吉林数学理精校版-2012普通高等学校招生统一考试
2012年全国高考理科数学试题及答案(全国卷)
2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题 (1)复数131i i-+=+(A )2i + (B )2i - (C )12i + (D )12i - (2)已知集合{1,A =,{1,}B m =,A B A = ,则m =(A )0(B )0或3 (C )1(D )1或3 (3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612xy+= (B )221128xy+= (C )22184xy+= (D )221124xy+=(4)已知正四棱柱1111ABC D A B C D -中 ,2A B =,1CC =E 为1C C 的中点,则直线1AC 与平面BED 的距离为(A )2 (B) (C(D )1 (5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101(B )99101(C )99100(D )101100(6)A B C ∆中,A B 边的高为C D ,若CB a = ,C A b = ,0a b ⋅= ,||1a = ,||2b = ,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos 3αα+=,则cos 2α=(A )3- (B )9- (C 9(D 3(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14(B )35(C )34(D )45(9)已知ln x π=,5log 2y =,12z e-=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x << (10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种 (12)正方形A B C D 的边长为1,点E 在边A B 上,点F 在边B C 上,37A EB F ==。
2012年普通高等学校招生全国统一考试理科数学及答案
2012年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第I卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题1、复数131ii-++=A 2+IB 2-IC 1+2iD 1- 2i2、已知集合A={1.3. },B={1,m} ,A B=A, 则m=A 0B 0或3C 1D 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A216x+212y=1 B212x+28y=1C28x+24y=1 D212x+24y=14 已知正四棱柱ABCD- A1B1C1D1中,AB=2,CC1=E为CC1的中点,则直线AC1与平面BED的距离为A 2BCD 1(5)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为(A)100101(B)99101(C)99100(D)101100(6)△ABC中,AB边的高为CD,若a·b=0,|a|=1,|b|=2,则(A) (B ) (C) (D)(7)已知α为第二象限角,sin α+sin βcos2α=(A) -3 (B )-9 (C) 9 (D)3(8)已知F 1、F 2为双曲线C :x ²-y ²=2的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2= (A)14 (B )35 (C)34 (D)45(9)已知x=ln π,y=log 52,12z=e ,则(A)x <y <z (B )z <x <y (C)z <y <x (D)y <z <x(10) 已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c =(A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A )12种(B )18种(C )24种(D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =73。
2012年普通高等学校招生全国统一考试 数学试卷含答案(理科)
2012年普通高等学校招生全国统一考试(课标全国卷)理数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为( )A.3B.6C.8D.102.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种B.10种C.9种D.8种3.下面是关于复数z=2-1+i的四个命题:p1:|z|=2, p2:z2=2i,p3:z的共轭复数为1+i, p4:z的虚部为-1.其中的真命题为( )A.p2,p3B.p1,p2C.p2,p4D.p3,p44.设F1,F2是椭圆E:x 2a2+y2b2=1(a>b>0)的左,右焦点,P为直线x=3a2上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )A.12B.23C.34D.455.已知{a n}为等比数列,a4+a7=2,a5a6=-8,则a1+a10=( )A.7B.5C.-5D.-76.如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a N,输出A,B,则( )A.A+B为a1,a2,…,a N的和B.A+B2为a1,a2,…,a N的算术平均数C.A和B分别是a1,a2,…,a N中最大的数和最小的数D.A和B分别是a1,a2,…,a N中最小的数和最大的数7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.188.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4√3,则C的实轴长为( )A.√2B.2√2C.4D.89.已知ω>0,函数f(x)=sin(ωx+π4)在(π2,π)单调递减,则ω的取值范围是( )A.[12,54] B.[12,34] C.(0,12] D.(0,2]10.已知函数f(x)=1ln (x+1)-x,则y=f(x)的图象大致为( )11.已知三棱锥S-ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC=2,则此棱锥的体积为( ) A.√26B.√36C.√23D.√2212.设点P 在曲线y=12e x上,点Q 在曲线y=ln(2x)上,则|PQ|的最小值为( ) A.1-ln 2B.√2(1-ln 2)C.1+ln 2D.√2(1+ln 2)第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知向量a,b 夹角为45°,且|a|=1,|2a-b|=√10,则|b|= . 14.设x,y 满足约束条件{x -y ≥-1,x +y ≤3,x ≥0,y ≥0,则z=x-2y 的取值范围为 .15.某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为 .16.数列{a n }满足a n+1+(-1)na n =2n-1,则{a n }的前60项和为 . 