2018年陕西省渭南市华州区中考数学一模试卷(解析版)
陕西省渭南市数学中考一模试卷
陕西省渭南市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018七上·陇西期中) 如下图所示,在数轴上表示到原点的距离为3个单位的点有()A . D点B . A点C . A点和D点D . B点和C点2. (2分)根据国家统计局的公布数据,2010年我国GDP的总量约为398 000亿元人民币.将398 000 用科学记数法表示应为()A . 398×103B . 0.398×106C . 3.98×105D . 3.98×1063. (2分)如图是一个正方体被截去一角后得到的几何体,它的俯视图是()A .B .C .D .4. (2分) (2020七下·西安月考) 下列计算正确的是()A .B .C .D .5. (2分) (2019七上·南海月考) 在学校举行的“我为祖国献首歌”的合唱比赛中,六位评委给初三某班的评分分别是:87、90、83、87、87、83,这组数据的众数和中位数分别是()A . 87,87B . 87,85C . 83,87D . 83,856. (2分)(2016·江西) 将不等式3x﹣2<1的解集表示在数轴上,正确的是()A .B .C .D .7. (2分) (2019八下·平潭期末) 对于方程:x(x+1)=0,下列判断正确的是()A . 只有一个实数根B . 有两个不同的实数根C . 有两个相同的实数根D . 没有实数根8. (2分)(2016·文昌模拟) 小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是()A .B .C .D .9. (2分)如图,已知∠DAE=∠B,∠DAB=∠C,则下列结论不成立的是()A . AD∥BCB . ∠B=∠CC . ∠DAB+∠B="180°"D . AB∥CD10. (2分)(2019七上·柘城月考) 观察下列图形及图形所对的算式,根据你发现的规律计算为正整数)的结果()A .B .C .D .二、填空题 (共5题;共5分)11. (1分)计算: =________,(n2)﹣4÷n10=________.12. (1分)二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx=m有实数根,则m的最小值为________.13. (1分)(2020·皇姑模拟) 如图,直角△ABC中,∠C=90°,AC=5,BC=12则内部五个小直角三角形的周长的和为________.14. (1分)(2017·淮安模拟) 如图,三个小正方形的边长都为1,则图中阴影部分面积的和是________(结果保留π).15. (1分) (2020八上·江汉期末) 如图,,四边形ABCD的顶点A在的内部,B,C两点在OM上(C在B,O之间),且,点D在ON上,若当CD⊥OM时,四边形ABCD的周长最小,则此时AD的长度是________.三、解答题 (共8题;共73分)16. (5分) (2019八下·防城期末) 己知:,,求下列代数式的值:(1);(2) .17. (7分)如图是浣江中学艺术节期间收到的七年级,八年级各类艺术节作品情况的统计图:(1)从图中你能否看出哪个年级收到的国画类作品的数量多?为什么?(2)已知七年级收到的徽标作品比八年级的多20件,收到的书法作品比八年级的少100件,请问这两个年级的艺术作品的总数分别是多少件?18. (10分)(2017·和平模拟) 如图,AB为⊙O的直径,CD为⊙O的弦,连接AC、BD,半径CO交BD于点E,过点C作切线,交AB的延长线于点F,且∠CFA=∠DCA.(1)求证:OE⊥BD;(2)若BE=2,CE=1①求⊙O的半径;②求△ACF的周长19. (5分) (2017八上·宜昌期中) 如图,一艘轮船以18海里/时的速度由西向东航行,在A处测得小岛C 在北偏东75°方向上,两小时后,轮船在B处测得小岛C在北偏东60°方向上,在小岛周围15海里处有暗礁,若轮船仍然按18海里/时的速度向东航行,请问是否有触礁危险?并说明理由.20. (9分) (2019九上·北京月考) 已知二次函数.(1)用配方法将其化为的形式;(2)在所给的平面直角坐标系xOy中,画出它的图象.21. (15分)某宾馆准备购进一批换气扇,从电器商场了解到:一台A型换气扇和三台B型换气扇共需275元;三台A型换气扇和二台B型换气扇共需300元.(1)求一台A型换气扇和一台B型换气扇的售价各是多少元;(2)若该宾馆准备同时购进这两种型号的换气扇共40台并且A型换气扇的数量不多于B型换气扇数量的3倍,请设计出最省钱的购买方案,并说明理由.22. (11分) (2019九上·郾城期中) 如图1,在△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点.将△ABC绕点A顺时针旋转a角(0°<a<180°),得到△AB′C′(如图2),连接DB',EC'.(1)探究DB'与EC'的数量关系,并结合图2给予证明;(2)填空:①当旋转角α的度数为________时,则DB'∥AE;②在旋转过程中,当点B',D,E在一条直线上,且AD=时,此时EC′的长为________.23. (11分)(2020·郑州模拟) 如图,已知抛物线y=ax2+bx+c经过点A,点B,与y轴负半轴交于点C,且OC=OB,其中B点坐标为(3,0),对称轴l为直线x=,D为抛物线顶点.(1) 求抛物线的解析式;(2) P 为抛物线上一点(不与C 重合),横坐标为m ,连接AP ,若∠PAB=∠CAB,求m 的值;(3) 在(2)的条件下,AP 交l 于点Q ,连接AD ,点N 为线段QD 上一动点(不与Q 、D 重合),且点N 的纵坐标为n.过点N 作直线与线段DA 相交于点M ,若对于每一个确定的n 的值,有且只有一个△DMN 与△DAQ 相似,请直接写出n 的取值范围.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共73分)16-1、16-2、17-1、17-2、18-1、19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、。
渭南市2018年中考数学试题及答案
渭南市2018年中考数学试题及答案(试卷满分120分,考试时间120分钟)一、选择题:(本大题共10题,每题3分,满分30分) 1、-711的倒数是A .711B .-711C .117D .-1172、如图,是一个几何体的表面展开图,则该几何体是 A .正方体B .长方体C .三棱柱D .四棱锥3、如图,若l 1∥l 2,l 3∥l 4,则图中与∠1互补的角有 A .1个B .2个C .3个D .4个4、如图,在矩形ABCD 中,A(-2,0),B(0,1).若正比例函数y =kx 的图像经过点C ,则k 的取值为 A .-12B .12C .-2D .2第2题图第3题图 第4题图5、下列计算正确的是 A .a 2·a 2=2a 4B .(-a 2)3=-a 6C .3a 2-6a 2=3a 2D .(a -2)2=a 2-46、如图,在△ABC 中,AC =8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为 A .423B .2 2C .823D.3 2第6题图 第8题图 第9题图7、若直线l 1经过点(0,4),l 2经过(3,2),且l 1与l 2关于x 轴对称,则l 1与l 2的交点坐标为 A .(-2,0)B .(2,0)C .(-6,0)D .(6,0)8、如图,在菱形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 和DA 的中点,连接EF 、FG 、GH 和HE .若EH =2EF ,则下列结论正确的是 A .AB =2EFB .AB =2EFC .AB =3EFD .AB =5EF9、如图,△ABC 是⊙O 的内接三角形,AB =AC ,∠BCA=65°,作CD∥AB,并与○O 相交于点D ,连接BD ,则∠DBC 的大小为 A .15°B .35°C .25°D .45°10、对于抛物线y =ax 2+(2a -1)x +a -3,当x =1时,y >0,则这条抛物线的顶点一定在 A .第一象限B .第二象限C .第三象限D .第四象限二、填空题:(本大题共4题,每题3分,满分12分) 11、比较大小:3 ____10(填<,>或=).12、如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则AFE 的度数为____________13、若一个反比例函数的图像经过点A(m ,m)和B(2m ,-1),则这个反比例函数的表达式为______________14、点O 是平行四边形ABCD 的对称中心,AD >AB ,E 、F 分别是AB 边上的点,且EF =12AB ;G 、H 分别是BC边上的点,且GH =13BC ;若S 1,S 2分别表示∆EOF 和∆GOH 的面积,则S 1,S 2之间的等量关系是______________.第12题图第14题图三、解答题(共11小题,计78分.解答应写出过程) 15.(本题满分5分)计算:(-3)×(-6)+|2-1|+(5-2π)016.(本题满分5分)化简:⎝⎛⎭⎪⎫a +1a -1-a a +1÷3a +1a 2+a17.(本题满分5分)如图,已知在正方形ABCD 中,M 是BC 边上一定点,连接AM ,请用尺规作图法,在AM 上求作一点P ,使得△DPA∽△ABM(不写做法保留作图痕迹)18、(本题满分5分)如图,AB∥CD,E 、F 分别为AB 、CD 上的点,且EC∥BF,连接AD ,分别与EC 、BF 相交与点G 、H ,若AB =CD ,求证:AG =DH .19.(本题满分7分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A 、B 、C 、D 四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表(第19题图)依据以上统计信息,解答下列问题: (1)求得m = ,n = ; (2)这次测试成绩的中位数落在 组; (3)求本次全部测试成绩的平均数. 20.(本题满分7分)A nD、15%B 36%C 30%周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.21.(本题满分7分)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国,小明家网店中红枣和小米这两种商品的相关信息如下表:根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg,其中,这种规格的红枣的销售量不低于600kg.假设这后五个月,销售这种规格的红枣味x(kg),销售这种规格的红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.22.(本题满分7分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.23.(本题满分8分)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC相交于点M、N.(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.23题图24.(本题满分10分)已知抛物线L:y=x2+x-6与x轴相交于A、B两点(点A在点B的左侧),并与y轴相交于点C.(1)求A、B、C三点的坐标,并求出△ABC的面积;(2)将抛物线向左或向右平移,得到抛物线L´,且L´与x轴相交于A´、B´两点(点A´在点B´的左侧),并与y轴交于点C´,要使△A´B´C´和△ABC的面积相等,求所有满足条件的抛物线的函数表达式.25.(本题满分12分)问题提出(1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为.问题探究(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM的最大值.问题解决(3)如图③所示,AB、AC、BC是某新区的三条规划路其中,AB=6km,AC=3km,∠BAC=60°,BC所对的圆心角为60°.新区管委会想在BC路边建物资总站点P,在AB、AC路边分别建物资分站点E、F.也就是,分别在BC线段AB和AC上选取点P、E、F.由于总站工作人员每天要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷环保和节约成本要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).图①图②图③参考答案一、选择题:(本大题共10题,每题3分,满分30分) 1.D 2.C 3.D 4.A 5.B 6.C 7.B 8.D 9.A 10.C 二、填空题:(本大题共4题,每题3分,满分12分)11.< 12.72° 13.y =4x14.2S 1=3S 2三、解答题(共11小题,计78分.解答应写出过程)15.解:原式=32+2-1+1=4 216.解:原式=3a +1(a +1)(a -1)×a(a +1)3a +1=aa -117.解:如图,P 即为所求点.18.证明:∵AB ∥CD ,∴∠A =∠D ∵CE ∥BF ,∴∠AHB =∠DGC 在∆ABH 和∆DCG 中,∵⎩⎪⎨⎪⎧∠A =∠D∠AHB =∠DGC AB =CD∴∆ABH ≌∆DCG(AAS),∴AH =DG ∵AH =AG +GH ,DG =DH +GH ,∴AG =HD 19.(1) 30, 19%; (2) B ;(3)测试的平均成绩=2581+5543+5100+2796200=80.1.20.解:∵CB ⊥AD ,ED ⊥AD ,∴∠CBA =∠EDA =90° ∵∠CAB =∠EAD ∴∆ABC ∽∆ADE ∴AD AB =DE BC∴AB +8.5AB =1.51∴AB =17,即河宽为17米.21.解:(1)设前五个月小明家网店销售这种规格的红枣a 袋,销售小米b 袋,根据题意列方程得:a +2b =3000,(60-40)a +(54-38)b =42000,解得:a =1500,b =750∴前五个月小明家网店销售这种规格的红枣1500袋,销售小米750袋 (2)根据题意得:y =(60-40)x +(54-38)×2000-x 2=12x +16000y 随x 的增大而增大,∵x≥600,∴当x =600时,y 取得最小值, 最小值为y =12×600+16000=23200∴小明家网店销售这种规格的红枣和小米至少获得总利润23200元.22.解:(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为120°360°=13;(2)由(1)可知,该转盘转出“1”“3”“-2”的概率相同,均为13,所有可能性如下表所示:由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为923.解:(1)如图,连接ON∵CD 是Rt △ABC 斜边AB 上的中线 ∴AD =CD =DB ∴∠DCB =∠DBC 又∵∠DCB =∠ONC ∴∠ONC =∠DBC ∴ON ∥AB∵NE 是⊙O 的切线,ON 是⊙O 的半径 ∴∠ONE =90°∴∠NEB =90°,即NE ⊥AB ;(2)如解图(1)所示,由(1)可知ON ∥AB , O 为⊙O 的圆心,∴OC =OB ,∠CMD =90°∴CN =NB =12CB ,MD ∥CB又∵D 是AB 的中点,∴MD =12CB∴MD =NB .24.解:(1)当y =0时,x 2+x -6=0,解得x 1=-3,x 2=2;当x =0时,y =-6∴A(-3,0),B(2,0),C(0,6) ∴S △ABC =12AB ·OC =12×5×6=15;(2)将抛物线向左或向右平移时,A´、B´两点间的距离不变,始终为5,那么要使△A ´B´C´和△ABC 的面积相等,高也只能是6设A(a ,0),则B(a +5,0),y =(x -a)(x -a -5),当x =0时,y =a 2+5a当C 点在x 轴上方时,y =a 2+5a =6,a =1或a =-6,此时y =x 2-7x -6或y =x 2+7x -6; 当C 点在x 轴下方时,y =a 2+5a =-6,a =-2或a =-3,此时y =x 2-x -6或y =x 2+x -6(与圆抛物线重合,舍去);所以,所有满足条件的抛物线的函数表达式为:y =x 2-7x -6,y =x 2+7x -6,y =x 2-x -6. 25.解:(1)R =AB =AC =5;(2)如25题解图(2)所示,连接MO 并延长交⊙O 于N ,连接OP显然,MP ≤OM +OP =OM +ON =MN ,ON =13,OM =132-122=5,MN =18 ∴PM 的最大值为18;25题解图(2) 25题解图(3)(3)假设P 点即为所求点,分别作出点P 关于AB 、AC 的对称点P´、P "连接PP´、P´E,PE ,P "F ,PF ,PP "由对称性可知PE +EF +FP =P´E+EF +FP "=P´P",且P´、E 、F 、P "在一条直线上,所以P´P"即为最短距离,其长度取决于PA 的长度25题解图(4)作出弧BC的圆心O,连接AO,与弧BC交于P,P点即为使得PA最短的点∵AB=6km,AC=3km,∠BAC=60°,∴∆ABC是直角三角形,∠ABC=30°,BC=3 3BC所对的圆心角为60°,∴∆OBC是等边三角形,∠CBO=60°,BO=BC=3 3∴∠ABO=90°,AO=37,PA=37-3 3∠P´AE=∠EAP,∠PAF=∠FAP",∴∠P´AP"=2∠ABC=120°,P´A=AP",∴∠AP´E=∠AP"F=30°∵P´P"=2P´Acos∠AP´E=3P´A=321-9所以PE+EF+FP的最小值为321-9km.。
渭南市中考数学一诊试卷
渭南市中考数学一诊试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018七上·无锡月考) 下列各数中,为负数的是()A .B .C .D .2. (2分) (2016七下·洪山期中) 如图,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐的角∠A 是100°第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C 是()A . 120°B . 130°C . 140°D . 150°3. (2分) (2017·大理模拟) 某市4月份最高气温统计如图所示,则在最高气温这组数据中,众数和中位数分别是()A . 21,21B . 21,21.5C . 21,22D . 22,224. (2分)(2017·河北模拟) 如图是由相同小正方体组成的立体图形,它的左视图为()A .B .C .D .5. (2分) (2016高二下·抚州期中) 设P是关于x的5次多项式,Q是关于x的3次多项式,则()A . P+Q是关于x的8次多项式B . P-Q是关于x的二次多项式C . 3P+Q是关于x的8次多项式D . P-Q是关于x的五次多项式6. (2分) (2016九上·北京期中) 如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A 点落在A′位置,若AC⊥A′B′,则∠BAC的度数是()A . 50°B . 60°C . 70°D . 80°7. (2分) (2020八上·德城期末) 已知a,b,c是三角形的三边,那么代数式a2-2ab+b2-c2的值()A . 大于零B . 等于零C . 小于零D . 不能确定8. (2分)已知点P在第三象限,且到x轴的距离为3,到y轴的距离为5,则点P的坐标为()A . (3,5)B . (-5,3)C . (3,-5)D . (-5,-3)9. (2分) (2018九上·梁子湖期末) 如图,在中,,,以点为中心,把逆时针旋转45°,得到,则图中阴影部分的面积为()A . 2B .C . 4D .10. (2分)如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延长线交y轴负半轴于E点,双曲线y=(x>0)的图像经过点A ,若S△BEC=6,则k等于().A . 3B . 6C . 12D . 24二、填空题 (共6题;共6分)11. (1分)(2018·安顺模拟) 自中国提出“一带一路·合作共赢”的倡议以来,一大批中外合作项目稳步推进.其中,由中国承建的蒙内铁路(连接肯尼亚首都罗毕和东非第一大港蒙巴萨港),是首条海外中国标准铁路,已于2017年5月31日正式投入运营.该铁路设计运力为25000000吨,将25000000吨用科学记数法表示,记作________吨.12. (1分)将式子化为不含负整数指数的形式是________.13. (1分)小成每周末要到距离家5千米的体育馆打球,他骑自行车前往体育馆比乘汽车多用10分钟,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x千米/时,根据题意列方程为________14. (1分) (2020九上·三门期末) 如图,一人口的弧形台阶,从上往下看是一组同心圆被一条直线所截得的一组圆弧.已知每个台阶宽度为32cm(即相邻两弧半径相差32cm),测得AB=200cm,AC=BD=40cm,则弧AB所在的圆的半径为________cm15. (1分)(2019·下城模拟) 如图,在直角△ABC中,∠ACB=90°,AC=3,BC=4,且点D,E分別在BC,AB上,连结AD和CE交于点H.若=2,=1,则BE的长为________.16. (1分)(2019·瑞安模拟) 如图所示,在平面直角坐标系xOy中,Rt△ABC的直角顶点C在第一象限,CB⊥x轴于点B,点A在第二象限,AB与y轴交于点G,且满足AG=OG= BG,反比例函数y=的图象分别交BC,AC于点E,F,CF= k.以EF为边作等边△DEF,若点D恰好落在AB上时,则k的值为________三、解答题 (共9题;共88分)17. (5分)(2019·巴彦模拟) 先化简,再求代数式÷(x﹣3﹣)的值,其中x=3tan45°+2cos30°.18. (5分)(2019·湘西) 解不等式组:并把解集在数轴上表示出来.19. (5分)已知:如图,A、E、F、B四点在同一直线上,AC⊥CE,BD⊥DF,AE=BF,AC=BD.求证:CF=DE.20. (12分)(2011·河南) 为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如图的调查问卷(单选).在随机调查了某市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图________,并计算扇形统计图中m=________;(2)该市支持选项B的司机大约有多少人?(3)若要从该市支持选项B的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少?21. (10分)(2019·浙江模拟) 已知关于x的一元二次方程x2-(m+1)x+ (m2+1)=0.(1)若该方程有实数根,求m的值.(2)对于函数y1=x2-(m+1)x+ (m2+1),当x>1时,y1随着x的增大而增大.①求m的范围.②若函数y2=2x+n与函数交于y轴上同一点,求n的最小值.22. (11分)(2017·贵阳) 综合题(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为________;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.23. (15分) (2020九下·江阴期中) 某种蔬菜每千克售价y1(元)与销售月份x之间的关系如图1所示,每千克成本y2(元)与销售月份x之间的关系如图2所示,其中图1中的点在同一条线段上,图2中的点在对称轴平行于y轴的同一条抛物线上,且抛物线的最低点的坐标为(6,1).(1)求出y1与x函数关系式;(2)求出y2与x函数关系式;(3)设这种蔬菜每千克收益为w元,试问在哪个月份出售这种蔬菜,w将取得最大值?并求出此最大值.(收益=售价﹣成本)24. (10分)(2019·株洲模拟) 如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M.(1)求证:△ABF≌△CBN;(2)求的值.25. (15分)(2017·邓州模拟) 如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4)与x轴交于点A 和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F事直线BC上方的抛物线上的一个动点,是否存在点F,使四边形ABFC的面积为15?若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共88分)17-1、18-1、19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、。
陕西省渭南市华州区、大荔县2018届九年级数学第三次中考模拟考试试题(扫描版)(2020062502
陕西省渭南市华州区、大荔县2018届九年级数学第三次中考模拟考试试题弐卷类型:比遊年大荔县豐黑严㈢注臂匸运““护“诗节警鹽寫,z.""为第】"第I 史人囂豐工兽:知碎涂"題 卡上*和银和堆操紙砲廉笔士汽:豎强题卡上*3.蓉血,老生書淮痢填醫自已時姓豕唯考逵号,考%后.只死答锤卡鬥匚丄 12018 D" 201S2.如图是某个几何休的三视圏,则该几何体是Ab 下列计算正确的是 A. 5a —3d —2C, o 3^2a=2a 1最大最全最精的教育资源网第I 卷(选择题选择瞬f 毎小题3分*共和裁} !..计算:201宀13. 2018 A. -2018 4-如图「A5//CD f 丄理于点儿 =则ND 的度数为A. 15° C. 35°B. 25。
