广东省韶关市2012届高三第二次模拟考试(数学理)

合集下载

广东省韶关市高三数学第二次模拟考试 理 新人教A版

广东省韶关市高三数学第二次模拟考试 理 新人教A版

韶关市2012届高三模拟考试数学试题数学试题(理科)本试卷共4页,21小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生要务必填写答题卷上密封线内的有关项目.2.选择题每小题选出答案后,用铅笔把答案代号填在答题卷对应的空格内.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.请考生保持答题卷的整洁.考试结束后,将答题卷和答题卡交回. 参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面面积,h 为锥体的高. 一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数(1)i ai ⋅+是纯虚数,则实数a 的值是( ) A. 1 B. 1-C.0D. 0或1-2.已知集合{||2,A x x x =≤∈R },{2,B x x =≤∈Z },则A B =( )A. (0,2)B. [0,2]C. {0, 2}D. {0,1,2}3.设25025..12,25,()2.a b c ===,则,,a b c 的大小关系是(C )A.a c b >>B. c a b >>C. a b c >>D.b a c >>4.一空间几何体的三视图如图所示,则该几何体的体积为. A. 1 B. 3 C 6 D. 25.设向量(1,0)a =,11(,)22b =,则下列结论正确的是 ( )A.a b =B.22a b ⋅=C. a ∥bD. a b -与b 垂直 6.执行如图1所示的程序框图后,输出的值为5,则P 的取值范围( ) A.715816P <≤ B. 1516P > C. 715816P ≤< D.3748P <≤ 7. 下列四个判断:①某校高三一班和高三二班的人数分别是,m n ,某次测试数学平均分分别是,a b ,则这两个班的数学平均分为2a b+; ②10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,图1则有b a c >>;③从总体中抽取的样本12221111(,),(,),,(,),,n nn n i i i i x y x y x y x x y y n n ====∑∑若记,则回归直线y =bx a +必过点(,x y )④已知ξ服从正态分布(0N ,2)σ,且(20)0.4P ξ-≤≤=,则(2)0.2P ξ>= 其中正确的个数有: ( )A .0个B . 1 个C .2 个D .3个8. 定义符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,设111sgn()1sgn()122()()22x x f x f x -+-+=⋅+2()f x ⋅,[0,1]x ∈,其中1()f x =12x +, 2()f x ⋅=2(1)x -, 若1[()][0,)2f f a ∈,则实数a 的取值范围是( )A. 1(0,]4B. 11(,)42C. 11(,]42D. 3[0,]8二、填空题:本大共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.. 已知A 是单位圆上的点,且点A 在第二象限,点B 是此圆与x 轴正半轴的交点,记AOB α∠=, 若点A的纵坐标为35.则s i nα=_____________;tan(2)πα-=_______________.10.以抛物线24y x =的焦点为圆心,且被y 轴截得的弦长等于2的圆的方程为__________________.11.从如图所示的长方形区域内任取一个点()y x M ,,则点M 取自阴影部分的概率为____________.12.已知,x y 满足约束条件5000x y x y y ++⎧⎪-⎨⎪⎩≥≤≤,则24z x y =+的最小值是_________.13.设()11f x x x =-++,若不等式121()a a f x a+--≥对任意实数0a ≠恒成立,则x 取值集合是_______________________.(二)选做题(14~15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图,AB 是圆O 的直径,DE AD =,6,8==BD AB ,则ADAC= ;15.