三、解答题(解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知a,b,c 分别为△ABC 三个内角A,B,C 的对边,acos C+√3asin C-b-c=0. (Ⅰ)求A;(Ⅱ)若a=2,△ABC的面积为√3,求b,c.18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n 14 15 16 17 18 19 20频数10 20 16 16 15 13 10以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(本小题满分12分)如图,直三棱柱ABC-A1B1C1中,AC=BC=1AA1,D是棱AA1的中点,DC1⊥BD.2(Ⅰ)证明:DC1⊥BC;(Ⅱ)求二面角A1-BD-C1的大小.20.(本小题满分12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l.A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点.(Ⅰ)若∠BFD=90°,△ABD的面积为4√2,求p的值及圆F的方程;(Ⅱ)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(本小题满分12分)已知函数f(x)满足f(x)=f '(1)e x-1-f(0)x+12x 2. (Ⅰ)求f(x)的解析式及单调区间;(Ⅱ)若f(x)≥12x 2+ax+b,求(a+1)b 的最大值.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分) 选修4-1:几何证明选讲如图,D,E 分别为△ABC 边AB,AC 的中点,直线DE 交△ABC 的外接圆于F,G 两点.若CF∥AB,证明: (Ⅰ)CD=BC; (Ⅱ)△BCD∽△GBD.23.(本小题满分10分) 选修4-4:坐标系与参数方程已知曲线C 1的参数方程是{x =2cosφ,y =3sinφ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A,B,C,D 依逆时针次序排列,点A 的极坐标为(2,π3).(Ⅰ)求点A,B,C,D的直角坐标;(Ⅱ)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.(本小题满分10分)选修4-5:不等式选讲已知函数f(x)=|x+a|+|x-2|.(Ⅰ)当a=-3时,求不等式f(x)≥3的解集;(Ⅱ)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.2012年普通高等学校招生全国统一考试(课标全国卷)一、选择题1.D 解法一:由x-y ∈A,及A={1,2,3,4,5}得x>y,当y=1时,x 可取2,3,4,5,有4个;y=2时,x 可取3,4,5,有3个;y=3时,x 可取4,5,有2个;y=4时,x 可取5,有1个.故共有1+2+3+4=10(个),选D.解法二:因为A 中元素均为正整数,所以从A 中任取两个元素作为x,y,满足x>y 的(x,y)即为集合B 中的元素,故共有C 52=10个,选D.评析 考查了分类讨论的思想,由x-y ∈A 得x>y 是解题关键.2.A 2名教师各在1个小组,给其中1名教师选2名学生,有C 42种选法,另2名学生分配给另1名教师,然后将2个小组安排到甲、乙两地,有A 22种方案,故不同的安排方案共有C 42A 22=12种,选A.评析 本题考查了排列组合的实际应用,考查了先分组再分配的方法.3.C z=2-1+i =2(-1-i)(-1+i)(-1-i)=-1-i,所以|z|=√2,p 1为假命题;z 2=(-1-i)2=(1+i)2=2i,p 2为真命题;z =-1+i,p 3为假命题;p 4为真命题.故选C.评析 本题考查了复数的运算及复数的性质,考查了运算求解能力. 4.C 设直线x=32a 与x 轴交于点Q,由题意得∠PF 2Q=60°,|F 2P|=|F 1F 2|=2c,|F 2Q|=32a-c,∴32a-c=12×2c,e=c a =34,故选C.评析 本题考查了椭圆的基本性质,考查了方程的思想,灵活解三角形对求解至关重要. 5.D 由a 5a 6=a 4a 7,得a 4a 7=-8,又a 4+a 7=2,∴a 4=4,a 7=-2或a 4=-2,a 7=4,∴q 3=-12或q 3=-2. 当q 3=-12时,a 1+a 10=a 4q3+a 4q 6=4-12+4×(-12)2=-7,当q 3=-2时,a 1+a 10=a 4q 3+a 4q 6=-2-2+(-2)·(-2)2=-7,故选D.评析 本题考查了等比数列的基本运算,掌握等比数列的性质可简化计算.6.C 不妨令N=3,a 1<a 2<a 3,则有k=1,A=a 1,B=a 1,x=a 1;k=2,x=a 2,A=a 2;k=3,x=a 3,A=a 3,结束.故A=a 3,B=a 1,选C.评析 本题考查了流程图,考查了由一般到特殊的转化思想.7.B 由三视图可得,该几何体为如图所示的三棱锥,其底面△ABC 为等腰三角形且BA=BC,AC=6,AC 边上的高为3,SB ⊥底面ABC,且SB=3,所以该几何体的体积V=13×12×6×3×3=9.故选B.评析 本题考查了三视图和三棱锥的体积,考查了空间想象能力.由三视图正确得到该几何体的直观图是求解的关键.8.C 如图,AB 为抛物线y 2=16x 的准线, 由题意可得A(-4,2√3).设双曲线C 的方程为x 2-y 2=a 2(a>0),则有16-12=a 2,故a=2,∴双曲线的实轴长2a=4.故选C.评析 本题考查了双曲线和抛物线的基础知识,考查了方程的数学思想,要注意双曲线的实轴长为2a. 9.A 由π2<x<π得ωπ2+π4<ωx+π4<ωπ+π4,又y=sin α在(π2,32π)上递减,所以{ωπ2+π4≥π2,ωπ+π4≤32π,解得12≤ω≤54,故选A.评析 本题考查了三角函数的单调性,考查了运用正弦函数的减区间求参数的问题. 10.B 令g(x)=ln(x+1)-x,g'(x)=1x+1-1=-xx+1, ∴当-1<x<0时,g'(x)>0,当x>0时,g'(x)<0, ∴g(x)max =g(0)=0.∴f(x)<0,排除A 、C,又由定义域可排除D,故选B.评析 本题考查了函数的图象,考查了利用导数判断单调性,求值域,考查了数形结合的数学思想.11.A 设△ABC 外接圆的圆心为O 1,则|OO 1|=√OC 2-O 1C 2=√1-13=√63. 三棱锥S-ABC 的高为2|OO 1|=2√63. 所以三棱锥S-ABC 的体积V=13×√34×2√63=√26.故选A.评析 本题考查了三棱锥和球的基本知识,考查了空间想象能力.12.B 由y=12e x 得e x =2y,所以x=ln 2y,所以y=12e x 的反函数为y=ln 2x,所以y=12e x 与y=ln 2x的图象关于直线y=x 对称,所以两条曲线上的点的距离的最小值是两条曲线上切线斜率为1的切点之间的距离,令(ln 2x)'=1x =1,解得x 1=1,令(12e x )'=1,解得x 2=ln 2,所以两点为(1,ln 2)和(ln 2,1),故d=√2(1-ln 2),选B.评析 本题考查了导数的应用,互为反函数图象的性质,考查了数形结合的思想. 二、填空题 13.