D. 45*5+设直如,b )址7次函数尹=_£十3图象上的任意_点,宦下列礬式一定成立的是九 勿+北N I Q 口.甜一北=巾 u 珀一册=H» D-北+册=10 \如图'农38%少5的平分线交加于点 ?劭的延储于点几曲代眈=仏则朋的 A, 6 C. 4B. 5 D.37'设-次函数》=恳丰杭絆0)的图象经过点仃,十引,且P的值随X的值增大而增大*则该一次函数的图象匸定不经过2第一礙限乩第二象限C・第三象限D・第四象限8'如图,阿边形川甘UD是菱形,对角线仔口交干点6 AC=g, RD=£ M丄的干点町HDH与交于点G「则OG ft«J长度为10.已知二冻两数F =兀‘ +2兀+叩'+2zn-1f用为常数),当白变個片的値满l<r<3时,与其对应的函数值p的绘小值为5,则也的值为A. 1 或一?B. — I 或5C. I 或一§D. I 或3第II卷(非选择题共90分)二、填空题(本大題共4小題,毎小题3分,共2分)1H在实擞亠2, - J5, 0,叭亦中,巖小的一个数是_________________ .12.若一牛多边形的內角和是它外角和的3倍,则这个多边形的边数为.J3.如图,点卫是反比例函数y=-(x>0)的图象上枉意一点,AB//x轴交反比X例函数y=~~的图象于点心以丸庁为边^DABCD,英中点G D在工轴上,则最大最全最精的教育资源网14.如图,正方形ABCD 的边长为4, ZDAC 的角平分线如?交QC 于点硏 点尸* 0分别是线段』D 和朋上的动点•则DQ+PQ^&小值是 _________________________________________ ・(DL ) 试题羸2页(拽b 真)***侏女的*.共再分)(本收 5 什)计算:2cps30o -|Vl2-51+(-1018)°+,厂丨衣題$分)如1/已知门线/肚点儿 禺求柞Qo,使得©O 经过点爪 ‘比圆心Of,:h^/.k.(保阳作图痕迹.不写那法}攸(本亀5分)集校随机捕取部分学生,ST 学习可眈逬行调用 将11对自己 做错的题目进f 亍整理、分析“改正气选项为:很少、有时、常常、总是)的调查数 据进行了蜓理,焼制成部分统计图如下;请根据图中信息,解答F 列问题:(1) 谊说査的样本容笊为—"很少"对应風形的昭心角为 ________(2) 请补全統统计图;(3) 若谈梭MH50Q 名学生,诫你估计其中“总J&"对诺题进行無理、分析・ 改正的学生有多畑(DL) Ifc* 试題蚪 3页(^-60最大最全最精的教育资源网(本懸5井)先代斶,再求値:%, b= ___________ %,其中x-^/3.暮选朋选K 人數的条脳统计图權中 軒叫 常常 g 僅(本题7分)如图,在RtAXflC中,= =加比Z^C的平分线川D交ZTU于点D,作』F"*& 点几连接FC求证:四边形ADCF H菱形-20.(本题7分)如图,旗秆初的顶端B在夕阳的余辉]瘩;;警上的点D处,某校数学课外兴趣小组的同学正在测療该旗轩的高度二;;/?底部虫处测得点D的仰角为15\ M=10米,又测得乂妙"记翅斜圾5的坡度为f=I :苗.求旗杆鼻日的高度(巧司.人结果精确到午位)・21.(本题7分)某離菜基地加工厂有工人100人,现对人进行工柞分匚或采摘蔬菜,或对当日采摘的蔬菜进行精抓工,毎人每天只能做一项工很若采摘蔬菜*每人毎天平均采摘46 kg;若对当日采摘的蔬菜进行特加工.每人每天可精加工32k書(毎天精加工的籲菜和没来得及辎加匸的蔬菜全部悟出).已知毎千克蔬菜直接出售可获利润1元*将加工后再出售*每千克可获利润3元*设每天安排菽名工人进行蔬菜精加工・一(1)求毎天蔬菜精加工后再出售所得利润X元}与就人)的函数关系式;⑵如何我排精加工人数才能使一天所获的利润艮大*最大和订dd少?(DL)试*6第却页(共召厕最大最全最精的教育资源网22'(本圈7分)某校计划从各班各抽出丨名学生作为代表舉加学狡级织的作 外游学计划'明明和华华都是本班的帳选人,经过老师与同学们商駅,用所学的概 率知识设计摸球游戏决定谁去,设计的游我规则如下;取AA 川两个下透M 的布袋• 分别放入黄色和白色两种除颜包外均相同的乒乓球,其中M 布袋中放矍3牛黄弓 的乒乓球和2亍白色的兵乓球;打布応屮妆程1个茨色的乒乓球,3个臼邑的乒乓 球・明明从M 布盂摸一牛乒乓球*华华从N 布袋摸一个乒乓球进行试骗、若两人 摸出的两个乒乓球祁是敢色,则明明去;若朗人摸出的两牛乒乓球都是戸色*则华 华去;若两人摸出乒乓球颇色不一样,则放回帀良以上动作,直到分出胜负为」匕, 根据以上规则回蓉下列问題,(I }求一枕性換出一个黄色乒乓球和一个白色乒乓球的槪率i口)网斷该游戏是否公平?井说明现由.23-(AIS 8分)如图,△ZkC 内接于0O. /fD 是宜径,过点/!的切线 与①的延长线交于点氏⑴求证:E" = EBg ^两点,英中点彳的坐标为(黔0),拋物线的顶点为比(1)求占的值,并求出点几占的坐标;(刀在x 轴下方的抛物线上是否存在点使厶如果存在,请 直接写出点M 的坐标;如果不存在'试说明理由.(DL ) 试龜第占页(并&页)最大最全最精的教育资源网担替題%)片爲肚边的 点问庖碎廟尸,/丫点^为一出池.驱脚側现走准帚祀小略出〉上建一•个鉗霁临时 休崽殖:f H 省一上地,便休息纳凉帘尸列水池E 与大门&的亚离之和毗 短’那灶符合条件的点肥 苦存在,谢作出点尸的位鬣,井求出这个城脱 舸鮎护祁<£,请说明理由(DL)數学试题第倾任&帀)最大最全最精的教育资源网 疋方形初CD 的対伯纯RD 上柞一点几PA^rPCiA 小; 斗;[为粗形.佃ra 的对角我nn 上一动虑,肿",H 「=2忑t 邑,谜作一卓巴p^+rcM 小”片求这个最小債匚:$怖傅疔一块边疑为1000米的峻不采M^AHCD t MJ 1200来.{.曹 J 1—18 .(本题5分) 解:(1) 200 12 36 43.2一、 选择题(本大题共1 . C2 . B3 . 二、 填空题(本大题共 2018年大荔县华州区中考模拟考试(三) 数学试题参考答案10小题,每小题3分,共30分) D 4 . C 5 . B 6 . D 4小题,每小题3分, B 8 . B 9 . C 10 . A 12分)11 . - 2 12 .八边形 13 . 5 三、解答题(本大题共 11小题,共78 分) 15 . 解: 解:(本题5分)原式=2 X— |2 -J ■ — 5| +1="-;+ 2;-5+ 1 =3 —: - 4. (本题5分)(x+2)a -8xx+2原式=叮么“—匕― 1(3分) (4分) (5分)(4分)17.解: 当.■ 一、」_;(本题5分)如图,O O 为所作的圆.时,原式=-■(5分)(5分)备迭冷逢幵人故的帛ft 址ilH-(4分)(2)(3) 3500X 36%=1260 人(5分)(2分)19 .(本题7分)证明:••• AF// BC, •••/ AFE=Z CDE •••点E是AC的中点,• AE= CE[ZAFE = ^CDE^AEF = AGED在厶AFE^n^ CDE K 僅总=CE • AF= CD AFE^A CDE AAS), (3 分)••• AF/ CD •四边形ADCF i平行四边形,(AE^AB (4分)AD=AD在厶AED^ ABD中,• △AEH ABD SAS),•/ AED=Z B= 90°, 即DF丄AC•四边形ADCF是菱形.(7分)20.(本题7分)E,过点D作DF丄AE于点F,丄历•/ i = tan / DCF= \-•••/ DC= 30°, 又•••/ DA(= 15°,•/ ADC= 30°—15°= 15°,•C D= AC= 10(米),(2分)在Rt △ DCF中, DF= CD-sin30=10X - = 5(米),CF= CD- cos30°= 10X _ = 5L」-;(米),/ CDF= 60°.•/ BDF= 45°+ 15°+ 60°= 120°,•/ E=Z BDF-Z DFE= 120°—90°= 30°,5DF H (4分)在Rt△ DFE中, EF=丨TI “=二=5lJ-:(米),•• AE= AOF CF^ EF= 10+ 5 lJ-' + 5 lJ-' =10L」-;+ 10(米), 在Rt △ BAE中,J3 10^AB= AE- tan E= (10 L」-'+ 10) x : = 10+2 〜16(米). 答:旗杆AB的高度约为16米.21 .(本题7分)(6分)(7分)解:(1)y = 3X 32x ,即 y = 96x ;(2 分) ⑵ 设每天全部售出后获利 w 元,贝U w= 96x + [48(100 — x ) — 32x ] X 1= 16x + 4800,(4分)由题意知 48(100 — x ) > 32x ,解得 x w 60,(5 分)•/ w = 16x + 4800 , k = 16>0, ••• w 随x 的增大而增大,•••当 x = 60 时,w 有最大值,w 最大=16X 60+ 4800= 5760(兀). 即每天安排60名工人进行蔬菜精加工才能使一天所获利润最大,最大利润是5760元. (7分)22 .(本题7分)解:(1)设黄色的乒乓球记为 H,白色的乒乓球记为 B 根据题意列表如下:明明 华华HH H B BH HH HH HH HB HB B BH BH BH 1 BB BB B BH BH BH BB BB BBHBHBHBBBB由上表可知一共有11有11种,故R 摸出一黄一白)=川;3(2)由(1)中所列表格可知:P (明明获胜)=「川,63••• AE 为O O 的切线,AD 是O O 的直径, •••/ DAE=Z ABD= 90°,•••/ EAB=Z D,又•••/ C=Z D, EAB=Z C,•••/ E 是公共角,BAEo ^ ACE •- EA : EC= EB : EA • EA = EB- EC⑵ 如上图,过点 B 作BHLAE 于点H, •/ EA= AC E =Z C,1•••/ EAB=Z C, EAB=Z E, • AB= EB • AH= EH= 1 AE= 1 X 12= 6 ,最大最全最精的教育资源网P (华华获胜)=2: = J :,3 3(5分)(7分)勿^ .' ,•该游戏不公平. 23 .(本题8分)(1)证明:如图,连接 BD (3分)(4分)3)迟I iAB= , AD 是直点M 连血 25EH 15最大最全最精的教育资源网 ⑵存在,点M -,—: ) •如图,过点 P 作x 轴的垂线,垂足为 C,连接AP BP ■/ cos / EAB=], 15••• cos E = 1 ,•••在 Rt △ BEH 中, BE=上二=_ ,(8 分)经过点A (2 , 0),解:(1 )•••抛物线 y = _ x 2 + bx + 6lJ -: y = _ x 2— 4 x + 6令y = o ,贝U - •点A 的坐标为 •••点B 的坐2x — 4 (2 ,(6 ,16lJ-'x + 6'」-;=0,解得 X 1 = 2, X 2= 6,0), 0);10^• y = _ x 2— 4L 」-;x + 6 lJ -' •••点P 的坐标为(4 , — 2-(x — 4)2— 2心;,•点 A (2 , 0) , B (6 , 0) , P (4 , — 2"」), • AB= 4 A 」」I 匚4,B p ==4 ,ABP 是等边三角形,/ APB^Z ABP AP= AB如上图,过点 A 作/ PAB 的角平分线,交 PB 于点N ,交抛物线于 接 PM BM 贝U AML PB 于点 N, PN= BN / PAM / BAM[AP = AB• cos D = cos / EAE = 1 , • sin D = i , • AD= :山」=_ , 25•••o o 的半径为■. 24 •(本题10分)• 0= ] X22+ 2b + 6J -' ,解得b = — 4门」,•••抛物线的表达式为(4分)需要更完整的资源请到 新世纪教育网/ ABD= 90< APAM = Z£AM在厶 AMP^ AIW ,1/M 二•••△ AM4 AMB SAS) • 故存在这样的点 M 使厶AM ^^AMB最大最全最精的教育资源网 设直线AM的解析式为y= kx + b,••• B(6 , 0), P(4 , - 2」一;),点N是PB的中点,•- N5,—九;),•••点N在直线AM上,•••将A(2 , 0) , N(5,—J-;)代入得•••直线AM的解析式为y=—?x+•••点M在抛物线上,•将点Mm - 苗 2苗*—匚耐匚=_ m—4j-' m+ 6 L」-;,1633 ,,设点Mm —1 m+ j2^3m^ r )代入得,小+b ,解得解得m= 3 , m= 2(不合题意,舍去),16 10^3------故点M的坐标为(二,一」).25.(本题12分)解:(1)如图,连接AC交BD于点P,则点P就是所要求作的点.在点Q 连接AQ CQ 则CQb AQAC= AP+ CP ( 2 分)(10 分)BD上任取一点异于点P的(2)如图,作点C关于BD的对称点C,连接EC'交BD于点P',连接CP , •••点C与点C 关于BD对称,• CP + P' E= C P' + P' E= C E,在BD上找任一点异于P'的点P,连接PE PC C P,贝U C P+ PE= PO PE >C' E,•••点P'就是所要求作的点,EC的长度就是PE+ PC的最小值.•••四边形ABCD是矩形,•/ BCD= 90°,CD^AB_ 遇•/ AB= 2, BC= 2 一;,• tan / CBD= .1 :>_ = 1 ,•••/ CB= 30°,•••点C和点C'关于BD对称,设CC交BD于点G•B D是CC的垂直平分线,连接BC,则/ C BD=Z CBD= 30°, BC = BC•••/ C' BC= 60°,「.A BC C为等边三角形,•••点E是BC的中点,• C E丄BC •- C E= 2 BC= 3,•P' C+ P' E= 3,即PE+ PC的最小值为3; (6分)(3)存在.如图,连接AE交BD于点P,点P就是所要求作的点,AE的长度就是休息纳凉室P到水池E与大门C的距离之和最短的值.•••四边形ABCD是菱形,需要更完整的资源请到新世纪教育网 学校租用教师免费下载需要更完整的资源请到 新世纪教育网 学校租用教师免费下载•••点C 关于BD 的轴对称点为点A , 连接AE 交BD 于点P,点P 就是所要求作的点.••• AB= 1000 米,AC= 1200 米,BDLAC 于点 O 则 OA= 600 米,0B==800(米).1 1过点 A 作 AF U BC 于点 H,贝U [ AH- BC= [ AC- OBAC OB• AH= _ _ = 960 (米),在 Rt △ ABH 中, BH=、.:丄匸- V = ■11 1 r,' •EH= 500 - 280 = 220(米),在 Rt △ AEH 中, AE= I 上壬亠=■「. . - ~985(米).故存在点P ,且最短距离约为 985米.最大最全最精的教育资源网=280(米),(12 分)。
陕西省渭南市华州区、大荔县2018届九年级数学第三次中考模拟考试试题()
2018年大荔县华州区中考模拟考试(三)数学试题参考答案一、选择题(本大题共10小题,每小题3分,共30分)1.C 2.B 3.D 4.C 5.B 6.D 7.B 8.B 9.C 10.A二、填空题(本大题共4小题,每小题3分,共12分)11.﹣2 12.八边形13.5 14.三、解答题(本大题共11小题,共78分)15.(本题5分)解:原式=2×-|2-5|+1 (3分)=+2-5+1 (4分)=3-4. (5分) 16.(本题5分)解:原式==(4分)当时,原式=(5分)17.(本题5分)解:如图,⊙O为所作的圆.(5分)18.(本题5分)解:(1) 200 12 36 43.2 (2分)(2)(4分)(3)3500×36%=1260人 (5分) 19.(本题7分)证明:∵AF∥BC,∴∠AFE=∠CDE,∵点E是AC的中点,∴AE=CE,在△AFE和△CDE中,,∴△AFE≌△CDE(AAS),(3分)∴AF=CD,∵AF∥CD,∴四边形ADCF是平行四边形,(4分)在△AED和△ABD中,,∴△AED≌△ABD(SAS),∴∠AED=∠B=90°,即DF⊥AC.∴四边形ADCF是菱形.(7分)20.(本题7分)解:如图,延长BD、AC交于点E,过点D作DF⊥AE于点F,∵i=tan∠DCF==,∴∠DCF=30°,又∵∠DAC=15°,∴∠ADC=30°-15°=15°,∴CD=AC=10(米),(2分)在Rt△DCF中,DF=CD ·sin30°=10×=5(米),CF=CD ·cos30°=10×=5(米),∠CDF=60°.∴∠BDF=45°+15°+60°=120°,∴∠E=∠BDF-∠DFE=120°-90°=30°,(4分)在Rt△DFE中,EF ===5(米),∴AE=AC+CF+EF=10+5+5=10+10(米),在Rt△BAE中,AB=AE·tan E=(10+10)×=10+≈16(米).(6分)答:旗杆AB的高度约为16米.(7分)21.(本题7分)解:(1)y=3×32x,即y=96x;(2分)(2)设每天全部售出后获利w元,则w=96x+[48(100-x)-32x]×1=16x+4800,(4分)由题意知48(100-x)≥32x,解得x≤60,(5分)∵w=16x+4800,k=16>0,∴w随x的增大而增大,∴当x=60时,w有最大值,w最大=16×60+4800=5760(元).即每天安排60名工人进行蔬菜精加工才能使一天所获利润最大,最大利润是5760元.(7分)22.(本题7分)解:(1)设黄色的乒乓球记为H,白色的乒乓球记为B.根据题意列表如下:由上表可知一共有20种等可能情况,其中一次性摸出一个黄色乒乓球和一个白色乒乓球的情况有11种,故P(摸出一黄一白)=; (3分)(2)由(1)中所列表格可知:P(明明获胜)=,P(华华获胜)==, (5分)∵≠,∴该游戏不公平. (7分)23.(本题8分)解:(1)证明:如图,连接BD,∵AE为⊙O的切线,AD是⊙O的直径,∴∠DAE=∠ABD=90°,∴∠EAB=∠D,又∵∠C=∠D,∴∠EAB=∠C,∵∠E是公共角,∴△BAE∽△ACE,∴EA∶EC=EB∶EA,∴EA2=EB·EC;(4分)(2)如上图,过点B作BH⊥AE于点H,∵EA=AC,∴∠E=∠C,∵∠EAB=∠C,∴∠EAB=∠E,∴AB=EB,∴AH=EH=AE=×12=6,∵cos∠EAB=,∴cos E=,∴在Rt△BEH中,BE==,∴AB=,∵AD是直径,∴∠ABD=90°,∵cos D=cos∠EAB=,∴sin D=,∴AD==,∴⊙O的半径为. (8分)24.(本题10分)解:(1)∵抛物线y=x2+bx+6经过点A(2,0),∴0=×22+2b+6,解得b=-4,∴抛物线的表达式为y=x2-4x+6,∵y=x2-4x+6=(x-4)2-2,∴点P的坐标为(4,-2),令y=0,则x2-4x+6=0,解得x1=2,x2=6,∵点A的坐标为(2,0),∴点B的坐标为(6,0);(4分)(2)存在,点M(,-).如图,过点P作x轴的垂线,垂足为C,连接AP、BP.∵点A(2,0),B(6,0),P(4,-2),∴AB=4,AP==4,BP==4,∴△ABP是等边三角形,∠APB=∠ABP,AP=AB,如上图,过点A作∠PAB的角平分线,交PB于点N,交抛物线于点M,连接PM、BM,则AM⊥PB于点N,PN=BN,∠PAM=∠BAM在△AMP和△AMB中,,∴△AMP≌△AMB(SAS).故存在这样的点M,使△AMP≌△AMB.设直线AM的解析式为y=kx+b,∵B(6,0),P(4,-2),点N是PB的中点,∴N(5,-),∵点N在直线AM上,∴将A(2,0),N(5,-)代入得,解得,∴直线AM的解析式为y=-x+,设点M(m,-m+),∵点M在抛物线上,∴将点M(m,-m+)代入得,-m+=m2-4m+6,解得m1=,m2=2(不合题意,舍去),故点M的坐标为(,-).(10分)25.(本题12分)解:(1)如图,连接AC交BD于点P,则点P就是所要求作的点.在BD上任取一点异于点P的点Q,连接AQ、CQ,则CQ+AQ>AC=AP+CP(2分)(2)如图,作点C关于BD的对称点C′,连接EC′交BD于点P′,连接CP′,∵点C与点C′关于BD对称,∴CP′+P′E=C′P′+P′E=C′E,在BD上找任一点异于P′的点P,连接PE、PC、C′P,则C′P+PE=PC+PE >C′E,∴点P′就是所要求作的点,EC′的长度就是PE+PC的最小值.∵四边形ABCD是矩形,∴∠BCD=90°,∵AB=2,BC=2,∴tan∠CBD==,∴∠CBD=30°,∵点C和点C′关于BD对称,设CC′交BD于点G,∴BD是CC′的垂直平分线,连接BC′,则∠C′BD=∠CBD=30°,BC′=BC,∴∠C′BC=60°,∴△BC′C为等边三角形,∵点E是BC的中点,∴C′E⊥BC,∴C′E=BC=3,∴P′C+P′E=3,即PE+PC的最小值为3;(6分)(3)存在.如图,连接AE交BD于点P,点P就是所要求作的点,AE的长度就是休息纳凉室P到水池E与大门C 的距离之和最短的值.∵四边形ABCD是菱形,∴点C关于BD的轴对称点为点A,连接AE交BD于点P,点P就是所要求作的点.∵AB=1000 米,AC=1200 米,BD⊥AC于点O,则OA=600 米,OB==800(米).过点A作AH⊥BC于点H,则AH·BC=AC·OB,∴AH==960 (米),在Rt△ABH中,BH===280(米),∴EH=500-280=220(米),在Rt△AEH中,AE==≈985(米).故存在点P,且最短距离约为985米.(12分)。
2018年渭南市中考数学试题与答案
2018年渭南市中考数学试题与答案2018年渭南市中考数学试题与答案考生须知:1.本试卷满分为120分,考试时间120分钟。
2.答题前,考生需将自己的姓名、考号、考场、座位号在答题卡上填写清楚。
3.保持卡面整洁,不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:(共10题,每题3分,满分30分)1.求-7的倒数。
A。
-11/7B。
-7/11C。
7/11D。
11/72.如图,是一个几何体的表面展开图,则该几何体是什么?A。
正方体B。
长方体C。
三棱柱D。
四棱锥3.如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有几个?A。
1个B。
2个C。
3个D。
4个4.如图,在矩形ABCD中,A(-2.0),B(0.1)。
若正比例函数y=kx的图像经过点C,则k的取值为多少?A。
-1/2B。
1/2C。
-2D。
25.下列计算正确的是什么?A。
a^2·a^2=2a^4B。
(-a)^2=a^2C。
3a-6a=3aD。
(a-2)^2=a^2-4a+46.如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE 的长为多少?A。
4√2B。
2√2C。
8/3D。
3√27.若直线l1经过点(0.4),l2经过(3.2),且l1与l2关于x 轴对称,则l1与l2的交点坐标为什么?A。
(-2.0)B。
(2.0)C。
(-6.0)D。
(6.0)8.如图,在菱形ABCD中,点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、GH和HE。
若EH=2EF,则下列结论正确的是什么?A。
AB=2EFB。
AB=2EF+BCC。
AB=3EFD。
AB=5EF9.如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与○O相交于点D,连接BD,则∠DBC的大小为多少?A。
15°B。
陕西省渭南市中考数学一模考试试卷
陕西省渭南市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)的倒数是A .B .C . 2D .2. (2分)(2017·深圳) 随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A .B .C .D .3. (2分)(2014·温州) 如图所示的支架是由两个长方体构成的组合体,则它的主视图是()A .B .C .D .4. (2分)下列说法:①121的算术平方根是11;②﹣的立方根是﹣;③﹣81的平方根是±9;④实数和数轴上的点一一对应,其中错误的有()A . 0个B . 1个C . 2个D . 3个5. (2分)(2013·玉林) 直线c与a、b均相交,当a∥b时(如图),则()A . ∠1>∠2B . ∠1<∠2C . ∠1=∠2D . ∠1+∠2=90°6. (2分)(2017·宁波模拟) 一次数学测试后,随机抽取6名学生成绩如下:86,85,88,80,88,95,关于这组数据说法错误的是()A . 方差是20B . 众数是88C . 中位数是86D . 平均数是877. (2分) (2016高一下·新乡期末) 下列大写英文字母中,是轴对称图形的有()A . 4个B . 5个C . 6个D . 7个8. (2分)(2018·武汉模拟) 下列计算结果是x5的为()A . x10÷x2B . x6﹣xC . x2•x3D . (x3)29. (2分) (2019八上·柳州期末) 如图,x=()A . 65B . 75C . 85D . 9510. (2分)如图,在正方形ABCD的对角线上取点E,使得∠BAE=15°,连接AE,CE.延长CE到F,连接BF,使得BC=BF.若AB=1,则下列结论:①AE=CE;②F到BC的距离为;③BE+EC=EF;④S△AED=+;⑤S△EBF=.其中正确的个数是()A . 2个B . 3个C . 4个D . 5个二、填空题 (共6题;共6分)11. (1分)(2017·番禺模拟) 在函数y= 中,自变量x的取值范围是________12. (1分)(2016·巴彦) 分解因式:﹣2xy2+8xy﹣8x=________.13. (1分) (2017九上·邗江期末) 已知关于x的一元二次方程x2﹣2x+k=0的一个根是3,则另一个根是________.14. (1分) (2018九上·浦东期中) 在中,,,,________.15. (1分)如图,已知四边形ABCD中,AB∥CD,若不添加任何辅助线,请添加一个条件:________,使四边形ABCD是平行四边形.(只需填一个即可)16. (1分) (2017七上·台州期中) 定义新运算“*”为:a*b= ,则当x=3时,计算2*x﹣4*x 的结果为________.三、解答题 (共9题;共82分)17. (5分)(2017·邵阳模拟) 计算:﹣32﹣()﹣1+2sin30°.18. (5分)先化简:(x﹣)÷,其中的x选一个适当的数代入求值.19. (10分) (2017七下·江都月考) 如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为________;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.20. (10分)(2018·本溪) “五·一”期间,九年一班同学从学校出发,去距学校6千米的本溪水洞游玩,同学们分为步行和骑自行车两组,在去水洞的全过程中,骑自行车的同学比步行的同学少用40分钟,已知骑自行车的速度是步行速度的3倍.(1)求步行同学每分钟走多少千米?(2)如图是两组同学前往水洞时的路程y(千米)与时间x(分钟)的函数图象.完成下列填空:①表示骑车同学的函数图象是线段________;②已知A点坐标(30,0),则B点的坐标为(________).21. (6分)(2017·淮安) 一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.(1)用树状图或列表等方法列出所有可能出现的结果;(2)求两次摸到的球的颜色不同的概率.22. (10分) (2019八上·江海期末) 如图所示,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB 的中点.如果点P在线段BC上以1厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.(1)若点Q与点P的运动速度相等,经过3秒后,△BPD与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?23. (15分) (2016七上·萧山期中) 在如图所示的网格中,每个小正方形的边长均为1,正方形顶点叫网格格点,连结两个网格格点的线段叫网格线段.(1)请你画一个边长为的正方形;(2)若是图中能用网格线段表示的最大正整数,是图中能用网格线段表示的最小无理数,求a2-2b2的平方根.24. (15分)(2017·瑞安模拟) 如图,抛物线y=x2﹣3x交x轴的正半轴于点A,点B(,a)在抛物线上,点C是抛物线对称轴上的一点,连接AB、BC,以AB、BC为邻边作□ABCD,记点C纵坐标为n,(1)求a的值及点A的坐标;(2)当点D恰好落在抛物线上时,求n的值;(3)记CD与抛物线的交点为E,连接AE,BE,当△AEB的面积为7时,n=________.(直接写出答案)25. (6分)(2017·盘锦) 如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC 上的动点(不与点B,点C重合),连接OC,OP,将线段OP绕点P顺时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=15°,BP=4,请求出BQ的长参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共82分)17-1、18-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、。
