2015高三物理第一轮复习 第九章 电磁感应练习题及答案解析-第九章第四节高效演练轻松闯关

合集下载

高中物理 一轮复习 选修3-2 第九章 电磁感应 精选课时习题(含答案解析)

高中物理 一轮复习 选修3-2 第九章 电磁感应 精选课时习题(含答案解析)

高中物理一轮复习选修3-2 第九章电磁感应精选课时习题(含答案解析)学案44 电磁感应现象楞次定律一、概念规律题组图11.如图1所示,通电直导线下边有一个矩形线框,线框平面与直导线共面.若使线框逐渐远离(平动)通电导线,则穿过线框的磁通量将()A.逐渐增大B.逐渐减小C.保持不变D.不能确定2.下列情况中都是线框在磁场中切割磁感线运动,其中线框中有感应电流的是()3.某磁场磁感线如图2所示,有一铜线圈自图示A处落至B处,在下落过程中,自上向下看,线圈中感应电流的方向是()图2A.始终顺时针B.始终逆时针C.先顺时针再逆时针D.先逆时针再顺时针图34.如图3所示,导线框abcd与通电直导线在同一平面内,直导线通有恒定电流并通过ad和bc的中点,当线框向右运动的瞬间,则()A.线框中有感应电流,且按顺时针方向B.线框中有感应电流,且按逆时针方向C.线框中有感应电流,但方向难以判断D.由于穿过线框的磁通量为零,所以线框中没有感应电流二、思想方法题组图45.如图4所示,蹄形磁铁的两极间,放置一个线圈abcd,磁铁和线圈都可以绕OO′轴转动,磁铁如图示方向转动时,线圈的运动情况是()A.俯视,线圈顺时针转动,转速与磁铁相同B.俯视,线圈逆时针转动,转速与磁铁相同C.线圈与磁铁转动方向相同,但转速小于磁铁转速D.线圈静止不动图56.如图5所示,光滑固定导轨M、N水平放置,两根导体棒P、Q平行放置于导轨上,形成一个闭合回路,一条形磁铁从高处下落接近回路时()A.P、Q将相互靠拢B.P、Q将相互远离C.磁铁的加速度仍为gD.磁铁的加速度小于g一、楞次定律的含义及基本应用应用楞次定律判断感应电流方向的步骤:(1)确定原磁场方向;(2)明确闭合回路中磁通量变化的情况;(3)应用楞次定律的“增反减同”,确定感应电流的磁场的方向.(4)应用安培定则,确定感应电流的方向.应用楞次定律的步骤可概括为:一原二变三感四螺旋根据楞次定律的基本含义,按步就班解题一般不会出错.【例1】如图6所示,在磁感应强度大小为B、方向竖直向上的匀强磁场中,有一质量为m、阻值为图6R的闭合矩形金属线框abcd用绝缘轻质细杆悬挂在O点,并可绕O点摆动.金属线框从右侧某一位置由静止开始释放,在摆动到左侧最高点的过程中,细杆和金属线框平面始终处于同一平面,且垂直纸面.则线框中感应电流的方向是()A.a→b→c→d→aB.d→c→b→a→dC.先是d→c→b→a→d,后是a→b→c→d→aD.先是a→b→c→d→a,后是d→c→b→a→d[规范思维]图7[针对训练1]某实验小组用如图7所示的实验装置来验证楞次定律.当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流的方向是()A.a→G→bB.先a→G→b,后b→G→aC.b→G→aD.先b→G→a,后a→G→b二、楞次定律拓展含义的应用感应电流的效果总是阻碍产生感应电流的原因.具体有以下几种情形:(1)当回路中的磁通量发生变化时,感应电流的效果是阻碍原磁通量的变化.(2)当出现引起磁通量变化的相对运动时,感应电流的效果是阻碍导体间的相对运动,即“来时拒,去时留”.(3)当闭合回路发生形变时,感应电流的效果是阻碍回路发生形变.(4)当线圈自身的电流发生变化时,感应电流的效果是阻碍原来的电流发生变化.【例2】如图8所示,粗糙水平桌面上有一质量为m的铜质矩形线圈.当一竖直放置的条形磁铁从线圈中线AB的正上方等高快速经过时,若线圈始终不动,则关于线圈受到的支持力FN及在水平方向上的运动趋势的判断正确的是()图8A.F N先小于mg后大于mg,运动趋势向左B.F N先大于mg后小于mg,运动趋势向左C.F N先小于mg后大于mg,运动趋势向右D.F N先大于mg后小于mg,运动趋势向右[规范思维][针对训练2]如图9所示,图9通电螺线管置于闭合金属环a的轴线上,当螺线管中电流I减小时()A.环有缩小的趋势以阻碍原磁通量的减小B.环有扩大的趋势以阻碍原磁通量的减小C.环有缩小的趋势以阻碍原磁通量的增大D.环有扩大的趋势以阻碍原磁通量的增大图10[针对训练3]如图10,金属环A用轻绳悬挂,与长直螺线管共轴,并位于其左侧,若变阻器滑片P 向左移动,则金属环A将向________(填“左”或“右”)运动,并有________(填“收缩”或“扩张”)趋势.三、楞次定律、右手定则、左手定则、安培定则的综合应用1.规律比较2.应用区别关键是抓住因果关系:(1)因电而生磁(I→B)→安培定则;(2)因动而生电(v、B→I)→右手定则;(3)因电而受力(I、B→F安)→左手定则.3.相互联系(1)应用楞次定律,必然要用到安培定则;(2)感应电流受到安培力,有时可以先用右手定则确定电流的方向,再用左手定则确定安培力的方向,有时也可以直接应用楞次定律的推论确定安培力的方向.图11【例3】如图11所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,当PQ在外力作用下运动时,MN在磁场力的作用下向右运动,则PQ所做的运动可能是()A.向右加速运动B.向左加速运动C.向右减速运动D.向左减速运动[规范思维][针对训练4]图12如图12所示,固定的水平长直导线中通有电流I,矩形线框与导线在同一竖直平面内,且一边与导线平行.线框由静止释放,在下落过程中()A.穿过线框的磁通量保持不变B.线框中感应电流方向保持不变C.线框所受安培力的合力为零D.线框的机械能不断增大【基础演练】1.在电磁学的发展过程中,许多科学家做出了贡献.下列说法正确的是()A.奥斯特发现了电流磁效应;法拉第发现了电磁感应现象B.麦克斯韦预言了电磁波;楞次用实验证实了电磁波的存在C.库仑发现了点电荷的相互作用规律;密立根通过油滴实验测定了元电荷的数值D.安培发现了磁场对运动电荷的作用规律;洛伦兹发现了磁场对电流的作用规律图132.电阻R、电容C与一线圈连成闭合回路,条形磁铁静止于线圈的正上方,N极朝下,如图13所示.现使磁铁开始自由下落,在N极接近线圈上端的过程中,流过R的电流方向和电容器极板的带电情况是() A.从a到b,上极板带正电B.从a到b,下极板带正电C.从b到a,上极板带正电D.从b到a,下极板带正电图143.直导线ab放在如图14所示的水平导体框架上,构成一个闭合回路.长直导线cd和框架处在同一个平面内,且cd和ab平行,当cd中通有电流时,发现ab向左滑动.关于cd中的电流下列说法正确的是()A.电流肯定在增大,不论电流是什么方向B.电流肯定在减小,不论电流是什么方向C.电流大小恒定,方向由c到dD.电流大小恒定,方向由d到c图154.如图15所示是一种延时开关.S2闭合,当S1闭合时,电磁铁F将衔铁D吸下,将C线路接通.当S1断开时,由于电磁感应作用,D将延迟一段时间才被释放,则()A.由于A线圈的电磁感应作用,才产生延时释放D的作用B.由于B线圈的电磁感应作用,才产生延时释放D的作用C.如果断开B线圈的电键S2,无延时作用D.如果断开B线圈的电键S2,延时将变长图165.绕有线圈的铁芯直立在水平桌面上,铁芯上套着一个铝环,线圈与电源、开关相连,如图16所示.闭合开关的瞬间,铝环跳起一定高度.保持开关闭合,下列现象正确的是()A.铝环停留在这一高度,直到断开开关铝环回落B.铝环不断升高,直到断开开关铝环回落C.铝环回落,断开开关时铝环又跳起D.铝环回落,断开开关时铝环不再跳起图176.如图17所示,通电螺线管置于水平放置的两根光滑平行金属导轨MN和PQ之间,ab和cd是放在导轨上的两根金属棒,它们分别放在螺线管的左右两侧.保持开关闭合,最初两金属棒处于静止状态,当滑动变阻器的滑动触头向左滑动时,ab和cd棒的运动情况是()A.ab向左,cd向右B.ab向右,cd向左C.ab,cd都向右运动D.ab,cd都不动图187.一长直铁芯上绕有一固定线圈M,铁芯右端与一木质圆柱密接,木质圆柱上套有一闭合金属环N,N可在木质圆柱上无摩擦移动.M连接在如图18所示的电路中,其中R为滑动变阻器,E1和E2为直流电源,S为单刀双掷开关.下列情况中,可观测到N向左运动的是()A.在S断开的情况下,S向a闭合的瞬间B.在S断开的情况下,S向b闭合的瞬间C.在S已向a闭合的情况下,将R的滑动头向c端移动时D.在S已向a闭合的情况下,将R的滑动头向d端移动时图198.如图19所示,在匀强磁场中放有两条平行的铜导轨,它们与大导线圈M相连接.要使小导线圈N 获得顺时针方向的感应电流,则放在导轨上的裸金属棒ab的运动情况是(两导线圈共面放置)() A.向右匀速运动B.向左加速运动C.向右减速运动D.向右加速运动【能力提升】9.如图20所示,通过水平绝缘传送带输送完全相同的铜线圈,线圈等距离排列,且与传送带以相同的速度匀速运动.为了检测出个别未闭合的不合格线圈,让传送带通过一固定匀强磁场区域,磁场方向垂直于传送带运动方向,根据穿过磁场后线圈间的距离,就能够检测出不合格线圈.通过观察图形,判断下列说法正确的是()图20A.若线圈闭合,进入磁场时,线圈相对传送带向后滑动B.若线圈不闭合,进入磁场时,线圈相对传送带向后滑动C.从图中可以看出,第3个线圈是不合格线圈10.在“研究电磁感应现象”的实验中,首先按图21(a)接线,以查明电流表指针的偏转方向与电流方向之间的关系.当闭合S时,观察到电流表指针向左偏,不通电时电流表指针停在正中央.然后按图(b)所示将电流表与副线圈B连成一个闭合回路,将原线圈A、电池、滑动变阻器和电键S串联成另一个闭合电路.(1)S闭合后,将螺线管A(原线圈)插入螺线管B(副线圈)的过程中,电流表的指针将________偏转.(2)线圈A放在B中不动时,指针将________偏转.(3)线圈A放在B中不动,将滑动变阻器的滑片P向左滑动时,电流表指针将________偏转.(选填“向左”、“向右”或“不”)图21图2211.如图22所示,匀强磁场区域宽为d,一正方形线框abcd的边长为l,且l>d,线框以速度v通过磁场区域,从线框进入到完全离开磁场的时间内,线框中没有感应电流的时间是多少?图2312.如图23所示是家庭用的“漏电保护器”的关键部分的原理图,其中P是一个变压器铁芯,入户的两根电线(火线和零线)采用双线绕法,绕在铁芯的一侧作为原线圈,然后再接入户内的用电器.Q是一个脱扣开关的控制部分(脱扣开关本身没有画出,它是串联在本图左边的火线和零线上,开关断开时,用户的供电被切断),Q接在铁芯另一侧副线圈的两端a、b之间,当a、b间没有电压时,Q使得脱扣开关闭合,当a、b间有电压时,脱扣开关立即断开,使用户断电.(1)用户正常用电时,a、b之间有没有电压?为什么?(2)如果某人站在地面上,手误触火线而触电,脱扣开关是否会断开?为什么?学案44电磁感应现象楞次定律【课前双基回扣】1.B 2.BC3.C[自A落至图示位置时,穿过线圈的磁通量增加,磁场方向向上,则感应电流的磁场方向与之相反,即向下,故可由安培定则判断线圈中感应电流的方向为顺时针;自图示位置落至B点时,穿过线圈的磁通量减少,磁场方向向上,则感应电流的磁场方向与之相同,即向上,故可由安培定则判断线圈中感应电流的方向为逆时针,选C.]4.B[此题可用两种方法求解,借此感受右手定则和楞次定律分别在哪种情况下更便捷.方法一:首先由安培定则判断通电直导线周围的磁场方向(如下图所示),因ab导线向右做切割磁感线运动,由右手定则判断感应电流由a→b,同理可判断cd导线中的感应电流方向由c→d,ad、bc两边不做切割磁感线运动,所以整个线框中的感应电流是逆时针方向的.方法二:首先由安培定则判断通电直导线周围的磁场方向(如右图所示),由对称性可知合磁通量Φ=0;其次当导线框向右运动时,穿过线框的磁通量增大(方向垂直向里),由楞次定律可知感应电流的磁场方向垂直纸面向外,最后由安培定则判断感应电流沿逆时针方向,故B选项正确.]5.C[本题“原因”是磁铁有相对线圈的运动,“效果”便是线圈要阻碍两者的相对运动,线圈阻止不了磁铁的运动,由“来拒去留”知,线圈只好跟着磁铁同向转动;如果二者转速相同,就没有相对运动,线圈就不会转动了,故答案为C.]6.AD[根据楞次定律,感应电流的效果是总要阻碍产生感应电流的原因,本题中“原因”是回路中磁通量的增加,P、Q可通过缩小面积的方式进行阻碍,故可得A正确.由“来拒去留”得回路电流受到向下的力的作用,由牛顿第三定律知磁铁受向上的作用力,所以磁铁的加速度小于g,选A、D.]思维提升1.磁通量的大小与线圈匝数无关.磁通量的变化量为末态磁通量减初态磁通量,即:ΔΦ=Φ2-Φ1.2.无论回路是否闭合.只要穿过线圈平面的磁通量发生变化,线圈中就产生感应电动势,产生感应电动势的那部分导体就相当于电源.3.楞次定律的理解:①感应电流的磁场起阻碍作用;②阻碍原磁通量的变化;③阻碍不是阻止,最终要发生变化;④阻碍的形式:“来拒去留”“增反减同”4.导线切割磁感线用右手定则来进行判断:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内,让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向.【核心考点突破】例1 B[由楞次定律可知,在线框从右侧摆动到O点正下方的过程中,向上的磁通量在减小,感应电流的磁场与原磁场方向相同(即向上),再根据安培定则可以判断感应电流的方向沿a→d→c→b→a,同理,可知线框从O点正下方向左侧摆动的过程,电流方向沿a→d→c→b→a,故选B.][规范思维](1)在判断感应电流的方向时,分析磁通量的变化只需看穿过平面的磁感线的条数即可,还要注意磁感线是从正面穿入还是从正面穿出(正面是为了分析问题事先选定的).(2)根据楞次定律的基本含义,按步就班(一原二变三感四螺旋)解题一般不会出错.例2 D[条形磁铁从线圈正上方等高快速经过时,通过线圈的磁通量先增加后减小.当通过线圈的磁通量增加时,为阻碍其增加,在竖直方向上线圈有向下运动的趋势,所以线圈受到的支持力大于重力,在水平方向上有向右运动的趋势;当通过线圈的磁通量减小时,为阻碍其减小,在竖直方向上线圈有向上运动的趋势,所以线圈受到的支持力小于重力,在水平方向上有向右运动的趋势.综上所述,线圈受到的支持力先大于重力后小于重力,运动趋势总是向右.][规范思维]本题是根据楞次定律的第二种描述解题的.根据磁通量的增、减,利用阻碍相对运动来分析水平方向和竖直方向上安培力的方向.楞次定律的几种表述情况,都可归纳为阻碍产生感应电流的原因.例3 BC[设PQ向右运动,用右手定则和安培定则判定可知穿过L1的磁感线方向向上.若PQ向右加速运动,则穿过L1的磁通量增加,用楞次定律判定可知通过MN的感应电流方向是N→M,对MN用左手定则判定,可知MN向左运动,可见A选项不正确.若PQ向右减速运动,则穿过L1的磁通量减少,用楞次定律判定可知通过MN的感应电流方向是M→N,对MN用左手定则判定,可知MN是向右运动,可见C正确.同理设PQ向左运动,用上述类似的方法可判定B正确,而D错误.][规范思维]由导体运动分析产生感应电流的方向时用右手定则,由电流分析所受安培力的方向时,用左手定则.安培定则又称右手螺旋定则,用来判断电流产生的磁场方向,它们的作用及操作方法都不同,学习时要明确区分.[针对训练]1.D[①确定原磁场的方向:条形磁铁在穿入线圈的过程中,磁场方向向下.②明确闭合回路中磁通量变化的情况:向下的磁通量增加.③由楞次定律的“增反减同”可知:线圈中的感应电流产生的磁场方向向上.④应用右手定则可以判断感应电流的方向为逆时针(俯视),即:电流的方向从b→G→a.同理可以判断出条形磁铁穿出线圈的过程中,向下的磁通量减小,由楞次定律可得:线圈中将产生顺时针的感应电流(俯视),即:电流的方向从a→G→b.]2.A[由于I减小,穿过闭合金属环的磁通量变小,通电螺线管在环a的轴线上,所以环通过缩小面积来阻碍原磁通量的减小,所以A正确.]3.左收缩解析变阻器滑片P向左移动,电阻变小,电流变大,根据楞次定律,感应电流的磁场方向与原电流的磁场方向相反,相互排斥,则金属环A将向左移动,因磁通量增大,金属环A有收缩的趋势.4.B[直线电流的磁场离导线越远,磁感线越稀疏,故线圈在下落过程中磁通量一直减小,A错;由于上、下两边电流相等,上边磁场较强,线框所受合力不为零,C错;由于电磁感应,一部分机械能转化为电能,机械能减小,D错.]思想方法总结1.感应电流方向的判断方法:方法一:右手定则(适用于部分导体切割磁感线)方法二:楞次定律楞次定律的应用步骤2.(1)若导体不动,回路中磁通量变化,应该用楞次定律判断感应电流方向而不能用右手定则.(2)若是回路中一部分导体做切割磁感线运动产生感应电流,用右手定则判断较为简单,用楞次定律进行判定也可以,但较为麻烦.3.电磁感应现象、楞次定律等知识与生产、生活联系比较密切,如电磁阻尼现象、延时开关等.这类题目往往以生产、生活实践和高新技术为背景,提出问题,并要求学生用所学知识去解决问题.解决问题的关键是认真读题,弄清物理情景,建立正确的物理模型,再用相关的物理规律求解.【课时效果检测】1.AC[赫兹用实验证实了电磁波的存在,B错;安培发现了磁场对电流的作用规律;洛伦兹发现了磁场对运动电荷的作用规律,D错.]2.D[当N极接近线圈的上端时,线圈中的磁通量增大,由楞次定律可知感应电流的方向,且流经R的电流为从b到a,电容器下极板带正电.]3.B[此题利用楞次定律的第二种描述比较方便,导线ab向左滑动,说明回路中的磁通量在减小,即cd中的电流在减小,与电流的方向无关,故B正确.]4.BC[S1断开时,A线圈中电流消失,磁通量减少,B线圈中产生感应电流,阻碍线圈中磁通量的减少,A错,B对;若断开S2,B线圈中无感应电流,磁通量立即减为零,不会有延时作用,C对,D错.] 5.D[在闭合开关的瞬间,铝环的磁通量增加,铝环产生感应电流,由楞次定律的第二种描述可知,铝环受到向上的安培力跳起一定高度,当保持开关闭合时,回路中电流不再增加,铝环中不再有感应电流,不再受安培力,将在重力作用下回落,所以A、B均错误;铝环回落后,断开开关时,铝环中因磁通量的变化产生感应电流,使铝环受到向下的安培力,不会再跳起,所以C错误,D正确.] 6.A[由楞次定律可知A正确.]7.C[由楞次定律的第二种描述可知:只要线圈中电流增强,即穿过N的磁通量增加,N就会受排斥而向右运动,只要线圈中电流减弱,即穿过N的磁通量减少,N就会受吸引而向左运动.故选项C正确.]8.BC [欲使N 产生顺时针方向的感应电流,感应电流的磁场方向应垂直纸面向里,由楞次定律可知有两种情况:一是M 中有顺时针方向逐渐减小的电流,使其在N 中的磁场方向向里,且磁通量在减小;二是M 中有逆时针方向逐渐增大的电流,使其在N 中的磁场方向向外,且磁通量在增大.因此,根据右手定则,对于前者,应使ab 减速向右运动;对于后者,则应使ab 加速向左运动.故应选B 、C.]9.AC [若线圈闭合,进入磁场时,由于产生感应电流,根据楞次定律可判断线圈相对传送带向后滑动,故A 正确;若线圈不闭合,进入磁场时,不会产生感应电流,故线圈相对传送带不发生滑动,故B 错误;从图中可以看出,第3个线圈是不合格线圈,C 正确.]10.(1)向右 (2)不 (3)向右11.l -d v解析 从线框进入磁场到完全离开磁场,只有线框bc 边运动至磁场右边缘至ad 边运动至磁场左边缘的过程中无感应电流.此过程的位移为:l -d故线框中没有感应电流的时间为:t =l -d v12.见解析解析 (1)用户正常用电时,a 、b 之间没有电压,因为双线绕成的初级线圈的两根导线中的电流总是大小相等、方向相反,穿过铁芯的磁通量总为零,副线圈中不会产生感应电动势.(2)会断开,因为人站在地面上手误触火线,电流通过火线和人体流向大地,不通过零线,这样变压器的铁芯中就会有磁通量的变化,从而在副线圈中产生感应电动势,即a 、b 间有电压,脱扣开关就会断开.易错点评1.在第2题中,产生感应电流的是右边的线圈,它是电源.许多同学误认为是电容器C 在放电,使线圈中有电流,造成失误.2.在第5题中,有同学往往认为通电线圈好似一个电动机,只要它通电,就能使铝环停在一定高度,属于没有真正理解电磁感应现象.真正的现象应是:闭合瞬间,铝环跳起,电流稳定后,铝环是落下的,当电键断开时,是不会跳起的.3.在第8题中,注意思维的顺序,分清谁是原因——ab 的加、减速运动,谁是结果——N 中产生感应电流.4.在第11题中,一定要注意条件:l>d.。

高考物理一轮复习 第九章电磁感(有解析)

高考物理一轮复习 第九章电磁感(有解析)

