栈和队列
数据结构-栈与队列
栈 1.6栈的应用
运算符的优先级关系表在运算过程中非常重要,它是判定进栈、出栈的重要依据。
θ1
θ2
+
-
+
>
>
-
>
>
*
>
>
/
>
>
(
<
<
)
>
>
#
<
<
*
/
(
)
#
<
<
<
>
>
<
<
<
>
>
>
>
<
>
>
>
>
<
>
>
<
<
<
=
>
>
>
>
<
<
<
=
栈
1.6栈的应用
下面以分析表达式 4+2*3-12/(7-5)为例来说明求解过程,从而总结出表达式求值的算 法。求解中设置两个栈:操作数栈和运算符栈。从左至右扫描表达式:# 4+2*3-12/(7-5) #, 最左边是开始符,最右边是结束符。表达式求值的过程如下表所示:
1.4栈的顺序存储结构
设计进栈算法——Push 函数。首先,判断栈是否已满,如果栈已满,就运用 realloc 函 数重新开辟更大的栈空间。如果 realloc 函数返回值为空,提示溢出,则更新栈的地址以及栈 的当前空间大小。最终,新元素入栈,栈顶标识 top 加 1。
数据结构--栈和队列基础知识
数据结构--栈和队列基础知识⼀概述栈和队列,严格意义上来说,也属于线性表,因为它们也都⽤于存储逻辑关系为 "⼀对⼀" 的数据,但由于它们⽐较特殊,因此将其单独作为⼀篇⽂章,做重点讲解。
既然栈和队列都属于线性表,根据线性表分为顺序表和链表的特点,栈也可分为顺序栈和链表,队列也分为顺序队列和链队列,这些内容都会在本章做详细讲解。
使⽤栈结构存储数据,讲究“先进后出”,即最先进栈的数据,最后出栈;使⽤队列存储数据,讲究 "先进先出",即最先进队列的数据,也最先出队列。
⼆栈2.1 栈的基本概念同顺序表和链表⼀样,栈也是⽤来存储逻辑关系为 "⼀对⼀" 数据的线性存储结构,如下图所⽰。
从上图我们看到,栈存储结构与之前所了解的线性存储结构有所差异,这缘于栈对数据 "存" 和 "取" 的过程有特殊的要求:1. 栈只能从表的⼀端存取数据,另⼀端是封闭的;2. 在栈中,⽆论是存数据还是取数据,都必须遵循"先进后出"的原则,即最先进栈的元素最后出栈。
拿图 1 的栈来说,从图中数据的存储状态可判断出,元素 1 是最先进的栈。
因此,当需要从栈中取出元素 1 时,根据"先进后出"的原则,需提前将元素 3 和元素 2 从栈中取出,然后才能成功取出元素 1。
因此,我们可以给栈下⼀个定义,即栈是⼀种只能从表的⼀端存取数据且遵循 "先进后出" 原则的线性存储结构。
通常,栈的开⼝端被称为栈顶;相应地,封⼝端被称为栈底。
因此,栈顶元素指的就是距离栈顶最近的元素,拿下图中的栈顶元素为元素 4;同理,栈底元素指的是位于栈最底部的元素,下中的栈底元素为元素 1。
2.2 进栈和出栈基于栈结构的特点,在实际应⽤中,通常只会对栈执⾏以下两种操作:向栈中添加元素,此过程被称为"进栈"(⼊栈或压栈);从栈中提取出指定元素,此过程被称为"出栈"(或弹栈);2.3 栈的具体实现栈是⼀种 "特殊" 的线性存储结构,因此栈的具体实现有以下两种⽅式:1. 顺序栈:采⽤顺序存储结构可以模拟栈存储数据的特点,从⽽实现栈存储结构。
大学数据结构课件--第3章 栈和队列
栈满 top-base=stacksize
top
F
E
D C B
top top top top top top base
入栈PUSH(s,x):s[top++]=x; top 出栈 POP(s,x):x=s[--top]; top
base
4
A
3.1 栈
例1:一个栈的输入序列为1,2,3,若在入栈的过程中 允许出栈,则可能得到的出栈序列是什么? 答: 可以通过穷举所有可能性来求解:
3.2 栈的应用举例
二、表达式求值
“算符优先法”
一个表达式由操作数、运算符和界限符组成。 # 例如:3*(7-2*3) (1)要正确求值,首先了解算术四则运算的规则 a.从左算到右 b.先乘除后加减 c.先括号内,后括号外 所以,3*(7-2*3)=3*(7-6)=3*1=3
9
3.2 栈的应用举例
InitStack(S); while (!QueueEmpty(Q))
{DeQueue(Q,d);push(S,d);}
while (!StackEmpty(S)) {pop(S,d);EnQueue(Q,d);} }
第3章 栈和队列
教学要求:
1、掌握栈和队列的定义、特性,并能正确应用它们解决实 际问题;
用一组地址连续的存储单元依次存放从队头到队尾的元素, 设指针front和rear分别指示队头元素和队尾元素的位置。
Q.rear 5 4 Q.rear 3 2 3 2 5 4 Q.rear 3 3 5 4 5 4