答案 3√2解析 |2a -b |=√10两边平方得 4|a |2-4|a |·|b |cos 45°+|b |2=10. ∵|a |=1,∴|b |2-2√2|b |-6=0.∴|b |=3√2或|b |=-√2(舍去).评析 本题考查了向量的基本运算,考查了方程的思想.通过“平方”把向量问题转化为数量积问题是求解的关键.14.答案 [-3,3]解析 由不等式组画出可行域(如图所示).当直线x-2y-z=0过点B(1,2)时,z min =-3;过点A(3,0)时,z max =3.∴z=x -2y 的取值范围是[-3,3].评析 本题考查了简单线性规划知识;考查了数形结合的思想方法.15.答案 38 解析 由题意知每个电子元件使用寿命超过1 000小时的概率均为12,元件1或元件2正常工作的概率为1-12×12=34,所以该部件使用寿命超过1 000小时的概率为12×34=38.评析 本题考查了正态分布及相互独立事件的概率.16.答案 1 830解析 当n=2k 时,a 2k+1+a 2k =4k-1,当n=2k-1时,a 2k -a 2k-1=4k-3,∴a 2k+1+a 2k-1=2,∴a 2k+3+a 2k+1=2,∴a 2k-1=a 2k+3,∴a 1=a 5=…=a 61.∴a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61)=3+7+11+…+(2×60-1)=30×(3+119)2=30×61=1 830.评析本题考查了数列求和及其综合应用,考查了分类讨论及等价转化的数学思想.三、解答题17.解析(Ⅰ)由acos C+√3asin C-b-c=0及正弦定理得sin Acos C+√3sin Asin C- sin B-sin C=0.因为B=π-A-C,所以√3sin Asin C-cos Asin C-sin C=0.由于sin C≠0,所以sin(A-π6)=12.又0<A<π,故A=π3.(Ⅱ)△ABC的面积S=12bcsin A=√3,故bc=4.而a2=b2+c2-2bccos A,故b2+c2=8.解得b=c=2.评析本题考查了正、余弦定理和三角公式,考查了方程的思想.灵活运用正、余弦定理是求解关键.正确的转化是本题的难点.18.解析(Ⅰ)当日需求量n≥16时,利润y=80.当日需求量n<16时,利润y=10n-80.所以y关于n的函数解析式为y={10n-80,n<16,80,n≥16(n∈N).(Ⅱ)(i)X可能的取值为60,70,80,并且P(X=60)=0.1,P(X=70)=0.2,P(X=80)=0.7.X的分布列为X 60 70 80P 0.1 0.2 0.7X的数学期望为EX=60×0.1+70×0.2+80×0.7=76.X的方差为DX=(60-76)2×0.1+(70-76)2×0.2+(80-76)2×0.7=44.(ii)答案一:花店一天应购进16枝玫瑰花.理由如下:若花店一天购进17枝玫瑰花,Y表示当天的利润(单位:元),那么Y的分布列为Y 55 65 75 85P 0.1 0.2 0.16 0.54Y的数学期望为EY=55×0.1+65×0.2+75×0.16+85×0.54=76.4.Y的方差为DY=(55-76.4)2×0.1+(65-76.4)2×0.2+(75-76.4)2×0.16+(85-76.4)2×0.54=112.04.由以上的计算结果可以看出,DX<DY,即购进16枝玫瑰花时利润波动相对较小.另外,虽然EX<EY,但两者相差不大.故花店一天应购进16枝玫瑰花.答案二:花店一天应购进17枝玫瑰花.理由如下:若花店一天购进17枝玫瑰花,Y表示当天的利润(单位:元),那么Y的分布列为Y 55 65 75 85P 0.1 0.2 0.16 0.54Y的数学期望为EY=55×0.1+65×0.2+75×0.16+85×0.54=76.4.由以上的计算结果可以看出,EX<EY,即购进17枝玫瑰花时的平均利润大于购进16枝时的平均利润.故花店一天应购进17枝玫瑰花.评析 本题考查了利用样本频率估计总体概率以及离散型随机变量的期望与方差,掌握期望与方差的意义是解题关键,考查了运算求解能力.19.解析 (Ⅰ)由题设知,三棱柱的侧面为矩形.由于D 为AA 1的中点,故DC=DC 1.又AC=12AA 1,可得D C 12+DC 2=C C 12,所以DC 1⊥DC. 而DC 1⊥BD,DC ∩BD=D,所以DC 1⊥平面BCD.BC ⊂平面BCD,故DC 1⊥BC.(Ⅱ)由(Ⅰ)知BC ⊥DC 1,且BC ⊥CC 1,则BC ⊥平面ACC 1,所以CA,CB,CC 1两两相互垂直.以C 为坐标原点,CA⃗⃗⃗⃗⃗ 的方向为x 轴的正方向,|CA ⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系C-xyz.由题意知A 1(1,0,2),B(0,1,0),D(1,0,1),C 1(0,0,2).则A 1D ⃗⃗⃗⃗⃗⃗⃗ =(0,0,-1),BD ⃗⃗⃗⃗⃗⃗ =(1,-1,1),DC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1).设n =(x,y,z)是平面A 1B 1BD 的法向量,则{n ·BD ⃗⃗⃗⃗⃗ =0,n ·A 1D ⃗⃗⃗⃗⃗⃗⃗ =0,即{x -y +z =0,z =0.可取n =(1,1,0).同理,设m 是平面C 1BD 的法向量,则{m ·BD ⃗⃗⃗⃗⃗ =0,m ·DC 1⃗⃗⃗⃗⃗⃗⃗ =0.可取m =(1,2,1).从而cos<n,m >=n ·m |n|·|m|=√32.故二面角A 1-BD-C 1的大小为30°.评析 本题考查了直线与平面垂直的证明及二面角的求法.属中等难度题,运算要准确.20.解析 (Ⅰ)由已知可得△BFD 为等腰直角三角形,|BD|=2p,圆F 的半径|FA|=√2p. 由抛物线定义可知A 到l 的距离d=|FA|=√2p.因为△ABD 的面积为4√2,所以12|BD|·d=4√2,即12·2p ·√2p=4√2, 解得p=-2(舍去),p=2.所以F(0,1),圆F 的方程为x 2+(y-1)2=8.(Ⅱ)因为A,B,F 三点在同一直线m 上,所以AB 为圆F 的直径,∠ADB=90°.由抛物线定义知|AD|=|FA|=12|AB|, 所以∠ABD=30°,m 的斜率为√33或-√33.当m 的斜率为√33时,由已知可设n:y=√33x+b,代入x 2=2py 得x 2-2√33px-2pb=0. 由于n 与C 只有一个公共点,故Δ=43p 2+8pb=0,解得b=-p 6.因为m 的截距b 1=p 2,|b 1||b|=3,所以坐标原点到m,n 距离的比值为3. 当m 的斜率为-√33时,由图形对称性可知,坐标原点到m,n 距离的比值为3.评析 本题考查了直线、圆、抛物线的位置关系,考查了分类讨论的方法和数形结合的思想.21.解析 (Ⅰ)由已知得f '(x)=f '(1)e x-1-f(0)+x,所以f '(1)=f '(1)-f(0)+1,即f(0)=1.又f(0)=f '(1)e -1,所以f '(1)=e.从而f(x)=e x -x+12x 2.由于f '(x)=e x -1+x,故当x ∈(-∞,0)时, f '(x)<0;当x ∈(0,+∞)时, f '(x)>0.从而, f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.(Ⅱ)由已知条件得e x -(a+1)x ≥b.①(i)若a+1<0,则对任意常数b,当x<0,且x<1-b a+1时,可得e x -(a+1)x<b,因此①式不成立.