渭南市初三中考数学一模模拟试卷【含答案】
渭南市初三中考数学一模模拟试卷【含答案】一.选择题(满分30分,每小题3分)1.估计﹣2的值在()A.0到l之间B.1到2之问C.2到3之间D.3到4之间2.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.3.下列计算正确的是()A.3x2﹣2x2=1 B. +=C.x÷y•=x D.a2•a3=a54.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④5.甲、乙两人进行射击比赛,在相同条件下各射击10次,他们的平均成绩一样,而他们的方差分别是S甲2=1.8,S乙2=0.7,则成绩比较稳定的是()A.甲稳定B.乙稳定C.一样稳定D.无法比较6.如图是一个几何体的三视图,则该几何体的展开图可以是()A.B.C.D.7.已知函数y=kx+b的图象如图所示,则函数y=﹣bx+k的图象大致是()A.B.C.D.8.下列一元二次方程中,有两个相等的实数根的是()A.x2﹣4x﹣4=0 B.x2﹣36x+36=0C.4x2+4x+1=0 D.x2﹣2x﹣1=09.如图,在菱形ABCD中,点P从B点出发,沿B→D→C方向匀速运动,设点P运动时间为x,△APC的面积为y,则y与x之间的函数图象可能为()A.B.C.D.10.如图,在菱形ABCD中,∠ABC=60°,AB=4,点E是AB边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为()A.B.2C.πD.π二.填空题(满分18分,每小题3分)11.因式分解:a3﹣9a=.12.方程=的解是.13.已知,如图,扇形AOB中,∠AOB=120°,OA=2,若以A为圆心,OA长为半径画弧交弧AB于点C,过点C作CD⊥OA,垂足为D,则图中阴影部分的面积为.14.若点(1,5),(5,5)是抛物线y=ax2+bx+c上的两个点,则此抛物线的对称轴是.15.已知点A是双曲线y=在第一象限的一动点,连接AO,过点O做OA⊥OB,且OB=2OA,点B在第四象限,随着点A的运动,点B的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为.16.如图,在矩形ABCD中,AB=15,BC=17,将矩形ABCD绕点D按顺时针方向旋转得到矩形DEFG,点A落在矩形ABCD的边BC上,连接CG,则CG的长是.三.解答题17.(9分)(x+3)(x﹣1)=12(用配方法)18.(9分)如图,在矩形ABCD中,M是BC中点,请你仅用无刻度直尺按要求作图.(1)在图1中,作AD的中点P;(2)在图2中,作AB的中点Q.19.(10分)先化简,再求值(1﹣)÷,其中x=4.20.(10分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D 等级的学生有多少名?(4)若从体能为A 等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.21.(12分)如图,在⊙O 中,点A 是的中点,连接AO ,延长BO 交AC 于点D . (1)求证:AO 垂直平分BC .(2)若,求的值.22.(12分)如图,将一矩形OABC 放在直角坐标系中,O 为坐标原点,点A 在y 轴正半轴上,点E 是边AB 上的一个动点(不与点A 、B 重合),过点E 的反比例函数y =(x >0)的图象与边BC 交于点F(1)若△OAE 的面积为S 1,且S 1=1,求k 的值;(2)若OA =2,OC =4,反比例函数y =(x >0)的图象与边AB 、边BC 交于点E 和F ,当△BEF 沿EF 折叠,点B 恰好落在OC 上,求k 的值.23.(12分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西55°方向行驶4千米至B地,再沿北偏东35°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B、C 两地的距离(结果保留整数)(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8)24.(14分)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣,过点A(﹣3,2)和点B(2,),与y轴交于点C,连接AC交x轴于点D,连接OA,OB(1)求抛物线y=ax2+bx﹣的函数表达式;(2)求点D的坐标;(3)∠AOB的大小是;(4)将△OCD绕点O旋转,旋转后点C的对应点是点C′,点D的对应点是点D′,直线AC′与直线BD′交于点M,在△OCD旋转过程中,当点M与点C′重合时,请直接写出点M到AB的距离.25.(14分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.参考答案1.B.2.B.3.D.4.D.5.B.6.A.7.C.8.C.9.A.10.D.11.a(a+3)(a﹣3).12.x=﹣413.π+.14.x=3.15.y=﹣.16..17.解:将原方程整理,得x2+2x=15(1分)两边都加上12,得x2+2x+12=15+12(2分)即(x+1)2=16开平方,得x+1=±4,即x+1=4,或x+1=﹣4(4分)∴x1=3,x2=﹣5(5分)18.解:(1)如图点P即为所求;(2)如图点Q即为所求;19.解:原式=(﹣)÷=•=,当x=4时,原式==.20.解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);补全条形图如图所示:(3)700×=56,所以估计该中学八年级学生中体能测试结果为D等级的学生有56名;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率==.21.(1)证明:延长AO交BC于H.∵=,∴OA⊥BC,∴BH=CH,∴AO垂直平分线段BC.(2)解:延长BD交⊙O于K,连接CK.在Rt△ACH中,∵tan∠ACH==,∴可以假设AH=4k,CH=3k,设OA=r,在Rt△BOH中,∵OB2=BH2+OH2,∴r2=9k2+(4k﹣r)2,∴r=k,∴OH=AH=OA=k,∵BK是直径,∴∠BCK=90°,∴CK⊥BC,∵OA⊥BC,∴OA∥CK,∵BO=OK,BH=HC,∴CK=2OH=k,∵CK∥OA,∴△AOD∽△CKD,∴===.22.解:(1)设E(a,b),则OA=b,AE=a,k=ab∵△AOE的面积为1,∴k=1,k=2;答:k的值为:2.(2)过E作ED⊥OC,垂足为D,△BEF沿EF折叠,点B恰好落在OC上的B′,∵OA=2,OC=4,点E、F在反比例函数y=的图象上,∴E(,2),F(4,),∴EB=EB′=4﹣,BF=B′F=2﹣,∴=,由△EB′F∽△B′CF得:,∵DE=2,∴B′C=1,在Rt△B′FC中,由勾股定理得:12+()2=(2﹣)2,解得:k=3,答:k的值为:3.23.解:过B作BD⊥AC于点D.在Rt△ABD中,BD=AB•sin∠BAD=4×0.8=3.2(千米),∵△BCD中,∠CBD=90°﹣35°=55°,∴CD=BD•tan∠CBD=4.48(千米),∴BC=CD÷sin∠CBD≈6(千米).答:B、C两地的距离大约是6千米.24.解:(1)∵抛物线y=ax2+bx﹣过点A(﹣3,2)和点B(2,)∴解得:∴抛物线的函数表达式为:y=x2+x﹣(2)当x=0时,y=ax2+bx﹣=﹣∴C(0,﹣)设直线AC解析式为:y=kx+c∴解得:∴直线AC解析式为y=﹣x﹣当y=0时,﹣x﹣=0,解得:x=﹣1∴D(﹣1,0)(3)如图1,连接AB∵A(﹣3,2),B(2,)∴OA2=32+(2)2=21,OB2=22+()2=7,AB2=(2+3)2+()2=28 ∴OA2+OB2=AB2∴∠AOB=90°故答案为:90°.(4)过点M作MH⊥AB于点H,则MH的长为点M到AB的距离.①如图2,当点M与点C′重合且在y轴右侧时,∵△OCD绕点O旋转得△OC'D'(即△OMD)∴OM=OC=,OD'=OD=1,∠MOD'=∠COD=90°∴MD'==2,∠MD'O=60°,∠OMD'=30°∵∠MOD'=∠AOB=90°∴∠MOD'+∠BOM=∠AOB+∠BOM即∠BOD'=∠AOM∵OA=,OB=∴∴△BOD'∽△AOM∴∠BD'O=∠AMO=60°,∴∠AMD'=∠AMO+∠OMD'=60°+30°=90°,即AM⊥BD' 设BD'=t(t>0),则AM=t,BM=BD'﹣MD'=t﹣2∵在Rt△AMB中,AM2+BM2=AB2∴(t)2+(t﹣2)2=28解得:t1=﹣2(舍去),t2=3∴AM=3,BM=1∵S△AMB=AM•BM=AB•MH∴MH=②如图3,当点M与点C′重合且在y轴左侧时,∴∠MOD'﹣∠AOD'=∠AOB﹣∠AOD'即∠AOM=∠BOD'∴同理可证:△AOM∽△BOD'∴∠AMO=∠BD'O=180°﹣∠MD'O=120°,∴∠AMD'=∠AMO﹣∠OMD'=120°﹣30°=90°,即AM⊥BD' 设BD'=t(t>0),则AM=t,BM=BD'+MD'=t+2∵在Rt△AMB中,AM2+BM2=AB2∴(t)2+(t+2)2=28解得:t1=2,t2=﹣3(舍去)∴AM=2,BM=4=AM•BM=AB•MH∵S△AMB∴MH=综上所述,点M到AB的距离为或.25.(1)证明:连接OA,由圆周角定理得,∠ACB=∠ADB,∵∠ADE=∠ACB,∴∠ADE=∠ADB,∵BD是直径,∴∠DAB=∠DAE=90°,在△DAB和△DAE中,,∴△DAB≌△DAE,∴AB=AE,又∵OB=OD,∴OA∥DE,又∵AH⊥DE,∴OA⊥AH,∴AH是⊙O的切线;(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,∴∠E=∠ACD,∴AE=AC=AB=6.在Rt△ABD中,AB=6,BD=8,∠ADE=∠ACB,∴sin∠ADB==,即sin∠ACB=;(3)证明:由(2)知,OA是△BDE的中位线,∴OA∥DE,OA=DE.∴△CDF∽△AOF,∴==,∴CD=OA=DE,即CD=CE,∵AC=AE,AH⊥CE,∴CH=HE=CE,∴CD=CH,∴CD=DH.中学数学一模模拟试卷一.选择题(满分30分,每小题3分)1.估计﹣2的值在()A.0到l之间B.1到2之问C.2到3之间D.3到4之间2.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.3.下列计算正确的是()A.3x2﹣2x2=1 B. +=C.x÷y•=x D.a2•a3=a54.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④5.甲、乙两人进行射击比赛,在相同条件下各射击10次,他们的平均成绩一样,而他们的方差分别是S甲2=1.8,S乙2=0.7,则成绩比较稳定的是()A.甲稳定B.乙稳定C.一样稳定D.无法比较6.如图是一个几何体的三视图,则该几何体的展开图可以是()A.B.C.D.7.已知函数y=kx+b的图象如图所示,则函数y=﹣bx+k的图象大致是()A.B.C.D.8.下列一元二次方程中,有两个相等的实数根的是()A.x2﹣4x﹣4=0 B.x2﹣36x+36=0C.4x2+4x+1=0 D.x2﹣2x﹣1=09.如图,在菱形ABCD中,点P从B点出发,沿B→D→C方向匀速运动,设点P运动时间为x,△APC的面积为y,则y与x之间的函数图象可能为()A.B.C.D.10.如图,在菱形ABCD中,∠ABC=60°,AB=4,点E是AB边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为()A.B.2C.πD.π二.填空题(满分18分,每小题3分)11.因式分解:a3﹣9a=.12.方程=的解是.13.已知,如图,扇形AOB中,∠AOB=120°,OA=2,若以A为圆心,OA长为半径画弧交弧AB于点C,过点C作CD⊥OA,垂足为D,则图中阴影部分的面积为.14.若点(1,5),(5,5)是抛物线y=ax2+bx+c上的两个点,则此抛物线的对称轴是.15.已知点A是双曲线y=在第一象限的一动点,连接AO,过点O做OA⊥OB,且OB=2OA,点B在第四象限,随着点A的运动,点B的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为.16.如图,在矩形ABCD中,AB=15,BC=17,将矩形ABCD绕点D按顺时针方向旋转得到矩形DEFG,点A落在矩形ABCD的边BC上,连接CG,则CG的长是.三.解答题17.(9分)(x+3)(x﹣1)=12(用配方法)18.(9分)如图,在矩形ABCD中,M是BC中点,请你仅用无刻度直尺按要求作图.(1)在图1中,作AD的中点P;(2)在图2中,作AB的中点Q.19.(10分)先化简,再求值(1﹣)÷,其中x=4.20.(10分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D 等级的学生有多少名?(4)若从体能为A 等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.21.(12分)如图,在⊙O 中,点A 是的中点,连接AO ,延长BO 交AC 于点D . (1)求证:AO 垂直平分BC .(2)若,求的值.22.(12分)如图,将一矩形OABC 放在直角坐标系中,O 为坐标原点,点A 在y 轴正半轴上,点E 是边AB 上的一个动点(不与点A 、B 重合),过点E 的反比例函数y =(x >0)的图象与边BC 交于点F(1)若△OAE 的面积为S 1,且S 1=1,求k 的值;(2)若OA =2,OC =4,反比例函数y =(x >0)的图象与边AB 、边BC 交于点E 和F ,当△BEF 沿EF 折叠,点B 恰好落在OC 上,求k 的值.23.(12分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西55°方向行驶4千米至B地,再沿北偏东35°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B、C 两地的距离(结果保留整数)(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8)24.(14分)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣,过点A(﹣3,2)和点B(2,),与y轴交于点C,连接AC交x轴于点D,连接OA,OB(1)求抛物线y=ax2+bx﹣的函数表达式;(2)求点D的坐标;(3)∠AOB的大小是;(4)将△OCD绕点O旋转,旋转后点C的对应点是点C′,点D的对应点是点D′,直线AC′与直线BD′交于点M,在△OCD旋转过程中,当点M与点C′重合时,请直接写出点M到AB的距离.25.(14分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.参考答案1.B.2.B.3.D.4.D.5.B.6.A.7.C.8.C.9.A.10.D.11.a(a+3)(a﹣3).12.x=﹣413.π+.14.x=3.15.y=﹣.16..17.解:将原方程整理,得x2+2x=15(1分)两边都加上12,得x2+2x+12=15+12(2分)即(x+1)2=16开平方,得x+1=±4,即x+1=4,或x+1=﹣4(4分)∴x1=3,x2=﹣5(5分)18.解:(1)如图点P即为所求;(2)如图点Q即为所求;19.解:原式=(﹣)÷=•=,当x=4时,原式==.20.解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);补全条形图如图所示:(3)700×=56,所以估计该中学八年级学生中体能测试结果为D等级的学生有56名;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率==.21.(1)证明:延长AO交BC于H.∵=,∴OA⊥BC,∴BH=CH,∴AO垂直平分线段BC.(2)解:延长BD交⊙O于K,连接CK.在Rt△ACH中,∵tan∠ACH==,∴可以假设AH=4k,CH=3k,设OA=r,在Rt△BOH中,∵OB2=BH2+OH2,∴r2=9k2+(4k﹣r)2,∴r=k,∴OH=AH=OA=k,∵BK是直径,∴∠BCK=90°,∴CK⊥BC,∵OA⊥BC,∴OA∥CK,∵BO=OK,BH=HC,∴CK=2OH=k,∵CK∥OA,∴△AOD∽△CKD,∴===.22.解:(1)设E(a,b),则OA=b,AE=a,k=ab∵△AOE的面积为1,∴k=1,k=2;答:k的值为:2.(2)过E作ED⊥OC,垂足为D,△BEF沿EF折叠,点B恰好落在OC上的B′,∵OA=2,OC=4,点E、F在反比例函数y=的图象上,∴E(,2),F(4,),∴EB=EB′=4﹣,BF=B′F=2﹣,∴=,由△EB′F∽△B′CF得:,∵DE=2,∴B′C=1,在Rt△B′FC中,由勾股定理得:12+()2=(2﹣)2,解得:k=3,答:k的值为:3.23.解:过B作BD⊥AC于点D.在Rt△ABD中,BD=AB•sin∠BAD=4×0.8=3.2(千米),∵△BCD中,∠CBD=90°﹣35°=55°,∴CD=BD•tan∠CBD=4.48(千米),∴BC=CD÷sin∠CBD≈6(千米).答:B、C两地的距离大约是6千米.24.解:(1)∵抛物线y=ax2+bx﹣过点A(﹣3,2)和点B(2,)∴解得:∴抛物线的函数表达式为:y=x2+x﹣(2)当x=0时,y=ax2+bx﹣=﹣∴C(0,﹣)设直线AC解析式为:y=kx+c∴解得:∴直线AC解析式为y=﹣x﹣当y=0时,﹣x﹣=0,解得:x=﹣1∴D(﹣1,0)(3)如图1,连接AB∵A(﹣3,2),B(2,)∴OA2=32+(2)2=21,OB2=22+()2=7,AB2=(2+3)2+()2=28 ∴OA2+OB2=AB2∴∠AOB=90°故答案为:90°.(4)过点M作MH⊥AB于点H,则MH的长为点M到AB的距离.①如图2,当点M与点C′重合且在y轴右侧时,∵△OCD绕点O旋转得△OC'D'(即△OMD)∴OM=OC=,OD'=OD=1,∠MOD'=∠COD=90°∴MD'==2,∠MD'O=60°,∠OMD'=30°∵∠MOD'=∠AOB=90°∴∠MOD'+∠BOM=∠AOB+∠BOM即∠BOD'=∠AOM∵OA=,OB=∴∴△BOD'∽△AOM∴∠BD'O=∠AMO=60°,∴∠AMD'=∠AMO+∠OMD'=60°+30°=90°,即AM⊥BD' 设BD'=t(t>0),则AM=t,BM=BD'﹣MD'=t﹣2∵在Rt△AMB中,AM2+BM2=AB2∴(t)2+(t﹣2)2=28解得:t1=﹣2(舍去),t2=3∴AM=3,BM=1∵S△AMB=AM•BM=AB•MH∴MH=②如图3,当点M与点C′重合且在y轴左侧时,∴∠MOD'﹣∠AOD'=∠AOB﹣∠AOD'即∠AOM=∠BOD'∴同理可证:△AOM∽△BOD'∴∠AMO=∠BD'O=180°﹣∠MD'O=120°,∴∠AMD'=∠AMO﹣∠OMD'=120°﹣30°=90°,即AM⊥BD' 设BD'=t(t>0),则AM=t,BM=BD'+MD'=t+2∵在Rt△AMB中,AM2+BM2=AB2∴(t)2+(t+2)2=28解得:t1=2,t2=﹣3(舍去)∴AM=2,BM=4=AM•BM=AB•MH∵S△AMB∴MH=综上所述,点M到AB的距离为或.25.(1)证明:连接OA,由圆周角定理得,∠ACB=∠ADB,∵∠ADE=∠ACB,∴∠ADE=∠ADB,∵BD是直径,∴∠DAB=∠DAE=90°,在△DAB和△DAE中,,∴△DAB≌△DAE,∴AB=AE,又∵OB=OD,∴OA∥DE,又∵AH⊥DE,∴OA⊥AH,∴AH是⊙O的切线;(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,∴∠E=∠ACD,∴AE=AC=AB=6.在Rt△ABD中,AB=6,BD=8,∠ADE=∠ACB,∴sin∠ADB==,即sin∠ACB=;(3)证明:由(2)知,OA是△BDE的中位线,∴OA∥DE,OA=DE.∴△CDF∽△AOF,∴==,∴CD=OA=DE,即CD=CE,∵AC=AE,AH⊥CE,∴CH=HE=CE,∴CD=CH,∴CD=DH.第四题图DC A EB中学数学一模模拟试卷一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选 项选出来,用2B 铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1. 下列各数中:-4、12π、39、0.010010001、73、0是无理数的有A.1个B.2个C.3个D.4个2.关于x 的方程-2x 2+4x+1=0的两个根分别是x 1、x 2,则x 12+x 22是A.2B. -2C. 3D. 53.点P 在平面直角坐标系中,位于x 轴上方,距离x 轴3个单位长度,距离y 轴4个单位长度,则点P 关于x 轴对称的点的坐标是A.(3,4)、(-3,4)B. (4,-3)、(-4,-3)C. (3,-4)、(-3,-4)D. (4,3)、(-4,3) 4.如图,在四边形ABCD 中,点E 在线段DC 的延长线上,能使直线AD ∥BC 的条件有:(1)∠D=∠BCE ,(2)∠B=∠BCE ,(3)∠A+∠B=1800,(4)∠A+∠D=1800,(5)∠B=∠DA.1个B. 2个C. 3个D. 4个5.等腰三角形的两边长分别是2cm 、5cm ,则等腰三角形的周长是 A.9cm B.12cm C.9cm 或12cm D. 都不对6.如图,在Rt △ABC 中,∠C=900,Sin ∠A=43,AB=8cm ,则△ABC 的面积是A.6cmB.24cmC. 27cmD. 67cm7.班主任老师给获得文明小组的同学们发放水果,若每人5个,多8个,若每人7个,差4个,问有多少名同学?多少个水果?A.6名,38个B.4名,28个C. 5名,30个D. 7名,40个 8.如图,二次函数y=ax 2+bx+c 的图像如图所示,直线m 是 图像的对称轴,则下列各式的取值正确的是:a>0, b<0,c>0, b 2-4ac<0,2a+b>0,a+b+c>0A.1个B. 2个C. 3个D. 4个A D CB MNE F 第十七题图H9.X 的值适合不等式31x 122-x +≤+且x 是正整数,则x 的值是 A.0,1 B.0,1,2 C. 1,2 D.110. 如图,某下水道的横截面是圆形的,水面CD 的宽度为2m ,F 是线段CD 的中点,EF 经过圆心O 交⊙O 与点E ,EF=3m ,则 ⊙O 直径的长是 A. m 32 B.m 35 C.m 34 D. m 31011.如图,等腰△ABC 中,∠BAC=1200,点D 在边BC 上,等腰△ADE 绕点A 顺时针旋转300后,点D 落在边AB 上,点E 落在边AC 上,若AE=2cm ,则四边形ABDE 的面积是多少A. 4cmB. 3cmC.23cmD.43cm12.如图,在正方形ABCD 中,对角线相交于点O ,BN 平分∠CBD ,交边CD 于点N ,交对角线AC 于点M ,若OM=1,则线段DN 的长是多少A. 1.5B. 2C. 2D. 22第Ⅱ卷(非选择题,共114分)二、填空题:本大题共8个小题,每小题5分,满分40分.13.某校春季运动会,小红参加100米和200米的比赛,每组六人分别在1--6号跑道同时进行比赛,问小红两次都抽到3号跑道的概率是 。
2018年陕西省渭南市华州区中考数学一模试卷
(2)2017 年市政共
80 套,采购专项经费总计不超过 112 万元,采购合同规定:每套 A 型健身器材售价为 1.6
万元,每套 B 型健身器材售价为 1.5(1﹣n)万元.
