考如图 ,弹性小球从点 P (0,3)出发,沿所示方向运动,每当小球碰到矩形 OABC 的边时反弹,反弹时反射角等于入射角.当小球第 1次碰到矩形的边时的点为 P 1,第 2 次碰到矩形的边时的点为P 2,…,第n 次碰到矩形的边时的点为P n .则点P 3的坐标是__________,点 P 2014 的坐标是________.2.在函数y =x +1x 中,自变量x的取值范围是___________.。
函数,平面直角坐标系
函数,平面直角坐标系函数是一个数学概念,是一个映射关系,指实数集合内的任一元素都有且仅有一个相关联的另一元素。
在平面直角坐标系中,我们可以以函数图像的方式表示函数的性质,包括其定义域、值域、单调性、对称性、奇偶性等。
本文将对函数在平面直角坐标系中的表示及其相关性质进行介绍。
一、坐标系及函数的定义平面直角坐标系是一个由横纵坐标轴和它们的正负半轴组成的二维平面,通常用X轴和Y轴表示。
在这个坐标系中,点的位置是由它在X轴与Y轴上的坐标决定的。
函数是一个映射,它是一个从一个集合到另一个集合的规则。
在数学中,函数通常被表示为一系列的输入与输出变量,即f(x) = y,其中f是函数符号、x是输入变量,y是输出变量。
函数可以用一张图像来表示。
二、函数的基本性质函数的图像可以表示出函数的一些基本性质,如函数的定义域、值域、单调性、对称性、奇偶性等。
定义域:定义域指函数有效的输入值范围,通常用集合的形式表示。
如果定义域中的某一个值会导致函数无意义或报错,那么该值就不在定义域内。
值域:值域指函数可输出的实际值的范围。
值域由图像框定,根据函数的单调性和对称性,可以很容易确定其值域。
单调性:单调性是指在函数定义域内函数值的增减关系。
如果函数在定义域内单调递增,那么它的图像就是从左到右逐渐升高的。
如果函数在定义域内单调递减,那么它的图像就是从左到右逐渐降低的。
对称性:对称性是指函数图像关于某条线或某点的对称性。
当函数关于X轴或Y轴对称时,称函数图象关于X轴或Y轴对称。
当函数关于原点对称时,称函数图象关于原点轴对称。
奇偶性:奇偶性是指函数的性质:当任意一个输入变量的相反数被输入到函数中时,函数的输出值是否保持不变。
如果函数在其定义域内关于原点对称,则称之为奇函数。
如果函数恒等于它的相反数,即f(-x) = -f(x),则称之为偶函数。
三、常见函数的图像在平面直角坐标系中,有许多常见的函数,它们的图像则有着相应的特点。
直线函数:直线函数的图像是一条直线,其一般式为y = kx + b,其中k为斜率,b 为截距。
(中考复习)第11讲 平面直角坐标系与函数的概念
B.x≥1 D.x>1
基础知识 · 自主学习
题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考 3.(2013· 烟台)如图11-1所示,将四边形ABCD先向左平移3个 单位,再向上平移2个单位,那么点A的对应点A′的坐标是 ( B )
图11-1 A.(6,1) B.(0,1) C.(0,-3) D.(6,-3)
基础知识 · 自主学习
题组分类 · 深度剖析
课堂回顾 · 巩固提升
基础知识 · 自主学习
题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考
4.(2013· 南阳)点M(-sin 60°,cos 60°)关于x轴对称的点的
坐标是
A.
( B )
B.-
3 1 , 2 2 3 1 C.- , 2 2
3 1 ,- 2 2 1 3 D.- ,- 2 2
基础知识 · 自主学习
题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考 5.(2013· 东营)将等腰直角三角形AOB按如图11-2所示的方式 放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点
B的横坐标为2,则点A′的坐标为
(C
)
图11-2
A.(1,1) B.( 2, 2) C.(-1,1) D.(- 2, 2)
课堂回顾 · 巩固提升
浙派名师中考
【例2】
(2013· 济宁)把以点(-3,7),(-3,-2)为端点的线
段向左平移5个单位,则线段上任意一点的坐标可以表示为 (-8,y)(-2≤y≤7). __________________
[变式训练]
已知线段MN平行于x轴,且MN=5,若M的坐 (7,-2)或(-3,-2) . 标是(2,-2),则N点的坐标是______________________
函数-第1讲:平面直角坐标系与函数
1、点坐标的特征:x 轴上点坐标的特征:(m,0)y 轴上点坐标的特征:(0,m )平行于x 轴的直线上点的纵坐标相同,平行y 轴的直线上的点的横坐标相同。
2、点坐标的几何意义:(1)点(a ,b )表示到x轴的距离是b ,到y 轴的距离是a (2)根据点到坐标轴的距离可以写出点坐标,但是需要考虑符号,需要分类讨论。
例:点A 到x 轴的距离是2,到y 轴的距离是3,求点A 的坐标。
答:(3,2)或(-3,2)或(-3,-2)或(3,-2)3、确认函数自变量取值范围的方法:【方法技巧】第一节 函数-平面直角坐标系与函【知识梳理】4、函数图象问题的解题技巧:①解题关键步骤:第一步:识别变量(审题):第二步:判断趋势第三步:找特殊值第四步:列解析式小贴士:以上四步没有绝对的向后顺序,若可以利用排除法求,则优先利用排除法,若实在判断不了函数图象,则可求出函数的关系式;注意出现动点时,要标出动点走过的路程和剩下的路程再去找关系,常用勾股定理和相似来求动点解析式②判别图象是曲还是直:要看变量的个数,若一个变量,则为直线;若变量是两个,则为曲线。
两个变量的增加性一样,则开口向上。
若不一样,开口向下。
③识别图象特点:若动点在直线、射线、线段、圆、圆弧上动,则函数图像为连续圆滑的图像,若在有尖点的折线上运动,则函数图像为出现明显的拐点为分段函数。
