2011学年第二学期徐汇区初三年级数学学科学习能力诊断卷

合集下载

2024年上海市中考数学徐汇区二模卷和参考答案

2024年上海市中考数学徐汇区二模卷和参考答案

2023学年第二学期徐汇区学习能力诊断卷初三数学 试卷 2024.4(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的】 1.下列实数中,有理数是(A )3; (B )4; (C )5; (D )6. 2.下列单项式中,与单项式322b a 是同类项的是(A )4ab −; (B )232b a ; (C )233a b ; (D )c b a 222−. 3.已知一次函数b kx y +=的图像经过第一、二、四象限,那么直线k bx y +=经过 (A )第二、三、四象限; (B )第一、二、三象限; (C )第一、二、四象限; (D )第一、三、四象限.4.如表1,记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择 (A )甲; (B )乙; (C )丙; (D )丁. 5.如图,□ABCD 的对角线AC 、BD 相交于点O ,如果添加一个条件使得□ABCD 是矩形,那么下列添加的条件中正确的是 (A )︒=∠+∠90ADO DAO ; (B )ACD DAC ∠=∠; (C )BAC DAC ∠=∠; (D )ABC DAB ∠=∠. 6.如图,一个半径为cm 9的定滑轮由绳索带动重物上升,如果该定滑轮逆时针旋转了︒120,假设绳索(粗细不计)与滑轮之间没有滑动,那么重物上升的高度是 (A )π5 cm ; (B )π6 cm ; (C )π7cm ; (D )π8cm .表1 甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差统计表BOACD(第5题图)(第6题图)二、填空题(本大题共12题,每题4分,满分48分) 7.方程012=−−x x 的根是___▲___. 8.不等式组⎩⎨⎧>−−>−1)3(23,312x x x 的解集是___▲___.9.方程组⎩⎨⎧=−=+02,522y x y x 的解是____▲____.10.关于x 的一元二次方程012=−−mx x 根的情况是:原方程__▲___实数根.11.如果二次函数1422+−=x x y 的图像的一部分是上升的,那么x 的取值范围是▲_.12.如果反比例函数xy 4−=的图像经过点)2,(t t A −,那么t 的值是____▲_____. 13.如果从长度分别为2、4、6、7的四条线段中任意取出三条,那么取出的三条线段能构成三角形的概率是__▲__.14.小杰沿着坡比4.2:1=i 的斜坡,从坡底向上步行了130米,那么他上升的高度是▲米. 15.某校为了了解学生家长对孩子用手机的态度问题,随机抽取了100名家长进行问卷调查, 每位学生家长只有一份问卷,且每份问卷仅表明一种态度(这100名家长的问卷真实有效),将这100份问卷进行回收整理后,绘制了如图1、图2所示的两幅不完整的统计图.如果该校共有2000名学生,那么可以估计该校对手机持“严格管理”态度的家长有__▲__人.16.如图,梯形ABCD 中,AD BC //,CD AB =,AC 平分BAD ∠,如果AB AD 2=,a AB=,b AD =,那么AC 是_▲_(用向量a 、b 表示). 17.如图,在ABC ∆中,6==AC AB ,4=BC . 已知点D 是边AC 的中点,将ABC ∆沿直线BD 翻折,点C 落在点E 处,联结AE ,那么AE 的长是_▲__. 18.如图,点A 是函数)0(8<−=x x y 图像上一点,联结OA 交函数)0(1<−=x xy 图像于 点B ,点C 是x 轴负半轴上一点,且AO AC =,联结BC ,那么ABC ∆的面积是_▲_.(第16题图)D AB C(第17题图)AB C (第15题图1)不管询问 管理(第15题图2) 25℅ 从来 不管 严格 管理稍加 询问三、(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分) 19.(本题满分10分)计算:212218−+−−π.20.(本题满分10分)解方程:21416222+=−−−+x x x x . 21.(本题满分10分)如图,⊙1O 和⊙2O 相交于点A 、B ,联结AB 、21O O 、2AO ,已知48=AB ,5021=O O ,302=AO .(1)求⊙1O 的半径长;(2)试判断以21O O 为直径的⊙P 是否经过点B ,并说明理由. 22.(本题满分10分)A 市“第××届中学生运动会”期间,甲校租用两辆小汽车(设每辆车的速度相同)同时出发送8名学生到比赛场地参加运动会,每辆小汽车限坐4人(不包括司机),其中一辆小汽车在距离比赛场地15千米的地方出现故障,此时离截止进场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车.已知这辆车的平均速度是每小时60千米,人步行的平均速度是每小时5千米(上、下车时间忽略不计).(1)如果该小汽车先送4名学生到达比赛场地,然后再回到出故障处接其他学生,请你判断他们能否在截止进场的时刻前到达?并说明理由;(2)试设计一种运送方案,使所有参赛学生能在截止进场的时刻前到达比赛场地,并说明方案可行性的理由. 23.(本题满分12分) 如图,在菱形ABCD 中,点E 、G 、H 、F 分别在边AB 、BC 、CD 、DA 上,AF AE =,CH CG =,AE CG ≠. (1)求证:GH EF //; (2)分别联结EG 、FH ,求证:四边形EGHF 是等腰梯形.(第23题图)E A B C DFGH (第21题图)AB1O 2O24.(本题满分12分)如图,在平面直角坐标系xOy 中,抛物线)0(442>+−=a ax ax y 与x 轴交于点)0,1(A 和点B ,与y 轴交于点C .(1)求该抛物线的表达式及点B 的坐标;(2)已知点),0(m M ,联结BC ,过点M 作BC MG ⊥,垂足为G ,点D 是x 轴上的动点,分别联结GD 、MD ,以GD 、MD 为边作平行四边形GDMN .① 当23=m 时,且□GDMN 的顶点N 正好落在y 轴上,求点D 的坐标; ② 当0≥m 时,且点D 在运动过程中存在唯一的位置,使得□GDMN 是矩形,求m 的值.25.(本题满分14分)如图,在扇形OAB 中, 26==OB OA ,︒=∠90AOB ,点C 、D 是弧AB 上的动点(点C 在点D 的上方,点C 不与点A 重合,点D 不与点B 重合),且︒=∠45COD . (1)①请直接写出弧AC 、弧CD 和弧BD 之间的数量关系;②分别联结AC 、CD 和BD ,试比较BD AC +和CD 的大小关系,并证明你的结论; (2)联结AB 分别交OC 、OD 于点M 、N .①当点C 在弧AB 上运动过程中, BM AN ⋅的值是否变化,若变化请说明理由;若不变,请求BM AN ⋅的值;②当5=MN 时,求圆心角DOB ∠的正切值.(第25题图)BA CDO2023学年第二学期徐汇区初三年级数学学科学习能力诊断卷参考答案和评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.C ; 3.D ; 4.A ; 5.D ; 6.B . 二.填空题:(本大题共12题,满分48分) 7.1=x ; 8.2>x ; 9.⎩⎨⎧==1,2y x 或⎩⎨⎧−=−=1,2y x ; 10.有两个不相等的;11.1≥x ; 12.2±; 13.21; 14.50; 15.400;16.b a21+; 17.171710; 18.228−.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分)19. 解:原式21)12(22−+−−=1122++−=2=.20.解:去分母,得216)2(2−=−+x x ;化简,得01032=−+x x ; 解得 51−=x ,22=x ; 经检验,2=x 是原方程的增根;所以,原方程的根是5−=x .21.解:(1)联结1AO ,设21O O 与AB 的交点为C . ∵⊙1O 和⊙2O 相交于点A 、B ,∴2421==AB AC ,AB O O ⊥21; 在2ACO Rt ∆中,︒=∠902ACO ,∴182430222222=−=−=AC AO CO ;∴3218502211=−=−=CO O O CO ;在1ACO Rt ∆中,︒=∠901ACO , ∴402432222211=+=+=AC CO AO ;即⊙1O 的半径长为40.(2)以21O O 为直径的⊙P 经过点B .∵535030212==O O AO ,53301822==AO CO ; ∴22212AO CO O O AO =,又A O O C AO 212∠=∠; ∴21O AO ∆∽2ACO ∆;∴︒=∠=∠90221ACO AO O ; 取21O O 的中点P ,联结AP 、BP .∴1PO AP =; 又21O O 垂直平分AB ,1PO AP BP ==; ∴以21O O 为直径的⊙P 经过点B .22.解:(1)他们不能在截止进场的时刻前到达比赛场地.∵单程送达比赛场地的时间是:)(15)(25.06015分钟小时==÷; ∴送完另4名学生的时间是:)(42)(45315分钟分钟>=⨯:∴他们不能在截止进场的时刻前到达比赛场地. (2)方案不唯一.如:先将4名学生用车送达比赛场地,另外4名学生同时步行前往比赛场地, 汽车到比赛场地后返回到与另外4名学生的相遇处再载他们到比赛场地.(用 这种方案送这8名学生到达比赛场地共需时间约为4.40分钟).理由如下:先将4名学生用车送达比赛场地的时间是:)(15)(25.06015分钟小时==÷ 此时另外4名学生步行路程是:25,125,05=⨯(千米);设汽车与另外4名学生相遇所用时间为t 小时.则25.115605−=+t t ;解得5211=t (小时)13165=(分钟); 从相遇处返回比赛场地所需的时间也是13165(分钟);所以,送这8名学生到达比赛场地共需时间为:4.4021316515≈⨯+(分钟); 又424.40<;所以,用这种方案送这8名学生能在截止进场的时刻前到达比赛场地.23.证明:(1)联结BD .∵四边形ABCD 是菱形, ∴CD BC AD AB ===;又AF AE =,CH CG =,∴AD AF AB AE =,CDCHCB CG =; ∴BD EF //,BD GH //; ∴GH EF //.(2)∵BD EF //,∴AB AEBD EF =; ∵BD GH //,∴BCCGBD GH =;又AE CG ≠,∴GH EF ≠; 又GH EF //,∴四边形EGHF 是梯形; ∵AF AD AE AB −=−,即DF BE =; 又CH CD CG BC −=−,即DH BG =; ∵四边形ABCD 是菱形,∴D B ∠=∠; ∴DHF BGE ∆≅∆;∴FH EG =; ∴梯形EGHF 是等腰梯形.24.解:(1)由题意,得044=+−a a ;解得34=a ;∴抛物线的表达式为4316342+−=x x y ; ∵抛物线的对称轴是直线2=x ,∴点)0,3(B . (2)①由题意,得)4,0(C 、)23,0(M ,∴25=CM ; ∵四边形GDMN 是平行四边形,∴NM GD //; 又点N 在y 轴上,∴OD NM ⊥;∴OD GD ⊥; 在BOC Rt ∆中。

2007学年第二学期徐汇区初三年级数学学科

2007学年第二学期徐汇区初三年级数学学科

2007学年第二学期徐汇区初三年级数学学科 学习能力诊断卷 2008.4(100分钟完卷,满分150分)考生注意:1. 本试卷含三个大题,共25题;第一大题含I 、II 两组选做题,I 组供使用一期课改教材的考生完成,II 组供使用二期课改教材的考生完成;其余大题为共做题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤; 4. 三角比符号“ααtan 和tg ”都表示角α的正切;“ααcot 和ctg ”都表示角α的余切.一、选择题:(本大题含I 、II 两组,每组各6题,每题4分,满分24分) 考生注意:1、请从下列I 、II 两组中选择一组,并在答题纸的相应位置填涂选定的组号,完成相应的 1—6题.若考生没有填涂任何组号或将两个组号全部填涂,默认考生选择了I 组;2、下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题 纸的相应位置上.I 组:供使用一期课改教材的考生完成1.不等式组240x -<⎧⎨的解集在数轴上表示正确的是 ( )2.2008北京奥运圣火于2008年3月24日17时46分(北京时间)在希腊雅典圆满采集成功,同时拉开了“北京奥运圣火全球火炬接力传递活动”序幕,这次火炬在全球的传递路程约137000公里,这个路程用科学记数法表示为 ( ) A.610137.0⨯公里 B.51037.1⨯公里 C.4107.13⨯公里 D.310137⨯公里 3.已知12x x ,是方程2270x x --=的两根,则21x x +的值是 ( ) A.21 B.21-C.27 D.27-B D4.PB PA 、是⊙O 的两条切线,⊙O 的半径是5,10=OP ,那么等于APB ∠( ) A.︒120 B.︒90C.︒60 D.︒305.已知一次函数y kx k =-,若y 随着x 的增大而减小,则该函数的图像经过 ()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限6.下列四个命题中真命题是 ( ) A.菱形的对角线互相垂直平分 B.梯形的对角线互相平分C.矩形的对角线平分一组对角 D.平行四边形的对角线相等II 组1.不等式组24010x x -<⎧⎨+⎩≥)2.2008北京奥运圣火于2008年3路程约137000 510⨯公里 C.4107.13⨯公里 D.310137⨯公里 352张)中随机抽取一张牌,那么抽得这张牌是黑桃的概 ( )C.41 D.214a 41,那么n m4- 等于 ( )A.b a 382- B.b a 344- C.b a 342- D.b a 384- 5.已知一次函数y kx k =-,若y 随着x 的增大而减小,则该函数的图像经过 ()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限6.下列四个命题中真命题是 ( ) A.菱形的对角线互相垂直平分 B.梯形的对角线互相平分C.矩形的对角线平分一组对角 D.平行四边形的对角线相等A C二、填空题(本大题共12题,每题4分,满分48分) 7.计算:=÷-xy y x 2432______________. 8.分解因式:=-a ax 2______________. 9.方程x x =+2的解是______________.10.如果反比例函数的图像经过点(12),,那么这个反比例函数的解析式为 . 11.抛物线3)1(2+-=x y 的对称轴是直线 .1213.1415.Rt 161718三、解答题(本大题共7题,满分78分) 19.(本题满分10分)计算:22008)31(45sin 2)1(121-+︒--++20.(本题满分10分)解方程:1221=-+-+x x x x社区调研员小胡想了解她所居住的小区500户居民的家庭收入情况,从中随机调查了40户居民家庭的收入情况(收入取整数,单位:元)并绘制了如下的频数分布表和频数分布直方图.如图,在ABC △中,D 是AC 的中点,E 是线段BC 延长线上一点,过点A 作AF ∥BC 交ED 的延长线于点F ,联结AE CF ,.求证:(1)四边形AFCE 是平行四边形;(6分)(2)AE CE BE FG ⋅=⋅. (6分)A ECBF DG如图,直线n x y +-=2(n >0)与轴轴、y x 分别交于点B A 、,16=∆OAB S ,抛物线)0(2≠+=a bx ax y 经过点A ,顶点M 在直线n x y +-=2上.(1)求n 的值; (3分)(2)求抛物线的解析式; (4分)(3)如果抛物线的对称轴与x 轴交于点N ,那么在对称轴上找一点P ,使得OPN ∆和AMN ∆相似,求点P 的坐标. (5分)25.(本题满分14分)如图,⊙O 的半径1=OA于点B ,过点A 作OA CD ⊥E . (1) 若设y S x OM OMC ==∆,分)(2) 将⊙O 沿弦CD 翻折得到⊙(4分)(3) 将⊙O 绕着点E 旋转︒180得到⊙P ,如果⊙P 与⊙M 内切,求x 的值. (7分)B。

2024年上海市徐汇区中考二模数学试题(解析版)

2024年上海市徐汇区中考二模数学试题(解析版)