权掇市安稳阳光实验学校第九章电磁感应一、选择题(每小题4分,共40分)1.如图9-1所示,电路稳定后,小灯泡有一定的亮度.现将一与螺线管等长的软铁棒沿管的轴线迅速插入螺线管内,判断在插入过程中灯泡的亮度的变化情况是( )A.变暗B.变亮C.不变D.无法判断解析:由电源极性知通电螺线管中的电流方向如题图所示,左端相当于条形磁铁的N极,右端是S极,内部磁场方向由右向左.软铁棒插入过程中被磁化,左端为N极,右端是S极,所以插入过程是螺线管中磁通量增加的过程,由楞次定律判断出感应电流的方向与原来电流的方向相反,故小灯泡应变暗.正确答案应为A.答案:A2.如图9-2所示,铜质金属环从条形磁铁的正上方由静止开始下落,在下落过程中,下列判断中正确的是( )A.金属环在下落过程中机械能守恒B.金属环在下落过程中动能的增加量小于其重力势能的减少量C.金属环的机械能先减小后增大D.磁铁对桌面的压力始终大于其自身的重力解析:金属环在下落过程中,其中的磁通量发生变化,闭合金属环中会产生感应电流,金属环要受到磁场力的作用,机械能不守恒,A错.由能量守恒,金属环重力势能的减少量等于其动能的增加量和在金属环中产生的电能之和,B 对.在下落过程中机械能变为电能,机械能减小,C错.当金属环下落到磁铁位置时,金属环中的磁通量不变,其中无感应电流,和磁铁间无磁场力的作用,磁铁所受重力等于桌面对它的支持力,由牛顿第三定律,磁铁对桌面的压力等于桌面对磁铁的支持力等于磁铁的重力,D错.答案:B3.在匀强磁场中,有一个接有电容器的单匝导线回路,如图9-3所示,已知C=30 μF,L1=5 cm,L2=8 cm,磁场以5×10-2T/s的速率增加,则( )图9-3A.电容器上极板带正电,带电荷量为6×10-5 CB.电容器上极板带负电,带电荷量为6×10-5 CC.电容器上极板带正电,带电荷量为6×10-9 CD.电容器上极板带负电,带电荷量为6×10-9 C解析:电容器两极板间的电势差U等于感应电动势E,由法拉第电磁感应定律,可得E=ΔBΔt·L1L2=2×10-4V,电容器的带电荷量Q=CU=CE=6×10-9C,再由楞次定律可知上极板的电势高,带正电,C项正确.答案:C4.如图9-4所示,虚线上方空间有匀强磁场,磁场方向垂直纸面向里,直角扇形导线框绕垂直于纸面的轴O以角速度ω匀速逆时针转动.设线框中感应电流的方向以逆时针为正,线框处于图示位置时为时间零点.那么,在图9-5中能正确表明线框转动一周感应电流变化情况的是( )解析:先经过14个周期,导线框才进入磁场,故在0~T4内,线框中并无电流,排除C 、D 选项;再经过14个周期,由楞次定律,垂直纸面向里的磁通量增加,感应电流方向为逆时针方向,且扇形的半径切割磁感线的速度恒定,产生恒定的电流,排除B 选项,A 正确.答案:A5.照明电路中,为了安全,一般在电能表后面电路中安装一个漏电保护器,如图9-6所示,当漏电保护器的e 、f 两端未接有电压时,脱扣开关S 能始终保持接通,当e 、f 两端有一电压时,脱扣开关S 立即断开,下列说法正确的有( )A.站在地面上的人触及b 线时(单线触电),脱扣开关会自动断开,即有触电保护作用B .当用户家的电流超过一定值时,脱扣开关自动断开,即有过流保护作用C .当火线和零线间电压太高时,脱扣开关会自动断开,即有过压保护作用D .当站在绝缘物上带电工作的人两手分别触到b 线和d 线时(双线触电),脱扣开关会自动断开,即有触电保护作用解析:用户正常用电时,e 、f 之间没有电压,因为双线绕成的原线圈两根导线中的电流总是大小相等而方向相反的,穿过铁芯的磁通量总为零,副线圈中不会有感应电动势产生.B 、C 、D 这三种情况双线中的电流同时变化,变化量相同,穿过铁芯的磁通量还总为零,e 、f 之间没有感应电动势,脱扣开关不会自动断开,所以B 、C 、D 错.对A 这种情况,人站在地面上手误触火线,电流通过火线和人体而流向大地,不通过零线,这样变压器的铁芯中就会有磁通量的变化,从而使副线圈中产生感应电动势,e 、f 间有电压,脱扣开关就会断开,所以A 对.答案:A6.如图9-7所示,M 1N 1与M 2N 2是位于同一水平面内的两条平行金属导轨,导轨间距为L ,磁感应强度为B 的匀强磁场与导轨所在平面垂直,ab 与ef 为两根金属杆,与导轨垂直且可在导轨上滑动,金属杆ab 上有一电压表,除电压表外,其他部分电阻可以不计,则下列说法正确的是( )A .若ab 固定,ef 以速度v 滑动时,电压表读数为BLvB .若ab 固定,ef 以速度v 滑动时,ef 两点间电压为零C .当两杆以相同的速度v 同向滑动时,电压表读数为零D .当两杆以相同的速度v 同向滑动时,电压表读数为2BLv 答案:AC7.如图9-8所示是测定自感系数很大的线圈L 直流电阻的电路,L 两端并联一只电压表,用来测自感线圈的直流电压,在测量完毕后,将电路拆开时应先( )图9-8A.断开S 1 B .断开S 2C .拆除电流表D .拆除电阻R 解析:当S 1、S 2均闭合时,电压表与线圈L 并联;当S 2闭合而S 1断开时,电压表与线圈L 串联.所以在干路断开前后自感线圈L 中电流方向相同而电压表中电流方向相反.只要不断开S 2,线圈L 与电压表就会组成回路,在断开干路时,L 中产生与原来电流同方向的自感电流,使电压表中指针反向转动而可能损坏电压表.正确答案为B.答案:B8.如图9-9所示是高频焊接原理示意图.线圈中通以高频变化的电流时,待焊接的金属工件中就产生感应电流,感应电流通过焊缝产生大量热,将金属熔化,把工件焊接在一起,而工件其他部分发热很少.以下说法正确的是( )A .电流变化的频率越高,焊缝处的温度升高得越快B .电流变化的频率越低,焊缝处的温度升高得越快C .工件上只有焊缝处温度升得很高是因为焊缝处的电阻小D .工件上只有焊缝处温度升得很高是因为焊缝处的电阻大解析:在互感现象中产生的互感电动势的大小与电流的变化率成正比,电流变化的频率越高,感应电动势越大,由欧姆定律I =E R知产生的涡流越大,又P =I 2R ,R 越大P 越大,焊缝处的温度升高得越快.答案:AD9.(·宁波模拟)如图9-10所示,水平光滑的平行金属导轨,左端接有电阻R ,匀强磁场B 竖直向下分布在导轨所在的空间内,质量一定的金属棒PQ 垂直导轨放置.今使棒以一定的初速度v 0向右运动,当其通过位置a 、b 时,速率分别为v a 、v b ,到位置c 时棒刚好静止.设导轨与棒的电阻均不计,a 到b 与b 到c 的间距相等,则金属棒在由a 到b 和由b 到c 的两个过程中( )A .回路中产生的内能不相等B .棒运动的加速度相等C .安培力做功相等D .通过棒横截面积的电荷量相等解析:棒由a 到b 再到c 过程中,速度逐渐减小.根据E =Blv ,E 减小,故I 减小.再根据F =BIl ,安培力减小,根据F =ma ,加速度减小,B 错误.由于ab 、bc 间距相等,故从a 到b 安培力做的功大于从b 到c 安培力做功,故A正确,C 错误.再根据平均感应电动势E =ΔΦΔt =B ΔSΔt ,I =E R ,q =I Δt 得q =B ΔSR,故D 正确.答案:AD10.如图9-11所示,两块水平放置的金属板间距离为d ,用导线与一个n 匝的线圈连接,线圈置于方向竖直向上的变化磁场B 中,两板间有一个质量为m 、电荷量为+q 的油滴恰好处于平衡状态,则线圈中的磁场的变化情况和磁通量变化率分别是( )A .正在增强;ΔΦ/Δt =dmg /qB .正在减弱;ΔΦ/Δt =dmgnqC .正在减弱;ΔΦ/Δt =dmg /qD .正在增强;ΔΦ/Δt =dmgnq解析:油滴平衡则有mg =q U C d ,U C =mgdq.[电容器上极板必带负电,那么螺线管下端相当于电源的正极,由楞次定律可知,磁场B 正在减弱,又E =n ΔΦΔt ,U C =E ,可得ΔΦΔt =mgdnq.案:B二、实验题(共16分)11.(6分)电流表指针偏转方向与电流流入方向的关系如图9-12(a)所示,现将此电流表与竖直放置的线圈连成图(b)电路,并将磁铁从上方插入线圈,请在图9-12(b)的表头内画出磁铁插入线圈过程中指针的大体位置.答案:如图9-13所示.12.(10分)一般情况下,金属都有电阻.电阻是导体的属性之一.当条件发生改变时,其属性也会发生改变.(1)实验表明,某些金属当温度降低到某一定值时,其电阻突然降为零,这种现象叫做__________现象.、(2)图9-14所示为磁悬浮现象,将某种液态物质倒入金属盘后,能使金属盘达到转变温度,在金属盘上方释放一永磁体,当它下落到盘上方某一位置时即产生磁悬浮现象.试根据下表列出的几种金属的转变温度和几种液态物质的沸点数据,判断所倒入的液态物质应是__________,金属盘的材料应是__________.金属转变温度/K 液态物质沸点/K铱0.14液氦 4.1锌0.75液氮77.0铝 1.20液氧90.0[锡 3.72液态甲烷111.5铅7.20液态二氧化碳194.5(3)试分析说明磁悬浮现象的原因.(4)利用上述现象,人们已设计出磁悬浮高速列车.列车车厢下部装有电磁铁,运行所需槽形导轨底部和侧壁装有线圈,用以提供__________.这种列车是一般列车运行速度的3~4倍,能达到这样高速的原因是__________.答案:(1)超导(2)液氦铅(3)金属盘上方下落的永磁体,在金属盘中感应出电流,由于金属盘是超导体,所以该电流很大,产生强大磁场,与上方下落的永磁体互相排斥.当永磁体受到的这个强磁力平衡了自身的重力时,就会处于悬浮状态(4)强磁场消除了摩擦三、计算题(共44分)图9-1513.(10分)如图9-15所示,一根电阻为R=0.6 Ω的导线弯成一个圆形线圈,圆半径r=1 m,圆形线圈质量m=1 kg,此线圈放在绝缘光滑的水平面上,在y轴右侧有垂直于线圈平面B=0.5 T的匀强磁场.若线圈以初动能E0=5 J沿x轴正方向滑进磁场,当进入磁场0.5 m时,线圈中产生的电能为E e=3 J,求:图9-15(1)此时线圈的运动速度;(2)此时线圈与磁场左边缘两交接点间的电压;(3)此时线圈加速度的大小.解析:(1)由能量守恒12mv2=E0-E e,解得v=2 m/s.(2)进入磁场0.5 m时切割磁感线的有效长度L=3r=3m.感应电动势E=BLv=0.5×3×2 V= 3 V.在磁场内的圆弧长度为线圈总长的13,则内电阻r=R3=0.2 Ω,外电路电阻R外=0.4 Ω,所以I=ER总=533 A.U ab=IR外=233 V.(3)F 安=BILa =F 安m =BIL m =2.5 m/s 2. 答案:(1)2 m/s (2)233 V (3)2.5 m/s 214.(10分)如图9-16所示,MN 、PQ 为相距L =0.2 m 的光滑平行导轨,导轨平面与水平面夹角为θ=30°,导轨处于磁感应强度为B =1 T 、方向垂直于导轨平面向上的匀强磁场中,在两导轨的M 、P 两端接有一R =2 Ω的定值电阻,回路其余电阻不计.一质量为m =0.2 kg 的导体棒垂直导轨放置且与导轨接触良好.今平行于导轨向导体棒施加一作用力F ,使导体棒从ab 位置由静止开始沿导轨向下匀加速滑到底端,滑动过程中导体棒始终垂直于导轨,加速度大小为a =4 m/s 2,经时间t =1 s 滑到cd 位置,从ab 到cd 过程中电阻发热为Q =0.1 J ,g 取10 m/s 2.求:(1)到达cd 位置时,向导体棒施加的作用力; (2)导体棒从ab 滑到cd 过程中作用力F 所做的功. 解析:(1)导体棒在cd 处速度为:v =at =4 m/s 切割磁感线产生的电动势为E =BLv =0.8 V ,回路感应电流为I =ER=0.4 A ,导体棒在cd 处受安培力F 安=BIL =0.08 N.令平行导轨向下为正方向:mg sin θ+F -F 安=ma , 解得:F =-0.12 N.对导体棒施加的作用力大小为0.12 N ,方向平行斜面向上. (2)ab 到cd 的距离x =12at 2=2 m.根据功能关系:mgx sin θ+W F -Q =12mv 2-0,解得:W F =-0.3 J.答案:(1)0.12 N 方向平行斜面向上 (2)-0.3 J15.(12分)(·高考广东卷)如图9-17(a)所示,一个电阻值为R ,匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路.线圈的半径为r 1.在线圈中半径为r 2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图9-17(b)所示.图线与横、纵轴的截距分别为t 0和B 0.导线的电阻不计.求0至t 1时间内图9-17(1)通过电阻R 1上的电流大小和方向;(2)通过电阻R 1上的电荷量q 及电阻R 1上产生的热量.解析:(1)由图象分析可知,0至t 1时间内ΔB Δt =B 0t 0,由法拉第电磁感应定律有E =n ΔΦΔt =n ΔB Δt×S ,且S =πr 22,由闭合电路欧姆定律有I 1=ER 1+R,联立以上各式解得通过电阻R 1上的电流大小I 1=nB 0πr 223Rt 0.由楞次定律可判断通过电阻R 1上的电流方向为从b 到a .(2)通过电阻R 1的电荷量q =I 1t 1=nB 0πr 22t 13Rt 0.电阻R 1产生的热量Q =I 21R 1t 1=2n 2B 20π2r 42t 19Rt 2答案:(1)nB 0πr 223Rt 0,方向由 b 到a(2)nB 0πr 22t 13Rt 0,2n 2B 20π2r 42t 19Rt 216.(12分)如图9-18所示,将边长为a 、质量为m 、电阻为R 的正方形导线框竖直向上抛出,穿过宽度为b 、磁感应强度为B 的匀强磁场,磁场的方向垂直纸面向里,线框向上离开磁场时的速度刚好是进入磁场时速度的一半,线框离开磁场后继续上升一段高度,然后落下并匀速进入磁场.整个运动过程中始终存在着大小恒定的空气阻力F 阻且线框不发生转动.求:图9-18(1)线框在下落阶段匀速进入磁场时的速度v 2; (2)线框在上升阶段刚离开磁场时的速度v 1;(3)线框在上升阶段通过磁场过程中产生的焦耳热Q . 解析:(1)线框在下落阶段匀速进入磁场瞬间mg =F 阻+B 2a 2v 2R,解得v 2=(mg -F 阻)RB 2a2. (2)线框从离开磁场至上升到最高点的过程 (mg +F 阻)h =12mv 21,线框从最高点回落至进入磁场瞬间 (mg -F 阻)h =12mv 22,联立解得v 1=mg +F 阻mg -F 阻v 2=(mg )2-F 2阻R B 2a2.(3)线框在向上通过磁场过程中 12mv 20-12mv 21=Q +(mg +F 阻)(a +b ), v 0=2v 1,Q =32m [(mg )2-F 2阻]R 2B 4a 4-(mg +F 阻)(a +b ).答案:(1)(mg -F 阻)R B 2a2(2)(mg )2-F2阻R B 2a2(3)32m [(mg )2-F 2阻]R 2B 4a4-(mg +F 阻)(a +b )。

高三物理一轮复习 第九章 电磁感应章末检测提升

高三物理一轮复习 第九章 电磁感应章末检测提升

第九章电磁感应一、选择题(本大题共10小题,共40分.在每小题给出的四个选项中,有一个或一个以上选项符合题目要求,全部选对的得4分,选不全的得2分,有错选或不答的得0分)1.如图所示,光滑导电圆环轨道竖直固定在匀强磁场中,磁场方向与轨道所在平面垂直,导体棒ab的两端可始终不离开轨道无摩擦地滑动,当ab由图示位置释放,直到滑到右侧虚线位置的过程中,关于ab棒中的感应电流情况,正确的是导学号36280481 ( )A.先有从a到b的电流,后有从b到a的电流B.先有从b到a的电流,后有从a到b的电流C.始终有从b到a的电流D.始终没有电流产生答案:D解析:ab与被其分割开的每个圆环构成的回路,在ab棒运动过程中,磁通量都保持不变,无感应电流产生.2.法拉第发明了世界上第一台发电机——法拉第圆盘发电机.如图所示,用紫铜做的圆盘水平放置在竖直向下的匀强磁场中,圆盘圆心处固定一个摇柄,边缘和圆心处各与一个黄铜电刷紧贴,用导线将电刷与电流表连接起来形成回路.转动摇柄,使圆盘逆时针匀速转动,电流表的指针发生偏转.下列说法正确的是( )A.回路中电流的大小变化,方向不变B.回路中电流的大小不变,方向变化C.回路中电流的大小和方向都周期性变化D.回路中电流的方向不变,从b导线流进电流表答案:D解析:圆盘辐向垂直切割磁感线,由E =12Br 2ω可得,电动势的大小一定,则电流的大小一定;由右手定则可知,电流方向从圆盘边缘流向圆心,电流从b 导线流进电流表,选项D 正确.3.(多选)闭合回路由两部分组成,如图所示,右侧是电阻为r 的圆形导线,置于竖直方向均匀变化的磁场B 1中;左侧是光滑的倾角为θ的平行导轨,宽度为d ,其电阻不计.磁感应强度为B 2的匀强磁场垂直导轨平面向上,且只分布在左侧,一个质量为m 、连入电路中电阻为R 的导体棒此时恰好能静上在导轨上,分析下述判断正确的是 ( )A .圆形导线中的磁场,可以方向向上均匀增强,也可以方向向下均匀减弱B .导体棒ab 受到的安培力大小为mg sin θC .回路中的感应电流为mg sin θB 2dD .圆形导线中的电热功率为m 2g 2sin 2 θB 2d(r +R )答案:ABC解析:由导体棒静止和左手定则可知,导体棒上的电流从b 到a ,根据电磁感应定律可得,A 项正确;根据共点力平衡知识,导体棒ab 受到的安培力大小等于重力沿导轨向下的分力,即mg sin θ,B 项正确;根据mg sin θ=B 2Id ,解得I =mg sin θB 2d,C 项正确;圆形导线的电热功率等于I 2r =⎝ ⎛⎭⎪⎫mg sin θB 2d 2r =m 2g 2sin 2θB 22d 2r ,D 项错误.4.两块水平放置的金属板间的距离为d ,用导线与一个n 匝线圈相连,线圈电阻为r ,线圈中有竖直方向的磁场,电阻R 与金属板连接,如图所示,两板间有一个质量为m 、电荷量为+q 的油滴恰好处于静止,则线圈中的磁感应强度B 的变化情况和磁通量的变化率分别是导学号36280483( )A .磁感应强度B 竖直向上且正增强,ΔΦΔt =dmgnqB .磁感应强度B 竖直向下且正增强,ΔΦΔt =dmgnqC .磁感应强度B 竖直向上且正减弱,ΔΦΔt =dmg (R +r )nqRD .磁感应强度B 竖直向下且正减弱,ΔΦΔt =dmgr (R +r )nq答案:C解析:由平衡条件知,下金属板带正电,故电流应从线圈下端流出,等效电路如图所示,由楞次定律可以判定磁感应强度B 为竖直向上且正减弱或竖直向下且正增强,故A 、D 两项错误;因mg =q U d ,U =E R +r R ,E =n ΔΦΔt ,联立可求得ΔΦΔt =dmg (R +r )nqR ,故只有C 项正确.5.(多选)在如图所示的虚线框内有匀强磁场,磁感应强度随时间变化,半径为r 、匝数为n 的圆形线圈有一半处在磁场中,磁场方向垂直于线圈平面,此时线圈的发热功率恒为P .下列说法正确的是 ( )A .若只将线圈全部置于磁场中,则线圈的发热功率变为2PB .若只将线圈的半径增大到原来的2倍,仍保持线圈有一半面积在磁场中,则线圈的发热功率变为2PC .若只将线圈的匝数增大到原来的2倍,则线圈的发热功率变为2PD .若将线圈全部置于磁场中,同时将线圈的半径减小到原来的12,则线圈的发热功率变为P 2答案:CD解析:设线圈在磁场中的面积为S B ,导线的横截面积为S ,则感应电动势E =n ΔB Δt S B ,线圈的发热功率P =E 2R ,其中R =ρ2n πrS ,联立得P =⎝ ⎛⎭⎪⎫ΔB Δt 2nS 2B S 2πρr ,若只将线圈全部置于磁场中,则S B ′2=4S 2B ,P′=4P ,A 项错误;若只将线圈的半径增大到原来的2倍,则S B ′2=16S 2B ,r′=2r ,则P′=8P ,B 项错误;若n′=2n ,则P′=2P ,C 项正确;若将线圈全部置于磁场中,同时将线圈的半径减小到原来的12,则S B ′2=4[π(r 2)2]2=14S 2B ,r′=12r ,而同时线圈全部放入磁场中,则P′=12P ,D 项正确.6.(多选)如图所示,粗糙的平行金属导轨倾斜放置,导轨电阻不计,顶端QQ ′之间连接一个阻值为R 的电阻和开关S ,底端PP ′处与一小段水平轨道相连,有匀强磁场垂直于导轨平面.断开开关S ,将一根质量为m 、长为l 的金属棒从AA ′处由静止开始滑下,落在水平面上的FF ′处;闭合开关S ,将金属棒仍从AA ′处由静止开始滑下,落在水平面上的EE ′处;开关S 仍闭合,金属棒从CC ′处(图中没画出)由静止开始滑下,仍落在水平面上的EE ′处(忽略金属棒经过PP ′处的能量损失).测得相关数据如图所示,重力加速度为g ,下列说法正确的是 ( )A .S 断开时,金属棒沿导轨下滑的加速度为x 21g 2hsB .S 闭合时,金属棒刚离开轨道时的速度为x 2g 2hC .电阻R 上产生的热量Q =mg 4h(x 21-x 22) D .CC ′一定在AA ′的上方答案:BC解析:由平抛运动知识可知,S 断开时,由h =12gt 2,x 1=v 1t ,v21=2a1s可得v1=x1g2h,a1=x21g4hs,A项错误;同理得闭合开关S,v2=x2g2h,B项正确;故电阻R上产生的热量Q=12mv21-12mv22=mg4h(x21-x22),C项正确;因为金属棒有一部分机械能转化为电阻R上的内能,故不能判断CC′与AA′位置的关系,D项错误.7.边长为a的闭合金属正三角形框架,完全处于垂直于框架平面的匀强磁场中,现把框架匀速拉出磁场,如图(1)所示,则图(2))(2)答案:B.解析:在框架被匀速拉出磁场的过程中,由几何关系得,切割磁感线的有效长度L∝x,感应电动势E=BLv∝x,B项正确;框架在匀速运动中受到拉力F与安培力相等,而安培力F′=BIL=B2L2vR为变力,C项错误;根据P=Fv判断,D项错误.8.(多选)(2014·山东卷)如图所示,一端接有定值电阻的平行金属轨道固定在水平面内,通有恒定电流的长直绝缘导线垂直并紧靠轨道固定,导体棒与轨道垂直且接触良好.在向右匀速通过M、N两区的过程中,导体棒所受安培力分别用F M、F N表示.不计轨道电阻.以下叙述正确的是( )A .F M 向右B .F N 向左C .F M 逐渐增大D .F N 逐渐减小答案:BCD解析:根据安培定则可判断出,通电导线在M 区产生竖直向上的磁场,在N 区产生竖直向下的磁场.当导体棒匀速通过M 区时,由楞次定律可知导体棒受到的安培力向左.当导体棒匀速通过N 区时,由楞次定律可知导体棒受到的安培力也向左.选项B 正确;设导体棒的电阻为r ,轨道的宽度为L ,导体棒产生的感应电流为I′,则导体棒受到的安培力F 安=BI′L=B BLv R +r L =B 2L 2v R +r ,在导体棒从左到右匀速通过M 区时,磁场由弱到强,所以F M 逐渐增大;在导体棒从左到右匀速通过N 区时,磁场由强到弱,所以F N 逐渐减小,选项C 、D 正确.9.(多选)如图所示,光滑的平行水平金属导轨MN 、PQ 相距L ,在MP 之间接一个阻值为R 的电阻,在两导轨间cdfe 矩形区域内有垂直导轨平面向上、宽为d 的匀强磁场,磁感应强度为B .一质量为m 、电阻为r 、长度也刚好为L 的导体棒ab 垂直搁在导轨上,与磁场左边界相距d 0.现用一个水平向右的力F 拉棒ab ,使它由静止开始运动,棒ab 离开磁场前已做匀速直线运动,棒ab 与导轨始终保持良好接触,导轨电阻不计,F 随ab 与初始位置的距离x 变化的情况如图所示,F 0已知.下列判断正确的是导学号36280486( )A .棒B .棒ab 在ce 之间可能先做加速度减小的运动,再做匀速运动C .棒ab 在ce 之间不可能一直做匀速运动D .棒ab 经过磁场的过程中,通过电阻R 的电荷量为BLd R答案:AB解析:棒ab 在ac 之间运动时,水平方向只受到恒定拉力F 0作用,做匀加速直线运动,A 项正确;棒ab 进入磁场后立即受到安培阻力的作用,若水平拉力大于安培力,则棒ab 加速运动,但加速度随着速度的增大而减小,直到匀速运动,B 项正确;若棒ab 进入磁场后安培阻力与水平拉力恰好平衡,则棒ab 在磁场中可能一直做匀速运动,C 项错误;棒ab 经过磁场的过程中,通过电阻R 的电荷量为q =I -t =ΔφR 总=BLd R +r,D 项错误.10.(多选)如图所示,在光滑绝缘斜面上放置一矩形铝框abcd ,铝框的质量为m 、电阻为R ,斜面上ef 线与gh 线间有垂直斜面向上的匀强磁场,ef ∥gh ∥pq ∥ab ,eh >bc .如果铝框从磁场上方的某一位置由静止开始运动,则从铝框开始运动到ab 边到达gh 线之前的速度(v )—时间(t.答案:AD解析:由题意可知,若铝框刚进磁场时受到安培力和重力沿斜面向下的分力平衡,则匀速进入,出磁场时,做加速度减小的减速运动(速度可能一直大于匀速运动的速度),A 项正确;若铝框刚进磁场时受到安培力小于重力沿斜面向下的分力,则铝框将继续做加速度逐渐减小的加速运动,完全进入磁场后,做匀加速运动,出磁场时开始减速,D 项正确.二、填空与实验题(本大题共2小题,共10分.把答案填在题中的横线上或按照题目要求作答)11.(6分)(2015·上海卷)如图所示,一无限长通电直导线固定在光滑水平面上,金属环质量为0.02 kg ,在该平面上以v 0=2 m/s 、与导线成60°角的初速度运动,其最终的运动状态是________,环中最多能产生________J 的电能.答案:匀速直线运动 0.03解析:电流周围产生非匀强磁场,金属环在其中运动时产生感应电流,受到垂直环面向外的安培力作用,平行于导线方向的安培力相互抵消,由此可知安培力的合力方向水平向左,金属环将做曲线运动,当速度方向与导线平行时,环内磁通量不变,不产生感应电流,金属环也不再受安培力,将做匀速直线运动;在此期间,在安培力的作用下,垂直导线方向的速度由v sin 60°减小到零,减少的这部分动能全部转化为电能,环中产生12m(v sin 60°)2=0.03 J的电能.12.(4分)超导磁悬浮列车(图甲)推进原理可以简化为图乙所示的模型:在水平面上相距为L 的两根平行直导轨间有竖直方向等距离分布的匀强磁场B 1和B 2,且B 1=B 2=B ,每个磁场的宽度都是l ,相间排列.金属框abcd (悬浮在导轨上方)跨在两导轨间,其长和宽分别为L 、l .当所有这些磁场都以速度v 向右匀速运动时,金属框abcd 在磁场力作用下将向________(填“左”或“右”)运动.若金属框电阻为R ,运动中所受阻力恒为F f ,则金属框的最大速度为________.导学号36280487答案:右 v -F f R 4B 2L2解析:磁场向右匀速运动,金属框中产生的感应电流所受安培力向右,金属框向右加速运动,当金属框匀速运动时速度设为v m ,感应电动势为E =2BL(v -v m ),感应电流为I =ER ,安培力F =2BIL ,安培力与阻力平衡,F =F f ,解得v m =v -F f R4B 2L2.三、计算题(本大题共4小题,共50分.解答应写出必要的文字说明、方程式和重要演算步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)13.(10分)如图甲所示,一个电阻值为R 、匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路.线圈的半径为r 1.在线圈中半径为r 2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图乙所示.图线与横、纵轴的截距分别为t 0和B 0,导线的电阻不计.求0至t 1时间内,(1)通过电阻R 1(2)通过电阻R 1上的电荷量q 及电阻R 1上产生的热量.答案:(1)nB 0πr 223Rt 0 方向从b 到a(2)nB 0πr 22t 13Rt 0 2n 2B 20π2r 42t 19Rt 2解析:(1)穿过闭合线圈的磁场的面积为S =πr 22 由题图乙可知,磁感应强度B 的变化率的大小为ΔB Δt =B 0t 0根据法拉第电磁感应定律得: E =n ΔΦΔt =nS ΔB Δt =nB 0πr 22t 0.由闭合电路欧姆定律可知流过电阻R 1的电流为 I =E R +2R =nB 0πr 223Rt 0.再根据楞次定律可以判断,流过电阻R 1的电流方向由b 到a. (2)0至t 1时间内通过电阻R 1的电荷量为q =It 1=nB 0πr 22t 13Rt 0.电阻R 1上产生的热量为Q =I 2R 1t 1=2n 2B 20π2r 42t 19Rt 2.14.(12分)(2015·上海卷)如图(a),两相距L =0.5 m 的平行金属导轨固定于水平面上,导轨左端与阻值R =2 Ω的电阻连接,导轨间虚线右侧存在垂直导轨平面的匀强磁场.质量m =0.2 kg 的金属杆垂直置于导轨上,与导轨接触良好,导轨与金属杆的电阻可忽略.杆在水平向右的恒定拉力作用下由静止开始运动,并始终与导轨垂直,其vt 图象如图(b)所示.在15 s 时撤去拉力,同时使磁场随时间变化,从而保持杆中电流为0.求:(1)金属杆所受拉力的大小F ;(2)0~15 s 内匀强磁场的磁感应强度大小B 0; (3)15~20 s 内磁感应强度随时间的变化规律.答案:(1)0.24 N (2)0.4 T (3)见解析解析:(1)由vt 关系图可知在0~10 s 时间段杆尚未进入磁场,因此F -μmg =ma 1由图可知a 1=0.4 m /s 2同理可知在15~20 s 时间段杆仅在摩擦力作用下运动 μmg =ma 2由图可得a 2=0.8 m /s 2 解得F =0.24 N(2)在10~15 s 时间段杆在磁场中做匀速运动,因此有F =μmg +B 20L 2v R以F =0.24 N ,μmg =0.16 N 代入解得 B 0=0.4 T(3)由题意可知在15~20 s 时间段通过回路的磁通量不变,设杆在10~15 s 内运动距离为d ,15 s 后运动距离为xB(t)L(d +x)=B 0Ld其中d =20 mx =4(t -15)-0.4(t -15)2由此可得B(t)=B 0d d +x =2050-(t -15)(t -25)T15.(12分)如图甲所示,电阻不计,间距为l 的光滑平行长金属导轨置于水平面内,阻值为R 的导体棒ab 固定连接在导轨左端,另一阻值也为R 的导体棒ef 垂直放置到导轨上,ef 与导轨接触良好.现有一根轻杆一端固定在ef 中点,另一端固定于墙上,轻杆与导轨保持平行,ef 、ab 两棒间距为d .若整个装置处于方向竖直向下的匀强磁场中,且从某一时刻开始,磁感应强度B 随时间t 按图乙所示的方式变化.(1)求在0~t 0时间内流过导体棒ef 的电流的大小与方向;(2)求在t 0~2t 0时间内导体棒ef 产生的热量;(3)1.5t 0时刻杆对导体棒ef 的作用力的大小和方向.答案:(1)B 0ld 2Rt 0 e→f (2)B 20l 2d 2Rt 0(3)B 20l 2dRt 0,方向水平向右解析:(1)在0~t 0时间内,磁感应强度的变化率ΔB Δt =B 0t 0,产生感应电动势的大小E 1=ΔΦΔt =ΔB Δt S =ΔB Δt ld =B 0ldt 0,流过导体棒ef 的电流大小I 1=E 12R =B 0ld2Rt 0,由楞次定律可判断电流方向为e→f.(2)在t 0~2t 0时间内,磁感应强度的变化率ΔB ′Δt =2B 0t 0,产生感应电动势的大小E 2=ΔΦ′Δt =ΔB ′Δt S =ΔB ′Δt ld =2B 0ldt 0,流过导体棒ef 的电流大小I 2=E 22R =B 0ldRt 0,导体棒ef 产生的热量Q =I 22Rt 0=B 20l 2d2Rt 0.(3)在t =1.5t 0时,磁感应强度B =B 0ef 棒受安培力:F =B 0I 2l =B 20l 2d Rt 0,方向水平向左, 根据导体棒受力平衡,杆对导体棒的作用力大小为F ′=F =B 20l 2d Rt 0,方向水平向右.16.(16分)如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为l ,所在平面的正方形区域abcd 内存在有界匀强磁场,磁感应强度大小为B ,方向垂直于斜面向上.如图所示,将甲、乙两阻值相同,质量均为m 的相同金属杆放置在导轨上,甲金属杆处在磁场的上边界,甲、乙相距l .从静止释放两金属杆的同时,在甲金属杆上施加一个沿着导轨的外力,使甲金属杆在运动过程中始终沿导轨向下做匀加速直线运动,且加速度大小为a =g sin θ,乙金属杆刚进入磁场时做匀速运动.(1)求每根金属杆的电阻R 为多少?(2)从刚释放金属杆时开始计时,写出从计时开始到甲金属杆离开磁场的过程中外力F 随时间t 的变化关系式,并说明F 的方向.(3)若从开始释放两杆到乙金属杆离开磁场,乙金属杆共产生热量Q ,试求此过程中外力F 对甲做的功.答案:(1)均为B 2l 22gl sin θ2mg sin θ(2)mg 2sin 2 θ2gl sin θt 方向沿导轨向下 (3)2Q -mgl sin θ解析:(1)因为甲、乙加速度相同,所以,当乙进入磁场时,甲刚出磁场,乙进入磁场时的速度v 乙=2gl sin θ根据平衡条件有mg sin θ=B 2l 2v 乙2R解得:R =B 2l 22gl sin θ2mg sin θ(2)甲在磁场中运动时,外力F 始终等于安培力F =B 2l 2v 2Rv =g sin θ·t 解得:F =mg 2sin 2 θ2gl sin θt ,方向沿导轨向下(3)乙进入磁场前,甲、乙发出相同热量,设为Q 1,则有 F 安l =2Q 1又F =F 安故外力F 对甲做的功W F =Fl =2Q 1甲出磁场以后,外力F 为零乙在磁场中,甲、乙发出相同热量,设为Q 2,则有 F 安′l =2Q 2又F 安′=mg sin θ Q =Q 1+Q 2解得:W F =2Q -mgl sin θ。