【考点突破】考点1:平面直角坐标系例1、在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()A.B.C. D.变式1、已知点P(a+1,2a﹣3)在第一象限,则a的取值范围是()A.a<﹣1 B.a>C.﹣<a<1 D.﹣1<a<例2、已知点P(0,m)在y轴的负半轴上,则点M(﹣m,﹣m+1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限变式1、在平面直角坐标系中,若点A(a,﹣b)在第一象限内,则点B(a,b)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限例3、已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.变式1、画出平面直角坐标系,标出下列各点;(1)点A在y轴上,位于原点上方,距离原点2个单位长度;(2)点B在x轴上,位于原点右侧,距离原点1个单位长度;(3)点C在x轴上方,y轴右侧,距离每条坐标轴都是2个单位长度;(4)点D在x轴上,位于原点右侧,距离原点3个单位长度(5)点E在x轴上方,y轴右侧,距离x轴2个单位长度,距离y轴4个单位长度.依次连接这些点,你能得到什么图形?例4、已知△ABC中,点A(﹣1,2),B(﹣3,﹣2),C(3,﹣3)①在直角坐标系中,画出△ABC;②求△ABC的面积.变式1、如图,在平面直角坐标系中,O为坐标原点,点A(4,1),B(1,1)C(4,5),D(6,﹣3),E(﹣2,5)(1)在坐标系中描出各点,画出△AEC,△BCD.(2)求出△AEC的面积(简要写明简答过程).变式2、已知:A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.例5、已知,如图,点A(a,b),B(c,d)在平面直角坐标系中的任意两点,且AC⊥x轴于点C,BD⊥x轴于点D.(1)CD= ,|DB﹣AC|= ;(用含a,b,c,d的代数式表示)(2)请猜想:A,B两点之间的距离;(3)利用猜想,若A(﹣2,5),B(4,﹣4),求AB两点之间的距离.变式1、先阅读下列一段文字,在回答后面的问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离.(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),你能判定此三角形的形状吗?说明理由.考点二:函数及其图象例1、在函数y=中,自变量x的取值范围是()A.x<B.x≤C.x>D.x≥变式1、函数y=中,自变量x的取值范围是()A.x>4B.x≥2C.x≥2且x≠﹣4D.x≠﹣4变式2、函数y=的自变量x的取值范围为()A.x>2B.x<2C.x≤2D.x≠2例2、如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.变式1、如图,矩形ABCD中,AB=2,BC=4,P为矩形边上的一个动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以A,P,B为顶点的三角形面积为y,则选项图象能大致反映y与x的函数关系的是()A.B.C.D.例3、如图,已知边长为4的正方形ABCD,P是BC边上一动点(与B、C不重合),连结AP,作PE⊥AP交∠BCD的外角平分线于E.设BP=x,△PCE面积为y,则y与x的函数关系式是()A.y=2x+1B.y=x﹣2x2C.y=2x﹣x2D.y=2x变式1、如图,A的坐标是(0,4),点C是x轴上的一个动点,点B与点O在直线AC两侧,∠BAC=∠OAC,BC⊥AC,点B的坐标为(x,y),y与x的函数关系式为()A.y=8x B.y=C.y=D.y=例4、在五边形ABCDE中,∠B=90°,AB=BC=CD=1,AB∥CD,M是CD边的中点,点P由点A出发,按A→B→C→M的顺序运动.设点P经过的路程x为自变量,△APM的面积为y,则函数y的大致图象是()A.B.C.D.变式1、如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P 从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A.B.C.D.例5、如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.变式1、如图,BC是⊙O直径,A是圆周上一点,把△ABC绕点C顺时针旋转得△EDC,连结BD,当BD∥AC时,记旋转角为x度,若∠ABC=y度,则y与x之间满足的函数关系式为()A.y=180﹣2x B.y=x+90C.y=2x D.y=x例6、如图1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发沿图中某一个扇形顺时针匀速运动,设∠APB=y(单位:度),如果y与点P运动的时间x(单位:秒)的函数关系的图象大致如图2所示,那么点P的运动路线可能为()A.O→B→A→O B.O→A→C→O C.O→C→D→O D.O→B→D→O变式1、一个观察员要到如图1所示的A,B,C,D四个观测点进行观测,行进路线由在同一平面上的AB,BC,CD,DA,AC,BD组成.为记录观察员的行进路线,在AB的中点M处放置了一台定位仪器,设观察员行进的路程为x,观察员与定位仪器之间的距离为y,若观察员匀速行进,且表示y与x的函数关系的图象大致如图2所示,则观察员的行进路线可能为()A.A→D→C→B B.A→B→C→D C.A→C→B→D D.A→C→D→B例7、如图1,在矩形ABCD中,AB<BC,点E为对角线AC上的一个动点,连接BE,DE,过E作EF⊥BC于F.设AE=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A.线段BE B.线段EF C.线段CE D.线段DE变式1、如图1,在等边三角形ABC中,AB=2,G是BC边上一个动点且不与点B、C重合,H 是AC边上一点,且∠AGH=30°.设BG=x,图中某条线段长为y,y与x满足的函数关系的图象大致如图2所示,则这条线段可能是图中的()A.线段CG B.线段AG C.线段AH D.线段CH例8、小阳在如图①所示的扇形舞台上沿O﹣M﹣N匀速行走,他从点O出发,沿箭头所示的方向经过点M再走到点N,共用时70秒.有一台摄像机选择了一个固定的位置记录了小阳的走路过程,设小阳走路的时间为t(单位:秒),他与摄像机的距离为y(单位:米),表示y与t的函数关系的图象大致如图②,则这个固定位置可能是图①中的()A.点Q B.点P C.点M D.点N变式1、如图1,△ABC是一块等边三角形场地,点D,E分别是AC,BC边上靠近C点的三等分点.现有一个机器人(点P)从A点出发沿AB边运动,观察员选择了一个固定的位置记录机器人的运动情况.设AP=x,观察员与机器人之间的距离为y,若表示y与x的函数关系的图象大致如图2所示,则观察员所处的位置可能是图1的()A.