F E D C
C B A
Q.front
2 1 0
C B
Q.front 2 1 0
第三章 栈和队列
栈和队列的基本操作是线性表操作的子集,是限定性(操作受限制)的数据结构。
第三章栈和队列数据结构之栈和队列23. 1 栈¾定义:是限定仅在表尾进行插入或删除操作的线性表。
(后进先出线性表LIFO)¾栈底指针(base) :是线性表的基址;¾栈顶指针(top):指向线性表最后一个元素的后面。
¾当top=base 时,为空栈。
¾基本操作:InitStack(&S), DestroyStack(&S),StackEmpty(S) , ClearStack(&S),GetTop(S ,&e), StackLength(S) ,Push(&S, e): 完成在表尾插入一个元素e.Pop(&S,&e): 完成在表尾删除一个元素。
数据结构之栈和队列3¾栈的表示和实现¾顺序栈:是利用一组地址连续的存储单元依次存放自栈底到栈顶的数据元素;栈满之后,可再追加栈空间即为动态栈。
¾顺序栈的结构类型定义:typedef int SElemType;typedef struct{SElemType *base; /* 栈底指针*/SElemType *top; /* 栈顶指针*/int stacksize; /* 栈空间大小*/ }SqStack;数据结构之栈和队列4¾基本算法描述¾建立能存放50个栈元素的空栈#define STACK_INIT_SIZE 50#define STACKINCREMENT 10Status InitStack_Sq(Stack &S){S.base=(SET*)malloc(STACK_INIT_SIZE *sizeof(SET)); /*为栈分配空间*/if(S.base==NULL)exit(OVERFLOW); /*存储分配失败*/ S.top=S.base;S.stacksize = STACK_INIT_SIZE;return OK; }数据结构之栈和队列5¾出栈操作算法void pop(Sqstack s,SElemType e){if(s.top= = s.base)return ERROR;else{s.top--;e= *s.top;}return OK;}出栈操作topABY topABYbase base数据结构之栈和队列6¾压栈操作算法void Push(SqStack s,SElemType e)if(s.top-s.base>= S.stacksize;) {S.base=(SET*)realloc(S,base,(S.stacksize+STACKINCREMEN T) *sizeof(SET)); /*为栈重新分配空间*/if(!S.base)exit(OVERFLOW);S.top=S.base+S.stacksize;S.stacksize+=STACKINCREMENT;}*S.top=e;S.top++;}return OK; }topAB压栈操作topABebase base数据结构之栈和队列7¾栈的销毁void DestroyStack_Sq(Stack &S){ if (S.base) free(S.base);S.base=NULL;S.top=NULL;S.stacksize=0;}¾栈的清除void ClearStack_Sq(Stack &S){ S.top = S.base ;}数据结构之栈和队列8¾判断栈是否为空栈Status StackEmpty_Sq(Stack S){ if(S.top==S.base) return TRUE;else return FALSE;}¾获得栈的实际长度int StackLength_Sq(Stack S){return(abs(S.top-S.base));}数据结构之栈和队列9¾多个栈共享邻接空间两个栈共享一空间::::::top1top21m中间可用空间栈1栈2地址Base1Base 2……数据结构之栈和队列103. 3 栈与递归¾递归函数:一个直接调用自己或通过一系列的调用语句间接地调用自己的函数。
数据结构栈和队列ppt课件
栈的运用 例3.1 将一个十进制正整数N转换成r进制的数
N 〕
1835
229
28
3
N / 8 〔整除〕 N % 8〔求余
229
3
低
28
5
3
4
0
3
高
❖例3.2 算术表达式中括号匹配的检查
❖用栈来实现括号匹配检查的原那么是,对表达式从左 到右扫描。
❖〔1〕当遇到左括号时,左括号入栈;