高三物理一轮复习 第九章 电磁感应测试卷

高三物理一轮复习 第九章 电磁感应测试卷

电磁感应 一、选择题(44分)1-3题只有一项符合题目要求,4-11题有多项符合题目要求.1.如图所示是描述电磁炉工作原理的示意图.炉子的内部有一个金属线圈,当电流通过线圈时,会产生磁场,这个磁场的大小和方向是不断变化的,这个变化的磁场又会引起放在电磁炉上面的铁质(或钢质)锅底内产生感应电流,由于锅底有电阻,所以感应电流又会在锅底产生热效应,这些热能便起到加热物体的作用从而煮食.因为电磁炉是以电磁感应产生电流,利用电流的热效应产生热量,所以不是所有的锅或器具都适用.以下说法正确的是( )A .最好使用铝锅或铜锅B .最好使用平底不锈钢锅或铁锅C .最好使用陶瓷锅或耐热玻璃锅D .在电磁炉与铁锅之间放一层白纸后无法加热解析 选用陶瓷锅或耐热玻璃锅无法形成涡流,C 选项错误;A 、B 选项中均能形成涡流,铜和铝的电阻率小,电热少,效率低,相对来说选用平底不锈钢锅或铁锅为最佳,A 选项错误,B 选项正确;由于线圈产生的磁场能穿透白纸到达锅底,在铁锅中产生涡流,能够加热,D 选项错误.答案 B设置目的 在新情境下考查涡流、及涡流形成的因素2.(2015·天津河西)如图所示,空间存在两个磁场,磁感应强度大小均为B ,方向相反且垂直纸面,MN 、PQ 为其边界,OO ′为其对称轴,一导线折成边长为L 的正方形闭合线框abcd ,线框在外力作用下由纸面内图示位置从静止开始向右做匀加速运动,若电流以逆时针方向为正方向,则从线框开始运动到ab 边刚进入到PQ 右侧磁场的过程中,能反映线框中感应电流随时间变化规律的图像是( )解析 由法拉第电磁感应定律知在ab 边运动到MN 边界的过程中感应电动势E =2BLv =2BLat ,感应电流为i =E R =2BLat R∝t ,C 、D 项错;在ab 边从MN 边界运动到PQ 边界的过程中,产生的感应电动势为E =BLv =BLat ,感应电流为i ′=E R =BLat R∝t ,即刚过MN 边界时感应电动势、感应电流均减小一半,所以A 项错,B 项对.答案 B 设置目的 电磁感应中的图像问题3.(2015·天津市和平区)如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计.匀强磁场与导轨所在平面垂直.阻值为R的导体棒垂直于导轨静止放置,且与导轨接触良好.t =0时,将开关S 由1掷到2.若分别用U 、F 、q 和v 表示电容器两端的电压、导体棒所受的安培力、通过导体棒的电荷量和导体棒的速度.则下列图像表示这些物理量随时间变化的关系中可能正确的是( )解析 开关S 由1掷到2,电容器放电时会在电路中产生电流.导体棒通有电流后会受到安培力的作用,会产生加速度而加速运动.导体棒切割磁感线,速度增大,感应电动势增大,则电流减小,安培力减小,加速度减小.因导轨光滑,所以在有电流通过棒的过程中,棒是一直加速运动(变加速).由于通过棒的电流是按指数递减的,那么棒受到的安培力也是按指数递减的,由牛顿第二定律知,它的加速度是按指数递减的.由于电容器放电产生电流使得导体棒受安培力而运动,而导体棒运动产生感应电动势会给电容器充电.当充电和放电达到一种平衡时,导体棒做匀速运动.当棒匀速运动后,棒因切割磁感线有电动势,所以电容器两端的电压能稳定在某个不为0的数值,即电容器的电量应稳定在某个不为0的数值(不会减少到0).这时电容器的电压等于棒的电动势数值,棒中无电流.故本题应选C 项. 答案 C设置目的 考查法拉第电磁感应定律、含容电路4.(2015·湖北八市联考)如图所示,等腰直角三角形OPQ 区域内存在着垂直纸面向里的匀强磁场,磁感应强度大小为B ,磁场区域的OP 边在x 轴上且长为L.纸面内一边长为L 的单匝闭合正方形导线框(线框电阻为R)的一条边在x 轴上,且线框在外力作用下沿x 轴正方向以恒定的速度v 穿过磁场区域,在t =0时该线框恰好位于图中所示的位置.现规定顺时针方向为导线框中感应电流的正方向,则下列说法正确的有( )A .在0-L v 时间内线框中有正向电流,在L v -2L v时间内线框中有负向电流B .在L v -2L v 时间内流经线框某处横截面的电荷量为EL 22RC .在L v -2L v 时间内线框中最大电流为BLv 2RD .0-2L v时间内线框中电流的平均值不等于有效值 解析 在0-L v 时间内,线框中磁通量增加,感应电流沿逆时针方向,A 项错误;在L v -2L v时间内,线框中磁通量变化量为ΔΦ=12BL 2,流过线框某一横截面的电荷量为q =ΔΦR =BL 22R,B 项正确;在L v -2L v 时间内,线框中最大电流为BLv/R ,C 项错误;经分析知0-2L v时间内线框中电流的平均值不等于有效值,D 项正确.答案 BD5.(2015·河南三市第一次调研)两根光滑的金属导轨,平行放置在倾角为θ的斜面上,导轨的下端接有电阻R ,导轨的电阻不计.斜面处在一匀强磁场中,磁场的方向垂直斜面向上.一电阻不计的光滑金属棒ab ,在沿斜面向上且与金属棒垂直的恒力F 作用下沿导轨匀速上升到图示虚线位置,在此过程中,下列说法正确的是( )A .恒力F 和安培力对金属棒所做功的和等于金属棒重力势能的增量B .恒力F 和重力对金属棒所做功的和等于电阻R 上产生的电热C .金属棒克服安培力所做的功等于金属棒重力势能的增量D .恒力F 对金属棒所做的功等于电阻R 上产生的电热解析 金属棒匀速上升过程中,动能不变,根据功能关系可知:恒力F 和安培力对金属棒所做功的和等于金属棒重力势能的增量,故A 项正确.根据动能定理,得W F -W G -W 安=0,得W F -mgh =W 安,而W 安=Q ,则恒力F 和重力对金属棒所做功的和等于电阻R 上产生的电热,故B 项正确.金属棒克服安培力所做的功等于回路中电阻R 上产生的热量,不等于金属棒重力势能的增量,故C 项错误.恒力F 所做的功在数值上等于金属棒增加的重力势能与电阻R 上产生的焦耳热之和,故D 项错误.答案 AB6.(2015·山西省忻州市)如图是电子感应加速器的示意图,上、下为电磁铁的两个磁极,磁极之间有一个环形真空室,电子在真空室中做圆周运动.上图为侧视图,下图为真空室的俯视图,电子从电子枪右端逸出(不计初速度),当电磁铁线圈电流的方向与图示方向一致时,使电子在真空室中沿虚线加速击中电子枪左端的靶,下列说法中正确的是( )A.真空室中磁场方向竖直向上B.真空室中磁场方向竖直向下C.电流应逐渐减小D.电流应逐渐增大解析由安培定则知A项正确;电子逆时针加速运动形成顺时针方向的感应电流,感应电流产生的磁场与原电流产生的磁场方向相反,由楞次定律知原磁场是增强的,故D项正确.答案AD设置目的考查感生电场和带电粒子的加速7.(2015·北京海淀区高三二调)如图所示电路中,电源电动势为E,线圈L的电阻不计.以下判断正确的是( )A.闭合S瞬间,R1、R2中电流大小相等B.闭合S,稳定后,R1中电流为零C.断开S的瞬间,R1、R2中电流立即变为零D.断开S的瞬间,R1中电流方向向右,R2中电流方向向左解析A项,闭合S瞬间,电容C与R2并联与R1串联,由于自感作用,则通过R1中电流大于通过R2中电流大小;故A项错误.B项,由于线圈L的直流电阻不计,闭合S,稳定后,R1被短路,R1中电流为零.故B项正确.C项,断开S的瞬间,电容器放电,R2中电流不为零,线圈中电流减小,产生自感电动势,相当于电源,R1中电流过一会儿为零.故C项错误.D 项,断开S的瞬间,电容器放电,R2中电流方向向左,由于自感,根据楞次定律可知,R1中电流方向向右,故D项正确.答案BD设置目的考查自感现象和电容器的充放电8.(2015·上海浦东)在倾角为θ的斜面上固定两根足够长且间距为L的光滑平行金属导轨PQ、MN,导轨处于磁感应强度为B的匀强磁场中,磁场方向垂直于斜面向下.有两根质量分别为m1和m2的金属棒a、b,先将a棒垂直于导轨放置,用跨过光滑定滑轮的细线与物块c连接,连接a棒的细线平行于导轨,由静止释放c,此后某时刻,将b也垂直于导轨放置,此刻起a、c做匀速运动而b 静止,a 棒在运动过程中始终与导轨垂直,两棒与导轨电接触良好,导轨电阻不计,则( )A .物块c 的质量是(m 1+m 2)sin θB .b 棒放上导轨前,物块c 减少的重力势能等于a 、c 增加的动能C .b 棒放上导轨后,a 棒克服安培力所做的功等于a 棒上消耗的电能D .b 棒放上导轨后,b 棒中电流大小是m 1gsin θBL解析 A 项,b 棒静止说明b 棒受力平衡,即安培力和重力沿斜面向下的分力平衡,a 棒匀速向上运动,说明a 棒受绳的拉力和重力沿斜面向下的分力大小以及沿斜面向下的安培力三个力平衡,c 匀速下降则c 所受重力和绳的拉力大小平衡.由b 平衡可知,安培力大小F 安=m 2gsin θ由a 平衡可知:F 绳=F 安+m 1gsin θ=(m 1+m 2)gsin θ,由c 平衡可知:F 绳=m c g联立解得物块c 的质量为:m c =(m 1+m 2)sin θ,故A 项正确;B 项,b 放上导轨之前,根据能量守恒知物块c 减少的重力势能等于a 、c 增加的动能与a 增加的重力势能之和,故B 项错误;C 项,b 棒放上导轨后,a 棒克服安培力所做的功等于a 、b 两棒上消耗的电能之和,故C 项错误;D 项,b 棒放上导轨后,根据b 棒的平衡可知,F 安=m 1gsin θ,又因为F 安=BIL ,可得b 棒中电流大小是:I =m 1gsin θBL,故D 项正确. 答案 AD设置目的 导体切割磁感线时的感应电动势;功能关系;焦耳定律9.(2016·上海虹口区)如图所示,两平行光滑的金属导轨MN 、PQ 固定在水平面上,相距为L ,处于竖直向下的磁场中,整个磁场由n 个宽度皆为x 0的条形匀强磁场区域1、2、3、…、n 组成,从左向右依次排列,磁感应强度大小分别为B 、2B 、3B 、…、nB ,两导轨左端M 、P 间接入电阻R ,金属棒ab 垂直放在水平导轨上,且与导轨接触良好,不计导轨和金属棒的电阻.若在不同的磁场区对金属棒施加不同的拉力,使棒ab 以恒定速度v 向右匀速运动.取金属棒图示位置(即磁场1区左侧)为x =0,则通过棒ab 的电流i 、对棒施加的拉力F 随位移x 变化的图像是( )解析 金属棒切割磁感线产生的感应电动势E =nBLv ,电路中感应电流I =E R =n BLv R,所以通过棒的电流i 与n 成正比,A 选项正确;棒所受的安培力F 安=nBIL =n 2B 2L 2v R ,因为棒匀速运动,对棒施加的外力F 与F 安等大反向,即F 与n 2成正比,D 选项正确.答案 AD设置目的 考查导体切割磁感线产生的动生电动势、电流、安培力10.(2016·北京西城区)两根足够长的光滑导轨竖直放置,间距为L ,底端接阻值为R 的电阻.将质量为m 的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B 的匀强磁场垂直,如图所示.除电阻R 外其余电阻不计.现将金属棒从弹簧原长位置由静止释放,则( )A .释放瞬间金属棒的加速度等于重力加速度gB .金属棒向下运动时,流过电阻R 的电流方向为a→bC .金属棒的速度为v 时,所受的安培力大小为F =B 2L 2v RD .电阻R 上产生的总热量等于金属棒重力势能的减少解析 以棒为研究对象,设当棒下落距离为x 时,速度为v ,有mg -kx -B 2L 2v R=ma ;由此可得,下落之初加速度为g ,A 选项正确;由右手定则判断得出,棒下落时,流过R 的电流方向为b→a,B 选项错误;由能的转化与守恒,可得当棒下落x 时,有mgx -Q R -E p =12mv 2,D 选项错误.答案 AC设置目的 考查电磁阻尼、能量守恒、牛顿运动定律、综合分析能力11.(2015·广东十校第一次联考)如图所示,两固定的竖直光滑金属导轨足够长且电阻不计.两质量、长度均相同的导体棒c 、d ,置于边界水平的匀强磁场上方同一高度h 处.磁场宽为3h ,方向与导轨平面垂直.先由静止释放c ,c 刚进入磁场即匀速运动,此时再由静止释放d ,两导体棒与导轨始终保持良好接触.用a c 表示c 的加速度,E kd 表示d 的动能,x c 、x d 分别表示c 、d 相对释放点的位移.下图中正确的是( )解析 c 的运动过程分为四个阶段.(Ⅰ)x c <h ,自由落体运动,a c1=g.(Ⅱ)h≤x c <3h ,c 进入磁场匀速下落,速度v c =2gh ;此时d 做自由落体运动,其平均速度v -d =2gh 2=v c 2,即d 自由下落h 高度的过程中c 匀速下落2h 高度,此过程中a c2=0.(Ⅲ)3h≤x c <4h ,c 、d 均在磁场中,v c =v d =2gh ,回路中无感应电流,c 只受重力,a c3=g.(Ⅳ)x c ≥4h ,离开磁场,a c4=g.依据上述分析,A 项错误,B 项正确.d 的运动过程也分为四个阶段.①x d <h ,d 自由落体,E kd =mgx d .②h ≤x d <2h ,该阶段对应着c 运动的(Ⅲ)阶段,两者均做加速度为g 的匀加速运动,E kd =mgx d .③2h ≤x d <4h ,该阶段对应着c 运动的(Ⅳ)阶段,d 受重力和方向竖直向上的安培力;由c 进入磁场匀速运动知,B 2l 22ghR =mg ,故该阶段开始时F 安d =B 2l 22g ×2hR=2mg ,可知d 做减速运动,且为加速度减小的减速运动,该阶段E kd 减小.④x d ≥4h ,d 离开磁场做匀加速直线运动,E kd 随x d 均匀增加.综上分析,C 项错误,D 项正确. 答案 BD二、实验题(10分)12.在研究电磁感应现象的实验中所用器材如图所示.它们是:①电流表;②直流电源;③带铁芯的线圈A ;④线圈B ;⑤开关;⑥滑动变阻器(用来控制电流以改变磁场强弱).(1)试按实验的要求在实物图上连接(图中已连好一根导线).(2)若连接滑动变阻器的两根导线接在接线柱C和D上,而在开关刚刚闭合时电流表指针右偏,则开关闭合后滑动变阻器的滑动触头向接线柱C移动时,电流表指针将________(填“左偏”“右偏”或“不偏”).解析开关闭合时,电流表指针向右偏,说明B中磁通量增加时,产生的感应电流使指针向右偏.而如图接法,当滑动触头向C移动时,A回路中电流减小,通过B回路的磁通量减少,此时产生感应电流与开关闭合时相反,故指针向左偏.答案连接电路如图所示左偏设置目的考查产生感应电流的条件、实验连接的2个独立电路三、计算题(46分)13.(10分)有人设计了一种可测速的跑步机,测速原理如图所示.该机底面固定有间距为L、长度为d的平行金属电极,电极间充满磁感应强度为B、方向垂直纸面向里的匀强磁场,且接有电压表和电阻R.绝缘橡胶带上镀有间距为d的平行细金属条,磁场中始终仅有一根金属条,且与电极接触良好,不计金属电阻.若橡胶带匀速运动时,电压表读数为U,求:(1)橡胶带匀速运动的速率;(2)电阻R消耗的电功率:(3)一根金属条每次经过磁场区域克服安培力做的功.解析(1)设电动势为E,橡胶带运动速率为v,由E=BLv,由于不计金属电阻有E=U,得v =U BL (2)设电功率为P ,则P =U 2R (3)设电流为I ,安培力为F ,克服安培力做的功为W ,I =U R ,F =BIL ,W =Fd ,得W =BLUd R答案 (1)U BL (2)U 2R (3)BLUd R设置目的 考查物理建模能力、综合分析能力14.(12分)如图所示,竖直放置的光滑平行金属导轨MN 、PQ 相距L ,在M 点和P 点间接一个阻值为R 的电阻,在两导轨间OO 1O 1′O ′矩形区域内有垂直导轨平面向里、宽为d 的匀强磁场,磁感应强度为B.一质量为m ,电阻为r 的导体棒ab 垂直搁在导轨上,与磁场上边界相距d 0.现使ab 棒由静止开始释放,棒ab 在离开磁场前已经做匀速直线运动(棒ab与导轨始终保持良好的电接触,且下落过程中始终保持水平,导轨电阻不计).求:(1)棒ab 在离开磁场下边界时的速度;(2)棒ab 在通过磁场区的过程中产生的焦耳热;(3)试分析讨论ab 棒在磁场中可能出现的运动情况.解析 (1)设ab 棒离开磁场边界前做匀速运动的速度为v ,产生的电动势为E =BLv ,电路中电流I =E R +r,对ab 棒,由平衡条件,得mg -BIL =0,解得 v =mg (R +r )B 2L2 (2)由能量守恒定律,得mg(d 0+d)=E 电+12mv 2 解得E 电=mg(d 0+d)-m 3g 2(R +r )22B 4L4 E 棒电=r R +r [mg(d 0+d)-m 3g 2(R +r )22B 4L4] (3)设棒刚进入磁场时的速度为v 0,由mgd 0=12mv 02,得v 0=2gd 0 棒在磁场中匀速时速度为v =mg (R +r )B 2L2,则 ①当v 0=v ,即d 0=m 2g (R +r )22B 4L4时,棒进入磁场后做匀速直线运动. ②当v 0<v ,即d 0<m 2g (R +r )22B 4L 4时,棒进入磁场后做先加速后匀速直线运动.③当v0>v,即d0>m2g(R+r)22B4L4时,棒进入磁场后做先减速后匀速直线运动.安培力就是电流在磁场中受到的力,因此安培力的功就是电流的功,安培力的功率就是电流的功率.答案(1)mg(R+r)B2L2(2)E棒电=rR+r[mg(d0+d)-m3g2(R+r)22B4L4](3)见解析设置目的考查导体切割磁感线的运动及能量问题15.(10分)(2014·福建)如图所示,某一新型发电装置的发电管是横截面为矩形的水平管道,管道的长为L、宽为d、高为h.上下两面是绝缘板,前后两侧面M、N是电阻可忽略的导体板,两导体板与开关S和定值电阻R相连.整个管道置于磁感应强度大小为B,方向沿z轴正方向的匀强磁场中.管道内始终充满电阻率为ρ的导电液体(有大量的正、负离子),且开关闭合前后,液体在管道内进、出口两端压强差的作用下,均以恒定速率v0沿x轴正向流动,液体所受的摩擦阻力不变.调整矩形管道的宽和高,但保持其他量和矩形管道的横截面积S=dh不变,求电阻R可获得的最大功率P m及相应的宽高比dh的值.解析电阻R获得的功率为P=I2R=(Bdv0R+ρdLh)2R=(BLSv0LhR+ρd)2R;由于(LhR)·(ρd)=ρSLR为定值,故当LhR=ρd时,分母值最小,功率有极大值.当dh=LRρ时,电阻R获得的最大功率为P m =(BLSv0LhR+ρd)2R=(BLSv02ρd)2ρdLh=LSv02B24ρ答案dh=LRρP m=LSv02B24ρ设置目的考查物理建模能力、综合分析能力、极值求解16.(14分)如图,电阻不计且足够长的U型金属框架放置在倾角θ=37°的绝缘斜面上,该装置处于垂直斜面向下的匀强磁场中,磁感应强度大小B =0.5 T .质量m =0.1 kg 、电阻R =0.4 Ω的导体棒ab 垂直放在框架上,从静止开始沿框架无摩擦下滑,与框架接触良好.框架的质量M =0.2 kg 、宽度l =0.4 m ,框架与斜面间的动摩擦因数μ=0.6,与斜面间最大静摩擦力等于滑动摩擦力,g 取10 m/s 2,sin37°=0.6,cos37°=0.8.(1)若框架固定,求导体棒的最大速度v m ;(2)若框架固定,棒从静止开始下滑5.75 m 时速度v =5 m/s ,求此过程回路中产生的热量Q 及流过ab 棒的电量q ;(3)若框架不固定,求当框架刚开始运动时棒的速度v 1.解析 (1)棒ab 产生的电动势E =Blv回路中感应电流I =E R棒ab 所受的安培力F =BIl对棒ab ,mgsin37°-BIl =ma当加速度a =0时,速度最大,最大值v m =mgRsin37°(Bl )2=6 m/s (2)根据能量转化和守恒定律,有mgxsin37°=12mv 2+Q 代入数据解得Q =2.2 Jq =I -Δt =E -R Δt =ΔΦR =Blx R=2.875或2.9 C (3)回路中感应电流I 1=Blv 1R框架上边所受安培力F 1=BI 1l对框架Mgsin37°+BI 1l =μ(m+M)gcos37°代入数据解得v 1=2.4 m/s答案 (1)6 m/s (2)2.9 C (3)2.4 m/s设置目的 考查导体切割磁感线的运动及能量问题。

[精品]新高考物理一轮复习9电磁感应及答案

[精品]新高考物理一轮复习9电磁感应及答案

专题9电磁感应考点一:电磁感应现象一.正确认识Φ 、△φ、和△φ/ △ 1.磁通量定义:穿过某面积的磁感线的条叫做穿过这一面积的磁通量。

〈该定义为定性判断磁通量的变提供依据〉2.磁通量的计算公式:φ=B·S〈适用条件:B ⊥S 〉思考:如何解公式中的B 和S ? 3.磁通量是标量,没有方向,但有正负思考:正负的有何物意义? 4.在国际单位制中,磁通量的单位是韦伯(Wb ):注意:∶ 磁通变量 △Φ= Φ2-Φ1,磁通变率△φ/ △以上三个物量的大小无必然联系典型题型一:......磁通量...的解及变的判......断. 例1:如图,两个同心放置的共面金属圆环a和b,一条形磁铁穿过圆心且与环面垂直,则穿过两环的磁通量Φ和Φb 的大小关系为( ) A .Φ>Φb B .Φ<Φb .Φ=Φb D .无法比较思考:若,b 线圈均在N 极正上方又如何?二.电磁感应现象 1.电磁感应现象:〈略〉2.感应电流的条件:① ② 注意:产生感应电动势的条件:只要穿过线圈平面的磁通量发生变,产生感应电动势的那部分导体相当于电。

3.引起磁通量变的常见情况:典型题型二:感应电流是否存在的判定例2:如图所示,当条形磁铁插进带有缺口的圆形铜环时,在铜环中产生_______,而不产生_______(选填‚感应电流‛或‚感应电动势‛),铜环的题第11端是电的_______极。

例3:如图,在磁感强度为1T的匀强磁场中,让长为1、电阻为05Ω的导体棒AB在宽度也为1的金属框上以1/的速度向右运动,已知电阻R=05Ω,其它电阻忽略不计。

()(填‚有‛或‚无‛)电流通过电阻R,相当于电的是(),A相当与电的(),产生的感应电动势()V,通过导体棒AB 的电流是()A.练习: A 组1 下列说法正确的是()A.磁感应强度越大,线圈的面积越大,则穿过线圈的磁通量一定越大B.穿过线圈的磁通量为零,表明该处的磁感应强度为零.穿过线圈的磁通量为零时,该处的磁感应强度不一定为零,磁通量很大时,磁感应强度不一定大D.磁通量的变可能是由于磁感应强度的变引起的,也可能是由于线圈面积的变引起的E.通量不仅有大小,还有方向,是矢量2如图,b是水平面上一个圆的直径,在过b的竖直平面内有一根通电导线cd。