点B B.点C C.点D D.点E例9、如图,⊙O上有两点A与P,且OA⊥OP,若A点固定不动,P点在圆上匀速运动一周,那么弦AP的长度d与时间t的函数关系的图象可能是()A.①B.③C.①或③D.②或④变式1、如图甲,A、B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位的速度匀速运动,回到点A 运动结束.设运动时间为x ,弦BP 的长度为y ,那么如图乙图象中可能表示y 与x 的函数关系的是( )A .①B .④C .①或③D .②或④<A 组>1.已知点P (0,m )在y 轴的负半轴上,则点M (﹣m ,﹣m+1)在( )A .第一象限B .第二象限C .第三象限D .第四象限2.函数y=中,自变量x 的取值范围是( )A .x >4B .x≥2C .x≥2且x≠﹣4D .x≠﹣43.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min 后回家,图中的折线段OA ﹣AB ﹣BC 是她出发后所在位置离家的距离s (km )与行走时间t (min )之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是( )A .B .C .D .4.小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟【分层训练】返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是()A.B.C.D.5.小颍今天发烧了.早晨她烧得很厉害,吃药后她感觉好多了,中午时小颖的体温基本正常,但是下午她的体温又开始上升,直到夜里小颖才感觉没那么发烫.下面四幅图能较好地刻画出小颖今天体温的变化情况的是()A.B.C.D.6.已知点A(m,﹣2),点B(3,m﹣1),且直线AB∥x轴,则m的值为()A.﹣1B.1C.﹣3D.37.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A.(2,﹣3)B.(2,3)C.(3,2)D.(3,﹣2)8.如图,直线m∥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(﹣4,2),点B的坐标为(2,﹣4),则坐标原点为()A.O1B.O2C.O3D.O49.如图,在下列正方形网格中,标注了射阳县城四个大型超市的大致位置(小方格的边长为1个单位).若用(0,﹣2)表示苏果超市的位置,用(4,1)表示文峰超市的位置,则大润发超市的位置可表示为.10.如图,是象棋盘的一部分,若“帅”位于点(2,﹣1)上,“相”位于点(4,﹣1)上,则“炮”所在的点的坐标是.<B组>1、如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A2017的坐标是()A.(0,21008)B.(21008,21008)C.(21009,0)D.(21009,﹣21009)2、观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角3.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P60的坐标是.4.在平面直角坐标系中,已知点A(﹣3,0),B(3,0),点C在坐标轴上,且AC+BC=10,写出满足条件的所有点C的坐标.5、如图∥,我们在“格点”直角坐标系上可以清楚看到:要找AB或DE的长度,显然是转化为求Rt∥ABC或Rt∥DEF的斜边长.下面:以求DE为例来说明如何解决:从坐标系中发现:D(﹣7,5),E(4,﹣3).所以DF=|5﹣(﹣3)|=8,EF=|4﹣(﹣7)|=11,所以由勾股定理可得:DE==.下面请你参与:(1)在图∥中:AC=,BC=,AB=.(2)在图∥中:设A(x1,y1),B(x2,y2),试用x1,x2,y1,y2表示AC=,BC=,AB=.(3)(2)中得出的结论被称为“平面直角坐标系中两点间距离公式”,请用此公式解决如下题目:已知:A(2,1),B(4,3),C为坐标轴上的点,且使得∥ABC是以AB为底边的等腰三角形.请求出C点的坐标.6、如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t秒,∥APQ的面积为S,则表示S与t之间的函数关系的图象大致是()A.B.C.D.7、如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),∥OEF 的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.参考答案【考点突破】考点1:平面直角坐标系例1、解:∵点在第三象限,∴点的横坐标是负数,纵坐标也是负数,即﹣2m+3<0,解得m>.故选B.变式1、解:∵点P(a+1,2a﹣3)在第一象限,∴,解得:a,故选:B.例2、解:由点P(0,m)在y轴的负半轴上,得m<0.由不等式的性质,得﹣m>0,﹣m+1>1,则点M(﹣m,﹣m+1)在第一象限,故选:A.变式1、解:∵点A(a,﹣b)在第一象限内,∴a>0,﹣b>0,∴b<0,∴点B(a,b)所在的象限是第四象限.故选D.例3、解:(1)∵点P(a﹣2,2a+8),在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2))∵点P(a﹣2,2a+8),在y轴上,∴a﹣2=0,解得:a=2,故2a+8=2×2+8=12,则P(0,12);(3)∵点Q的坐标为(1,5),直线PQ∥y轴;,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14);(4)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2则:a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12),(﹣4,4).变式1、解:(1)∵点A在y轴上,位于原点上方,距离原点2个单位长度,∴点A的坐标为(0,2);(2)∵点B在x轴上,位于原点右侧,距离原点1个单位长度,∴点B的坐标为(1,0);(3)∵点C在x轴上方,y轴右侧,距离每条坐标轴都是2个单位长度,∴点C的坐标为(2,2);(4)∵点D在x轴上,位于原点右侧,距离原点3个单位长度,∴点D的坐标为(3,0);(5)∵点E在x轴上方,y轴右侧,距离x轴2个单位长度,距离y轴4个单位长度,∴点E的坐标为(4,2).