❖〔2〕当遇到右括号时,首先检查栈能否空,假设栈 空,那么阐明该“右括弧〞多余;否那么比较栈顶左 括号能否与当前右括号匹配,假设匹配,将栈顶左括 号出栈,继续操作;否那么,阐明不匹配,停顿操作 。
❖在顺序栈上实现五种根本运算的C函数 ❖〔3〕入栈 ❖int push (SeqStack *s, DataType x) ❖{ if (s->top==MAXSIZE-1) /*栈满不能入栈*/ ❖{ printf("overflow"); ❖return 0; ❖} ❖ s->top++; ❖ s->data[s->top]=x; ❖ return 1; ❖}
链队列及运算的实现
采用链接方法存储的队列称为链队列〔Linked Queue〕
采用带头结点的单链表来实现链队列,链队列中 的t结ype点de类f st型ruc与t N单od链e 表一样。将头指针front和尾指针 re{arD封at装aTy在pe一da个ta;构造体中,链队列用C言语描画如 下:struct Node *next;
❖只设了一个尾指针r ❖头结点的指针,即r->next ❖队头元素的指针为r->next->next ❖队空的断定条件是r->next==r
《数据结构(C语言)》第3章 栈和队列
栈
❖ 栈的顺序存储与操作 ❖ 1.顺序栈的定义
(1) 栈的静态分配顺序存储结构描述 ② top为整数且指向栈顶元素 当top为整数且指向栈顶元素时,栈空、入栈、栈满 及出栈的情况如图3.2所示。初始化条件为 S.top=-1。
(a) 栈空S.top==-1 (b) 元素入栈S.stack[++S.top]=e (c) 栈满S.top>=StackSize-1 (d) 元素出栈e=S.stack[S.top--]
/*栈顶指针,可以指向栈顶
元素的下一个位置或者指向栈顶元素*/
int StackSize; /*当前分配的栈可使用的以 元素为单位的最大存储容量*/
}SqStack;
/*顺序栈*/
Data structures
栈
❖ 栈的顺序存储与操作 ❖ 1.顺序栈的定义
(2) 栈的动态分配顺序存储结构描述 ① top为指针且指向栈顶元素的下一个位置 当top为指针且指向栈顶元素的下一个位置时,栈空 、入栈、栈满及出栈的情况如图3.3所示。初始化条 件为S.top=S.base。
…,n-1,n≥0} 数据关系:R={< ai-1,ai>| ai-1,ai∈D,i=1,2
,…,n-1 } 约定an-1端为栈顶,a0端为栈底 基本操作:
(1) 初始化操作:InitStack(&S) 需要条件:栈S没有被创建过 操作结果:构建一个空的栈S (2) 销毁栈:DestroyStack(&S) 需要条件:栈S已经被创建 操作结果:清空栈S的所有值,释放栈S占用的内存空间
return 1;
}
Data structures
栈
CHAP3栈和队列
35
(3)共享出栈算法 ElemType pop1( ){ if (top1==0){ cout<<“underflow\n”;return(NULL);} top1--; return(stack[top1]);} ElemType pop2( ){ if(top2==MAX-1){ cout<<“underflow\n”);return(NULL);} top2++; return(stack[top2]);}
top
top top base
A
A进栈
base
E D C B A
base
E D C B A
E D C 出栈
B C D E 进栈
栈的特点 后进先出LIFO
7
思考:假设有A,B,C三个元素进S栈的顺序是 A,B,C,写出所有可能的出栈序列。
A ABC ACB BAC BCA CAB CBA
8
B C B
x
Status push(LinkStack &top,SElemType x){ //入栈 StackNode *p=new StackNode; if(!p) exit(OVERFLOW); p->data=x; p->next=top; top=p; return OK; }
28
-----取栈顶元素(4) ----p top …... 栈底 ^
// 构造一个空的链栈 top
top = NULL; }
26
-----判空链栈 (2)-----
int StackEmpty(LinkStack top){ return(top==NULL); }
27
-----入栈(3) ----top p
第三章栈和队列
续8