(坐标系与参数方程选做题) 已知直线l 方程是11x ty t =+⎧⎨=-⎩(t 为参数),,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为1ρ=,则圆C 上的点到直线l 的距离最小值是 三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16. (本小题满分12分)已知等比数列{}n a 的前n 项和为n S , 11a =,且1S ,22S ,33S 成等差数列. (1)求数列{}n a 通项公式;(2)设n n b a n =+,求数列{}n b 前n 项和n T .17.(本小题满分14分)有一个3×4×5的长方体, 它的六个面上均涂上颜色. 现将这个长方体锯成60个1×1×1的小正方体,从这些小正方体中随机地任取1个,设小正方体涂上颜色的面数为ξ. (1)求0ξ=的概率; (2)求ξ的分布列和数学期望.18.(本小题满分14分)如图5(1)中矩形ABCD 中,已知2AB =,AD =MN 分别为AD 和BC 的中点,对角线BD 与MN 交于O 点,沿MN 把矩形ABNM 折起,使平面ABNM 与平面MNCD 所成角为60,如图5(2). (1) 求证:BO DO ⊥;(2) 求AO 与平面BOD 所成角的正弦值.OA B D C M NAB D CMNO图6B A19.(本小题满分12分)在ABC ∆中,三个内角A ,B ,C 的对边分别为a ,b ,c ,其中2c =,且cos cos 1A bB a ==(1)求证:ABC ∆是直角三角形;(2)如图6,设圆O 过,,A B C 三点,点P 位于劣弧AC ︿上,求PAC ∆面积最大值.20.(本小题满分14分)在直角坐标系xOy 中,动点P 与定点(1,0)F 的距离和它到定直线2x =的距离之比是2,设动点P 的轨迹为1C ,Q 是动圆2222:C x y r +=(12)r <<上一点. (1)求动点P 的轨迹1C 的方程; (2)设曲线1C上的三点1122(,),(,)A x y B C x y 与点F 的距离成等差数列,若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k ;(3)若直线PQ 与1C 和动圆2C 均只有一个公共点,求P 、Q 两点的距离PQ 的最大值.21.(本小题满分14分)已知函数()ln(1)f x x mx =++,当0x =时,函数()f x 取得极大值. (1)求实数m 的值;(2)已知结论:若函数()ln(1)f x x mx =++在区间(,)a b 内导数都存在,且1a >-,则存在0(,)x a b ∈,使得0()()()f b f a f x b a-'=-.试用这个结论证明:若121x x -<<,函数121112()()()()()f x f x g x x x f x x x -=-+-,则对任意12(,)x x x ∈,都有()()f x g x >;(3)已知正数12,,,n λλλL ,满足121n λλλ+++=L ,求证:当2n ≥,n N ∈时,对任意大于1-,且互不相等的实数12,,,nx x x L ,都有1122()n n f x x x λλλ+++>L 1122()()()n n f x f x f x λλλ+++L .2012届高考模拟测试数学试题(理科)参考答案和评分标准一.选择题:CACBD ABB二填空题:9.35(2分)247(3分) 10. 22(1)2x y -+= 11. 13 12. 15- 13. 33(,][,)22-∞-+∞ 14. 431三、解答题: 本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.16.(本题满分14分)解:(1)设数列{}n a 的公比为q ,……………1分若1q =,则111S a ==,21244S a ==,31399S a ==,故13231022S S S +=≠⨯,与已知矛盾,故1q ≠,………………………………………………2分从而得1(1)111n n n a q q S q q--==--,………………………………………………4分 由1S ,22S ,33S 成等差数列,得132322S S S +=⨯,即321113411q q q q--+⨯=⨯--, 解得13q =……………………………………………5分 所以11113n n n a a q--⎛⎫=⋅= ⎪⎝⎭.………………………………………………6分(2)由(1)得,11()3n n n b a n n -=+=+,………………………………7分 所以12(1)(2)()n n T a a a n =++++++1(1)(1)(12)12n n b q n nS n q -+=++++=+-………………………………10分 2111()(1)333.12213nn n n n n --+++-=+=-……………………………12分 17.