2023学年第二学期徐汇区学习能力诊断卷初三数学 试卷(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1. 下列实数中,有理数是( )A.B.C.D.【答案】B 【解析】【分析】本题主要考查实数的分类及算术平方根,熟练掌握实数的分类及算术平方根是解题的关键;根据实数的分类可进行排除选项.,是无理数;故选B .2. 下列单项式中,与单项式是同类项的是( )A. B. C. D. 【答案】C 【解析】【分析】本题主要考查了同类项的定义,根据字母相同,字母的指数也相同的项叫做同类项,进行判断即可.【详解】解:与单项式是同类项的是;故选C .3. 已知直线经过第一、二、四象限,则直线经过( )2=232a b 4ab -322a b 323b a 222a b c-232a b 323b a y kx b +=y bx k +=A. 第一、三、四象限B. 第一、二、四象限C. 第一、二、三象限D. 第二、三、四象限【答案】A 【解析】【分析】根据图象在坐标平面内的位置关系确定k ,b 的取值范围,从而求解.【详解】解:已知直线经过第一、二、四象限,则得到,那么直线经过第一、三、四象限.故选:A .【点睛】此题考查一次函数图象与系数关系.解题关键在于注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限;k <0时,直线必经过二、四象限;b >0时,直线与y 轴正半轴相交;b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.4. 如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm )185180185180方差3.63.67.48.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择( )A. 甲 B. 乙 C. 丙 D. 丁【答案】A 【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选A .【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.的y kx b =+0,0k b <>y kx b =+x 甲x 丙x 乙x 丁2S 甲2S 乙2S 丙2S 丁5. 如图,的对角线、相交于点,如果添加一个条件使得是矩形,那么下列添加的条件中正确的是( )A. B. C. D. 【答案】D 【解析】【分析】本题主要考查了矩形的判定,菱形的判定,根据判定定理逐项判断即可.【详解】∵,∴,∴,∴平行四边形是菱形.则A 不符合题意;∵,∴,∴平行四边形菱形.则B 不符合题意;∵,∴.∵,∴,∴,∴平行四边形是菱形.则C 不符合题意;∵,∴.∵,∴,是 ABCD AC BD O ABCD 90DAO ADO ∠+∠=︒DAC ACD ∠=∠DAC BAC ∠=∠DAB ABC∠=∠90DAO ADO ∠+∠=︒90AOD ∠=︒AC BD ⊥ABCD DAC ACD ∠=∠AD CD =ABCD AB CD ACD BAC ∠=∠DAC BAC ∠=∠ACD DAC ∠=∠AD CD =ABCD AD BC ∥180BAD ABC ∠+∠=︒DAB ABC ∠=∠=90B A D ∠︒∴平行四边形是矩形.则D 正确.故选:D .6. 如图,一个半径为的定滑轮由绳索带动重物上升,如果该定滑轮逆时针旋转了,假设绳索(粗细不计)与滑轮之间没有滑动,那么重物上升的高度是( )A. cmB. cmC. cmD. cm【答案】B 【解析】【分析】本题考查了弧长公式.利用题意得到重物上升的高度为定滑轮中所对应的弧长,然后根据弧长公式计算即可.【详解】解:根据题意,重物上升的高度为.故选:B .二、填空题(本大题共12题,每题4分,满分48分)7.的解是________.【答案】【解析】【分析】根据一元二次方程和二次根式的性质求解即可;【详解】,∴,∴,∴,∵,ABCD 9cm 120︒5π6π7π8π120︒()12096cm 180ππ⨯⨯==x 1x ==x 221x x -=()210x -=121x x ==210x -≥∴,∴;故答案是.【点睛】本题主要考查了一元二次方程的求解和二次根式的性质,准确计算是解题的关键.8. 不等式组的解集是________.【答案】【解析】【分析】本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集.详解】解:,解①得:,解②得:,∴不等式组的解集是.9. 方程组的解是__________.【答案】或【解析】【分析】本题考查解二元二次方程组,一元二次方程,代入消元法,将方程组先转化为一元二次方程,再进行求解即可.【详解】解:由②得:③;把③代入①,得:,解得:,∴,∴方程组的解为:或;【12x ≥1x =1x =()2133231x x x ->⎧⎨-->⎩2x >()2133231x x x ->⎧⎪⎨-->⎪⎩①②2x >5x >-2x >22520x y x y ⎧+=⎨-=⎩21x y =⎧⎨=⎩21x y =-⎧⎨=-⎩22520x y x y ⎧+=⎨-=⎩①②2x y =()2225y y +=1y =±22x y ==±21x y =⎧⎨=⎩21x y =-⎧⎨=-⎩故答案为:或10. 关于的一元二次方程根的情况是:原方程______实数根.【答案】有两个不相等的【解析】【分析】本题主要考查了一元二次方程根的判别式,对于一元二次方程,若,则方程有两个不相等的实数根,若,则方程有两个相等的实数根,若,则方程没有实数根,据此求解即可.【详解】解:由题意得,,∴原方程有两个不相等的实数根,故答案为:有两个不相等的.11. 如果二次函数的图像的一部分是上升的,那么的取值范围是____________.【答案】【解析】【分析】本题主要考查二次函数的性质,掌握二次函数的性质是解题的关键.根据函数解析式可得抛物线开口向上,则当在对称轴右侧时,函数图像上升,所以求出函数的对称轴即可求解.【详解】解:,又抛物线开口向上,当时,随的增大而减小,图像下降;当时,随的增大而增大,图像上升;二次函数的图像的一部分是上升的,,故答案为:.12. 如果反比例函数的图像经过点,那么的值是______.【答案】【解析】【分析】本题考查反比例函数图像上的点,将点代入函数解析式,求解即可.【详解】解:由题意,得:,21x y =⎧⎨=⎩21x y =-⎧⎨=-⎩x 210x mx --=()200ax bx c a ++=≠240b ac ∆=->240b ac ∆=-=24<0b ac ∆=-()()2241140m m ∆=--⨯⨯-=+>2241y x x =-+x 1x ≥x ()22241211y x x x =-+=--∴1x <y x 1x ≥y x 2241yx x =-+∴1x ≥1x ≥4y x=-(,2)A t t -t (,2)A t t -()24t t ⋅-=-解得:;故答案为:.13. 如果从长度分别为2、4、6、7的四条线段中随机抽取三条线段,那么抽取的三条线段能构成三角形的概率是_______.【答案】【解析】【分析】根据构成三角形的条件:两边之和大于第三边,两边之差小于第三边进行判断即可.【详解】∵从长度分别为2、4、6、7的四条线段中随机抽取三条线段∴可能有:2、4、6;2、6、7;4、6、7;2、4、7四种可能性又∵构成三角形的条件:两边之和大于第三边,两边之差小于第三边∴符合条件的有:2、6、7;4、6、7两种故概率为:故答案为:【点睛】本题考查构成三角形的条件以及概率的计算,掌握构成三角形的三边之间的关系是解题关键.14. 小杰沿着坡比的斜坡,从坡底向上步行了米,那么他上升的高度是______米.【答案】【解析】【分析】本题考查了解直角三角形的应用,解题的关键是掌握坡比的定义.设坡度的高为米,根据勾股定理列方程求解.【详解】解:设坡度的高为米,则水平距离为米,,解得:,故答案为:.15. 某校为了了解学生家长对孩子用手机的态度问题,随机抽取了名家长进行问卷调查,每位学生家长只有一份问卷,且每份问卷仅表明一种态度(这名家长的问卷真实有效),将这份问卷进行回收整理后,绘制了如图1、图2所示的两幅不完整的统计图.如果该校共有名学生,那么可以估计该校对手机持“严格管理”态度的家长____人.t =1221=42121:2.4i =13050x x 2.4x ∴()2222.4130x x +=50x =501001*********【答案】【解析】【分析】本题考查了条形统计图,扇形统计图,用样本估计总体,解题的关键是数形结合.先根据条形统计图计算出稍加询问的百分比,进而结合扇形统计图求出严格管理的百分比,最后利用样本估计总体即可求解.【详解】解:稍加询问的百分比:,严格管理的百分比:,持“严格管理”态度家长人数:(人),故答案为:.16. 如图,梯形中, ,,平分,如果,,,那么是_______(用向量、表示). 【答案】【解析】【分析】本题主要考查了角平分线的定义,平行线的性质,向量的运算,解题的关键是熟练掌握这些知识.根据角平分线的定义,平行线的性质,推出,结合,可得,最后根据,即可求解.【详解】解:设,的400551000.5555%÷==155%25%20%--=200020%400⨯=400ABCD BC AD ∥AB CD =AC BAD ∠2=AD AB AB a = AD b = AC a b12a b +AB BC =2AD BC =12BC AD =12AC AB BC a AD =+=+BAC α∠=平分,,,,,,,,,,故答案为:.17. 如图,在中,,. 已知点是边的中点,将沿直线翻折,点落在点处,联结,那么的长是_______.【解析】【分析】本题考查勾股定理与折叠问题,平行线分线段成比例,如图,为点关于的对称点,过点作,过点作,则,联结,可知,得,进而根据勾股定理可得,,得结合,,可知,再根据勾股定理即可求解,根据折叠的性质得是解决问题的关键.【详解】解:如图,为点关于的对称点,过点作,过点作,则,联结,∴,AC BAD ∠∴BAC CAD α∠=∠= BC AD ∥∴BCA DAC α∠=∠=∴BCA BAC ∠=∠∴AB BC = 2=AD AB ∴2AD BC =∴12BC AD =∴1122AC AB BC a AD a b =+=+=+ 12a b +ABC 6AB AC ==4BC =D AC ABC BD C E AE AE E C BD A AM BC ⊥D DN BC ⊥AM DN ∥AE 1AD MNCD CN==1CN MN ==DN =BD =1122BCD S BC DN BD OC =⋅=⋅△2CE OC ==DE DC =AD CD =AE CE ⊥AE CE ⊥E C BD A AM BC ⊥D DN BC ⊥AM DN ∥AE 122BM CM BC ===∵点是边的中点,即,∴,则为的中点,即,∴,,∵为点关于的对称点,∴,且,,则,∴,则∵,,∴,,又∵,∴,即,∴.18. 如图,点是函数图象上一点,连接交函数图象于点,点是轴负半轴上一点,且,连接,那么的面积是_______.【答案】##【解析】D AC 132AD CD AC ===1ADMNCD CN==N CM 1CN MN==DN ==BD ==E C BD CE BD ⊥OC OE =DE DC =1122BCD S BC DN BD OC =⋅=⋅△DN BC OC BD ⋅===2CE OC ==DE DC =AD CD =DAE DEA ∠=∠DEC DCE ∠=∠180DAE DEA DEC DCE ∠+∠+∠+∠=︒90DEA DEC ∠+∠=︒AE CE ⊥AE ==A 8(0)y x x =-<OA 1(0)y x x=-<B C x AC AO =BC ABC 8-8-【分析】过点,分别作轴的垂线,垂足分别为,,反比例函数比例系数的几何意义得,,证得,由此得,证得 ,然后根据等腰三角形的性质得,则,由此得得,进而可得的面积.【详解】解:过点,分别作轴的垂线,垂足分别为,,如下图所示:点是函数图象上一点,点是反比例函数图象上的点,根据反比例函数比例系数的几何意义得:,,轴,轴,,,,,,,即,,,,轴,,,A B x D E 4OAD S = 0.5OBE S = OAD OBE ∽2()OAD OBE S OA SOB= OA =1)ABC OBC S S = 28AOC OAD S S == 8ABC OBC S S += OBC S = ABC A B x D E A 8(0)y x x =-<B 1(0)y x x=-<1842OAD S =⨯= 110.52OBE S =⨯= AD x ⊥ BE x ⊥AD BE ∴∥OAD OBE ∴ ∽∴2OAD OBE S OA S OB ⎛⎫= ⎪⎝⎭∴2480.5OA OB ⎛⎫== ⎪⎝⎭OA ∴=1)AB OA OB OB OB ∴=-=-=-1AB OB = 1ABC OBC S AB S OB==- ()1ABC OBC S S ∴= AC AO = AD x ⊥OD CD ∴=28AOC OAD S S ∴==,即,.故答案为:.【点睛】此题主要考查了反比例函数比例系数的几何意义,相似三角形的判定和性质,理解反比例函数比例系数的几何意义,熟练掌握相似三角形的判定和性质是解决问题的关键.三、(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分)19..【答案】【解析】【分析】本题考查了实数的混合运算,解题的关键是掌握实数的混合运算法则.先计算零指数幂、化简二次根式、绝对值,再算加减即可.【详解】解:原式.20.解方程:【答案】【解析】【分析】本题考查了解分式方程和解一元二次方程,解题的关键是熟练掌握解分式方程和解一元二次方程的方法和步骤.先去分母,将分式方程化为整式方程,再进行求解即可.详解】解:,,,【8ABC OBC S S ∴+= 1)8OBC OBC S S -+= OBC S ∴= 8ABC AOC OBC S S S ∴=-=- 8-10212π---21)1=--+11=+2=22161242x x x x +-=--+5x =-22161242x x x x +-=--+()22162x x +-=-244162x x x ++-=-,,,,检验,当时,,∴是原方程的解,当时,,∴不是原方程的解.21. 如图,和⊙相交于点、,连接、、,已知,,.(1)求的半径长;(2)试判断以为直径的是否经过点,并说明理由.【答案】(1)(2)以为直径的经过点,见解析【解析】【分析】本题主要考查了圆的相关性质,相似三角形的判定与性质,线段垂直平分线的性质等知识,解题的关键是灵活运用这些知识.(1)连接,设与的交点为,根据题意可得,,在中,根据勾股定理求出,进而求出,在中,根据勾股定理求出,即可求解;(2)根据题意并结合(1)可得,可证明,得到23100x x +-=()()520x x +-=50,20x x +=-=115,2x x =-=5x =-240x -≠5x =-2x =240x -=2x =1O 2O A B AB 12O O 2AO 48AB =1250O O =230AO =1O 12O O P B 4012O O P B 1AO 12O O AB G 1242AG AB ==12O O AB ⊥2Rt AGO 2GO 1GO 1Rt AGO 1AO 22122AO GO O O AO =122O AO AGO ∽,取的中点,连接、,推出,结合垂直平分,即可求解.【小问1详解】解:连接,设与的交点为.和⊙相交于点、,,,,在中,,;,在中,,;即的半径长为;【小问2详解】以为直径的经过点.,,,又,,,取的中点,连接、,,12290O AO AGO ∠=∠=︒12O O P AP BP 1AP PO =12O O AB 1AO 12O O AB G 1O 2O A B 48AB =∴1242AG AB ==12O O AB ⊥2Rt AGO 290AGO ∠=︒∴218GO ===∴1122501832GO O O GO =-=-=1Rt AGO 190AGO ∠=︒∴140AO ===1O 4012O O P B 212303505AO O O ==22183305GO AO ==∴22122AO GO O O AO =212AO O O A G ∠=∠∴122O AO AGO ∽∴12290O AO AGO ∠=∠=︒12O O P AP BP ∴1AP PO =又垂直平分,,以为直径的经过点.22. A 市“第××届中学生运动会”期间,甲校租用两辆小汽车(设每辆车的速度相同)同时出发送名学生到比赛场地参加运动会,每辆小汽车限坐人(不包括司机),其中一辆小汽车在距离比赛场地千米的地方出现故障,此时离截止进场的时刻还有分钟,这时唯一可利用的交通工具是另一辆小汽车.已知这辆车的平均速度是每小时千米,人步行的平均速度是每小时千米(上、下车时间忽略不计).(1)如果该小汽车先送名学生到达比赛场地,然后再回到出故障处接其他学生,请你判断他们能否在截止进场的时刻前到达?并说明理由;(2)试设计一种运送方案,使所有参赛学生能在截止进场的时刻前到达比赛场地,并说明方案可行性的理由.【答案】(1)不能,见解析(2)见解析【解析】【分析】本题主要考查一元一次方程的应用,解题的关键是理解题意;(1)根据题意分别求出单程送达比赛场地的时间和另外送4名学生的时间,进而问题可求解;(2)设汽车与另外名学生相遇所用时间为小时,根据题意可得,进而求解即可.【小问1详解】解:他们不能在截止进场的时刻前到达比赛场地.∵单程送达比赛场地的时间是:(小时)(分钟);∴送完另名学生的时间是:(分钟)(分钟);∴他们不能在截止进场的时刻前到达比赛场地.【小问2详解】解:先将名学生用车送达比赛场地,另外名学生同时步行前往比赛场地,汽车到比赛场地后返回到与另外名学生的相遇处再载他们到比赛场地.(用这种方案送这名学生到达比赛场地共需时间约为分钟).理由如下:先将名学生用车送达比赛场地的时间是:(小时)(分钟),12O O AB 1BP AP PO ==∴12O O P B 84154260544t 56015 1.25t t +=-15600.25÷=15=415345⨯=42>444840.4415600.25÷=15=此时另外名学生步行路程是:(千米);设汽车与另外名学生相遇所用时间为小时.则;解得(小时)(分钟);从相遇处返回比赛场地所需的时间也是(分钟);所以,送这名学生到达比赛场地共需时间为:(分钟);又;所以,用这种方案送这名学生能在截止进场的时刻前到达比赛场地.23. 如图,在菱形中,点、、、分别在边、、、上,,,.(1)求证:;(2)分别连接、,求证:四边形是等腰梯形.【答案】(1)证明见解析(2)证明见解析【解析】【分析】本题考查了菱形的性质,等腰梯形的判定(1)连结,可得,,进而即可得到结论;(2)欲证明四边形是等腰梯形,只需推知,,即可.【小问1详解】证明:连结.450.25 1.25⨯=4t 56015 1.25t t +=-1152t =16513=16513816515240.413+⨯≈40.442<8ABCD E G H F AB BC CD DA AE AF =CG CH =CG AE ≠EF GH ∥EG FH EGHF BD AE AF AB AD =CG CH CB CD=EGHF EF GH ≠EF GH ∥EG FH =BD∵四边形是菱形,∴;又,,∴,;∴,;∴.【小问2详解】证明:连接∵,∴;∵,∴;又,∴;又,∴四边形是梯形;∵,即;又∵,即;∵四边形是菱形,ABCD AB AD BC CD ===AE AF =CG CH =AE AF AB AD=CG CH CB CD =EF BD ∥GH BD ∥EF GH ∥,EG FHEF BD ∥EF AE BD AB=GH BD ∥GH CG BD BC =CG AE ≠EF GH ≠EF GH ∥EGHF AB AE AD AF -=-BE DF =BC CG CD CH -=-BG DH =ABCD∴;∴;∴;∴梯形是等腰梯形.24. 如图,在平面直角坐标系中,抛物线与轴交于点和点,与轴交于点.(1)求该抛物线的表达式及点的坐标;(2)已知点,联结,过点作,垂足为,点是轴上的动点,分别联结、,以、为边作平行四边形.① 当时,且的顶点正好落在轴上,求点的坐标;② 当时,且点在运动过程中存在唯一的位置,使得是矩形,求的值.【答案】(1);点 (2)①;②的值为或【解析】【分析】(1)把点A 的坐标代入表达式求出a 的值即可得到函数表达式,进而根据对称性求出点B 的坐标;(2)①在中,,则;得到;过点作,垂足为.在中,,;证明四边形是矩形,则;即可得到答案;②根据m 的取值分三种情况分别进行解答即可.【小问1详解】解:把代入,得,B D ∠=∠()SAS BGE DHF ≅ EG FH =EGHF xOy 244(0)y ax ax a =-+>x (1,0)A B yC B (0,)M m BC M MG BC ⊥GD x GD MD GD MD GDMN 32m =GDMN N y D 0m ≥D GDMN m 2416433y x x =-+(3,0)B 6(,0)5D m 037Rt CGM △90CGM ∠=︒cos CG MCG CM ∠=54cos 225CG CM MCG =⋅∠=⨯=G GH OC ⊥H Rt CGH △90CHG ∠=︒36sin 255GH CG HCG =⋅∠=⨯=GDOH 65OD GH ==(1,0)A 244(0)y ax ax a =-+>440a a -+=解得;∴抛物线的表达式为;∵抛物线的对称轴是直线,抛物线与轴交于点和点,∴点.【小问2详解】①由题意,得,,∴;∵四边形是平行四边形,∴;又点在轴上,∴,∴,在中,,∴,∴,;在中,,∴;∴;过点作,垂足为.43a =2416433y x x =-+1632423x -=-=⨯244(0)y ax ax a =-+>x (1,0)A B (3,0)B (0,4)C 3(0,)2M 52CM =GDMN GD NM ∥N y NM OD ⊥GD OD ⊥Rt BOC 90BOC ∠=︒5BC ==4cos 5OC OCB BC ∠==3sin 5OB OCB BC ∠==Rt CGM △90CGM ∠=︒cos CG MCG CM∠=54cos 225CG CM MCG =⋅∠=⨯=G GH OC ⊥H在中,,;∵,∴四边形是矩形,∴;∴.②当时,根据不同取值分三种情况讨论: 当时,即点与点重合时,符合题意;当时,如图情况符合题意,取的中点P ,以为直径作圆P ,则在圆上,此时圆P 和x 轴有唯一切点D ,符合题设条件,则,∵,由①知, ,则,则,∵,,∴,解得;当时,可得,所以符合题意的不存在;综合、、,符合题意的的值为或.【点睛】此题考查了二次函数的综合题,考查了解直角三角形,切线的性质、勾股定理、矩形的判定和性质、平行四边形的性质等知识,分类讨论是解题的关键.25. 如图,在扇形中,,,点、是弧上的动点(点在点的上方,点不与点重合,点不与点重合),且.Rt CGH △90CHG ∠=︒36sin 255GH CG HCG =⋅∠=⨯=90GDO DOH GHO ∠=∠=∠=︒GDOH 65OD GH ==6(,0)5D 0m ≥m i 0m =M O ii 04m <<MG MG ,N D OH PD PM ==()3sin 425MG MC OCB m PM =⋅∠=-=CMG OCB ∠=∠sin sin CMG OCB ∠=∠()9sin 450MH PM OCB m =∠=-OH MH OM MH m =+=+PM OH =93(4)(4)5010m m m -+=-37m =iii 4m ≥OH PM >m i ii iii m 037OAB OA OB ==90AOB ∠=︒C D AB C D C A D B 45COD ∠=︒(1)①请直接写出弧、弧和弧之间的数量关系;②分别连接、和,试比较和的大小关系,并证明你的结论;(2)分别交、于点、.①当点在弧上运动过程中,的值是否变化,若变化请说明理由;若不变,请求的值;②当时,求圆心角的正切值.【答案】(1)①;②,证明见解析;(2)①的值不变,;②或.【解析】【分析】(1)①根据“同圆或等圆中,相等的圆心角所对的弧相等”即可得到答案;②在弧上取点连接,使得,可得,根据角的和差关系可得,则,即可得到答案;(2)①证明,即可得到答案;②过点在下方作,截取,连接、,证得,可得,进一步证得,则可得,由勾股定理和线段的和差关系可得,联立解得,过点N 作于点F ,则,利用勾股定理求得,,根据正切的概念计算即可.【小问1详解】解:①,,,;②.证明如下:AC CD BD AC CD BD AC BD +CD AB OC OD M N C AB AN BM ⋅AN BM ⋅5MN =DOB ∠ AC C BD D +=AC BD CD +>AN BM ⋅72AN BM ⋅=1tan 3DOB =∠1tan 2DOB ∠=CD E OE COE AOC ∠=∠AC CE =DOE BOD ∠=∠BD DE =BMO AON ∽△△O OB BOM AOM ∠=∠'OM OM '=BM 'NM '()SAS OBM OAM ' ≌90NBM OBA OBM '∠=∠+∠='︒()SAS ONM OMN ' ≌22225MN AM BN ==+7AM BN +=BN NF OB ⊥NF BF =NF OF 90AOB ∠=︒Q 45COD ∠=︒904545AOC BOD AOB COD ∴∠+∠=∠-∠=︒-︒=︒ D B AC C D +∴=AC BD CD +>在弧上取点连接,使得,;、可得;,,;;.【小问2详解】解:①的值不变,.,,;,,;;;.②如图,CD E OE COE AOC ∠=∠∴AC CE =CE DE CE DE CD +> 45COE DOE ∠+∠=︒∴904545AOC BOD ∠+∠=︒-︒=︒∴DOE BOD ∠=∠∴BD DE =∴AC BD CD +>AN BM ⋅72AN BM ⋅= OA OB =90AOB ∠=︒∴45OAB OBA ∠=∠=︒ 45OMB OAB AOM AOM ∠=∠+∠=︒+∠45AON COD AOM AOM ∠=∠+∠=︒+∠∴OMB AON ∠=∠∴BMO AON ∽△△∴BM BO AO AN=∴72AN BM AO BO ⋅=⋅==过点在下方作,截取,连接、,,,,,;又,,,,;,;解得或;过点N 作于点F ,则,,,,设,则,当时,在中,,即,解得:O OB BOM AOM ∠=∠'OM OM '=BM 'NM ' AO BO =∴()SAS OBM OAM ' ≌∴BM AM '=45OBM OAB ∠=∠='︒∴90NBM OBA OBM '∠=∠+∠='︒45M ON COD ∠=︒=∠'ON ON =∴()SAS ONM OMN ' ≌∴M N MN '=∴222222MN M N BM BN AM BN =='+=+' 551257AM BN AB MN +=-=-==-=2225AM BN +=3BN =4BN =NF OB ⊥90NFB ∠=︒45ABO ∠=︒ 45BNF ∴∠=︒NF BF ∴=BF x =OF x =3BN =Rt NFB △222BF NF BN +=229x x +=x =OF ∴==;当时,在中,,即,解得:,.【点睛】本题考查了弧、弦、圆心角的关系,全等三角形的判定和性质,等腰三角形的判定和性质,相似三角形的判定和性质,解直角三角形,熟练掌握知识点并灵活运用是解题的关键.1tan 3NF O O F D B ∴==∠=4BN =Rt NFB △222BF NF BN +=2216x x +=x=OF ∴==1tan 2NF O O D F B ===∠∴。