//循环队列实现方案二 在SqQueue结构体中增设计数变量c,记录队列中当前 元素个数 void clearQueue(SqQueue &q) { q.r=q.f=-1; q.c=0; //r=f=-1~n-1区间任意整数均可 } int empty(SqQueue &q) { return q.c==0; } int full(SqQueue &q) { return q.c==q.n; } //队空、队满时q.f==q.r均为真 //优点:队满时没有空闲元素位置(充分利用了空间)
西南交通大学信息科学与技术学院软件工程系‐赵宏宇 数据结构A 第3章‐19
西南交通大学信息科学与技术学院软件工程系‐赵宏宇
数据结构A 第3章‐20
3.3 栈的应用
续1
3.3 栈的应用
续2
2. 栈与递归 (1) 递归程序的存储空间消耗 由于函数调用的指令返回地址、形式参数以及断 点状态均用系统堆栈实现存储,因此递归调用的层次 数(深度)决定了系统堆栈必须保留的存储空间容量大小。 例1 以下函数用递归法实现n元一维数组元素逆序存储, 试分析所需栈的深度。 void reverse(ElemTp a[], int i, int j) //数组a下标范围i..j实现元素逆序存储 { if(i<j) { a[i]a[j]; reverse(a, i+1, j-1); } }
西南交通大学信息科学与技术学院软件工程系‐赵宏宇 数据结构A 第3章‐7
3. 堆栈习题举例 例1 若元素入栈次序为ABC,写出所有可能的元素出栈 次序。 答: 所有可能的元素出栈次序共5种,即 ABC 操作PXPXPX (P表示入栈,X表示退栈) ACB PXPPXX BAC PPXXPX BCA PPXPXX CBA PPPXXX
第3章 栈和队列
例五、 表达式求值 例五、
限于二元运算符的表达式定义:
操作数) 运算符 运算符) 操作数 操作数) 表达式 ::= (操作数 + (运算符 + (操作数 操作数 操作数 ::= 简单变量 | 表达式 简单变量 :: = 标识符 | 无符号整数
表达式的三种标识方法: 表达式的三种标识方法: 设 Exp = S1 + OP + S2 则称 OP + S1 + S2 S1 + OP + S2 S1 + S2 + OP 为前缀表示法 前缀表示法 为中缀表示法 中缀表示法 为后缀表示法 后缀表示法
例如:(1348)10 = (2504)8 ,其 例如: 运算过程如下:
计 算 顺 序
N N div 8 N mod 8 1348 168 4 168 21 0 21 2 5 2 0 2
输 出 顺 序
void conversion () { InitStack(S); scanf ("%d",&N); while (N) { Push(S, N % 8); N = N/8; } while (!StackEmpty(S)) { Pop(S,e); printf ( "%d", e ); } } // conversion
栈和队列是两种常用的数据类型
3.1 栈的类型定义 3.2 栈的应用举例 3.3 栈类型的实现 3.4 队列的类型定义 3.5 队列类型的实现
3.1 栈的类型定义
ADT Stack { 数据对象: 数据对象 D={ ai | ai ∈ElemSet, i=1,2,...,n, n≥0 } 数据关系: 数据关系 R1={ <ai-1, ai >| ai-1, ai∈D, i=2,...,n } 约定an 端为栈顶,a1 端为栈底。 基本操作: 基本操作: } ADT Stack
《栈和队列》课件
栈与队列的区别
数据存储方式
栈是后进先出(Last In First Out, LIFO)的数据结构,新元素总是被添加到栈顶,移除 元素时也是从栈顶开始。而队列是先进先出(First In First Out, FIFO)的数据结构,新 元素被添加到队列的尾部,移除元素时从队列的头部开始。
操作方式
栈的主要操作有push(添加元素)和pop(移除元素),而队列的主要操作有enqueue (添加元素)和dequeue(移除元素)。
《栈和队列》ppt课件
目录
CONTENTS
• 栈的定义与特性 • 队列的定义与特性 • 栈与队列的区别与联系 • 栈和队列的实现方式 • 栈和队列的算法实现 • 总结与思考
01 栈的定义与特性
CHAPTER
栈的定义
栈是一种特殊的线性 数据结构,遵循后进 先出(LIFO)原则。
栈中的元素按照后进 先出的顺序排列,最 新加入的元素总是位 于栈顶。
02
如何实现一个队列,并 实现其基本操作( enqueue、dequeue、 front)?