(本题满分12分)(1)60个1×1×1的小正方体中,没有涂上颜色的有6个,61(0)6010P ξ=== … (3分) (2)由(1)可知1(0)10P ξ==;11(1)30P ξ==;2(2)5P ξ==;2(3)15P ξ== … (7分)分布列… (10分)E ξ=0×110+1×1130+2×25+3×215=4730 …(12分)18(本题满分14分)解:(1)由题设,M ,N 是矩形的边AD 和BC 的中点,所以AM ⊥MN, BC ⊥MN, 折叠垂直关系不变,所以∠AMD 是平面ABNM 与平面MNCD 的平面角,依题意,所以∠AMD=60o,………………………………………………………………………………………………………2分 由AM=DM ,可知△MAD 是正三角形,所以AD=2,在矩形ABCD 中,AB=2,AD=所以,,由题可知BO=OD=,由勾股定理可知三角形BOD 是直角三角形,所以BO ⊥DO ……………………………………………………………………………………… 5分 解(2)设E ,F 是BD ,CD 的中点,则EF ⊥CD, OF ⊥CD, 所以,CD ⊥面OEF, OE CD ⊥ 又BO=OD ,所以OE ⊥BD, OE ⊥面ABCD, OE ⊂面BOD , 平面BOD ⊥平面ABCD过A 作AH⊥BD ,由面面垂直的性质定理,可得AH ⊥平面BOD ,连结OH ,…………………… 8分 所以OH 是AO 在平面BOD 的投影,所以∠AOH 为所求的角,即AO 与平面BOD所成角。

广东省韶关市高三数学第二次调研考试试题 理(韶关二模)

广东省韶关市高三数学第二次调研考试试题 理(韶关二模)

广东省韶关市2013届高三4月第二次调研测试数学试题(理科)本试卷共4页,21小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生要务必填写答题卷上密封线内的有关项目.2.选择题每小题选出答案后,用铅笔把答案代号填在答题卷对应的空格内.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.请考生保持答题卷的整洁.考试结束后,将答题卷和答题卡交回. 参考公式:1.锥体的体积公式13V Sh=,其中S 为锥体的底面面积,h 为锥体的高.2. 柱体的体积公式V Sh =,其中S 为柱体的底面面积,h 为柱体的高.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U=R ,M ={|(3)0},{|1}x x x N x x +<=<-,则右图中阴影部分表示的集合为( ). A .{|1}x x ≥-B .{|30}x x -<<C . {|3}x x ≤-D .{|10}x x -≤<2. 若R b a ∈,,为虚数单位,且5()2a i i b i +=+-,则a b +=( )A .2-.B .0C . 1D . 23.已知()22sin cos ,f x x x x =+ 则13()6f π=( )AB. C . 32 D .32-4.一空间几何体的三视图如右图所示,该几何体的体积为12π+853,则正视图与侧视图中x 的值为( )A .5B .4C .3D .25.已知, 圆222π=+y x 内的曲线sin ,[,]y x x ππ=-∈-与x轴围成的阴影部分区域记为Ω(如图),随机往圆内投掷一个点A ,则点A 落在区域Ω的概率为( )A. 34π B . 33π .C 32π D 31π6. 给出如下四个命题:①若“p 且q ”为假命题,则p 、q 均为假命题;②命题“若a b >,则221a b >-”的否命题为“若a b ≤,则221a b≤-”;③“2,11x x ∀∈+≥R ”的否定是“2,11x x ∃∈+≤R ”;④等比数列{}n a 中,首项10a <,则数列{}n a 是递减数列的充要条件是公比1q >;其中不正确的命题个数是A .4B .3C .2D .1 7. 已知函数()f x 是R 上的奇函数,若对于0x ≥,都有()2()f x f x +=,[)()()20,2,log 1x f x x ∈=+当时时,()()20132012f f -+的值为A.2-B.1-C.1D.28. .将高一(6)班52名学生分成A ,B 两组参加学校组织的义务植树活动,A 组种植150棵大叶榕树苗,B 组种植200棵红枫树苗.假定A ,B 学科网两组同时开始种植.每名学生种植一棵大叶榕树苗用时25小时,种植一棵枫树苗用时12小时.完成这次植树任务需要最短时间为( )A. 310B. 1960C.825D.823二、填空题:本大共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题) 9. 已知平面向量,12,)(b a a -⊥;则><b a ,cos 的值是 .10. 