(ii)若a+1=0,则(a+1)b=0.(iii)若a+1>0,设g(x)=e x -(a+1)x,则g'(x)=e x -(a+1).当x ∈(-∞,ln(a+1))时,g'(x)<0;当x ∈(ln(a+1),+∞)时,g'(x)>0.从而g(x)在(-∞,ln(a+1))上单调递减,在(ln(a+1),+∞)上单调递增.故g(x)有最小值g(ln(a+1))=a+1-(a+1)ln(a+1).所以f(x)≥12x 2+ax+b 等价于b ≤a+1-(a+1)ln(a+1).② 因此(a+1)b ≤(a+1)2-(a+1)2ln(a+1).设h(a)=(a+1)2-(a+1)2ln(a+1),则h'(a)=(a+1)[1-2ln(a+1)].所以h(a)在(-1,e 12-1)上单调递增,在(e 12-1,+∞)上单调递减,故h(a)在a=e 12-1处取得最大值. 从而h(a)≤e 2,即(a+1)b ≤e 2.当a=e 12-1,b=e 122时,②式成立,故f(x)≥12x 2+ax+b.综合得,(a+1)b 的最大值为e 2.评析 本题考查了函数与导数的综合应用,难度较大,考查了分类讨论和函数与方程的思想方法,直线斜率以零为分界点进行分类是解题关键.22.证明 (Ⅰ)因为D,E 分别为AB,AC 的中点,所以DE ∥BC.又已知CF ∥AB,故四边形BCFD 是平行四边形,所以CF=BD=AD.而CF ∥AD,连结AF,所以ADCF 是平行四边形,故CD=AF.因为CF ∥AB,所以BC=AF,故CD=BC.(Ⅱ)因为FG ∥BC,故GB=CF.由(Ⅰ)可知BD=CF,所以GB=BD.而∠DGB=∠EFC=∠DBC,故△BCD ∽△GBD.评析 本题考查了直线和圆的位置关系,处理好两条线段平行的关系是解题的关键.23.解析 (Ⅰ)由已知可得A (2cos π3,2sin π3), B 2cos π3+π2,2sin π3+π2, C 2cos π3+π,2sin π3+π, D 2cos π3+3π2,2sin π3+3π2, 即A(1,√3),B(-√3,1),C(-1,-√3),D(√3,-1).(Ⅱ)设P(2cos φ,3sin φ),令S=|PA|2+|PB|2+|PC|2+|PD|2,则S=16cos 2φ+36sin 2φ+16=32+20sin 2φ.因为0≤sin 2φ≤1,所以S 的取值范围是[32,52].评析 本题考查了曲线的参数方程和极坐标方程.考查了函数的思想方法.正确“互化”是解题的关键.难点是建立函数S=f(φ).24.解析 (Ⅰ)当a=-3时,f(x)={-2x +5, x ≤2,1,2<x <3,2x -5,x ≥3.当x ≤2时,由f(x)≥3得-2x+5≥3,解得x ≤1;当2<x<3时, f(x)≥3无解;当x ≥3时,由f(x)≥3得2x-5≥3,解得x ≥4;所以f(x)≥3的解集为{x|x ≤1}∪{x|x ≥4}.(Ⅱ)f(x)≤|x-4|⇔|x-4|-|x-2|≥|x+a|.当x ∈[1,2]时,|x-4|-|x-2|≥|x+a|⇔4-x-(2-x)≥|x+a|⇔-2-a ≤x ≤2-a.由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0.故满足条件的a 的取值范围为[-3,0].评析 本题考查了含绝对值不等式的解法,运用了零点法分类讨论解含绝对值不等式的方法,考查了学生的运算求解能力.。
2012年全国高考理科数学试题及答案-全国卷
2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题 (1)复数131ii-+=+ (A )2i + (B )2i - (C )12i + (D )12i - (2)已知集合{1A =,{1,}B m =,A B A = ,则m =(A )0(B )0或3 (C )1(D )1或3 (3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A BC D -中 ,2AB =,1CC =,E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1 (5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为 (A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a = ,CA b = ,0a b ⋅= ,||1a = ,||2b =,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos αα+=,则cos 2α=(A )3-(B )9- (C )9 (D )3(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e-=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x << (10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种 (12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
2012年全国高考理科数学试题和答案-全国卷word版
2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{A =,{1,}B m =,A B A =,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为 (A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos αα+=cos2α=(A ) (B )- (C (D (8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
2012年全国高考理科数学试题及答案-全国卷
2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题 (1)复数131i i-+=+(A )2i + (B )2i - (C )12i + (D )12i - (2)已知集合{1,A =,{1,}B m =,A B A = ,则m =(A )0(B )0或3 (C )1(D )1或3 (3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612xy+= (B )221128xy+= (C )22184xy+= (D )221124xy+=(4)已知正四棱柱1111ABC D A B C D -中 ,2A B =,1CC =E 为1C C 的中点,则直线1AC 与平面BED 的距离为(A )2 (B) (C(D )1 (5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101(B )99101(C )99100(D )101100(6)A B C ∆中,A B 边的高为C D ,若CB a = ,C A b = ,0a b ⋅= ,||1a = ,||2b = ,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos 3αα+=,则cos 2α=(A )3- (B )9- (C 9(D 3(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14(B )35(C )34(D )45(9)已知ln x π=,5log 2y =,12z e-=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x << (10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种 (12)正方形A B C D 的边长为1,点E 在边A B 上,点F 在边B C 上,37A EB F ==。