2015学年第二学期徐汇区初三年级数学学科期终学习能力诊断卷(答案)

2015学年第二学期徐汇区初三年级数学学科期终学习能力诊断卷(答案)

2015学年第二学期徐汇区初三年级数学学科学习能力诊断卷参考答案和评分标准一、选择题:(本大题共6题,每题4分,满分24分)1.B ; 2.C ; 3.C ; 4.D ; 5.B ; 6.A .二.填空题:(本大题共12题,满分48分)7.b a 22;8.m m 622-;9.5=x ;10.1;11.a b 3231-;12.240010400=--xx ; 13.21.0;14.答案不唯一,如:BD AC =等;15.4;16.1->x ;17.2200;18.516. 三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分)19. 解:原式131313-+--+-=π;……………………………………………(5分) 3133++--=π;……………………………………………………(3分) 2-=π.……………………………………………………………………(2分)20.解:由方程②得22±=-y x ;………………………………………………………(2分)与方程①组合得方程组;(Ⅰ)⎩⎨⎧=-=-22,1y x y x 或(Ⅱ)⎩⎨⎧-=-=-;22,1y x y x ……………………………………(4分)解方程组(Ⅰ)、(Ⅱ)得⎩⎨⎧==0,1y x 或⎩⎨⎧-=-=;4,3y x .………………………………(4分) ∴原方程组的解是⎩⎨⎧==0,111y x 或⎩⎨⎧-=-=.4,322y x 21.解:(1)由题意,得021212=++⨯b ;……………………………………………(1分) 解得25-=b ; ……………………………………………………………(1分) ∴抛物线的表达式是225212+-=x x y ;………………………………(1分) 顶点)89,25(-D .……………………………………………………………(2分) (2)由题意,得)0,4(B 和)2,0(C ;……………………………………………(2分) ∴1675893212321=⨯⨯+⨯⨯=+=∆∆ADB ABC CADB S S S .………………(3分)22.解:(1)a OA 23=;………………………………………………………………(2分) (2)na h n =,a a n h n +-=')1(23;…………………………………(各2分) (3)按方案二在该种集装箱中装运铜管数多.…………………………………(1分)由题意,按方案一装运铜管数6252525=⨯=(根);…………………(1分)∵5.21.01.0)1(23≤+⨯-n ,即4865.20865.0≤n ; 得68.28≤n ,又n 是整数,∴n 的最大值是28;……………………(1分) ∴按方案二装运铜管数68624142514=⨯+⨯=(根).………………(1分)23.证明:(1)∵AC AB =,∴ABC ACB ∠=∠; …………………………………(1分) ∵ED BD =,∴DBE BED ∠=∠;…………………………………(1分)∵DBE ABC ∠=∠,∴DEB ACB ∠=∠,∴ABC ∆∽DBE ∆;…(1分) ∴BECB DB AB =; …………………………………………………………(1分) 又DBC DBE DBC ABC ∠-∠=∠-∠;即CBE ABD ∠=∠;∴ABD ∆∽CBE ∆;∴1==BD AD BE CE ;……………………………(1分) ∴BE CE =.……………………………………………………………(1分)(2)∵︒=∠=∠72ABC ACB ,∴︒=︒⨯-︒=∠36722180A ;………(1分) ∵BD AD =,∴︒=∠=∠36A DBA ;………………………………(1分)∴︒=︒-︒=∠363672DBC ;∵ABC ∆∽DBE ∆,∴︒=∠=∠36A EDB ;∴DBA EDB ∠=∠,∴AB DE //;…………………………………(1分)∵ABD ∆∽CBE ∆,∴︒=∠=∠36A ECB ;∴DBC ECB ∠=∠,∴DB CE //;…………………………………(1分)∴四边形DBFE 是平行四边形;………………………………………(1分)又DE BD =,∴四边形DBFE 是菱形.……………………………(1分)24.解:(1)过点A 作OC AG ⊥,垂足是G . 易得OD AG //;∴21===CD AC OC CG OD AG ; 由题意,得)4,0(C ,∴4=OC ;在DOC Rt ∆中,︒=∠90DOC ,2tan =∠CDO ,∴2=OD ;∴1=AG ,2=CG ;∴)6,1(A ;………………………………………(3分) ∴16k =,得6=k ;∴xy 6=. ………………………………………(1分) (2)过点O 作AB OF ⊥,垂足是F .由题意,得)0,2(-D ;∴直线AB 的表达式是42+=x y ;…………(1分) 又点B 是直线AB 与双曲线xy 6=的交点,∴)2,3(--B ,5=DB ; 在DOC Rt ∆中,可解得554=OF ,552=DF ;…………………(1分) ∴557=BF ;……………………………………………………………(1分) 在BFO Rt ∆中,︒=∠90BFO ,74tan ==∠BF OF DBO .…………(1分) (3)以AB 分别为对角线和边两种情况讨论. ︒1当AB 是对角线时,由题意,可知直线1-=x 与双曲线x y 6=的交点就是 点N ,∴)6,1(--N ;……………………………………………………(2分)︒2当AB 是边时,将AB 向右平移2个单位,点B 落在直线1-=x 上,∴)2,3(N ;………………………………………………………………(1分)当AB 是边时,将AB 向左平移2个单位,点A 落在直线1-=x 上,∴)56,5(--N ;…………………………………………………………(1分)综合︒1、︒2,)6,1(--N 或)2,3(N 或)56,5(--N .25.解:(1)过点O 作BE OF ⊥,垂足为F .设x OA =,则1-=x OP ,a x OD +=;∵OD OP OA ⋅=2, 即))(1(2a x x x +-=,解得1-=a a x ;…………………………………(1分) ∴1-=a a OA ,11-=a OP ,12-=a a OD ; 当2=a 时,可得2=OA ,4=OD ,∴52=BD ;易得BOF ∆∽DOB ∆,∴ODOB OB BF =,又2==OA OB ∴552=BF ,∴554=BE . …………………………………………(3分) (2)当点C 与点A 重合时,a PA AD PC CD ==.………………………………(1分) 当点C 与点A 不重合时,联结OC ,∵OA OC =,∴OD OP OC ⋅=2;即ODOC OC OP =,又DOC COP ∠=∠,∴OCP ∆∽ODC ∆, ∴a OC OD PC CD ==,∴aPC CD =;又1>a ,∴PC CD >;………(1分) ∵⊙P 和⊙C 相切,PC 是圆心距,∴⊙P 和⊙C 相只能内切;……(1分) ∴PC PC CD =-;即PC PC aPC =-;……………………………(1分) 解得2=a .…………………………………………………………………(1分)(3)联结BP 、OC .∵OCP ∆∽ODC ∆,∴D OCP ∠=∠;∵OB OC =,∴OCB OBC ∠=∠;∵︒=∠+∠90OBC D ,∴︒=∠+∠90OCB OCP ,即︒=∠90BCP .…………………………(1分) ∵OP BC OA PC ⋅=⋅,OB OA =,∴OBOP BC PC =; 又︒=∠=∠90BCP BOP ,∴BOP ∆∽BCP ∆;………………………(1分) ∴1==BPBP CB OB ;∴OB CB =,∴OC OB CB ==; ∴OBC ∆是等边三角形,∴︒=∠60OBC ;……………………………(1分) 在BOD Rt ∆中,︒=∠90BOD ,a OB OD DOB ==∠tan , 即360tan =︒=a ,2331+=-=a a OA .…………………………(2分)。