①A 型健身器材最多可购买多少套?
②安装完成后,若每套 A 型和 B 型健身器材一年的养护费分别是购买价的 5%和 15%,市
24.(10 分)如图,在平面直角坐标系 xOy 中,把抛物线 C1:y=﹣x2 沿 x 轴翻折,再平移 得到抛物线 C2,恰好经过点 A(﹣3,0)、B(1,0),抛物线 C2 与 y 轴交于点 C,抛物 线 C1:y=﹣x2 与抛物线 C2 的对称轴交于 D 点.
(1)求抛物线 C2 的表达式. (2)在抛物线 C2 的对称轴上是否存在一点 M,使得以 M、O、D 为顶点的三角形与△BOD
可以是( )
A.3
B.4
C.5
D.6
8.(3 分)如图,把正方形纸片 ABCD 沿对边中点所在的直线对折后展开,折痕为 MN,再
过点 B 折叠纸片,使点 A 落在 MN 上的点 F 处,折痕为 BE.若 AB 的长为 2,则 FM 的
长为( )
A.2
B.
C.
D.1
9.(3 分)如图所示,已知⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,连接 CD,若 AD=
A.23+26=29
B.23﹣24=2﹣1
C.23×23=29
D.24÷22=22
4.(3 分)如图,AB∥CD,∠A=45°,∠C=28°,则∠AEC 的大小为( )
A.17°
B.62°
C.63°
D.73°
5.(3 分)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度 h 随时间 t
2018年陕西省中考数学模拟试题及参考答案.doc
2018年陕西省中考模拟试题数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣22=()A.﹣2 B.﹣4 C.2 D.42.2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×1033.下列四个图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.4.如图,如图,直线a,b被直线c所截,若直线a∥b,∠1=108°,则∠2的度数为()A.108°B.82°C.72°D.62°5.化简+的结果是()A.x+1 B.x﹣1 C.x2﹣1 D.6.直角三角形的三边为a﹣b,a,a+b且a、b都为正整数,则三角形其中一边长可能为()A.61 B.71 C.81 D.917.一次函数y=kx+b过点(﹣2,5),且它的图象与y轴的交点和直线y=﹣x﹣3与y轴的交点相同,那么一次函数的解析式是()A.y=﹣4x﹣3 B.y=﹣4x+3 C.y=4x﹣3 D.y=4x+38.如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC9.如图,⊙O是△ABC的外接圆,直径AD与BC相交于点E,连接CD,若⊙O 的半径为5,AB=AC=8,DE=3,则EC长为()A.4 B.C.D.10.二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b>0;②2a <b;③2a﹣b﹣1<0;④2a+c<0.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共4小题,每小题3分,共12分)11.计算的结果等于12.不等式组的解集是13.点P在反比例函数y=(k≠0)的图象上,点Q(2,4)与点P关于y轴对称,则反比例函数的表达式为.14.如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE 和△BPC,则四边形PCDE面积的最大值是.三、解答题(本大题共11小题,共78分)15.(5分)(1)计算:(﹣2)3+()﹣2﹣•sin45°(2)化简:(﹣a)÷.16.(5分)解方程:①的解x=.②的解x=.③的解x=.④的解x=.…(1)根据你发现的规律直接写出⑤,⑥个方程及它们的解.(2)请你用一个含正整数n的式子表示上述规律,并求出它的解.17.(5分)已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.18.(5分)张老师抽取了九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C 组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,规定x≥6.25为合格,x≥9.25为优秀.并绘制出扇形统计图和频数分布直方图(不完整).(1)抽取的这部分男生有人,请补全频数分布直方图;(2)抽取的这部分男生成绩的中位数落在组?扇形统计图中D组对应的圆心角是多少度?(3)如果九年级有男生400人,请你估计他们掷实心球的成绩达到合格的有多少人?19.(7分)已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.20.(7分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B 处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.21.(7分)小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 分才乘上缆车,缆车的平均速度为180米/分.设小亮出发x 分后行走的路程为y 米.图中的折线表示小亮在整个行走过程中y随x 的变化关系.(1)小亮行走的总路程是米,他途中休息了分.(2)分别求出小亮在休息前和休息后所走的路程段上的步行速度.(3)当小颖到达缆车终点时,小亮离缆车终点的路程是多少?22.(7分)甲、乙两人玩“石头、剪刀、布”游戏,他们在不透明的袋子中放入形状、大小均相同的12张卡片,其中写有“石头”“剪刀”“布”的卡片张数分别为3、4、5,两人各随机摸出一张卡片(先摸者不放回卡片)来比胜负,并约定:“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,但同种卡片不分胜负.(1)若甲先摸,则他摸出“石头”的概率是多少?(2)若甲先摸出“石头”,则乙获胜的概率是多少?(3)若甲先摸,则他摸出哪种卡片获胜的可能性最大?23.(8分)如图,AB是⊙O直径,点C在⊙O上,AD平分∠CAB,BD是⊙O的切线,AD与BC相交于点E.(1)求证:BD=BE;(2)若DE=2,BD=,求CE的长.24.(10分)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a ≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b 满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.25.(12分)平面内,如图,在▱ABCD中,AB=10,AD=15,tanA=,点P为AD 边上任意点,连接PB,将PB绕点P逆时针旋转90°得到线段PQ.(1)当∠DPQ=10°时,求∠APB的大小;(2)当tan∠ABP:tanA=3:2时,求点Q与点B间的距离(结果保留根号);(3)若点Q恰好落在▱ABCD的边所在的直线上,直接写出PB旋转到PQ所扫过的面积.(结果保留π)参考答案:一、1.B2.C3.A4.C5.A6.C7.A8.B9.B10.C二、11.912.x>313.y=﹣14.2三、解答题(本大题共11小题,共78分)15.(5分)解:(1)原式=﹣8+9﹣2=﹣1;(2)原式=÷=•=.16.(5分)解:①x=0②x=1③x=2④x=3.(1)第⑤个方程:解为x=4.第⑥个方程:解为x=5.(2)第n个方程:解为x=n﹣1.方程两边都乘x+1,得n=2n﹣(x+1).解得x=n﹣1.17.(5分)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵BE=DF,∴AB+BE=CD+DF,即AE=CF,∵AB∥CD,∴AE∥CF,∴∠E=∠F,∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF.18.(5分)解:(1)设抽取的这部分男生有x人.则有×100%=10%,解得x=50,C组有50×30%=15人,D组有50﹣5﹣10﹣15﹣15=5人,条形图如图所示:(2)抽取的这部分男生成绩的中位数落在C组.∵D组有15人,占×100%=30%,∴对应的圆心角=360°×30%=108°.故答案为C(3)(1﹣10%)×400=360人,估计他们掷实心球的成绩达到合格的有360人.19.(7分)(1)证明:∵四边形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵点E,O,F分别为AB,AC,AD的中点,∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)解:当AB⊥BC时,四边形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四边形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四边形AEOF是正方形.20.(7分)解:由题意得:BE=,AE=,∵AE﹣BE=AB=m米,∴﹣=m(米),∴CE=(米),∵DE=n米,∴CD=+n(米).∴该建筑物的高度为:(+n)米.21.(7分)解:(1)根据图象知:小亮行走的总路程是3600米,他途中休息了20分钟.故答案为3600,20;…(2分)(2)小亮休息前的速度为:(米/分)…(4分)小亮休息后的速度为:(米/分)…(6分)(3)小颖所用时间:(分)…(8分)小亮比小颖迟到80﹣50﹣10=20(分)…(9分)∴小颖到达终点时,小亮离缆车终点的路程为:20×55=1100(米)…(10分)22.(7分)解:∵此题有12张卡片,所以先摸者有12种情况,而后摸者有11种情况,共有12×11=132种情况,(1)他摸出“石头”的概率是=;(2)甲先摸出“石头”,则乙获胜的可能是摸得“布”,有5种情况,∴甲先摸出“石头”,则乙获胜的概率是;(3)甲先摸“石头”获胜的概率是=,甲先摸“剪刀”获胜的概率是,甲先摸“布”获胜的概率是,所以甲先摸“剪刀”获胜的可能性最大.23.(8分)解:(1)设∠BAD=α,∵AD平分∠BAC∴∠CAD=∠BAD=α,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC=90°﹣2α,∵BD是⊙O的切线,∴BD⊥AB,∴∠DBE=2α,∠BED=∠BAD+∠ABC=90°﹣α,∴∠D=180°﹣∠DBE﹣∠BED=90°﹣α,∴∠D=∠BED,∴BD=BE(2)设AD交⊙O于点F,CE=x,连接BF,∵AB是⊙O的直径,∴∠AFB=90°,∵BD=BE,DE=2,∴FE=FD=1,∵BD=,∴t anα=,∴AC=2x∴AB==2在Rt△ABC中,由勾股定理可知:(2x)2+(x+)2=(2)2,∴解得:x=﹣或x=,∴CE=;24.(10分)解:(1)函数y1的图象经过点(1,﹣2),得(a+1)(﹣a)=﹣2,解得a1=﹣2,a2=1,函数y1的表达式y=(x﹣2)(x+2﹣1),化简,得y=x2﹣x﹣2;函数y1的表达式y=(x+1)(x﹣2)化简,得y=x2﹣x﹣2,综上所述:函数y1的表达式y=x2﹣x﹣2;(2)当y=0时(x+a)(x﹣a﹣1)=0,解得x1=﹣a,x2=a+1,y1的图象与x轴的交点是(﹣a,0),(a+1,0),当y2=ax+b经过(﹣a,0)时,﹣a2+b=0,即b=a2;当y2=ax+b经过(a+1,0)时,a2+a+b=0,即b=﹣a2﹣a;(3)当P在对称轴的左侧(含顶点)时,y随x的增大而减小,(1,n)与(0,n)关于对称轴对称,由m<n,得0<x0≤;当时P在对称轴的右侧时,y随x的增大而增大,由m<n,得<x0<1,综上所述:m<n,所求x0的取值范围0<x0<1.25.(12分)解:(1)如图1中,①当点Q在平行四边形ABCD内时,∠AP′B=180°﹣∠Q′P′B﹣∠Q′P′D=180°﹣90°﹣10°=80°,②当点Q在平行四边形ABCD外时,∠APB=180°﹣(∠QPB﹣∠QPD)=180°﹣(90°﹣10°)=100°,综上所述,当∠DPQ=10°时,∠APB的值为80°或100°.(2)如图2中,连接BQ,作PE⊥AB于E.∵tan∠ABP:tanA=3:2,tanA=,∴tan∠ABP=2,在Rt△APE中,tanA==,设PE=4k,则AE=3k,在Rt△PBE中,tan∠ABP==2,∴EB=2k,∴AB=5k=10,∴k=2,∴PE=8,EB=4,∴PB==4,∵△BPQ是等腰直角三角形,∴BQ=PB=4.(3)①如图3中,当点Q落在直线BC上时,作BE⊥AD于E,PF⊥BC于F.则四边形BEPF是矩形.在Rt△AEB中,∵tanA==,∵AB=10,∴BE=8,AE=6,∴PF=BE=8,∵△BPQ是等腰直角三角形,PF⊥BQ,∴PF=BF=FQ=8,∴PB=PQ=8,∴PB旋转到PQ所扫过的面积==32π.②如图4中,当点Q落在CD上时,作BE⊥AD于E,QF⊥AD交AD的延长线于F.设PE=x.易证△PBE≌△QPF,∴PE=QF=x,EB=PF=8,∴DF=AE+PE+PF﹣AD=x﹣1,∵CD∥AB,∴∠FDQ=∠A,∴tan∠FDQ=tanA==,∴=,∴x=4,∴PE=4,=4,在Rt△PEB中,PB=,=4,∴PB旋转到PQ所扫过的面积==20π③如图5中,当点Q落在AD上时,易知PB=PQ=8,∴PB旋转到PQ所扫过的面积==16π,综上所述,PB旋转到PQ所扫过的面积为32π或20π或16π.。
2018年陕西省中考数学试卷(含答案与解析)
数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前陕西省2018年初中毕业学业水平考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.117-的倒数是 ( ) A .117B .117-C .711D .711-2.如图,是一个几何体的表面展开图,则该几何体是( )A .三棱柱B .四棱锥C .正方体D .长方体3.如图,若12l l ∥,34l l ∥,则图中与1∠互补的角有 ( )A .1个B .2个C .3个D .4个4.如图,在矩形AOBC 中,(2,0)A -,(0,1)B .若正比例函数y kx =的图象经过点C ,则k 的值为( )A .2-B .12-C .2D .125.下列计算正确的是( )A .2242a a a =B .22(2)4a a -=-C .236()a a -=-D .222363a a a -=6.如图,在ABC △中,8AC =,60ABC ∠=,45C ∠=,AD BC ⊥,垂足为D ,ABC ∠的平分线交AD 于点E ,则AE 的长为( ) A.B.CD7.若直线l 1经过点(0,4),l 2经过点(3,2),且l 1与l 2关于x 轴对称,则l 1与l 2的交点坐标为( )A .(2,0)B .(2,0)-C .(6,0)D .(6,0)-8.如图,在菱形ABCD 中,点E ,F ,G ,H 分别是边AB ,BC ,CD 和DA 的中点,连接EF ,FG ,GH 和HE .若2EH EF =,则下列结论正确的是 ( ) A.ABB.AB C .2AB EF = D.AB = 9.如图,ABC △是O 的内接三角形,AB AC =,65BCA ∠=,作CD AB ∥,并与O 相交于点D ,连接BD ,则DBC ∠的大小为( )A .15B .25C .35D .4510.对于抛物线2(21)3y ax a x a =+-+-,当1x =时,0y >,则这条抛物线的顶点一定在( ) A .第一象限B .第二象限C .第三象限D .第四象限第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题3分,共12分.请把答案填写在题中的横线上) 11.比较大小:填“>”“<”或“=”).12.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则AFE ∠的度数为 .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共22页) 数学试卷 第4页(共22页)13.若一个反比例函数的图象经过点(,)A m m 和(2,1)B m -,则这个反比例函数的表达式为 .14.如图,点O 是ABCD 的对称中心,AD AB >,E ,F 是AB 边上的点,且12EF AB =;G ,H 是BC 边上的点,且13GH BC =.若S 1,S 2分别表示EOF △和GOH △的面积,则S 1与S 2之间的等量关系是 .三、解答题(本大题共11小题,共78分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分5分)计算:0((|1|(52)π-⨯++.16.(本小题满分5分)化简:2131()11a a a a a a a++-÷-++.17.(本小题满分5分)如图,已知:在正方形ABCD 中,M 是BC 边上一定点,连接AM .请用尺规作图法,在AM 上作一点P ,使DPA ABM △∽△.(不写作法,保留作图痕迹)18.(本小题满分5分)如图,AB CD ∥,E ,F 分别为AB ,CD 上的点,且EC BF ∥,连接AD ,分别与EC ,BF 相交于点G ,H .若AB CD =,求证:AG DH =.19.(本小题满分7分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A ,B ,C ,D 四组,绘制了如下统计图表:依据以上统计信息解答下列问题: (1)求得m = ,n = ; (2)这次测试成绩的中位数落在 组; (3)求本次全部测试成绩的平均数.20.(本小题满分7分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D ,竖起标杆DE ,使得点E数学试卷 第5页(共22页) 数学试卷 第6页(共22页)与点C ,A 共线.已知:CB AD ⊥,ED AD ⊥,测得1m BC =, 1.5m DE =,8.5m BD =.测量示意图如图所示.请根据相关测量信息,求河宽AB .21.(本小题满分7分)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国.根据上表提供的信息,解答下列问题:(1)已知2018年前五个月,小明家网店销售上表中规格的红枣和小米共3 000 kg ,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计2018年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2 000 kg ,其中,这种规格的红枣的销售量不低于600 kg .假设这后五个月,销售这种规格的红枣为x (kg ),销售这种规格的红枣和小米获得的总利润为y (元),求出y 与x 之间的函数关系式,并求这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.22.(本小题满分7分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,求转出的数字是2-的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.23.(本小题满分8分)如图,在Rt ABC △中,90ACB ∠=,以斜边AB 上的中线CD 为直径作O ,分别与AC ,BC 交于点M ,N .(1)过点N 作O 的切线NE 与AB 相交于点E ,求证:NE AB ⊥; (2)连接MD ,求证:MD NB =.24.(本小题满分10分)已知抛物线L :26y x x =+-与x 轴相交于A ,B 两点(点A 在点B 的左侧),并与y 轴相交于点C .(1)求A ,B ,C 三点的坐标,并求ABC △的面积;(2)将抛物线L 向左或向右平移,得到抛物线L ',且L '与x 轴相交于A ',B '两点(点A '在点B '的左侧),并与y 轴相交于点C ',要使A B C '''△和ABC △的面积相等,求所有满足条件的抛物线的函数表达式.25.(本小题满分12分) 问题提出(1)如图1,在ABC △中,120A ∠=,5AB AC ==,则ABC △的外接圆半径R 的值为 ;问题探究(2)如图2,O 的半径为13,弦24AB =,M 是AB 的中点,P 是O 上一动点,求PM 的最大值. 问题解决(3)如图3所示,AB ,AC ,BC 是某新区的三条规划路,其中,6km AB =,3km AC =,60BAC∠=,BC所对的圆心角为60.新区管委会想在BC 路边建物资总站点P ,在AB ,AC 路边分别建物资分站点E ,F ,也就是,分别在BC 、线段AB 和AC 上选取点P ,E ,F .由于总站工作人员每天都要将物资在各物资站点间按P E F P →→→的路径进行运输,因此,要在各物资站点之间规划道路PE ,EF 和FP .为了快捷、环保和节约成本.要使得线段PE ,EF ,FP 之和最短,试求PE EF FP ++的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)图1图2图3-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共22页) 数学试卷 第8页(共22页)山西省2018年高中阶段教育学校招生统一考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】A 中,02>-,错;B 中,53-<,正确;C 中,23->-,错误;D 中,14>-,错误,故选B .【考点】有理数的大小比较. 2.【答案】B【解析】“算经十书”包括《周髀算经》、《九章算术》、《孙子算经》、《五曹算经》、《夏侯阳算经》、《张丘建算经》、《海岛算经》、《五经算术》、《缀术》、《缉古算经》在四个选项中《几何原经》是古希腊数学家欧几里得所著的一部数学著作,故选B . 【考点】我国古代数学著作. 3.【答案】D【解析】A 中,322326()(1)()a a a -=-=,错误;B 中,222235a a a +=,错误;C 中,2352 =2a a a ,错误;D 中,2633()28b b a a-=-,正确,故选D .【考点】整式的运算. 4.【答案】C【解析】A 中,22 4(2) 40b ac ∆=-=-=>,此方程有两个不相等的实数根,不符合题意;B 中,224441(1)200b ac ∆=-=-⨯⨯-=>,此方程有两个不相等的实数根,不符合题意;C 中,22 4(4)42380b ac ∆=-=--⨯⨯=-<,此方程没有实数根,符合题意;D中,原方程变形为23520x x -+=,224(5)43210b ac ∆=-=--⨯⨯=>.此方程有两个不相等的实数根,不符合题意,故选C .【考点】一元二次方程根的判别式. 5.【答案】C【解析】把这7个数据按从小到大的顺序排列为302.34,319.79,332.68,338.87,416.01,725.86,303.78,位于最中间的数据为338.87故选C .【考点】中位数. 6.【答案】C【解析】1 010立方米/秒 1 010 3 600=⨯立方米/时=3 636 000立方米/时63.636 10=⨯立方米/时,故选C . 【考点】科学记数法. 7.【答案】A【解析】画树状图如图所示,共有9种等可能的结果,其中两次摸出的小球都是黄球的结果有4种,所以P (两次都摸到黄球)4=9,故选A .【考点】列表法或画树状图法求概率. 8.【答案】D【解析】连接BB ',由旋转的性质知,=AC A C ',又°60A =∠,∴ACA '△是等边三角形∴°=60ACA '∠,由旋转可知°==60BCB ACA ''∠∠, BC B C '=,∴BCB'△为等边三角形,∴BB BC '=.在Rt ABC △中, tan606BC AC ︒==B '与点B 之的距离是D .【考点】旋转的性质、等边三角形的判定与性质、锐角三角函数. 9.【答案】B【解析】22289816169(4)25y x x x x x =--=-+--=--,故选B . 【考点】二次函数表达式的一般式与顶点式的转换. 10.【答案】A【解析】∵四边形ABCD 为正方形,∴AB BC CD AD ===,4AC BD ==, ∴AB AD BC CD S S S S ===弓形弓形弓形弓形.如图所示,290π4142443602ABDAEF S S S π⨯=-=-⨯⨯=-△阴影扇形,故选A .数学试卷 第9页(共22页) 数学试卷 第10页(共22页)【考点】正方形的性质、扇形的面积公式.第Ⅱ卷二.填空题 11.【答案】17【解析】原式22 11(81 17=-=-=. 【考点】平方差公式 12.【答案】360【解析】由多边形的外角和为°360,知°12345=360∠+∠+∠+∠+∠. 【考点】多边形的外角和定理. 13.【答案】55【解析】设长为8 cm x ,高为11 cm x ,根据题意,得8+11+20115x x ≤,解得5x ≤,1155x ≤ ,即符合此规定的行李箱的高的最大值为55 cm【考点】一元一次不等式的应用. 