初三数学及高级三角函数公式
初中数学三角函数公式最全
初中数学三角函数公式最全三角函数是数学中重要的概念和工具之一,在初中数学中也是一个重要的知识点。
掌握了三角函数的基本概念和公式,可以解决很多几何和物理相关的问题。
下面将介绍一些初中数学中三角函数的常见公式。
1.正弦定理:在任意三角形ABC中,边长分别为a,b,c,对应的角度为A,B,C。
则有:a/sin A = b/sin B = c/sin C2.余弦定理:在任意三角形ABC中,边长分别为a,b,c,对应的角度为A,B,C。
则有:c^2 = a^2 + b^2 - 2ab cos C3.正弦函数的性质:sin(A ± B) = sin A cos B ± cos A sin Bsin(180° ± θ) = ±sin θsin²θ + cos²θ = 1sin²θ = 1/2(1 - cos 2θ)4.余弦函数的性质:cos(A ± B) = cos A cos B ∓ sin A sin Bcos(180° ± θ) = -cos θcos²θ + sin²θ = 1cos²θ = 1/2(1 + cos 2θ)5.正切函数的性质:tan(A ± B) = (tan A ± tan B) / (1 ∓ tan A tan B) tan(180° ± θ) = ±tan θ6.三角函数的周期性:sin(θ ± 360°n) = sin θcos(θ ± 360°n) = cos θtan(θ ± πn) = tan θ7.三角函数的倒数关系:sin θ = 1 / csc θcos θ = 1 / sec θtan θ = 1 / cot θ8.三角函数的和差化积公式:sin(A ± B) = sin A cos B ± cos A sin Bcos(A ± B) = cos A cos B ∓ sin A sin Btan(A ± B) = (tan A ± tan B) / (1 ∓ tan A tan B)9.三角函数的倍角公式:sin 2θ = 2sin θ cos θcos 2θ = cos²θ - sin²θ= 2cos²θ - 1= 1 - 2sin²θtan 2θ = 2tan θ / (1 - tan²θ)10.三角函数的半角公式:sin(θ/2) = ±√[(1 - cos θ)/2]cos(θ/2) = ±√[(1 + cos θ)/2]tan(θ/2) = ±√[(1 - cos θ)/(1 + cos θ)]以上是初中数学中常见的三角函数公式,可以通过这些公式来解决各种三角函数的计算问题。
(完整版)三角函数三角函数公式表
(完整版)三角函数公式表1. 正弦函数 (sin):定义:正弦函数是直角三角形中对边与斜边的比值。
公式:sin(θ) = 对边 / 斜边范围:1 ≤ sin(θ) ≤ 1特殊值:sin(0°) = 0, sin(30°) = 1/2, sin(45°) = √2/2, sin(60°) = √3/2, sin(90°) = 12. 余弦函数 (cos):定义:余弦函数是直角三角形中邻边与斜边的比值。
公式:cos(θ) = 邻边 / 斜边范围:1 ≤ cos(θ) ≤ 1特殊值:cos(0°) = 1, cos(30°) = √3/2, cos(45°) = √2/2, cos(60°) = 1/2, cos(90°) = 03. 正切函数 (tan):定义:正切函数是直角三角形中对边与邻边的比值。
公式:tan(θ) = 对边 / 邻边范围:tan(θ) 可以取任意实数值特殊值:tan(0°) = 0, tan(30°) = 1/√3, tan(45°) = 1, tan(60°)= √3, tan(90°) 不存在(无穷大)4. 余切函数 (cot):定义:余切函数是直角三角形中邻边与对边的比值。
公式:cot(θ) = 邻边 / 对边范围:cot(θ) 可以取任意实数值特殊值:cot(0°) 不存在(无穷大), cot(30°) = √3, cot(45°) = 1, cot(60°) = 1/√3, cot(90°) = 05. 正割函数 (sec):定义:正割函数是直角三角形中斜边与邻边的比值。
公式:sec(θ)= 1 / cos(θ)范围:sec(θ) 可以取任意实数值特殊值:sec(0°) = 1, sec(30°) = 2, sec(45°) = √2, sec(60°) = 2/√3, sec(90°) 不存在(无穷大)6. 余割函数 (csc):定义:余割函数是直角三角形中斜边与对边的比值。
初中数学三角函数公式
初中数学三角函数公式三角函数的公式:1. 余弦定理:\cos A=\frac{b^2 + c^2 - a^2}{2bc};2. 正弦定理:\sin A=\frac{\sqrt{a^2 - b^2 - c^2}}{2bc};3. 梯形公式:S=\frac{1}{2} a \times b \sin C;4. 两边和定理:a\sin A=b\sin B=c\sin C;5. 余切定理:\tan A=\frac{1}{\sin A}\;6. 正切定理:\cot A=\frac{1}{\tan A}\;三角函数的概念问题可以追溯到古希腊人。
他们考虑了三角函数如何影响几何形状和外形,从而得到了代表三角形的几个基本函数,即正弦函数、余弦函数和正切函数。
三角函数在很多领域有着广泛的用途,比如在地理学和天文学中,它们帮助计算地球上特定地点的坐标,确定太阳位置等等;在单元电路中它们可以用来计算电流和电压;在许多工程应用中,它们可以用来计算房屋的张力,测量角度等等。
三角函数的公式有多种,主要有:1. 余弦定理:它有助于计算三角形的两个角的余弦值,当我们知道该三角形的三条边的长度的时候:余弦定理的表达式为:\cos A=\frac{b^2 + c^2 -a^2}{2bc};2. 正弦定理:它可以帮助我们计算三角形三个角度中其中一个角度的正弦值,以及三角形三条边的关系:正弦定理的表达式:\sin A=\frac{\sqrt{a^2 - b^2 - c^2}}{2bc};3. 梯形公式:它可以帮助我们计算出三角形的面积,它有两种表示形式:一:根据三角形三条边的长度,可以表示为:S=\frac{1}{2} a \times b \sin C;二:根据三角形的三个内角的度数,可以表示为:S=\frac{abc}{4R};4. 两边和定理:它可以帮助我们计算出一个三角形的面积,这个定理可以用来得出三角形三个角度两条边之间的关系:两边和定理的表达式为:a\sin A=b\sin B=c\sin C;5. 余切定理:它可以帮助我们计算出三角形的余切值,当我们知道角的正弦值时:余切定理的表达式为:\tan A=\frac{1}{\sin A}\;6. 正切定理:它可以帮助我们计算出三角形的正切值,当我们知道角的余弦值时:正切定理的表达式:\cot A=\frac{1}{\tan A}\;以上这些定理和公式都是三角函数中最重要最常用的,因为三角函数具有广泛的应用,所以必须熟悉这些定理和公式,以便于灵活地应用。