高三物理一轮复习第九章电磁感应测试卷

高三物理一轮复习第九章电磁感应测试卷

电磁感应一、选择题(44分)1-3题只有一项符合题目要求,4-11题有多项符合题目要求.1.如图所示是描述电磁炉工作原理的示意图.炉子的内部有一个金属线圈,当电流通过线圈时,会产生磁场,这个磁场的大小和方向是不断变化的,这个变化的磁场又会引起放在电磁炉上面的铁质(或钢质)锅底内产生感应电流,由于锅底有电阻,所以感应电流又会在锅底产生热效应,这些热能便起到加热物体的作用从而煮食.因为电磁炉是以电磁感应产生电流,利用电流的热效应产生热量,所以不是所有的锅或器具都适用.以下说法正确的是( )A .最好使用铝锅或铜锅B .最好使用平底不锈钢锅或铁锅C .最好使用陶瓷锅或耐热玻璃锅D .在电磁炉与铁锅之间放一层白纸后无法加热解析 选用陶瓷锅或耐热玻璃锅无法形成涡流,C 选项错误;A 、B 选项中均能形成涡流,铜和铝的电阻率小,电热少,效率低,相对来说选用平底不锈钢锅或铁锅为最佳,A 选项错误,B 选项正确;由于线圈产生的磁场能穿透白纸到达锅底,在铁锅中产生涡流,能够加热,D 选项错误.答案 B设置目的 在新情境下考查涡流、及涡流形成的因素2.(2015·天津河西)如图所示,空间存在两个磁场,磁感应强度大小均为B ,方向相反且垂直纸面,MN 、PQ 为其边界,OO ′为其对称轴,一导线折成边长为L 的正方形闭合线框abcd ,线框在外力作用下由纸面内图示位置从静止开始向右做匀加速运动,若电流以逆时针方向为正方向,则从线框开始运动到ab 边刚进入到PQ 右侧磁场的过程中,能反映线框中感应电流随时间变化规律的图像是( )解析 由法拉第电磁感应定律知在ab 边运动到MN 边界的过程中感应电动势E =2BLv =2BLat ,感应电流为i =E R =2BLat R∝t ,C 、D 项错;在ab 边从MN 边界运动到PQ 边界的过程中,产生的感应电动势为E =BLv =BLat ,感应电流为i ′=E R =BLat R∝t ,即刚过MN 边界时感应电动势、感应电流均减小一半,所以A 项错,B 项对.答案 B设置目的 电磁感应中的图像问题3.(2015·天津市和平区)如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计.匀强磁场与导轨所在平面垂直.阻值为R的导体棒垂直于导轨静止放置,且与导轨接触良好.t =0时,将开关S 由1掷到2.若分别用U 、F 、q 和v 表示电容器两端的电压、导体棒所受的安培力、通过导体棒的电荷量和导体棒的速度.则下列图像表示这些物理量随时间变化的关系中可能正确的是( )解析 开关S 由1掷到2,电容器放电时会在电路中产生电流.导体棒通有电流后会受到安培力的作用,会产生加速度而加速运动.导体棒切割磁感线,速度增大,感应电动势增大,则电流减小,安培力减小,加速度减小.因导轨光滑,所以在有电流通过棒的过程中,棒是一直加速运动(变加速).由于通过棒的电流是按指数递减的,那么棒受到的安培力也是按指数递减的,由牛顿第二定律知,它的加速度是按指数递减的.由于电容器放电产生电流使得导体棒受安培力而运动,而导体棒运动产生感应电动势会给电容器充电.当充电和放电达到一种平衡时,导体棒做匀速运动.当棒匀速运动后,棒因切割磁感线有电动势,所以电容器两端的电压能稳定在某个不为0的数值,即电容器的电量应稳定在某个不为0的数值(不会减少到0).这时电容器的电压等于棒的电动势数值,棒中无电流.故本题应选C 项. 答案 C设置目的 考查法拉第电磁感应定律、含容电路4.(2015·湖北八市联考)如图所示,等腰直角三角形OPQ 区域内存在着垂直纸面向里的匀强磁场,磁感应强度大小为B ,磁场区域的OP 边在x 轴上且长为L.纸面内一边长为L 的单匝闭合正方形导线框(线框电阻为R)的一条边在x 轴上,且线框在外力作用下沿x 轴正方向以恒定的速度v 穿过磁场区域,在t =0时该线框恰好位于图中所示的位置.现规定顺时针方向为导线框中感应电流的正方向,则下列说法正确的有( )A .在0-L v 时间内线框中有正向电流,在L v -2L v时间内线框中有负向电流B .在L v -2L v 时间内流经线框某处横截面的电荷量为EL 22RC .在L v -2L v 时间内线框中最大电流为BLv 2RD .0-2L v时间内线框中电流的平均值不等于有效值 解析 在0-L v 时间内,线框中磁通量增加,感应电流沿逆时针方向,A 项错误;在L v -2L v时间内,线框中磁通量变化量为ΔΦ=12BL 2,流过线框某一横截面的电荷量为q =ΔΦR =BL 22R,B 项正确;在L v -2L v 时间内,线框中最大电流为BLv/R ,C 项错误;经分析知0-2L v时间内线框中电流的平均值不等于有效值,D 项正确.答案 BD5.(2015·河南三市第一次调研)两根光滑的金属导轨,平行放置在倾角为θ的斜面上,导轨的下端接有电阻R ,导轨的电阻不计.斜面处在一匀强磁场中,磁场的方向垂直斜面向上.一电阻不计的光滑金属棒ab ,在沿斜面向上且与金属棒垂直的恒力F 作用下沿导轨匀速上升到图示虚线位置,在此过程中,下列说法正确的是( )A .恒力F 和安培力对金属棒所做功的和等于金属棒重力势能的增量B .恒力F 和重力对金属棒所做功的和等于电阻R 上产生的电热C .金属棒克服安培力所做的功等于金属棒重力势能的增量D .恒力F 对金属棒所做的功等于电阻R 上产生的电热解析 金属棒匀速上升过程中,动能不变,根据功能关系可知:恒力F 和安培力对金属棒所做功的和等于金属棒重力势能的增量,故A 项正确.根据动能定理,得W F -W G -W 安=0,得W F -mgh =W 安,而W 安=Q ,则恒力F 和重力对金属棒所做功的和等于电阻R 上产生的电热,故B 项正确.金属棒克服安培力所做的功等于回路中电阻R 上产生的热量,不等于金属棒重力势能的增量,故C 项错误.恒力F 所做的功在数值上等于金属棒增加的重力势能与电阻R 上产生的焦耳热之和,故D 项错误.答案 AB6.(2015·山西省忻州市)如图是电子感应加速器的示意图,上、下为电磁铁的两个磁极,磁极之间有一个环形真空室,电子在真空室中做圆周运动.上图为侧视图,下图为真空室的俯视图,电子从电子枪右端逸出(不计初速度),当电磁铁线圈电流的方向与图示方向一致时,使电子在真空室中沿虚线加速击中电子枪左端的靶,下列说法中正确的是( )A.真空室中磁场方向竖直向上B.真空室中磁场方向竖直向下C.电流应逐渐减小D.电流应逐渐增大解析由安培定则知A项正确;电子逆时针加速运动形成顺时针方向的感应电流,感应电流产生的磁场与原电流产生的磁场方向相反,由楞次定律知原磁场是增强的,故D项正确.答案AD设置目的考查感生电场和带电粒子的加速7.(2015·北京海淀区高三二调)如图所示电路中,电源电动势为E,线圈L的电阻不计.以下判断正确的是( )A.闭合S瞬间,R1、R2中电流大小相等B.闭合S,稳定后,R1中电流为零C.断开S的瞬间,R1、R2中电流立即变为零D.断开S的瞬间,R1中电流方向向右,R2中电流方向向左解析A项,闭合S瞬间,电容C与R2并联与R1串联,由于自感作用,则通过R1中电流大于通过R2中电流大小;故A项错误.B项,由于线圈L的直流电阻不计,闭合S,稳定后,R1被短路,R1中电流为零.故B项正确.C项,断开S的瞬间,电容器放电,R2中电流不为零,线圈中电流减小,产生自感电动势,相当于电源,R1中电流过一会儿为零.故C项错误.D 项,断开S的瞬间,电容器放电,R2中电流方向向左,由于自感,根据楞次定律可知,R1中电流方向向右,故D项正确.答案BD设置目的考查自感现象和电容器的充放电8.(2015·上海浦东)在倾角为θ的斜面上固定两根足够长且间距为L的光滑平行金属导轨PQ、MN,导轨处于磁感应强度为B的匀强磁场中,磁场方向垂直于斜面向下.有两根质量分别为m1和m2的金属棒a、b,先将a棒垂直于导轨放置,用跨过光滑定滑轮的细线与物块c连接,连接a棒的细线平行于导轨,由静止释放c,此后某时刻,将b也垂直于导轨放置,此刻起a、c做匀速运动而b 静止,a 棒在运动过程中始终与导轨垂直,两棒与导轨电接触良好,导轨电阻不计,则( )A .物块c 的质量是(m 1+m 2)sin θB .b 棒放上导轨前,物块c 减少的重力势能等于a 、c 增加的动能C .b 棒放上导轨后,a 棒克服安培力所做的功等于a 棒上消耗的电能D .b 棒放上导轨后,b 棒中电流大小是m 1gsin θBL解析 A 项,b 棒静止说明b 棒受力平衡,即安培力和重力沿斜面向下的分力平衡,a 棒匀速向上运动,说明a 棒受绳的拉力和重力沿斜面向下的分力大小以及沿斜面向下的安培力三个力平衡,c 匀速下降则c 所受重力和绳的拉力大小平衡.由b 平衡可知,安培力大小F 安=m 2gsin θ由a 平衡可知:F 绳=F 安+m 1gsin θ=(m 1+m 2)gsin θ,由c 平衡可知:F 绳=m c g联立解得物块c 的质量为:m c =(m 1+m 2)sin θ,故A 项正确;B 项,b 放上导轨之前,根据能量守恒知物块c 减少的重力势能等于a 、c 增加的动能与a 增加的重力势能之和,故B 项错误;C 项,b 棒放上导轨后,a 棒克服安培力所做的功等于a 、b 两棒上消耗的电能之和,故C 项错误;D 项,b 棒放上导轨后,根据b 棒的平衡可知,F 安=m 1gsin θ,又因为F 安=BIL ,可得b 棒中电流大小是:I =m 1gsin θBL,故D 项正确. 答案 AD设置目的 导体切割磁感线时的感应电动势;功能关系;焦耳定律9.(2016·上海虹口区)如图所示,两平行光滑的金属导轨MN 、PQ 固定在水平面上,相距为L ,处于竖直向下的磁场中,整个磁场由n 个宽度皆为x 0的条形匀强磁场区域1、2、3、…、n 组成,从左向右依次排列,磁感应强度大小分别为B 、2B 、3B 、…、nB ,两导轨左端M 、P 间接入电阻R ,金属棒ab 垂直放在水平导轨上,且与导轨接触良好,不计导轨和金属棒的电阻.若在不同的磁场区对金属棒施加不同的拉力,使棒ab 以恒定速度v 向右匀速运动.取金属棒图示位置(即磁场1区左侧)为x =0,则通过棒ab 的电流i 、对棒施加的拉力F 随位移x 变化的图像是( )解析 金属棒切割磁感线产生的感应电动势E =nBLv ,电路中感应电流I =E R =n BLv R,所以通过棒的电流i 与n 成正比,A 选项正确;棒所受的安培力F 安=nBIL =n 2B 2L 2v R ,因为棒匀速运动,对棒施加的外力F 与F 安等大反向,即F 与n 2成正比,D 选项正确.答案 AD设置目的 考查导体切割磁感线产生的动生电动势、电流、安培力10.(2016·北京西城区)两根足够长的光滑导轨竖直放置,间距为L ,底端接阻值为R 的电阻.将质量为m 的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B 的匀强磁场垂直,如图所示.除电阻R 外其余电阻不计.现将金属棒从弹簧原长位置由静止释放,则( )A .释放瞬间金属棒的加速度等于重力加速度gB .金属棒向下运动时,流过电阻R 的电流方向为a→bC .金属棒的速度为v 时,所受的安培力大小为F =B 2L 2v RD .电阻R 上产生的总热量等于金属棒重力势能的减少解析 以棒为研究对象,设当棒下落距离为x 时,速度为v ,有mg -kx -B 2L 2v R=ma ;由此可得,下落之初加速度为g ,A 选项正确;由右手定则判断得出,棒下落时,流过R 的电流方向为b→a,B 选项错误;由能的转化与守恒,可得当棒下落x 时,有mgx -Q R -E p =12mv 2,D 选项错误.答案 AC设置目的 考查电磁阻尼、能量守恒、牛顿运动定律、综合分析能力11.(2015·广东十校第一次联考)如图所示,两固定的竖直光滑金属导轨足够长且电阻不计.两质量、长度均相同的导体棒c 、d ,置于边界水平的匀强磁场上方同一高度h 处.磁场宽为3h ,方向与导轨平面垂直.先由静止释放c ,c 刚进入磁场即匀速运动,此时再由静止释放d ,两导体棒与导轨始终保持良好接触.用a c 表示c 的加速度,E kd 表示d 的动能,x c 、x d 分别表示c 、d 相对释放点的位移.下图中正确的是( )解析 c 的运动过程分为四个阶段.(Ⅰ)x c <h ,自由落体运动,a c1=g.(Ⅱ)h≤x c <3h ,c 进入磁场匀速下落,速度v c =2gh ;此时d 做自由落体运动,其平均速度v -d =2gh 2=v c 2,即d 自由下落h 高度的过程中c 匀速下落2h 高度,此过程中a c2=0.(Ⅲ)3h≤x c <4h ,c 、d 均在磁场中,v c =v d =2gh ,回路中无感应电流,c 只受重力,a c3=g.(Ⅳ)x c ≥4h ,离开磁场,a c4=g.依据上述分析,A 项错误,B 项正确.d 的运动过程也分为四个阶段.①x d <h ,d 自由落体,E kd =mgx d .②h ≤x d <2h ,该阶段对应着c 运动的(Ⅲ)阶段,两者均做加速度为g 的匀加速运动,E kd =mgx d .③2h ≤x d <4h ,该阶段对应着c 运动的(Ⅳ)阶段,d 受重力和方向竖直向上的安培力;由c 进入磁场匀速运动知,B 2l 22ghR =mg ,故该阶段开始时F 安d =B 2l 22g ×2hR=2mg ,可知d 做减速运动,且为加速度减小的减速运动,该阶段E kd 减小.④x d ≥4h ,d 离开磁场做匀加速直线运动,E kd 随x d 均匀增加.综上分析,C 项错误,D 项正确. 答案 BD二、实验题(10分)12.在研究电磁感应现象的实验中所用器材如图所示.它们是:①电流表;②直流电源;③带铁芯的线圈A ;④线圈B ;⑤开关;⑥滑动变阻器(用来控制电流以改变磁场强弱).(1)试按实验的要求在实物图上连接(图中已连好一根导线).(2)若连接滑动变阻器的两根导线接在接线柱C和D上,而在开关刚刚闭合时电流表指针右偏,则开关闭合后滑动变阻器的滑动触头向接线柱C移动时,电流表指针将________(填“左偏”“右偏”或“不偏”).解析开关闭合时,电流表指针向右偏,说明B中磁通量增加时,产生的感应电流使指针向右偏.而如图接法,当滑动触头向C移动时,A回路中电流减小,通过B回路的磁通量减少,此时产生感应电流与开关闭合时相反,故指针向左偏.答案连接电路如图所示左偏设置目的考查产生感应电流的条件、实验连接的2个独立电路三、计算题(46分)13.(10分)有人设计了一种可测速的跑步机,测速原理如图所示.该机底面固定有间距为L、长度为d的平行金属电极,电极间充满磁感应强度为B、方向垂直纸面向里的匀强磁场,且接有电压表和电阻R.绝缘橡胶带上镀有间距为d的平行细金属条,磁场中始终仅有一根金属条,且与电极接触良好,不计金属电阻.若橡胶带匀速运动时,电压表读数为U,求:(1)橡胶带匀速运动的速率;(2)电阻R消耗的电功率:(3)一根金属条每次经过磁场区域克服安培力做的功.解析(1)设电动势为E,橡胶带运动速率为v,由E=BLv,由于不计金属电阻有E=U,得v =U BL(2)设电功率为P ,则P =U 2R(3)设电流为I ,安培力为F ,克服安培力做的功为W ,I =U R ,F =BIL ,W =Fd ,得W =BLUd R答案 (1)U BL (2)U 2R (3)BLUd R设置目的 考查物理建模能力、综合分析能力14.(12分)如图所示,竖直放置的光滑平行金属导轨MN 、PQ 相距L ,在M 点和P 点间接一个阻值为R 的电阻,在两导轨间OO 1O 1′O ′矩形区域内有垂直导轨平面向里、宽为d 的匀强磁场,磁感应强度为B.一质量为m ,电阻为r 的导体棒ab 垂直搁在导轨上,与磁场上边界相距d 0.现使ab 棒由静止开始释放,棒ab 在离开磁场前已经做匀速直线运动(棒ab与导轨始终保持良好的电接触,且下落过程中始终保持水平,导轨电阻不计).求:(1)棒ab 在离开磁场下边界时的速度;(2)棒ab 在通过磁场区的过程中产生的焦耳热;(3)试分析讨论ab 棒在磁场中可能出现的运动情况.解析 (1)设ab 棒离开磁场边界前做匀速运动的速度为v ,产生的电动势为E =BLv ,电路中电流I =E R +r,对ab 棒,由平衡条件,得mg -BIL =0,解得 v =mg (R +r )B L (2)由能量守恒定律,得mg(d 0+d)=E 电+12mv 2 解得E 电=mg(d 0+d)-m 3g 2(R +r )22B 4L 4 E 棒电=r R +r [mg(d 0+d)-m 3g 2(R +r )22B 4L 4] (3)设棒刚进入磁场时的速度为v 0,由mgd 0=12mv 02,得v 0=2gd 0 棒在磁场中匀速时速度为v =mg (R +r )B 2L 2,则 ①当v 0=v ,即d 0=m 2g (R +r )22B 4L 4时,棒进入磁场后做匀速直线运动. ②当v 0<v ,即d 0<m 2g (R +r )22B 4L 4时,棒进入磁场后做先加速后匀速直线运动.③当v 0>v ,即d 0>m 2g (R +r )22B 4L 4时,棒进入磁场后做先减速后匀速直线运动. 安培力就是电流在磁场中受到的力,因此安培力的功就是电流的功,安培力的功率就是电流的功率.答案 (1)mg (R +r )B 2L 2 (2)E 棒电=r R +r [mg(d 0+d)-m 3g 2(R +r )22B 4L 4] (3)见解析设置目的 考查导体切割磁感线的运动及能量问题15.(10分)(2014·福建)如图所示,某一新型发电装置的发电管是横截面为矩形的水平管道,管道的长为L 、宽为d 、高为h.上下两面是绝缘板,前后两侧面M 、N 是电阻可忽略的导体板,两导体板与开关S 和定值电阻R 相连.整个管道置于磁感应强度大小为B ,方向沿z 轴正方向的匀强磁场中.管道内始终充满电阻率为ρ的导电液体(有大量的正、负离子),且开关闭合前后,液体在管道内进、出口两端压强差的作用下,均以恒定速率v 0沿x 轴正向流动,液体所受的摩擦阻力不变.调整矩形管道的宽和高,但保持其他量和矩形管道的横截面积S =dh 不变,求电阻R 可获得的最大功率P m 及相应的宽高比d h 的值.解析 电阻R 获得的功率为P =I 2R =(Bdv 0R +ρd Lh )2R =(BLSv 0LhR +ρd)2R ;由于(LhR)·(ρd)=ρSLR 为定值,故当LhR =ρd 时,分母值最小,功率有极大值.当d h =LR ρ时,电阻R 获得的最大功率为P m =(BLSv 0LhR +ρd )2R =(BLSv 02ρd )2ρd Lh =LSv 02B 24ρ答案 d h =LR ρ P m =LSv 02B 24ρ设置目的 考查物理建模能力、综合分析能力、极值求解16.(14分)如图,电阻不计且足够长的U 型金属框架放置在倾角θ=37°的绝缘斜面上,该装置处于垂直斜面向下的匀强磁场中,磁感应11 强度大小B =0.5 T .质量m =0.1 kg 、电阻R =0.4 Ω的导体棒ab 垂直放在框架上,从静止开始沿框架无摩擦下滑,与框架接触良好.框架的质量M =0.2 kg 、宽度l =0.4 m ,框架与斜面间的动摩擦因数μ=0.6,与斜面间最大静摩擦力等于滑动摩擦力,g 取10 m/s 2,sin37°=0.6,cos37°=0.8.(1)若框架固定,求导体棒的最大速度v m ;(2)若框架固定,棒从静止开始下滑5.75 m 时速度v =5 m/s ,求此过程回路中产生的热量Q 及流过ab 棒的电量q ;(3)若框架不固定,求当框架刚开始运动时棒的速度v 1.解析 (1)棒ab 产生的电动势E =Blv回路中感应电流I =E R棒ab 所受的安培力F =BIl对棒ab ,mgsin37°-BIl =ma当加速度a =0时,速度最大,最大值v m =mgRsin37°(Bl )2=6 m/s(2)根据能量转化和守恒定律,有mgxsin37°=12mv 2+Q代入数据解得Q =2.2 Jq =I -Δt =E-R Δt =ΔΦR =Blx R =2.875或2.9 C(3)回路中感应电流I 1=Blv 1R框架上边所受安培力F 1=BI 1l对框架Mgsin37°+BI 1l =μ(m +M)gcos37°代入数据解得v 1=2.4 m/s答案 (1)6 m/s (2)2.9 C (3)2.4 m/s设置目的 考查导体切割磁感线的运动及能量问题。