将A、B、C、D、E标在同一坐标系中,依次连接这些点,如图所示,得到的图形为W形.例4、解:(1)△ABC如图所示;(2)△ABC的面积=6×5﹣×2×4﹣×1×6﹣×5×4,=30﹣4﹣3﹣10,=30﹣17,=13.变式1、解:(1)如图所示:(2)△AEC取EC为底,则EC为6,EC边上高AC=4所以S△AEC=×6×4=12.变式2、解:(1)S△ABC=3×4﹣×2×3﹣×2×4﹣×1×2=4;(2)如图所示:P1(﹣6,0)、P2(10,0)、P3(0,5)、P4(0,﹣3).例5、解:(1)CD=|c﹣a|,|DB﹣AC|=|b﹣d|;(2)AB=;(3)AB==3.故答案为|c﹣a|,|b﹣d|;.变式1、解:(1)∵A(2,4)、B(﹣3,﹣8),∴|AB|==13,即A、B两点间的距离是13;(2)∵A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,∴|AB|=|﹣1﹣5|=6,即A、B两点间的距离是6;(3)∵一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),∴AB=5,BC=6,AC=5,∴AB=AC,∴△ABC是等腰三角形.考点二、函数及其图象例1、解:在函数y=中,自变量x的取值范围是x≤,故选:B.变式1、解:由题意得,解得x≥2,x≠﹣4,∥自变量x的取值范围是x≥2,故选B.变式2、解:∥函数表达式y=的分母中含有自变量x,∥自变量x的取值范围为:x﹣2≠0,即x≠2.故选D.例2、快速解法:由题意可得P经过两个线段,BA,AC,当P在BA上运动时,BD是变化的(增大),PD也是变化的(增大),所以面积是曲线,不是直线,排除A、D当P在AC上运动时,BD是变化的(增大),PD也是变化的(减少),所以面积是曲线,且是下降的。
平面直角坐标系中的曲线与函数定理
平面直角坐标系中的曲线与函数定理曲线与函数是数学中重要的概念,它们在平面直角坐标系中有着重要的应用与定理。
本文将探讨平面直角坐标系中曲线与函数的基本概念,并介绍与之相关的定理。
一、曲线与函数基本概念在平面直角坐标系中,我们可以通过曲线来描述两个变量之间的关系。
而函数,作为数学中的一种基本对象,可以看作是曲线的数学表示。
下面分别介绍曲线和函数的基本概念。
1. 曲线的定义曲线是指平面上的一些点的集合,这些点之间存在特定的关系。
例如,直线就是一种特殊的曲线,它由无数个相互平行的点构成。
而圆则是由到某一点距离相等的所有点组成的曲线。
2. 函数的定义函数是一个映射关系,它将一个集合中的元素映射到另一个集合中的元素。
在平面直角坐标系中,我们通常用y=f(x)来表示函数,其中x 表示自变量,y表示因变量,f(x)表示函数关系。
二、函数的图像与曲线的性质在平面直角坐标系中,函数的图像对应于曲线。
函数图像可以通过画出函数的各个点来获得,而曲线则是这些点的集合。
下面介绍函数图像与曲线的一些性质。
1. 函数的图像函数的图像是函数在坐标系中的点的集合,它展示了函数的变化规律。
通过函数图像,我们可以观察函数的增减性、最值以及其他关键特征。
2. 曲线的性质曲线有许多特点和性质,例如曲率、凹凸性等。
这些性质可以通过曲线的图像来观察和判断。
例如,凹凸性可以通过观察曲线的曲率变化来确定。
三、曲线与函数的定理在平面直角坐标系中,曲线与函数有许多经典的定理与性质。
下面介绍几个常见的定理。
1. 零点定理零点定理指出,如果函数f(x)在点a与点b之间连续,并且f(a)与f(b)异号,那么在a和b之间至少存在一个零点。
2. 导数与曲线斜率导数是函数变化率的表示,也是曲线在某一点的斜率。
对于满足一定条件的连续函数,其导数在某点的值等于曲线在该点切线的斜率。
3. 积分与曲线面积积分是函数的反导函数,也可以用来求曲线下的面积。
对于连续函数f(x),其在[a, b]区间上的积分值等于曲线f(x)与x轴之间的面积。
专题三函数 3.1平面直角坐标系、函数图象-2021年中考数学一轮复习课件
求真 至善
1. 平面直角坐标系、函数图象
知识梳理
一.平面直角坐标系及其相关概念: 1.定义:在平面内,两条互相垂直且有公共原点的数轴组成 平面直角坐标系.
平面直角坐标系内的点和有序实数对成一 一对应关系. 2.坐标轴、原点、象限: 水平的数轴称为x 轴或横轴; 竖直的数轴称为y 轴或纵轴; x 轴和y 轴统称为坐标轴; 两坐标轴的交点为坐标原点; 两条坐标轴把坐标平面分成四个部分, 分别称第 一 、二 、三 、四象限 , 坐标轴上的点不属于任何象限.
D. (-4,3)
(2)在平面直角坐标系中,将点A(1,-2)向上平移3个单位长
度,再向左平移2个单位长度,得到点A′,则点A′的坐标是( A).
A. (-1, 1) B. (-1,-2) C. (-1, 2) D. (1, 2)
知识梳理
七.函数: 1.常量和变量: 在某一变化过程中, 可以取不同数值的量叫 做变量;保持数值不变的量叫做常量. 2. 函数、自变量、函数值:一般地,设在某一变化过程中有 两个变量x和y,若对于x的每一个确定的值,y 都有唯一确定 的值与其对应,则y是x的函数,x 是自变量.这个唯一确定的 值叫做函数值
(5)点A(-3,4)到x轴的距离为 4 , 到y轴的距离为 3 .
(6)已知坐标平面内的点 A (2 ,6 ) ,B (2 ,- 2 ) , 则 AB的长
等于 8 ;
若点M在直线AB上 , 且BM=6,则点M的坐标为
.
(2,4)和(2,-8)
知识梳理
六.对称点的坐标特征: P1(a,b)关于x轴对称的点为P2(a,-b),
3.函数的表示法与图象: (1)解析法;(2)列表法;(3)图像法.
由函数的解析式作函数的图象, 一般步骤是 :
中考一轮复习--第9讲 平面直角坐标系与函数的概念
A.(-1,1) B.(3,1) C.(4,-4) D.(4,0)
解析:∵将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长
度,得到点B,
∴点B的横坐标为1-2=-1,纵坐标为-2+3=1,∴B的坐标为(-1,1).故
选A.
考法1
考法2
பைடு நூலகம்
考法3
对应练3(2019·安徽庐江期末)如图为正方形网格中的一片树叶,
点O是这两条数轴的原点,这样建立的两条数轴构成平面直角坐标
系.