初中数学三角函数公式
初中数学三角函数公式三角函数是数学中重要的一部分,它在几何、物理等领域有广泛的应用。
在初中数学中,我们主要学习正弦函数、余弦函数和正切函数,以及它们之间的关系。
本文将详细介绍这些三角函数的定义、性质和常用公式。
一、正弦函数正弦函数是最基本的三角函数之一,它反映了角度和边长之间的关系。
定义:设角A的终边与单位圆交于点P(x,y),则角A的正弦值sinA定义为点P的纵坐标y。
即sinA=y。
性质:1. sin(90°)=1,即sinA的最大值为1;2. sin(-A)=-sinA,即正弦函数具有奇对称性;3. sin(180°+A)=-sinA,即正弦函数具有周期性。
常用公式:1. 三角恒等式:sin(A±B)=sinAcosB±cosAsinB;2. 万能公式:sin2A=2sinAcosA;3. 正弦的平方:sin²A+cos²A=1二、余弦函数余弦函数与正弦函数相似,也是描述角度和边长之间关系的函数。
定义:设角A的终边与单位圆交于点P(x,y),则角A的余弦值cosA定义为点P的横坐标x。
即cosA=x。
性质:1. cos(0°)=1,即cosA的最大值为1;2. cos(-A)=cosA,即余弦函数具有偶对称性;3. cos(180°+A)=-cosA,即余弦函数具有周期性。
常用公式:1. 三角恒等式:cos(A±B)=cosAcosB∓sinAsinB;2. 万能公式:cos2A=cos²A-sin²A;3. 余弦的平方:sin²A+cos²A=1三、正切函数正切函数是正弦函数和余弦函数的比值,它在三角函数中也是重要的一员。
定义:设角A的终边与单位圆交于点P(x,y),且x≠0,则角A的正切值tanA定义为y/x。
即tanA=y/x。
性质:1. tan(0°)=0,即tanA的最小值为0;2. tan(-A)=-tanA,即正切函数具有奇对称性;3. tan(180°+A)=tanA,即正切函数具有周期性。
初中必背三角函数公式
初中必背三角函数公式
三角函数是数学中一类重要的函数,它们可以通过某个角度和某个圆的关系,表示圆体内某个点位置和某个角所对应的正切、余切、正弦、余弦之间的关系。
学习三角函数,有助于学生更好地把握和理解数学中的核心思想。
并且,学习三角函数还能有助于学生们学习其他相关的数学知识,在作图的计算中得心应手。
中学阶段,学生不但要掌握基本的三角函数,而且还应掌握其一般性公式,尤其是需要背诵和掌握以下三个函数公式:
一、正弦函数,即sinθ=opp/h
opp是给定角θ的射边,h是给定角θ的邻边,其中0≤θ≤π
二、余弦函数,即cosθ=adj/h
adj是给定角θ的邻边,h 是给定角θ的斜边,其中O≤θ≤π
三、正切函数,即tanθ=opp/adj
opp是给定角θ的射边,adj是给定角θ的邻边,任何角θ都适用
这三个函数公式是初中阶段学习数学中较为重要的知识点之一,如果学生能够将它们牢牢记住,那么在以后学习数学时,将会有较大的帮助。
九年级三角函数公式大全
九年级三角函数公式大全1二倍角公式正弦形式:sin2α=2sinαcosα正切形式:tan2α=2tanα/(1-tan^2(α))余弦形式:cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)2、三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a=tana·tan(π/3+a)·tan(π/3-a)3、四倍角公式sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)2半角公式1、正弦sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)2、余弦cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)3、正切tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))3积化和差sina*cosb=[sin(a+b)+sin(a-b)]/2 cosa*sinb=[sin(a+b)-sin(a-b)]/2 cosa*cosb=[cos(a+b)+cos(a-b)]/2 sina*sinb=[cos(a-b)-cos(a+b)]/24和差化积sina+sinb=2sin[(a+b)/2]cos[(a-b)/2] sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]5诱导公式1、任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα2、设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα3、利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαtan(π-α)=-tanαcot(π-α)=-cotα4、设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)5、利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα6、π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα。
(完整)初中常用三角函数公式
(完整)初中常用三角函数公式初中常用三角函数公式
三角函数是数学中常见的概念,它们在初中阶段的数学研究中起着重要的作用。
以下是一些常用的三角函数公式:
1. 正弦函数公式:
- 正弦函数的定义:在直角三角形中,对于一个锐角角度A,正弦函数的值等于对边与斜边的比值,可以表示为sin(A) = 对边/斜边。