徐汇区中考数学二模试卷含答案

徐汇区中考数学二模试卷含答案

2015学年第二学期徐汇区学习能力诊断卷初三年级数学学科 2016.4(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一.选择题(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的】 1.不等式组⎩⎨⎧≤+>-41,11x x 的解集是(A )2<x ; (B )32≤<x ; (C )3≥x ; (D )空集. 2.实数n 、m 是连续整数,如果m n <<26,那么n m +的值是(A )7; (B )9; (C )11; (D )13.3.如图1,在ABC ∆中,BC 的垂直平分线EF 交ABC ∠的平分线BD 于E ,如果︒=∠60BAC ,︒=∠24ACE , 那么BCE ∠的大小是(A )︒24; (B )︒30; (C )︒32; (D )︒36. 4.已知两组数据:432、、和543、、,那么下列说法正确的是(A )中位数不相等,方差不相等; (B )平均数相等,方差不相等; (C )中位数不相等,平均数相等; (D )平均数不相等,方差相等.5.从1、2、3、4四个整数中任取两个数作为一个点的坐标,那么这个点恰好在抛物线2x y =上的概率是(A )241; (B )121 ; (C )61; (D ) 41. 6.下列命题中假命题是(A )两边及第三边上的高对应相等的两个三角形全等;(B )两边及第三边上的中线对应相等的两个三角形全等; (C )两边及它们的夹角对应相等的两个三角形全等; (D )两边及其中一边上的中线对应相等的两个三角形全等. 二.填空题(本大题共12题,每题4分,满分48分) 7.计算:=÷ab b a 2423__▲___. 8.计算:=-)3(2m m __▲___. 9.方程0312=--x 的解是__▲___.B ADC E F图110.如果将抛物线1)2(2+-=x y 向左平移1个单位后经过点),1(m A ,那么m 的值是▲_. 11.点E 是ABC ∆的重心,a AB =,=,那么=_▲_(用a ϖ、b ϖ表示).12.建筑公司修建一条400米长的道路,开工后每天比原计划多修10米,结果提前2天完成了任务,如果设建筑公司实际每天修x 米,那么可得方程是__▲___. 13.为了了解某区5500名初三学生的的体重情况,随机抽测了400名学生的体重,统计结__▲___14.如图2,在□ABCD 中,AC 、BD 相交于O ,请添加一个条件▲ ,可得□ABCD是矩形. 15.梯形ABCD 中,BC AD //,2=AD ,6=BC ,点E 是边BC 上的点,如果AE 将梯形ABCD 的面积平分,那么BE 的长是_▲ _. 16.如果直线)0(>+=k b kx y 是由正比例函数kx y =的图像向左平移1个单位得到,那么 不等式0>+b kx 的解集是__▲___.17.一次越野跑中,当小明跑了1600米时,小杰跑了1400米,小明、小杰在此后所跑的路程y (米)与时间t (秒)之间的函数关系(如图3),那么这次越野跑的全程为▲米. 18.如图4,在ABC ∆中,︒=∠90CAB ,6=AB ,4=AC ,CD 是ABC∆的中线,将ABC ∆沿直线CD 翻折,点B '是点B 的对应点,点E 是线段CD 上的点,如果B BA CAE '∠=∠,那么CE 的长是__▲___.三.(本大题共7题,满分78分) 19.(本题满分10分)计算:13245tan 30cot )3(02++︒-︒-+-ππ.图4D B A C图2 A B C D O解方程组:⎩⎨⎧=+-=-444;122y xy x y x .21.(本题满分10分) 如图5,抛物线2212++=bx x y 与y 轴交于点C ,与x 轴交于点)0,1(A 和点B (点B 在点A 右侧).(1)求该抛物线的顶点D 的坐标; (2)求四边形CADB 的面积. 22.(本题满分10分)如图6 ①,三个直径为a 的等圆⊙P 、⊙Q 、⊙O C . (1)那么OA 的长是__▲___(用含a 的代数式表示); (2)探索: 现有若干个直径为a 的圆圈分别按如图6 ②所示的方案一和如图6 ③所示的方案二的方式排放,那么这两种方案中n 层圆圈的高度=n h __▲___,='nh __▲___(用 含n 、a 的代数式表示);(3)应用:现有一种长方体集装箱,箱内长为6米,宽为5.2米,高为5.2米.用这种集装箱装运长为6米,底面直径(横截面的外圆直径)为1.0米的圆柱形铜管,你认为 采用第(2)题中的哪种方案在该种集装箱中装运铜管数多?通过计算说明理由.(参考数据:41.12≈,73.13≈)23.(本题满分12分)如图7, 在ABC ∆中,AC AB =,点D 在边AC 上,DE BD AD ==,联结BE ,︒=∠=∠72DBE ABC .(1)联结CE ,求证:BE CE =;(2)分别延长CE 、AB 交于点F ,求证:四边形DBFE 是菱形.图5B xy O AC图7 A BC D E图6① 图6② 图6③ OQPC AB如图8,直线4+=mx y 与反比例函数)0(>=k xky 的图像交于点A 、B ,与x 轴、y 轴分别交于D 、C ,2tan =∠CDO ,2:1:=CD AC .(1)求反比例函数解析式;(2)联结BO ,求DBO ∠的正切值;(3)点M 在直线1-=x 上,点N 在反比例函数图像上,如果以点A 、B 、M 、N 为顶点的四边形是平行四边形,求点N25.(本题满分14分)如图9,线段1=PA ,点D 是线段PA 延长线上的点,)1(>=a a AD ,点O 是线段AP 延长线上的点,OD OP OA ⋅=2,以O 圆心,OA 为半径作扇形OAB ,︒=∠90BOA ,点C 是弧AB 上的点,联结PC 、DC .(1)联结BD 交弧AB 于E ,当2=a 时,求BE 的长; (2)当以PC 为半径的⊙P 和以CD 为半径的⊙C 相切时,求a 的值;(3)当直线DC 经过点B ,且满足OP BC OA PC ⋅=⋅时,求扇形OAB 的半径长.DBACOP图92015学年第二学期徐汇区初三年级数学学科学习能力诊断卷参考答案和评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.C ; 3.C ; 4.D ; 5.B ; 6.A . 二.填空题:(本大题共12题,满分48分)7.b a 22;8.m m 622-;9.5=x ;10.1;11.a b ϖϖ3231-;12.240010400=--xx ;13.21.0;14.答案不唯一,如:BD AC =等;15.4;16.1->x ;17.2200;18.516.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19. 解:原式131313-+--+-=π;……………………………………………(5分)3133++--=π;……………………………………………………(3分) 2-=π.……………………………………………………………………(2分) 20.解:由方程②得22±=-y x ;………………………………………………………(2分)与方程①组合得方程组; (Ⅰ)⎩⎨⎧=-=-22,1y x y x 或(Ⅱ)⎩⎨⎧-=-=-;22,1y x y x ……………………………………(4分)解方程组(Ⅰ)、(Ⅱ)得⎩⎨⎧==0,1y x 或⎩⎨⎧-=-=;4,3y x .………………………………(4分)∴原方程组的解是⎩⎨⎧==0,111y x 或⎩⎨⎧-=-=.4,322y x21.解:(1)由题意,得021212=++⨯b ;……………………………………………(1分)解得25-=b ; ……………………………………………………………(1分)∴抛物线的表达式是225212+-=x x y ;………………………………(1分)顶点)89,25(-D .……………………………………………………………(2分)(2)由题意,得)0,4(B 和)2,0(C ;……………………………………………(2分)∴1675893212321=⨯⨯+⨯⨯=+=∆∆ADB ABC CADB S S S .………………(3分)22.解:(1)a OA 23=;………………………………………………………………(2分) (2)na h n =,a a n h n +-=')1(23;…………………………………(各2分) (3)按方案二在该种集装箱中装运铜管数多.…………………………………(1分)由题意,按方案一装运铜管数6252525=⨯=(根);…………………(1分)∵5.21.01.0)1(23≤+⨯-n ,即4865.20865.0≤n ; 得68.28≤n ,又n 是整数,∴n 的最大值是28;……………………(1分)∴按方案二装运铜管数68624142514=⨯+⨯=(根).………………(1分)23.证明:(1)∵AC AB =,∴ABC ACB ∠=∠; …………………………………(1分)∵ED BD =,∴DBE BED ∠=∠;…………………………………(1分)∵DBE ABC ∠=∠,∴DEB ACB ∠=∠,∴ABC ∆∽DBE ∆;…(1分)∴BECBDB AB =; …………………………………………………………(1分) 又DBC DBE DBC ABC ∠-∠=∠-∠;即CBE ABD ∠=∠;∴ABD ∆∽CBE ∆;∴1==BDADBE CE ;……………………………(1分)∴BE CE =.……………………………………………………………(1分) (2)∵︒=∠=∠72ABC ACB ,∴︒=︒⨯-︒=∠36722180A ;………(1分) ∵BD AD =,∴︒=∠=∠36A DBA ;………………………………(1分)∴︒=︒-︒=∠363672DBC ;∵ABC ∆∽DBE ∆,∴︒=∠=∠36A EDB ;∴DBA EDB ∠=∠,∴AB DE //;…………………………………(1分) ∵ABD ∆∽CBE ∆,∴︒=∠=∠36A ECB ;∴DBC ECB ∠=∠,∴DB CE //;…………………………………(1分) ∴四边形DBFE 是平行四边形;………………………………………(1分)又DE BD =,∴四边形DBFE 是菱形.……………………………(1分)24.解:(1)过点A 作OC AG ⊥,垂足是G . 易得OD AG //;∴21===CD AC OC CG OD AG ;由题意,得)4,0(C ,∴4=OC ;在DOC Rt ∆中,︒=∠90DOC ,2tan =∠CDO ,∴2=OD ;∴1=AG ,2=CG ;∴)6,1(A ;………………………………………(3分) ∴16k =,得6=k ;∴xy 6=. ………………………………………(1分) (2)过点O 作AB OF ⊥,垂足是F .由题意,得)0,2(-D ;∴直线AB 的表达式是42+=x y ;…………(1分) 又点B 是直线AB 与双曲线xy 6=的交点,∴)2,3(--B ,5=DB ; 在DOC Rt ∆中,可解得554=OF ,552=DF ;…………………(1分) ∴557=BF ;……………………………………………………………(1分) 在BFO Rt ∆中,︒=∠90BFO ,74tan ==∠BF OF DBO .…………(1分)(3)以AB 分别为对角线和边两种情况讨论.︒1当AB 是对角线时,由题意,可知直线1-=x 与双曲线xy 6=的交点就是 点N ,∴)6,1(--N ;……………………………………………………(2分)︒2当AB 是边时,将AB 向右平移2个单位,点B 落在直线1-=x 上,∴)2,3(N ;………………………………………………………………(1分)当AB 是边时,将AB 向左平移2个单位,点A 落在直线1-=x 上,∴)56,5(--N ;…………………………………………………………(1分)综合︒1、︒2,)6,1(--N 或)2,3(N 或)56,5(--N . 25.解:(1)过点O 作BE OF ⊥,垂足为F .设x OA =,则1-=x OP ,a x OD +=;∵OD OP OA ⋅=2, 即))(1(2a x x x +-=,解得1-=a a x ;…………………………………(1分) ∴1-=a a OA ,11-=a OP ,12-=a a OD ;当2=a 时,可得2=OA ,4=OD ,∴52=BD ; 易得BOF ∆∽DOB ∆,∴ODOB OB BF =,又2==OA OB ∴552=BF ,∴554=BE . …………………………………………(3分) (2)当点C 与点A 重合时,a PAADPC CD ==.………………………………(1分) 当点C 与点A 不重合时,联结OC ,∵OA OC =,∴OD OP OC ⋅=2;即OD OCOC OP =,又DOC COP ∠=∠,∴OCP ∆∽ODC ∆, ∴a OCOD PC CD ==,∴aPC CD =;又1>a ,∴PC CD >;………(1分) ∵⊙P 和⊙C 相切,PC 是圆心距,∴⊙P 和⊙C 相只能内切;……(1分) ∴PC PC CD =-;即PC PC aPC =-;……………………………(1分) 解得2=a .…………………………………………………………………(1分) (3)联结BP 、OC .∵OCP ∆∽ODC ∆,∴D OCP ∠=∠;∵OB OC =,∴OCB OBC ∠=∠;∵︒=∠+∠90OBC D ,∴︒=∠+∠90OCB OCP ,即︒=∠90BCP .…………………………(1分) ∵OP BC OA PC ⋅=⋅,OB OA =,∴OBOPBC PC =; 又︒=∠=∠90BCP BOP ,∴BOP ∆∽BCP ∆;………………………(1分) ∴1==BPBPCB OB ;∴OB CB =,∴OC OB CB ==; ∴OBC ∆是等边三角形,∴︒=∠60OBC ;……………………………(1分) 在BOD Rt ∆中,︒=∠90BOD ,a OBODDOB ==∠tan , 即360tan =︒=a ,2331+=-=a a OA .…………………………(2分)。

上海2011年徐汇区数学二模试卷

上海2011年徐汇区数学二模试卷

2010学年第二学期徐汇区初三年级数学学科学习能力诊断卷2011.4(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分) 1.下列运算正确的是( ▲ )A .224a a a +=; B.a =(a 为实数);C .a a a =÷23;D .()532a a =.2.汶川地震时温总理曾说:“多么小的问题,乘13亿,都会变得很大;多么大的经济总量,除以13亿,都会变得很小.”预计到2011年年末,我国人口总量约达1 400 000 000人,若每人每天浪费0.5升水,全国每天就浪费水( ▲ ) A .7×108升;B .7×109升;C .6.5×108升;D . 6.5×109升.3.一次函数32y x =-+的图像一定不经过( ▲ )A .第一象限;B .第二象限;C .第三象限;D .第四象限. 4.如图,小明为了测量其所在位置A 点到河对岸B 点之间的距离,沿着与AB 垂直的方向走了10米,到达点C ,测得∠ACB =α,那么AB 的长为( ▲ )A .a cos 10米;B . a sin 10米;C .10cot a 米;D . a tan 10米.5. 一次体育课上,15名男生跳高成绩如下表,他们跳高成绩的中位数和众数分别是( ▲ )A .3, 5;B .1.65, 1.65;C .1.70, 1.65;D .1.65, 1.70.6. 如图,将边长为3的等边A B C ∆沿着BA →平移,则'BC 的长为( ▲ )aC BA10第4题A.B.C.D.二、填空题(本大题共12题,每题4分,满分48分)7.在直角坐标平面内,点(2,1)A-关于y轴的对称点'A的坐标是▲.8.函数y=x的取值范围是▲.9.分解因式:228a-=__ ▲__.10.方程2422xx x=++的解是▲.11.若方程20x x m-+=有两个不相等的实数根,则m的取值范围是▲.12.抛物线22y x=-向左平移2个单位,向上平移1个单位后的抛物线的解析式是▲.13.布袋中有除颜色以外完全相同的8个球,3个黄球,5个白球,从布袋中随机摸出一个球是白球的概率为▲.14. 一次函数bkxy+=的图像如图所示,当y>0时,x的取值范围是▲.15.如图,把一块直角..三角板放在直尺的一边上,如果∠2=65°,那么∠1=▲ .16.Rt△ABC中,AD为斜边BC上的高,若4ABC ABDS S∆∆=, 则A BB C=▲.17.如图,在直角坐标平面内,ABO△中,90ABO∠= ,30A∠= ,1=OB,如果ABO△绕原点O按顺时针方向旋转到O A B''的位置,那么点B'的坐标是▲.18.如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在格点..上(小正方形的顶点).P1,P2,P3,P4,P5是△DEF边上的5个格点,请在这5个格点中选取2个作为三角形的顶点,使它和点D构成的三角形与△ABC相似, 写出所有..符合条件的三角形第18题AC'A'CB第6题三、(本大题共7题,19~22题每题10分,23~24题每题12分,25题14分,满分78分)19.127219⎛⎫--++⎪⎝⎭tan60︒20.先化简再求值:22693216284a a a aa a a+++÷---+,其中45a=.21.(本题满分10分,第(1)题6分,第(2)、(3)题各2分)作为国际化的大都市,上海有许多优秀的旅游景点.某旅行社对4月份本社接待的2000名外地游客来沪旅游的首选景点作了一次调查(1)填上频数和频率分布表中空缺的数据,(2)由于五一黄金周、6月高三学生放假,该社接待外来旅游的人数每月比上月按,60%的速度增长,预计该旅行社6月将接待外地来沪的游客的人数是▲.(3) 该旅行社预计10月黄金周接待外地来沪的游客将达5200人,请你估计首选景点是外滩的人数约是▲.22.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,正方形ABCD中,M是边BC上一点,且B M=14B C.4月份来沪游客旅游首选景点的频数分布表(1) 若,→→=a AB ,→→=b AD 试 用 ,→a →b 表 示 →DM ; (2) 若AB=4,求sin ∠AMD 的值.23.(本题满分12分,第(1)题7分,第(2)题5分)如图,在⊙O 中,直径AB 与弦CD 垂直,垂足为E ,连接AC ,将△ACE 沿AC 翻折得到△ACF ,直线FC 与直线AB 相交于点G . (1)证明:直线FC 与⊙O 相切;(2)若BG OB =,求证:四边形OCBD 是菱形.24.(本题满分12分,第(1)、(2)题各6分)如图,已知抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C , D 为OC 的中点,直线AD 交抛物线于点E (2,6),且△ABE 与△ABC 的面积之比为3∶2.(1)求直线AD 和抛物线的解析式;(2)抛物线的对称轴与x 轴相交于点F ,点Q 为直线AD 上一点,且△ABQ 与△ADF 相似,直接写出....点Q 点的坐标.25.(本题满分14分,第(1)题4分,第(2)题4在梯形ABCD 中,AD//BC ,AB ⊥AD ,AB=4,为圆心,BE 为半径画⊙E 交直线DE 于点F .(1) 如图,当点F 在线段DE 上时,设BE x =,AB D CM并写出自变量x 的取值范围;(2) 当以CD 直径的⊙O 与⊙E 与相切时,求x 的值;(3) 联接AF 、BF ,当△ABF 是以AF 为腰的等腰三角形时,求x 的值。