执行右边的程序框图,若4p =,则输出的S =.11、设点P 是双曲线22221(0,0)x y a b a b -=>>与圆2222x y a b +=+在第一象限的交点,其中12,F F 分别是双曲线的左、右焦点,若21tan 3PF F ∠=,则双曲线的离心率为______________. 12. 已知R x ∈∀,使不等式133)4(log 2-++≤+-x x a 成立,则实数a 的取值范围是 .13. .下面给出四种说法:①设a 、b 、c 分别表示数据15、17、14、10、15、17、17、16、14、12的平均数、中位数、众数,则a b c <<;②在线性回归模型中,相关指数2R 表示解释变量对于预报变量变化的贡献率,2R 越接近于1,表示回归的效果越好③绘制频率分布直方图时,各小长方形的面积等于相应各组的组距; ④设随机变量ξ服从正态分布2(4,2)N ,则1(4)2P ξ>=.其中正确的说法有 (请将你认为正确的说法的序号全部填写在横线上) (二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,过点π1,2A ⎛⎫- ⎪⎝⎭引圆8sin ρθ=的一条切线,则切线长为 .15.(几何证明选讲选做题)如图,AB 为圆O 的直径,C 为圆O 上一点,AP 和过C 的切线互相垂直,垂足为P ,过B 的切线交过C 的切线于T , PB 交圆O 于Q ,若120BTC ∠=︒,4AB =,则PB PQ ⋅= .三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16. (本题满分12分)ABC ∆的三个内角C B A ,,对应的三条边长分别是c b a ,,,且满足sin cos 0c A C +=求C 的值;若53cos =A , 35=c ,求B sin 和b 学科网的值.17. . (本题满分12分)甲、乙两人在罚球线互不影响地投球,命中的概率分别为23与34,投中得1分,投不中得0分.(1)甲、乙两人在罚球线各投球一次,求两人得分之和ξ的数学期望; (2)甲、乙两人在罚球线各投球二次,求甲恰好比乙多得分的概率.18. (本题满分14分)如图甲,在平面四边形ABCD 中,已知45,90,A C ∠=∠=105ADC ∠=,AB BD =,现将四边形ABCD 沿BD 折起,使平面ABD ⊥平面BDC (如图乙),设点E 、F分别为棱AC 、AD 的中点.(1)求证:DC ⊥平面ABC ;(2)求BF 与平面ABC 所成角的正弦值;(3)求二面角B -EF -A 的余弦值.19. (本题满分14分)如图,过点P (1,0)作曲线C :)),0((2+∞∈=x x y 的切线,切点为1Q ,设点1Q 在x轴上的投影是点1P ;又过点1P 作曲线C 的切线,切点为2Q ,设2Q 在x 轴上的投影是2P ;………;依此下去,得到一系列点12,3,Q Q Q ⋅⋅⋅nQ ,设点n Q 的横坐标为n a .(1)求直线1PQ 的方程;(2)求数列{}n a 的通项公式;(3)记n Q 到直线1n n P Q +的距离为n d,求证:2n ≥时, 12111 (3)n d d d +++>20. (本题满分14分)已知椭圆)(1122221 >=-+a a y a x 的左右焦点为21,F F ,抛物线C :px y 22=以F2为焦点甲D CBA且与椭圆相交于点()11,M x y 、N()22,x y ,点M 在x 轴上方,直线1F M 与抛物线C 相切.(1)求抛物线C 的方程和点M 、N 的坐标;(2)设A,B 是抛物线C 上两动点,如果直线MA ,MB 与y 轴分别交于点,P Q . MPQ ∆是以MP ,MQ 为腰的等腰三角形,探究直线AB 的斜率是否为定值?若是求出这个定值,若不是说明理由.21. (本题满分14分)设函数32()()f x ax a b x bx c =-+++其中0,,a b c R ≥∈ (1)若1()3f '=0,求()f x 的单调区间;(2)设M 表示'(0)f 与'(1)f 两个数中的最大值,求证:当0≤x≤1时,|()f x '|≤M .数学试题(理科)参考答案与评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现Z *X !X !K 错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题主要考查基本知识和基本运算.共10小题,每小题5分,满分50分. DAACA C BC二、填空题: 填空题:本大题主要考查基本知识和基本运算.本大题共5小题,考生作答4小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题.9、21; 10、1615; 11; 12、[2,4);13、①②④ 14、3; 15、3;三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16. 