03
栈和队列在应用上有哪 些区别?请举例说明。
04
请设计一个算法,使用 栈实现括号匹配的功能 ,并给出测试用例。
谢谢
THANKS
。
队列的应用场景
任务调度
在任务调度中,可以将任 务按照优先级放入队列中 ,按照先进先出的原则进 行调度。
网络通信
在网络通信中,可以将数 据包放入队列中,按照先 进先出的原则进行发送和 接收。
事件处理
在事件处理中,可以将事 件放入队列中,按照先进 先出的原则进行处理。
03 栈与队列的区别与联系
CHAPTER
应用场景
栈与队列,各有异同。
栈与队列,各有异同。
⾸先是两者的定义:栈也称为堆栈,是⼀种线性表。
栈的特性:最先放⼊栈中的内容最后被拿出来,最后放⼊栈中的内容最先被拿出来,被称为先进后出、后进先出。
队列也是⼀种特殊的线性表。
不同于栈所服从的先进后出的原则,队列的原则是先进先出。
队列在队头做删除操作,在队尾做插⼊操作。
然后是两者的异同点不同点:1.删除数据元素的位置不同,栈的删除操作在表尾进⾏,队列的删除操作在表头进⾏。
2.队列先进先出,栈先进后出。
3.顺序栈能够实现多栈空间共享,⽽顺序队列不能。
4.遍历数据速度不同。
栈只能从头部取数据,也就最先放⼊的需要遍历整个栈最后才能取出来。
队列则不同,它基于地址指针进⾏遍历,⽽且可以从头或尾部开始遍历⽆需开辟临时空间,速度要快的多。
相同点:1.都是。
2.插⼊操作都是限定在表尾进⾏。
3.都可以通过顺序结构和链式结构实现。
4.插⼊与删除的时间复杂度与空间复杂度上两者均相同。
再然后便是两者的表⽰和操作的实现栈表⽰和操作的实现:#include <iostream>#define MAXSIZE 100//基础容量using namespace std;typedef struct{SElemType *top;//栈顶指针SElemType *base;//栈底指针int stacksize;//栈可⽤最⼤容量}SqStack;Status InitStack(SqStack &S)//初始化栈{S.base=new SElemType[MAXSIZE];if(!s.base) exit(OVERFLOW);//内存分配失败S.top=s.base;S.stacksize=MAXSIZE;}Status Push(SqStack &S,SElemType e)//把元素e压⼊栈顶{if(S.top-S.base==S.stacksize) return ERROR;//栈满*S.top++=e;//栈顶指针+1return OK;}Status Pop(SqStack &s,SElemType &e)//取出栈顶元素,并删除栈顶{if(S.top==S.base)//top与base重合时,栈为空return ERROR;e=*--S.top;return OK;}SElemType GetTop(SqStack S){if(S.top!=S.base)return *(S.top-1);}队列表⽰和操作的实现:#ifndef STATICQUEUE_H_INCLUDED#define STATICQUEUE_H_INCLUDEDtemplate<class T>class StaticQueue{public:StaticQueue();StaticQueue(int size);~StaticQueue();void enqueue(T data);T dequeue();bool isEmpty();bool isFull();int count();void display();private:int rear;int front;int size;const static int DEFAULT;T* queue;};这些在课本上都有,下⾯说说遇到的问题:对于作业3,可以说是屡战屡败,屡败屡战了,先是⼀点思路都没有,再到后来⽼师提⽰后有⼀点思路,但还是错误百出,再到后来参照书上的⽅法,还是错误,最后终于发现问题。
数据结构 3.1栈和队列(顺序及链栈定义和应用)
假设从终端接受了这样两行字符: whli##ilr#e(s#*s) outcha@putchar(*s=#++);
则实际有效的是下列两行: while (*s) putchar(*s++);
例4:迷宫求解
通常用 “回溯 试探方 法”求 解
##########
# Q # $ $ $ #
#
# #$ $ $ # #
3.1 栈的类型定义
实例引进 考虑问题:一个死胡同,宽度只能够一辆车进 出,现有三辆汽车依次进入胡同停车,后A车 要离开,如何处理? 用计算机模拟以上问题
小花车
小明家 小花家 能能家 点点家 强强家
小花车
点点车 强强车
基本概念
栈(STACK) ——一种限定性的 数据结构,限定只能在表的一端 进行插入和删除的线性表。
# $ $ # #
#
## ##
##
# #
##
# # #
#
## # ## # # #
#
Q #
##########
求迷宫路径算法的基本思想
若当前位置“可通”,则纳入路径,继续( 向东)前进; 若当前位置“不可通”,则后退,换方向 继续探索; 若四周“均无通路”,则将当前位置从路 径中删除出去。
一 顺序栈
顺序栈存储的特点 顺序栈各个基本操作顺序实现 完整的顺序栈c语言程序 模拟停车场