沪教版(五四制)九年级数学下徐汇初三二模(含答案)

沪教版(五四制)九年级数学下徐汇初三二模(含答案)

2011学年第二学期徐汇区初三年级数学学科学习能力诊断卷 2012.4(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1.下列实数中,无理数是( ) .A .9;B .38;C .2π;D .3030030003.3.2.下列图形中,既是轴对称图形又是中心对称图形是( ) .A .正六边形;B .正五边形;C .等腰梯形;D .等边三角形.3.如果32=-b a ,那么b a 426+-的值是( ) .A . 3;B . 2;C . 1;D . 0.4.下列成语或词语所反映的事件中,可能性大小最小的是( ) .A .瓮中捉鳖;B .守株待兔;C .旭日东升;D .夕阳西下.5.某商店在一周内卖出某种品牌球鞋的尺寸(单位:码)整理后的数据如下:36,38,38, 39,40,40, 41,41,41,41,42,43,44.那么这组数据的中位数和众数分别为( ) .A .40,40;B .41,40;C .40,41;D .41,41.6.下列关于四边形是矩形的判断中,正确的是( ) .A .对角线互相平分;B .对角线互相垂直;C .对角线互相平分且垂直;D .对角线互相平分且相等.二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7.计算:=⋅223a a .8.求值:=︒⋅︒60tan 30sin .9.函数63+=x y 的定义域是 .10.如果方程032=+-m x x 有两个相等的实数根,那么m 的值是 .11.如果将抛物线32-=x y 向左平移2个单位,再向上平移3个单位,那么平移后的抛物线表达式是 .12.纳米是一个长度单位,1纳米=0.000 000 001米,如果把水分子看成是球形,它的直径约为0.4纳米, 用科学记数法表示为n104⨯米,那么n 的值是 .13.如图,一斜坡AB 的坡比4:1=i ,如果坡高2=AC 米,那么它的水平宽度BC 的长是 米.14.一次函数)0(≠+=k b kx y 中两个变量y x 、的部分对应值如下表所示:x … -2 -1 0 1 2 … y…852-1-4…那么关于x 的不等式1-≥+b kx 的解集是 .15.点G 是△ABC 的重心,如果a AB =,b AC =,那么向量BG 用向量a 和b 表示为 .16.为了了解全区近6000名初三学生数学学习状况,随机抽取600名学生的测试成绩作为样本,将他们 的成绩整理后分组情况如下:(每组数据含最低值,不含最高值)根据上表信息,由此样本请你估计全区此次测试成绩在70~80分的人数大约是 .17.如图,矩形ABCD 中,4,2==BC AB ,点B A 、分别在y 轴、x 轴的正半轴上,点C 在第一象 限,如果︒=∠30OAB ,那么点C 的坐标是 .18.如图,在菱形ABCD 中,3=AB ,︒=∠60A ,点E 在射线CB 上,1=BE ,如果AE 与射线DB 相交于点O ,那么=DO .分组(分) 40~50 50~60 60~70 70~8080~9090~100频数 12 18 180 频率0.160.04三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)化简:2122622--++÷----m mm m m m m m .20.(本题满分10分)如图4,在AOB ∆中,点)0,1(-A ,点B 在y 轴正半轴上,且OA OB 2=. (1)求点B 的坐标; (3分)(2)将AOB ∆绕原点O 顺时针旋转︒90,点B 落在x 轴正半轴的点B '处,抛物线22++=bx ax y 经过点B A '、两点,求此抛物线的解析式及对称轴.(7分) 21.(本题满分10分)如图5,AC 和BD 相交于点O ,B D ∠=∠,CD AB 2=.(1)如果COD ∆的周长是9,求AOB ∆的周长; (4分) (2)联结AD ,如果AOB ∆的面积是16,求ACD ∆的面积. (6分) 22.(本题满分10分)为迎接“五一”国际劳动节,某公司机床车间举行“车工技能竞赛”活动,竞赛规则:先车好240个零件 的选手获胜.小李为了这次比赛刻苦训练、积极准备,在比赛中,小李每小时比原来多车10个零件,结果比原来提前2小时完成任务,荣获第一名.问小李比赛中每小时车多少个零件? 23.(本题满分12分)如图6,在四边形ABCD 中,CD AD =,AC 平分DAB ∠,BC AC ⊥,︒=∠60B . (1)求证:四边形ABCD 是等腰梯形; (6分) (2)取边AB 的中点E ,联结DE .求证:四边形DEBC 是菱形. (6分)24.(本题满分12分)函数x k y =和x k y -=)0(≠k 的图像关于y 轴对称,我们把函数x k y =和xky -=)0(≠k 叫做互为 “镜子”函数.类似地,如果函数)(x f y =和)(x h y =的图像关于y 轴对称,那么我们就把函数)(x f y =和)(x h y =叫做互为“镜子”函数.(1)请写出函数43-=x y 的“镜子”函数: ,(3分) (2)函数 的“镜子”函数是322+-=x x y ; (3分) (3)如图7,一条直线与一对“镜子”函数x y 2=(x >0)和xy 2-=(x <0)的图像分别交于点 C B A 、、,如果2:1:=AB CB ,点C 在函数xy 2-=(x <0)的“镜子”函数上的对应点的横坐标是21,求点B 的坐标. (6分)25.(本题满分14分)在ABC Rt ∆中,︒=∠90C ,6=AC ,53sin =B ,⊙B 的半径长为1,⊙B 交边CB 于点P , 点O 是边AB 上的动点.(1)如图1,将⊙B 绕点P 旋转180得到⊙M ,请判断⊙M 与直线AB 的位置关系;(4分) (2)如图2,在(1)的条件下,当OMP ∆是等腰三角形时,求OA 的长; (5分)(3)如图3,点N 是边BC 上的动点,如果以NB 为半径的⊙N 和以OA 为半径的⊙O 外切,设y NB =,x OA =,求y 关于x 的函数关系式及定义域.(5分).xy2011学年第二学期徐汇区初三年级数学学科学习能力诊断卷参考答案和评分标准一、选择题:(本大题共6题,每题4分,满分24分)1.C ; 2.A ; 3.D ; 4.B ; 5.D ; 6.D .二、填空题:(本大题共12题,满分48分)7.36a ;8.23; 9.2-≥x ; 10.49; 11.2)2(+=x y (442++=x x y ); 12.10-; 13.8; 14.1≤x ;15.a b3231-;16.2700; 17.)2,321(+; 18.49或29.三、解答题:(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14 分,满分78分) 19. 解:原式=221)1)(2()2)(3(--++⋅+-+-m mm m m m m m (6分) =223----m mm m (2分) =23--m (2分)20.解:(1)∵)0,1(-A ,∴1=OA (1分)∵OA OB 2=,∴2=OB (1分)∴)2,0(B . (1分)解:(2)由题意,得)0,2(B ', (1分)∴ ⎩⎨⎧=++=+-022402b a b a ,解得,⎩⎨⎧=-=11b a (3分)∴22++-=x x y . (1分) 对称轴为直线21=x . (2分) 21.解:(1)∵B D ∠=∠,BOA DOC ∠=∠;∴COD ∆∽AOB ∆, (1分)∴212===∆∆CD CD AB CD C C AOB COD (2分)∵9=∆COD C ,∴18=∆AOB C . (1分)解:(2)∵COD ∆∽AOB ∆,∴2==CD AB CO AO ,41)(2==∆∆AB CD S S AOB COD . (2分) ∵16=∆AOB S ,】∴4=∆COD S (1分) 设ADC ∆中边AC 上的高为h .∴22121==⋅⋅=∆∆CO AO h CO hAO S S CODADO ,∴8=∆AO D S . (2分) ∴12=+=∆∆∆AO D CO D AD C S S S . (1分)22.解:设小李比赛中每小时车x 个零件,则小李原来每小时车)10(-x 个零件. (1分)由题意,得224010240=--x x ; (4分) 化简,得01200102=--x x ; (2分) 解得,401=x ,302-=x ; (2分)经检验401=x ,302-=x 都是原方程的根,但302-=x 不合题意,舍去 (1分) 答: 小李比赛中每小时车40个零件.23. 证明:(1)∵CD AD =,∴DAC DCA ∠=∠∵AC 平分DAB ∠, ∴CAB DAC ∠=∠ ∴CAB DCA ∠=∠ ,∴DC ∥AB (2分) 在ACB Rt ∆中,︒=∠90ACB ,︒=∠60B ∴︒=∠30CAB ,∴︒=∠30DAC (1分) ∴B DAB ∠=︒=︒+︒=∠603030, ∴BC AD = ………………(1分)∵︒≠︒=︒+︒=∠+∠1801206060DAB B∴AD 与BC 不平行, (1分)∴四边形ABCD 是等腰梯形. (1分)证明:(2)∵CD AD =,AD BC =,∴CD BC = (1分)在ACB Rt ∆中,︒=∠90ACB ,︒=∠30CAB∴BE AB BC ==21, (1分) ∴BE CD =,∵DC ∥AB (2分) ∴四边形DEBC 是平行四边形 (1分) ∵CD BC =∴四边形DEBC 是菱形. (1分)24.解:(1)43--=x y ; (3分) (2)322++=x x y ; (3分) (3)分别过点A B C 、、作A A B B C C '''、、垂直于x 轴,垂足分别为A B C '''、、.设点)2,(m m B 、)2,(nn A ,其中m >0,n >0. (1分) 由题意,得点)4,21(-C . (1分)∴4='C C ,m B B 2=',n A A 2=',m n B A -='',21+=''m C B .易知 C C '∥B B '∥A A ', 又2:1:=AB CB所以,可得 ⎪⎪⎩⎪⎪⎨⎧-=-+=-)24(3222)21(2n n m m m n , (2分)化简,得⎪⎩⎪⎨⎧=-=-3431113n m m n ,解得 6101±=m (负值舍去) (1分) ∴341042-=m , ∴)34104,6101(-+B (1分)25. 解:(1)在R t △ABC 中,︒=∠90ACB ,∵53sin ==AB AC B ,6=AC ∴10=AB ,86102222=-=-=AC AB BC (1分)过点M 作AB MD ⊥,垂足为D . (1分) 在MDB Rt ∆中,︒=∠90MDB ,∴53sin ==MB MD B , ∵2=MB , ∴56253=⨯=MD >1 (1分) ∴⊙M 与直线AB 相离. (1分)解:(2)分三种情况:︒1 ∵56=MD >MP =1, ∴OM >MP ; (1分)︒2 当MP OP =时,易得︒=∠90MOB ,∴108cos ===AB BC BM OB B , ∴58=OB ,∴542=OA ; (2分)︒3 当OP OM =时,过点O 作BC OE ⊥,垂足为E .∴108cos ===AB BC OB EB B , ∴815=OB ,∴865=OA . (2分)综合︒︒︒321、、,当OMP ∆是等腰三角形时,OA 的长为542或865.解:(3)联结ON ,过点N 作AB NF ⊥,垂足为F .在NFB Rt ∆中,︒=∠90NFB ,53sin =B ,y NB =;∴y NF 53=,y BF 54=;∴y x OF 5410--=, (1分)∵⊙N 和⊙O 外切,∴y x ON +=; (1分) 在NFB Rt ∆中,︒=∠90NFB , ∴222NF OF ON +=;即222)53()5410()(y y x y x +--=+; ∴4050250+-=x xy ; (2分)定义域为:0<x <5. (1分)初中数学试卷灿若寒星 制作。

2009学年上海市徐汇区第二学期九年级数学中考学习能力诊断卷上教版

2009学年上海市徐汇区第二学期九年级数学中考学习能力诊断卷上教版

2009学年第二学期徐汇区初三年级数学学科学习能力诊断卷2010.4 (时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题,每题4分,满分24分) 1.下列运算结果为2m 的式子是( ▲ )A .63m m ÷B .42m m -⋅C .12()m -D .42m m -2.据上海世博会官方网统计,截至2010年3月29日为止,上海世博会门票已实现销售约22 170 000张.将22 170 000用科学记数法表示为( ▲ )A .610217.2⨯ B .6102217.0⨯ C .710217.2⨯ D .61017.22⨯ 3.把不等式组2020x x +>⎧⎨-≤⎩的解集表示在数轴上,正确的是( ▲ )4.已知反比例函数的图象经过点(21)P -,,则这个函数的图像位于( ▲ )A .第一、三象限B .第二、三象限C .第二、四象限D .第三、四象限5.如图,AB ∥DF , AC ⊥BC 于C ,CB 的延长线与DF 交于点E ,若∠A = 20°,则∠CEF 等于( ▲ )A . 110°B . 100°C . 80°D . 70°6. 一艘轮船和一艘快艇沿相同路线从甲港出发到乙港,行驶过程随时间变化的图像如图所示,下列结论错误..的是( ▲ ) 0 ABCD20 222第5题 第6题A .轮船的速度为20千米/小时B .快艇的速度为380千米/小时 C .轮船比快艇先出发2小时 D .快艇比轮船早到2小时 二、填空题(本大题共12题,每题4分,满分48分) 7.在实数范围内分解因式:a a 43- = __ ▲__. 8.方程12x x +=的解是 ▲ .9.方程062=++a x x 有两个不相等的实数根,则a 的取值范围是 ▲ . 10.抛物线422+-=x x y 的顶点坐标是 ▲ .11.函数b kx y +=的图像如图所示,下列结论正确..的有 ▲ (填序号). ①0>b ; ③当2<x 时,0>y ; ②0>k ; ④方程0=+b kx 的解是2=x .12.2008年上海城市绿化覆盖率达到了38%,人均公共绿地面积12.5米2;到2010年年底绿化覆盖率将达到40%,人均公共绿地面积将达到15米2。

徐汇区中考数学二模试卷及答案

徐汇区中考数学二模试卷及答案
成了任务,如果设建筑公司实际每天修 x 米,那么可得方程是 __▲ ___. 13.为了了解某区 5500名初三学生的的体重情况,随机抽测了 400 名学生 的体重,统计结
果列表如下:
体重(千克)
频数
频率
40— 45
44
45— 50
66
50— 55
84
55— 60
86
60— 65
72
65— 70
48
7.计算: 4a3b2 2ab __▲___. 8.计算: 2m(m 3) __▲___. 9.方程 2x 1 3 0的解是 __▲ ___. 10.如果将抛物线 y (x 2)2 1向左平移 1个单位后经过点 A(1, m) ,那么 m 的值是▲ _. 11.点 E 是 ABC 的重心, AB a , AC b,那么 BE _▲ _(用 a 、b 表示). 12.建筑公司修建一条 400 米长的道路,开工后每天比原计划多修 10 米, 结果提前 2 天完
2015 学年第二学期徐汇区学习能力诊断卷 初三年级数学学科
(时间 100 分钟 满分 150 分)
考生注意∶
1.本试卷含三个大题,共 25 题;答题时,考生务必按答题要求在答题纸 规定的位置上作答,在草稿纸、本试卷上答题一律无效;
2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应 位置上写出证明或计算的主要步骤.
程 y(米)与时间 t (秒)之间的函数关系(如图 3),那么这次越野 跑的全程为▲米.
18.如图 4,在 ABC 中, CAB 90 , AB 6 , AC 4 , CD 是 ABC 的
中线,将 ABC 沿直线 CD 翻折,点 B 是点 B 的对应点, 点 E 是线段

2011年上海市徐汇区初中化学二模卷试题及参考答案【纯word版,完美打印】

2011年上海市徐汇区初中化学二模卷试题及参考答案【纯word版,完美打印】

2010学年第二学期徐汇区初三年级理化学科学习能力诊断卷(考试时间100分钟,满分150分)化学部分(满分60分)2011.4相对原子质量:H-1 C-12 O-16 Ca-40 K-39 Cl-35.5 Na-23 Fe-56Zn -65 Se—79 N-14六、选择题(共20分)27.生活中发生的变化属于物理变化的是()A.蜡烛的燃烧B. 冰雪融化C. 牛奶变质D. 菜刀生锈28.家庭常用物资中属于纯净物的是()A. 牛奶B. 食醋C. 蒸馏水D. 食盐水29.工业上用三氧化二锑(Sb2O3)可生产一种重要的阻燃剂。