2. 余弦函数公式:
- 余弦函数的定义:在直角三角形中,对于一个锐角角度A,余弦函数的值等于邻边与斜边的比值,可以表示为cos(A) = 邻边/斜边。
3. 正切函数公式:
- 正切函数的定义:在直角三角形中,对于一个锐角角度A,正切函数的值等于对边与邻边的比值,可以表示为tan(A) = 对边/邻边。
4. 余切函数公式:
- 余切函数的定义:在直角三角形中,对于一个锐角角度A,余切函数的值等于邻边与对边的比值,可以表示为cot(A) = 邻边/对边。
5. 正割函数公式:
- 正割函数的定义:在直角三角形中,对于一个锐角角度A,正割函数的值等于斜边与邻边的比值,可以表示为sec(A) = 斜边/邻边。
6. 余割函数公式:
- 余割函数的定义:在直角三角形中,对于一个锐角角度A,余割函数的值等于斜边与对边的比值,可以表示为csc(A) = 斜边/对边。
这些公式是初中数学中常用的三角函数公式,它们可以用来解决与三角函数相关的各种问题。
熟练掌握这些公式并灵活运用,有助于提高数学解题能力和理解几何概念的能力。
中考常用数学三角函数公式汇总记忆口诀锐角三角函数锐角三角函数定义
中考常用数学三角函数公式汇总记忆口诀锐角三角函数锐角三角函数定义中考常用的数学三角函数公式包括但不限于:1. 三角函数的基本关系:sin^2(α) + cos^2(α) = 1;tan^2(α) + 1 = sec^2(α);cot^2(α) + 1 = csc^2(α)。
2. 特殊角的三角函数值:sin(90°-α) = cosα;tan(90°-α) =cotα;cos(90°-α) = sinα。
3. 两角和与差的三角函数公式:sin(A+B) = sinAcosB + cosAsinB;cos(A+B) = cosAcosB - sinAsinB;tan(A+B) = (tanA + tanB)/(1 - tanAtanB)。
4. 半角公式:sin(A/2) = ±√[(1-cosA)/2];cos(A/2) = ±√[(1+cosA)/2];tan(A/2) = ±√[(1-cosA)/(1+cosA)]。
5. 和差化积公式:2sinAcosB = sin(A+B) + sin(A-B);2cosAsinB =sin(A+B) - sin(A-B)。
6. 积的关系:cotα = cosα·cscα;cscα = secα·cotα。
7. 倒数关系:tanα·cotα = 1;cosα·secα = 1。
锐角三角函数的定义如下:锐角三角函数定义:锐角角a的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角a的锐角三角函数。
其中,正弦(sin)是定义为对边比斜边,即sina=a/c;余弦(cos)是定义为邻边比斜边,即cosa=b/c;正切(tan)是定义为对边比邻边,即tana=a/b;余切(cot)是定义为邻边比对边,即cota=b/a;正割(sec)是定义为斜边比邻边,即seca=c/b;余割(csc)是定义为斜边比对边,即csca=c/a。
中考数学知识点三角函数的公式
中考数学知识点三角函数的公式中考数学知识点三角函数的公式关于初中三角函数公式,在考试中用的最多的就是特殊三角度数的'特殊值。
下面一起来看看!三角函数的公式sin30°=1/2sin45°=√2/2sin60°=√3/2cos30°=√3/2cos45°=√2/2cos60°=1/2tan30°=√3/3tan45°=1tan60°=√3[1]cot30°=√3cot45°=1cot60°=√3/3其次就是两角和公式,这是在初中数学考试中问答题中容易用到的三角函数公式。
两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)除了以上常考的初中三角函数公示之外,还有半角公式和和差化积公式也在选择题中用到。
所以同学们还是要好好掌握。
半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB- ctgA+ctgBsin(A+B)/sinAsinB锐角三角函数公式sin α=∠α的对边 / 斜边cos α=∠α的邻边 / 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA.CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式A sinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa=4cos3a-3cosasin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(√3/2)2-sin2a]=4sina(sin260°-sin2a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(√3/2)2]=4cosa(cos2a-cos230°)=4c osa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)两角和差cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2诱导公式sin(-α) = -sinαcos(-α) = cosαtan (—a)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+tan^(α/2)]cosα=[1-tan^(α/2)]/1+tan^(α/2)]tanα=2tan(α/2)/[1-tan^(α/2)]其它公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+si n[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+c os[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0。
三角函数常用公式表格
三角函数常用公式表格三角函数是数学中非常重要的一个部分,它在几何、物理、工程等多个领域都有广泛的应用。
为了更好地理解和运用三角函数,我们需要熟悉一些常用的公式。