一 顺序栈
存储特点
利用一组地址连续的存储单元依次存放 自栈底到栈顶的数据元素
c语言中可用数组来实现顺序栈
设置栈顶指针Top
elem[arrmax]
a1 a2 a3 a4
Top
top的值
elem[arrmax]
大学《数据结构》第三章:栈和队列-第一节-栈
第一节栈
一、栈的定义及其运算
1、栈的定义
栈(Stack):是限定在表的一端进行插入和删除运算的线性表,通常将插入、删除的一端称为栈项(top),另一端称为栈底(bottom)。
不含元素的空表称为空栈。
栈的修改是按后进先出的原则进行的,因此,栈又称为后进先出(Last In First Out)的线性表,简称为LIFO表。
真题选解
(例题·填空题)1、如图所示,设输入元素的顺序是(A,B,C,D),通过栈的变换,在输出端可得到各种排列。
若输出序列的第一个元素为D,则输出序列为。
隐藏答案
【答案】DCBA
【解析】根据堆栈"先进后出"的原则,若输出序列的第一个元素为D,则ABCD入栈,输出序列为DCBA
2、栈的基本运算
(1)置空栈InitStack(&S):构造一个空栈S。
第3章栈和队列
3.1.2 栈的表示和算法实现
1.顺序栈 2.链栈
第3章栈和队列
1. 顺序栈 顺序栈是用顺序存储结构实现的栈,即利 用一组地址连续的存储单元依次存放自栈 底到栈顶的数据元素,同时由于栈的操作 的特殊性,还必须附设一个位置指针top( 栈顶指针)来动态地指示栈顶元素在顺序 栈中的位置。通常以top=-1表示空栈。
第 3 章 栈和队列
3.1 栈 3.2 队列 3.3 栈和队列的应用
第3章栈和队列
3.1 栈
3.1.1 栈的抽象数据类型定义 3.1.2 栈的表示和算法实现
第3章栈和队列
3.1.1 栈的定义
1.栈的定义 栈(stack)是一种只允许在一端进行插入和删除的线 性表,它是一种操作受限的线性表。在表中只允许进
行插入和删除的一端称为栈顶(top),另一端称为 栈 底 (bottom) 。 栈 的 插 入 操 作 通 常 称 为 入 栈 或 进 栈 (push),而栈的删除操作则称为出栈或退栈(pop)。 当栈中无数据元素时,称为空栈。
栈是按照后进先出 (LIFO)的原则组 织数据的,因此, 栈也被称为“后进 先出”的线性表。
第3章栈和队列
(2)入栈操作
Status Push(SqStack &S, Elemtype e)
【算法3.2 栈的入栈操作】
{ /*将元素e插入到栈S中,作为S的新栈顶*/
if (S->top>= Stack_Size -1) return ERROR;
else { S->top++;
S->elem[S->top]=e;
return OK;}
Push(S,’you’)
栈和队列思政小课堂理解
栈和队列思政小课堂理解栈和队列的定义、区别,存在的意义1、栈的定义(1)栈:栈实际上是一种线性表,它只允许在固定的一段进行插入或者删除元素,在进行数据插入或者删除的一段称之为栈顶,剩下的一端称之为栈顶。
其遵循的原则是后进先出。
(2)栈的核心操作:三大核心操作,入栈,出栈,取栈顶元素(3)对于栈的形象理解:子弹的弹夹我们一定见过,子弹在被压入的时候就相当于是一个个元素,而弹夹就相当于是栈。
先被压入的子弹是最后被打出的,先压入的元素是最后出来的,也就是后进先出。
2、队列的定义(1)队列:首先队列也是一种特殊的线性表,它允许在一端进行插入数据,在另一端进行删除数据的。
队列里边有队首,队尾,队首元素。
其遵循的原则是先进先出。
(2)队列的核心操作:三大核心操作分别是入队列,出队列,取队首元素。
(3)对于队列的形象理解:火车穿越隧道,火车的头相当于是队列的首,火车的尾相当于是队列的尾部。
火车在穿越隧道的时候,头部先进入隧道头部也先出隧道,尾部后进入尾部后出隧道。
队列也就是先入的元素先出队列,后进入的元素后出队列。
3、栈和队列的区别(1)栈和队列的出入方式不同:栈是后进先出、队列是先进先出。
(2)栈和队列在具体实现的时候操作的位置不同:因为栈是后进先出,它在一段进行操作;而队列是先进先出,实现的时候在两端进行。
在Java标准库中实现队列时是按照链表实现的。
4、栈和队列存在的意义上边我们提到过:栈和队列都是一种典型的线性表,都是基于线性表(顺序表和链表)来实现的,那么我们研究栈和队列的目的何在?因为在栈和队列定义后,只有那三种操作,而那三种操作都是最常用的,它支持的操作越少,我们在使用的时候关心的点也就越少,用起来就越不容易出错。
在计算机中“少即是多”,少意味着功能比较少、比较呆板。
多意味着功能很多,用的时候要操的心就越多,就越容易出错。
综上:栈和队列存在的意义就是减少线性表的基本操作,提取常用操作,让人们使用起来更方便,更不容易出错。
计算机二级公共基础部分:栈和队列
计算机二级公共基础部分:栈和队列
栈及其基本运算:
1.栈的定义:
栈(stack):一种只允许在表的一端进行插入或删除操作的特殊的线性表
栈顶(top):允许进行插入与删除操作的一端
栈底(bottom):不允许插入与删除操作的另一端
先进后出( FILQ)或后进先出(LIFO)的线性表
2.栈的顺序存储及其运算
top=0:栈空
top=m:栈满
栈的基本运算:
入栈运算
退栈运算