2012年高考真题——理科数学(全国卷)Word版含答案
2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{A =,{1,}B m =,A B A =,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若C B a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos αα+=,则cos2α=(A )3- (B )9- (C )9 (D )3(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
2012年全国高考理科数学试题及答案-全国卷(含答案)
2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{1A =,{1,}B m =,A B A = ,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A BC D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为 (A )100101 (B )99101 (C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a = ,CA b = ,0a b ⋅= ,||1a = ,||2b = ,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos αα+=,则cos 2α= (A) (B) (C(D(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠= (A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
2012年全国高考理科数学试题及答案-全国卷
2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题 (1)复数131ii-+=+ (A )2i + (B )2i - (C )12i + (D )12i - (2)已知集合{A =,{1,}B m =,AB A =,则m =(A )0(B )0或3 (C )1(D )1或3 (3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1 (5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为 (A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos αα+=cos2α=(A ) (B )- (C (D (8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e-=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x << (10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种 (12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
2012年全国高考理科数学试题及答案-全国卷
2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题 (1)复数131ii-+=+ (A )2i + (B )2i - (C )12i + (D )12i - (2)已知集合{1A =,{1,}B m =,AB A =,则m =(A )0(B )0或3 (C )1(D )1或3 (3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A BC D -中 ,2AB =,1CC =,E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1 (5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为 (A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos αα+=,则cos 2α=(A )3-(B )9- (C )9 (D )3(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e-=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x << (10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种 (12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
2012年全国高考理科数学试题及答案-全国卷
2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{A =,{1,}B m =,A B A =,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为 (A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos αα+=cos2α=(A ) (B )- (C (D (8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
2012年全国高考理科数学试题及答案-全国卷
2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{1A =,{1,}B m =,A B A =,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A BC D -中 ,2AB =,1CC =,E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为 (A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos αα+=,则cos 2α=(A )3- (B )9- (C )9 (D )3(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
2012年高考理科数学(全国卷)含答案及解析
2012年高考理科数学(全国卷)含答案及解析2012年普通高等学校招生全国统一考试理科数学(必修+选修II )一、 选择题(1)、复数131i i-++= A. 2 B. 2 C. 12 D. 12i i i i+-+- 【考点】复数的计算 【难度】容易 【答案】C 【解析】13(13)(1)24121(1)(1)2i i i ii i i i -+-+-+===+++-.【点评】本题考查复数的计算。