14.【答案】【解析】如图,过点A 作AG PQ ⊥于点G ,由尺规作图可知,1=2∠∠,∵MN PQ ∥,∴1=3∠∠.∴2=3∠∠.∵°=60ABP ∠,∴°2=3=30∠∠.在Rt ABG △中° sin602AG AB ===在Rt AGF △中,∵°3=30∠,∴2AF AG ==【考点】解直角三角形、角平分线的作法、平行线的性质、三角形外角的性质.15.【答案】125【解析】如图,连接EF ,DE ,DF .∵°=90ACB ∠,∴EF 为O 的直径,∴EF 必过圆心O ∵CD 为O 的直径,∴DE AC ⊥,DF BC ⊥,∵°=90ACB ∠, AD BD =,∴5CD AD BD ===,∴3AE CE ==,4CF BF ==,∴EF AB ∥,∴FGB OFG =∠∠,∵FG 为O 的切线,∴°=90OFG ∠,∴°=90FGB ∠,在Rt CDF △中,3DF ==,在Rt BDF △中,∵DF BF BD FG =,∴ 341255DF BF FG BD ⨯===.三、解答题 16.【答案】(1)7 (2)2x x - 【解析】(1)原式8421=-++ 7=(2)原式22(1)(1)11(2)2x x x x x x -+----=- +1122x x x =--- 2xx =-.【考点】实数的运算、分式的混合运算.17.【答案】解:(1)∵一次函数11y k x b =+的图象经过点(4,2)C --,(2,4)D ,∴1142,2 4.k b k b -+=-⎧⎨+=⎩解,得:11,2.k b =⎧⎨=⎩∴一次函数的表达式为12y x =+.数学试卷 第11页(共22页) 数学试卷 第12页(共22页)∵反比例函数22k y x=的图象经过点(2,4)D , ∴24=2k ,∴2=8k . ∴反比例函数的表达式为28y x=. (2)由10>y ,得20x >+.∴2x >-.∴当2x >-时,10y >. (3)4x <-或02x <<.【解析】解:(1)∵一次函数11y k x b =+的图象经过点(4,2)C --,(2,4)D ,∴1142,2 4.k b k b -+=-⎧⎨+=⎩解,得:11,2.k b =⎧⎨=⎩∴一次函数的表达式为12y x =+. ∵反比例函数22k y x=的图象经过点(2,4)D , ∴24=2k ,∴2=8k . ∴反比例函数的表达式为28y x=. (2)由10>y ,得20x >+. ∴2x >-.∴当2x >-时,10y >. (3)4x <-或02x <<.【考点】待定系数法求一次函数与反比例函数的解析式、一次函数与反比例函数交点问题.18.【答案】解:(1)补全条形统计图和扇形统计图如图所示.(2)101004010+15⨯=%%. 答:男生所占的百分比为40%. (3)15002105⨯=%(人)答:估计其中参加“书法”项目活动的有105人. (4)1515515+10+8+154816==.答:正好抽到参加“器乐”活动项目的女生的概率为516. 【解析】解:(1)补全条形统计图和扇形统计图如图所示.(2)101004010+15⨯=%%. 答:男生所占的百分比为40%. (3)15002105⨯=%(人)答:估计其中参加“书法”项目活动的有105人. (4)1515515+10+8+154816==.答:正好抽到参加“器乐”活动项目的女生的概率为516.数学试卷 第13页(共22页) 数学试卷 第14页(共22页)【考点】条形统计图、扇形统计图、概率公式. 19.【答案】解:(1)过点C 作CD AB ⊥于点D .设CD x =米,在Rt ADC △中, 90ADC ︒=∠,=38A ︒∠.∵tan38CDAD︒=,∴5tan380.84CD x AD x ︒=≈=.在Rt BDC △中,90BDC ︒=∠,8B ︒=∠2.∵tan28CDBD︒=,∴2tan280.5CD x BD x ︒=≈=.∵234AD BD AB +==,∴522344x x +=.解,得72x ≈.答:斜拉索顶端点C 到桥面的距离为72米.(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等. 【解析】解:(1)过点C 作CD AB ⊥于点D .设CD x =米,在Rt ADC △中, 90ADC ︒=∠,=38A ︒∠.∵tan38CDAD︒=,∴5tan380.84CD x AD x ︒=≈=.在Rt BDC △中,90BDC ︒=∠,8B ︒=∠2.∵tan28CDBD︒=,∴2tan280.5CD x BD x ︒=≈=. ∵234AD BD AB +==,∴522344x x +=.解,得72x ≈.答:斜拉索顶端点C 到桥面的距离为72米.(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等. 【考点】解直角三角形的应用.20.【答案】解法一:设乘坐“复兴号”G92次列车从太原南到北京西需要x 小时,由题意,得50050040151()646x x =+--. 解,得83x =经检验,83x =是原方程的根. 答:乘坐“复兴号"G92次列车从太原南到北京西需要83小时.解法二:设“复兴号”G92次列车从太原南到北京西的行驶时间需要x 小时,由题意,得5005004054x x =+.解,得52x =. 经检验,52x =是原方程的根.518263+=(小时). 答:乘坐“复兴号”C92次列车从太原南到北京西需要83个小时.【解析】解法一:设乘坐“复兴号”G92次列车从太原南到北京西需要x 小时,由题意,得50050040151()646x x =+--.解,得83x =经检验,83x =是原方程的根. 答:乘坐“复兴号"G92次列车从太原南到北京西需要83小时.解法二:设“复兴号”G92次列车从太原南到北京西的行驶时间需要x 小时,由题意,得5005004054x x =+.解,得52x =. 经检验,52x =是原方程的根.数学试卷 第15页(共22页) 数学试卷 第16页(共22页)518263+=(小时). 答:乘坐“复兴号”C92次列车从太原南到北京西需要83个小时. 【考点】分式方程的应用.21.【答案】解:(1)四边形AXYZ 是菱形. 证明:∵ZY AC ∥,YX ZA ∥, ∴四边形AXYZ 是平行四边形. ∵=ZA YZ ,∴AXYZ 是菱形.(2)证明:∵CD CB =,∴1=2∠∠.∵ZY AC ∥,∴1=3∠∠. ∴2=3∠∠.∴=YB YZ .∵四边形AXYZ 是菱形,∴==AX XY YZ . ∴==AX BY XY .(3)D (或位似)【解析】解:(1)四边形AXYZ 是菱形. 证明:∵ZY AC ∥,YX ZA ∥, ∴四边形AXYZ 是平行四边形. ∵=ZA YZ ,∴AXYZ 是菱形.(2)证明:∵CD CB =,∴1=2∠∠.∵ZY AC ∥,∴1=3∠∠. ∴2=3∠∠.∴=YB YZ .∵四边形AXYZ 是菱形,∴==AX XY YZ . ∴==AX BY XY . (3)D (或位似)【考点】菱形的判定与性质、等腰三角形的判定与性质、相似三角形的判定与性质、位似.22.【答案】(1)①依据1:两条直线被一组平行线所截,所得的对应线段成比例(或平行线分线段成比例).依据2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”).②点A 在线段GF 的垂直平分线上.(2)证明:过点G 作GH BC ⊥于点H ,∵四边形ABCD 是矩形,点E 在AB 的延长线上, ∴°===90CBE ABC GHC ∠∠∠. ∴12=90︒∠+∠.∵四边形CEFG 为正方形, ∴CG CE =,=90CCE ︒∠ ∴13=90︒∠+∠∴2=3∠∠. ∴GHC CBE △≌△. ∴HC BE =.∵四边形ABCD 是矩形,∴AD BC =. ∵2AD AB =, BE AB =,∴22BC BE HC ==. ∴HC BH =.∴GH 垂直平分BC . ∴点G 在BC 的垂直平分线上.(3)点F 在BC 边的垂直平分线上(或点F 在AD 边的垂直平分线上). 证法一:过点F 作FM BC ⊥于点M ,过点E 作EN FM ⊥于点N . ∴90BMN ENM ENF ︒===∠∠∠.∵四边形ABCD 是矩形,点E 在AB 的延长线上, ∴°90CBE ABC ==∠∠,∴四边形BENM 为矩形. ∴BM EN =,90BEN ︒=∠,∴1290︒=∠+∠.数学试卷 第17页(共22页) 数学试卷 第18页(共22页)∵四边形CEFG 为正方形, ∴EF EC =,°90CEF =∠, ∴°2390=∠+∠,∴13=∠∠.∵90CBE ENF ︒==∠∠,∴ENF EBC △≌△. ∴NE BE =.∴BM BE =.∵四边形ABCD 是矩形,∴AD BC =.∵2AD AB =.AB BE =,∴2BC BM =,∴BM MC =. ∴FM 垂直平分BC ,∴点F 在BC 边的垂直平分线上.证法二:过F 作FN BE ⊥交BE 的延长线于点N ,连接FB ,FC .四边形ABCD 是矩形,点E 在AB 的延长线上, ∴90CBE ABC N ︒===∠∠∠.∴1390︒=∠+∠, ∵四边形CEFG 为正方形, ∴EC EF =,90CEF ︒=∠. ∴1290︒=∠+∠∴23=∠∠. ∴ENF CBE △≌△.∴NF BE =,NE BC =.∵四边形ABCD 是矩形,∴AD BC =. ∵2AD AB =,BE AB =.∴设BE a =,则2BC EN a ==,NF a =.∴BF ==.CF =.CF ==.∴BF CF =,∴点F 在BC 边的垂直平分线上.【解析】(1)①依据1:两条直线被一组平行线所截,所得的对应线段成比例(或平行线分线段成比例).依据2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”).②点A 在线段GF 的垂直平分线上.(2)证明:过点G 作GH BC ⊥于点H ,∵四边形ABCD 是矩形,点E 在AB 的延长线上, ∴°===90CBE ABC GHC ∠∠∠. ∴12=90︒∠+∠.∵四边形CEFG 为正方形, ∴CG CE =,=90CCE ︒∠ ∴13=90︒∠+∠∴2=3∠∠. ∴GHC CBE △≌△. ∴HC BE =.∵四边形ABCD 是矩形,∴AD BC =. ∵2AD AB =, BE AB =,∴22BC BE HC ==. ∴HC BH =.∴GH 垂直平分BC . ∴点G 在BC 的垂直平分线上.(3)点F 在BC 边的垂直平分线上(或点F 在AD 边的垂直平分线上). 证法一:过点F 作FM BC ⊥于点M ,过点E 作EN FM ⊥于点N . ∴90BMN ENM ENF ︒===∠∠∠.∵四边形ABCD 是矩形,点E 在AB 的延长线上, ∴°90CBE ABC ==∠∠,∴四边形BENM 为矩形. ∴BM EN =,90BEN ︒=∠,∴1290︒=∠+∠. ∵四边形CEFG 为正方形, ∴EF EC =,°90CEF =∠, ∴°2390=∠+∠,∴13=∠∠.∵90CBE ENF ︒==∠∠,∴ENF EBC △≌△. ∴NE BE =.∴BM BE =.∵四边形ABCD 是矩形,∴AD BC =.∵2AD AB =.AB BE =,∴2BC BM =,∴BM MC =. ∴FM 垂直平分BC ,∴点F 在BC 边的垂直平分线上.证法二:过F 作FN BE ⊥交BE 的延长线于点N ,连接FB ,FC.数学试卷 第19页(共22页) 数学试卷 第20页(共22页)四边形ABCD 是矩形,点E 在AB 的延长线上, ∴90CBE ABC N ︒===∠∠∠.∴1390︒=∠+∠, ∵四边形CEFG 为正方形, ∴EC EF =,90CEF ︒=∠. ∴1290︒=∠+∠∴23=∠∠. ∴ENF CBE △≌△.∴NF BE =,NE BC =.∵四边形ABCD 是矩形,∴AD BC =. ∵2AD AB =,BE AB =.∴设BE a =,则2BC EN a ==,NF a =.∴BF =.CF =.CF ==.∴BF CF =,∴点F 在BC 边的垂直平分线上.【考点】平行线分线段成比例、等腰三角形的性质矩形的性质、全等三角形的判定与性质、正方形的判定与性质、线段垂直平分线的判定定理. 23.【答案】(1)由0y =,得2114033x x --=. 解,得13x =-,24x =.∴点A ,B 的坐标分别为(3,0)A -,(4,0)B . 由0x =,得4y =-.∴点C 的坐标为(0,4)C .(2)14)Q ,2(1,3)Q -. (3)过点F 作FG PQ ⊥于点G ,则FG x ∥轴.由(4,0)B ,(0,4)C -.得OBC △为等腰直角三角形. ∴45OBC QFG ︒==∠∠.∴GQ FG ==. ∵PE AC ∥,∴12=∠∠.∴FG x ∥轴,∴23=∠∠,∴13=∠∠.∵90FGP AOC ︒==∠∠,∴FGP AOC △∽△.∴FG GPAO OC=,即4FG GP =. ∴44233GP FG FQ==. ∴QP GQ GP =+==,∴FQ =, ∴PM x ⊥轴,点P 的横坐标为m ,45MBQ ︒=∠,∴4QM MB m ==-,211433PM m m =---.∴2211144(4)+33QP PM QM m m m m m ==-++--=--.∴2214+)773377FQ m m ==-=+. ∵07-<,∴QF 有最大值,∴当2m ==时,QF 有最大值. 【解析】(1)由0y =,得2114033x x --=.解,得13x =-,24x =.∴点A ,B 的坐标分别为(3,0)A -,(4,0)B . 由0x =,得4y =-.∴点C 的坐标为(0,4)C .数学试卷 第21页(共22页) 数学试卷 第22页(共22页) (2)14)Q ,2(1,3)Q -. (3)过点F 作FG PQ ⊥于点G ,则FG x ∥轴. 由(4,0)B ,(0,4)C -.得OBC △为等腰直角三角形.∴45OBC QFG ︒==∠∠.∴GQ FG ==.∵PE AC ∥,∴12=∠∠.∴FG x ∥轴,∴23=∠∠,∴13=∠∠.∵90FGP AOC ︒==∠∠,∴FGP AOC △∽△. ∴FG GP AO OC =,即4FG GP=.∴442 33GPFG FQ ==.∴QPGQ GP =+==,∴FQ ,∴PM x ⊥轴,点P 的横坐标为m ,45MBQ ︒=∠,∴4QM MB m ==-,211433PM m m =---.∴2211144(4)+33QP PM QM m m m m m ==-++--=--.∴2214+)773377FQ m m m ==-=+.∵07-<,∴QF 有最大值,∴当2m ==时,QF 有最大值.解法二:提示,先分别求出BQ 和BF 关于m 的代数式,再由QF BF BQ =-得到QF 关于m 的代数式【考点】抛物线的性质、等腰三角形的性质、二次函数与一元二次方程的关系、勾股定理、相似三角形的判定与性质.。
2018年初中数学中考一模试卷数学试题(解析版)
2018年初中数学中考一模试卷数学试题一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.下列计算中正确的是()A.﹣1﹣1=0 B.32=6 C.﹣2÷=﹣1 D.﹣33﹣(﹣3)3=02.在下列各数中,最大的数是()A.1.00×10﹣9B.9.99×10﹣8C.1.002×10﹣8D.9.999×10﹣73.下面调查统计中,适合做全面调查的是()A.乘坐飞机的旅客是否携带了违禁物品B.苹果电脑的市场占有率C.“我爱发明”专栏电视节目的收视率D.“现代”汽车每百公里的耗油量4.在三个内角互不相等的△ABC中,最小的内角为∠A,则在下列四个度数中,∠A最大可取()A.30° B.59° C.60° D.89°5.下列性质中,菱形对角线不具有的是()A.对角线互相垂直B.对角线所在直线是对称轴C.对角线相等D.对角线互相平分6.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是()A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同二、填空题(本大题共6小题,每小题3分,共18分)7.已知是方程2x﹣ay=3的一个解,则a的值是.8.已知一个正数的平方根是2x和x﹣6,这个数是.9.观察分析下列数据,并寻找规律:,,2,,,,…根据规律可知第n个数据应是.10.如图,BC是一条河的直线河岸,点A是河岸BC对岸上的一点,AB⊥BC于B,站在河岸C的C处测得∠BCA=50°,BC=10m,则桥长AB= m(用计算器计算,结果精确到0.1米)11.在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1是关于某一点中心对称,则对称中心的坐标为.12.能使6|k+2|=(k+2)2成立的k值为.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)解不等式组:(2)先化简(﹣)÷,然后选取一个你认为符合题意的x的值代入求值.14.若a为方程(x﹣)2=16的一正根,b为方程y2﹣2y+1=13的一负根,求a+b的值.15.某市团委在2015年3月初组成了300个学雷锋小组,现从中随机抽取6个小组在3月份做好事件数的统计情况如图所示:(1)这6个学雷锋小组在2015年3月份共做好事多少件?(2)补全条形统计图;(3)请估计该市300个学雷锋小组在2015年3月份共做好事多少件?16.已知点A,点B,请分别在图1,图2的网格中用无刻度直尺画一个不同的菱形,使菱形的顶点A,B,C,D恰好为格点,并计算所画菱形的面积.17.如图所示(背面完全相同)A、B、C三张卡片,正面分别写上整式x2﹣4,x2,4;现将这三张卡片背面向上洗匀,从中随机抽取两张,然后将所抽取卡片上的两个整式分别放在“=”的两边,组成一个等式.(1)“抽取的卡片所组成的等式是一个一元二次方程”,这个事件是.A.必然事件 B.不可能事件 C.随机事件 D.确定事件(2)求所抽取的卡片组成的等式不是一元二次方程的概率.四、(本大题共4小题,每小题8分,共32分)18.如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积?19.某中学开学初在商场购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌和一个B品牌的足球各需多少元.(2)这所中学决定再次购进A,B两种品牌足球共50个,恰逢商场对两种品牌足球的售价进行调整,A品牌足球球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌足球的总费用不超过3260元,那么这所中学此次最多可购买多少个B品牌足球?20.如图,点P,D分别是⊙O上的动点、定点、非直径弦CD⊥直径AB,当点P与点C重合时,易证:∠DPB+∠ACD=90°,在不考虑点P于点B或点D重合的情况下,试解答如下问题:(1)当点P与点A重合时(如图1),∠DPB+∠ACD= 度.(2)当点P在上时(如图2),(1)中的结论还成立吗?请给予证明.(3)当点P在上时,先写出∠DPB与∠ACD的数量关系,再说明其理由.21.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达点B处停止运动,M,N分别是AD,CD的中点,连接MN,设点D运动的时间为ts.(1)MN与AC的数量关系是;(2)求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3)当t为何值时,△DMN是等腰三角形?五、(本大题共10分)22.如图,在平面直角坐标系中,已知点A(﹣2,0),B(1,3)设经过A,O两点且顶点C 在直线AB上的抛物线为m.(1)求直线AB和抛物线m的函数解析式.(2)若将抛物线m沿射线AB方向平移(顶点C始终在AB上),设移动后的抛物线与x轴的右交点为D.①在上述移动过程中,当顶点C在水平方向上移动3个单位长度时,A与D之间的距离是多少?②当顶点在水平方向移动a(a>0)个单位长度时,请用含a的代数式表示AD的长.六、(本大题共12分)23.如图,小东将一张长AD为12、宽AB为4的矩形纸片按如下方式进行折叠:在纸片的一边BC上分别取点P,Q,使得BP=CQ,连结AP、DQ,将△ABP、△DCQ分别沿AP、DQ折叠得△APM,△DQN,连结MN.小东发现线段MN的位置和长度随着点P、Q的位置变化而发生改变.(1)请在图1中过点M,N分别画ME⊥BC于点E,NF⊥BC于点F.求证:①ME=NF;②MN∥BC.(2)如图1,若BP=3,求线段MN的长;(3)如图2,当点P与点Q重合时,求MN的长.2018年初中数学中考一模试卷数学试题(解析版)一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.下列计算中正确的是()A.﹣1﹣1=0 B.32=6 C.﹣2÷=﹣1 D.﹣33﹣(﹣3)3=0【考点】有理数的混合运算.【分析】A、原式利用减法法则计算得到结果,即可作出判断;B、原式利用乘方的意义计算得到结果,即可作出判断;C、原式利用除法法则计算得到结果,即可作出判断;D、原式利用乘方的意义计算得到结果,即可作出判断.【解答】解:A、原式=﹣2,错误;B、原式=9,错误;C、原式=﹣2×2=﹣4,错误;D、原式=﹣27+27=0,正确,故选D2.在下列各数中,最大的数是()A.1.00×10﹣9B.9.99×10﹣8C.1.002×10﹣8D.9.999×10﹣7【考点】有理数大小比较;科学记数法—表示较小的数.【分析】由于四个选项中的数都是用科学记数法表示,故应先比较10的指数的大小,若指数相同再比较10前面数的大小.【解答】解:∵四个选项中10的指数分别是﹣9,﹣8,﹣8,﹣7,∵|﹣9|>|﹣8|>|﹣7|,∴﹣9<﹣8<﹣7,∵四个数均为正数,∴9.999×10﹣7最大.故选D.3.下面调查统计中,适合做全面调查的是()A.乘坐飞机的旅客是否携带了违禁物品B.苹果电脑的市场占有率C.“我爱发明”专栏电视节目的收视率D.“现代”汽车每百公里的耗油量【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、乘坐飞机的旅客是否携带了违禁物品,是事关重大的调查,适合普查,故A正确;B、苹果电脑的市场占有率,调查范围广适合抽样调查,故B错误;C、“我爱发明”专栏电视节目的收视率,调查范围广适合抽样调查,适合抽样调查,故C 错误;D、“现代”汽车每百公里的耗油量,调查范围广适合抽样调查,故D错误;故选:A.4.在三个内角互不相等的△ABC中,最小的内角为∠A,则在下列四个度数中,∠A最大可取()A.30° B.59° C.60° D.89°【考点】三角形内角和定理.【分析】根据三角形的三角形的内角和等于180°求出最小的角的度数的取值范围,然后选择即可.【解答】解:180°÷3=60°,∵不等边三角形的最小内角为∠A,∴∠A<60°,∴0°<∠A<60°,则∠A最大可取59°.故选:B.5.下列性质中,菱形对角线不具有的是()A.对角线互相垂直B.对角线所在直线是对称轴C.对角线相等D.对角线互相平分【考点】菱形的性质.【分析】由菱形的对角线互相平分且垂直,可得菱形对角线所在直线是对称轴,继而求得答案.【解答】解:∵菱形对角线具有的性质有:对角线互相垂直,对角线互相平分,∴对角线所在直线是对称轴.故A,B,D正确,C错误.故选C.6.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是()A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同【考点】平移的性质;简单组合体的三视图.【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【解答】解:A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选:B.二、填空题(本大题共6小题,每小题3分,共18分)7.已知是方程2x﹣ay=3的一个解,则a的值是.【考点】二元一次方程的解.【分析】把方程的解代入方程可得到关于a的方程,解方程即可求得a的值.【解答】解:∵是方程2x﹣ay=3的一个解,∴2×1﹣(﹣2)×a=3,解得a=,故答案为:.8.已知一个正数的平方根是2x和x﹣6,这个数是16 .【考点】平方根.【分析】由于一个正数的平方根有两个,它们互为相反数,由此即可得到关于x的方程,解方程即可解决问题.【解答】解:∵一个正数的平方根是2x和x﹣6,∴2x+x﹣6=0,解得x=2,∴这个数的正平方根为2x=4,∴这个数是16.故答案为:16.9.观察分析下列数据,并寻找规律:,,2,,,,…根据规律可知第n个数据应是.【考点】算术平方根.【分析】根据2=,结合给定数中被开方数的变化找出变化规律“第n个数据中被开方数为:3n﹣1”,依此即可得出结论.【解答】解:∵2=,∴被开方数为:2=3×1﹣1,5=3×2﹣1,8=3×3﹣1,11=3×4﹣1,14=3×5﹣1,17=3×6﹣1,…,∴第n个数据中被开方数为:3n﹣1,故答案为:.10.如图,BC是一条河的直线河岸,点A是河岸BC对岸上的一点,AB⊥BC于B,站在河岸C的C处测得∠BCA=50°,BC=10m,则桥长AB= 11.9 m(用计算器计算,结果精确到0.1米)【考点】解直角三角形的应用.【分析】在Rt△ABC中,tan∠BCA=,由此可以求出AB之长.