16. (本题满分12分)ABC ∆的三个内角C B A ,,对应的三条边长分别是c b a ,,,且满足sin cos 0c A C +=(1) 求角C 的值;(2) 若53cos =A , 35=c ,求B sin 和b 的值.解:(1)因为sin cos 0c A C =由正弦定理得:0sin sin 32sin sin 2=+C A R A C R …………2分由0sin ≠A …………3分所以3tan -=C ,),0(π∈C ;32π=∴C …………6分(2)由53cos =A ,)2,0(π∈A 则54cos 1sin 2=-=A A ,…………8分C A C A C A C A B sin cos cos sin )sin()sin(sin +=+=--=π104332353)21(54-=⨯+-⨯=…………10分由C c B b sin sin =,433sin sin -==C B c b …………12分17. (本题满分12分)甲、乙两人在罚球线互不影响地投球,命中的概率分别为23与34,投中得1分,投不中得0分.(1)甲、乙两人在罚球线各投球一次,求两人得分之和ξ的数学期望; (2)甲、乙两人在罚球线各投球二次,求甲恰好比乙多得分的概率.本小题主要考查概率的基本知识,运用数学知识解决问题的能力,以及推理和运算能力.解:(1)依题意,记“甲投一次命中”为事件A ,“乙投一次命中”为事件B ,则A 与B相互独立,且P (A )=23,P (B )=34,P (A )=13,P (B )=14.…………1分甲、乙两人得分之和ξ的可能取值为0、1、2,…………2分(0)()()()P P AB P A P B ξ===1113412=⨯=(1)()()()()()P P AB AB P A P B P A P B ξ==+=+13215343412=⨯+⨯=(0)()()()P P AB P A P B ξ===231342=⨯=…………4分则ξ概率分布为:…………5分E ξ=0×112+1×512+2×12=1712.…………6分答:每人在罚球线各投球一次,两人得分之和ξ的数学期望为1712.…………7分(2)设甲恰好比乙多得分为事件C ,甲得分且乙得0分为事件1C ,甲得2分且乙得分为事件2C ,则C =1C +2C ,且1C 与2C 为互斥事件. …………8分12()()()P C P C P C =+11222111223133443344C C =⨯⨯⨯⨯+⨯⨯⨯⨯736=…………11分 答:甲、乙两人在罚球线各投球二次,甲恰好比乙多得分的概率为736。

广东省韶关市高三数学第二次调研考试试题 理(韶关二模)(含解析)新人教A版

广东省韶关市高三数学第二次调研考试试题 理(韶关二模)(含解析)新人教A版

广东省韶关市2013届高三4月第二次调研测试数学(理)试题一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•韶关二模)设全集U=R,集合A={x|x(x+3)<0},B={x|x<﹣1},则如图中阴影部分表示的集合为()2.(5分)(2013•韶关二模)若a,b∈R,i为虚数单位,且(a+i)i=b+,则a+b=(),∴ai+,解得3.(5分)(2013•韶关二模)已知f(x)=cos2x+2sinxcosx,则f()()﹣.)的值.y=2sinxcosx+cos2x=sin2x+)((2×+)).4.(5分)(2013•怀化二模)一空间几何体的三视图如图所示,该几何体的体积为,则正视图中x的值为()12×∴125.(5分)(2013•韶关二模)已知,圆x2+y2=π2内的曲线y=﹣sinx,x∈[﹣π,π]与x轴围成的阴影部分区域记为Ω(如图),随机往圆内投掷一个点A,则点A落在区域Ω的概率为().P=6.(5分)(2013•韶关二模)给出如下四个命题:①若“p且q”为假命题,则p、q均为假命题;②命题“若a>b,则2a>2b﹣1”的否命题为“若a≤b,则2a≤2b﹣1”;③“∀x∈R,x2+1≥1”的否定是“∃x∈R,x2+1≤1”;④等比数列{a n}中,首项a1<0,则数列{a n}是递减数列的充要条件是公比q>1;7.(5分)(2013•韶关二模)已知函数f(x)是R上的奇函数,若对于x≥0,都有f(x+2)=f(x),当x∈[0,8.(5分)(2013•韶关二模).将高一(6)班52名学生分成A,B两组参加学校组织的义务植树活动,A组种植150棵大叶榕树苗,B组种植200棵红枫树苗.假定A,B两组同时开始种植.每名学生种植一棵大叶榕树苗用时小时,种植一棵枫树苗用时小时.完成这次植树任务需要最短时间为().,即时,,=因为;时,,=因为,所以用时为..