以下是为大家整理的三角函数常用公式表格:一、基本关系1、平方关系sin²α +cos²α = 11 +tan²α =sec²α1 +cot²α =csc²α2、商数关系tanα =sinα /cosαcotα =cosα /sinα3、倒数关系sinα · cscα = 1cosα · secα = 1tanα · cotα = 1二、诱导公式1、终边相同的角的三角函数值相等sin(2kπ +α) =sinαcos(2kπ +α) =cosαtan(2kπ +α) =tanα2、关于 x 轴对称的角的三角函数值sin(α) =sinαcos(α) =cosαtan(α) =tanα3、关于 y 轴对称的角的三角函数值sin(π α) =sinαcos(π α) =cosαtan(π α) =tanα4、关于原点对称的角的三角函数值sin(π +α) =sinαcos(π +α) =cosαtan(π +α) =tanα5、函数名改变的诱导公式sin(π/2 α) =cosαcos(π/2 α) =sinαsin(π/2 +α) =cosαcos(π/2 +α) =sinα三、两角和与差的三角函数公式1、两角和的正弦公式sin(α +β) =sinαcosβ +cosαsinβ2、两角差的正弦公式sin(α β) =sinαcosβ cosαsinβ3、两角和的余弦公式cos(α +β) =cosαcosβ sinαsinβ4、两角差的余弦公式cos(α β) =cosαcosβ +sinαsinβ5、两角和的正切公式tan(α +β) =(tanα +tanβ) /(1 tanαtanβ) 6、两角差的正切公式tan(α β) =(tanα tanβ) /(1 +tanαtanβ)四、二倍角公式1、二倍角的正弦公式sin2α =2sinαcosα2、二倍角的余弦公式cos2α =cos²α sin²α =2cos²α 1 =1 2sin²α3、二倍角的正切公式tan2α =2tanα /(1 tan²α)五、半角公式1、半角的正弦公式sin(α/2) =±√(1 cosα) / 22、半角的余弦公式cos(α/2) =±√(1 +cosα) / 23、半角的正切公式tan(α/2) =±√(1 cosα) /(1 +cosα) =sinα /(1 +cosα) =(1 cosα) /sinα六、万能公式1、万能公式的正弦sinα =2tan(α/2) / 1 +tan²(α/2)2、万能公式的余弦cosα =1 tan²(α/2) / 1 +tan²(α/2)3、万能公式的正切tanα =2tan(α/2) /1 tan²(α/2)七、积化和差公式1、sinαcosβ =(1/2)sin(α +β) +sin(α β)2、cosαsinβ =(1/2)sin(α +β) sin(α β)3、cosαcosβ =(1/2)cos(α +β) +cos(α β)4、sinαsinβ =(1/2)cos(α +β) cos(α β)八、和差化积公式1、sinα +sinβ =2sin(α +β) /2cos(α β) / 22、sinα sinβ =2cos(α +β) /2sin(α β) / 23、cosα +cosβ =2cos(α +β) /2cos(α β) / 24、cosα cosβ =2sin(α +β) /2sin(α β) / 2这些三角函数公式在解决各种数学问题和实际应用中都非常重要。
史上最全三角函数公式
三角函数公式三角函数是数学中属于初等函数中的超越函数的一类函数。
它们的本质是任何角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的。
其定义城为整个实数城。
另一种定义是在直角三角形中,但并不完全。
现代数学把它们描述成无穷敖列的极限和微分方程的解,将其定义扩展到复数系。
公式分类锐角三角函数公式sin α=∠α的对边/ 斜边cos α=∠α的邻边/ 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式sin2A=2sinA•cosAcos2A=cosA;方-sinA方;A=1-2sin²A=2cos²A-1tan2A=(2tanA)÷(1-tan^2A)三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin³acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-cos²a)cosa=4cos³a-3cosasin3a=3sina-4sin³a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos³a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)²]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tanh(a) = sin h(a)/cos h(a)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= s inαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= co tαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα(以上k∈Z)A·sin(ωt+θ)+ B·sin(ωt+φ) =√{(A^2 +B^2 +2AB cos(θ-φ)} • sin{ωt + arcsin[ (A•sinθ+B•sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} }√表示根号,包括{……}中的内容诱导公式sin(-α) = -sinαcos(-α) = cosαtan (-α)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式其它公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)[编辑本段]内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。
三角函数公式表整理
三角函数公式表整理一、基本关系公式。
1. 平方关系。
- sin^2α+cos^2α = 1- 1+tan^2α=sec^2α(其中secα=(1)/(cosα))- 1 + cot^2α=csc^2α(其中cscα=(1)/(sinα))2. 商数关系。