【解答】解:在△ABC中,∵BC⊥BA,∴tan∠BCA=.又∵BC=10m,∠BCA=50°,∴AB=BC•tan50°=10×tan50°≈11.9m.故答案为11.9.11.在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1是关于某一点中心对称,则对称中心的坐标为(2,1).【考点】中心对称;坐标与图形性质.【分析】根据中心对称的性质,知道点P(1,1),N(2,0),并细心观察坐标轴就可以得到答案.【解答】解:∵点P(1,1),N(2,0),∴由图形可知M(3,0),M1(1,2),N1(2,2),P1(3,1),∵关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,∴对称中心的坐标为(2,1),故答案为:(2,1).12.能使6|k+2|=(k+2)2成立的k值为﹣2,4或﹣8 .【考点】换元法解一元二次方程.【分析】根据解方程的方法可以求得6|k+2|=(k+2)2成立的k的值,本题得以解决.【解答】解:6|k+2|=(k+2)26|k+2|﹣|k+2|2=0,∴|k+2|(6﹣|k+2|)=0,∴|k+2|=0或6﹣|k+2|=0,解得,k=﹣2,k=4或k=﹣8,故答案为:﹣2,4或﹣8.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)解不等式组:(2)先化简(﹣)÷,然后选取一个你认为符合题意的x的值代入求值.【考点】分式的化简求值;解一元一次不等式组.【分析】(1)分别解两个不等式得到x≤1和x≥﹣3,然后根据大于小的小于大的取中间确定不等式组的解集;(2)先进行括号的加法运算和除法运算化为乘法运算,然后约分得到原式=x+3,再根据分式有意义的条件取x=10代入计算即可.【解答】解:(1)解①得x≤1,解②得x≥﹣3,所以不等式组的解集为﹣3≤x≤1;(2)原式=•=x+3,当x=10时,原式=10+3=13.14.若a为方程(x﹣)2=16的一正根,b为方程y2﹣2y+1=13的一负根,求a+b的值.【考点】解一元二次方程﹣配方法;解一元二次方程﹣直接开平方法.【分析】利用直接开平方法求得a的值,利用配方法求得b的值,代入计算即可.【解答】解:∵方程(x﹣)2=16的解为x=±4,∵+4>0,﹣4<0,∴a=+4,∵方程y2﹣2y+1=13,即(y﹣1)2=13的解为y=1±,∵1+>0,1﹣<0,∴b=1﹣,则a+b=+4+1﹣=5.15.某市团委在2015年3月初组成了300个学雷锋小组,现从中随机抽取6个小组在3月份做好事件数的统计情况如图所示:(1)这6个学雷锋小组在2015年3月份共做好事多少件?(2)补全条形统计图;(3)请估计该市300个学雷锋小组在2015年3月份共做好事多少件?【考点】折线统计图;用样本估计总体;条形统计图.【分析】(1)由折线统计图,即可解答;(2)根据第3小组做了25件,即可补全条形统计图;(3)根据样本估计总体,即可解答.【解答】解:(1)13+16+25+22+20+18=114(件),这6个学雷锋小组在2015年3月份共做好事114件;(2)如图所示:(3)300×=5700(件).估计该市300个学雷锋小组在2015年3月份共做好事5700件.16.已知点A,点B,请分别在图1,图2的网格中用无刻度直尺画一个不同的菱形,使菱形的顶点A,B,C,D恰好为格点,并计算所画菱形的面积.【考点】作图—复杂作图;菱形的性质.【分析】利用菱形的四边相等,以A点为圆心,AB为半径画弧可找到格点D,同样方法可得到点C,从而得到菱形ABCD,然后根据菱形的面积公式计算对应的菱形面积.【解答】解:如图1,四边形ABCD为所作,AC==2,BD==4,菱形ABCD的面积=×2×4=8;如图2,菱形ABCD的面积=×2×6=6.17.如图所示(背面完全相同)A、B、C三张卡片,正面分别写上整式x2﹣4,x2,4;现将这三张卡片背面向上洗匀,从中随机抽取两张,然后将所抽取卡片上的两个整式分别放在“=”的两边,组成一个等式.(1)“抽取的卡片所组成的等式是一个一元二次方程”,这个事件是 C .A.必然事件 B.不可能事件 C.随机事件 D.确定事件(2)求所抽取的卡片组成的等式不是一元二次方程的概率.【考点】列表法与树状图法;随机事件.【分析】(1)根据随机事件的定义进行判断即可;(2)将所有等可能的结果列举出来,利用概率公式求解即可.【解答】解:(1)“抽取的卡片所组成的等式是一个一元二次方程”,这个事件是随机事件.故选C;(2)共有x2﹣4=x2、x2﹣4=4、4=x2三种等可能的结果,为一元二次方程的有x2﹣4=4、4=x2两种是一元二次方程,故P(抽取的卡片组成的等式不是一元二次方程)=.四、(本大题共4小题,每小题8分,共32分)18.如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积?【考点】反比例函数与一次函数的交点问题.【分析】(1)将A坐标代入一次函数解析式中求出k的值,确定出一次函数解析式,将A 坐标代入反比例函数解析式中求出m的值,即可确定出反比例解析式;(2)直接求出BN,CN的长,进而求出BC的长,即可求出△ABC的面积.【解答】解:(1)将A(1,2)代入一次函数解析式得:k+1=2,即k=1,∴一次函数解析式为y=x+1;将A(1,2)代入反比例解析式得:m=2,∴反比例解析式为y=;(2)∵N(3,0),∴点B横坐标为3,将x=3代入一次函数得:y=4,将x=3代入反比例解析式得:y=,即CN=,BC=4﹣=,A到BC的距离为:2,则S△ABC=××2=.19.某中学开学初在商场购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌和一个B品牌的足球各需多少元.(2)这所中学决定再次购进A,B两种品牌足球共50个,恰逢商场对两种品牌足球的售价进行调整,A品牌足球球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌足球的总费用不超过3260元,那么这所中学此次最多可购买多少个B品牌足球?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设购买一个A品牌足球需x元,购买一个B品牌足球需(x+30)元.接下来,依据购买A品牌足球数量是购买B品牌足球数量的2倍列方程求解即可;(2)设此次可购买a个B品牌的足球,则购进A品牌足球(50﹣a)个,接下来依据总费用不超过3260元列不等式求解即可.【解答】解:(1)设购买一个A品牌足球需x元,购买一个B品牌足球需(x+30)元.根据题意得: =×2.解得:x=50.经检验x=50是原方程的解.则x+30=80.答:购买一个A品牌的足球需要50元,购买一个B品牌的足球需80元.(2)设此次可购买a个B品牌的足球,则购进A品牌足球(50﹣a)个.由题意得:50(1+8%)(50﹣a)+80×0.9a≤3260.解得;a≤31.∵a是整数,∴a最大可取31.答:这所中学此次最多可购买31个B品牌的足球.20.如图,点P,D分别是⊙O上的动点、定点、非直径弦CD⊥直径AB,当点P与点C重合时,易证:∠DPB+∠ACD=90°,在不考虑点P于点B或点D重合的情况下,试解答如下问题:(1)当点P与点A重合时(如图1),∠DPB+∠ACD= 90 度.(2)当点P在上时(如图2),(1)中的结论还成立吗?请给予证明.(3)当点P在上时,先写出∠DPB与∠ACD的数量关系,再说明其理由.【考点】圆的综合题.【分析】(1)先根据垂径定理得出AC=AD,故可得出∠ACD=∠ADC,∠AED=90°,再由∠DPB+∠ADC=90°即可得出结论;(2)先根据垂径定理得出=,再由∠A+∠ACD=90°即可得出结论;(3)连接AP,则∠BPD=∠BPA+∠APD,由圆周角定理得出∠BPA=90°,∠ACD=∠APD,进而可得出结论.【解答】解:(1)∵弦CD⊥直径AB,∴CE=DE,∠AED=90°,∴∠ACD=∠ADC,∠AED=90°.∵∠DPB+∠ADC=90°,∴∠DPB+∠ACD=90°.故答案为:90;(2)成立.理由:如图2,∵AB⊥CD,AB是⊙O的直径,∴=,∴∠DPB=∠A.∵∠A+∠ACD=90°,∴∠DPB+∠ACD=90°.(3)∠DPB﹣∠ACD=90°.理由:如图3,连接AP,则∠BPD=∠BPA+∠APD.∵AB是⊙O的直径,∴∠BPA=90°,∠ACD=∠APD,∴∠BPD=90°+∠ACD,即∠BPD﹣∠ACD=90°.21.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达点B处停止运动,M,N分别是AD,CD的中点,连接MN,设点D运动的时间为ts.(1)MN与AC的数量关系是MN=AC ;(2)求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3)当t为何值时,△DMN是等腰三角形?【考点】三角形综合题.【分析】(1)直接利用三角形中位线证明即可;(2)分别取△ABC三边AC,AB,BC的中点E,F,G,并连接EG,FG,根据题意可得线段MN 扫过区域的面积就是▱AFGE的面积求解即可;(3)分三种情况:①当MD=MN=3时,②当MD=DN,③当DN=MN时,分别求解△DMN为等腰三角形即可.【解答】解:(1)∵在△ADC中,M是AD的中点,N是DC的中点,∴MN=AC;故答案为:MN=AC;(2)如图1,分别取△ABC三边AC,AB,BC的中点E,F,G,并连接EG,FG,根据题意可得线段MN扫过区域的面积就是▱AFGE的面积,∵AC=6,BC=8,∴AE=3,GC=4,∵∠ACB=90°,∴S四边形AFGE=AE•GC=3×4=12,∴线段MN所扫过区域的面积为12.(3)据题意可知:MD=AD,DN=DC,MN=AC=3,①当MD=MN=3时,△DMN为等腰三角形,此时AD=AC=6,∴t=6,②当MD=DN时,AD=DC,如图2,过点D作DH⊥AC交AC于H,则AH=AC=3,∵cosA==,∴=,解得AD=5,∴AD=t=5.③如图3,当DN=MN=3时,AC=DC,连接MC,则CM⊥AD,∵cosA==,即=,∴AM=,∴AD=t=2AM=,综上所述,当t=5或6或时,△DMN为等腰三角形.五、(本大题共10分)22.如图,在平面直角坐标系中,已知点A(﹣2,0),B(1,3)设经过A,O两点且顶点C 在直线AB上的抛物线为m.(1)求直线AB和抛物线m的函数解析式.(2)若将抛物线m沿射线AB方向平移(顶点C始终在AB上),设移动后的抛物线与x轴的右交点为D.①在上述移动过程中,当顶点C在水平方向上移动3个单位长度时,A与D之间的距离是多少?②当顶点在水平方向移动a(a>0)个单位长度时,请用含a的代数式表示AD的长.【考点】二次函数综合题.【分析】(1)设直线AB的解析式为y=kx+b,根据点A、B的坐标利用待定系数法即可求出直线AB的解析式,根据抛物线过点A、O即可得出抛物线的对称轴,由顶点在直线AB上即可找出顶点C的坐标,设抛物线的解析式为y=a(x+1)2+1,根据点O的坐标利用待定系数法即可求出抛物线的解析式;(2)①根据点C的坐标以及平移的性质可找出平移后的顶点坐标(2,4),由此即可得出平移后的抛物线的解析式,令y=0,求出x值,点D横坐标取x中的较大值,再结合点A的坐标即可得出线段AD的长度;②根据点C的坐标以及平移的性质可找出平移后的顶点坐标(a﹣1,a+1),由此即可得出平移后的抛物线的解析式,令y=0,求出x值,点D横坐标取x中的较大值,再结合点A的坐标即可得出线段AD的长度.【解答】解:(1)设直线AB的解析式为y=kx+b,则,解得:,∴直线AB的解析式为y=x+2.∵抛物线m经过A、O两点,∴抛物线的对称轴为x=﹣1,∵抛物线顶点在直线AB上,∴y=﹣1+2=1,∴抛物线的顶点C(﹣1,1).设抛物线的解析式为y=a(x+1)2+1,将(0,0)代入y=a(x+1)2+1中,有0=a(0+1)2+1,解得:a=﹣1,∴抛物线的解析式为y=﹣(x+1)2+1=﹣x2﹣2x.(2)①根据题意,顶点在水平方向上向右平移了3个单位长度,顶点的横坐标为﹣1+3=2,纵坐标为x+2=2+2=4,∴平移后的抛物线为y=﹣(x﹣2)2+4,当y=0时,有﹣(x﹣2)2+4=0,解得:x1=0,x2=4,∴D(4,0),∴AD=4﹣(﹣2)=6.②当顶点在水平方向上向右平移了a个单位长度时,顶点为(a﹣1,a+1),∴平移后的抛物线为y=﹣(x﹣a+1)2+a+1,当y=0时,(x﹣a+1)2=a+1,解得:x=a﹣1±,∴D(a﹣1+,0),∴AD=a﹣1+﹣(﹣2)=a+1+.六、(本大题共12分)23.如图,小东将一张长AD为12、宽AB为4的矩形纸片按如下方式进行折叠:在纸片的一边BC上分别取点P,Q,使得BP=CQ,连结AP、DQ,将△ABP、△DCQ分别沿AP、DQ折叠得△APM,△DQN,连结MN.小东发现线段MN的位置和长度随着点P、Q的位置变化而发生改变.(1)请在图1中过点M,N分别画ME⊥BC于点E,NF⊥BC于点F.求证:①ME=NF;②MN∥BC.(2)如图1,若BP=3,求线段MN的长;(3)如图2,当点P与点Q重合时,求MN的长.【考点】三角形综合题.【分析】(1)①根据矩形的性质得到∠B=∠C=90°,AB=CD.根据全等三角形的性质得到∠APB=∠DQG.推出△MEP≌△NPQ,由全等三角形的性质即可得到ME=NF;②根据矩形的判定定理得到四边形EFMN是矩形,由矩形的性质得到结论;(2)证明△EMP∽△MAG,根据相似三角形的对应边的比相等,以及矩形的性质即可求解;(3)设PM、PN分别交AD于点E、F,证明△PEF∽△PMN,根据相似三角形的对应边的比相等即可求解.【解答】解:(1)①∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=CD.∵在△ABP和△DCQ中,,∴△ABP≌△DCQ,∴∠APB=∠DQG.∴∠MPE=180°﹣2∠APB=180°﹣2∠DQC=∠NQF.∴在△MEP和△NPQ中,,∴△MEP≌△NPQ,∴ME=NF;②∵ME∥NF,ME=NF,∴四边形EFMN是矩形,∴MN∥BC;(2)延长EM、FN交AD于点G、H,∵AB=4,BP=3,∴AM=4,PM=3.∵AD∥BC,∴EM⊥AD.∵∠AMP=∠MEP=∠MGA,∴∠EMP=∠MAG.∴△EMP∽△MAG.∴===,设AG=4a,MG=3b.∵四边形ABEG是矩形,∴,解得:,∴AG=,同理DH=.∴MN=;(3)设PM、PN分别交AD于点E、F.∵∠EPA=∠APB=∠PAE,∴EA=EP.设EA=EP=x,在直角△AME中,42+(6﹣x)2=x2,解得:x=,∴EF=12﹣2×=,∵EF∥MN,∴△PEF∽△PMN,∴=,即,解得:MN=.。
陕西省渭南市数学中考一模试卷
陕西省渭南市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共22分)1. (1分) (2016七上·武清期中) ﹣5的倒数是________.2. (1分)光的速度大约是300000千米/秒,将300000用科学记数法表示为________ .3. (1分)(2018·柳州) 不等式的解集是________.4. (1分)(2016·合肥模拟) 如图,反比例函数y= (x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.,则下列结论正确的是________(将正确的结论填在横线上).①s△OEB=s△ODB ,②BD=4AD,③连接MD,S△ODM=2S△OCE ,④连接ED,则△BED∽△BCA.5. (1分)若成立,则x满足________6. (1分)如图,半径为的⊙O是△ABC的外接圆,∠CAB=60°,则BC=________ .7. (2分) (2019八上·恩施期中) 下列图形中,是轴对称图形的是()A .B .C .D .8. (2分)(2016·福田模拟) 下列计算正确的是()A . (a2)3=a5B . a2•a=a3C . a6÷a3=a2D . (ab)2=ab29. (2分)(2016·新疆) 一个扇形的圆心角是120°,面积为3πcm2 ,那么这个扇形的半径是()A . 1cmB . 3cmC . 6cmD . 9cm10. (2分)正十边形的每个外角等于()A . 18B . 36C . 45D . 6011. (2分)(2017·兰州模拟) 如图所示的几何体是由5个大小相同的小正方体紧密摆放而成的,其三视图中面积最小的是()A . 主视图B . 左视图C . 俯视图D . 左视图和俯视图12. (2分) (2018八下·永康期末) 永康市某一周的最高气温统计如下单位::27,28,30,31,28,30,28,则这组数据的众数和中位数分别是A . 28,27B . 28,28C . 28,30D . 27,2813. (2分)(2017·新野模拟) 将二次函数y=x2的图象向下平移2个单位,再向右平移3个单位,则平移后的二次函数的解析式为()A . y=x2﹣2B . y=x2+2C . y=(x+3)2+2D . y=(x﹣3)2﹣214. (2分)(2017·渝中模拟) 如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有()和黑子.A . 37B . 42C . 73D . 121二、解答题 (共9题;共67分)15. (5分)计算:﹣(π﹣3)0+(﹣1)2015 .16. (2分)如图,已知AB是⊙O的直径,BC⊥A B,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,AD=5,求OC的值.17. (11分) (2019九下·郑州月考) 某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类A B C D E F上学方式电动车私家车公共交通自行车步行其他某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图根据以上信息,回答下列问题:(1)参与本次问卷调查的学生共有________人,其中选择B类的人数有________人.(2)在扇形统计图中,求E类对应的扇形圆心角α的度数,并补全条形统计图.(3)若将A、C、D、E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数.18. (5分)如图,在一张矩形的床单四周绣上宽度相等的花边,剩下部分面积为1.6m2 ,已知床单的长是2m,宽是1.4m,求花边的宽度.19. (10分)(2017·黔东南模拟) 近年来“低头族”现象日趋严重,初中生的视力状况受到了全社会的广泛关注.某市有关部门对全市3万名初中生视力状况进行了一次抽样调查,并利用所得的数据绘制了如图的频数分布直方图,根据图中提供的信息解答下列问题:(1)本次调查共抽测了多少名学生?(2)如果视力在4.9~5.1(含4.9和5.1)均属正常,那么全市约有多少名初中生的视力正常?(3)若从视力在4.9~5.1的3个男生2个女生中随机抽取2人了解其平时用手机情况,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.20. (20分) (2017八上·灌云月考) 容积为800立方米的水池内已贮水200立方米,若每分钟注入的水量是15立方米,设池内的水量为Q(立方米),注水时间为t(分).(1)请写出Q与t之间的函数关系式.(2)注水多长时间可以把水池注满?(3)当注水时间为0.2小时时,池中的水量是多少?21. (2分) (2017九上·汝州期中) 如图,在Rt△ABC中,∠B=90°,BC= ,∠C=30°.点D从点C 出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t为何值时,△DEF为直角三角形?请说明理由.22. (10分)(2017·邗江模拟) 对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若存在过点P的直线l交⊙C于异于点P的A,B两点,在P,A,B三点中,位于中间的点恰为以另外两点为端点的线段的中点时,则称点P为⊙C 的相邻点,直线l为⊙C关于点P的相邻线.(1)当⊙O的半径为1时,①分别判断在点D(,),E(0,﹣),F(4,0)中,是⊙O的相邻点有________;②请从①中的答案中,任选一个相邻点,在图1中做出⊙O关于它的一条相邻线,并说明你的作图过程;________③点P在直线y=﹣x+3上,若点P为⊙O的相邻点,求点P横坐标的取值范围;________(2)⊙C的圆心在x轴上,半径为1,直线y=﹣与x轴,y轴分别交于点M,N,若线段MN上存在⊙C的相邻点P,直接写出圆心C的横坐标的取值范围.23. (2分) (2018九上·建瓯期末) 如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A、B两点(点A在点B 的左边),与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的△AEM的面积;(4)在(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG= DQ,求点F的坐标.参考答案一、选择题 (共14题;共22分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、解答题 (共9题;共67分)15-1、16-1、17-1、17-2、17-3、18-1、19-1、19-2、19-3、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、23-4、。
2018年陕西省中考数学模拟试卷(一)