考点梳理
自主测试
3.平面直角坐标系中点的坐标
各象限点
坐标的符
号特征
坐标轴上
点的坐标
特征
象限角平
分线上点
的坐标特
征
x 轴上的点的纵坐标为 0 ,y 轴上的点的横坐标为
0,原点的坐标为(0,0)
第一、三象限角平分线上点的横、纵坐标相等;第
二、四象限角平分线上点的横、纵坐标互为相反
答案:D
解析:∵点A(-3,0),点P(a,b),点B(m,n)为弦PA的中点,
-3+
0+
∴m= 2 ,n= 2 .
∴a=2m+3,b=2n.
又a,b满足等式:a2+b2=9,
∴(2m+3)2+4n2=9.故选D.
考法1
考法2
考法3
对应练1(2018·四川攀枝花)若点A(a+1,b-2)在第二象限,则点B(a,1-b)在( D )
间的距离为|y2-y| .
考点梳理
自主测试
5.坐标系中的距离公式
(1)点P(a,b)到x轴的距离是|b|
(2)点P(a,b)到y轴的距离是|a|
第三单元函数——第10讲:平面直角坐标系及函数概念
I l _
第三单元
第l讲 0
函数
平 面直 角坐 标 系及 函数 概念
售
限( 三象限( ,
。
)第 二象 限 ( , , )第 四象 限( , , , ) 第 , ) .
是
1 在坐标平 面四个象 限内点 的坐标符号 : . 第一象
詹
.
坐标 为零 ;
因为题 目中函数是 二次根式 的形 式 , 自 故
变 量 的取 值 应 使 二 次根 式 有 意 义 , 2 则 一4/ , 得 _ >o解
( ) 于原点对 称的点 5关
3 坐 标 轴 上 两 点 问 的距 离 : . ( ) 轴 上 两 点 A( , ) B( z0 之 间 的 距 1在 ,O 和 x ,) 离 AB一
。
中 自变量 的取值 范围
( 0 8 南通 ) 20 ,
2 特殊 点 的坐 标 : . () 1 在 轴 上 的点 , 坐标为零 ;
例 1 函数 一 分析
≥2 .
( ) y轴上 的点 , 2在 () 3 关于 轴对称 的点
( ) 于 y轴 对 称 的点 4关
数
驶一段路程 , 受阻原地 休整 , 在一段 时 间内离开 后 则 驻地距离不变 , 最后步行 前进 , 则行走速度较慢. 故应
选 A.
;
当函数解析式是 二次根式 , 自变量 的取值须使被 开方
.
— —
点评
本 题 主 要 考 查 识 图 能 力 , 确 在 变 化 过 程 明
中函数如何随着 自变量的变化而变化.
标是 ( ) .
八 ( ,) 3 3
B ( 3, ) ~ 3
第1部分 第3章 第1节 平面直角坐标系与函数
2.(2019·日照)如图,在单位为 1 的方格纸上,△A1A2A3,△A3A4A5,
△A5A6A7,…,都是斜边在 x 轴上,斜边长分别为 2,4,6,…的等腰直角
三角形,若△A1A2A3 的顶点坐标分别为 A规律,A2019 的坐标为( A )
函数(2018.10,2016.9,2014.9,2012.9) 1.函数及相关概念 (1)变量与常数:在一个变化过程中,可以变化的量,是变量;保持不 变的量,是常量. (2)函数:一般地,在一个变化过程中,如果有两个变量 x,y,且对于 x 在它允许取值范围内的每一个值,y 都有⑯ 唯一确定 的值与它对应,那么 就说 x 是自变量,y 是 x 的函数. (3)函数值:对于一个函数,取自变量 x 在允许范围内的一个确定值, 代入函数表达式求得的函数 y 的值,就叫做函数值.
【解析】由题意知,A1(21, 23),A2(1,0),A3(32, 23), A4(2,0),A5(25,- 23),A6(3,0),A7(72, 23),…综上可知,每个点的 横坐标为序号的一半,纵坐标每 6 个点依次为 23,0, 23,0,- 23,0 这 样循环,∴A2019(20219, 23).
【解析】∵不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,x 表示漏水时间,y 表示壶底到水面的高度,∴y 随 x 的增大而减小,符合一 次函数图象.
点的坐标特征(冷考) 1.(2013 安徽,18(2),4 分)我们把正六边形的顶点及其对称中心称作 如图(1)所示基本图的特征点,显然这样的基本图共有 7 个特征点,将此基 本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图(2), 图(3),….
如图所示,三架飞机 P,Q,R 保持编队飞行,某时刻在坐标 系中的坐标分别为(-1,1),(-3,1),(-1,-1).30 秒后,飞机 P 飞到 P′(4, 3)位置,则飞机 Q,R 的位置 Q′,R′分别为( A )
八年级上册数12章知识点
八年级上册数12章知识点在八年级上册数学中,第12章是“平面直角坐标系与函数”的内容。
该章节涉及的知识点包括:平面直角坐标系的建立、坐标系中点的坐标、平面直角坐标系的应用、函数的基本概念、函数的图象、函数的性质、函数的表示方法等。
下面我们将逐一介绍这些知识点。
1. 平面直角坐标系的建立平面直角坐标系是通过相互垂直的两条数轴来建立的。
其中,x轴称为横坐标轴,y轴称为纵坐标轴。
两条轴的交点称为坐标原点,用O表示。
每个点在坐标系中都有唯一确定的坐标表示。
例如,点A在x轴上的坐标为3,在y轴上的坐标为4,则A的坐标表示为(3,4)。
2. 坐标系中点的坐标当点在坐标系中的x坐标和y坐标都相同时,该点位于坐标系中心,我们称其为中心点。
例如,在以原点为中心的坐标系中,中心点的坐标为(0,0)。
当中心点不在原点时,其坐标为相应轴中点的坐标。
3. 平面直角坐标系的应用平面直角坐标系在数学中有广泛的应用。
它可以被用于描述物体在空间中的位置和运动状态,并可以通过坐标系中函数的图象来描述各种关联关系。
4. 函数的基本概念函数是指若干个变量之间的一种关系。
在数学中,我们通常用字母表示函数,并用一个括号内表示自变量的值。
例如,函数f(x)表示自变量为x时的函数值。
函数可以用表格、图形或公式等方式表示。
在函数中,自变量和函数值之间的关系可以用函数图象很好地表示出来。
5. 函数的图象函数图象可以帮助我们理解函数的性质。
例如,对于一元二次函数,其图象为一条抛物线。
通过观察函数图象,我们可以知道该函数的零点、顶点、开口方向等特征。
6. 函数的性质函数的性质描述了函数的特性,其中比较重要的有:奇偶性、单调性、周期性等。
奇偶性表示函数的图象是否呈现对称的现象。
单调性表示函数的变化方向。
周期性表示函数的特定区间内是否重复。
7. 函数的表示方法函数可以用不同的方式表示。
比如,可以使用解析式、图形和表格等方式来表示函数。
在解析式中,函数通常使用通用公式表示。
2020蓉城中考数学第十讲 平面直角坐标系及函数概念
蓉城中考
知识回顾
4.对称点:两点关于x轴对称,横坐标__相__同___, 纵坐标__互__为__相__反__数____;关于y轴对称,横坐标 __互__为__相__反__数____,纵坐标__相__同___;关于坐标原 点对称,横、纵坐标均__互__为__相__反__数___;对称可 以用口诀:关谁谁不变,关原全相反.平面内的 点和有序实数对具有__一__一__对__应___的关系.