- tanα=(sinα)/(cosα)- cotα=(cosα)/(sinα)二、诱导公式。
1. 终边相同的角的三角函数值。
- sin(α + 2kπ)=sinα,k∈ Z- cos(α+ 2kπ)=cosα,k∈ Z- tan(α + 2kπ)=tanα,k∈ Z2. 关于x轴对称的角的三角函数值。
- sin(-α)=-sinα- cos(-α)=cosα- tan(-α)=-tanα3. 关于y轴对称的角的三角函数值。
- sin(π-α)=sinα- cos(π-α)=-cosα- tan(π-α)=-tanα4. 关于原点对称的角的三角函数值。
- sin(π+α)=-sinα- cos(π+α)=-cosα- tan(π+α)=tanα5. 关于直线y = x对称的角的三角函数值(α与(π)/(2)-α) - sin((π)/(2)-α)=cosα- cos((π)/(2)-α)=sinα- tan((π)/(2)-α)=cotα- sin((π)/(2)+α)=cosα- cos((π)/(2)+α)=-sinα- tan((π)/(2)+α)=-cotα三、两角和与差的三角函数公式。
1. 两角和公式。
- sin(A + B)=sin Acos B+cos Asin B- cos(A + B)=cos Acos B-sin Asin B- tan(A + B)=(tan A+tan B)/(1-tan Atan B)2. 两角差公式。
- sin(A - B)=sin Acos B-cos Asin B- cos(A - B)=cos Acos B+sin Asin B- tan(A - B)=(tan A-tan B)/(1 + tan Atan B)四、二倍角公式。
初中数学常用三角函数公式表
初中数学常用三角函数公式表在初中数学学习中,三角函数是一个重要的概念。
为了便于学生记忆和应用,常用的三角函数公式表是必不可少的。
本文将给出一个常用三角函数公式表,帮助初中数学的学生更好地掌握和运用三角函数。
一、正弦函数公式1. 正弦函数的定义:在直角三角形中,对于一个锐角A,正弦函数定义为其对边与斜边的比值,用sin A表示。
2. 正弦函数的基本性质:- sin(90°-A) = cos A- sin(90°+A) = cos A- sin(180°-A) = sin A- sin(180°+A) = -sin A- sin(360°-A) = -sin A二、余弦函数公式1. 余弦函数的定义:在直角三角形中,对于一个锐角A,余弦函数定义为其邻边与斜边的比值,用cos A表示。
2. 余弦函数的基本性质:- cos(90°-A) = sin A- cos(90°+A) = -sin A- cos(180°+A) = -cos A- cos(360°-A) = cos A三、正切函数公式1. 正切函数的定义:在直角三角形中,对于一个锐角A,正切函数定义为其对边与邻边的比值,用tan A表示。
2. 正切函数的基本性质:- tan A = sin A / cos A- tan(90°-A) = 1 / tan A- tan(90°+A) = -1 / tan A- tan(180°-A) = -tan A- tan(180°+A) = tan A四、割函数公式1. 割函数的定义:在直角三角形中,对于一个锐角A,割函数定义为其斜边与邻边的比值,用sec A表示。
2. 割函数的基本性质:- sec A = 1 / cos A- sec(90°-A) = 1 / sin A- sec(90°+A) = -1 / sin A- sec(180°+A) = -sec A五、余割函数公式1. 余割函数的定义:在直角三角形中,对于一个锐角A,余割函数定义为其斜边与对边的比值,用cosec A表示。
九年级数学三角函数定义及三角函数公式大全
三角函数是数学中的一门重要学科,是研究角和三角形之间关系的一门学科。
三角函数包括正弦函数、余弦函数和正切函数等。
1. 正弦函数(sin):正弦函数是一个周期函数,其定义域是实数集,值域是[-1,1]之间的实数。
在直角三角形中,正弦函数表示的是角的对边与斜边之间的比值。
2. 余弦函数(cos):余弦函数也是一个周期函数,其定义域是实数集,值域也是[-1,1]之间的实数。
在直角三角形中,余弦函数表示的是角的邻边与斜边之间的比值。
3. 正切函数(tan):正切函数也是一个周期函数,在定义域上存在无穷多个间断点。
其值域为整个实数集。
在直角三角形中,正切函数表示的是角的对边与邻边之间的比值。
除了这三个基本的三角函数,还有以下几个常用的三角函数公式:1.两角和公式:sin(A + B) = sin(A)cos(B) + cos(A)sin(B)cos(A + B) = cos(A)cos(B) - sin(A)sin(B)tan(A + B) = (tan(A) + tan(B))/(1 - tan(A)tan(B))2.两角差公式:sin(A - B) = sin(A)cos(B) - cos(A)sin(B)cos(A - B) = cos(A)cos(B) + sin(A)sin(B)tan(A - B) = (tan(A) - tan(B))/(1 + tan(A)tan(B))3.和角公式:sin(2A) = 2sin(A)cos(A)cos(2A) = cos^2(A) - sin^2(A) = 2cos^2(A) - 1 = 1 - 2sin^2(A) tan(2A) = (2tan(A))/(1 - tan^2(A))4.半角公式:sin(A/2) = √[(1 - cos(A))/2]cos(A/2) = √[(1 + cos(A))/2]tan(A/2) = sin(A)/(1 + cos(A))5.二倍角公式:sin^2(A) = (1 - cos(2A))/2cos^2(A) = (1 + cos(2A))/2tan^2(A) = (1 - cos(2A))/(1 + cos(2A))这些公式在解决三角函数相关问题时非常有用,可以帮助我们简化计算,推导其他三角函数之间的关系,以及解决各种三角形的问题。
中考生常用三角函数公式