2017年陕西省中考数学模拟试卷(一)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.(3分)﹣3的相反数是()A.B. C.3 D.﹣32.(3分)如图所示的几何体的左视图是()A.B.C.D.3.(3分)下列计算正确的是()A.a2•a3=a6B.a6÷a3=a2C.4x2﹣3x2=1 D.(﹣2a2)3=﹣8a64.(3分)如图,直线a∥b,直线c分别与a、b相交于A、B两点,AC⊥AB于点A,交直线b于点C.已知∠1=42°,则∠2的度数是()A.38°B.42°C.48°D.58°5.(3分)若正比例函数的图象经过点(﹣1,2),则这个图象必经过点()A.(1,2)B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)6.(3分)一组数据:3,4,5,6,6,的平均数、众数、中位数分别是()A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,67.(3分)如图,∠A=∠B=90°,AB=7,AD=2,BC=3,在边AB上取点P,使得△PAD与△PBC相似,则这样的P点共有()A.1个B.2个C.3个D.4个8.(3分)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则sin∠ECB为()A.B.C.D.9.(3分)如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点B按顺时针方向旋转后得到矩形A′BC′D′.若边A′B交线段CD于H,且BH=DH,则DH的值是()A.B.C.D.10.(3分)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A.1 B.2 C.3 D.4二、填空题(共4小题,每小题3分,计12分)11.(3分)因式分解:(a+b)2﹣4b2= .12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个正n边形(n>4)的内角和是外角和的3倍,则n= ;B.小明站在教学楼前50米处,测得教学楼顶部的仰角为20°,测角仪的高度为1.5米,则此教学楼的高度为米.(用科学计算器计算,结果精确到0.1米)13.(3分)如图,矩形ABCD中,AD=3,∠CAB=30°,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是.14.(3分)如图,在第一象限内,点P(2,3),M(a,2)是双曲线y=(k≠0)上的两点,PA⊥x轴于点A,MB⊥x轴于点B,PA与OM交于点C,则△OAC的面积为.三、解答题(共11小题,计78分,解答应写出过程)15.(5分)计算:(﹣2)0+()﹣1+4co s30°﹣|﹣|16.(5分)先化简,再求值:(+)÷,其中a=﹣1.17.(5分)已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.18.(5分)某学校为了解七年级男生体质健康情况,随机抽取若干名男生进行测试,测试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图1、图2两幅不完整的统计图,请根据图中信息回答下列问题:(1)本次接收随机抽样调查的男生人数为人,扇形统计图中“良好”所对应的圆心角的度数为;(2)补全条形统计图中“优秀”的空缺部分;(3)若该校七年级共有男生480人,请估计全年级男生体质健康状况达到“良好”的人数.19.(7分)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC≌△DEC.20.(7分)如图,一电线杆AB的影子分别落在了地上和墙上.同一时刻,小明竖起1米高的直杆MN,量得其影长MF为0.5米,量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米.你能利用小明测量的数据算出电线杆AB的高吗?21.(7分)暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5小时时离目的地多远?22.(7分)如图,小华和小丽两人玩游戏,她们准备了A、B两个分别被平均分成三个、四个扇形的转盘.游戏规则:小华转动A盘、小丽转动B盘.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.两个转盘停止后指针所指区域内的数字之和小于6,小华获胜.指针所指区域内的数字之和大于6,小丽获胜.(1)用树状图或列表法求小华、小丽获胜的概率;(2)这个游戏规则对双方公平吗?请判断并说明理由.23.(8分)如图,C为以AB为直径的⊙O上一点,AD和过点C的切线互相垂直,垂足为点D.(1)求证:AC平分∠BAD;(2)若CD=3,AC=5,求⊙O的半径长.24.(10分)如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C 点,且A(一1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M是抛物线对称轴上的一个动点,当△ACM周长最小时,求点M的坐标及△ACM的最小周长.25.(12分)爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是△ABC的中线,AM⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.【特例探究】(1)如图1,当tan∠PAB=1,c=4时,a= ,b= ;如图2,当∠PAB=30°,c=2时,a= ,b= ;【归纳证明】(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.【拓展证明】(3)如图4,▱ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3,AB=3,求AF的长.2017年陕西省中考数学模拟试卷(一)参考答案与试题解析一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.(3分)﹣3的相反数是()A.B. C.3 D.﹣3【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【解答】解:(﹣3)+3=0.故选:C.2.(3分)如图所示的几何体的左视图是()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:从左向右看,得到的几何体的左视图是中间无线条的矩形.故选:D.3.(3分)下列计算正确的是()A.a2•a3=a6B.a6÷a3=a2C.4x2﹣3x2=1 D.(﹣2a2)3=﹣8a6【分析】先计算出各个选项中式子的正确结果,然后进行对照,即可得到哪个选项是正确的.【解答】解:∵a2•a3=a5,故选项A错误;∵a6÷a3=a3,故选项B错误;∵4x2﹣3x2=x2,故选项C错误;∵(﹣2a2)3=﹣8a6,故选项D正确;故选:D.4.(3分)如图,直线a∥b,直线c分别与a、b相交于A、B两点,AC⊥AB于点A,交直线b于点C.已知∠1=42°,则∠2的度数是()A.38°B.42°C.48°D.58°【分析】先根据平行线的性质求出∠ABC的度数,再根据垂直的定义和余角的性质求出∠2的度数.【解答】解:∵直线a∥b,∴∠1=∠CBA,∵∠1=42°,∴∠CBA=42°,∵AC⊥AB,∴∠2+∠CBA=90°,∴∠2=48°,故选:C.5.(3分)若正比例函数的图象经过点(﹣1,2),则这个图象必经过点()A.(1,2)B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)【分析】求出函数解析式,然后根据正比例函数的定义用代入法计算.【解答】解:设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(﹣1,2),所以2=﹣k,解得:k=﹣2,所以y=﹣2x,把这四个选项中的点的坐标分别代入y=﹣2x中,等号成立的点就在正比例函数y=﹣2x的图象上,所以这个图象必经过点(1,﹣2).故选:D.6.(3分)一组数据:3,4,5,6,6,的平均数、众数、中位数分别是()A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,6【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.【解答】解:按从小到大排列这组数据3,4,5,6,6,众数为6,中位数为5,平均数为(3+4+5+6+6)÷5=4.8.故选:AC.7.(3分)如图,∠A=∠B=90°,AB=7,AD=2,BC=3,在边AB上取点P,使得△PAD与△PBC相似,则这样的P点共有()A.1个B.2个C.3个D.4个【分析】设AP=x,则有PB=AB﹣AP=7﹣x,分两种情况考虑:三角形PDA与三角形CPB相似;三角形PDA与三角形PCB相似,分别求出x的值,即可确定出P 的个数.【解答】解:设AP=x,则有PB=AB﹣AP=7﹣x,当△PDA∽△CPB时,=,即=,解得:x=1或x=6,当△PDA∽△PCB时,=,即=,解得:x=,则这样的点P共有3个,故选:C.8.(3分)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则sin∠ECB为()A.B.C.D.【分析】根据垂径定理得到AC=BC=AB=4,设AO=x,则OC=OD﹣CD=x﹣2,在Rt △ACO中根据勾股定理得到x2=42+(x﹣2)2,解得x=5,则AE=10,OC=3,再由AE是直径,根据圆周角定理得到∠ABE=90°,利用OC是△ABE的中位线得到BE=2OC=6,然后在Rt△CBE中利用勾股定理可计算出CE,由三角函数的定义求出sin∠ECB即可.【解答】解:连结BE,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,设AO=x,则OC=OD﹣CD=x﹣2,在Rt△ACO中,∵AO2=AC2+OC2,∴x2=42+(x﹣2)2,解得:x=5,∴AE=10,OC=3,∵AE是直径,∴∠ABE=90°,∵OC是△ABE的中位线,∴BE=2OC=6,在Rt△CBE中,CE===2,∴sin∠ECB===.故选:B.9.(3分)如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点B按顺时针方向旋转后得到矩形A′BC′D′.若边A′B交线段CD于H,且BH=DH,则DH的值是()A.B.C.D.【分析】设DH的值是x,那么CH=8﹣x,BH=x,在Rt△BCH中根据勾股定理即可列出关于x的方程,解方程就可以求出DH.【解答】解:设DH的值是x,∵AB=8,AD=6,且BH=DH,那么CH=8﹣x,BH=x,在Rt△BCH中,DH=,∴x2=(8﹣x)2+36,∴x=,即DH=.故选:C.10.(3分)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A.1 B.2 C.3 D.4【分析】由抛物线的开口方向判断a与0的关系,由x=1时的函数值判断a+b+c >0,然后根据对称轴推出2a+b与0的关系,根据图象判断﹣1<x<3时,y的符号.【解答】解:①图象开口向下,能得到a<0;②对称轴在y轴右侧,x==1,则有﹣=1,即2a+b=0;③当x=1时,y>0,则a+b+c>0;④由图可知,当﹣1<x<3时,y>0.故选:C.二、填空题(共4小题,每小题3分,计12分)11.(3分)因式分解:(a+b)2﹣4b2= (a+3b)(a﹣b).【分析】原式利用平方差公式分解即可.【解答】解:原式=(a+b+2b)(a+b﹣2b)=(a+3b)(a﹣b).故答案为:(a+3b)(a﹣b)12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个正n边形(n>4)的内角和是外角和的3倍,则n= 8 ;B.小明站在教学楼前50米处,测得教学楼顶部的仰角为20°,测角仪的高度为1.5米,则此教学楼的高度为19.7 米.(用科学计算器计算,结果精确到0.1米)【分析】A、根据题意列出方程,求出即可;B、由题可知,在直角三角形中,知道已知角和邻边,直接根据正切求出对边即可解决.【解答】解:A、根据题意得:(n﹣2)×180°=3×360°,解得:n=8;故答案为:8;B、如图所示:作图可得:AB=50米;∠CAB=20°,故CB=AB×tan20°≈18.2米,∵AD=BF=1.5米,∴这个建筑的高度AF=19.7米.13.(3分)如图,矩形ABCD中,AD=3,∠CAB=30°,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是3.【分析】作点A关于直线CD的对称点E,作EP⊥AC于P,交CD于点Q,此时QA+QP 最短,由QA+QP=QE+PQ=PE可知,求出PE即可解决问题.【解答】解:作点A关于直线CD的对称点E,作EP⊥AC于P,交CD于点Q.∵四边形ABCD是矩形,∴∠ADC=90°,∴DQ⊥AE,∵DE=AD,∴QE=QA,∴QA+QP=QE+QP=EP,∴此时QA+QP最短(垂线段最短),∵∠CAB=30°,∴∠DAC=60°,在RT△APE中,∵∠APE=90°,AE=2AD=6,∴EP=AE•sin60°=6×=3.故答案为3.14.(3分)如图,在第一象限内,点P(2,3),M(a,2)是双曲线y=(k≠0)上的两点,PA⊥x轴于点A,MB⊥x轴于点B,PA与OM交于点C,则△OAC的面积为.【分析】由于点P(2,3)在双曲线y=(k≠0)上,首先利用待定系数法求出k的值,得到反比例函数的解析式,把y=2代入,求出a的值,得到点M的坐标,然后利用待定系数法求出直线OM的解析式,把x=2代入,求出对应的y值即为点C的纵坐标,最后根据三角形的面积公式求出△OAC的面积.【解答】解:∵点P(2,3)在双曲线y=(k≠0)上,∴k=2×3=6,∴y=,当y=2时,x=3,即M(3,2).∴直线OM的解析式为y=x,当x=2时,y=,即C(2,).∴△OAC的面积=×2×=.故答案为:.三、解答题(共11小题,计78分,解答应写出过程)15.(5分)计算:(﹣2)0+()﹣1+4cos30°﹣|﹣|【分析】原式第一项利用零指数幂法则计算,第二项利用负指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=1+3+4×﹣2=4.16.(5分)先化简,再求值:(+)÷,其中a=﹣1.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=[+]•=•=,当a=﹣1时,原式==.17.(5分)已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.【分析】首先作出∠ACB的平分线CD,再截取CO=a得出圆心O,作OE⊥CA,由角平分线的性质和切线的判定作出圆即可.【解答】解:①作∠ACB的平分线CD,②在CD上截取CO=a,③作OE⊥CA于E,以O为圆心,OE长为半径作圆;如图所示:⊙O即为所求.18.(5分)某学校为了解七年级男生体质健康情况,随机抽取若干名男生进行测试,测试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图1、图2两幅不完整的统计图,请根据图中信息回答下列问题:(1)本次接收随机抽样调查的男生人数为40 人,扇形统计图中“良好”所对应的圆心角的度数为162°;(2)补全条形统计图中“优秀”的空缺部分;(3)若该校七年级共有男生480人,请估计全年级男生体质健康状况达到“良好”的人数.【分析】(1)合格人数除以所占的百分比即可得出所调查的男生总人数,用良好的人数除以总人数再乘以360°即可得出“良好”所对应的圆心角的度数;(2)用40﹣2﹣8﹣18即可;(3)用480乘以良好所占的百分比即可.【解答】解:(1)8÷20%=40(人),18÷40×360°=162°;(2)“优秀”的人数=40﹣2﹣8﹣18=12,如图,(3)“良好”的男生人数:×480=216(人),答:全年级男生体质健康状况达到“良好”的人数为216人.19.(7分)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC≌△DEC.【分析】由∠BAE=∠BCE=∠ACD=90°,可求得∠DCE=∠ACB,且∠B+∠CEA=∠CEA+∠DEC=180°,可求得∠DEC=∠ABC,再结合条件可证明△ABC≌△DEC.【解答】证明:∵∠BAE=∠BCE=∠ACD=90°,∴∠DCE+∠ECA=∠ECA+∠ACB,∴∠DCE=∠ACB,且∠B+∠CEA=180°,又∠DEC+∠CEA=180°,∴∠B=∠DEC,在△ABC和△DEC中∴△ABC≌△DEC(ASA).20.(7分)如图,一电线杆AB的影子分别落在了地上和墙上.同一时刻,小明竖起1米高的直杆MN,量得其影长MF为0.5米,量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米.你能利用小明测量的数据算出电线杆AB的高吗?【分析】把直角梯形ABCD分割成一个直角三角形和一个矩形,由于太阳光线是平行的,就可以构造出相似三角形了.【解答】解:过C点作CG⊥AB于点G,∴GC=BD=3米,GB=CD=2米.∵∠NMF=∠AGC=90°,NF∥AC,∴∠NFM=∠ACG,∴△NMF∽△AGC,∴,∴AG===6,∴AB=AG+GB=6+2=8(米),故电线杆子的高为8米.21.(7分)暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5小时时离目的地多远?【分析】(1)观察图形即可得出结论;(2)设AB段图象的函数表达式为y=kx+b,将A、B两点的坐标代入,运用待定系数法即可求解;(3)先将x=2.5代入AB段图象的函数表达式,求出对应的y值,进一步即可求解.【解答】解:(1)从小刚家到该景区乘车一共用了4h时间;(2)设AB段图象的函数表达式为y=kx+b.∵A(1,80),B(3,320)在AB上,∴,解得.∴y=120x﹣40(1≤x≤3);(3)当x=2.5时,y=120×2.5﹣40=260,380﹣260=120(km).故小刚一家出发2.5小时时离目的地120km.22.(7分)如图,小华和小丽两人玩游戏,她们准备了A、B两个分别被平均分成三个、四个扇形的转盘.游戏规则:小华转动A盘、小丽转动B盘.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.两个转盘停止后指针所指区域内的数字之和小于6,小华获胜.指针所指区域内的数字之和大于6,小丽获胜.(1)用树状图或列表法求小华、小丽获胜的概率;(2)这个游戏规则对双方公平吗?请判断并说明理由.【分析】(1)首先根据题意列出表格,然后由表格即可求得所有等可能的结果与小华、小丽获胜的情况,再利用概率公式即可求得答案;(2)比较小华、小丽获胜的概率的大小,即可知这个游戏规则对双方公平.【解答】解:列表如下:B和A3456034561456725678∵共有12种等可能的结果,小华获胜的有6种情况、小丽获胜的有3情况,∴P(小华获胜)==,P(小丽获胜)==;(2)这个游戏规则对双方不公平,∵P(小华获胜)>P(小丽获胜),∴游戏规则对双方不公平.23.(8分)如图,C为以AB为直径的⊙O上一点,AD和过点C的切线互相垂直,垂足为点D.(1)求证:AC平分∠BAD;(2)若CD=3,AC=5,求⊙O的半径长.【分析】(1)根据等腰三角形的性质,可得∠ACO与∠CAO的关系,根据平行线的性质,可得∠DAC与∠ACO的关系,根据等量代换,可得答案;(2)连接BC,根据圆周角定理的推理得到∠ACB=90°,又∠DAC=∠OAC,由此可以得到△ADC∽△ACB,然后利用相似三角形的性质即可解决问题.【解答】(1)证明:连结OC(如图所示),则∠ACO=∠CAO (等腰三角形,两底角相等),∵CD切⊙O于C,∴CO⊥CD,又∵AD⊥CD,∴AD∥CO.∴∠DAC=∠ACO (两直线平行,内错角相等),∴∠DAC=∠CAO,∴AC平分∠BAD.(2)过点E画OE⊥AC于E(如图所示),在Rt△ADC中,AD==4,∵OE⊥AC,∴AE=AC=,∵∠CAO=∠DAC,∠AEO=∠ADC=Rt∠,∴△AEO∽△ADC,∴,即:=,∴AO=,即⊙O的半径为.24.(10分)如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C 点,且A(一1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M是抛物线对称轴上的一个动点,当△ACM周长最小时,求点M的坐标及△ACM的最小周长.【分析】(1)直接将(﹣1,0),代入解析式进而得出答案,再利用配方法求出函数顶点坐标;(2)分别得出AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,进而利用勾股定理的逆定理得出即可;(3)利用轴对称最短路线求法得出M点位置,再求△ACM周长最小值.【解答】解:(1)∵点A(﹣1,0)在抛物线y=x2+bx﹣2上,∴×(﹣1 )2+b×(﹣1)﹣2=0,解得:b=﹣,∴抛物线的解析式为y=x2﹣x﹣2.y=(x﹣)2﹣,∴顶点D的坐标为:(,﹣);(2)当x=0时y=﹣2,∴C(0,﹣2),OC=2.当y=0时,x2﹣x﹣2=0,解得:x1=﹣1,x2=4,∴B (4,0),∴OA=1,OB=4,AB=5.∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,∴AC2+BC2=AB2.∴△ABC是直角三角形.(3)如图所示:连接AM,点A关于对称轴的对称点B,BC交对称轴于点M,根据轴对称性及两点之间线段最短可知,MC+MA的值最小,即△ACM周长最小,设直线BC解析式为:y=kx+d,则,解得:,故直线BC的解析式为:y=x﹣2,当x=时,y=﹣,∴M(,﹣),△ACM最小周长是:AC+AM+MC=AC+BC=+2=3.25.(12分)爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是△ABC的中线,AM⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.【特例探究】(1)如图1,当tan∠PAB=1,c=4时,a= 4,b= 4;如图2,当∠PAB=30°,c=2时,a= ,b= ;【归纳证明】(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.【拓展证明】(3)如图4,▱ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3,AB=3,求AF的长.【分析】(1)①首先证明△APB,△PMN都是等腰直角三角形,求出PA、PB、PN、PM,再利用勾股定理即可解决问题.②连接MN,在RT△PAB,RT△PMN中,利用30°性质求出PA、PB、PN、PM,再利用勾股定理即可解决问题.(2)结论a2+b2=5c2.设MP=x,NP=y,则AP=2x,BP=2y,利用勾股定理分别求出a2、b2、c2即可解决问题.(3)取AB中点H,连接FH并且延长交DA的延长线于P点,首先证明△ABF是中垂三角形,利用(2)中结论列出方程即可解决问题.【解答】(1)解:如图1中,∵CN=AN,CM=BM,∴MN∥AB,MN=AB=2,∵tan∠PAB=1,∴∠PAB=∠PBA=∠PNM=∠PMN=45°,∴PN=PM=2,PB=PA=4,∴AN=BM==2.∴b=AC=2AN=4,a=BC=4.故答案为4,4,如图2中,连接NM,,∵CN=AN,CM=BM,∴MN∥AB,MN=AB=1,∵∠PAB=30°,∴PB=1,PA=,在RT△MNP中,∵∠NMP=∠PAB=30°,∴PN=,PM=,∴AN=,BM=,∴a=BC=2BM=,b=AC=2AN=,故答案分别为,.(2)结论a2+b2=5c2.证明:如图3中,连接MN.∵AM、BN是中线,∴MN∥AB,MN=AB,∴△MPN∽△APB,∴==,设MP=x,NP=y,则AP=2x,BP=2y,∴a2=BC2=4BM2=4(MP2+BP2)=4x2+16y2,b2=AC2=4AN2=4(PN2+AP2)=4y2+16x2,c2=AB2=AP2+BP2=4x2+4y2,∴a2+b2=20x2+20y2=5(4x2+4y2)=5c2.(3)解:如图4中,在△AGE和△FGB中,,∴△AGE≌△FGB,∴AG=FG,取AB中点H,连接FH并且延长交DA的延长线于P点,同理可证△APH≌△BFH,∴AP=BF,PE=CF=2BF,即PE∥CF,PE=CF,∴四边形CEPF是平行四边形,∴FP∥CE,∵BE⊥CE,∴FP⊥BE,即FH⊥BG,∴△ABF是中垂三角形,由(2)可知AB2+AF2=5BF2,∵AB=3,BF=AD=,∴9+AF2=5×()2,∴AF=4.。
陕西省渭南市九年级数学中考一模试卷