2015届高三物理一轮总复习同步训练第9章《电磁感应》

2015届高三物理一轮总复习同步训练第9章《电磁感应》

第九章电磁感应第1节电磁感应现象楞次定律一、单项选择题1.假如有一宇航员登月后,想探测一下月球表面是否有磁场,他手边有一只灵敏电流表和一个小线圈,则下列推断正确的是()A.直接将电流表放于月球表面,看是否有示数来判断磁场的有无B.将电流表与线圈组成闭合回路,使线圈沿某一方向运动,如电流表无示数,则可判断月球表面无磁场C.将电流表与线圈组成闭合回路,使线圈沿某一方向运动,如电流表有示数,则可判断月球表面有磁场D.将电流表与线圈组成闭合回路,使线圈在某一平面内沿各个方向运动,如电流表无示数,则可判断月球表面无磁场2.如图所示,虚线框内有匀强磁场,大环和小环是垂直于磁场放置的两个圆环,分别用Φ1和Φ2表示穿过大小两环的磁通量,则有()A.Φ1>Φ2B.Φ1<Φ2C.Φ1=Φ2D.无法确定3.(2012·北京卷)物理课上,老师做了一个奇妙的“跳环实验”.如图,她把一个带铁芯的线圈L、开关S和电源用导线连接起来后,将一金属套环置于线圈L上,且使铁芯穿过套环.闭合开关S的瞬间,套环立刻跳起.某同学另找来器材再探究此实验.他连接好电路,经重复试验,线圈上的套环均未动.对比老师演示的实验,下列四个选项中,导致套环未动的原因可能是()A.线圈接在了直流电源上B.电源电压过高C.所选线圈的匝数过多D.所用套环的材料与老师的不同4.如图甲所示,两个闭合圆形线圈A、B的圆心重合,放在同一水平面内,线圈A中通以如图乙所示的变化电流,t=0时电流方向为顺时针(如图中箭头所示).在t1~t2时间内,对于线圈B,下列说法中正确的是()A.线圈B内有顺时针方向的电流,线圈有扩张的趋势B.线圈B内有顺时针方向的电流,线圈有收缩的趋势C.线圈B内有逆时针方向的电流,线圈有扩张的趋势D.线圈B内有逆时针方向的电流,线圈有收缩的趋势5.如图所示,甲是闭合铜线框,乙是有缺口的铜线框,丙是闭合的塑料线框,它们的正下方都放置一薄强磁铁,现将甲、乙、丙拿至相同高度H处同时释放(各线框下落过程中不翻转),则以下说法正确的是()A.三者同时落地B.甲、乙同时落地,丙后落地C.甲、丙同时落地,乙后落地D.乙、丙同时落地,甲后落地6.2012年冬季我国自主研发的J-15舰载战机在北海进行着舰训练,在上空盘旋时,由于地磁场的存在,飞机在一定高度水平飞行时,其机翼就会切割磁感线,机翼的两端之间会有一定的电势差,则从飞行员的角度看,机翼左端的电势比右端的电势() A.低B.高C.相等D.以上情况都有可能7.如图所示的装置中,cd杆原来静止,当ab杆做如下哪些运动时,cd杆将向右移动()A.向右匀速运动B.向右减速运动C.向左加速运动D.向左减速运动8.如图所示,A为水平放置的胶木圆盘,在其侧面均匀分布着负电荷,在A的正上方用绝缘丝线悬挂一个金属圆环B,使B的环面水平且与圆盘面平行,其轴线与胶木盘A的轴线OO′重合.现使胶木盘A由静止开始绕其轴线OO′按箭头所示方向加速转动,则() A.金属环B的面积有扩大的趋势,丝线受到的拉力增大B.金属环B的面积有缩小的趋势,丝线受到的拉力减小C.金属环B的面积有扩大的趋势,丝线受到的拉力减小D.金属环B的面积有缩小的趋势,丝线受到的拉力增大9.某同学设计了如图所示的装置验证楞次定律,其中ab是一个可绕垂直于纸面的轴O 转动的闭合矩形线框,当滑动变阻器的滑片P自左向右滑动时,从纸外向纸内看,线框ab将()A.保持静止不动B.逆时针转动C.顺时针转动D.发生转动,但因电源极性不明,无法确定转动方向10.“超导量子干涉仪”可用于探测心磁(10-10T)和脑磁(10-13T)等微弱磁场,其灵敏度可达10-14T,其探测“回路”示意图如图甲.穿过ABCD“回路”的磁通量为Φ,总电流强度I=i1+i2.I与ΦΦ0的关系如图乙所示(Φ0=2.07×10-15Wb),下列说法正确的是()A.图乙中横坐标的单位是WbB.穿过“回路”的磁通量越大,电流I越大C.穿过“回路”的磁通量变化引发电流I周期性变化D.根据电流I的大小,可以确定穿过“回路”的磁通量大小二、多项选择题11.如图是电子感应加速器的示意图,上、下为电磁铁的两个磁极,磁极之间有一个环形真空室,电子在真空室中做圆周运动.上图为侧视图,下图为真空室的俯视图,电子从电子枪右端逸出(不计初速度),当电磁铁线圈电流的方向与图示方向一致时,使电子在真空室中沿虚线加速击中电子枪左端的靶,下列说法中正确的是()A.真空室中磁场方向竖直向上B.真空室中磁场方向竖直向下C.电流应逐渐减小D.电流应逐渐增大12.如图所示,在条形磁铁的中央位置的正上方水平固定一铜质圆环.以下判断中正确的是()A.释放圆环,环下落时产生感应电流B.释放圆环,环下落时无感应电流C.释放圆环,环下落时环的机械能守恒D.释放圆环,环下落时环的机械能不守恒三、非选择题13.如图所示,固定于水平面上的金属架CDEF处在竖直向下的匀强磁场中,金属棒MN 沿框架以速度v向右做匀速运动.t=0时,磁感应强度为B0,此时MN到达的位置使MDEN 构成一个边长为l的正方形.为使MN棒中不产生感应电流,从t=0开始,磁感应强度B随时间t应怎样变化?请推导出这种情况下B与t的关系式.第2节 法拉第电磁感应定律及其应用一、单项选择题1.关于感应电动势,下列说法中正确的是( )A .线圈中的磁通量越大,产生的感应电动势一定越大B .线圈放在磁感应强度越大的地方,产生的感应电动势一定越大C .线圈中产生的感应电动势为2 V ,则穿过线圈的磁通量的变化率一定为2 Wb/sD .线圈中产生的感应电动势为2 V ,则线圈电源的“-”极比“+”极电势低2 V2.如图所示,两个端面半径同为R 的圆柱形铁芯同轴水平放置,相对的端面之间有一缝隙,铁芯上绕导线并与电源连接,在缝隙中形成一匀强磁场.一铜质细直棒ab 水平置于缝隙中,且与圆柱轴线等高、垂直.让铜棒从静止开始自由下落,铜棒下落距离为0.2R 时铜棒中电动势大小为E 1,下落距离为0.8R 时电动势大小为E 2.忽略涡流损耗和边缘效应.关于E 1、E 2的大小和铜棒离开磁场前两端的极性,下列判断正确的是( )A .E 1>E 2,a 端为正B .E 1>E 2,b 端为正C .E 1<E 2,a 端为正D .E 1<E 2,b 端为正3.如图所示,两块距离为d 的金属板水平放置,将其用导线和开关与一个匝数为n 的线圈连接,线圈所处的空间有方向竖直向上且大小变化的磁场B ,两金属板间放一台压力传感器,传感器上表面静止放置一个质量为m 、电荷量为+q 的小球.S 断开时传感器上有示数,S 闭合时传感器上示数为2mg ,则线圈中的磁场B 的变化情况和磁通量变化率分别是 ( )A .正在增加,ΔΦΔt =mgd qB .正在减弱,ΔΦΔt =mgdnqC .正在减弱,ΔΦΔt =mgd qD .正在增加,ΔΦΔt =mgdnq4.图中a ~d 所示分别为穿过某一闭合回路的磁通量Φ随时间t 变化的图象,关于回路中产生的感应电动势的下列论述正确的是( )A .图a 中回路产生的感应电动势恒定不变B .图b 中回路产生的感应电动势一直在变大C .图c 中回路在0~t 1时间内产生的感应电动势小于在t 1~t 2时间内产生的感应电动势D .图d 中回路产生的感应电动势先变小再变大5.如图中半径为r 的金属圆盘在垂直于盘面的匀强磁场B 中,绕O 轴以角速度ω沿逆时针方向匀速转动,则通过电阻R 的电流的方向和大小是(金属圆盘的电阻不计)( )A .由c 到d ,I =Br 2ωRB .由d 到c ,I =Br 2ωRC .由c 到d ,I =Br 2ω2RD .由d 到c ,I =Br 2ω2R6.如图所示,一个菱形的导体线框沿着自己的对角线匀速运动,穿过具有一定宽度的匀强磁场区域,已知对角线AC的长度为磁场宽度的两倍且与磁场边界垂直.下面对于线框中感应电流随时间变化的图象(电流以ABCD顺序流向为正方向,从C点进入磁场开始计时)正确的是()7.在如图所示的电路中,两个灵敏电流表G1和G2的零点都在刻度盘中央,当电流从“+”接线柱流入时,指针向右摆,当电流从“-”接线柱流入时,指针向左摆.在电路接通后再断开的瞬间,下列说法中符合实际情况的是()A.G1表指针向左摆,G2表指针向右摆B.G1表指针向右摆,G2表指针向左摆C.G1、G2表的指针都向左摆D.G1、G2表的指针都向右摆8.如图a是用电流传感器(相当于电流表,其电阻可以忽略不计)研究自感现象的实验电路,图中两个电阻的阻值均为R,L是一个自感系数足够大的自感线圈,其直流电阻值也为R.图b是某同学画出的在t0时刻开关S切换前后,通过传感器的电流随时间变化的图象.关于这些图象,下列说法中正确的是()A.甲是开关S由断开变为闭合,通过传感器1的电流随时间变化的情况B.乙是开关S由断开变为闭合,通过传感器2的电流随时间变化的情况C.丙是开关S由闭合变为断开,通过传感器2的电流随时间变化的情况D.丁是开关S由闭合变为断开,通过传感器2的电流随时间变化的情况二、多项选择题9.(2012·四川卷)半径为a 右端开小口的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0.圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B .杆在圆环上以速度v 平行于直径CE 向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O 开始,杆的位置由θ确定,如图所示.则( )A .θ=0时,杆产生的电动势为2Ba vB .θ=π3时,杆产生的电动势为3Ba vC .θ=0时,杆受的安培力大小为2B 2a v(π+2)R 0D .θ=π3时,杆受的安培力大小为3B 2a v (5π+3)R 010.如图所示,空间存在两个磁场,磁感应强度大小均为B ,方向相反且垂直纸面,MN 、PQ 为其边界,OO ′为其对称轴.一导线折成边长为l 的正方形闭合回路abcd ,回路在纸面内以恒定速度v 0向右运动,当运动到关于OO ′对称的位置时 ( )A .穿过回路的磁通量为零B .回路中感应电动势大小为2Bl v 0C .回路中感应电流的方向为顺时针方向D .回路中ab 边与cd 边所受安培力方向相同 三、非选择题11.如图所示,磁感应强度B =0.2T 的匀强磁场中有一折成30°角的金属导轨aOb ,导轨平面垂直磁场方向.一条直导线MN 垂直Ob 方向放置在导轨上并接触良好.当MN 以v =4 m/s 的速度从导轨O 点开始向右沿水平方向匀速运动时,若所有导线单位长度的电阻λ=0.1Ω/m ,求:(1)经过时间t 后,闭合回路的感应电动势的瞬时值; (2)时间t 内,闭合回路的感应电动势的平均值; (3)当时间为t 时,闭合回路中的电流大小和方向.12.有一面积为S=100 cm2的金属环如图甲所示,电阻为R=0.1 Ω,环中磁场变化规律如图乙所示,且磁场方向垂直环面向里,在t1到t2时间内(1)环中感应电流的方向如何?(2)通过金属环的电荷量为多少?13.如图所示,电阻不计的平行金属导轨MN和OP放置在水平面内,MO间接有阻值为R=3 Ω的电阻,导轨相距d=1 m,其间有竖直向下的匀强磁场,磁感应强度B=0.5 T.质量为m=0.1 kg,电阻为r=1 Ω的导体棒CD垂直于导轨放置,并接触良好.用平行于MN的恒力F=1 N向右拉动CD,CD受的摩擦阻力F f恒为0.5 N.求:(1)CD运动的最大速度的大小;(2)当CD达到最大速度后,电阻R消耗的电功率是多少?(3)当CD的速度为最大速度的一半时,CD的加速度的大小.14.如图甲所示,空间存在一宽度为2L的有界匀强磁场,磁场方向垂直纸面向里.在光滑绝缘水平面内有一边长为L的正方形金属线框,其质量m=1 kg、电阻R=4 Ω,在水平向左的外力F作用下,以初速度v0=4 m/s匀减速进入磁场,线框平面与磁场垂直,外力F的大小随时间t变化的图线如图乙所示.以线框右边刚进入磁场时开始计时,求:(1)匀强磁场的磁感应强度B;(2)线框进入磁场的过程中,通过线框的电荷量q;(3)判断线框能否从右侧离开磁场?说明理由.第3节 电磁感应中的综合应用一、单项选择题1.(2012·新课标卷)如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使]线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率ΔBΔt的大小应为( )A.4ωB 0πB.2ωB 0πC.ωB 0πD.ωB 02π2.甲、乙两个完全相同的铜环可绕固定轴OO ′旋转,当给以相同的初始角速度开始转动后,由于阻力,经相同的时间后便停止,若将两环分别置于磁感应强度B 大小相同的匀强磁场中,甲环的转轴与磁场方向垂直,乙环的转轴与磁场方向平行,如图所示,当甲、乙两环同时以相同的角速度开始转动后,则下列判断正确的是 ( )A. 甲环先停B. 乙环先停C. 两环同时停下D. 无法判断两环停止的先后3.如图所示,固定的水平长直导线中通有电流I ,下方有一矩形线框,与导线在同一竖直平面内,且一边与导线平行.线框由静止释放,在下落过程中 ( )A .穿过线框的磁通量保持不变B .线框中感应电流方向保持不变C .线框所受安培力的合力为零D .线框的机械能不断增大4.光滑曲面与竖直平面的交线是抛物线,如图所示,抛物线的方程是y =x 2,下半部分处在一个水平方向的匀强磁场中,磁场的上边界是y =a 的直线(图中的虚线所示).一个小金属圆环从抛物线上y =b (b >a )处以速度v 沿抛物线下滚.假设抛物线足够长,金属圆环沿抛物线下滚后产生的焦耳热的总量是( )A .mgb B.12m v 2C .mg (b -a )D .mg (b -a )+12m v 2二、多项选择题5.如图所示一导线弯成闭合线圈,以速度v 向左匀速进入磁感应强度为B 的匀强磁场,磁场方向垂直平面向外.线圈总电阻为R ,从线圈进入磁场开始到完全进入磁场为止,下列结论正确的是 ( )A .感应电流一直沿顺时针方向B .线圈受到的安培力先增大,后减小C .感应电动势的最大值E =Br vD .穿过线圈某个横截面的电荷量为B (r 2+πr 2)R6.如图所示,垂直纸面的正方形匀强磁场区域内,有一位于纸面且电阻均匀的正方形导体框abcd ,现将导体框分别朝两个方向以v 、3v 速度匀速拉出磁场,则导体框从两个方向移出磁场的两个过程中( )A .导体框中产生的感应电流方向相同B .导体框中产生的焦耳热相同C .导体框ad 边两端电势差相同D .通过导体框截面的电荷量相同7.如图所示,电阻为R ,其他电阻均可忽略,ef 是一电阻可不计的水平放置的导体棒,质量为m ,棒的两端分别与ab 、cd 保持良好接触,又能沿框架无摩擦下滑,整个装置放在与框架垂直的匀强磁场中,当导体棒ef 从静止下滑经一段时间后闭合开关S ,则S 闭合后( )A .导体棒ef 的加速度可能大于gB .导体棒ef 的加速度一定小于gC .导体棒ef 最终速度随S 闭合时刻的不同而不同D .导体棒ef 的机械能与回路内产生的电能之和一定守恒8.两根足够长的光滑导轨竖直放置,间距为L ,底端接阻值为R 的电阻.将质量为m 的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B 的匀强磁场垂直,如图所示,除电阻R 外其余电阻不计.现将金属棒从弹簧原长位置由静止释放,则 ( )A .释放瞬间金属棒的加速度等于重力加速度gB .金属棒向下运动时,流过电阻R 的电流方向为a →bC .金属棒的速度为v 时,电路中的电功率为B 2L 2v 2/RD .电阻R 上产生的总热量等于金属棒重力势能的减少量9.如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g .下列选项正确的是 ( )A .P =2mg v sin θB .P =3mg v sin θC .当导体棒速度达到v 2时加速度大小为g2sin θD .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功 三、非选择题10.如图,两根足够长的金属导轨ab 、cd 竖直放置,导轨间距离为L ,电阻不计.在导轨上端并接两个额定功率均为P 、电阻均为R 的小灯泡.整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直.现将一质量为m 、电阻可以忽略的金属棒MN 从图示位置由静止开始释放.金属棒下落过程中保持水平,且与导轨接触良好.已知某时刻后两灯泡保持正常发光.重力加速度为g .求:(1)磁感应强度的大小;(2)灯泡正常发光时导体棒的运动速率.11.如图a所示,间距为l、电阻不计的光滑导轨固定在倾角为θ的斜面上.在区域Ⅰ内有方向垂直于斜面的匀强磁场,磁感应强度为B;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t的大小随时间t变化的规律如图b所示.t=0时刻在轨道上端的金属细棒ab 从如图所示位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd在位于区域Ⅰ内的导轨上由静止释放.在ab棒运动到区域Ⅱ的下边界EF处之前,cd棒始终静止不动,两棒均与导轨接触良好.已知cd棒的质量为m、电阻为R,ab棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l,在t=t x时刻(t x未知)ab棒恰进入区域Ⅱ,重力加速度为g.求:(1)通过cd棒电流的方向和区域Ⅰ内磁场的方向;(2)当ab棒在区域Ⅱ内运动时cd棒消耗的电功率;(3)ab棒开始下滑的位置离EF的距离;(4)ab棒从开始下滑至EF的过程中回路中产生的热量.12.(2013·湖南四校联考)如图所示,竖直面内的正方形导线框ABCD和abcd的边长均为l、电阻均为R,质量分别为2m和m,它们分别系在一跨过两个定滑轮的轻绳两端,在两导线框之间有一宽度为2l、磁感应强度大小为B、方向垂直竖直面向里的匀强磁场.开始时ABCD 的下边与匀强磁场的上边界重合,abcd的上边到匀强磁场的下边界的距离为l.现将系统由静止释放,当ABCD刚全部进入磁场时,系统开始做匀速运动.不计摩擦和空气阻力,求:(1)系统匀速运动的速度大小;(2)两线框从开始运动至等高的过程中所产生的总焦耳热;(3)线框abcd通过磁场的时间.第九章 电磁感应第1节 电磁感应现象 楞次定律1.C 2.C 3.D 4.A 5.D 6.B 7.D 8.B 9.C 10.C 11.AD 12.BC13.解析:要使MN 棒中不产生感应电流,应使穿过线圈平面的磁通量不发生变化,即任一时刻的磁通量与t =0时刻的磁通量相等在t =0时刻,穿过线圈平面的磁通量 Φ1=B 0·S =B 0·l 2设t 时刻的磁感应强度为B ,此时磁通量为 Φ2=Bl (l +v t )由Φ1=Φ2得B =B 0ll +v t第2节 法拉第电磁感应定律及其应用1.D 2.D 3.B 4.D 5.D 6.B 7.B 8.C 9.AD 10.ABD 11.解析:(1)设运动时间t 后,直导线MN 在Ob 上移动了 x =v t =4t ,MN 的有效长度l =x tan 30°=433t ;感应电动势的瞬时值E =Bl v =0.2×433t ×4V ≈1.84t V.(2)这段时间内感应电动势的平均值E =ΔΦt =B ΔS t =B ×12l v tt =12Bl v =12×0.2×43t3×4V =0.92t V.(3)随t 增大,回路电阻增大,当时间为t 时,回路总长度L =4t +(433+833)t =10.9t ,回路总电阻R =Lλ=10.9t ×0.1Ω=1.09t Ω,回路总电流I =E R =1.84t1.09tA =1.69A ,电流大小恒定,由右手定则知,电流方向沿逆时针.12.解析:(1)由楞次定律,可以判断出金属环中感应电流的方向为逆时针方向.(2)由题图乙可知:磁感应强度的变化率ΔB Δt =B 2-B 1t 2-t 1①金属环中产生的电动势为:E =ΔΦΔt =ΔBΔt ·S =B 2-B 1t 2-t 1·S ②环中形成的感应电流I =E R =ΔΦΔt R =ΔΦR Δt③通过金属环的电荷量q =I Δt ④ 由①②③④式解得q =(B 2-B 1)S R =(0.2-0.1)×10-20.1C =0.01C.13.解析:(1)设导体棒的运动速度为v ,则产生的感应电动势为:E =Bd v根据闭合电路欧姆定律有:I =ER +r则安培力为:F 0=BdI据题意分析,当v 最大时,有:F -F 0-F f =0联立以上各式得:v m =(F -F f )(R +r )B 2d 2=8 m/s(2)棒CD 速度最大时,同理有:E m =Bd v m I m =E m R +r而P R m =I 2m ·R 联立得:P R m =B 2d 2v 2m R (R +r )2=3 W(3)当CD 速度为12v m 时有:E ′=Bd v m 2 I =E ′R +rF ′=BId据牛顿第二定律有:F -F ′-F f =ma 联立得:a =2.5 m/s 214.解析:(1)由F -t 图象可知,线框的加速度 a =F 2m=2 m/s 2线框的边长L =v 0t -12at 2=(4×1-12×2×12) m =3 mt =0时刻线框中的感应电流I =BL v 0R线框所受的安培力F 安=BIL 由牛顿第二定律得F 1+F 安=ma又F 1=1 N ,联立得B =13T =0.33 T(2)线框进入磁场的过程中,平均感应电动势E =BL 2t平均电流I =E R通过线框的电荷量q =I t联立得q =0.75C(3)设匀减速运动速度减为零的过程中线框通过的位移为x ,由运动学公式得0-v 20=-2ax 代入数值得x =4 m <2L所以线框不能从右侧离开磁场.第3节 电磁感应中的综合应用1.C 2.A 3.B 4.D 5.AB 6.AD 7.AD 8.AC 9.AC 10.解析:(1)设小灯泡的额定电流为I 0,有 P =I 20R ①由题意知,在金属棒沿导轨竖直下落的某时刻后,两小灯泡保持正常发光,流经MN 的电流为I =2I 0②此时金属棒MN 所受的重力和安培力大小相等,下落的速度达到最大值,有 mg =BLI ③联立①②③式得B =mg 2L R P.④(2)设灯泡正常发光时,导体棒的速度为v ,由电磁感应定律与欧姆定律得 E =BL v ⑤ E =RI 0⑥联立①②④⑤⑥式得v =2P mg. 11.解析:(1)通过cd 棒的电流方向为d →c区域Ⅰ内磁场方向为垂直于斜面向上(2)对cd 棒,F 安=BIl =mg sin θ,所以通过cd 棒的电流大小I =mg sin θBl当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率P =I 2R =m 2g 2R sin 2θB 2l 2(3)ab 棒在到达区域Ⅱ前做匀加速直线运动,a =g sin θcd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动可得ΔΦΔt =Bl v t ,即B ·2l ·l t x =Blg sin θt x ,所以t x =2lg sin θab 棒在区域Ⅱ中做匀速直线运动的速度v t =2gl sin θ则ab 棒开始下滑的位置离EF 的距离h =12at 2x+2l =3l(4)ab 棒在区域Ⅱ中运动的时间t 2=2l v t =2lg sin θab 棒从开始下滑至EF 的总时间t =t x +t 2=22lg sin θ,E =Bl v t =Bl 2gl sin θab 棒从开始下滑至EF 的过程中闭合回路中产生的热量Q =EIt =4mgl sin θ 12.解析:(1)如图所示,设两线框刚匀速运动的速度为v 、此时轻绳上的张力为T ,则对ABCD 有:T =2mg ①对abcd 有:T =mg +BIl ② I =E R③ E =Bl v ④则v =mgR B 2l2⑤(2)设两线框从开始运动至等高的过程中所产生的焦耳热为Q ,当左、右两线框分别向上、向下运动2l 的距离时,两线框等高,对这一过程,由能量守恒定律得:4mgl =2mgl +12×3m v 2+Q ⑥联立⑤⑥解得Q =2mgl -3m 3g 2R 22B 4l 4(3)线框abcd 通过磁场时以速度v 匀速运动,设线框abcd 通过磁场的时间为t ,则 t =3l v ⑦联立⑤⑦解得:t =3B 2l 3mgR。

高考物理大一轮复习学案第九章电磁感应(含答案)

高考物理大一轮复习学案第九章电磁感应(含答案)

考纲展示 热点视角1.电磁感应现象Ⅰ2.磁通量Ⅰ3.法拉第电磁感应定律Ⅱ4.楞次定律Ⅱ5.自感、涡流Ⅰ说明:1.导体切割磁感线时,感应电动势的计算, 只限于l 垂直于B 、v 的情况.2.在电磁感应现象里,不要求判断内电路中各点 电势的高低.3.不要求用自感系数计算自感电动势. 1.感应电流的产生条件、方向判断和电动势的简单计算,磁感应强度、磁通量、电动势、电压、电流随时间变化的图象,以及感应电动势、感应电流随线框位移变化的图象,是高频考点,以选择题为主.2.滑轨类问题、线框穿越有界匀强磁场、电磁感应中的能量转化等综合问题,能很好地考查考生的能力,备受命题专家的青睐.第一节 电磁感应现象 楞次定律一、磁通量1.概念:磁感应强度B 与面积S 的□01______. 2.计算(1)公式:Φ=□02____. (2)适用条件:①匀强磁场;②S 是□03______磁场中的有效面积. (3)单位:韦伯(Wb),1 Wb =□04________. 3.意义:穿过某一面积的磁感线的□05______. 4.标矢性:磁通量是□06______,但有正、负. 二、电磁感应 1.电磁感应现象当穿过闭合电路的□07________发生变化时,电路中有电流产生,这种现象称为电磁感应现象.2.产生感应电流的条件(1)条件:穿过闭合电路的磁通量□08____________. (2)特例:闭合电路的一部分导体在磁场内做□09______________运动. 3.能量转化发生电磁感应现象时,机械能或其他形式的能转化为□10______. 特别提醒:当回路不闭合时,没有感应电流,但有感应电动势,只产生感应电动势的现象也可以称为电磁感应现象,且产生感应电动势的那部分导体或线圈相当于电源.三、感应电流方向的判断1.楞次定律(1)内容:感应电流的磁场总要□11______引起感应电流的□12________的变化.(2)适用情况:所有的电磁感应现象.2.右手定则(1)内容:伸开右手,使拇指与其余四个手指□13______,并且都与手掌在同一个□14 ________,让磁感线从掌心进入,并使拇指指向□15____________的方向,这时四指所指的方向就是感应电流的方向.(2)适用情况:□16________________产生感应电流.,1.(单选)如图所示,ab是水平面上一个圆的直径,在过ab的竖直面内有一根通电直导线ef,且ef平行于ab,当ef竖直向上平移时,穿过圆面积的磁通量将()A.逐渐变大B.逐渐减小C.始终为零D.不为零,但始终保持不变2.(单选)如图所示,小圆圈表示处于磁场中的闭合电路一部分导线的横截面,速度v 在纸面内.关于感应电流的有无及方向的判断正确的是()A.甲图中有感应电流,方向向外B.乙图中有感应电流,方向向外C.丙图中无感应电流D.丁图中a、b、c、d四位置上均无感应电流3.(多选)如图,磁场垂直于纸面,磁感应强度在竖直方向均匀分布,水平方向非均匀分布.一铜制圆环用丝线悬挂于O点,将圆环拉至位置a后无初速释放,在圆环从a摆向b 的过程中()A.感应电流方向先逆时针后顺时针再逆时针B.感应电流方向一直是逆时针C.安培力方向始终与速度方向相反D.安培力方向始终沿水平方向电磁感应现象的判断判断电路中能否产生感应电流的一般流程:(单选)如图所示,一个U形金属导轨水平放置,其上放有一个金属导体棒ab,有一个磁感应强度为B的匀强磁场斜向上穿过轨道平面,且与竖直方向的夹角为θ.在下列各过程中,一定能在轨道回路里产生感应电流的是()A.ab向右运动,同时使θ减小B.使磁感应强度B减小,θ角同时也减小C.ab向左运动,同时增大磁感应强度BD.ab向右运动,同时增大磁感应强度B和θ角(0°<θ<90°)[尝试解答]________[总结提升]判断能否产生电磁感应现象,关键是看回路的磁通量是否发生了变化.磁通量的变化量ΔΦ=Φ2-Φ1有多种形式,主要有:(1)S、θ不变,B改变,这时ΔΦ=ΔB·S sin θ;(2)B、θ不变,S改变,这时ΔΦ=ΔS·B sin θ;(3)B、S不变,θ改变,这时ΔΦ=BS(sin θ2-sin θ1).1.(多选)如图所示,一个金属薄圆盘水平放置在竖直向上的匀强磁场中,下列做法中能使圆盘中产生感应电流的是()A.圆盘绕过圆心的竖直轴匀速转动B.圆盘以某一水平直径为轴匀速转动C.圆盘在磁场中向右匀速平移D.匀强磁场均匀增加楞次定律的理解及应用1.楞次定律中“阻碍”的含义2.应用楞次定律判断感应电流方向的步骤线中通以大小和方向都随时间做周期性变化的交流电:i=I m sin ωt,i-t图象如图乙所示.规定沿长直导线方向向上的电流为正方向.关于最初一个周期内矩形线框中感应电流的方向,下列说法正确的是()A.由顺时针方向变为逆时针方向B.由逆时针方向变为顺时针方向C.由顺时针方向变为逆时针方向,再变为顺时针方向D.由逆时针方向变为顺时针方向,再变为逆时针方向[思路点拨]分析直线电流的变化情况,明确在一个周期内:(1)穿过线框的磁通量的变化:________________________________________________________________________.(2)感应电流的磁场方向变化:________________________________________________________________________.(3)感应电流的方向变化:________________________________________________________________________.[尝试解答]________从线圈上方插入或拔出,线圈和电流表构成的闭合回路中就会产生感应电流.各图中分别标出了磁铁的极性、磁铁相对线圈的运动方向以及线圈中产生的感应电流的方向等情况,其中正确的是()“一定律三定则”的综合应用1.“三个定则与一个定律”的适用情况名称基本现象应用的定则或定律电流的磁效应运动电荷、电流产生磁场安培定则磁场对电流的作用磁场对运动电荷、电流有作用力左手定则电磁感应部分导体做切割磁感线运动右手定则闭合回路磁通量变化楞次定律2.三个定则的因果关系三个定则容易相混,特别是左、右手易错用,抓住因果关系是关键:(1)因电而生磁(I→B)→安培定则;(2)因动而生电(v、B→I)→右手定则;(3)因电而受力(I、B→F安)→左手定则.(多选)如图所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,MN的左边有一闭合电路,当PQ在外力的作用下运动时,MN向右运动,则PQ所做的运动可能是()A.向右加速运动B.向左加速运动C.向右减速运动D.向左减速运动[尝试解答]________3.(多选)如图所示,金属导轨上的导体棒ab在匀强磁场中沿导轨做下列哪种运动时,铜制线圈c中将有感应电流产生且被螺线管吸引()A.向右做匀速运动B.向左做减速运动C.向右做减速运动D.向右做加速运动楞次定律的推广应用楞次定律中“阻碍”的含义可以推广为感应电流的效果总是阻碍产生感应电流的原因:(1)阻碍原磁通量的变化——“增反减同”;(2)阻碍相对运动——“来拒去留”;(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”;(4)阻碍原电流的变化(自感现象)——“增反减同”.范例(单选)(2012·高考海南卷)如图,一质量为m的条形磁铁用细线悬挂在天花板上,细线从一水平金属圆环中穿过.现将环从位置Ⅰ释放,环经过磁铁到达位置Ⅱ.设环经过磁铁上端和下端附近时细线的张力分别为T1和T2,重力加速度大小为g,则() A.T1>mg,T2>mgB.T1<mg,T2<mgC.T1>mg,T2<mgD.T1<mg,T2>mg[解析]金属环从位置Ⅰ靠近磁铁上端,因产生感应电流,故“阻碍”相对运动,知金属环与条形磁铁相互排斥,故绳的拉力T1>mg.同理,当金属环离开磁铁下端时,金属环与磁铁相互吸引,因而绳的拉力T2>mg,故A正确.[答案] A[总结提升]利用楞次定律中“阻碍”含义及结论解题,更快捷、方便.4.(单选)如图所示,ab是一个可以绕垂直于纸面的轴O转动的闭合矩形导体线圈,当滑动变阻器R的滑片P自左向右滑动过程中,线圈ab将()A.静止不动B.逆时针转动C.顺时针转动D.发生转动,但因电源的极性不明,无法确定转动的方向习惯思维造成推理错误范例(单选)如图所示,一水平放置的矩形闭合线圈abcd,在细长磁铁的N极附近竖直下落,保持bc边在纸外,ad边在纸内,从图中位置Ⅰ经过位置Ⅱ到达位置Ⅲ,位置Ⅰ和Ⅲ都很靠近Ⅱ.在这个过程中,线圈中感应电流()A.沿abcd流动B.沿dcba流动C.由Ⅰ到Ⅱ是沿abcd流动,由Ⅱ到Ⅲ是沿dcba流动D.由Ⅰ到Ⅱ是沿dcba流动,由Ⅱ到Ⅲ是沿abcd流动[误区警示]习惯思维之一:线圈离磁体越近,磁场越强,磁通量越大,得出从Ⅰ到Ⅱ位置的电流方向dcba.习惯思维之二:线圈远离磁体时与靠近磁体时,线圈中的电流方向相反,得出从Ⅱ到Ⅲ位置的电流方向abcd,错选D.[解析]由条形磁铁的磁场分布情况可知,线圈在位置Ⅱ时穿过矩形闭合线圈的磁通量最少.线圈从位置Ⅰ到Ⅱ,穿过abcd自下而上的磁通量减少,感应电流的磁场阻碍其减少,则在线框中产生的感应电流的方向为abcd,线圈从位置Ⅱ到Ⅲ,穿过abcd自上而下的磁通量在增加,感应电流的磁场阻碍其增加,由楞次定律可知感应电流的方向仍然是abcd.故本题答案为A.[答案] A[真知灼见](1)穿过线圈的磁通量不仅与磁场强弱、线圈面积有关,还与磁场与线圈平面的夹角有关.(2)感应电流的方向,与磁通量的增减和原磁场的方向有关,特别要注意原磁场方向的变化.一高考题组1.(多选)(2012·高考山东卷)以下叙述正确的是()A.法拉第发现了电磁感应现象B.惯性是物体的固有属性,速度大的物体惯性一定大C.牛顿最早通过理想斜面实验得出力不是维持物体运动的原因D.感应电流遵从楞次定律所描述的方向,这是能量守恒定律的必然结果2.(单选)(2012·高考北京卷)物理课上,老师做了一个奇妙的“跳环实验”.如图,她把一个带铁芯的线圈L、开关S和电源用导线连接起来后,将一金属套环置于线圈L上,且使铁芯穿过套环.闭合开关S的瞬间,套环立刻跳起.某同学另找来器材再探究此实验.他连接好电路,经重复试验,线圈上的套环均未动.对比老师演示的实验,下列四个选项中,导致套环未动的原因可能是()A.线圈接在了直流电源上B.电源电压过高C.所选线圈的匝数过多D.所用套环的材料与老师的不同3.(单选)(2011·高考上海卷)如图,均匀带正电的绝缘圆环a与金属圆环b同心共面放置.当a绕O点在其所在平面内旋转时,b中产生顺时针方向的感应电流,且具有收缩趋势,由此可知,圆环a() A.顺时针加速旋转B.顺时针减速旋转C.逆时针加速旋转D.逆时针减速旋转二模拟题组4.(多选)(2014·德州模拟)线圈在长直导线电流的磁场中,做如图所示的运动:A向右平动,B向下平动,C绕轴转动(ad边向外转动角度θ≤90°),D向上平动(D线圈有个缺口),判断线圈中有感应电流的是()5.(单选)(2014·汕头质检)圆形导体线圈a平放在水平桌面上,在a的正上方固定一竖直螺线管b,二者轴线重合,螺线管与电源和滑动变阻器连接成如图所示的电路.若将滑动变阻器的滑片P向下滑动,下列表述正确的是()A.线圈a中将产生俯视顺时针方向的感应电流B.穿过线圈a的磁通量变小C.线圈a有扩张的趋势D.线圈a对水平桌面的压力F N将增大温馨提示日积月累,提高自我请做课后达标检测26第二节 法拉第电磁感应定律 自感 涡流一、法拉第电磁感应定律 1.感应电动势(1)感应电动势:在□01________________中产生的电动势.产生感应电动势的那部分导体就相当于□02______,导体的电阻相当于□03____________. (2)感应电流与感应电动势的关系:遵循□04________________定律,即I =□05______. 2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的□06________成正比.(2)公式:E =□07________,n 为线圈匝数. 3.导体切割磁感线的情形(1)若B 、l 、v 相互垂直,则E =□08______. (2)E =Bl v sin θ,θ为运动方向与磁感线方向的夹角. (3)导体棒在磁场中转动:导体棒以端点为轴,在匀强磁场中垂直于磁感线方向匀速转动产生感应电动势E =Bl v =□09________(平均速度取中点位置线速度12lω). 二、自感与涡流 1.自感现象(1)概念:由于导体本身的□10______变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做□11______________. (2)表达式:E =□12__________. (3)自感系数L 的影响因素:与线圈的□13______、形状、□14______以及是否有铁芯有关.2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生像□15__________状的感应电流.(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到□16________,安培力的方向总是□17______导体的运动. (2)电磁驱动:如果磁场相对于导体转动,在导体中会产生□18____________,使导体受到安培力作用,安培力使导体运动起来.交流感应电动机就是利用□19____________的原理工作的.,1-1.(单选)将闭合多匝线圈置于仅随时间变化的磁场中,线圈平面与磁场方向垂直,关于线圈中产生的感应电动势和感应电流,下列表述正确的是( )A .感应电动势的大小与线圈的匝数无关B .穿过线圈的磁通量越大,感应电动势越大C .穿过线圈的磁通量变化越快,感应电动势越大D .感应电流产生的磁场方向与原磁场方向始终相同 1-2.(单选)如图中半径为r 的金属圆盘在垂直于盘面的匀强磁场B 中,绕O 轴以角速度ω沿逆时针方向匀速转动,则通过电阻R 的电流的方向和大小是(金属圆盘的电阻不计)( )A .由c 到d ,I =Br 2ω/RB .由d 到c ,I =Br 2ω/RC .由c 到d ,I =Br 2ω/(2R )D .由d 到c ,I =Br 2ω/(2R ) 2-1.(多选)(2014·郑州模拟)如图甲、乙所示的电路中,电阻R 和自感线圈L 的电阻值都很小,且小于灯A 的电阻,接通S ,使电路达到稳定,灯泡A 发光,则( )A .在电路甲中,断开S 后,A 将逐渐变暗B .在电路甲中,断开S 后,A 将先变得更亮,然后逐渐变暗C .在电路乙中,断开S 后,A 将逐渐变暗D .在电路乙中,断开S 后,A 将先变得更亮,然后逐渐变暗 2-2.(单选)(2014·南通模拟)电磁炉是利用电磁感应现象产生的涡流,使锅体发热从而加热食物.下列相关的说法中正确的是( )A .锅体中涡流的强弱与磁场变化的频率有关B .电磁炉中通入电压足够高的直流电也能正常工作C .金属或环保绝缘材料制成的锅体都可以利用电磁炉来烹饪食物D .电磁炉的上表面一般都用金属材料制成,以加快热传递、减少热损耗公式E =n ΔΦ/Δt 的应用1.感应电动势大小的决定因素(1)感应电动势的大小由穿过闭合电路的磁通量的变化率ΔΦΔt和线圈的匝数共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系.(2)当ΔΦ仅由B 引起时,则E =n S ΔB Δt ;当ΔΦ仅由S 引起时,则E =n B ΔSΔt.2.磁通量的变化率ΔΦΔt 是Φ-t 图象上某点切线的斜率.如图甲所示,一个电阻值为R ,匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路.线圈的半径为r 1,在线圈中半径为r 2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图乙所示.图线与横、纵轴的截距分别为t 0和B 0,导线的电阻不计.求0至t 1时间内(1)通过电阻R 1的电流大小和方向.(2)通过电阻R 1的电荷量q 及电阻R 1上产生的热量. [课堂笔记][规律总结] 应用电磁感应定律应注意的三个问题:(1)公式E =n ΔΦΔt 求解的是一个回路中某段时间内的平均电动势,在磁通量均匀变化时,瞬时值才等于平均值.(2)利用公式E =nS ΔBΔt求感应电动势时,S 为线圈在磁场范围内的有效面积.(3)通过回路截面的电荷量q 仅与n 、ΔΦ和回路电阻R 有关,与时间长短无关.推导如下:q =I Δt =n ΔΦΔtR Δt =n ΔΦR .1.(单选)(2014·烟台模拟)一矩形线框置于匀强磁场中,线框平面与磁场方向垂直,先保持线框的面积不变,将磁感应强度在1 s 时间内均匀地增大到原来的两倍,接着保持增大后的磁感应强度不变,在1 s 时间内,再将线框的面积均匀地减小到原来的一半,先后两个过程中,线框中感应电动势的比值为( )A.12B .1C .2D .4公式E =Bl v 的应用1.使用条件本公式是在一定条件下得出的,除了磁场是匀强磁场外,还需B 、l 、v 三者相互垂直.实际问题中当它们不相互垂直时,应取垂直的分量进行计算,公式可为E =Bl v sin θ,θ为B 与v 方向间的夹角.2.使用范围导体平动切割磁感线时,若v 为平均速度,则E 为平均感应电动势,即E =Bl v .若v 为瞬时速度,则E 为相应的瞬时感应电动势.3.有效性公式中的l 为有效切割长度,即导体与v 垂直的方向上的投影长度.例如,求下图中MN 两点间的电动势时,有效长度分别为甲图:l =cd sin β.乙图:沿v 1方向运动时,l =MN ;沿v 2方向运动时,l =0.丙图:沿v 1方向运动时,l =2R ;沿v 2方向运动时,l =0;沿v 3方向运动时,l =R . 4.相对性E =Bl v 中的速度v 是相对于磁场的速度,若磁场也运动,应注意速度间的相对关系.(多选)(2012·高考四川卷)半径为a 右端开小口的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0.圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B .杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O 开始,杆的位置由θ确定,如图所示.则( )A .θ=0时,杆产生的电动势为2Ba vB .θ=π3时,杆产生的电动势为3Ba vC .θ=0时,杆受的安培力大小为2B 2a v(π+2)R 0D .θ=π3时,杆受的安培力大小为3B 2a v (5π+3)R 0[尝试解答] ________[总结提升] 感应电动势两个公式的比较公式 E =n ΔΦΔt E =Bl v 导体 一个回路 一段导体 适用 普遍适用 导体切割磁感线 意义常用于求平均电动势既可求平均值也可求瞬时值联系本质上是统一的.但是,当导体做切割磁感线运动时,用E =Bl v 求E 比较方便;当穿过电路的磁通量发生变化时,用E =n ΔΦΔt求E 比较方便2.(单选)(2012·高考新课标全国卷)如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率ΔBΔt的大小应为( )A.4ωB 0πB.2ωB 0πC.ωB 0πD.ωB 02π自感现象的分析1.自感现象“阻碍”作用的理解(1)流过线圈的电流增加时,线圈中产生的自感电动势与电流方向相反,阻碍电流的增加,使其缓慢地增加.(2)流过线圈的电流减小时,线圈中产生的自感电动势与电流方向相同,阻碍电流的减小,使其缓慢地减小.2.自感现象的四大特点(1)自感电动势总是阻碍导体中原电流的变化.(2)通过线圈中的电流不能发生突变,只能缓慢变化.(3)电流稳定时,自感线圈就相当于普通导体.(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.3.自感现象中的能量转化通电自感中,电能转化为磁场能;断电自感中,磁场能转化为电能.(多选)如图所示的电路中,L为一个自感系数很大、直流电阻不计的线圈,D1、D2是两个完全相同的电灯,E是内阻不计的电源.t=0时刻,闭合开关S,经过一段时间后,电路达到稳定,t1时刻断开开关S.I1、I2分别表示通过电灯D1和D2中的电流,规定图中箭头所示方向为电流正方向,以下各图中能定性描述电流I随时间t变化关系的是()[尝试解答]________[总结提升]分析自感现象的两点注意(1)通过自感线圈中的电流不能发生突变,即通电过程,线圈中电流是逐渐变大,断电过程,线圈中电流是逐渐变小,方向不变.此时线圈可等效为“电源”,该“电源”与其他电路元件形成回路.(2)断电自感现象中灯泡是否“闪亮”问题的判断,在于对电流大小的分析,若断电后通过灯泡的电流比原来强,则灯泡先闪亮后再慢慢熄灭.3.(单选)某同学为了验证断电自感现象,自己找来带铁芯的线圈L,小灯泡A ,开关S和电池组E,用导线将它们连接成如图所示的电路.检查电路后,闭合开关S,小灯泡发光;再断开开关S,小灯泡仅有不显著的延时熄灭现象.虽经多次重复,仍未见老师演示时出现的小灯泡闪亮现象,他冥思苦想找不出原因,你认为最有可能造成小灯泡未闪亮的原因是( )A .电源的内阻较大B .小灯泡电阻偏大C .线圈电阻偏大D .线圈的自感系数较大与电磁感应有关的综合问题[规范解答]————————————该得的分一分不丢! (1)由图象可知,在ab 段I =ω150(-45 rad/s ≤ω≤15 rad/s)(2分) 在bc 段I =ω100-0.05(15 rad/s<ω≤45 rad/s)(2分) (2)由题意可知,P 两端的电压U P 等于圆盘产生的电动势,U P =12Br 2ω(2分)b 点时ωb =15 rad/s ,U b =12Br 2ωb =0.3 V(2分)c 点时ωc =45 rad/s ,U c =12Br 2ωc =0.9 V .(2分)(3)由图象中电流变化规律可知电子元件P 在b 点时开始导通,则:在ab 段 I P =0(-0.9 V ≤U P ≤0.3 V)(2分) 在bc 段I P =I -U PR (2分)而I =ω100-0.05,U P =12Br 2ω(2分)联立可得I P =U P6-0.05(0.3 V<U P ≤0.9 V).(2分)[答案] 见规范解答4.(多选)(2013·高考四川卷) 如图所示,边长为L 、不可形变的正方形导线框内有半径为r 的圆形磁场区域,其磁感应强度B 随时间t 的变化关系为B =kt (常量k >0).回路中滑动变阻器R 的最大阻值为R 0,滑动片P 位于滑动变阻器中央,定值电阻R 1=R 0、R 2=R 02.闭合开关S ,电压表的示数为U ,不考虑虚线MN 右侧导体的感应电动势,则( )A .R 2两端的电压为U7B .电容器的a 极板带正电C .滑动变阻器R 的热功率为电阻R 2的5倍D .正方形导线框中的感应电动势为kL 2一 高考题组1.(单选)(2013·高考北京卷)如图所示,在磁感应强度为B 、方向垂直纸面向里的匀强磁场中,金属杆MN 在平行金属导轨上以速度v 向右匀速滑动, MN 中产生的感应电动势为E 1;若磁感应强度增为2B ,其他条件不变,MN 中产生的感应电动势变为E 2.则通过电阻R 的电流方向及E 1与E 2之比E 1∶E 2分别为( )A .c →a,2∶1B .a →c,2∶1C .a →c,1∶2D .c →a,1∶2 2.(单选)(2010·高考北京卷)在如图所示的电路中,两个相同的小灯泡L 1和L 2分别串联一个带铁芯的电感线圈L 和一个滑动变阻器R .闭合开关S 后,调整R ,使L 1和L 2发光的亮度一样,此时流过两个灯泡的电流均为I .然后,断开S.若t ′时刻再闭合S ,则在t ′前后的一小段时间内,正确反映流过L 1的电流i 1、流过L 2的电流i 2随时间t 变化的图象是( )3.(2013·高考重庆卷)小明在研究性学习中设计了一种可测量磁感应强度的实验,其装置如图所示.在该实验中,磁铁固定在水平放置的电子测力计上,此时电子测力计的读数为G1,磁铁两极之间的磁场可视为水平匀强磁场,其余区域磁场不计.直铜条AB的两端通过导线与一电阻连接成闭合回路,总阻值为R.若让铜条水平且垂直于磁场,以恒定的速率v在磁场中竖直向下运动,这时电子测力计的读数为G2,铜条在磁场中的长度为L.(1)判断铜条所受安培力的方向,G1和G2哪个大?(2)求铜条匀速运动时所受安培力的大小和磁感应强度的大小.二模拟题组4.(多选)(2014·长沙重点高中测试)一环形线圈放在匀强磁场中,设第1 s内磁感线垂直线圈平面向里,如图甲所示.若磁感应强度B随时间t变化的关系如图乙所示,那么下列选项正确的是()A.第1 s内线圈中感应电流的大小逐渐增加B.第2 s内线圈中感应电流的大小恒定C.第3 s内线圈中感应电流的方向为顺时针方向D.第4 s内线圈中感应电流的方向为逆时针方向5.(多选)(2014·开封模拟)如图所示,有一个磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里,一半径为r 、电阻为2R 的金属圆环放置在磁场中,金属圆环所在的平面与磁场垂直.金属杆Oa 一端可绕环的圆心O 旋转,另一端a 搁在环上,电阻值为R ;另一金属杆Ob 一端固定在O 点,另一端b 固定在环上,电阻值也是R .已知Oa 杆以角速度ω匀速旋转,所有接触点接触良好,Ob 不影响Oa 的转动,则下列说法正确的是( )A .流过Oa 的电流可能为Bωr 2/(5R )B .流过Oa 的电流可能为6Bωr 2/(25R )C .Oa 旋转时产生的感应电动势的大小为Bωr 2D .Oa 旋转时产生的感应电动势的大小为12Bωr 26.(2014·北京东城区模拟)如图甲所示,光滑导轨宽0.4 m ,ab 为金属棒,均匀变化的磁场垂直穿过轨道平面,磁场的变化情况如图乙所示,金属棒ab 的电阻为1 Ω,导轨电阻不计.t =0时刻,ab 棒从导轨最左端,以v =1 m/s 的速度向右匀速运动,求1 s 末回路中的感应电流及金属棒ab 受到的安培力.温馨提示日积月累,提高自我 请做课后达标检测27第三节 电磁感应中的电路和图象问题一、电磁感应中的电路问题 1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于□01______. (2)该部分导体的电阻或线圈的电阻相当于电源的□02______,其余部分是□03______. 2.电源电动势和路端电压。