中考生常用三角函数公式1、同角三角函数的差不多关系倒数关系: tan cot=1 sin csc=1 cos sec=1商的关系:sin/cos=tan=sec/csc cos/sin=cot=csc/sec平方关系:sin^2()+cos^2()=1 1+tan^2()=sec^2() 1+cot^2()=csc^2()平常针对不同条件的常用的两个公式sin +cos =1tan *cot =1一个专门公式(sina+sin)*(sina+sin)=sin(a+)*sin(a-)2、锐角三角函数公式正弦:sin =的对边/ 的斜边余弦:cos =的邻边/的斜边正切:tan =的对边/的邻边余切:cot =的邻边/的对边3、二倍角公式正弦sin2A=2sinAcosA余弦1.Cos2a=Cos^2(a)-Sin^2(a) =2Cos^2(a)-1 =1-2Sin^2(a)2.Cos2a=1-2Sin^2(a)3.Cos2a=2Cos^2(a)-1正切tan2A=(2tanA)/(1-tan^2(A))4、三倍角公式sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a = tan a tan(/3+a) tan(/3-a)5、n倍角公式sin(n a)=Rsina sin(a+/n)……sin(a+(n-1)/n)。
其中R=2^(n-1)6、半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cos A)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/s in(a)=sin(a)/(1+cos(a))7、和差化积sin+sin = 2 sin[(+)/2] cos[(-)/2]sin-sin = 2 cos[(+)/2] sin[(-)/2]cos+cos = 2 cos[(+)/2] cos[(-)/2]cos-cos = -2 sin[(+)/2] sin[(-)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)8、两角和公式cos(+)=coscos-sinsincos(-)=coscos+sinsinsin(+)=sincos+cossinsin(-)=sincos -cossin9、积化和差sinsin = [cos(-)-cos(+)] /2 coscos = [cos(+)+cos(-)]/2 sincos = [sin(+) +sin(-)]/2 cossin = [sin(+)-sin(-)]/210、双曲函数sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tanh(a) = sin h(a)/cos h(a)公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin(2 k+)= sin cos(2k+)= cos tan(2k+)= tan cot(2k+)= cot 公式二:设为任意角,的三角函数值与的三角函数值之间的关系:sin (+)= -sin cos(+)= -cos tan(+)= tan cot(+)= cot 公式三:任意角与-的三角函数值之间的关系:sin(-)= -sin cos(-)= cos tan(-)= -tan cot(-)= -cot公式四:利用公式二和公式三能够得到与的三角函数值之间的关系:s in()= sin cos()= -cos tan()= -tan cot()= -cot公式五:利用公式-和公式三能够得到2与的三角函数值之间的关系:s in(2)= -sin cos(2)= cos tan(2)= -tan cot(2)= -cot公式六:/2及3/2与的三角函数值之间的关系:sin(/2+)= cos cos(/ 2+)= -sin tan(/2+)= -cot cot(/2+)= -tan sin(/2-)= cos cos(/2-)=sin tan(/2-)= cot cot(/2-)= tan sin(3/2+)= -cos cos(3/2+)= sin tan(3/2+)= -cot cot(3/2+)= -tan sin(3/2-)= -cos cos(3/2-)= -sin tan(3/2-)= cot cot(3/2-)= tan (以上kZ) Asin(t+)+ Bsin(t+) = {(A +B +2ABcos(-)} sin{ t + arcsin[ (Asin+Bsin) / {A^2 +B^2; +2ABcos(-)} } 表示根号,包括{……}中的内容11、诱导公式sin(-) = -sin cos(-) = cos tan (-)=-tan sin(/2-) = cos cos(/2-) = sin si n(/2+) = cos cos(/2+) = -sin sin() = sin cos() = -cos sin() = -sin cos() = -cos tanA= sinA/cosA tan(/2+)=-cot tan(/2-)=cot tan(-)=-tan tan(+)=tan 诱导公式记背诀窍:奇变偶不变,符号12、万能公式sin=2tan(/2)/[1+(tan(/2))] cos=[1-(tan(/2))]/[1+(tan(/2))] tan=2tan(/2)/[1-(t an(/2))]13、其它公式(1) (sin)+(cos)=1(2)1+(tan)=(sec)(3)1+(cot)=(csc)(4)关于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC (5)cotA cotB+cotAcotC+cotBcotC=1 (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)c ot(C/2)(7)(cosA)+(cosB)+(cosC)=1-2cosAcosBcosC(8)(sinA)+(sinB)+(sinC)=2+2cosAcosBcosC家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,小孩一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
初三三角函数公式
初三三角函数公式两种方法
1.画图
大概是这种
然后根据定义可以很快可以记下来
2.列表
列好以后是这样的
具体的列表过程