二、填空题:本大共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)(二)选做题(14~15题,考生只能从中选做一题)9.(5分)(2013•韶关二模)已知平面向量,,||=1,||=2,⊥(﹣);则cos<,>的值是.•(﹣)﹣,>的值.解:由题意可得•(﹣)﹣﹣1×2×cos<>,>,.10.(5分)(2013•韶关二模)执行如图的程序框图,若p=4,则输出的S= .+++…+的值.S=++…+∵S=++…+=1∴S=故答案为:.11.(5分)(2013•韶关二模)设点P是双曲线﹣=1(a>0,b>0)与圆x2+y2=a2+b2在第一象限的交点,其中F1,F2分别是双曲线的左、右焦点,若tan∠PF2F1=3,则双曲线的离心率为.r==ce=.故答案为:.12.(5分)(2013•韶关二模)已知∀x∈R,使不等式log2(4﹣a)+3≤|x+3|+|x﹣1|成立,则实数a的取值范围是[2,4).13.(5分)(2013•韶关二模).下面给出四种说法:①设a、b、c分别表示数据15、17、14、10、15、17、17、16、14、12的平均数、中位数、众数,则a<b<c;②在线性回归模型中,相关指数R2表示解释变量对于预报变量变化的贡献率,R2越接近于1,表示回归的效果越好③绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;④设随机变量ξ服从正态分布N(4,22),则P(ξ>4)=.其中正确的说法有①②④(请将你认为正确的说法的序号全部填写在横线上)14.(2013•韶关二模)在极坐标系中,过点A(1,﹣)引圆ρ=8sinθ的一条切线,则切线长为 3 .,可得切线长为,﹣15.(5分)(2013•韶关二模)如图,AB为圆O的直径,C为圆O上一点,AP和过C的切线互相垂直,垂足为P,过B的切线交过C的切线于T,PB交圆O于Q,若∠BTC=120°,AB=4,则PQ•PB= 3 .TB=TC=OBtan30°=,∴BM==2,∴MC=2∵cos∠BMT===,∴MP=3,∴PC=MP﹣MC=32,三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(12分)(2013•韶关二模)△ABC的三个内角A,B,C对应的三条边长分别是a,b,c,且满足csinA+acosC=0(1)求C的值;(2)若cosA=,c=5,求sinB和b的值.csinA+acosC=02RsinCsinA+2R2sinCsinA+2∴sinC+cosC=0∴C=)∵cosA=,∴sinA==,=sinAcosC+cosAsinC=×(﹣)×=∵sinB=c=5sinC=sin=则由正弦定理,得:=﹣17.(12分)(2013•韶关二模)甲、乙两人在罚球线互不影响地投球,命中的概率分别为与,投中得1分,投不中得0分.(1)甲、乙两人在罚球线各投球一次,求两人得分之和ξ的数学期望;(2)甲、乙两人在罚球线各投球二次,求甲恰好比乙多得分的概率.,,),(=())=()((=…(0 1 2=…(的数学期望为.…(=+…(答:甲、乙两人在罚球线各投球二次,甲恰好比乙多得分的概率为.…(18.(14分)(2013•韶关二模)如图甲,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.(1)求证:DC⊥平面ABC;(2)求BF与平面ABC所成角的正弦;(3)求二面角B﹣EF﹣A的余弦.,﹣(所成角的正弦值为.,,(中,的余弦为19.(14分)(2013•韶关二模)如图,过点P(1,0)作曲线C:y=x2(x∈(0,+∞))的切线,切点为Q1,设点Q1在x轴上的投影是点P1;又过点P1作曲线C的切线,切点为Q2,设Q2在x轴上的投影是P2;…;依此下去,得到一系列点Q1,Q2,Q3﹣Q n,设点Q n的横坐标为a n.(1)求直线PQ1的方程;(2)求数列{a n}的通项公式;(3)记Q n到直线P n Q n+1的距离为d n,求证:n≥2时,++ (3)++…得…(化简得,∴:=<.…(++…>=4×=4[120.(14分)(2013•韶关二模)已知椭圆+=1(a>1)的左右焦点为F1,F2,抛物线C:y2=2px以F2为焦点且与椭圆相交于点M(x1,y1)、N(x2,y2),点M在x轴上方,直线F1M与抛物线C相切.(1)求抛物线C的方程和点M、N的坐标;(2)设A,B是抛物线C上两动点,如果直线MA,MB与y轴分别交于点P,Q.△MPQ是以MP,MQ为腰的等腰三角形,探究直线AB的斜率是否为定值?若是求出这个定值,若不是说明理由.A=1的焦点为,∴的方程为.=,同理,==21.(14分)(2013•韶关二模)设函数f(x)=ax3﹣(a+b)x2+bx+c,其中a≥0,b,c∈R (1)若f()=0,求f(x)的单调区间;(2)设M表示f′(0)与f′(1)两个数中的最大值,求证:当0≤x≤1时,|f′(x)|≤M.)由,(﹣∞,)(,)的单调增区间是(﹣∞,.单调减区间是x+b=3.①当时,则②当,则<b≤时,则<a+b≤==≥<时,则<=>>,即。