读栈顶元素
队列及其基本运算
1.队列的定义
限定只能在表的一端进行插入和在另一端进行删除操作的线性表
队尾(rear): 允许插入的一端
队头(front):允许删除的另一端
先进先出( FIFO )表或后进后出( LLO )线性表
基本操作:
入队运算:往队列的队尾插入一个元素,队尾指针rear的变化
退队运算:从队列的排头删除一个元素,队头指front的变化
2循环队列及其运算
队列存储空间的最后一个位置绕到第一个位置,形成逻辑上的环状空间供队列循环使用
入队运算:队尾指针加1,并当rear=m+1时置rear=1
出队运算:队头指针加1,并当front=m+1时置front=1。
第4章栈及队列
4.1.5 栈的链式存储结构——链栈 1.链栈结构及数据类型
它是一种限制运算的链表,即规定链表中的扦入和删 除运算只能在链表开头进行。链栈结构见下图。
top 头
an
an-1
……
栈顶
图 3-5 链栈结构示意图
a1 ^
栈底
单链表的数据结构定义为: typedef struct node
{ elemtype data; //数据域 struct node *next; //指针域
3.出栈: POP(&S) 删除栈S中的栈顶元素,也称为”退栈”、 “删除”、 “弹出”。
4.取栈顶元素: GETTOP(S) 取栈S中栈顶元素。 5.判栈空: EMPTY(S) 判断栈S是否为空,若为空,返回值为1,否则返回值为0。
4.1.3 栈的抽象数据类型描述
ADT Stack {
Data: 含有n个元素a1,a2,a4,…,an,按LIFO规则存放,每个元素的类型都为 elemtype。 Operation: Void inistack(&s) //将栈S置为一个空栈(不含任何元素) Void Push(&s,x) //将元素X插入到栈S中,也称为 “入栈”、 “插 入”、 “压入”
{s->top[0]=-1; s->top[1]=m; }
(2)两个栈共享存储单元的进栈算法 int push(duseqstack *s, elemtype x, int i) //将元素x进入到以S为栈空间的第i个栈中 { if (s->top[0] ==s->top[1]-1) { printf(“overflow”); return (0);} if (i!=0 || i!=1) {printf(“栈参数出错“);return (0);} if(i= =0) //对0号栈进行操作 { s->top[0]++;s->stack[s->top[0]]=x;} else {s->top[1]--; s->stack[s->top[1]]=x;} return (1); }}
数据结构(C语言版)第3章 栈和队列
typedef struct StackNode {
SElemType data;
S
栈顶
struct StackNode *next;
} StackNode, *LinkStack;
LinkStack S;
∧
栈底
链栈的初始化
S
∧
void InitStack(LinkStack &S ) { S=NULL; }
top
C
B
base A
--S.top; e=*S.top;
取顺序栈栈顶元素
(1) 判断是否空栈,若空则返回错误 (2) 否则通过栈顶指针获取栈顶元素
top C B base A
Status GetTop( SqStack S, SElemType &e) { if( S.top == S.base ) return ERROR; // 栈空 e = *( S.top – 1 ); return OK; e = *( S.top -- ); ??? }
目 录 导 航
Contents
3.1 3.2 3.3 3.4 3.5
栈和队列的定义和特点 案例引入 栈的表示和操作的实现 栈与递归 队列的的表示和操作的实现
3.6
案例分析与实现
3.2 案例引入
案例3.1 :一元多项式的运算
案例3.2:号匹配的检验
案例3.3 :表达式求值
案例3.4 :舞伴问题
目 录 导 航
top B base A
清空顺序栈
Status ClearStack( SqStack S ) { if( S.base ) S.top = S.base; return OK; }
栈和队列区别及应用场景
栈和队列区别及应用场景栈(Stack)和队列(Queue)是两种常见的数据结构,它们在计算机科学领域有广泛的应用。
本文将从定义、特点和基本操作等方面详细介绍栈和队列的区别,并分析它们各自的应用场景。
一、栈的定义及特点:栈是一种线性数据结构,其特点是“先进后出”(Last In First Out,LIFO)。
即在栈中最后一个进入的元素,也是第一个出栈的元素。
栈的基本操作包括入栈和出栈。
入栈(Push)是将一个元素追加到栈的顶部,出栈(Pop)是将栈顶元素移除。
栈的应用场景:1.函数调用:在函数调用时,每遇到一个新的函数调用就将当前的上下文(包括局部变量和返回地址)压入栈中,当函数调用完毕后,再弹出栈顶元素,恢复上一个函数的上下文。
2.表达式求值:栈可以用于进行中缀表达式到后缀表达式的转换,并通过栈来计算后缀表达式的值。
3.递归:递归算法的实现中通常会使用栈来保存递归调用的上下文。