其中Sb元素的化合价是()A. +2B. + 3C. –2D. –330.根据实验规范判断下列基本的实验操作错误的是()A. 液体体积读数B. 给液体加热C. 熄灭酒精灯D. 滴加液体31.减少酸雨产生的措施可采用()A. 把工厂烟囱造高B. 减少火力发电C. 在已酸化的土壤中加石灰D. 让煤充分燃烧32.汽车行驶时,由于电火花的作用,气缸里有一系列的化学反应发生,其中N2+O2→2NO,2NO + O2→2NO2。

这两个反应都属于()A. 置换反应B. 分解反应C. 化合反应D. 复分解反应33.物质的化学式与其名称或俗称相符的是()A. Fe(OH)3 (氢氧化铁)B. CaO (熟石灰)C. NaOH (消石灰)D.Ca(OH)2(纯碱)34.测定空气中氧气的含量装置如右图所示,实验前在集气瓶内加入少量水,并做上记号,下列说法中错误的是()A.该实验证明空气中氧气的含量约占1/5B.实验时红磷一定要过量。

C.实验前一定要检查装置气密性D.红磷燃烧产生大量白烟,熄灭后立即打开弹簧夹35.当火灾发生时,下列措施不切当的是()A. 隔离可燃物B.把棉被用水湿透,覆盖在可燃物上,防止火势迅速蔓延C.有烟雾的地方要蹲下或匍匐前进D.室内失火时,立即打开所有门窗,尽量让浓烟从门窗排出36.下图所示物质的用途中,主要利用化学性质的是()A. 用玻璃刀头上镶的金刚石来裁玻璃B. 用氢气做高能燃料C. 用石墨做干电池的电极D. 用大理石做天安门前的华表37.实验方案可行且化学方程式书写正确的是()A.用盐酸除铁锈:Fe2O3 + 6HCl→2FeCl3 + 3H2OB.治疗胃酸过多:NaOH + HCl→NaCl + H2OC.实验室用KClO3制取氧气:2KClO3→2KCl+ 3O2D.铁丝在氧气中燃烧:4Fe + 3O2→2Fe2O338.咖喱是一种烹饪辅料,若白衬衣被咖喱汁玷污后,用普通肥皂洗涤时,会发现黄色污渍变为红色,经水漂洗后红色又变黄色,据此判断可能与咖喱汁有相似化学作用的试剂是()A. 无水硫酸铜B. 石蕊试液C. 活性炭D. 淀粉溶液39. 关于分子、原子的说法中,正确的是()A.一切物质都是由分子构成B.保持二氧化硫化学性质的最小微粒是硫原子和氧原子C.原子是化学变化中的最小微粒D.降温能使水结成冰,是因为在低温下水分子发生了变化40. 正确记录实验过程是实验基本技能,关于实验现象或操作的描述正确的是()A.镁带在空气中剧烈燃烧,生成黑色固体B.盐酸中滴加酚酞后再滴加过量氢氧化钠溶液,溶液无明显变化C.硫在氧气中燃烧,发出明亮的蓝紫色火焰D.测溶液pH时,直接将PH试纸浸入待测溶液中,然后对照标准比色卡41.根据金属活动顺序分析,下列描述或判断错误的是()A.常温下,在空气中金属镁比铁容易氧化B.在氧气中灼烧时,铁丝比铜丝反应反应剧烈C.与同种盐酸反应时,锌片比铁片反应剧烈D.铜活动性不强,故不能与硝酸银溶液反应得到金属银42.溶液是生活中常见的物质,有关溶液的说法中正确的是()A.溶液的各部分性质均相同B.配制溶液时,搅拌溶液可以增大溶质的溶解度C.将10%的KNO3溶液倒出一半,剩余溶液中溶质的质量分数为20%D.无色澄清液体一定是溶液43. 用分别表示不同元素的原子,下列由分子构成的物质中属于化合物的()A B C D44.NO 2在413K 以下能聚合成无色的抗磁性气体N 2O 4 ,N 2O 4曾被用作第一艘登月飞船的液体推进系统中的氧化剂,下列有关说法中正确的是( )A. 1mol N 2O 4气体中含有2molNO 2分子B. 1molNO 2的质量为46C. N 2O 4的摩尔质量为92gD. 46g NO 2中约含6.02×1023个氮原子45. 有X 、Y 、Z 三种溶液,在CuSO 4溶液中加适量的X 得沉淀a ,在除去a 的溶液里加入适量的Y 溶液,得到沉淀b ,在沉淀a 、b 中分别加入Z 溶液后均不溶解,则X 、Y 、Z 应是( )A . NaOH BaCl 2 稀HNO 3B . Ba(OH)2 AgNO 3 稀HClC . BaCl 2 NaOH 稀HNO 3D . BaCl 2 AgNO 3 稀HNO 346.有质量相等的锌和铁分别和质量相等、溶液质量分数也相等的稀盐酸反应,反应的情况如右图所示。

初中数学徐汇区初三年级数学学科期终学习能力诊断卷.docx

初中数学徐汇区初三年级数学学科期终学习能力诊断卷.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:抛物线的顶点坐标是()A.(3,4);B.(-3,4);C.(3,-4);D.(-3,-4).试题2:小明身高1.5米,在操场的影长为2米,同时测得教学大楼在操场的影长为60米,则教学大楼的高度应为() A.45米 B.40米C.90米 D. 80米试题3:若向量与均为单位向量,则下列结论中正确的是()A.= B.C.D.试题4:如图,下列条件中不能判定的是()A.; B.; C.D..试题5:如图,在Rt△ABC 中,CD是斜边AB的高,下列线段的比值不等于sinA的值的是()A.B. C.D.试题6:已知二次函数的与的部分对应值如下表:…0 1 2 …… 1 3 1 …则下列判断中正确的是()A.抛物线开口向上;B.抛物线与轴交于负半轴;C.当=3时,0;D.方程有两个相等实数根.试题7:如果,那么 __ __.试题8:抛物线的对称轴是直线.试题9:把抛物线向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为.试题10:计算:.试题11:如果非零向量与满足等式,那么向量与的方向.试题12:已知二次函数,当时,若随着的增大而(填增大、不变或减少).试题13:如图,直线l1∥l2∥l3,已知AG=0.6cm,BG=1.2cm,CD=1.5cm,CH=_______cm试题14:如图,中,AB>AC,AD是BC边上的高,F是BC的中点,EF⊥BC交AB于E,若,则= .试题15:如图,已知抛物线的对称轴为直线,且与轴的一个交点为,那么它对应的函数解析式是.试题16:如图:在△ABC中,∠C=90°,AC=12,BC=9.则它的重心到C点的距离是.试题17:如图,在中,,,AC=,是的中点,,则的长是.试题18:已知三角形纸片(△ABC)中,AB=AC=5,BC =8,将三角形按照如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.若以点B ′,F,C为顶点的三角形与△ABC相似,那么BF的长度是.试题19:已知:如图, 在△ABC中AB=AC=9,BC=6。

徐汇区中考数学二模试卷及答案

徐汇区中考数学二模试卷及答案

2016年徐汇区中考数学二模试卷及答案(总8页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除2015学年第二学期徐汇区学习能力诊断卷初三年级数学学科 2016.4(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一.选择题(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的】1.不等式组⎩⎨⎧≤+>-41,11x x 的解集是(A )2<x ; (B )32≤<x ; (C )3≥x ; (D )空集. 2.实数n 、m 是连续整数,如果m n <<26,那么n m +的值是 (A )7; (B )9; (C )11; (D )13. 3.如图1,在ABC ∆中,BC 的垂直平分线EF 交ABC ∠的平分线BD 于E ,如果︒=∠60BAC ,︒=∠24ACE , 那么BCE ∠的大小是(A )︒24; (B )︒30; (C )︒32; (D )︒36.4.已知两组数据:432、、和543、、,那么下列说法正确的是(A )中位数不相等,方差不相等; (B )平均数相等,方差不相等; (C )中位数不相等,平均数相等; (D )平均数不相等,方差相等. 5.从1、2、3、4四个整数中任取两个数作为一个点的坐标,那么这个点恰好在抛物线BA D C E F图12x y =上的概率是(A )241; (B )121 ; (C )61; (D )41. 6.下列命题中假命题是(A )两边及第三边上的高对应相等的两个三角形全等;(B )两边及第三边上的中线对应相等的两个三角形全等; (C )两边及它们的夹角对应相等的两个三角形全等;(D )两边及其中一边上的中线对应相等的两个三角形全等. 二.填空题(本大题共12题,每题4分,满分48分) 7.计算:=÷ab b a 2423__▲___. 8.计算:=-)3(2m m __▲___. 9.方程0312=--x 的解是__▲___.10.如果将抛物线1)2(2+-=x y 向左平移1个单位后经过点),1(m A ,那么m 的值是▲_.11.点E 是ABC ∆的重心,a AB =,b AC =,那么=BE _▲_(用a 、b表示).12.建筑公司修建一条400米长的道路,开工后每天比原计划多修10米,结果提前2天完成了任务,如果设建筑公司实际每天修x 米,那么可得方程是__▲___. 13.为了了解某区5500名初三学生的的体重情况,随机抽测了400名学生的体重,统计结果列表如下:那么样本中体重在50—55范围内的频率是__▲___.14.如图2,在□ABCD 中,AC 、BD 相交于O ,请添加一个条件▲ ,可得□ABCD 是矩形.15.梯形ABCD 中,BC AD //,2=AD ,6=BC ,点E 是边BC 上的点,如果AE 将梯形ABCD 的面积平分,那么BE 的长是_▲ _.16.如果直线)0(>+=k b kx y 是由正比例函数kx y =的图像向左平移1个单位得到,那么不等式0>+b kx 的解集是__▲___.17.一次越野跑中,当小明跑了1600米时,小杰跑了1400米,小明、小杰在此后所跑的路程y (米)与时间t (秒)之间的函数关系(如图3),那么这次越野跑的全程为▲米.18.如图4,在ABC ∆中,︒=∠90CAB ,6=AB ,4=AC ,CD 是ABC ∆的中线,将ABC ∆沿直线CD 翻折,点B '是点B 的对应点,点E 是线段CD 上的点,如果B BA CAE '∠=∠,那么CE 的长是__▲___.图4DBAC 图2A BC DO三.(本大题共7题,满分78分) 19.(本题满分10分)计算:13245tan 30cot )3(02++︒-︒-+-ππ.20.(本题满分10分)解方程组:⎩⎨⎧=+-=-444;122y xy x y x . 21.(本题满分10分) 如图5,抛物线2212++=bx x y 与y 轴交于点C ,与x 轴交于点)0,1(A 和点B (点B 在点A 右侧).(1)求该抛物线的顶点D 的坐标;(2)求四边形CADB 的面积.22.(本题满分10分)如图6 ①,三个直径为a 的等圆⊙P 、⊙Q 、⊙O 两两外切,切点分别是A 、B 、C .(1)那么OA 的长是__▲___(用含a 的代数式表示);(2)探索: 现有若干个直径为a 的圆圈分别按如图6 ②所示的方案一和如图6 ③所示的方案二的方式排放,那么这两种方案中n 层圆圈的高度=n h __▲___,='nh __▲___(用 含n 、a 的代数式表示);(3)应用:现有一种长方体集装箱,箱内长为6米,宽为5.2米,高为5.2米.用这种集装箱装运长为6米,底面直径(横截面的外圆直径)为1.0米的圆柱形铜管,你认为采用第(2)题中的哪种方案在该种集装箱中装运铜管数多?通过计算说明理由.(参考数据:41.12≈,73.13≈)23.(本题满分12分)如图7, 在ABC ∆中,AC AB =,点D 在边AC 上,DE BD AD ==,联结BE ,︒=∠=∠72DBE ABC .(1)联结CE ,求证:BE CE =;(2)分别延长CE 、AB 交于点F ,求证:四边形DBFE 是菱形.ABC D E图6图6图6O Q PC A B24.(本题满分12分)如图8,直线4+=mx y 与反比例函数)0(>=k xky 的图像交于点A 、B ,与x 轴、y 轴分别交于D 、C ,2tan =∠CDO ,2:1:=CD AC .(1)求反比例函数解析式;(2)联结BO ,求DBO ∠的正切值;(3)点M 在直线1-=x 上,点N 在反比例函数图像上,如果以点A 、B 、M 、N25.(本题满分14分)如图9,线段1=PA ,点D 是线段PA 延长线上的点,)1(>=a a AD ,点O 是线段AP 延长线上的点,OD OP OA ⋅=2,以O 圆心,OA 为半径作扇形OAB ,︒=∠90BOA ,点C 是弧AB 上的点,联结PC 、DC . (1)联结BD 交弧AB 于E ,当2=a 时,求BE 的长; (2)当以PC 为半径的⊙P 和以CD 为半径的⊙C 相切时,求a 的值; (3)当直线DC 经过点B ,且满足OP BC OA PC ⋅=⋅时,求扇形OAB 的半径长.BAC OP图92015学年第二学期徐汇区初三年级数学学科学习能力诊断卷参考答案和评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.C ; 3.C ; 4.D ; 5.B ; 6.A . 二.填空题:(本大题共12题,满分48分)7.b a 22;8.m m 622-;9.5=x ;10.1;11.a b3231-;12.240010400=--xx ; 13.21.0;14.答案不唯一,如:BD AC =等;15.4;16.1->x ;17.2200;18.516.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分)19. 解:原式131313-+--+-=π;……………………………………………(5分)3133++--=π;……………………………………………………(3分) 2-=π.……………………………………………………………………(2分) 20.解:由方程②得22±=-y x ;………………………………………………………(2分)与方程①组合得方程组;(Ⅰ)⎩⎨⎧=-=-22,1y x y x 或(Ⅱ)⎩⎨⎧-=-=-;22,1y x y x ……………………………………(4分)解方程组(Ⅰ)、(Ⅱ)得⎩⎨⎧==0,1y x 或⎩⎨⎧-=-=;4,3y x .………………………………(4分)∴原方程组的解是⎩⎨⎧==0,111y x 或⎩⎨⎧-=-=.4,322y x21.解:(1)由题意,得021212=++⨯b ;……………………………………………(1分)解得25-=b ; ……………………………………………………………(1分)∴抛物线的表达式是225212+-=x x y ;………………………………(1分)顶点)89,25(-D .……………………………………………………………(2分)(2)由题意,得)0,4(B 和)2,0(C ;……………………………………………(2分)∴1675893212321=⨯⨯+⨯⨯=+=∆∆ADB ABC CADB S S S .………………(3分)22.解:(1)a OA 23=;………………………………………………………………(2分) (2)na h n =,a a n h n +-=')1(23;…………………………………(各2分) (3)按方案二在该种集装箱中装运铜管数多.…………………………………(1分)由题意,按方案一装运铜管数6252525=⨯=(根);…………………(1分)∵5.21.01.0)1(23≤+⨯-n ,即4865.20865.0≤n ; 得68.28≤n ,又n 是整数,∴n 的最大值是28;……………………(1分)∴按方案二装运铜管数68624142514=⨯+⨯=(根).………………(1分)23.证明:(1)∵AC AB =,∴ABC ACB ∠=∠; …………………………………(1分)∵ED BD =,∴DBE BED ∠=∠;…………………………………(1分)∵DBE ABC ∠=∠,∴DEB ACB ∠=∠,∴ABC ∆∽DBE ∆;…(1分)∴BECBDB AB =; …………………………………………………………(1分) 又DBC DBE DBC ABC ∠-∠=∠-∠;即CBE ABD ∠=∠;∴ABD ∆∽CBE ∆;∴1==BDAD BE CE ;……………………………(1分) ∴BE CE =.……………………………………………………………(1分)(2)∵︒=∠=∠72ABC ACB ,∴︒=︒⨯-︒=∠36722180A ;………(1分)∵BD AD =,∴︒=∠=∠36A DBA ;………………………………(1分)∴︒=︒-︒=∠363672DBC ;∵ABC ∆∽DBE ∆,∴︒=∠=∠36A EDB ; ∴DBA EDB ∠=∠,∴AB DE //;…………………………………(1分) ∵ABD ∆∽CBE ∆,∴︒=∠=∠36A ECB ; ∴DBC ECB ∠=∠,∴DB CE //;…………………………………(1分) ∴四边形DBFE 是平行四边形;………………………………………(1分)又DE BD =,∴四边形DBFE 是菱形.……………………………(1分)24.解:(1)过点A 作OC AG ⊥,垂足是G . 易得OD AG //;∴21===CD AC OC CG OD AG ; 由题意,得)4,0(C ,∴4=OC ;在DOC Rt ∆中,︒=∠90DOC ,2tan =∠CDO ,∴2=OD ; ∴1=AG ,2=CG ;∴)6,1(A ;………………………………………(3分) ∴16k =,得6=k ;∴xy 6=. ………………………………………(1分)(2)过点O 作AB OF ⊥,垂足是F .由题意,得)0,2(-D ;∴直线AB 的表达式是42+=x y ;…………(1分)又点B 是直线AB 与双曲线xy 6=的交点,∴)2,3(--B ,5=DB ; 在DOC Rt ∆中,可解得554=OF ,552=DF ;…………………(1分) ∴557=BF ;……………………………………………………………(1分) 在BFO Rt ∆中,︒=∠90BFO ,74tan ==∠BF OF DBO .…………(1分)(3)以AB 分别为对角线和边两种情况讨论. ︒1当AB 是对角线时,由题意,可知直线1-=x 与双曲线xy 6=的交点就是 点N ,∴)6,1(--N ;……………………………………………………(2分)︒2当AB 是边时,将AB 向右平移2个单位,点B 落在直线1-=x 上,∴)2,3(N ;………………………………………………………………(1分)当AB 是边时,将AB 向左平移2个单位,点A 落在直线1-=x 上,∴)56,5(--N ;…………………………………………………………(1分) 综合︒1、︒2,)6,1(--N 或)2,3(N 或)56,5(--N . 25.解:(1)过点O 作BE OF ⊥,垂足为F .设x OA =,则1-=x OP ,a x OD +=;∵OD OP OA ⋅=2,即))(1(2a x x x +-=,解得1-=a a x ;…………………………………(1分) ∴1-=a a OA ,11-=a OP ,12-=a a OD ; 当2=a 时,可得2=OA ,4=OD ,∴52=BD ; 易得BOF ∆∽DOB ∆,∴OD OB OB BF =,又2==OA OB ∴552=BF ,∴554=BE . …………………………………………(3分) (2)当点C 与点A 重合时,a PAAD PC CD ==.………………………………(1分) 当点C 与点A 不重合时,联结OC ,∵OA OC =,∴OD OP OC ⋅=2; 即ODOC OC OP =,又DOC COP ∠=∠,∴OCP ∆∽ODC ∆, ∴a OC OD PC CD ==,∴aPC CD =;又1>a ,∴PC CD >;………(1分)∵⊙P 和⊙C 相切,PC 是圆心距,∴⊙P 和⊙C 相只能内切;……(1分)∴PC PC CD =-;即PC PC aPC =-;……………………………(1分)解得2=a .…………………………………………………………………(1分)(3)联结BP 、OC .∵OCP ∆∽ODC ∆,∴D OCP ∠=∠;∵OB OC =,∴OCB OBC ∠=∠;∵︒=∠+∠90OBC D ,∴︒=∠+∠90OCB OCP ,即︒=∠90BCP .…………………………(1分)∵OP BC OA PC ⋅=⋅,OB OA =,∴OB OP BC PC =; 又︒=∠=∠90BCP BOP ,∴BOP ∆∽BCP ∆;………………………(1分) ∴1==BPBP CB OB ;∴OB CB =,∴OC OB CB ==; ∴OBC ∆是等边三角形,∴︒=∠60OBC ;……………………………(1分)在BOD Rt ∆中,︒=∠90BOD ,a OB OD DOB ==∠tan , 即360tan =︒=a ,2331+=-=a a OA .…………………………(2分)。