广东省韶关市2012届高三数学第二次调研考试题目-文

广东省韶关市2012届高三数学第二次调研考试题目-文

广东省韶关市2012届高三下学期第二次调研考试数学试题(文科)本卷分选择题非选择题两部分,共4页,满分150分.考试用时间120分钟. 注意事项:1. 考生务必将自己的姓名、班级、学校用蓝、黑墨水钢笔签字笔写在答题卷上;2. 选择题、填空题每小题得出答案后,请将答案填写在答题卷相应指定位置上。

答在试题卷上不得分;3.考试结束,考生只需将答题卷交回. 4. 参考公式:(1)锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 是锥体的高. (2)样本数据12,,,n x x x 的方差,2211()n i i s x x n ==-∑,其中x 是这组数据的平均数.一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数(1)i ai ⋅+是纯虚数,则实数a 的值是( )A.1B.1-C.0D.0或1-2.已知R 是实数集,{}2|20M x x x =->,N是函数y =R C N M =I ( ) A. (1,2)B. [0,2]C. ∅D. [1,2]3.设25025..12,25,()2.a b c ===,则,,a b c 的大小关系是( )A .a c b >>B .c a b >>C . a b c >>D .b a c >>4.设0x 是方程3log 3x x =-的根,且0(,1)x k k ∈+,则k =( )A .(0,1)B .(1,3)C .(3,4)D .(4,+∞) 5.以抛物线y 2=4x 的焦点为圆心,且过坐标原点的圆的方程为( ) A. 22(1)1x y -+= B. 22(1)1x y ++=C. 22(1)1x y +-=D. 22(1)1x y ++=6. 已知直线l ⊥平面α,直线m ⊂平面β,给出下列四个命题:①m l ⊥⇒βα// ②m l //⇒⊥βα;③βα⊥⇒m l //;④βα//⇒⊥m l .其中正确的命题有( )个 A .1个 B .2个 C .3个 D .4个7.函数22()cos ()cos ()44f x x x ππ=--+(R x ∈)是( ) A. 周期为π的奇函数 B. 周期为π的偶函数C. 周期为π2的奇函数D. 周期为π2的偶函数8.已知,x y 满足约束条件5000x y x y y ++⎧⎪-⎨⎪⎩≥≤≤,则24z x y =+的最小值是( )A. 15-B. 16-C. 17-D. 18-9.执行如图1所示的程序框图后,输出的值为5,则P 的取值范围( ) A .715816P <≤ B .1516P > C .715816P ≤< D .3748P <≤10.定义符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,设111sgn()1sgn()122()()22x x f x f x -+-+=⋅+2()f x ⋅,[0,1]x ∈,若1()f x =12x +, 2()f x ⋅=2(1)x -, 则()f x 的最大值等于()A. 2B. 1C. 34D. 12[来二.填空题:本大题共5小题,每小题5分,满分20分.11.已知A 是单位圆上的点,且点A 在第二象限,点B 是此圆与x 轴正半轴的交点,记AOB α∠=, 若点A 的纵坐标为35.则s i n α=_____________; tan 2α=_______________.12. 已知向量(1,1)a =,)2,1(=b ,且()()ka b b a -⊥+,则实数k 的值为13.下列四个判断:①某校高三一班和高三二班的人数分别是,m n ,某次测试数学平均分分别是,a b ,则这两个班的数学平均分为2a b+; ②从总体中抽取的样本12221111(,),(,),,(,),,n nn n i i i i x y x y x y x x y y n n ====∑∑若记,则回归直线y =bx a +必过点(,x y )图1③10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有b a c >>;④绘制频率分布直方图时,各个小长方形的面积等于相应各组的频率. 其中正确的序号是_______________(注意:14、15题是选做题,只能做其中一个,两题全答只计前一题得分) 14.(几何证明选讲选做题)如图,AB 是圆O 的直径,DE AD =,6,8==BD AB ,则DEAC= ; 15.