2015高考物理电磁感应一轮复习题(附答案和解释)

2015高考物理电磁感应一轮复习题(附答案和解释)

2015高考物理电磁感应一轮复习题(附答案和解释)4.(多选)(2014•苏州测试)在如图9-3-15所示的倾角为θ的光滑斜面上,存在着两个磁感应强度大小为B的匀强磁场,区域Ⅰ的磁场方向垂直斜面向上,区域Ⅱ的磁场方向垂直斜面向下,磁场的宽度均为L,一个质量为m、电阻为R、边长也为L的正方形导线框,由静止开始沿斜面下滑,当ab边刚越过GH进入磁场Ⅰ区时,恰好以速度v1做匀速直线运动;当ab边下滑到JP与MN的中间位置时,线框又恰好以速度v2做匀速直线运动,从ab进入GH到MN与JP的中间位置的过程中,线框的动能变化量为ΔEk,重力对线框做功大小为W1,安培力对线框做功大小为W2,下列说法中正确的有()图9-3-15A.在下滑过程中,由于重力做正功,所以有v2>v1B.从ab进入GH到MN与JP的中间位置的过程中,机械能守恒C.从ab进入GH到MN与JP的中间位置的过程,有(W1-ΔEk)机械能转化为电能D.从ab进入GH到MN与JP的中间位置的过程中,线框动能的变化量大小为ΔEk=W1-W2解析:选CD当线框的ab边进入GH后匀速运动到进入JP为止,ab进入JP后回路感应电动势增大,感应电流增大,因此所受安培力增大,安培力阻碍线框下滑,因此ab进入JP后开始做减速运动,使感应电动势和感应电流均减小,安培力又减小,当安培力减小到与重力沿斜面向下的分力mgsinθ相等时,以速度v2做匀速运动,因此v2(1)当金属条ab进入“扇形”磁场时,求感应电动势E,并指出ab上的电流方向;(2)当金属条ab进入“扇形”磁场时,画出“闪烁”装置的电路图;(3)从金属条ab进入“扇形”磁场时开始,经计算画出轮子转一圈过程中,内圈与外圈之间电势差Uab随时间t变化的Uab-t图像;(4)若选择的是“1.5V、0.3A”的小灯泡,该“闪烁”装置能否正常工作?有同学提出,通过改变磁感应强度B、后轮外圈半径r2、角速度ω和张角θ等物理量的大小,优化前同学的设计方案,请给出你的评价。

高三物理第九章 电磁感应试题

高三物理第九章 电磁感应试题

届高三物理一轮复习必备精品第9章电磁感应课程内容标准:2.通过实验,理解感应电流的产生条件,举例说明电磁感应在生活和生产中的应用。

3.通过探究,理解楞次定律。

理解法拉第电磁感应定律。

复习导航1.磁通量、磁通量的变化量、磁通量的变化率的区别与联系。

2.楞次定律的应用和右手定则的应用,理解楞次定律中“阻碍”的具体含义。

3.感应电动势的定量计算,以及与电磁感应现象相联系的电路计算题(如电流、电压、功率等问题)。

4.电磁感应中图像分析、要理解E-t、I-t等图像的物理意义和应用。

第1课时电磁感应现象、楞次定律1、高考解读真题品析知识:安培力的大小与方向答案:收缩,变小点评:深刻领会楞次定律的内涵热点关注知识:电磁感应中的感应再感应问题A.向右匀速运动B.向右加速运动C.向左加速运动D.向左减速运动答案:BC考点1:磁通量考点2.电磁感应现象考点3.楞次定律1.内容:感应电流的磁场总是要阻碍引起感应电流的磁场的变化.2.对“阻碍”意义的理解:增反减同,来斥去吸(3)楞次定律是能量转化和守恒定律在电磁感应中的体现⑴确定引起感应电流的原磁通量的方向⑶确定感应电流的磁场方向⑷利用安培定则确定感应电流的方向3.右手定则:用来直接判断导体切割磁感线产生的感应电流的方向.3、复习方案基础过关重难点:感应电流方向的判断典型例题:(A) 保持静止 ; (B) 分别远离O 点; (C) 分别向O 点靠近; (D) 无法判断。

答案:C点评:理解好楞次定律的内涵,是解决电磁感应现象的至关因素。

第2课时 法拉第电磁感应定律 自感1、高考解读真题品析A .感应电流方向不变 C .感应电动势最大值E =Bav D.感应电动势平均值B 选项根据左手定则可以判断,受安培力向下,B 不正确。

D 选项感应电动势平均值va a B tE 2212π⋅=∆∆Φ=,D 正确。

答案:ACD 热点关注: 解析:14E Bav =π点评:请注意1.受力图正确2.力的处理恰当2、知识网络1.在电磁感应现象中产生的电动势.产生感应电动势的部分相当于电源.2.法拉第电磁感应定律:(1)电路中感应电动势的大小,跟穿过这一回路的磁通量的变化率成正比,即(2)区别磁通量、磁通量的变化、磁通量的变化率.考点2.自感3、复习方案基础过关重难点:带电粒子在有界磁场中的运动A. F可能被熔断B. F不可能被熔断C. C1可能被损坏D. C2可能被损坏答案:BD典型例题:解析:设正方形边长为2a,则圆环半径为a,两者面积之比为 S1/S2=4a2/πa2=4/π,E =ΔΦ/Δt =SΔB/Δt ∝SE1 / E2= S1/S2=4a2/ π a2=4/π,答案:电动势之比4/π,电流之比1:1解析:转过90°时,线圈中磁通量的变化量ΔΦ=BS – 0 = 0.016 Wb 周期为 T=1/2=0.5sΔΦ/Δt =0.016/0.125 =0.128 Wb /s , 答案:0.128 Wb /s ,12.8V 点评:第3课时 电磁感应规律的综合应用1、高考解读真题品析知识:电磁感应中的电路问题(1)通过电阻R 1上的电流大小和方向;(2)通过电阻R 1上的电量q 及电阻R 1上产生的热量。

【三维设计】2015高考物理大一轮复习 第九章 电磁感应阶段验收评估(14各类新题及原创题,含解析)

【三维设计】2015高考物理大一轮复习 第九章 电磁感应阶段验收评估(14各类新题及原创题,含解析)

电磁感应(时间:60分钟满分:100分)一、单项选择题(本题共5小题,每小题6分,共30分,每小题只有一个选项正确)1.(2014·无锡二模)在物理学发展的过程中,许多物理学家的科学发现推动了人类历史的进步,下列说法正确的是( )A.牛顿首创了将实验和逻辑推理和谐结合起来的物理学研究方法B.卡文迪许总结出了万有引力定律并测出了万有引力常量的数值C.法拉第提出了场的概念从而使人类摆脱了超距作用观点的困境D.奥斯特最早发现了电磁感应现象为发明发电机提供了理论依据解析:选C 伽利略首创了将实验和逻辑推理和谐结合起来的物理学研究方法,选项A 错误;牛顿总结出了万有引力定律,卡文迪许测出了万有引力常量的数值,选项B错误;法拉第提出了场的概念从而使人类摆脱了超距作用观点的困境,选项C正确;法拉第最早发现了电磁感应现象为发明发电机提供了理论依据,选项D错误。

2.如图1所示,在磁感应强度大小为B、方向竖直向上的匀强磁场中,有一质量为m、阻值为R的闭合矩形金属线框abcd用绝缘轻质细杆悬挂在O点,并可绕O点摆动。

金属线框从右侧某一位置静止开始释放,在摆动到左侧最高点的过程中,细杆和金属线框平面始终处于同一平面,且垂直纸面。

则线框中感应电流的方向是( )图1A.a→b→c→d→aB.d→c→b→a→dC.先是d→c→b→a→d,后是a→b→c→d→aD.先是a→b→c→d→a,后是d→c→b→a→d解析:选B 线框从右侧摆到最低点的过程中,穿过线框的磁通量减小,由楞次定律可判断感应电流的方向为d→c→b→a→d,从最低点摆到左侧最高点的过程中,穿过线框的磁通量增大,由楞次定律可判断感应电流的方向为d→c→b→a→d,所以选B。

3. (2014·江苏名校联考)图2中L是绕在铁芯上的线圈,它与电阻R、R0、电键和电池E可构成闭合回路。

线圈上的箭头表示线圈中电流的正方向,当电流的流向与箭头所示的方向相同,该电流为正,否则为负。

高三物理一轮复习单元质检九磁场解析含答案

高三物理一轮复习单元质检九磁场解析含答案

单元质检九磁场(时间:45分钟满分:100分)一、选择题(本题共8小题,每小题6分,共48分。

在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分)1.中国宋代科学家沈括在《梦溪笔谈》中最早记载了地磁偏角:“以磁石磨针锋,则能指南,然常微偏东,不全南也。

”进一步研究表明,地球周围地磁场的磁感线分布示意如图。

结合上述材料,下列说法不正确的是( )A.地理南、北极与地磁场的南、北极不重合B.地球内部也存在磁场,地磁南极在地理北极附近C.地球表面任意位置的地磁场方向都与地面平行D.地磁场对射向地球赤道的带电宇宙射线粒子有力的作用,且地磁南极在地理北极附近,A、B选项符合物理事实。

射向赤道的带电宇宙射线粒子,会受到地球磁场施加的洛伦兹力作用,D选项符合物理规律。

而C选项中,地球表面任意位置的磁场方向为该点磁感线的切线方向,除了赤道位置与地球表面平行,其他都不平行。

本题选不正确选项,故选C。

2.(2017·广东七校联考)真空中两根金属导线平行放置,其中一根导线中通有恒定电流。

在导线所确定的平面内,一电子从P点运动的轨迹的一部分如图中的曲线PQ所示,则一定是( )A.ab导线中通有从a到b方向的电流B.ab导线中通有从b到a方向的电流C.cd导线中通有从c到d方向的电流D.cd导线中通有从d到c方向的电流,靠近导线cd处,电子的偏转程度大,说明靠近cd处偏转半径较小;在磁场中运动的电子所受洛伦兹力永远不做功,故电子速率不变,由带电粒子在磁场中运动的半径公式r=知,偏转半径小说明cd处磁感应强度较大,所以cd导线中通有电流;根据曲线运动的特点,合外力指向弧内,即洛伦兹力指向左侧,根据左手定则可知cd左侧区域磁场方向垂直纸面向里,再由安培定则可知,电流的方向从c到d,故C项正确。