沪教版(五四制)九年级数学下徐汇初三二模(含答案)

沪教版(五四制)九年级数学下徐汇初三二模(含答案)

2011学年第二学期徐汇区初三年级数学学科学习能力诊断卷 2012.4(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1.下列实数中,无理数是( ) .A .9;B .38;C .2π;D .3030030003.3.2.下列图形中,既是轴对称图形又是中心对称图形是( ) .A .正六边形;B .正五边形;C .等腰梯形;D .等边三角形.3.如果32=-b a ,那么b a 426+-的值是( ) .A . 3;B . 2;C . 1;D . 0.4.下列成语或词语所反映的事件中,可能性大小最小的是( ) .A .瓮中捉鳖;B .守株待兔;C .旭日东升;D .夕阳西下.5.某商店在一周内卖出某种品牌球鞋的尺寸(单位:码)整理后的数据如下:36,38,38, 39,40,40, 41,41,41,41,42,43,44.那么这组数据的中位数和众数分别为( ) .A .40,40;B .41,40;C .40,41;D .41,41.6.下列关于四边形是矩形的判断中,正确的是( ) .A .对角线互相平分;B .对角线互相垂直;C .对角线互相平分且垂直;D .对角线互相平分且相等.二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】7.计算:=⋅223a a . 8.求值:=︒⋅︒60tan 30sin .9.函数63+=x y 的定义域是 .10.如果方程032=+-m x x 有两个相等的实数根,那么m 的值是 .11.如果将抛物线32-=x y 向左平移2个单位,再向上平移3个单位,那么平移后的抛物线表达式是 .12.纳米是一个长度单位,1纳米=0.000 000 001米,如果把水分子看成是球形,它的直径约为0.4纳米,用科学记数法表示为n 104⨯米,那么n 的值是 .13.如图,一斜坡AB 的坡比4:1=i ,如果坡高2=AC 米,那么它的水平宽度BC 的长是 米.14.一次函数)0(≠+=k b kx y 中两个变量y x 、的部分对应值如下表所示:x … -2 -1 0 1 2 … y…852-1-4…那么关于x 的不等式+b kx 的解集是 .15.点G 是△ABC 的重心,如果a AB =,b AC =,那么向量BG 用向量a 和b 表示为 .16.为了了解全区近6000名初三学生数学学习状况,随机抽取600名学生的测试成绩作为样本,将他们 的成绩整理后分组情况如下:(每组数据含最低值,不含最高值)根据上表信息,由此样本请你估计全区此次测试成绩在70~80分的人数大约是 .17.如图,矩形ABCD 中,4,2==BC AB ,点B A 、分别在y 轴、x 轴的正半轴上,点C 在第一象 限,如果︒=∠30OAB ,那么点C 的坐标是 .18.如图,在菱形ABCD 中,3=AB ,︒=∠60A ,点E 在射线CB 上,1=BE ,分组(分) 40~50 50~60 60~70 70~8080~9090~100频数 12 18 180 频率0.160.04如果AE 与射线DB 相交于点O ,那么=DO .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)化简:2122622--++÷----m mm m m m m m .20.(本题满分10分)如图4,在AOB ∆中,点)0,1(-A ,点B 在y 轴正半轴上,且OA OB 2=. (1)求点B 的坐标; (3分)(2)将AOB ∆绕原点O 顺时针旋转︒90,点B 落在x 轴正半轴的点B '处,抛物线22++=bx ax y 经过点B A '、两点,求此抛物线的解析式及对称轴.(7分) 21.(本题满分10分)如图5,AC 和BD 相交于点O ,B D ∠=∠,CD AB 2=.(1)如果COD ∆的周长是9,求AOB ∆的周长; (4分) (2)联结AD ,如果AOB ∆的面积是16,求ACD ∆的面积. (6分) 22.(本题满分10分)为迎接“五一”国际劳动节,某公司机床车间举行“车工技能竞赛”活动,竞赛规则:先车好240个零件的选手获胜.小李为了这次比赛刻苦训练、积极准备,在比赛中,小李每小时比原来多车10个零件,结果比原来提前2小时完成任务,荣获第一名.问小李比赛中每小时车多少个零件? 23.(本题满分12分)如图6,在四边形ABCD 中,CD AD =,AC 平分DAB ∠,BC AC ⊥,(1)求证:四边形ABCD 是等腰梯形; (6(2)取边AB 的中点E ,联结DE .求证:四边形DEBC 是菱形. (6 24.(本题满分12分)函数x k y =和x k y -=)0(≠k 的图像关于y 轴对称,我们把函数x k y =和xky -=)0(≠k 叫做互为 “镜子”函数.类似地,如果函数)(x f y =和)(x h y =的图像关于y 轴对称,那么我们就把函数)(x f y =和)(x h y =叫做互为“镜子”函数.(1)请写出函数43-=x y 的“镜子”函数: ,(3分) (2)函数 的“镜子”函数是322+-=x x y ; (3分)(3)如图7,一条直线与一对“镜子”函数x y 2=(x >0)和xy 2-=(x <0)的图像分别交于点 C B A 、、,如果2:1:=AB CB ,点C 在函数xy 2-=(x <0)的“镜子”函数上的对应点的横坐标是21, 求点B 的坐标. (6分) 25.(本题满分14分)在ABC Rt ∆中,︒=∠90C ,6=AC ,53sin =B ,⊙B 的半径长为1,⊙B 交边CB 于点P , 点O 是边AB 上的动点.(1)如图1,将⊙B 绕点P 旋转180o得到⊙M ,请判断⊙M 与直线AB 的位置关系;(4分) (2)如图2,在(1)的条件下,当OMP ∆是等腰三角形时,求OA 的长; (5分)(3)如图点N 是边BC 上的动点,NB 为半径的⊙N 和以为半径的⊙O 外切,设y NB =,xyx OA =,求y 关于x 的函数关系式及定义域.(5分).2011学年第二学期徐汇区初三年级数学学科学习能力诊断卷参考答案和评分标准一、选择题:(本大题共6题,每题4分,满分24分)1.C ; 2.A ; 3.D ; 4.B ; 5.D ; 6.D .二、填空题:(本大题共12题,满分48分)7.36a ;8.23; 9.2-≥x ; 10.49; 11.2)2(+=x y (442++=x x y ); 12.10-;13.8; 14.1≤x ; 15.a b ϖϖ3231-;16.2700; 17.)2,321(+; 18.49或29.三、解答题:(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14 分,满分78分) 19. 解:原式=221)1)(2()2)(3(--++⋅+-+-m mm m m m m m (6分)=223----m mm m (2分) =23--m (2分)20.解:(1)∵)0,1(-A ,∴1=OA (1分)∵OA OB 2=,∴2=OB (1分)∴)2,0(B . (1分)解:(2)由题意,得)0,2(B ', (1分)∴ ⎩⎨⎧=++=+-022402b a b a ,解得,⎩⎨⎧=-=11b a (3分)∴22++-=x x y . (1分) 对称轴为直线21=x . (2分)21.解:(1)∵B D ∠=∠,BOA DOC ∠=∠;∴COD ∆∽AOB ∆, (1分)∴212===∆∆CD CD AB CD C C AOB COD (2分)∵9=∆COD C ,∴18=∆AOB C . (1分)解:(2)∵COD ∆∽AOB ∆,∴2==CDABCO AO ,41)(2==∆∆AB CD S S AOB COD . (2分) ∵16=∆AOB S ,】∴4=∆COD S (1分) 设ADC ∆中边AC 上的高为h .∴22121==⋅⋅=∆∆CO AOh CO hAO S S CODADO, ∴8=∆AOD S . (2分) ∴12=+=∆∆∆AOD COD ADC S S S . (1分)22.解:设小李比赛中每小时车x 个零件,则小李原来每小时车)10(-x 个零件. (1分)由题意,得224010240=--x x ; (4分) 化简,得01200102=--x x ; (2分) 解得,401=x ,302-=x ; (2分)经检验401=x ,302-=x 都是原方程的根,但302-=x 不合题意,舍去 (1分) 答: 小李比赛中每小时车40个零件. 23. 证明:(1)∵CD AD =,∴DAC DCA ∠=∠∵AC 平分DAB ∠, ∴CAB DAC ∠=∠ ∴CAB DCA ∠=∠ ,∴DC ∥AB (2分) 在ACB Rt ∆中,︒=∠90ACB ,︒=∠60B ∴︒=∠30CAB ,∴︒=∠30DAC (1分) ∴B DAB ∠=︒=︒+︒=∠603030, ∴BC AD = ………………(1分)∵︒≠︒=︒+︒=∠+∠1801206060DAB B∴AD 与BC 不平行, (1分)∴四边形ABCD 是等腰梯形. (1分)证明:(2)∵CD AD =,AD BC =,∴CD BC = (1分) 在ACB Rt ∆中,︒=∠90ACB ,︒=∠30CAB∴BE AB BC ==21, (1分) ∴BE CD =,∵DC ∥AB (2分) ∴四边形DEBC 是平行四边形 (1分) ∵CD BC =∴四边形DEBC 是菱形. (1分)24.解:(1)43--=x y ; (3分) (2)322++=x x y ; (3分) (3)分别过点A B C 、、作A A B B C C '''、、垂直于x 轴,垂足分别为A B C '''、、.设点)2,(m m B 、)2,(nn A ,其中m >0,n >0. (1分) 由题意,得点)4,21(-C . (1分)∴4='C C ,m B B 2=',n A A 2=',m n B A -='',21+=''m C B .易知 C C '∥B B '∥A A ', 又2:1:=AB CB所以,可得 ⎪⎪⎩⎪⎪⎨⎧-=-+=-)24(3222)21(2n n m m m n , (2分)化简,得⎪⎩⎪⎨⎧=-=-3431113n m m n ,解得 6101±=m (负值舍去) (1分) ∴341042-=m , ∴)34104,6101(-+B (1分)25. 解:(1)在Rt △ABC 中,︒=∠90ACB ,∵53sin ==AB AC B ,6=AC ∴10=AB ,86102222=-=-=AC AB BC (1分)过点M 作AB MD ⊥,垂足为D . (1分) 在MDB Rt ∆中,︒=∠90MDB ,∴53sin ==MB MD B , ∵2=MB , ∴56253=⨯=MD >1 (1分) ∴⊙M 与直线AB 相离. (1分)解:(2)分三种情况:︒1 ∵56=MD >MP =1,∴OM >MP ; (1分)︒2 当MP OP =时,易得︒=∠90MOB ,∴108cos ===AB BC BM OB B ,∴58=OB ,∴542=OA ; (2分)︒3 当OP OM =时,过点O 作BC OE ⊥,垂足为E .∴108cos ===AB BC OB EB B , ∴815=OB ,∴865=OA . (2分)综合︒︒︒321、、,当OMP ∆是等腰三角形时,OA 的长为542或865. 解:(3)联结ON ,过点N 作AB NF ⊥,垂足为F .在NFB Rt ∆中,︒=∠90NFB ,53sin =B ,y NB =; ∴y NF 53=,y BF 54=; ∴y x OF 5410--=, (1分)∵⊙N 和⊙O 外切,∴y x ON +=; (1分) 在NFB Rt ∆中,︒=∠90NFB , ∴222NF OF ON +=; 即222)53()5410()(y y x y x +--=+; ∴4050250+-=x xy ; (2分)定义域为:0<x <5. (1分)初中数学试卷。