陕西省渭南市九年级数学中考一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)一个数的相反数是3,则这个数是()A .B .C . 3D . -32. (2分)(2017·潍坊) 如图所示的几何体,其俯视图是()A .B .C .D .3. (2分)(2017·淄博) 下列运算正确的是()A . a2•a3=a6B . (﹣a2)3=﹣a5C . a10÷a9=a(a≠0)D . (﹣bc)4÷(﹣bc)2=﹣b2c24. (2分)(2017·东胜模拟) 如图,已知AB∥CD,∠C=65°,∠E=30°,则∠A的度数为()A . 30°B . 32.5°C . 35°D . 37.5°5. (2分) (2018九上·长春开学考) 如图,在中,,平分 .若则的长为()A .B .C .D .6. (2分) (2018九上·温州开学考) 如图,E是平行四边形ABCD的边AB延长线上一点,DE交BC于F,连接AF,CE.则图中与△ABF面积一定相等的三角形是()A . △BEFB . △DCFC . △ECFD . △EBC7. (2分)张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意,得到的方程是:()A . -=B . -=C . -=D . -=8. (2分)如图,AB是⊙O的直径,C、D是⊙O上的两点,若∠BAC=20°,=,则∠DAC的度数是()A . 30°B . 35°C . 45°D . 70°9. (2分)(2018·龙东) 如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB= BC=1,则下列结论:①∠CAD=30°②BD= ③S平行四边形ABCD=AB•AC④OE= AD ⑤S△APO=,正确的个数是()A . 2B . 3C . 4D . 510. (2分)如图,反比例函数y1=和一次函数y2=k2x+b的图象交于A、B两点.A、B两点的横坐标分别为2,﹣3.通过观察图象,若y1>y2 ,则x的取值范围是()A . 0<x<2B . ﹣3<x<0或x>2C . 0<x<2或x<﹣3D . ﹣3<x<0二、填空题 (共5题;共5分)11. (1分)分解因式:2x2﹣12x+18=________ .12. (1分)(2019·青浦模拟) 方程的根是________.13. (1分) (2017八下·丹阳期中) 已知关于的方程的解是负数,则m的取值范围为________.14. (1分) (2018八下·邯郸开学考) 如图,在△ABC中,∠A CB=90°,AC=BC,点P是△ABC内的一点,且PB=1,PC=2,PA=3,则∠BPC=________°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年陕西省渭南市华州区中考数学一模试卷一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.(3分)﹣3的倒数是()A.﹣ B.C.﹣3 D.32.(3分)如图,桌上放着一摞书和一个茶杯,它的俯视图是()A.B. C.D.3.(3分)下列计算正确的是()A.23+26=29 B.23﹣24=2﹣1C.23×23=29D.24÷22=224.(3分)如图,AB∥CD,∠A=45°,∠C=28°,则∠AEC的大小为()A.17°B.62°C.63°D.73°5.(3分)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A. B.C.D.6.(3分)如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,7.(3分)若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是()A.3 B.4 C.5 D.68.(3分)如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2 B.C.D.19.(3分)如图所示,已知⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若AD=3,AC=2,则cosD的值为()A.B.C.D.10.(3分)抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:x…﹣2﹣1012…y…04664…从上表可知,下列说法中,错误的是()A.抛物线于x轴的一个交点坐标为(﹣2,0)B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0D.抛物线在对称轴左侧部分是上升的二、填空题.(共4小题,每小题3分,计12分)11.(3分)不等式x﹣2≤3(x+1)的解集为.12.(3分)如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为m.13.(3分)已知点(m﹣1,y1),(m﹣3,y2)是反比例函数y=(m<0)图象上的两点,则y1y2(填“>”或“=”或“<”)14.(3分)如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为个.三、解答题.(共11小题,计78分,解答题要求写出详细的过程)15.(5分)计算:(3﹣π)0+4sin45°﹣+|1﹣|.16.(5分)先化简,再求值:()÷,其中x=2016.17.(5分)已知:线段c,直线l及l外一点A.求作:Rt△ABC,使直角边AC(AC⊥l,垂足为点C),斜边AB=c.(用尺规作图,写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑).18.(5分)某地区在一次九年级数学做了检测中,有一道满分8分的解答题,按评分标准,所有考生的得分只有四种:0分,3分,5分,8分.老师为了了解学生的得分情况与题目的难易情况,从全区4500名考生的试卷中随机抽取一部分,通过分析与整理,绘制了如下两幅图不完整的统计图.请根据以上信息解答下列问题:(1)填空:a=,b=,并把条形统计图补全;(2)请估计该地区此题得满分(即8分)的学生人数;(3)已知难度系数的计算公式为L=,其中L为难度系数,X为样本平均得分,W为试题满分值.一般来说,根据试题的难度系数可将试题分为以下三类:当0<L≤0.4时,此题为难题;当0.4<L≤0.7时,此题为中等难度试题;当0.7<L <1时,此题为容易题.试问此题对于该地区的九年级学生来说属于哪一类?19.(7分)如图,△ABC中,∠ACB=60°,分别以△ABC的两边向形外作等边△BCE、等边△ACF,过A作AM∥FC交BC于点M,连接EM,求证:AB=ME.20.(7分)如图,一辆摩拜单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A、B之间的距离约为49cm,现测得AC、BC 与AB的夹角分别为45°与68°,若点C到地面的距离CD为28cm,坐垫中轴E 处与点B的距离BE为4cm,求点E到地面的距离(结果保留一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)21.(7分)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2017年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A 型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?22.(7分)有四张卡片(形状、大小和质地都相同),正面分别写有字母A、B、C、D和一个算式.将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.(1)用画树形图或列表法表示抽取两张卡片可能出现的所有情况;(卡片可用A、B、C、D表示)(2)分别求抽取的两张卡片上的算式都正确的概率和只有一个算式正确的概率.23.(8分)如图,△ABC中,以BC为直径的⊙O交AB于点D,AE平分∠BAC 交BC于点E,交CD于点F.且CE=CF.(1)求证:直线CA是⊙O的切线;(2)若BD=DC,求的值.24.(10分)如图,在平面直角坐标系xOy中,把抛物线C1:y=﹣x2沿x轴翻折,再平移得到抛物线C2,恰好经过点A(﹣3,0)、B(1,0),抛物线C2与y轴交于点C,抛物线C1:y=﹣x2与抛物线C2的对称轴交于D点.(1)求抛物线C2的表达式.(2)在抛物线C2的对称轴上是否存在一点M,使得以M、O、D为顶点的三角形与△BOD相似?若存在,求点M坐标;若不存在,说明理由.25.(12分)(1)如图①,点A、点B在线段l的同侧,请你在直线l上找一点P,使得AP+BP的值最小(不需要说明理由).(2)如图②,菱形ABCD的边长为6,对角线AC=6,点E,F在AC上,且EF=2,求DE+BF的最小值.(3)如图③,四边形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四边形ABCD 的周长是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.2018年陕西省渭南市华州区中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.(3分)﹣3的倒数是()A.﹣ B.C.﹣3 D.3【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:A.2.(3分)如图,桌上放着一摞书和一个茶杯,它的俯视图是()A.B. C.D.【分析】根据俯视图是从上面看到的图象判定则可.【解答】解:书和茶杯的俯视图分别是矩形,圆形加长方形,故选B.3.(3分)下列计算正确的是()A.23+26=29 B.23﹣24=2﹣1C.23×23=29D.24÷22=22【分析】根据同类项、同底数幂的乘法和同底数幂的除法计算即可.【解答】解:A、23与26不能合并,错误;B、23与24不能合并,错误;C、23×23=26,错误;D、24÷22=22,正确;故选:D.4.(3分)如图,AB∥CD,∠A=45°,∠C=28°,则∠AEC的大小为()A.17°B.62°C.63°D.73°【分析】首先根据两直线平行,内错角相等可得∠ABC=∠C=28°,再根据三角形内角与外角的性质可得∠AEC=∠A+∠ABC.【解答】解:∵AB∥CD,∴∠ABC=∠C=28°,∵∠A=45°,∴∠AEC=∠A+∠ABC=28°+45°=73°,故选:D.5.(3分)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A. B.C.D.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,从图中可以看出,OA上升较快,AB上升较慢,BC 上升最快,由此可知这个容器下面容积较大,中间容积最大,上面容积最小,故选:C.6.(3分)如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,【分析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出OM,再利用弧长公式求解即可.【解答】解:连接OB,∵OB=4,∴BM=2,∴OM=2,==π,故选:D.7.(3分)若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是()A.3 B.4 C.5 D.6【分析】根据题意列方程组得到k=n﹣4,由于0<k<2,于是得到0<n﹣4<2,即可得到结论.【解答】解:依题意得:,∴k=n﹣4,∵0<k<2,∴0<n﹣4<2,∴4<n<6,故选:C.8.(3分)如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2 B.C.D.1【分析】根据翻折不变性,AB=FB=2,BM=1,在Rt△BFM中,可利用勾股定理求出FM的值.【解答】解:∵四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在MN上的点F处,∴FB=AB=2,BM=1,则在Rt△BMF中,FM=,故选:B.9.(3分)如图所示,已知⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若AD=3,AC=2,则cosD的值为()A.B.C.D.【分析】根据圆周角定理的推论,得∠B=∠D.根据直径所对的圆周角是直角,得∠ACD=90°.在直角三角形ACD中,根据勾股定理,得CD=,则cosD==.【解答】解:∵AD是⊙O的直径,∴∠ACD=90°.∵AD=3,AC=2,∴CD=.∴cosD==.故选:B.10.(3分)抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:x…﹣2﹣1012…y…04664…从上表可知,下列说法中,错误的是()A.抛物线于x轴的一个交点坐标为(﹣2,0)B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0D.抛物线在对称轴左侧部分是上升的【分析】由表可知抛物线过点(﹣2,0)、(0,6)可判断A、B;当x=0或x=1时,y=6可求得其对称轴,可判断C;由表中所给函数值可判断D.【解答】解:当x=﹣2时,y=0,∴抛物线过(﹣2,0),∴抛物线与x轴的一个交点坐标为(﹣2,0),故A正确;当x=0时,y=6,∴抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,∴对称轴为x=,故C错误;当x<时,y随x的增大而增大,∴抛物线在对称轴左侧部分是上升的,故D正确;故选:C.二、填空题.(共4小题,每小题3分,计12分)11.(3分)不等式x﹣2≤3(x+1)的解集为x≥﹣.【分析】将不等式右边的式子运用乘法分配律计算,然后移到左边进行四则运算,最后求出x的取值.【解答】解:去括号得:x﹣2≤3x+3.移项及合并得:﹣2x≤5.∴x≥﹣.12.(3分)如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为3m.【分析】根据CD∥AB∥MN,得到△ABE∽△CDE,△ABF∽△MNF,根据相似三角形的性质可知,,即可得到结论.【解答】解:如图,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴,,即,,解得:AB=3m.答:路灯的高为3m.13.(3分)已知点(m﹣1,y1),(m﹣3,y2)是反比例函数y=(m<0)图象上的两点,则y1>y2(填“>”或“=”或“<”)【分析】由反比例函数系数小于0,可得出该反比例函数在第二象限单增,结合m﹣1、m﹣3之间的大小关系即可得出结论.【解答】解:∵在反比例函数y=(m<0)中,k=m<0,∴该反比例函数在第二象限内y随x的增大而增大,∵m﹣3<m﹣1<0,∴y1>y2.故答案为:>.14.(3分)如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为9n+3个.【分析】根据题中正方形和等边三角形的个数找出规律,进而可得出结论.【解答】解:∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,∴正方形和等边三角形的和=6+6=12=9+3;∵第2个图由11个正方形和10个等边三角形组成,∴正方形和等边三角形的和=11+10=21=9×2+3;∵第3个图由16个正方形和14个等边三角形组成,∴正方形和等边三角形的和=16+14=30=9×3+3,…,∴第n个图中正方形和等边三角形的个数之和=9n+3.故答案为:9n+3.三、解答题.(共11小题,计78分,解答题要求写出详细的过程)15.(5分)计算:(3﹣π)0+4sin45°﹣+|1﹣|.【分析】直接利用零指数幂的性质以及特殊角的三角函数值和二次根式的性质分别化简得出答案.【解答】解:原式=1+4×﹣2+﹣1=1+2﹣2+﹣1=.16.(5分)先化简,再求值:()÷,其中x=2016.【分析】先根据分式混合元算的法则把原式进行化简,再代入进行计算即可.【解答】解:原式=[﹣]•=•=,当x=2016时,原式==.17.(5分)已知:线段c,直线l及l外一点A.求作:Rt△ABC,使直角边AC(AC⊥l,垂足为点C),斜边AB=c.(用尺规作图,写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑).【分析】在直线l另一侧取点P,以点A为圆心,AP为半径画弧交直线l于M、N,再作线段MN的垂直平分线交l于C,然后以点A为圆心,c为半径画弧交l 于B,连结AB,则△ABC为所作.【解答】解:如图所示:则Rt△ABC就是所求作的三角形.18.(5分)某地区在一次九年级数学做了检测中,有一道满分8分的解答题,按评分标准,所有考生的得分只有四种:0分,3分,5分,8分.老师为了了解学生的得分情况与题目的难易情况,从全区4500名考生的试卷中随机抽取一部分,通过分析与整理,绘制了如下两幅图不完整的统计图.请根据以上信息解答下列问题:(1)填空:a=25,b=20,并把条形统计图补全;(2)请估计该地区此题得满分(即8分)的学生人数;(3)已知难度系数的计算公式为L=,其中L为难度系数,X为样本平均得分,W为试题满分值.一般来说,根据试题的难度系数可将试题分为以下三类:当0<L≤0.4时,此题为难题;当0.4<L≤0.7时,此题为中等难度试题;当0.7<L <1时,此题为容易题.试问此题对于该地区的九年级学生来说属于哪一类?【分析】(1)根据条形统计图和扇形统计图可以得到a和b的值,从而可以得到得3分的人数将条形统计图补充完整;(2)根据第(1)问可以估计该地区此题得满分(即8分)的学生人数;(3)根据题意可以算出L的值,从而可以判断试题的难度系数.【解答】解:(1)由条形统计图可知0分的同学有24人,由扇形统计图可知,0分的同学占10%,∴抽取的总人数是:24÷10%=240,故得3分的学生数是;240﹣24﹣108﹣48=60,∴a%=,b%=,故答案为:25,20;补全的条形统计图如右图所示,(2)由(1)可得,得满分的占20%,∴该地区此题得满分(即8分)的学生人数是:4500×20%=900人,即该地区此题得满分(即8分)的学生数900人;(3)由题意可得,L===0.575,∵0.575处于0.4<L≤0.7之间,∴题对于该地区的九年级学生来说属于中等难度试题.19.(7分)如图,△ABC中,∠ACB=60°,分别以△ABC的两边向形外作等边△BCE、等边△ACF,过A作AM∥FC交BC于点M,连接EM,求证:AB=ME.【分析】利用等边三角形的性质以及平行四边形的性质得出MC=AF=AC,再结合全等三角形的判定方法得出结论即可.【解答】证明:∵△ACF是等边三角形,∴∠FAC=∠ACF=60°,AC=CF=AF,∵∠ACB=60°,∴∠ACB=∠FAC,∴AF∥BC,∵AM∥FC,∴四边形AMCF是平行四边形,∴MC=AF=AC,∵△BCE是等边三角形,∴BC=EC,在△ABC和△MEC中,,∴△ABC≌△MEC(SAS),∴AB=ME.20.(7分)如图,一辆摩拜单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A、B之间的距离约为49cm,现测得AC、BC 与AB的夹角分别为45°与68°,若点C到地面的距离CD为28cm,坐垫中轴E 处与点B的距离BE为4cm,求点E到地面的距离(结果保留一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)【分析】过点C作CH⊥AB于点H,过点E作EF垂直于AB延长线于点F,设CH=x,则AH=CH=x,BH=CHcot68°=0.4x,由AB=49知x+0.4x=49,解之求得CH的长,再由EF=BEsin68°=3.72根据点E到地面的距离为CH+CD+EF可得答案.【解答】解:过点C作CH⊥AB于点H,过点E作EF垂直于AB延长线于点F,设CH=x,则AH=CH=x,BH=CHcot68°=0.4x,由AB=49知x+0.4x=49,解得:x=35,∵BE=4,∴EF=BEsin68°=3.72,则点E到地面的距离为CH+CD+EF=35+28+3.72≈66.7(cm),答:点E到地面的距离约为66.7cm.21.(7分)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2017年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A 型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?【分析】(1)该每套A型健身器材年平均下降率n,则第一次降价后的单价是原价的(1﹣x),第二次降价后的单价是原价的(1﹣x)2,根据题意列方程解答即可.(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,根据采购专项经费总计不超过112万元列出不等式并解答;②设总的养护费用是y元,则根据题意列出函数y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m)=﹣0.1m+14.4.结合函数图象的性质进行解答即可.【解答】解:(1)依题意得:2.5(1﹣n)2=1.6,则(1﹣n)2=0.64,所以1﹣n=±0.8,所以n1=0.2=20%,n2=1.8(不合题意,舍去).答:每套A型健身器材年平均下降率n为20%;(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,依题意得:1.6m+1.5×(1﹣20%)×(80﹣m)≤112,整理,得1.6m+96﹣1.2m≤1.2,解得m≤40,即A型健身器材最多可购买40套;②设总的养护费用是y元,则y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m),∴y=﹣0.1m+14.4.∵﹣0.1<0,∴y随m的增大而减小,∴m=40时,y最小.=﹣0.1×40+14.4=10.4(万元).∵m=40时,y最小值又∵10万元<10.4万元,∴该计划支出不能满足养护的需要.22.(7分)有四张卡片(形状、大小和质地都相同),正面分别写有字母A、B、C、D和一个算式.将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.(1)用画树形图或列表法表示抽取两张卡片可能出现的所有情况;(卡片可用A、B、C、D表示)(2)分别求抽取的两张卡片上的算式都正确的概率和只有一个算式正确的概率.【分析】此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;列举出符合题意的各种情况的个数,再根据概率公式解答即可.【解答】解:(1)列表如上表可知,可能出现的情况共有12种;(4分)(2)抽取的两张卡片上的算式都正确的有2种,∴P(两张卡片上的算式都正确)=.(6分)抽取的两张卡片上的算式只有一个正确的有8种,∴P(两张卡片上的算式只有一个正确)=.(8分)23.(8分)如图,△ABC中,以BC为直径的⊙O交AB于点D,AE平分∠BAC 交BC于点E,交CD于点F.且CE=CF.(1)求证:直线CA是⊙O的切线;(2)若BD=DC,求的值.【分析】(1)若要证明直线CA是⊙O的切线,则只要证明∠ACB=90°即可;(2)易证△ADF∽△ACE,由相似三角形的性质以及结合已知条件即可求出的值.【解答】解:(1)证明:∵BC为直径,∴∠BDC=∠ADC=90°,∴∠1+∠3=90°∵AE平分∠BAC,CE=CF,∴∠1=∠2,∠4=∠5,∴∠2+∠3=90°,∵∠3=∠4,∴∠2+∠5=90°,∴∠ACB=90°,即AC⊥BC,∴直线CA是⊙O的切线;(2)由(1)可知,∠1=∠2,∠3=∠5,∴△ADF∽△ACE,∴,∵BD=DC,∴tan∠ABC=,∵∠ABC+∠BAC=90°,∠ACD+∠BAC=90°,∴∠ABC=∠ACD,∴tan∠ACD=,∴sin∠ACD=,∴.24.(10分)如图,在平面直角坐标系xOy中,把抛物线C1:y=﹣x2沿x轴翻折,再平移得到抛物线C2,恰好经过点A(﹣3,0)、B(1,0),抛物线C2与y轴交于点C,抛物线C1:y=﹣x2与抛物线C2的对称轴交于D点.(1)求抛物线C2的表达式.(2)在抛物线C2的对称轴上是否存在一点M,使得以M、O、D为顶点的三角形与△BOD相似?若存在,求点M坐标;若不存在,说明理由.【分析】(1)设抛物线C2的表达式为y=a(x+3)(x﹣1).由题意可知抛物线C2的二次项系数与抛物线C1的二次项系数互为相反数,从而可求得a的值,于是可求得抛物线C2的表达式;(2)先求得抛物线C2的对称轴,然后可求得点E和点D的坐标,由点O、B、E、D的坐标可求得OB、OE、DE、BD的长,从而可得到△EDO为等腰三角直角三角形,从而可得到∠MDB=∠BOD=135°,故此当当或时,以M、O、D为顶点的三角形与△BOD相似.由比例式可求得MD的长,于是可求得点M 的坐标.【解答】解:(1)设抛物线C2的表达式为y=a(x+3)(x﹣1).∵由翻折可平移的性质可知抛物线C1与抛物线C2的开口大小相同,方向相反,∴抛物线C2的二次项系数与抛物线C1的二次项系数互为相反数.∴抛物线C2的二次项系数为1,即a=1.∴抛物线C2的表达式为y=(x+3)(x﹣1),整理得:y=x2+2x﹣3.(2)如图所示:∵抛物线C2的对称轴x=﹣=﹣1,∴点E的坐标为(﹣1,0).∵将x=﹣1代入y=﹣x2得:y=﹣1,∴D(﹣1,﹣1).∴OE=DE=1.∴△OED为等腰直角三角形.∴OD=,∠EOD=∠EDO=45°.∴∠DOB=135°.在Rt△EDB中,DB==.∵∠DOB=135°,∴M点只能在D点下方.∵∠BDM=∠BOD=135°,∴当或时,以M、O、D为顶点的三角形与△BOD相似.∵当时,=,解得:MD=2.∴点M的坐标为(﹣1,﹣3).∵当时,=,解得:MD=1,∴点M的坐标为(﹣1,﹣2).综上所述点M的坐标为(﹣1,﹣2)或(﹣1,﹣3).25.(12分)(1)如图①,点A、点B在线段l的同侧,请你在直线l上找一点P,使得AP+BP的值最小(不需要说明理由).(2)如图②,菱形ABCD的边长为6,对角线AC=6,点E,F在AC上,且EF=2,求DE+BF的最小值.(3)如图③,四边形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四边形ABCD 的周长是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.【分析】(1)如图①中,′作点A关于直线l的对称点A′,连接A′B交直线l于P,连接PA.则点P即为所求的点.(2)如图②中,作DM∥AC,使得DM=EF=2,连接BM交AC于F,由四边形DEFM 是平行四边形,推出DE=FM,推出DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB最短,由四边形ABCD是菱形,在Rt△BDM中,根据BM=计算即可.(3)如图③中,连接AC、BD,在AC上取一点,使得DM=DC.首先证明AC=CD+CB,再证明当AC为△ABC的外接圆的直径时,四边形ABCD的周长最大.【解答】解:(1)如图①中,′作点A关于直线l的对称点A′,连接A′B交直线l 于P,连接PA.则点P即为所求的点.(2)如图②中,作DM∥AC,使得DM=EF=2,连接BM交AC于F,∵DM=EF,DM∥EF,∴四边形DEFM是平行四边形,∴DE=FM,∴DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB最短,∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=3,在Rt△ADO中,OD==3,∴BD=6,∵DM∥AC,∴∠MDB=∠BOC=90°,∴BM===2.∴DE+BF的最小值为2.(3)如图③中,连接AC、BD,在AC上取一点,使得DM=DC.∵∠DAB=60°,∠DCB=120°,∴∠DAB+∠DCB=180°,∴A、B、C、D四点共圆,∵AD=AB,∠DAB=60°,∴△ADB是等边三角形,∴∠ABD=∠ADB=60°,∴∠ACD=∠ADB=60°∵DM=DC,∴△DMC是等边三角形,∴∠ADB=∠MDC=60°,CM=DC,∴∠ADM=∠BDC,∵AD=BD,∴△ADM≌△BDC,∴AM=BC,∴AC=AM+MC=BC+CD,∵四边形ABCD的周长=AD+AB+CD+BC=AD+AB+AC,∵AD=AB=6,∴当AC最大时,四边形ABCD的周长最大,∴当AC为△ABC的外接圆的直径时,四边形ABCD的周长最大,易知AC的最大值=4,∴四边形ABCD的周长最大值为12+4.。