3.如图所示,一个边长为l、三边电阻相同的正三角形金属框放置在磁感应强度为B的匀强磁场中。

高中物理 第09章 电磁感应 典型例题(含答案)【经典】

高中物理   第09章  电磁感应 典型例题(含答案)【经典】

第九章电磁感应知识点一:磁通量、感应电流产生条件、电流方向(楞次定律)1.(单选)如图所示,ab是水平面上一个圆的直径,在过ab的竖直面内有一根通电直导线ef,且ef平行于ab,当ef竖直向上平移时,穿过圆面积的磁通量将().答案 CA.逐渐变大B.逐渐减小C.始终为零D.不为零,但始终保持不变2.(单选)现将电池组、滑动变阻器、带铁芯的线圈A、线圈B、电流计及电键如图所示连接.下列说法中正确的是().答案AA.电键闭合后,线圈A插入或拔出都会引起电流计指针偏转B.线圈A插入线圈B中后,电键闭合和断开的瞬间电流计指针均不会偏转C.电键闭合后,滑动变阻器的滑片P匀速滑动,会使电流计指针静止在中央零刻度D.电键闭合后,只有滑动变阻器的滑片P加速滑动,电流计指针才能偏转3.(单选)某实验小组用如图所示的实验装置来验证楞次定律.当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流方向是().答案DA.a→G→bB.先a→G→b,后b→G→aC.b→G→aD.先b→G→a,后a→G→b4.(单选)如图,通有恒定电流的导线MN与闭合金属框共面,第一次将金属框由Ⅰ平移到Ⅱ,第二次将金属框绕cd边翻转到Ⅱ,设先后两次通过金属框的磁通量变化量大小分别为ΔΦ1和ΔΦ2,则().答案CA.ΔΦ1>ΔΦ2,两次运动中线框中均有沿adcba方向电流出现B.ΔΦ1=ΔΦ2,两次运动中线框中均有沿abcda方向电流出现C.ΔΦ1<ΔΦ2,两次运动中线框中均有沿adcba方向电流出现D.ΔΦ1<ΔΦ2,两次运动中线框中均有沿abcda方向电流出现5.(单选)如图所示,一个U形金属导轨水平放置,其上放有一个金属导体棒ab,有一个磁感应强度为B 的匀强磁场斜向上穿过轨道平面,且与竖直方向的夹角为θ.在下列各过程中,一定能在轨道回路里产生感应电流的是().答案AA.ab向右运动,同时使θ减小B.使磁感应强度B减小,θ角同时也减小C.ab向左运动,同时增大磁感应强度BD.ab向右运动,同时增大磁感应强度B和θ角(0°<θ<90°)6.(单选)如图所示,一根条形磁铁从左向右靠近闭合金属环的过程中,环中的感应电流(自左向右看)().A.沿顺时针方向答案CB.先沿顺时针方向后沿逆时针方向C.沿逆时针方向D.先沿逆时针方向后沿顺时针方向7.(单选)如图所示,一圆形金属线圈放置在水平桌面上,匀强磁场垂直桌面竖直向下,过线圈上A点做切线OO′,OO′与线圈在同一平面上.在线圈以OO′为轴翻转180°的过程中,线圈中电流流向().A.始终由A→B→C→A 答案AB.始终由A→C→B→AC.先由A→C→B→A再由A→B→C→AD.先由A→B→C→A再由A→C→B→A知识点二:楞次定律的推广1.(单选)如图所示,光滑固定导轨M、N水平放置,两根导体棒P、Q平行放置在导轨上,形成一个闭合回路,当一条形磁铁从高处下落接近回路时().答案AA.P、Q将互相靠拢B.P、Q将互相远离C.磁铁的加速度仍为g D.磁铁的加速度大于g2.(单选)如图所示,ab是一个可以绕垂直于纸面的轴O转动的闭合矩形导体线圈,当滑动变阻器R的滑片P自左向右滑动过程中,线圈ab将().答案CA.静止不动B.逆时针转动C.顺时针转动D.发生转动,但因电源的极性不明,无法确定转动的方向3.(多选)如图所示,在条形磁铁的中央位置的正上方水平固定一铜质圆环.以下判断中正确的是().A.释放圆环,环下落时产生感应电流答案BCB.释放圆环,环下落时无感应电流C.释放圆环,环下落时环的机械能守恒D.释放圆环,环下落时环的机械能不守恒4.(单选)如图所示,通电螺线管左侧和内部分别静止吊一导体环a和b,当滑动变阻器R的滑动触头c向左滑动时().答案CA.a向左摆,b向右摆B.a向右摆,b向左摆C.a向左摆,b不动D.a向右摆,b不动5.(单选)如图所示,一质量为m的条形磁铁用细线悬挂在天花板上,细线从一水平金属环中穿过.现将环从位置Ⅰ释放,环经过磁铁到达位置Ⅱ.设环经过磁铁上端和下端附近时细线的张力分别为T1和T2,重力加速度大小为g,则().答案AA.T1>mg,T2>mg B.T1<mg,T2<mgC.T1>mg,T2<mg D.T1<mg,T2>mg6.(单选)如图,圆形导体线圈a平放在水平桌面上,在a的正上方固定一竖直螺线管b,二者轴线重合,螺线管与电源和滑动变阻器连接成闭合回路.若将滑动变阻器的滑片P向下滑动,下列表述正确的是().A.线圈a中将产生俯视顺时针方向的感应电流答案DB.穿过线圈a的磁通量变小C.线圈a有扩张的趋势D.线圈a对水平桌面的压力F N将增大7.(多选)如图所示,在水平光滑桌面上,两相同的矩形刚性小线圈分别叠放在固定的绝缘矩形金属框的左右两边上,且每个小线圈都各有一半面积在金属框内,在金属框接通逆时针方向电流的瞬间().A.两小线圈会有相互靠拢的趋势答案BCB.两小线圈会有相互远离的趋势C.两小线圈中感应电流都沿顺时针方向D.左边小线圈中感应电流沿顺时针方向,右边小线圈中感应电流沿逆时针方向8.(单选)如图所示,金属棒ab置于水平放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B,磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef内有一半径很小的金属圆环L,圆环与导轨在同一平面内.当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,下列有关圆环的说法正确的是().答案CA.圆环内产生变大的感应电流,圆环有收缩的趋势B.圆环内产生变大的感应电流,圆环有扩张的趋势C.圆环内产生变小的感应电流,圆环有收缩的趋势D.圆环内产生变小的感应电流,圆环有扩张的趋势知识点三:楞次定律与安培定则的综合应用,二次感应问题(注意因果关系,结果推原因或者带答案推)1.(多选)如图所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,MN的左边有一闭合电路,当PQ在外力的作用下运动时,MN向右运动.则PQ所做的运动可能是().A.向右加速运动B.向左加速运动C.向右减速运动答案BCD.向左减速运动2.(多选)如图所示,金属导轨上的导体棒ab在匀强磁场中沿导轨做下列哪种运动时,铜制线圈c中将有感应电流产生且被螺线管吸引().答案BCA.向右做匀速运动B.向左做减速运动C.向右做减速运动D.向右做加速运动3.(单选)如图,均匀带正电的绝缘圆环a与金属圆环b同心共面放置,当a绕O点在其所在平面内旋转时,b中产生顺时针方向的感应电流,且具有收缩趋势,由此可知,圆环a().答案BA.顺时针加速旋转B.顺时针减速旋转C.逆时针加速旋转D.逆时针减速旋转4.(单选)如图所示,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行.已知在t=0到t=t1的时间间隔内,直导线中电流i发生某种变化,而线框中的感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右.设电流i正方向与图中箭头所示方向相同,则i随时间t变化的图线可能是().答案A5.(多选)如图是某电磁冲击钻的原理图,若突然发现钻头M向右运动,则可能是().答案ACA.开关S闭合瞬间B.开关S由闭合到断开的瞬间C.开关S已经是闭合的,滑动变阻器滑片P向左迅速滑动D.开关S已经是闭合的,滑动变阻器滑片P向右迅速滑动6.(多选)如图所示,在匀强磁场中放有平行金属导轨,它与大线圈M相连接,要使小导线圈N获得顺时针方向的感应电流,则放在金属导轨上的金属棒ab的运动情况是(两线圈共面放置)().答案BC A.向右匀速运动B.向左加速运动C.向右减速运动D.向右加速运动7.(多选)如图所示,一电子以初速度v沿与金属板平行的方向飞入MN极板间,突然发现电子向M板偏转,若不考虑磁场对电子运动方向的影响,则产生这一现象的原因可能是()A.开关S闭合瞬间B.开关S由闭合后断开瞬间C.开关S是闭合的,变阻器滑片P向右迅速滑动D.开关S是闭合的,变阻器滑片P向左迅速滑动答案AD知识点四:感应电流大小(法拉第电磁感应定律E =n ΔΦΔt ,E =Blv )1.(多选)如图所示,闭合金属导线框放置在竖直向上的匀强磁场中,磁场的磁感应强度的大小随时间变化而变化.下列说法中正确的是( ). 答案 ADA .当磁感应强度增大时,线框中的感应电流可能减小B .当磁感应强度增大时,线框中的感应电流一定增大C .当磁感应强度减小时,线框中的感应电流一定增大D .当磁感应强度减小时,线框中的感应电流可能不变2.(单选)A 、B 两闭合圆形导线环用相同规格的导线制成,它们的半径之比r A ∶r B =2∶1,在两导线环包围的空间内存在一正方形边界的匀强磁场区域,磁场方向垂直于两导线环的平面,如图所示.当磁场的磁感应强度随时间均匀增大的过程中,流过两导线环的感应电流大小之比为( ).答案 DA.I A I B =1B.I A I B =2C.I A I B =14D.I A I B=12 3.(多选)某学习小组在探究线圈中感应电流的影响因素时,设计如图所示的实验装置,让一个闭合圆线圈放在匀强磁场中,线圈的轴线与磁场方向成30°角,磁感应强度随时间均匀变化,则( ).答案 ADA .若把线圈的匝数增加一倍,线圈内感应电流大小不变B .若把线圈的面积增加一倍,线圈内感应电流大小变为原来的2倍C .改变线圈轴线与磁场方向的夹角大小,线圈内感应电流大小可能变为原来的2倍D .把线圈的半径增加一倍,线圈内感应电流大小变为原来的2倍4.(多选)用一根横截面积为S 、电阻率为ρ的硬质导线做成一个半径为r 的圆环,ab 为圆环的一条直径.如图所示,在ab 的左侧存在一个均匀变化的匀强磁场,磁场垂直圆环所在平面,磁感应强度大小随时间的变化率ΔB Δt =k (k <0).则( ).答案 BDA .圆环中产生逆时针方向的感应电流B .圆环具有扩张的趋势C .圆环中感应电流的大小为⎪⎪⎪⎪krS 2ρD .图中a 、b 两点间的电势差U ab =⎪⎪⎪⎪14k πr 2 5、(单选)粗细均匀的电阻丝围成图所示的线框,置于正方形有界匀强磁场中,磁感强度为B ,方向垂直于线框平面,图中ab =bc =2cd =2de =2ef =2fa =2L .现使线框以同样大小的速度v 匀速沿四个不同方向平动进入磁场,并且速度方向始终与线框先进入磁场的那条边垂直,则线框在通过如图所示位置时,下列说法中正确的是( ).A .ab 两点间的电势差图①中最大 答案 AB .ab 两点间的电势差图②中最大C .回路电流图③中最大D .回路电流图④中最小6.(单选)如图所示,虚线框内存在均匀变化的匀强磁场,三个电阻的阻值之比R1∶R 2∶R 3=1∶2∶3,电路中导线的电阻不计.当S 1、S 2闭合,S 3断开时,闭合回路中感应电流为I ;当S 2、S 3闭合,S 1断开时,闭合回路时感应电流为5I ;当S 1、S 3闭合,S 2断开时,闭合回路中感应电流为( ).A .0B .3IC .6ID .7I 答案 D7.(多选)如图所示,两根足够长的光滑金属导轨水平平行放置,间距为L =1 m ,cd 间、de 间、cf 间分别接着阻值为R =10 Ω的电阻.一阻值为R =10 Ω的导体棒ab 以速度v =4 m/s 匀速向左运动,导体棒与导轨接触良好;导轨所在平面存在磁感应强度大小为B =0.5 T ,方向竖直向下的匀强磁场.下列说法中正确的是( ). 答案 BDA .导体棒ab 中电流的流向为由b 到aB .cd 两端的电压为1 VC .de 两端的电压为1 VD .fe 两端的电压为1 V8.(单选)如图所示,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率ΔB Δt 的大小应为( ).答案 CA.4ωB 0πB.2ωB 0πC.ωB 0πD.ωB 02π9.(单选)如图所示,竖直平面内有一金属环,半径为a ,总电阻为R (指拉直时两端的电阻),磁感应强度为B 的匀强磁场垂直穿过环平面,在环的最高点A 用铰链连接长度为2a 、电阻为R2的导体棒AB ,AB 由水平位置紧贴环面摆下,当摆到竖直位置时,B 点的线速度为v ,则这时AB 两端的电压大小为( ).答案 AA.Bav 3B.Bav 6C.2Bav 3 D .Bav10. (多选)如图所示是圆盘发电机的示意图;铜盘安装在水平的铜轴上,它的边缘正好在两磁极之间,两块铜片C 、D 分别与转动轴和铜盘的边缘接触.若铜盘半径为L ,匀强磁场的磁感应强度为B ,回路的总电阻为R ,从左往右看,铜盘以角速度ω沿顺时针方向匀速转动.则( ).答案 BCA .由于穿过铜盘的磁通量不变,故回路中无感应电流B .回路中感应电流大小不变,为BL 2ω2RC .回路中感应电流方向不变,为C →D →R →CD .回路中有周期性变化的感应电流11.(多选)半径为a 、右端开小口的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0.圆环水平固定放置,整个内部区域分布着垂直纸面向里的匀强磁场,磁感应强度为B .直杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,直杆始终有两点与圆环良好接触,从圆环中心O 开始,直杆的位置由θ确定,则().A .θ=0时,直杆产生的电动势为2Bav 答案 ADB .θ=π3时,直杆产生的电动势为3BavC .θ=0时,直杆受的安培力大小为2B 2av +R 0 D .θ=π3时,直杆受的安培力大小为3B 2av +R 012. (多选)如图所示,边长为L 、不可形变的正方形导线框内有半径为r 的圆形磁场区域,其磁感应强度B 随时间t 的变化关系为B =kt (常量k >0).回路中滑动变阻器R 的最大阻值为R 0,滑动片P 位于滑动变阻器中央,定值电阻R 1=R 0、R 2=R 02.闭合开关S ,电压表的示数为U ,不考虑虚线MN 右侧导体的感应电动势,则( ).答案 ACA .R 2两端的电压为U 7B .电容器的a 极板带正电C .滑动变阻器R 的热功率为电阻R 2的5倍D .正方形导线框中的感应电动势为kL 2知识点五:自感1.(多选)在如图所示的电路中,A1和A2是两个相同的灯泡,线圈L的自感系数足够大,电阻可以忽略不计.下列说法中正确的是().答案ABA.合上开关S时,A2先亮,A1后亮,最后一样亮B.断开开关S时,A1和A2都要过一会儿才熄灭C.断开开关S时,A2闪亮一下再熄灭D.断开开关S时,流过A2的电流方向向右2、(单选)如图所示,线圈L的自感系数很大,且其电阻可以忽略不计,L1、L2是两个完全相同的小灯泡,随着开关S闭合和断开的过程中,L1、L2的亮度变化情况是(灯丝不会断)().答案D亮度不变,L2亮度逐渐变亮,最后两灯一样亮;S断开,L2立即不亮,A.S闭合,LL1逐渐变亮B.S闭合,L1亮度不变,L2很亮;S断开,L1、L2立即不亮C.S闭合,L1、L2同时亮,而后L1逐渐熄灭,L2亮度不变;S断开,L2立即不亮,L1亮一下才灭D.S闭合,L1、L2同时亮,而后L1逐渐熄灭,L2则逐渐变得更亮;S断开,L2立即熄灭,L1亮一下才灭3.(单选)如图所示的电路中,电源的电动势为E,内阻为r,电感L的电阻不计,电阻R的阻值大于灯泡时刻断开S.下列表D的阻值.在t=0时刻闭合开关S,经过一段时间后,在t=t示A、B两点间电压U AB随时间t变化的图象中,正确的是().答案B4.(单选)如图所示,A、B、C是3个完全相同的灯泡,L是一个自感系数较大的线圈(直流电阻可忽略不计).则() 答案AA.S闭合时,A灯立即亮,然后逐渐熄灭B.S闭合时,B灯立即亮,然后逐渐熄灭C.电路接通稳定后,三个灯亮度相同D.电路接通稳定后,S断开时,C灯立即熄灭5.(多选)如图是研究通电自感实验的电路图,A1、A2是两个规格相同的小灯泡,闭合电键调节电阻R,使两个灯泡的亮度相同,调节可变电阻R1,使它们都正常发光,然后断开电键S.重新闭合电键S,则().A.闭合瞬间,A1立刻变亮,A2逐渐变亮答案BCB.闭合瞬间,A2立刻变亮,A1逐渐变亮C.稳定后,L和R两端电势差一定相同D.稳定后,A1和A2两端电势差不相同6.(多选)如图所示的电路中,L为一个自感系数很大、直流电阻不计的线圈,D1、D2是两个完全相同的电灯,E是内阻不计的电源.t=0时刻,闭合开关S,经过一段时间后,电路达到稳定,t1时刻断开开关S.I1、I2分别表示通过电灯D1和D2中的电流,规定图中箭头所示方向为电流正方向,以下各图中能定性描述电流I随时间t变化关系的是().答案AC知识点六:电磁感应图像问题1、(单选)如图,在水平面(纸面)内有三根相同的均匀金属棒ab、ac和MN,其中ab、ac在a点接触,构成“V”字型导轨.空间存在垂直于纸面的均匀磁场.用力使MN向右匀速运动,从图示位置开始计时,运动中MN始终与∠bac的平分线垂直且和导轨保持良好接触.下列关于回路中电流i与时间t的关系图线,可能正确的是().答案A2、(单选)如图所示,垂直纸面向里的匀强磁场的区域宽度为2a,磁感应强度的大小为B.一边长为a、电阻为4R的正方形均匀导线框ABCD从图示位置开始沿水平向右方向以速度v匀速穿过磁场区域,在图中线框A、B两端电压U AB与线框移动距离x的关系图象正确的是().答案D3、(单选)将一段导线绕成图5甲所示的闭合回路,并固定在水平面(纸面)内.回路的ab边置于垂直纸面向里的匀强磁场Ⅰ中.回路的圆环区域内有垂直纸面的磁场Ⅱ,以向里为磁场Ⅱ的正方向,其磁感应强度B随时间t变化的图象如图乙所示.用F表示ab边受到的安培力,以水平向右为F的正方向,能正确反应F随时间t变化的图象是().答案B4、(多选)如图甲所示,正六边形导线框abcdef放在匀强磁场中静止不动,磁场方向与线框平面垂直,磁感应强度B随时间t的变化关系如图乙所示.t=0时刻,磁感应强度B的方向垂直纸面向里,设产生的感应电流以顺时针方向为正、竖直边cd所受安培力的方向以水平向左为正.则下面关于感应电流i和cd边所受安培力F随时间t变化的图象正确的是().答案AC5.(单选)如图甲,R0为定值电阻,两金属圆环固定在同一绝缘平面内.左端连接在一周期为T0的正弦交流电源上,经二极管整流后,通过R0的电流i始终向左,其大小按图乙所示规律变化.规定内圆环a端电势高于b端时,a、b间的电压u为正,下列u ab---t图象可能正确的是() 答案C6.(单选)如图所示,一导体圆环位于纸面内,O 为圆心.环内两个圆心角为90°的扇形区域内分别有匀强磁场,两磁场磁感应强度的大小相等,方向相反且均与纸面垂直.导体杆OM 可绕O 转动,M 端通过滑动触点与圆环良好接触.在圆心和圆环间连有电阻R .杆OM 以匀角速度ω逆时针转动,t =0时恰好在图示位置.规定从a 到b 流经电阻R 的电流方向为正,圆环和导体杆的电阻忽略不计,则杆从t =0开始转动一周的过程中,电流随ωt 变化的图象是( ).答案 C7.(单选)边长为a 的闭合金属正三角形框架,左边竖直且与磁场右边界平行,完全处于垂直于框架平面向里的匀强磁场中.现把框架匀速水平向右拉出磁场,如图所示,则下列图象与这一过程相符合的是( ).答案 B8. (单选)如图,矩形闭合导体线框在匀强磁场上方,由不同高度静止释放,用t 1、t 2分别表示线框ab 边和cd 边刚进入磁场的时刻.线框下落过程形状不变,ab 边始终保持与磁场水平边界线OO ′平行,线框平面与磁场方向垂直.设OO ′下方磁场区域足够大,不计空气的影响,则下列哪一个图象不可能反映线框下落过程中速度v 随时间t 变化的规律( ).答案 A9.(多选)一正方形金属线框位于有界匀强磁场区域内,线框平面与磁场垂直,线框的右边紧贴着磁场边界,如图甲所示.t =0时刻对线框施加一水平向右的外力F ,让线框从静止开始做匀加速直线运动穿过磁场,外力F 随时间t 变化的图象如图乙所示.已知线框质量m =1 kg 、电阻R =1 Ω,以下说法正确的是( ).A .线框做匀加速直线运动的加速度为1 m/s 2 答案 ABCB .匀强磁场的磁感应强度为2 2 TC .线框穿过磁场的过程中,通过线框的电荷量为22 CD .线框边长为1 m10、如图甲所示,空间存在一宽度为2L 的有界匀强磁场,磁场方向垂直纸面向里.在光滑绝缘水平面内有一边长为L 的正方形金属线框,其质量m =1 kg 、电阻R =4 Ω,在水平向左的外力F 作用下,以初速度v 0=4 m/s 匀减速进入磁场,线框平面与磁场垂直,外力F 大小随时间t 变化的图线如图乙所示.以线框右边刚进入磁场时开始计时.(1)求匀强磁场的磁感应强度B ;(2)求线框进入磁场的过程中,通过线框的电荷量q ;(3)判断线框能否从右侧离开磁场?说明理由.答案 (1)0.33 T (2)0.75 C (3)不能;x =4 m<2L。

2015高三物理一轮电磁感应复习题(含答案和解释)

2015高三物理一轮电磁感应复习题(含答案和解释)

2015高三物理一轮电磁感应复习题(含答案和解释)章末检测(九)(时间:60分钟,分值:100分)一、单项选择题(本大题共6小题,每小题6分,共36分,每小题只有一个选项符合题意)1.如图所示,固定的水平长直导线中通有电流I,矩形线框与导线在同一竖直平面内,且一边与导线平行.线框由静止释放,在下落过程中() A.穿过线框的磁通量保持不变B.线框中感应电流方向保持不变C.线框所受安培力的合力为零D.线框的机械能不断增大2.如图所示的电路,D1和D2是两个相同的灯泡,L是一个自感系数相当大的线圈,其电阻与R相同,由于存在自感现象,在开关S接通和断开时,灯泡D1和D2先后亮暗的次序是()A.接通时D1先达最亮,断开时D1后灭B.接通时D2先达最亮,断开时D2后灭C.接通时D1先达最亮,断开时D1先灭D.接通时D2先达最亮,断开时D2先灭3.如图所示,在垂直纸面向里、磁感应强度为B的匀强磁场区域中,有一个均匀导线制成的单匝直角三角形线框,现用外力使线框以恒定的速度v沿垂直磁场方向向右运动,运动中线框的AB边始终与磁场右边界平行.已知AB=BC=l,线框的总电阻为R,则线框离开磁场的过程中()A.线框A、B两点间的电压不变B.通过线框导线横截面的电荷量为Bl22RC.线框所受外力的最大值为2B2l2vRD.线框的热功率与时间成正比4.如图所示,两根足够长的光滑金属导轨MN、PQ平行放置,导轨平面与水平面的夹角为θ,导轨的下端接有电阻.当导轨所在空间没有磁场时,使导体棒ab以平行导轨平面的初速度v0冲上导轨,ab上升的最大高度为H;当导轨所在空间存在方向与导轨平面垂直的匀强磁场时,再次使ab以相同的初速度从同一位置冲上导轨,ab上升的最大高度为h.两次运动中ab始终与两导轨垂直且接触良好.关于上述情景,下列说法中正确的是()A.比较两次上升的最大高度,有H=hB.比较两次上升的最大高度,有HC.无磁场时,导轨下端的电阻中有电热产生D.有磁场时,导轨下端的电阻中有电热产生5.如图所示,直角坐标系xOy的第一、三象限内有匀强磁场,第一象限内的磁感应强度大小为2B,第三象限内的磁感应强度大小为B,方向均垂直于纸面向里.现将半径为l,圆心角为90°的扇形导线框OPQ以角速度ω绕O点在纸面内沿逆时针方向匀速转动,导线框回路电阻为R,规定与图中导线框的位置相对应的时刻为t=0,逆时针的电流方向为正.则导线框匀速转动一周的时间内感应电流I随时间t变化的图象为()6.如图所示,平行金属导轨与水平面成θ角,导轨与固定电阻R1和R2相连,匀强磁场垂直穿过导轨平面,有一导体棒ab,质量为m,导体棒的电阻与固定电阻R1和R2的阻值均相等,与导轨之间的动摩擦因数为μ,导体棒ab沿导轨向上滑动,当上滑的速度为v时,受到安培力的大小为F,此时()A.电阻R1消耗的热功率为Fv3B.电阻R2消耗的热功率为Fv6C.整个装置因摩擦而消耗的热功率为μmgvsinθD.整个装置消耗的机械功率为Fv二、多项选择题(本大题共3小题,每小题6分,共18分,每小题有多个选项符合题意)7.如图所示,正方形线框的边长为L,电容器的电容为C.正方形线框的一半放在垂直纸面向里的匀强磁场中,当磁感应强度以k为变化率均匀减小时,则()A.线框产生的感应电动势大小为kL2B.电压表没有读数C.a点的电势高于b点的电势D.电容器所带的电荷量为零8.(原创题)正三角形导线框abc固定在匀强磁场中,磁场的方向与导线框所在平面垂直,磁感应强度B随时间t变化的规律如图所示.规定垂直纸面向里为磁场的正方向,abca的方向为线框中感应电流的正方向,水平向右为安培力的正方向.关于线框中的电流i与ab边所受的安培力F随时间t变化的图象,下列选项正确的是()9.如图所示,平行且足够长的两条光滑金属导轨,相距L=0.4m,导轨所在平面与水平面的夹角为30°,其电阻不计.把完全相同的两金属棒(长度均为0.4m)ab、cd分别垂直于导轨放置,并使每棒两端都与导轨良好接触.已知两金属棒的质量均为m=0.1kg、电阻均为R=0.2Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B=0.5T,当金属棒ab在平行于导轨向上的力F作用下沿导轨向上匀速运动时,金属棒cd恰好能保持静止.(g=10m/s2),则()A.F的大小为0.5N新课标第一网B.金属棒ab产生的感应电动势为1.0VC.ab棒两端的电压为1.0VD.ab棒的速度为5.0m/s三、非选择题(本大题共3小题,共46分,要有必要的文字说明和解题步骤,有数值计算的要注明单位)10.(14分)如图所示,两光滑金属导轨,间距d=0.2m,在桌面上的部分是水平的,处在磁感应强度B=0.1T、方向竖直向下的有界磁场中,电阻R=3Ω,桌面高H=0.8m,金属杆ab的质量m=0.2kg,电阻r=1Ω,在导轨上距桌面h=0.2m的高处由静止释放,落地点距桌面左边缘的水平距离s =0.4m,g=10m/s2.求:(1)金属杆刚进入磁场时,R上的电流大小;(2)整个过程中R上产生的热量.11.(16分)如图甲所示,两条足够长的光滑平行金属导轨竖直放置,导轨间距为L=1m,两导轨的上端接有电阻,阻值R=2Ω.虚线OO′下方是垂直于导轨平面向里的匀强磁场,磁场磁感应强度为2T.现将质量m=0.1kg、电阻不计的金属杆ab,从OO′上方某处由静止释放,金属杆在下落的过程中与导轨保持良好接触,且始终保持水平,不计导轨的电阻.已知金属杆下落0.3m的过程中加速度a与下落距离h的关系图象如图乙所示.(g取10m/s2)求:(1)金属杆刚进入磁场时速度多大?下落了0.3m时速度多大?(2)金属杆下落0.3m的过程中,在电阻R上产生多少热量?12.(16分)如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l=0.5m,左端接有阻值R=0.3Ω的电阻.一质量m=0.1kg,电阻r=0.1Ω的金属棒MN放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B=0.4T.金属棒在水平向右的外力作用下,由静止开始以a=2m/s2的加速度做匀加速运动,当金属棒的位移x=9m时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q1∶Q2=2∶1.导轨足够长且电阻不计,金属棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求(1)金属棒在匀加速运动过程中,通过电阻R的电荷量q;(2)撤去外力后回路中产生的焦耳热Q2;(3)外力做的功WF.章末检测(九)1.解析]选B.当线框由静止向下运动时,穿过线框的磁通量逐渐减小,根据楞次定律可得,产生的感应电流的方向为顺时针方向,且方向不发生变化,A错误,B正确;因线框上下两边所在处的磁感应强度不同,线框所受的安培力的合力一定不为零,C错误;整个线框所受的安培力的合力竖直向上,对线框做负功,线框的机械能减小,D错误.2.A3.解析]选B.在线框离开磁场的过程中有效切割长度逐渐变大,因此产生的感应电动势变大,线框A、B两点间的电压变大,A错误;通过线框导线横截面的电荷量为Q=ΔΦR=Bl22R,B正确;当感应电流最大时,线框所受安培力最大,此时线框所受外力最大,F=IlB=BlvRlB=B2l2vR,C错误;线框的热功率P=Fv=B2l2v2R,D错误.4.解析]选D.没有磁场时,只有重力做功,机械能守恒,没有电热产生,C错误;有磁场时,ab切割磁感线产生感应电流,重力和安培力均做负功,机械能减小,有电热产生,故ab上升的最大高度变小,A、B错误,D正确.5.解析]选C.导线框从题图位置开始(t=0)转过90°的过程中,产生的感应电动势为E1=12•2B•ω•l2,由闭合电路欧姆定律得,回路中的电流为I1=E1R,联立以上各式解得I1=Bl2ωR,同理可求得导线框进入第三象限的过程中,回路中的电流为I2=Bl2ω2R.经分析可知0~π2ω时间内,感应电流为I1=Bl2ωR;π2ω~πω时间内,感应电流为-I1=-Bl2ωR;πω~3π2ω时间内,感应电流为I2=Bl2ω2R;3π2ω~2πω时间内,感应电流为-I2=-Bl2ω2R,结合已知可得C正确.6.解析]选B.上滑速度为v时,导体棒受力如图所示,则B2L2vR+R2=F,所以PR1=PR2=BLv2×32R2R=16Fv,故选项A错误,B正确;因为Ff =μFN,FN=mgcosθ,所以PFf=Ffv=μmgvcosθ,选项C错误;此时,整个装置消耗的机械功率为P=PF+PFf=Fv+μmgvcosθ,选项D错误.7.解析]选BC.由于线框的一半放在磁场中,因此线框产生的感应电动势大小为kL2/2,A错误;由于线框所产生的感应电动势是恒定的,且线框连接了一个电容器,相当于电路断路,外电压等于电动势,内电压为零,而接电压表的这部分相当于回路的内部,因此,电压表两端无电压,电压表没有读数,B正确;根据楞次定律可以判断,a点的电势高于b点的电势,C正确;电容器所带电荷量为Q=CkL22,D错误.8.解析]选AD.根据欧姆定律及法拉第电磁感应定律可得,i=ER=SΔBRΔt∝ΔBΔt=k,又由楞次定律可知,在0~1s和3s~4s时间段,感应电流均取正值,所以选项A正确,选项B错误;ab边所受的安培力F=BiL=BLSΔBRΔt=BSLR•ΔBΔt=BSLR•k,在0~1s时间段内,通过ab 边的感应电流从a到b,根据左手定则可知,安培力水平向右,又B-t图象的斜率k不变,所以F∝B,显然选项C错误,选项D正确.9.解析]选BD.对于cd棒有mgsinθ=BIL,解得回路中的电流I=2.5A,所以回路中的感应电动势E=2IR=1.0V,B正确;Uab=IR=0.5V,C错误;对于ab棒有F=BIL+mgsinθ,解得F=1.0N,A错误;根据法拉第电磁感应定律有E=BLv,解得v=5.0m/s,D正确.10.解析](1)设金属杆ab刚进入磁场时的速度为v1,刚离开磁场时的速度为v2,则有mgh=12mv21(2分)E=Bdv1,I=ER+r=0.01A.(3分)(2)金属杆飞出桌面后做平抛运动,H=12gt2(2分)s=v2t(2分)整个过程回路中产生的总热量Q=12mv21-12mv22=0.3J(3分)整个过程中R上产生的热量QR=RR+r•Q=0.225J.(2分)答案](1)0.01A(2)0.225J11.解析](1)刚进入磁场时,a0=10m/s2,方向竖直向上(1分)由牛顿第二定律有BI0L-mg=ma0(2分)若进入磁场时的速度为v0,有I0=E0R,E0=BLv0(2分)得v0=+代入数值有:v0=+×222×12m/s=1m/s(2分)下落0.3m时,通过a-h图象知a=0,表明金属杆受到的重力与安培力平衡有mg=BIL(2分)其中I=ER,E=BLv,可得下落0.3m时金属杆的速度v=mgRB2L2(2分)代入数值有:v=0.1×10×222×12m/s=0.5m/s.(1分)(2)从开始到下落0.3m的过程中,由能的转化和守恒定律有mgh=Q+12mv2(2分)代入数值有Q=0.29J.(2分)答案](1)1m/s0.5m/s(2)0.29J12.解析](1)设金属棒匀加速运动的时间为Δt,回路的磁通量的变化量为ΔΦ,回路中的平均感应电动势为E,由法拉第电磁感应定律得E=ΔΦΔt①(1分)其中ΔΦ=Blx②(1分)设回路中的平均电流为I,由闭合电路欧姆定律得I=ER+r③(1分)则通过电阻R的电荷量为q=IΔt④(2分)联立①②③④式,得q=BlxR+r代入数据得q=4.5C.(1分)(2)设撤去外力时金属棒的速度为v,对于金属棒的匀加速运动过程,由运动学公式得v2=2ax⑤(1分)设金属棒在撤去外力后的运动过程中克服安培力所做的功为W,由动能定理得W=0-12mv2⑥(2分)撤去外力后回路中产生的焦耳热Q2=-W⑦(2分)联立⑤⑥⑦式,代入数据得Q2=1.8J.⑧(1分)(3)由题意知,撤去外力前后回路中产生的焦耳热之比Q1∶Q2=2∶1,可得Q1=3.6J⑨(1分)在金属棒运动的整个过程中,外力F克服安培力做功,由功能关系可知WF=Q1+Q2⑩(2分)由⑧⑨⑩式得WF=5.4J.(1分)答案](1)4.5C(2)1.8J(3)5.4J。

高考物理一轮复习考点延伸训练:第九章《电磁感应》(含解析).pdf

高考物理一轮复习考点延伸训练:第九章《电磁感应》(含解析).pdf

第九章 电 磁 感 应 2015高考考向前瞻 第1节电磁感应现象__楞次定律 磁通量 [想一想] 如图9-1-1所示,在条形磁铁外套有A、B两个大小不同的圆环,穿过A环的磁通量ΦA和穿过B环的磁通量ΦB大小关系是什么? 9-1-1 提示:ΦA>ΦB [记一记] 1.定义 磁场中穿过磁场某一面积S的磁感线条数定义为穿过该面积的磁通量。