sinα一栏先写好123
然后全部加根号
再全部除以二
cosα一栏反过来写就好了
化简后
tanα=sinα除以cosα
补充
变化情况
1.锐角三角函数值都是正值。
2.当角度在0°~90°间变化时。
正弦值随着角度的增大(或减小)而增大(或减小),余弦值随着角度的增大(或减小)而减小(或增大);
正切值随着角度的增大(或减小)而增大(或减小),余切值随着角度的增大(或减小)而减小(或增大)。
sin(90°-α)=cosα
cos(90°-α)=sinα。
初三数学及高级三角函数公式
初中数学 三角函数1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
A90B 90∠-︒=∠︒=∠+∠得由B A对边邻边CbA 90B 90∠-︒=∠︒=∠+∠得由B A6、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
7、正切、余切的增减性:当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。
1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。
(注意:尽量避免使用中间数据和除法)2、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。
用字母i 表示,即hi l=。
坡度一般写成1:m 的形式,如1:5i =等。
把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα==。
3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。
如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。
4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。
如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向), 南偏东45°(东南方向),南偏西60°(西南方向), 北偏西60°(西北方向)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
余 弦
cos
A
A的邻边 斜边
cos A b c
0 cosA 1
(∠A 为锐角)
正 切
tan
A
A的对边 A的邻边
tan A a b
tan A 0
(∠A 为锐角)
余 切
cot
A
A的邻边 A的对边
cot A b a
cot A 0
(∠A 为锐角)
sin A cosB cos A sin B sin 2 A cos2 A 1
10、如图 3,在一个房间内有一个梯子斜靠在墙上,梯子顶端距地面的垂直距
离 MA 为 a 米,此时,梯子的倾斜角为 75°,如果梯子底端不动,顶端靠在
对面墙上 N,此时梯子顶端距地面的垂直距离 NB 为 b 米,梯子的倾斜角 45°,
则这间房子的宽 AB 是
_米。
二、选择题
11、sin2 +sin2(90°- ) (0°< <90°)等于( )
()
A、sin(α+β)=sinα+sinβ C、若α≥β时,则 cosα≥cosβ
B、cos(α+β)= 1 时,α+β=600 2
D、若 cosα>sinβ,则α+β>900
18、如图 5,小阳发现电线杆 AB 的影子落在土坡的坡面 CD 和地面 BC 上,量得
CD=8 米,BC=20 米,CD 与地面成 30º 角,且此时测得 1 米杆的影长为 2 米,
tan A cotB cot A tanB tan A 1 (倒数)
cot A
tan A cot A 1
3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 B
sin A cosB 由A B 90
sin A cos(90 A)
斜边
对
c a边
cos A sin B 得B 90 A cos A sin(90 A)
(2) 1 tan 2 45 4
1 sin 2 30
3cos2 30
tan45 cos 0
sin 40 cos50
.
22、已知在△ABC 中,∠C=90°. (1)若 c= 8 3 ,∠A=60°,求∠B、a、b.
(2)若 a=3 6 , ∠A=30°,求∠B、b、c.
23、如图山脚下有一棵树 AB,小强从点 B 沿山坡向上走 50m 到达点 D,用高为 1.5m 的测角仪 CD 测得树顶的仰角为 10°,已知山坡的坡角为 15°,求树 AB 的高.(精确到 0.1m,已知 sin10°≈0.17,cos10°≈0.98,tan10°≈ 0.18,sin15°≈0.26,cos15°≈0.97,tan15°≈ 0.27)
A B
N
C MD
AB
D C
(4)
(5)
(6)
15、已知 a 为锐角,sina=cos500 则 a 等于( )
A.200
B.300
C.400
D.500
16、若 tan(a+10°)= 3 ,则锐角 a 的度数是 (
A、20° B、30°
C、35°
17、如果α、β都是锐角,下面式子中正确的是
) D、50°
仰角 水平线 俯角
h i h:l
视线
α
l
(2)坡面的铅直高度 h 和水平宽度 l 的比叫做坡度(坡比)。用字母 i 表示,即 i h 。坡度一 l
般写成1: m 的形式,如 i 1:5 等。把坡面与水平面的夹角记作 (叫做坡角),那么
i h tan 。 l
3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图 3, OA、OB、OC、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于 90°的水平角,叫做方向角。 如图 4,OA、OB、OC、OD 的方向角分别是:北偏东 30°(东北方向) , 南 偏东 45°(东南方向),南偏西 60°(西南方向), 北偏西 60°(西北方向)。
。
12
4、cos2(50°+ )+cos2(40°- )-tan(30°- )tan(60°+ )
=
;
5、如图 1,机器人从 A 点,沿着西南方向,行了个 4 2单位,到达 B 点后观察
到原点 O 在它的南偏东 60°的方向上,则原来 A 的坐标为
.(结果
保留根号).