4.撤销操作:在很多应用程序中,比如文本编辑器和图像处理软件中,通过栈来存储用户操作,以便可以撤销之前的操作。
5.浏览器历史记录:浏览器通常使用栈来实现历史记录的功能,每当用户浏览一个新的页面时,就将该页面的URL入栈,当用户点击后退按钮时,再依次出栈。
6.二叉树的遍历:用栈可以实现二叉树的深度优先遍历,具体的实现是使用非递归的方式进行前序、中序、后序遍历。
二、队列的定义及特点:队列也是一种线性数据结构,其特点是“先进先出”(First In First Out,FIFO)。
即在队列中最先进入的元素,也是第一个出队列的元素。
队列的基本操作包括入队和出队。
入队(Enqueue)是将元素放入队列的尾部,出队(Dequeue)是将队列的头部元素移除。
队列的应用场景:1.广度优先搜索:在图论中,广度优先搜索(Breadth First Search,BFS)通常会使用队列来实现,按照层次的顺序进行搜索。
2.缓冲区:队列可以用作缓冲区,在生产者和消费者模型中,生产者将数据放入队列的尾部,消费者从队列的头部取出数据进行处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章栈和队列
【实训1】栈的应用
1.实训说明
本实训是关于栈的应用,栈在各种高级语言编译系统中应用十分广泛,在本实训程序中,利用栈的“先进后出”的特点,分析C 语言源程序代码中的的括号是否配对正确。
通过本对
本实训的学习,可以理解的基本操作的实现。
本实训要求设计一个算法,检验C 源程序代码中的括号是否正确配对。
对本算法中的栈
的存储实现,我们采用的是顺序存储结构。
要求能够在某个C源程序上文件上对所设计的算
法进行验证。
2.程序分析
(1)int initStack(sqstack **s) 初始化一个栈
(2)int push(sqstack *s,char x) 入栈,栈满时返回FALSE
(3)char pop(sqstack *s) 出栈,栈空时返回NULL
(4)int Empty(sqstack *s) 判断栈是否为空,为空时返回TRUE
(5)int match(FILE *f) 对文件指针f 对指的文件进行比较括号配对检验,从文件中每读入一个字符ch=fgetc(f),采用多路分支switch(ch)进行比较:
①若读入的是“[”、“{”或“(”,则压入栈中,
②若读入的是“]”,则:若栈非空,则出栈,判断出栈符号是否等于“[”,不相
等,则返回FALSE。
③若读入的是“}”,则:若栈非空,则出栈,判断出栈符号是否等于“{”,不相
等,则返回FALSE。
④若读入的是“)”,则:若栈非空,则出栈,判断出栈符号是否等于“(”,不相
等,则返回FALSE。
⑤若是其它字符,则跳过。
文件处理到结束时,如果栈为空,则配对检验正确,返回TRUE。
(6)主程序main()中定义了一个文件指针,输入一个已经存在的C 源程序文件。
3.参考源代码
# define MAXNUM 200
# define FALSE 0
# define TRUE 1
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
typedef struct {
char stack[MAXNUM];
int top; } sqstack; /*定义栈结构*/
int initStack(sqstack **s)
{/*初始化栈*/
if ((*s=(sqstack*)malloc(sizeof(sqstack))) NULL) return FALSE;
(*s)->top=-1;
return TRUE;
}
实验三堆栈的使用
一、实验目的
1、使学生深入了解堆栈的特性,以便在遇到实际问题时灵活运用堆栈知识。
2、巩固堆栈数据结构的构造方法。
二、实验前的准备工作
1、掌握堆栈的逻辑结构和存储结构。
2、熟练掌握堆栈的出栈、入栈等操作。
三、实验指导
1、算法分析
将十进制数N和其它d进制数的转换是计算机实现计算的基本问题,其解决方案很多,其中最简单方法基于下列原理:即除d取余法。
例如:(1348)10=(2504)8
N N div 8 N mod 8
1348 168 4
168 21 0
21 2 5
2 0 2
从中我们可以看出,最先产生的余数4是转换结果的最低位,这正好符合栈的特性即后进先出的特性。
所以可以用顺序栈来模拟这个过程。
2、算法如下
struct node
{int data;
struct node *link;
}
typedef struct node NODE;
NODE *top=NULL;
void conversion(int x)
{
while(x>0)
{push(top,x%8);
x=x/8;
}
while(!stackempty(top)) /* stackempty( )为判断堆栈是否为空函数*/
{x=pop(s);
printf(“%d”,x);
}
四、实验内容
进制数转换
五、实验报告要求
1、认真阅读和掌握本实验内容所给的程序。
2、将本实验上机运行。
3、结合运行结果,对程序进行分析。
4、假设有两个栈共享一个数组stack[n],试编写一个算法,完成对任何一个栈的入栈和出栈操作。