上海市徐汇区九年级数学上学期期末学习能力诊断试题

上海市徐汇区九年级数学上学期期末学习能力诊断试题

上海市徐汇区2016届九年级数学上学期期末学习能力诊断试题(时间100分钟 满分150分)一.选择题(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的】 1.下列两个图形一定相似的是(A )两个菱形; (B )两个矩形; (C )两个正方形; (D )两个等腰梯形. 2.如图1,如果EF CD AB ////,那么下列结论正确的是(A )EF CD AE AC =; (B )DF CE BD AC =; (C )CD AB CE AC =; (D ) CEBDDF AC =. 3.将抛物线2)1(22-+=x y 向右平移2个单位,再向上平移2个单位后所得新抛物线的 表达式是(A )2)3(2+=x y ;(B )2)3(+=x y ;(C )2)1(-=x y ;(D )2)1(2-=x y .4.点G 是ABC ∆的重心,如果5==AC AB ,8=BC ,那么AG 的长是 (A )1; (B )2 ; (C )3; (D ) 4.5.如果从甲船看乙船,乙船在甲船的北偏东︒30方向,那么从乙船看甲船,甲船在乙船的 (A )南偏西︒30方向; (B )南偏西︒60方向; (C )南偏东︒30方向; (D )南偏东︒60方向.6.如图2,梯形ABCD 中,BC AD //,︒=∠90BAC ,AC AB =,点E 是边AB 上一 点,︒=∠45ECD ,那么下列结论错误的是(A )ECB AED ∠=∠; (B )ACE ADE ∠=∠ ; (C )AD BE 2=; (D ) CE BC 2=.二.填空题(本大题共12题,每题4分,满分48分)7.计算:=+-+b a b a ρϖϖϖ2131)32(2__▲___.8.如果32=b a ,那么=+-ba ab __▲___.9.已知二次函数122-=x y ,如果y 随x 的增大而增大,那么x 的取值范围是__▲___. 10.如果两个相似三角形的面积比是9:4,那么它们对应高的比是__▲___.11.如图3所示,一皮带轮的坡比是4.2:1,如果将货物从地面用皮带 轮送到离地10米高的平台,那么该货物经过的路程是__▲___米. 12.已知点)4,1(M 在抛物线142+-=ax ax y 上,如果点N 和点M 关于该抛物线的对称 轴对称,那么点N 的坐标是__▲___.13.点D 在ABC ∆的边AB 上,3=AC ,4=AB ,B ACD ∠=∠,那么AD 的长是_▲_. 14.如图4,在□ABCD 中,6=AB ,4=AD ,BAD ∠的平分线AE 分别交BD 、CD 于F 、A BC D EF图1图2A BCDE图3E ,那么=BFDF__▲___. 15.如图5,在ABC ∆中,BC AH ⊥于H ,正方形DEFG 内接于ABC ∆,点E D 、分 别在边AC AB 、上,点F G 、在边BC 上,如果20=BC ,正方形DEFG 的面积为 25,那么AH 的长是__▲___.16.如图6,在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,43tan =∠ACD ,5=AB ,那么CD 的长是__▲___.17.如图7,在梯形ABCD 中,BC AD //,AD BC 2=,点E 是CD 的中点,AC 与BE 交于点F ,那么ABF ∆和CEF ∆的面积比是__▲___.18.如图8,在ABC Rt ∆中,︒=∠90BAC ,3=AB ,53cos =B ,将ABC ∆绕着点A 旋转得ADE ∆,点B 的对应点D 落在边BC 上,联结CE ,那么CE 的长是_▲_.三.(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分; 满分78分)19.(本题满分10分)计算:︒︒+︒︒-︒60cos 45cot 30cos 30tan 245sin 4.20.(本题满分10分)抛物线c x x y +-=22经过点)1,2(.(1)求抛物线的顶点坐标; (5分)(2)将抛物线c x x y +-=22沿y 轴向下平移后,所得新抛物线与x 轴交于B A 、两 点,如果2=AB ,求新抛物线的表达式. (5分)AB CD E F 图4AB CDEF G H图5A B CD图6ABD E F图7ABCD E图821.(本题满分10分)如图9,在ABC ∆中,点E D 、分别在边AC AB 、上,43=AB AD ,3=AE ,1=CE ,6=BC .(1)求DE 的长; (5分)(2)过点D 作AC DF //交BC 于F ,设AB a =u u u r r,=b ρ, 求向量DF (用向量a r 、b r表示). (5分)22.(本题满分10分)如图10,热气球在离地面800米的A 处,在A 处测得一大楼楼顶C 的俯角是︒30,热气球沿着水平方向向此大楼飞行400米后到达B 处,从B 处再次测得此大楼楼顶C 的俯角是︒45,求该大楼CD 的高度.参考数据:41.12≈,73.13≈.23.(本题满分12分) 如图11,在ACB ∆中,BC AC =,点D 在边AC 上,BD AB =,ED BE =,且ABD CBE ∠=∠,DE 与CB 交于点F .求证:(1)BE AD BD ⋅=2; (6分) (2)DF BC BF CD ⋅=⋅. (6分)24.(本题满分12分)ABCD E 图9 ABCD E F 图11如图12,在AOB Rt ∆中,︒=∠90AOB ,已知点)1,1(--A ,点B 在第二象限,22=OB ,抛物线c bx x y ++=253经过点A 和B . (1)求点B 的坐标; (3分)(2)求抛物线c bx x y ++=253的对称轴; (3分)(3)如果该抛物线的对称轴分别和边BO AO 、的延长线交于点D C 、,设点E 在直线AB 上,当BOE ∆和BCD ∆相似时,直接写出点E 的坐标.(6分)25.(本题满分14分)如图13,四边形ABCD 中,︒=∠60C ,5==AD AB ,8==CD CB ,点Q P 、分别是边BC AD 、上的动点,AQ 和BP 交于点E ,且BAD BEQ ∠-︒=∠2190,设P A 、两点的距离为x . (1)求BEQ ∠的正切值; (4分) (2)设y PEAE=,求y 关于x 的函数解析式及定义域; (5分) (3)当AEP ∆是等腰三角形时,求Q B 、两点的距离. (5分)DB AC QPE图132015学年第一学期徐汇区初三年级数学学科 期终学习能力诊断卷参考答案和评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.C ; 2.B ; 3.D ; 4.B ; 5.A ; 6.D . 二.填空题:(本大题共12题,满分48分)7.b a ϖϖ213311+; 8.51; 9.0≥x ; 10.3:2; 11.26; 12.)4,3(;13.49; 14.32; 15.320; 16.512; 17.1:6; 18.524.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19. 解:原式21123332224+⨯⨯-⨯=;……………………………………………(5分)2122+-=;……………………………………………………………(3分) 122+=.…………………………………………………………………(2分) 20.解:(1)由题意,得144=+-c ,解得1=c ;…………………………………(1分) ∴抛物线的解析式为122+-=x x y ;……………………………………(1分)即2)1(-=x y ;……………………………………………………………(1分)∴顶点坐标是)0,1(.………………………………………………………(2分) (2)设平移后的抛物线解析式是n x x y -+-=122;………………………(1分) ∴ 该抛物线的对称轴是直线1=x ;………………………………………(1分) 又2=AB ,由抛物线的对称性可得)0,0(A 、)0,2(B ;………………(1分) ∴01=-n ,解得1=n ;…………………………………………………(1分) ∴新抛物线的表达式是x x y 22-=.……………………………………(1分)21.解:(1)∵3=AE ,1=CE ,∴43=AC AE ;……………………………………(1分) 又43=AB AD ,∴AB ADAC AE = ; …………………………………………(1分) ∴BC DE //.∴ ABADBC DE =……………………………………………(1分) 即436=DE ,解得29=DE .……………………………………………(2分) (2)∵AC DF //,∴ABBDAC DF =;……………………………………………(1分)又43=AB AD ,∴41=AC DF ,即AC DF 41=;……………………………(2分) ∵b a AC ϖϖ+=,∴b a DF ϖϖ4141+=. ……………………………………(2分)22.解: 分别延长DC AB 、交于点E . ……………………………………………(1分) ∵AB 与地面平行,DC 与地面垂直,∴AB DE ⊥,∴︒=∠90E . …(1分) 在CEB Rt ∆中,︒=∠45EBC ,∴︒=∠45ECB ,∴BE EC =;……(1分) 设x CE =,则x BE =,400+=x AE . ………………………………(1分)在AEC Rt ∆中,︒=∠90E ,∴AEECCAE =∠tan ; ……………………(1分)即40030tan +=︒x x,解得)13(200+=x ;…………………………(2分)即546)173.1(200)13(200=+⨯≈+=CE (米) ;……………………(2分)∴254546800=-=CD (米); ……………………………………………(1分) 答: 大楼CD 的高度254米.23.证明:(1)∵BC AC =,∴ABC A ∠=∠; ……………………………………(1分) ∵ED BE =,∴DBE BDE ∠=∠;…………………………………(1分) ∵ABD CBE ∠=∠,∴CBD ABD CBD CBE ∠+∠=∠+∠,即ABC DBE ∠=∠,∴A BDE ∠=∠;∴BED ∆∽BCA ∆ ;……(1分) ∵BD AB =,∴BDA A ∠=∠;∴ABC BDA ∠=∠;又A A ∠=∠,∴ABD ∆∽BCA ∆;…………………………………(1分) ∴BED ∆∽ADB ∆ ;……………………………………………………(1分)∴BEBD BD AD =,即BE AD BD ⋅=2.…………………………………(1分) (2)∵ABD ∆∽BCA ∆,∴C ABD ∠=∠;………………………………(1分) 又ABD CBE ∠=∠,∴C CBE ∠=∠;……………………………(1分)∴BE AC //,∴EFDFBE DC =;…………………………………………(1分) ∵BED ∆∽BCA ∆,∴C E ∠=∠,1==ABBDBC BE ;………………(1分)∴CBE E ∠=∠,∴EF BF =;………………………………………(1分)又BC BE =,∴BFDFBC DC =;…………………………………………(1分) 即DF BC BF CD ⋅=⋅.24.解:(1)分别过点B A 、作y 轴的垂线,垂足分别是D C 、. 可得ACO ∆∽ODB ∆,∴OAOBAC OD OC BD ==;∵)1,1(--A ,∴2=OA ; ∴2,2==OD BD ;∴)2,2(-B …………………………………………(3分)(2)由题意,可得⎪⎪⎩⎪⎪⎨⎧=+--=+-;22512;153c b c b ……………………………………………(1分) 解得⎪⎪⎩⎪⎪⎨⎧-=-=;514;56c b ……………………………………………………………(1分) ∴51456532--=x x y ; ∴对称轴是直线1=x .……………………………………………………(1分)(3)点)0,34(-E 或)58,54(--E .…………………………………………(各3分)25.解:(1)联结BD AC 、交于点O .…………………………………………………(1分) ∴AD AB =,∴BAD BAD ABD ADB ∠-︒=∠-︒=∠=∠21902180,又BAD BEQ ∠-︒=∠2190,∴ADB BEQ ∠=∠; ∵AD AB =,CD CB =,∴BD AC ⊥,DO BO =;∵︒=∠60BCD ,∴BCD ∆是等边三角形,∴8==BC BD ;在AOD Rt ∆中,︒=∠90AOD ,∴3452222=-=-=DO AD AO ,∴43tan ==∠DO AO ADO ; ∴43tan =∠BEQ . ………………………………………………………(3分)(2)如图,联结BD 交AQ 于F .∵ADB BEQ AEP ∠=∠=∠,DAF EAP ∠=∠, ∴AEP ∆∽ADF ∆,∴DFADPE AE =;…………………(1分) ∵ABD ADB BEQ ∠=∠=∠,AFB BFE ∠=∠; ∴BFE ∆∽AFB ∆ ;∴BAF FBE ∠=∠;∴PBD ∆∽FAB ∆ ;∴BDPDAB BF =; 即855x BF -=,得8525x BF -=;∴85398xBF DF +=-=;…(2分) ∴39540+=x y ,定义域是50<≤x .…………………………………(2分)(3)如图,联结BD 交AQ 于F .DB ACQ PE FDBAPEF∵AEP ∆∽ADF ∆,当AEP ∆是等腰三角形时; ∴ADF ∆也是等腰三角形. 分情况讨论:︒1 当AD AF =时,0=BQ ,但此时点E Q B 、、重合,BEQ ∠不存在,不合题意,舍去;……………………………………(1分)︒2 当DF AF =时,解得4825〈=DF ,此时AF 与边BC 没有交点(即点Q 不在边BC 上),不合题意,舍去;…………………………………(2分)︒3 当5==AD DF 时,得3=BF ,此时1=y ,∴51=x ,符合题意; 联结AC 交BD 于O ,过点Q 作BF QG ⊥于G ;可得3tan =∠BFQ , 因此,解得339-=BQ ,即Q B 、两点的距离是339-.…(2分)综合︒1、︒2、︒3,当AEP ∆是等腰三角形时,Q B 、两点的距离是339-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011学年第二学期徐汇区初三年级数学学科
学习能力诊断卷 2012.4
(时间100分钟 满分150分)
一、选择题:(本大题共6题,每题4分,满分24分)
【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1.下列实数中,无理数是 (A )9;
(B )38; (C )
2
π
; (D )3030030003.3.
2.下列图形中,既是轴对称图形又是中心对称图形是
(A )正六边形; (B )正五边形; (C )等腰梯形; (D )等边三角形. 3.如果32=-b a ,那么b a 426+-的值是 (A ) 3;
(B ) 2;
(C ) 1; (D ) 0.
4.下列成语或词语所反映的事件中,可能性大小最小的是
(A )瓮中捉鳖; (B )守株待兔; (C )旭日东升; (D )夕阳西下.
5.某商店在一周内卖出某种品牌球鞋的尺寸(单位:码)整理后的数据如下:36,38,38, 39,40,40,41,41,41,41,42,43,44.那么这组数据的中位数和众数分别为 (A )40,40; (B )41,40;
(C )40,41; (D )41,41.
6.下列关于四边形是矩形的判断中,正确的是 (A )对角线互相平分;
(B )对角线互相垂直;
(C )对角线互相平分且垂直;
(D )对角线互相平分且相等.
二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7.计算:=⋅2
23a a ▲ .
8.求值:=︒⋅︒60tan 30sin ▲ . 9.函数63+=
x y 的定义域是 ▲ .
10.如果方程032
=+-m x x 有两个相等的实数根,那么m 的值是 ▲ . 11.如果将抛物线32
-=x y 向左平移2个单位,再向上平移3个单位,那么平移后的抛物
线表达式是 ▲ .
12.纳米是一个长度单位,1纳米=0.000 000 001米,如果把水分子看成是球形,它的直径
约为0.4纳米,用科学记数法表示为n
104⨯米,那么n 的值是 ▲ . 13.如图1,一斜坡AB 的坡比4:1=i ,如果坡高2=AC 米,那么它的水平宽度BC 的长
是 ▲ 米.
14.一次函数)0(≠+=k b kx y 中两个变量y x 、的部分对应值如下表所示:
那么关于x 的不等式的解集是 ▲ .
15.点G 是△ABC 的重心,如果a AB =,b AC =,那么向量用向量a 和b 表示
为 ▲ .
16.为了了解全区近6000名初三学生数学学习状况,随机抽取600名学生的测试成绩作为
样本,将他们的成绩整理后分组情况如下:(每组数据含最低值,不含最高值)
根据上表信息,由此样本请你估计全区此次测试成绩在70~80分的人数大约是 ▲ . 17.如图2,矩形ABCD 中,4,2==BC AB ,点B A 、分别在y 轴、x 轴的正半轴上,
点C 在第一象限,如果︒=∠30OAB ,那么点C 的坐标是 ▲ .
18.如图3,在菱形ABCD 中,3=AB ,︒=∠60A ,点E 在射线CB 上,1=BE ,如果AE 与射线DB 相交于点O ,那么=DO ▲ .
三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)
化简:2
122622--++÷----m m
m m m m m m .
20.(本题满分10分)
如图4,在AOB ∆中,点)0,1(-A ,点B 在y 轴正半轴上,且OA OB 2=.
(1)求点B 的坐标; (3分)
(2)将AOB ∆绕原点O 顺时针旋转︒90,点B 落在x 轴正半轴的点B '处,抛物线
22++=bx ax y 经过点B A '、两点,求此抛物线的解析式及对称轴.(7分)
A C
B 图1
A
21.(本题满分10分)
如图5,AC 和BD 相交于点O ,B D ∠=∠,CD AB 2=.
(1)如果COD ∆的周长是9,求AOB ∆的周长; (4分) (2)联结AD ,如果AOB ∆的面积是16,求ACD ∆的面积. (6分)
22.(本题满分10分)
为迎接“五一”国际劳动节,某公司机床车间举行“车工技能竞赛”活动,竞赛规则:先车好240个零件的选手获胜.小李为了这次比赛刻苦训练、积极准备,在比赛中,小李每小时比原来多车10个零件,结果比原来提前2小时完成任务,荣获第一名.问小李比赛中每小时车多少个零件? 23.(本题满分12分)
如图6,在四边形ABCD 中,CD AD =,AC 平分DAB ∠,BC AC ⊥,︒=∠60B . (1)求证:四边形ABCD 是等腰梯形; (6分) (2)取边AB 的中点E ,联结DE .求证:四边形DEBC 是菱形. (6分)
24.(本题满分12分)
函数x k y =
和x k y -=)0(≠k 的图像关于y 轴对称,我们把函数x
k
y =和x
k
y -
=)0(≠k 叫做互为“镜子”函数. 类似地,如果函数)(x f y =和)(x h y =的图像关于y 轴对称,那么我们就把函数
)(x f y =和)(x h y =叫做互为“镜子”函数.
(1)请写出函数43-=x y 的“镜子”函数: ,(3分) (2)函数 的“镜子”函数是322
+-=x x y ; (3分)
A B C D O 图5
(3)如图7,一条直线与一对“镜子”函数x y 2=
(x >0)和x
y 2
-=(x <0)的图像分别交于点C B A 、、,如果2:1:=AB CB ,点C 在函数x
y 2
-=(x <0)的“镜
子”函数上的对应点的横坐标是2
1
,求点B
25.(本题满分14分)
在ABC Rt ∆中,︒=∠90C ,6=AC ,5
3
sin =
B ,⊙B 的半径长为1,⊙B 交边CB 于点P ,点O 是边AB 上的动点. (1)如图8,将⊙B 绕点P 旋转︒180得到⊙M ,请判断⊙M 与直线AB 的位置关系;
(4分)
(2)如图9,在(1)的条件下,当OMP ∆是等腰三角形时,求OA 的长; (5分) (3)如图10,点N 是边BC 上的动点,如果以NB 为半径的⊙N 和以OA 为半径的
⊙O 外切,设y NB =,x OA =,求y 关于x 的函数关系式及定义域.(5分).
B
O
A
C
P 图9
B
O
A
C
P
图8
图10
O
N
B
A
C。

相关文档
最新文档