A.a=b C.a-2b=1
B.a+2b=1 D.a+2b=-1
蓉城中考
课堂精讲
【分析】根据作图方法可得点P在第二象限的角平分 线上,根据角平分线的性质和第二象限内点的坐标符 号可得a+2b-1=0,然后再整理可得答案. 【答案】B
蓉城中考
课堂精讲
考点二 几何点问题 例 4 (2019·娄底)如图,在单位长度为 1 米的平面直角 坐标系中,曲线是由半径为 2 米,圆心角为 120°的A︵B多次复 制并首尾连接而成.现有一点 P 从 A(A 为坐标原点)出发,以每 2 秒3π 米的速度沿曲线向右运动,则在第 2019 秒时点 P 的纵坐 标为( )
蓉城中考
蓉城中考·数学
2020版
蓉第城一中考部分 系统复习
第十讲 平面直角坐标系 及函数概念
蓉城中考
知识回顾
1.定义:同一平面内_互__相__垂__直__且___有__公__共__原__点___的两 条数轴组成平面直角坐标系.两条数轴分别称__x___轴、 ___y__轴或__横___轴、___纵___轴,它们的公共原点O称为直 角坐标系的原点.两条坐标轴把一个坐标平面分成的四 个部分,我们称作是四个__象__限____.坐标轴上的点不属 于任何一个象限内.
蓉城中考
函数,平面直角坐标系
函数,平面直角坐标系
函数是数学中的一种基本概念,指的是通过一定的规则,将一个数域中的每个数对应到另一个数域中的某个数。
在平面直角坐标系中,函数可以用一条曲线来表示。
在坐标系中,横轴表示自变量,纵轴表示因变量,曲线上的每个点都表示一个自变量与因变量的对应关系。
函数在实际生活和工作中具有广泛的应用。
例如,在经济学中,函数可以用来描述供求关系、成本曲线等;在物理学中,函数可以用来描述物体的运动规律、力学关系等;在计算机科学中,函数可以用来实现各种算法、程序等。
平面直角坐标系是一种用于表示二维平面上点的坐标系。
它由两条垂直的直线(称为坐标轴)和它们的交点(称为坐标原点)组成。
坐标轴分别被标记为 x 轴和 y 轴,它们的正方向分别向右和向上。
在平面直角坐标系中,一个点的位置可以由两个数(称为坐标)来确定,第一个数表示 x 轴上的位置,第二个数表示 y 轴上的位置。
平面直角坐标系也广泛应用于各个领域中。
例如,在数学中,平面直角坐标系常用于解析几何、函数图像等;在物理学中,平面直角坐标系可以用来描述力的作用方向、矢量的运算等;在计算机科学中,平面直角坐标系可以用来实现图形界面、游戏等。
- 1 -。
坐标系和一次函数知识点
位置的确定一、 在平面内,确定物体的位置一般需要两个数据。
二、平面直角坐标系及有关概念 1、平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。
其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;x 轴和y 轴统称坐标轴。
它们的公共原点O 称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
2、为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x 轴和y 轴上的点(坐标轴上的点),不属于任何一个象限。
3、点的坐标的概念对于平面内任意一点P,过点P 分别x 轴、y 轴向作垂线,垂足在上x 轴、y 轴对应的数a ,b 分别叫做点P 的横坐标、纵坐标,有序数对(a ,b )叫做点P 的坐标。
点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。
平面内点的与有序实数对是一一对应的。
4、不同位置的点的坐标的特征 (1)、各象限内点的坐标的特征 点P(x,y)在第一象限0,0>>⇔y x点P(x,y)在第二象限0,0><⇔y x 点P(x,y)在第三象限0,0<<⇔y x 点P(x,y)在第四象限0,0<>⇔y x (2)、坐标轴上的点的特征点P(x,y)在x 轴上0=⇔y ,x 为任意实数 点P(x,y)在y 轴上0=⇔x ,y 为任意实数点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0)即原点 (3)、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线(直线y=x )上⇔x 与y 相等 点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数 (4)、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同。
数学知识点总结之函数的概念
数学知识点总结之函数的概念数学知识点总结之函数的概念函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.上面对函数的概念知识的总结学习,相信同学们对上面的知识点已经能很好的掌握了吧。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
初中数学知识点:点的坐标的性质下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
点的.坐标的性质建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。
平面直角坐标系与函数像的关系
平面直角坐标系与函数像的关系直角坐标系是数学中常用的一种坐标系,我们可以利用它来描述平面上的各种几何图形和数学函数。
在这种坐标系中,平面被划分为四个象限,每个象限由两个互相垂直的轴,即x轴和y轴所确定。
x轴和y轴的交点称为原点,它的坐标为(0, 0)。
在直角坐标系中,我们可以通过给定的x坐标和y坐标,来确定平面上的一个点。
这个点的坐标表示为(x, y),其中x表示点在x轴上的位置,y表示点在y轴上的位置。
通过这种表示方式,我们可以利用直角坐标系方便地进行平面几何运算和函数分析。
函数是数学中一个非常重要的概念,它描述了两个数集之间的一种关系。
在直角坐标系中,我们可以将函数表示为一条曲线,这条曲线上的每个点都满足函数的定义。
函数的自变量通常表示为x,因变量表示为y,即y = f(x)。
在直角坐标系中,这个函数图像可以看作是平面上的一个图形。
函数的图像在直角坐标系中呈现出各种不同的形状,如直线、曲线、抛物线等。
通过观察这些图像,我们可以得到函数的性质和行为。
例如,当函数图像是一条直线时,函数呈现线性关系,即y与x成正比或反比。
而当函数图像是一条曲线时,函数可能表现出增长或衰减的趋势,或者存在极值点和拐点等。
函数图像在直角坐标系中的属性还包括对称性和周期性。
对称性是指函数图像在某个中心对称轴上呈现对称的特点,例如关于x轴对称、y轴对称或者原点对称。