2.公式 Φ=BS。

3.单位 1 Wb=1_T·m2。

[试一试] 1.如图9-1-2所示,通有恒定电流的导线MN与闭合金属框共面,第一次将金属框由平移到,第二次将金属框绕cd边翻转到,设先后两次通过金属框的磁通量变化分别为ΔΦ1和ΔΦ2,则( ) 9-1-2 A.ΔΦ1>ΔΦ2 B.ΔΦ1=ΔΦ2 C.ΔΦ1<ΔΦ2 D.不能判断 解析:选C 导体MN周围的磁场并非匀强磁场,靠近MN处的磁场强些,磁感线密一些,远离MN处的磁感线疏一些,当线框在Ⅰ位置时,穿过平面的磁通量为ΦI,当线框平移到Ⅱ位置时,磁通量为ΦⅡ,则磁通量的变化量为ΔΦ1=|ΦⅡ-ΦⅠ|=ΦⅠ-ΦⅡ。

当线框翻转至Ⅱ位置时,磁感线相当于从“反面”穿过平面,则磁通量为-ΦⅡ,则磁通量的变化量是ΔΦ2=|-ΦⅡ-ΦⅠ|=ΦⅠ+ΦⅡ,所以ΔΦ1<ΔΦ2。

[想一想] 法拉第圆盘发电机中,似乎穿过闭合电路的磁通量没有变化,怎么能产生感应电流? 9-1-3 提示:随着圆盘的转动,定向运动电子受到洛伦兹力作用,造成正、负电荷分别向圆盘中心和边缘累积,产生电动势,进而产生感应电流。

也可把圆盘看成由许多根“辐条”并联,圆盘转动,每根“辐条”做切割磁感线运动产生电动势,进而产生感应电流。

[记一记] 1.电磁感应现象 当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生的现象。

2.产生感应电流的条件 表述1 闭合电路的一部分导体在磁场内做切割磁感线运动。

表述2 穿过闭合电路的磁通量发生变化。

高三物理一轮复习必考部分第9章电磁感应章末过关练

高三物理一轮复习必考部分第9章电磁感应章末过关练

电磁感应(时间:60分钟满分:100分)一、单项选择题(本题共5小题,每小题5分,共25分.每小题只有一个选项符合题意).1.光滑的金属线框abcd处在方向竖直向上的匀强磁场中.线框从图1所示位置由静止释放,到接近水平位置的过程中,则( )图1A.线框的机械能守恒B.穿过线框的磁通量逐渐增大C.线框有abcda方向的感应电流D.穿过线框磁通量的变化率逐渐增大B 设θ为线框平面与磁感线夹角,根据磁通量公式Φ=BS sin θ可知θ变大,Φ增大,选项B正确;根据楞次定律“增反减同”的原理,线框中有adcba方向的感应电流,选项C错误;因为有感应电流,导线框的一部分机械能转化为内能,机械能不守恒,选项A 错误;线框在由静止释放的瞬间感应电流为零,在接近水平位置的瞬间感应电流也接近为零,所以磁通量的变化率不是逐渐增大的,而是先增大后减小的,选项D错误.2.如图2所示,电路左端连接着金属轨道,轨道处于匀强磁场中,电路开关闭合后,导体棒在光滑轨道上匀速向左滑行时,带电小球能静止在电容器内.R1和R2为可调电阻,导线和轨道的电阻不计,导体棒的电阻为r,以下说法正确的是( )【导学号:96622467】图2A.带电小球所带电荷为正电荷B.当导体棒加速向左滑行时,适当调小R2可使带电小球仍静止C.当导体棒加速向左滑行时,适当调小R1可使带电小球仍静止D.当导体棒向左匀速滑行时,适当调大R1可使带电小球向下运动C 导体棒切割磁感线充当电源,由楞次定律可知电容器上端带正电,可知小球应带负电,选项A错误;当棒加速向左滑行时,电动势变大,R1两端的电压变大,电容器内的电场强度变大,小球受到向上的力变大,小球向上运动,R2与电容器串联,此支路断路,调节R2不起作用,选项B错;调小R1可使电容器内的电场强度变小,选项C正确;导体棒向左匀速滑行时,电动势不变,调大R 1可使带电小球向上运动,选项D 错误.3.如图3所示,一呈半正弦形状的闭合线框abc ,ac =l ,匀速穿过边界宽度也为l 的相邻磁感应强度大小相同的匀强磁场区域,整个过程中线框中感应电流图象为(取顺时针方向为正方向)( )图3B 线框进入磁场区域时穿过导线框的磁通量垂直于纸面向外增大,根据楞次定律,线框中的感应电流方向为顺时针(正方向),同理,线框离开磁场区域过程,线框中的感应电流方向为顺时针(正方向),且这两过程中产生的感应电流变化规律相同,选项A 错误;线框的顶点b 运动到两磁场的分界线上时,同时切割两边大小相等、方向相反的磁感线,故线框中的感应电流的最大值必然为在左侧和右侧磁场中切割时产生的感应电流的最大值的2倍,且方向为逆时针(负方向),故选项B 正确,C 、D 错误.4.如图4所示,abcd 是边长为L 、每边电阻均相同的正方形导体框,今维持线框以恒定的速度v 沿x 轴运动,并穿过倾角为45°的三角形匀强磁场区域,磁场的磁感应强度为B ,方向垂直纸面向里.线框b 点在O 位置时开始计时,则在t =2Lv时间内,a 、b 两点的电势差U 随时间t 的变化图线为( )【导学号:96622468】图4D 如图所示,线框由位置1到位置2的过程中,线框的右边部分在切割磁感线,由图中几何关系及欧姆定律可得U =Bv 2t -Bv 2t 4R R =3Bv 2t4;线框由位置2到位置3的过程中,线框的右边全部和左边部分在切割磁感线,由图中几何关系及欧姆定律可得U =BLv -Bv ⎣⎢⎡⎦⎥⎤L -v ⎝ ⎛⎭⎪⎫t -L v 4R R =BLv 2+Bv 2t 4,故选项D 正确,选项A 、B 、C 错误.5.(2017·镇江模拟)如图5所示,L 是一带铁芯的理想电感线圈,其直流电阻为0,电路中A 、B 是两个完全相同的灯泡,与A 灯泡串接一个理想二极管D ,则( )图5A .开关S 断开瞬间,B 灯泡逐渐熄灭,A 灯泡立即熄灭 B .开关S 断开瞬间,A 灯泡逐渐熄灭,B 灯泡立即熄灭C .开关S 闭合瞬间,A 、B 灯泡同时亮D .开关S 闭合瞬间,A 灯泡先亮C L 是一带铁芯的理想电感线圈,其直流电阻为0,电路稳定后A 就熄灭了;开关S 断开瞬间B 立刻熄灭,由于二极管只正向导通,故自感线圈与A 无法形成回路,A 不会在闪亮,故AB 错误.闭合瞬间线圈相当于断路,二极管为正向电流,故电流走A 灯泡,B 也同时亮,故C 正确,D 错误.故选C.二、多项选择题(本题共4小题,每小题6分,共24分.每小题有多个选项符合题意.全部选对的得6分,选对但不全的得3分,错选或不答的得0分).6.(2017·连云港模拟)如图6所示,金属棒ab 置于水平放置的金属导轨cdef 上,棒ab 与导轨相互垂直并接触良好,导轨间接有电源.现用两种方式在空间加匀强磁场,ab 棒均处于静止.第一次匀强磁场方向竖直向上;第二次匀强磁场方向斜向左上与金属导轨平面成θ=30°角,两次匀强磁场的磁感应强度大小相等.下列说法中正确的是( )图6A .两次金属棒ab 所受的安培力大小不变B .第二次金属棒ab 所受的安培力大C .第二次金属棒ab 受的摩擦力小D .第二次金属棒ab 受的摩擦力大AC 两次磁场方向都与导体棒垂直,故安培力均为F =BIL ,故A 正确,B 错误;第一次安培力水平向右,导体棒受重力、支持力、安培力和向左的静摩擦力,根据平衡条件,有:f =F =BIL第二次安培力斜向右上方,与竖直方向成30°,导体棒受重力、支持力、安培力和向左的静摩擦力,如图所示:图--根据平衡条件,有:f ′=F sin 30°=12BIL故第二次的摩擦力较小,故C 正确,D 错误.7.两根足够长的平行光滑导轨竖直固定放置,顶端接一电阻R ,导轨所在平面与匀强磁场垂直.将一金属棒与下端固定的轻弹簧的上端拴接,金属棒和导轨接触良好,重力加速度为g ,如图7所示.现将金属棒从弹簧原长位置由静止释放,则( ) 【导学号:96622469】图7A .金属棒在最低点的加速度小于gB .回路中产生的总热量等于金属棒重力势能的减小量C .当弹簧弹力等于金属棒的重力时,金属棒下落速度最大D .金属棒在以后运动过程中的最大高度一定低于静止释放时的高度AD 如果不受安培力,由运动的对称性可知其在最低点的加速度大小为g ,但由于金属棒在运动过程中受到与速度方向相反的安培力作用,金属棒在最低点时的弹性势能一定比没有安培力做功时小,弹性形变量一定变小,故加速度小于g ,选项A 正确;回路中产生的总热量等于金属棒机械能的减少量,选项B 错误;当弹簧弹力与安培力之和等于金属棒的重力时,金属棒下落速度最大,选项C 错误;由于金属棒运动过程中产生电能,金属棒在以后运动过程中的最大高度一定低于静止释放时的高度,选项D 正确.8.如图8甲所示,一个匝数n =100的圆形导体线圈,面积S 1=0.4 m 2,电阻r =1 Ω.在线圈中存在面积S 2=0.3 m 2的垂直线圈平面向外的匀强磁场区域,磁感应强度B 随时间t 变化的关系如图乙所示.有一个R =2 Ω的电阻,将其两端a 、b 分别与图甲中的圆形线圈相连接,b 端接地,则下列说法正确的是( )图8A .圆形线圈中产生的感应电动势E =6 VB .在0~4 s 时间内通过电阻R 的电荷量q =6C C .设b 端电势为零,则a 端的电势φa =3 VD .在0~4 s 时间内电阻R 上产生的焦耳热Q =18 JBD 由法拉第电磁感应定律可得E =n ΔBS 2Δt ,由图乙结合数学知识可得k =ΔB Δt =0.64T/s=0.15 T/s ,将其代入可求E =4.5 V ,A 错;设平均电流为I -,由q =I -Δt =E R +r Δt =nΔΦΔt R +rΔt =nΔΦR +r,在0~4 s 穿过圆形导体线圈的磁通量的变化量为ΔΦ=0.6×0.3 Wb-0=0.18 Wb ,代入可解得q =6 C ,B 对.0~4 s 内磁感应强度增大,圆形线圈内磁通量增加,由楞次定律结合右手定则可得b 点电势高,a 点电势低;故C 错;由于磁感应强度均匀变化产生的电动势与电流均恒定,可得I =Er +R=1.5 A ,由焦耳定律可得Q=I 2Rt =18 J ,D 对.9.(2017·盐城模拟)如图9所示,两根等高光滑的14圆弧轨道,半径为r 、间距为L ,轨道电阻不计,在轨道顶端连有一阻值为R 的电阻,整个装置处在一竖直向上的匀强磁场中,磁感应强度为B .现有一根长度稍大于L 、电阻不计的金属棒从轨道最低位置cd 开始,在拉力作用下以初速度v 0向右沿轨道做匀速圆周运动至ab 处,则该过程中( )图9A .通过R 的电流方向为由外向内B .通过R 的电流方向为由内向外C .R 上产生的热量为πrB 2L 2v 04RD .流过R 的电量为πBLr2RAC 金属棒从轨道最低位置cd 运动到ab 处的过程中,穿过回路的磁通量减小,根据楞次定律判断得知通过R 的电流方向为由外向内.故A 正确,B 错误.金属棒做匀速圆周运动,回路中产生正弦式交变电流,可得产生的感应电动势的最大值为E m =BLv 0,有效值为E =22E m根据焦耳定律有:Q =E 2Rt时间为t =π2·r v 0联立解得Q =πrB 2L 2v 04R.故C 正确.通过R 的电量由公式:q =I Δt =E Δt R =ΔΦR =BLrR.故D 错误.三、计算题(本题共3小题,共51分.按题目要求作答,解答题应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位).10.(17分)如图10甲所示,两根足够长的光滑金属导轨ab 、cd 与水平面成θ=30°固定,导轨间距离为l =1 m ,电阻不计.一个阻值为R 0的定值电阻与电阻箱并联接在两金属导轨的上端.整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直,磁感应强度大小为B =1 T .现将一质量为m 、电阻可以忽略的金属棒MN 从图示位置由静止开始释放.金属棒下滑过程中与导轨接触良好.改变电阻箱的阻值R ,测定金属棒的最大速度v m ,得到1v m ­1R的关系如图乙所示.g 取10 m/s 2.求:(1)金属棒的质量m 和定值电阻R 0的阻值;(2)当电阻箱R 取2 Ω,且金属棒的加速度为14g 时,金属棒的速度.图10【解析】 (1)金属棒以速度v m 下滑时,根据法拉第电磁感应定律有E =Blv m 由闭合电路欧姆定律有E =IRR 0R +R 0当金属棒以最大速度v m 下滑时,根据平衡条件有BIl =mg sin θ 联立解得1v m =B 2l 2mg sin θ·1R +B 2l 2mg sin θ·1R 0由1v m ­1R 图象可知B 2l 2mg sin θ=1,B 2l 2mg sin θ·1R 0=0.5解得m =0.2 kg ,R 0=2 Ω.(2)设此时金属棒下滑的速度为v ,根据法拉第电磁感应定律有E ′=Blv 由闭合电路欧姆定律有E ′=I ′RR 0R +R 0当金属棒下滑的加速度为a =14g 时,根据牛顿第二定律有mg sin θ-BI ′l =ma联立解得v =0.5 m/s.【答案】 (1)0.2 kg 2 Ω (2)0.5 m/s11.(17分)矩形裸导线框长边的长度为2l ,短边的长度为l ,在两个短边上均接有阻值为R 的电阻,其余部分电阻均不计.导线框的位置如图11所示,线框内的磁场方向及分布情况如图,大小为B =B 0cos ⎝⎛⎭⎪⎫πx 2l .一电阻为R 的光滑导体棒AB 与短边平行且与长边始终接触良好.起初导体棒处于x =0处,从t =0时刻起,导体棒AB 在沿x 方向的外力F 的作用下做速度为v 的匀速运动.导体棒AB 从x =0运动到x =2l 的过程中,试求:【导学号:96622470】图11(1)某一时刻t 产生的电动势; (2)某一时刻t 所受的外力F ; (3)整个回路产生的热量.【解析】 (1)在t 时刻AB 棒的坐标为x =vt .感应电动势e =Blv =B 0lv cos πvt2l .(2)回路总电阻R 总=R +12R =32R回路感应电流I =eR 总=2B 0lv cosπvt2l 3R棒匀速运动时有F =F 安=BIl解得:F =2B 20l 2v cos 2⎝ ⎛⎭⎪⎫πvt 2l 3R ⎝ ⎛⎭⎪⎫0≤t ≤2l v . (3)导体棒AB 在切割磁感线的过程中产生半个周期的正弦交流电,感应电动势的有效值为E =22B 0lv 回路产生的电热Q =E 2R 总t通电时间t =2lv解得Q =2B 20l 3v3R【答案】 (1)B 0lv cos πvt2l(2)2B 20l 2v cos 2⎝ ⎛⎭⎪⎫πvt 2l 3R ⎝ ⎛⎭⎪⎫0≤t ≤2l v (3)2B 20l 3v3R12.(17分)如图12所示,两根足够长的平行金属导轨MN 、PQ 与水平面的夹角为α=30°,导轨光滑且电阻不计,导轨处在垂直导轨平面向上的有界匀强磁场中,两根电阻都为R =2 Ω,质量都为m =0.2 kg 的完全相同的细金属棒ab 和cd 垂直导轨并排靠紧放置在导轨上,与磁场上边界距离为x =1.6 m ,有界匀强磁场宽度为3x =4.8 m ,先将金属棒ab 由静止释放,金属棒ab 刚入磁场就恰好做匀速运动,此时立即由静止释放金属棒cd ,金属棒cd 在出磁场前已做匀速运动.两金属棒在下滑过程中与导轨接触始终良好(重力加速度g 取10 m/s 2),求:图12(1)金属棒ab 刚进入磁场时棒中电流I ;(2)金属棒cd 在磁场中运动的过程中通过回路某一截面的电量q ; (3)两根金属棒全部通过磁场的过程中回路产生的焦耳热Q .【解析】 (1)ab 匀速运动时,据动能定理mgx sin α=12mv 2解得v =2gx sin α=4 m/s重力的功率与电流功率相等,有mgv sin α=I 2·2R ,解得I =1 A.(2)方法一:金属棒ab 进入磁场时以速度v 先做匀速运动,设经过时间t 1,当金属棒cd 也进入磁场,速度也为v ,对金属棒cd :x =vt 12,此时金属棒ab 在磁场中的运动距离为X =vt 1=2x ,两棒都在磁场中时速度相同,无电流,金属棒cd 在磁场中而金属棒ab 已在磁场外时,cd 棒中才有电流且运动距离为2x ,q =I -t =BL 2x 2R =BLxR=0.8 C.方法二:两金属棒单独在磁场中时扫过的距离都为2x ,因而通过的电量大小相等.q =q ab =It 1=I2x 2gx sin α=1×0.8 C=0.8 C.(3)方法一:金属棒ab 在磁场中(金属棒cd 在磁场外)回路产生的焦耳热为Q 1=mg 2x sin α=3.2 J(或:Q 1=I 22Rt 1=mg 2x sin α),金属棒ab 、金属棒cd 都在磁场中运动时,回路不产生焦耳热,金属棒cd 在磁场中(金属棒ab 在磁场外),金属棒cd 的初速度为2g 2x sin α,末速度为2gx sin α,由动能定理:mg 2x sin α-Q 2=12m (2gx sin α)2-12m (2g 2x sin α)2 Q 2=mg 3x sin α=4.8 J Q =Q 1+Q 2=8 J.方法二:两根金属棒全部通过磁场的过程中回路产生的焦耳热Q 等于两棒损失的机械能,则有Q =mg 2x sin α+mg 3x sin α=mg 5x sin α=8 J.【答案】 (1)1 A (2)0.8 C (3)8 J。

高考物理一轮复习 高考真题备选题库 第九章 电磁感

高考物理一轮复习 高考真题备选题库 第九章 电磁感

权掇市安稳阳光实验学校第九章电磁感应第1节电磁感应现象楞次定律1. (2014·上海高考)如图,匀强磁场垂直于软导线回路平面,由于磁场发生变化,回路变为圆形。

则该磁场( ) A.逐渐增强,方向向外B.逐渐增强,方向向里C.逐渐减弱,方向向外D.逐渐减弱,方向向里解析:选CD 根据楞次定律可知,感应电流的磁场具有阻碍原磁通量变化的作用,回路变成圆形,说明面积在变大,根据增缩减扩的原理可知,线圈中的磁通量无论什么方向,只要减少即会发生此现象,故CD正确。

2.(2014·海南高考)如图,在一水平、固定的闭合导体圆环上方。

有一条形磁铁(N极朝上, S极朝下)由静止开始下落,磁铁从圆环中穿过且不与圆环接触,关于圆环中感应电流的方向(从上向下看),下列说法正确的是( )A.总是顺时针B.总是逆时针C.先顺时针后逆时针 D.先逆时针后顺时针解析:选C 磁铁从圆环中穿过且不与圆环接触,则导体环中先是向上的磁通量增加,磁铁过中间以后,向上的磁通量减少,根据楞次定律,产生的感应电流先顺时针后逆时针,选项C正确。

3.(2014·全国卷Ⅰ)在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是( )A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化解析:选D 只形成闭合回路,回路中的磁通量不变化,不会产生感应电流,A、B、C错误;给线圈通电或断电瞬间,通过闭合回路的磁通量变化,会产生感应电流,能观察到电流表的变化,D正确。

4.(2014·全国卷)很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒。

【金版教程】高三物理人教新课标一轮总复习习题第9章电磁感应9-2b【含解析】

【金版教程】高三物理人教新课标一轮总复习习题第9章电磁感应9-2b【含解析】

板块四限时·规范·特训时间: 45分钟满分: 100 分一、选择题(此题共11 小题,每题 6 分,共66 分。

此中1~ 7 为单项选择,8~ 11 为多项选择)1.如下图,闭合金属导线框搁置在竖直向上的匀强磁场中,磁场的磁感觉强度的大小随时间变化而变化。

以下说法中正确的选项是()A.当磁感觉强度增大时,线框中的感觉电流必定减小B.当磁感觉强度增大时,线框中的感觉电流必定增大C.当磁感觉强度减小时,线框中的感觉电流必定增大D.当磁感觉强度减小时,线框中的感觉电流可能不变答案D分析由法拉第电磁感觉定律可知: E = n ΔΦt = nSBt ,当磁感觉强度平均变化时,产生恒定的电动势,线框中的感觉电流就不变, D 选项正确;当磁感觉强度的变化率渐渐增大时,线框中产生的感觉电流增大,当磁感觉强度的变化率渐渐减小时,线框中产生的感应电流减小,因此A、 B、C 选项都是错误的。

2. 如下图,在磁感觉强度为B、方向垂直纸面向里的匀强磁场中,金属杆MN 在平行金属导轨上以速度v 向右匀速滑动, MN 中产生的感觉电动势为 E 1;若磁感觉强度增为2B,其余条件不变,MN 中产生的感觉电动势变成E 2。

则经过电阻R 的电流方向及 E 1与E 2之比分别为 ()A.c→ a,2∶1B. a→ c,2∶ 1C.a→ c,1∶2D. c→ a,1∶2答案C分析MN 切割磁感线产生的感生电动势 E = Blv,此中的l、 v 保持不变,因此E1∶ E2=B1∶ B2=1∶ 2,由右手定章可知经过 R 的电流方向 a→ c,因此 C 选项正确,其余选项是错误的。

3. [2015 ·西考前训练山]A、 B 两闭合圆形导线环用同样规格的导线制成,它们的半径之比 r A∶ r B= 2∶ 1,在两导线环包围的空间内存在一正方形界限的匀强磁场地区,磁场方向垂直于两导线环的平面,如下图。

当磁场的磁感觉强度随时间平均增大的过程中,流过两导线环的感觉电流大小之比为()A.I A=1B.I A= 2I B I BC.I A=1D.I A=1 I B4I B2答案DB分析 由法拉第电磁感觉定律可知:E = nS t ,此中 S 为有效面积,由图可知有效面 积 S A = S B ,磁场随时间平均增大, E A1因此 E B = 1;两闭合线圈是用同样规格的导线制成,粗细、资料都同样, 因此由 R =ρL可知,R A =L A=2πrA=r A =2,由欧姆定律得I =E,可知 I A =R BS 截R B L B 2πr B r B 1 R I B R A=12,因此只有D 选项正确,其余选项都是错误的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一 高考题组
1.
(单选)(2013·高考新课标全国卷Ⅱ)如图,在光滑水平桌面上有一边长为L 、电阻为R 的正方形导线框;在导线框右侧有一宽度为d (d >L )的条形匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动.t =0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域.下列v -t 图象中,可能正确描述上述过程的是( )
2.(单选)(2013·高考安徽卷)如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5 m ,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN 垂直于导轨放置,质量为0.2 kg ,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T .将导体棒MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10 m/s 2,sin 37°=0.6)( )
A .2.5 m/s 1 W
B .5 m/s 1 W
C .7.5 m/s 9 W
D .15 m/s 9 W
3.(多选)(2012·高考山东卷)如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g .下列选项正确的是( )
A .P =2mg v sin θ
B .P =3mg v sin θ
C .当导体棒速度达到v 2时加速度大小为g
2
sin θ
D .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功 二 模拟题组 4.(单选)(2014·泰安模拟)如图所示,间距为L ,电阻不计的足够长平行光滑金属导轨水平放置,导轨左端用一阻值为R 的电阻连接,导轨上横跨一根质量为m 、电阻也为R 的金属棒,金属棒与导轨接触良好.整个装置处于竖直向上、磁感应强度为B 的匀强磁场中.现
使金属棒以初速度v 0沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为q .下列说法正确的是( )
A .金属棒在导轨上做匀减速运动
B .整个过程中电阻R 上产生的焦耳热为m v 20
2
C .整个过程中金属棒在导轨上发生的位移为qR
BL
D .整个过程中金属棒克服安培力做功为m v 20
2
5.(2014·宁波模拟)如图所示,两平行导轨间距L =0.1 m ,足够长光滑的倾斜部分和粗糙的水平部分圆滑连接,倾斜部分与水平面的夹角θ=30°,垂直斜面方向向上的磁场的磁感应强度B =0.5 T ,水平部分没有磁场.金属棒ab 质量m =0.005 kg 、电阻r =0.02 Ω,运动中与导轨有良好接触,并且垂直于导轨,电阻R =0.08 Ω,其余电阻不计,当金属棒从斜面上离地高h =1.0 m 以上任何地方由静止释放后,在水平面上滑行的最大距离x 都是1.25 m .(取g =10 m/s 2)求:
(1)棒在斜面上的最大速度为多少? (2)水平面的动摩擦因数?
(3)从高度h =1.0 m 处滑下后电阻R 上产生的热量?
1.[解析]选D.由于导线框闭合,导线框以某一初速度向右运动,其右侧边开始进入磁场时,切割磁感线产生感应电动势和感应电流,右侧边受到安培力作用,做减速运动;导线框完全进入磁场中时,导线框中磁通量不变,不产生感应电流,导线框不受安培力作用,做匀速运动;导线框右侧边开始出磁场时,左侧边切割磁感线产生感应电动势和感应电流,左侧边受到安培力作用,导线框做减速运动;导线框进、出磁场区域时,受到的安培力不断减小,导线框的加速度不断减小,所以可能正确描述导线框运动过程的速度图象是D.
2.
[解析]选B.小灯泡稳定发光说明棒做匀速直线运动.此时:F 安=B 2l 2v
R 总
对棒满足:mg sin θ-μmg c os θ-B 2l 2v
R 棒+R 灯
=0
因为R 灯=R 棒则:P 灯=P 棒 再依据功能关系:mg sin θ·v -μmg c os θ·v =P 灯+P 棒 联立解得v =5 m/s ,P 灯=1 W ,所以B 项正确. 3.[解析]选AC.对导体棒受力分析如图.当导体棒以v 匀速运动时(如图甲),应有:mg sin
θ=F 安=B IL =B 2L 2v R ;当加力F 后以2v 匀速运动时(如图乙),F +mg sin θ=2B 2L 2v
R
,两式联
立得F =mg sin θ,则P =F ·2v =2mgv sin θ,A 正确B 错误;由牛顿第二定律,当导体棒的速
度为v 2时,a =mg sin θ-F 安″m =mg sin θ-
B 2L 2v
2R m =g
2sin θ,C 正确;由功能关系,当导体棒达
到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功与减少的重力势能之和,D 错误.
4.[解析]选D.设某时刻的速度为v ,则此时的电动势E =B Lv ,安培力F 安=B 2L 2v
2R
,由
牛顿第二定律有F 安=ma ,则金属棒做加速度减小的减速运动,选项A 错误;由能量守恒定律知,整个过程中克服安培力做功等于电阻R 和金属棒上产生的焦耳热之和,即W 安=Q =12mv 20,选项B 错误,D 正确;整个过程中通过导体棒的电荷量q =ΔΦ2R =BS 2R =BLx 2R
,得金属棒在导轨上发生的位移x =2qR
BL
,选项C 错误.
5.[解析](1)金属棒从离地高h =1.0 m 以上任何地方由静止释放后,在到达水平面之前已经开始匀速运动
设最大速度为v ,则感应电动势E =B Lv
感应电流I =E
R +r
安培力F =B IL
匀速运动时,有mg sin θ=F 解得v =1.0 m/s.
(2)在水平面上运动时,金属棒所受滑动摩擦力F f =μmg 金属棒在摩擦力作用下做匀减速运动,有 F f =ma v 2=2ax
解得μ=0.04.
(3)下滑的过程中,由动能定理可得:
mgh -W =1
2
mv 2
安培力所做的功等于电路中产生的焦耳热,有W =Q
电阻R 上产生的热量:Q R =R
R +r
Q
解得Q R =3.8×10-
2 J.
[答案](1)1.0 m/s (2)0.04 (3)3.8×10-
2 J
新课标第一网系列资料 。

相关文档
最新文档