在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。
在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。
(2)、已知集合A ={1.3.},B ={1,m } ,A B =A , 则m =A. 0或B. 0或 3C. 1或D. 1或3 【考点】集合【点评】本题考查椭圆的基本方程,根据准线方程及焦距推出椭圆的方程。
在高二数学(理)强化提高班,第六章《圆锥曲线与方程》中有详细讲解,其中在第02讲有相似题目的详细讲解。
在高考精品班数学(文)强化提高班中有对圆锥曲线相关知识的总结讲解。
(4)已知正四棱柱ABCD- A1B1C1D1中,AB=2,=E为CC1的中点,则直线AC1与平面BED的CC距离为C. D. 1A. 2B.【考点】立体几何【难度】容易【答案】CAC,BD, 得【解析】因为底面的边长为2,高为到了交点为O,连接EO,EO∥AC,则点1C到平面BDE的距离等于C到平面BDE的距离,过C作CH⊥OE,则:CH.即为所求在三角形OCE中,利用等面积法,可得CH(5)已知等差数列{}na 的前n 项和为nS ,555,15a S==,则数列11}n n a a +{的前100项和为 A.100101B. 99101C.99100D.101100【考点】数列 【难度】中等 【答案】A【解析】因为已知等差数列{ na }中,5a =5,515()5152a a S +⨯==∴1a =1 ∴d=111111=(1)(1)n n n a n a a n n n n +==-++∴∴100111111100=(1-)(-)...()1223100101101101S +++-=-=∴.【点评】本题考查数列的前n 项和求解方法。
2012全国大纲卷高考数学试卷及答案(理)
2012年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第I卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题1、复数131ii-++=A 2+IB 2-IC 1+2iD 1- 2i2、已知集合A={1.3. },B={1,m} ,A B=A, 则m=A 0B 0或3C 1D 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A216x+212y=1 B212x+28y=1C28x+24y=1 D212x+24y=14 已知正四棱柱ABCD- A1B1C1D1中,AB=2,CC1=E为CC1的中点,则直线AC1与平面BED的距离为A 2BCD 1(5)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为(A)100101(B)99101(C)99100(D)101100(6)△ABC中,AB边的高为CD,若a·b=0,|a|=1,|b|=2,则(A) (B ) (C) (D)(7)已知α为第二象限角,sin α+sin βcos2α=(A) -3 (B )-9 (C) 9 (D)3(8)已知F 1、F 2为双曲线C :x ²-y ²=2的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2= (A)14 (B )35 (C)34 (D)45(9)已知x=ln π,y=log 52,12z=e ,则(A)x <y <z (B )z <x <y (C)z <y <x (D)y <z <x(10) 已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c =(A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A )12种(B )18种(C )24种(D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =73。
2012全国大纲卷高考数学试卷及答案(理)
2012 年一般高等学校招生全国一致考试理科数学(必修 +选修 II )本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分,第 I 卷第 1 至 2 页,第 II 卷第 3 至第 4 页。
考试结束,务势必试卷和答题卡一并上交。
第 I 卷注意事项:全卷满分 150 分,考试时间 120 分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5 毫米黑色墨水署名笔将自己的姓名、准考据号填写清楚,并贴好条形码。
请仔细批准该条形码上的准考据号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需变动,用橡皮擦洁净后,再选涂其余答案标号。
在试题卷上作答无效。
.........3.第 I 卷共 12 小题,每题 5 分,共60 分。
在每题给出的四个选项中,只有一项为哪一项切合题目要求的。
一、选择题1 3i 1、复数i =1A 2+IB 2-IC 1+2iD 1- 2i2、已知会合 A ={1.3. m },B={1,m} ,A B =A, 则 m=A0或3 B 0或3 C1或3 D 1或33 椭圆的中心在原点,焦距为4 一条准线为 x=-4 ,则该椭圆的方程为A x2 y2=1 Bx2 y 2=1 16+ +12 12 8C x2 y2=1 Dx2 y28+12+ =14 44 已知正四棱柱ABCD- A 1B 1C1D1中,AB=2 ,CC1= 2 2 E 为 CC1的中点,则直线 AC 1 与平面 BED 的距离为A 2B 3C 2D 1(5)已知等差数列{a n} 的前 n 项和为 S n, a5=5, S5=15,则数列的前100项和为100 99 99 101(A) (B) (C) (D)101 101 100 100(6)△ ABC 中, AB 边的高为CD ,若a· b=0, |a|=1, |b|=2,则(A) ( B )(C) (D)(7)已知α为第二象限角, sinα+ sinβ = 3,则 cos2α = 35(B)- 5 5 5(A) -9 (C) (D)3 9 3(8)已知 F1、 F2为双曲线 C: x2-y2=2 的左、右焦点,点P 在 C 上, |PF1 |=|2PF2|,则 cos ∠F1PF2=1 3 3 4(A) ( B)(C) (D)4 5 4 51(9)已知 x=ln π, y=log 52,z=e2,则(A)x < y< z(B)z<x<y(C)z < y< x(D)y < z< x(10) 已知函数y= x2-3x+c 的图像与 x 恰有两个公共点,则c=(A )-2 或 2 (B)-9 或 3 (C)-1 或 1 (D)-3 或 1(11)将字母 a,a,b,b,c,c,排成三行两列,要求每行的字母互不同样,梅列的字母也互不同样,则不一样的摆列方法共有(A)12 种( B)18 种( C)24 种( D)36 种(12)正方形 ABCD 的边长为1,点 E 在边 AB 上,点 F 在边 BC 上, AE = BF =7。
2012年高考数学试卷(全国卷理科大纲版).doc