y A
B
Ox
(1)
(2)
(3)
6、等腰三角形底边长 10cm,周长为 36cm,则一底角的正切值为
第2页共9页
初三数学 三角函数 综合试题
一、填空题: 1、在 Rt△ABC 中∠C=90°,a=2,b=3,则 cosA= ,sinB= ,tanB= 。
2、直角三角形 ABC 的面积为 24cm2,直角边 AB 为 6cm,∠A 是锐角,则 sinA=
。
3、已知 tan = 5 , 是锐角,则 sin =
则电线杆的高度为 ( A.9 米 B.28 米
)
C. 7 3米
D. 14 2 3 米
19、如图 6,两建筑物的水平距离为 am,从 A 点测得 D 点的俯角为 a,测得 C 点的
俯角为β,则较低建筑物 CD 的高为 ( )
A.a m
B.(a·tanα)m
C. a m tan
D.a(tanα-tanβ)m
初中数学 三角函数
1、勾股定理:直角三角形两直角边 a 、b 的平方和等于斜边 c 的平方。 a2 b2 c2
2、如下图,在 Rt△ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):
定义
表达式
取值范围
关系
正 弦
sin
A
A的对边 斜边
sin A a c
0 sin A 1BAC NhomakorabeaDE
18
第6页共9页
参考答案:
一、填空题
1、 3 13 , 3 13 , 3
13
13 2
(0,4+ 4 3 ) 3
6、 12 5
7、25
2、 4
3、 5
4、0
5、
5
13
8、3 5
9、 32 2 10、a 3
二、选择题
11、B 16、D
12、C 17、B
13、D 18、D
14、A 19、D
15、C 20、C
第7页共9页
锐角三角函数公式
延伸三角函数公式
sin α=∠α 的对边 / 斜边 cos α=∠α 的邻边 / 斜边 tan α=∠α 的对边 / ∠α 的邻边 cot α=∠α 的邻边 / ∠α 的对边
倍角公式
Sin2A=2SinA•CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是 sinA 的平方 sin2(A) ) 诱导公式
A.0
B.1
C.2
D.2sin2
12、在直角三角形中,各边的长度都扩大 3 倍,则锐角 A 的三角函数值
()
A.也扩大 3 倍 B.缩小为原来的 1 C. 都不变 3
D.有的扩大,有的缩小
第3页共9页
13、以直角坐标系的原点 O 为圆心,以 1 为半径作圆。若点 P 是该圆上第一象
限内的一点,且 OP 与 x 轴正方向组成的角为α,则点 P 的坐标为( )
26、为缓解“停车难”问题,某单位拟建造地下停车库,建筑设计师提供了该 地下停车库的设计示意图。按规定,地下停车库坡道口上方要张贴限高标
志,以便告知停车人车辆能否安全驶入。(其中 AB=9 m ,BC= 0.5m )为标明 限高,请你根据该图计算 CE。(精确到 0.1m)(sin18°≈0.3090,cos18° ≈0.9511,tan18°≈0.3249)
万能公式
sinα=2tan(α/2)/〔1+tan^(α/2)〕
第8页共9页
cosα=〔1-tan^(α/2)〕/1+tan^(α/2)〕 tanα=2tan(α/2)/〔1-tan^(α/2)〕 其它公式 (1)(sinα)^2+(cosα)^2=1 (2)1+(tanα)^2=(secα)^2 (3)1+(cotα)^2=(cscα)^2 证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2 即可 (4)对于任意非直角三角形,总有 tanA+tanB+tanC=tanAtanBtanC
A 邻边 b C
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
tan A cotB cot A tanB
由A B 90 得B 90 A
tan A cot(90 A)
cot A tan(90 A)
5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)
.
7、某人沿着坡度 i=1: 3 的山坡走了 50 米,则他离地面 米高。
8、如图 2,在坡度为 1:2 的山坡上种树,要求株距(相邻两树间的水平距离)
是 6 米,斜坡上相邻两树间的坡面距离是
米。
9、在△ABC 中,∠ACB=90°,cosA= 3 ,AB=8cm ,则△ABC 的面积为______ 。 3
第9页共9页
第5页共9页
24、已知 Rt△ABC 的斜边 AB 的长为 10cm , sinA、sinB 是方程 m(x2-2x)+5(x2+x)+12=0 的两根。 (1)求 m 的值 (2)求 Rt△ABC 的内切圆的面积