周期性是指函数图像呈现出一定规律的重复性,即函数在某个区间内的数值与另一个区间内的数值相同。
直角坐标系也为我们提供了一种便利的方式来研究函数的变化趋势和数值特征。
通过观察函数图像在直角坐标系中的行为,我们可以判断函数的增减性、最值、零点以及一些其他的特征。
这些特征对于我们理解函数的性质和应用具有重要意义。
在数学和物理等领域,直角坐标系与函数的关系具有广泛的应用。
例如,我们可以利用直角坐标系来分析物体的运动轨迹、计算物体的速度和加速度,从而更好地理解运动规律。
此外,直角坐标系也为计算机图形学等领域提供了重要的基础,使得我们可以实现平面上的各种图形显示和处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章平面直角坐标系、一次函数与反比例函数1. 了解平面直角坐标系的概念,理解平面内的点与有序实数对的一一对应关系.2. 理解函数的概念,会由问题情境列函数解析式,并会画函数的图象.3. 掌握一次函数、反比例函数的性质.4. 会用待定系数法求一次函数与反比例函数的解析式.5. 能用一次函数和反比例函数解决实际问题.平面直角坐标系与函数的概念一、选择题1. (2014·台湾)如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点(6-b,a-10)落在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限第1题2. (2014·菏泽)若点M(x,y)满足(x+y)2=x2+y2-2,则点M所在的象限是()A. 第一象限或第三象限B. 第二象限或第四象限C. 第一象限或第二象限D. 不能确定3. (2014·漳州)如图,在5×4的方格纸中,每个小正方形的边长为1,点O、A、B 在方格纸的交点(格点)上,在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有()A. 2个B. 3个C. 4个D. 5个第3题4. (2014·南通)点P(2,-5)关于x轴对称的点的坐标为()A. (-2, 5)B. (2,5)C. (-2,-5)D. (2,-5)5. (2014·连云港)在平面直角坐标系中,点P(-2,3)关于原点的对称点Q的坐标为()A. (2,-3)B. (2,3)C. (3,-2)D. (-2,-3)6. (2014·崇左)已知点A(a,2 013)与点B(2 014,b)关于x轴对称,则a+b的值为()A. -1B. 1C. 2D. 37. (2014·大连)在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是()A. (1,3)B. (2,2)C. (2,4)D. (3,3)8. (2014·绵阳)线段EF是由线段PQ平移得到的,点P(-1,4)的对应点为E(4,7),则点Q(-3,1)的对应点F的坐标为()A. (-8,-2)B. (-2,-2)C. (2,4)D. (-6,-1)9. (2014·黄石)正方形ABCD在直角坐标系中的位置如图所示,将正方形ABCD 绕点A顺时针方向旋转180°后,点C的坐标是()A. (2,0)B. (3,0)C. (2,-1)D. (2,1)第9题10. (2014·莆田)如图,点B在x轴上,∠ABO=90°,∠A=30°,OA=4,将△OAB绕点O按顺时针方向旋转120°得到△OA′B′,则点A′的坐标是()A. (2,-22)B. (2,-23)C. (22,-2)D. (23,-2)第10题11. (2014·烟台)如图,将△ABC绕点P 顺时针旋转90°得到△A′B′C′,则点P的坐标是()第11题A. (1,1)B. (1,2)C. (1,3)D. (1,4)12. (2014·娄底)函数y=x-2中自变量x的取值范围为()A. x≥0B. x≥-2C. x≥2D. x≤-213. (2014·牡丹江)在函数y=1x中,自变量x的取值范围是()A. x≥0B. x>0C. x≠0D. x>0且x≠114. (2014·内江)在函数y=x+2x-1中,自变量x的取值范围是()A. x≥-2且x≠1B. x≤2且x≠1C. x≠1D. x≤-215. (2014·衡阳)小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程中离家的距离s(米)与散步所用时间t(分钟)之间的函数关系.根据图象,下列信息错误的是()A. 小明看报用时8分钟B. 公共阅报栏距小明家200米C. 小明离家最远的距离为400米D. 小明从出发到回家共用时16分钟第15题第16题16. (2014·北京)园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为( )A. 40平方米B. 50平方米C. 80平方米D. 100平方米 17. (2014·广安)如图,在△ABC 中,AC =BC ,有一动点P 从点A 出发,沿A →C →B →A 匀速运动.则CP 的长度s 与时间t 之间的函数关系用图象描述大致是()第17题ABCD18. (2014·重庆)2014年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,下面能反映y 与x 的函数关系的大致图象是()ABCD19. (2014·崇左)如图,在平面直角坐标系中,A(1,1)、B(-1,1)、C(-1,-2)、D(1,-2).把一条长为2 014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A →B →C →D →A …的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是()第19题A. (-1,0)B. (1,-2)C. (1,1)D. (-1,-1) 二、 填空题20. (2014·玉林)在平面直角坐标系中,点(-4,4)在第________象限.21. (2014·赤峰)如图,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(-1,2),写出“兵”所在位置的坐标为________.第21题22. (2014·泰州)点P(-2,3)关于x轴对称的点P′的坐标为________.23. (2014·常州)已知点P(1,-2),则点P关于x轴的对称点的坐标是________,点P关于原点O的对称点的坐标是________.24. (2014·张家界)若点A(m+2,3)与点B(-4,n+5)关于y轴对称,则m+n=________.25. (2014·宜宾)在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是________.26. (2014·徐州)在平面直角坐标系中,将点A(4,2)绕原点按逆时针方向旋转90°后,其对应点A′的坐标为________.27. (2014·仙桃)如图,在直角坐标系中,点A的坐标为(-1,2),点C的坐标为(-3,0),将点C 绕点A逆时针旋转90°,再向下平移3个单位,此时点C的对应点的坐标为________.