2012年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第I卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题1、复数131ii-++=A 2+IB 2-IC 1+2iD 1- 2i2、已知集合A={1.3. ,B={1,m} ,A B=A, 则m=A 0B 0或3C 1D 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A216x+212y=1 B212x+28y=1C28x+24y=1 D212x+24y=14 已知正四棱柱ABCD- A1B1C1D1中,AB=2,CC1=E为CC1的中点,则直线AC1与平面BED的距离为A 2BCD 1(5)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为(A)100101(B)99101(C)99100(D)101100(6)△ABC中,AB边的高为CD,若a·b=0,|a|=1,|b|=2,则(A)(B)(C)(D)(7)已知α为第二象限角,sinα+sinβcos2α=(A) (B)(C)(8)已知F1、F2为双曲线C:x²-y²=2的左、右焦点,点P在C上,|PF1|=|2PF2|,则cos∠F1PF2=(A)14(B)35(C)34(D)45(9)已知x=lnπ,y=log52,12z=e,则(A)x<y<z (B)z<x<y (C)z<y<x (D)y<z<x(10) 已知函数y=x²-3x+c的图像与x恰有两个公共点,则c=(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A)12种(B)18种(C)24种(D)36种(12)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=73。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标-数学理(2012)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知集合A={1,2,3,4,5},B={(x ,y )|x ∈A ,y ∈A ,x-y ∈A},则B 中所含元素的个数为( ) A.3 B.6 C.8 D.102.将2名教师,4名学生分成2个小组,分别安排到甲.乙两地参加社会实践活动,每个小组有1名教师和2名学生组成,不同的安排方案共有( ) A.12种 B.10种 C.9种 D.8种3.下面是关于复数z=21i-+的四个命题 P1:z =2;P2: 2z =2i ; P3:z 的共轭复数为1+i ;P4 :z 的虚部为-1;其中真命题为( )A.P2 ,P3B. P1 ,P2C.P2,P4D.P3,P44.设F1,F2是椭圆E:22221x y a b +=(a >b >0)的左.右焦点 ,P 为直线32ax =上的一点,12PF F △是底角为30°的等腰三角形,则E 的离心率为( )A.12B.23C.34D.455.已知{n a }为等比数列,214=+a a ,865-=⋅a a ,则=+101a a ( ) A.7 B.5 C.-5 D.-76.如果执行下面的程序图,输入正整数)2(≥N N 和实数n a a a ⋯,,21,输入A ,B ,则( ) A.A+B 为的n a a a ⋯,,21和 B.2A B+为n a a a ⋯,,21的算式平均数C.A 和B 分别是n a a a ⋯,,21中最大的数和最小的数D.A 和B 分别是n a a a ⋯,,21中最小的数和最大的数7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体 的三视图,则此几何体的体积为( ) A.6 B.9 C.12 D.188.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于A ,B 两点,34=AB ,则C 的实轴长为( )9.已知w >0,函数4sin()(πω+=x x f 在),2(ππ单调递减,则ω的取值范围是( )A.45,21[ B.]43,21[ C.]21,0( D.(0,2] 10.已知函数x x x f -+=)1ln(1)(,则)(x f y =的图像大致为( )11.已知三棱锥S-ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,O O O O 11111111xyxy xy xy)(A )(B )(C )(DSC 为O 的直径,且SC=2,则此棱锥的体积为( )12.设点P 在曲线x e y 21=上,点Q 在曲线)2ln(x y =上,则|PQ|的最小值为( ) A.2ln 1- B.)2ln 1(2- C.2ln 1+ D.)2ln 1(2+ 二.填空题:本大题共4小题,每小题5分。
13.已知向量a ,b 夹角为45°,且1=a ,102=-b a ,则b =____________.14.设x ,y 满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+-≥-0031y x y x y x 则y x z 2-=的取值范围为__________. 15.某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作。
设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1000,250),且各个元件能否正常工作互相独立,那么该部件的使用寿命超过1000小时的概率为_________________.16.数列{}n a 满足12)1(1-=-++n a a n n n ,则{}n a 的前60项和为________。
三.解答题:解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分12分)已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,0sin 3cos =--+c b C a C a 。
(Ⅰ)求A ;(Ⅱ)若2=a ,ABC △b ,c 。
18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。
如果当天卖不完,剩下的玫瑰花作垃圾处理。
(Ⅰ)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,N n ∈)的函数解析式。
(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表: 以100天记录的各需求量的频率作为各需求量发生的概率。
(ⅰ)若花店一天购进16枝玫瑰花,x 表示当天的利润(单位:元),求x 的分布列.数学期望及方差;(ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由。
19.(本小题满分12分)如图,直三棱柱111C B A ABC -中,121AA BC AC ==,D 是棱1AA 的中点,BD DC ⊥1。
(1)证明:BC DC ⊥1;(2)求二面角1C BD A --1的大小。
20.(本小题满分12分)设抛物线C :)0(22>=p py x 的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点(1)若∠BFD=90°,ABD △的面积为p 的值及圆F 的方程;ABCD1A 1B 1C(2)若F B A ,,三点在同一直线m 上,直线n 与m 平行,且n 与C 之有一个公共点,求坐标原点到m ,n 距离的比值。
21.(本小题满分12分)已知函数)(x f 满足2121)0()1(')(x x f e f x f x +-=- (1)求)(x f 的解析式及单调区间;(2)若b ax x x f ++≥221)(,求b a )1(+的最大值。
请考生在第22.23.24题中任选一道作答,如果多做,则按所做的第一题计分。
作答时请写清题号。
22.(本小题满分10分)选修4—1;几何证明选讲如图,D ,E 分别为△ABC边AB,AC的中点,直线DE交△ABC 的外接圆于F ,G 两点,若CF ∥AB ,证明: (Ⅰ)CD=BC ; (Ⅱ)GBD BCD ∽△△。
23.(本小题满分10分)选修4—4;坐标系与参数方程已知曲线1C 的参数方程式⎩⎨⎧==ϕϕsin 3cos 2y x (ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线C2的极坐标方程式2=ρ。
正方形A B C D 的顶点都在2C 上,且A ,B ,C ,D 依逆时针次序排列,点A的极坐标为)2,2(π。
(Ⅰ)求点A ,B ,C ,D 的直角坐标;(Ⅱ)设P 为1C 上任意一点,求2222PD PC PB PA +++的取值范围。
24.(本小题满分10分)选修4—5;不等式选讲 已知函数2)(-++=x a x x fBCD AEFG(Ⅰ)当3-≥x的解集;=a时,求不等式3(2)若()4-f的解集包含]2,1[,求a的取值范围。
x≤x参考答案一.选择:二.填空:13. 14.[-3,3]; 15.38; 16.1830 三.解答:17.(1)由正弦定理得:cos sin 0sin cos sin sin sin a C C b c A C A C B C +--=⇔=+sin cos sin sin()sin 1cos 1sin(30)2303060A C A C a C CA A A A A ︒︒︒︒⇔+=++⇔-=⇔-=⇔-=⇔= (2)1sin 42S bc A bc ==⇔=2222cos 4a b c bc A b c =+-⇔+=2b c ==18.(1)当16n ≥时,16(105)80y =⨯-= 当15n ≤时,55(16)1080y n n n =--=- 得:1080(15)()80(16)n n y n N n -≤⎧=∈⎨≥⎩(2)(i )X 可取60,70,80(60)0.1,(70)0.2,(80)0.7P X P X P X ======X 的分布列为600.1700.2800.776EX =⨯+⨯+⨯=222160.160.240.744DX =⨯+⨯+⨯=(ii )购进17枝时,当天的利润为(14535)0.1(15525)0.2(16515)0.161750.5476.4y =⨯-⨯⨯+⨯-⨯⨯+⨯-⨯⨯+⨯⨯=76.476> 得:应购进17枝19.(1)在Rt DAC ∆中,AD AC = 得:45ADC ︒∠=同理:1114590A DC CDC ︒︒∠=⇒∠=得:111,DC DC DC BD DC ⊥⊥⇒⊥面1BCD DC BC ⇒⊥ (2)11,DC BC CC BC BC ⊥⊥⇒⊥面11ACC A BC AC ⇒⊥取11A B 的中点O ,过点O 作OH BD ⊥于点H ,连接11,C O C H1111111AC B C C O A B =⇒⊥,面111A B C ⊥面1A BD 1C O ⇒⊥面1A BD 1OH BD C H BD ⊥⇒⊥ 得:点H 与点D 重合且1C DO ∠是二面角11C BD A --的平面角设AC a =,则1C O =111230C D C O C DO ︒==⇒∠= 既二面角11C BD A --的大小为30︒20.(1)由对称性知:BFD ∆是等腰直角∆,斜边2BD p =点A 到准线l 的距离d122ABD S BD d p ∆=⇔⨯⨯=⇔=圆F 的方程为22(1)8x y +-=(2)由对称性设2000(,)(0)2x A x x p >,则(0,)2pF点,A B 关于点F 对称得:22220000(,3222x x pB x p p x p p p --⇒-=-⇔=得:3,)2pA,直线:02p m y x x =+⇔=2222x x x py y y x p p p '=⇔=⇒==⇒=⇒切点)6pP直线:06p n y x x p -=⇔-= 坐标原点到,m n3=。
21.(1)1211()(1)(0)()(1)(0)2x x f x f e f x x f x f e f x --'''=-+⇒=-+令1x =得:(0)1f =1211()(1)(0)(1)1(1)2x f x f e x x f f e f e --'''=-+⇒==⇔= 得:21()()()12x x f x e x x g x f x e x '=-+⇒==-+()10()x g x e y g x '=+>⇒=在x R ∈上单调递增()0(0)0,()0(0)0f x f x f x f x ''''>=⇔><=⇔<得:()f x 的解析式为21()2x f x e x x =-+且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ (2)21()()(1)02x f x x ax b h x e a x b ≥++⇔=-+-≥得()(1)x h x e a '=-+ ①当10a +≤时,()0()h x y h x '>⇒=在x R ∈上单调递增x →-∞时,()h x →-∞与()h x 0≥矛盾②当10a +>时,()0ln(1),()0ln(1)h x x a h x x a ''>⇔>+<⇔<+ 得:当ln(1)x a =+时,min ()(1)(1)ln(1)0h x a a a b =+-++-≥22(1)(1)(1)ln(1)(10)a b a a a a +≤+-+++>令22()ln (0)F x x x x x =->;则()(12ln )F x x x '=-()00()0F x x F x x ''>⇔<<<⇔当x =max ()2e F x =当1,a b ==(1)a b +的最大值为2e 22.(1)//CF AB ,//////DF BC CF BD AD CD BF ⇒⇒=//CF AB AF BC BC CD ⇒=⇔=(2)//BC GF BG FC BD ⇒==//BC GF GDE BGD DBC BDC ⇒∠=∠=∠=∠⇒BCD GBD ∆∆24.(1)点,,,A B C D 的极坐标为5411(2,),(2,),(2,)3636ππππ 点,,,A B C D的直角坐标为(11,1)--(2)设00(,)P x y ;则002cos ()3sin x y ϕϕϕ=⎧⎨=⎩为参数 2222224440t PA PB PC PD x y =+++=++25620sin [56,76]ϕ=+∈23.(1)当3a =-时,()3323f x x x ≥⇔-+-≥2323x x x ≤⎧⇔⎨-+-≥⎩或23323x x x <<⎧⇔⎨-+-≥⎩或3323x x x ≥⎧⇔⎨-+-≥⎩ 1x ⇔≤或4x ≥(2)原命题()4f x x ⇔≤-在[1,2]上恒成立24x a x x ⇔++-≤-在[1,2]上恒成立恒谦教育研究院 西安恒谦教育科技股份有限公司 第11页 22x a x ⇔--≤≤-在[1,2]上恒成立 30a ⇔-≤≤。