第27题28. (2014·黔西南)在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1) f(m,n)=(m,-n),如f(2,1)=(2,-1);(2) g(m,n)=(-m,-n),如g (2,1)=(-2,-1).按照以上变换有:f[g(3,4)]=f(-3,-4)=(-3,4),那么g[f(-3,2)]=________.29. (1) (2014·徐州)函数y=2x-1中,自变量x的取值范围为________;(2) (2014·哈尔滨)在函数y=3x2x+4中,自变量x的取值范围是________;(3) (2014·黑龙江)函数y=3-x中,自变量x的取值范围是________;(4) (2014·资阳)函数y=1+x+3中,自变量x的取值范围是________.30. (1) (2014·牡丹江)在函数y=x+1x 中,自变量x的取值范围是________;(2) (2014·海南)函数y=x+1x-2中,自变量x的取值范围是________.31. (2014·宿迁)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A、B的坐标分别为(-3,0)、(2,0),点D在y轴上,则点C的坐标是________.第31题32. (2014·长沙)如图,在平面直角坐标系中,已知点A(2,3)和点B(-2,1),在x 轴上存在点P到A、B两点的距离之和最小,则点P的坐标是________.第32题33. (2014·义乌)小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分钟)的函数图象,则小明回家的速度是每分钟步行________米.第33题34. (2014·泰安)如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上;再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上;将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去……若点A ⎝⎛⎭⎫53,0、B(0,4),则点B 2014的横坐标为________.第34题35. (2014·北京)在平面直角坐标系xOy 中,对于点P(x ,y),我们把点P′(-y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,….这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(3,1),则点A 3的坐标为________,点A 2014的坐标为________;若点A 1的坐标为(a ,b),对于任意的正整数n ,点A n 均在x 轴上方,则a 、b 应满足的条件为______________.三、 解答题36. (2014·毕节)在下列网格图中,每个小正方形的边长均为1个单位.在Rt △ABC 中,∠C =90°,AC =3,BC =4.(1) 试在图中作出△ABC 以点A 为旋转中心,按顺时针方向旋转90°后的图形△AB 1C 1;(2) 若点B 的坐标为(-3,5),试在图中画出直角坐标系,并写出A 、C 两点的坐标;(3) 根据(2)的坐标系作出与△ABC 关于原点对称的图形△A 2B 2C 2,并写出B 2、C 2两点的坐标.第36题37. (2014·南宁)如图,△ABC 三个顶点的坐标分别为 A(1,1)、B(4,2)、C(3,4).(1) 请画出△ABC 向左平移5个单位长度后得到的△A 1B 1C 1;(2) 请画出△ABC 关于原点对称的△A 2B 2C 2;(3) 在x 轴上求作一点P ,使△PAB 的周长最小,请画出△PAB ,并直接写出点P 的坐标.第37题38. (2014·丹东)如图,在平面直角坐标系中,△ABC 的三个顶点坐标为A(1,-4)、B(3,-3)、C(1,-1)(每个小方格都是边长为一个单位长度的正方形).(1) 将△ABC 沿y 轴方向向上平移5个单位,画出平移后得到的△A 1B 1C 1;(2) 将△ABC 绕点O 顺时针旋转90°,画出旋转后得到的△A 2B 2C 2,并直接写出点A 旋转到点A 2所经过的路径长.第38题平面直角坐标系与函数的概念一、 1. D 2. B 3. B 4. B 5. A 6. B 7. C 8. C9. B 10. B 11. B 12. C 13. B 14. A 15. A 16. B 17. D 18. C 19. D 提示:绕四边形ABCD 一周的细线长度为2+3+2+3=10,2 014÷10=201……4,∴ 点的坐标为(-1,-1).二、 20. 二 21. (-2,3) 22. (-2,-3) 23. (1,2) (-1,2) 24. 0 25. (2,-2) 26. (-2,4) 27. (1,-3) 28. (3,2) 29. (1) x ≠1 (2) x ≠-2 (3) x ≤3 (4) x ≥-3 30. (1) x ≥-1且x ≠0 (2) x ≥-1且x ≠2 31. (5,4) 32. (-1,0) 33. 80 34. 10 07035. (-3,1) (0,4) -1<a<1,0<b<2 提示:∵ 点A 1的坐标为(a ,b),∴ A 2(-b +1,a +1)、A 3(-a ,-b +2)、A 4(b -1,-a +1)、A 5(a ,b),….依此类推,每4个点为一个循环组依次循环.由题意,得⎩⎪⎨⎪⎧a +1>0,-a +1>0,⎩⎪⎨⎪⎧-b +2>0,b>0,解得-1<a<1,0<b<2.三、 36. (1) △AB 1C 1如图所示 (2) 如图所示,A(0,1)、C(-3,1) (3) △A 2B 2C 2如图所示,B 2(3,-5)、C 2(3,-1)第36题37. (1) △A 1B 1C 1如图所示 (2) △A 2B 2C 2如图所示 (3) △PAB 如图所示,P(2,0)第37题38. (1) 如图,△A 1B 1C 1即为所求 (2) 如图,△A 2B 2C 2即为所求.由勾股定理,得OA =12+42=17,点A 旋转到点A 2所经过的路径长为90×π×17180=172π第38题。