(坐标系与参数方程选择题)已知直线l 的方程为11x ty t =+⎧⎨=-⎩,,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为1ρ=,则圆C 上的点到直线l 的最短距离等于 .三、解答题: 本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本题满分12分)数列{}n a 对任意*N n ∈ ,满足11n n a a +=+, 32a =.(1)求数列{}n a 通项公式;(2)若1()3n an b n =+,求{}n b 的通项公式及前n 项和.17.(本题满分12分)某中学在校就餐的高一年级学生有440名,高二年级学生有460名,高三年级学生有500名;为了解学校食堂的服务质量情况,用分层抽样的方法从中抽取70名学生进行抽样调查,把学生对食堂的“服务满意度”与“价格满意度”都分为五个等级:1级(很不满意);2级(不满意);3级(一般);4级(满意);5级(很满意),其统计结果如下表(服务满意度为x ,价格满意度为y ).(1)求高二年级共抽取学生人数;(2)求“服务满意度”为3时的5个“价格满意度”数据的方差;(3)为提高食堂服务质量,现从3<x 且42<≤y 的所有学生中随机抽取两人征求意见,求至少有一人的“服务满意度”为1的概率.18.(本题满分14分)如图(1)在等腰ABC ∆中,D 、E 、F 分别是AB 、AC 、BC 边的中点,现将ACD ∆沿CD 翻折,使得平面ACD ⊥平面BCD .(如图(2)) (1)求证://AB 平面DEF ; (2)求证:BD AC ⊥;(3)设三棱锥A BCD -的体积为1V 、多面体ABFED 的体积为2V ,求12:V V 的值.19. (本题满分14分)在ΔABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,其中2c =, 且cos cos 1A bB a == (1)求证:ΔABC 是直角三角形;(2)设圆O 过A ,B ,C 三点,点P 位于劣弧AC ︿上,PAB θ∠=,用θ的三角函数表示三角形PAC ∆的面积,并求PAC ∆面积最大值.20.(本题满分14分)已知函数()ln f x x x =. (1)求函数()f x 的极值;(2)设函数()()(1)g x f x k x =--,其中k R ∈,求函数()g x 在区间[1,e]上的最大值.21.(本题满分14分)在直角坐标系xOy 中,动点P 与定点(1,0)F 的距离和它到定直线2x =的距离之比是2,设动点P 的轨迹为1C ,Q 是动圆2222:C x y r +=(12)r <<上一点.(1)求动点P 的轨迹1C 的方程,并说明轨迹是什么图形;(2)设曲线1C 上的三点1122(,),(,)2A x yBC x y 与点F 的距离成等差数列,若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k ;(3)若直线PQ 与1C 和动圆2C 均只有一个公共点,求P 、Q 两点的距离PQ 的最大值.2012届高考模拟测试数学试题(文科)参考答案和评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分. 一.选择题:CBCCA BAAAB 二.填空题:11. 35(2分) 247-(3分)12. 85 13.②④ 14. 431三、解答题: 本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本题满分14分)解:(1)由已知得11n n a a +-= 数列{}n a 是等差数列,且公差1d = ……………2分 又32a =,得10a =,所以 1n a n =-……………………………………………………………4分(2)由(1)得,11()3n n b n -=+, 所以111(11)(2)()33n n S n -=++++⋅⋅⋅++211111(123)333n n -=+++⋅⋅⋅+++++⋅⋅⋅+…………………………………………………………………………………………………6分111()(1)33(1)3.122213nn n n n n n S --+-+=+=+-……………………………12分 17.(本题满分12分)解:(1)共有1400名学生,高二级抽取的人数为23701400460=⨯(人)…………3分 (2)“服务满意度为3”时的5个数据的平均数为3788465++++=,……………4分所以方差()()()()4.4564682676322222=-+-+-+-=s………………6分(3)符合条件的所有学生共7人,其中“服务满意度为2”的4人记为d c b a ,,, “服务满意度为1”的3人记为z y x ,,. ……………………8分 在这7人中抽取2人有如下情况:()()()()()()z a y a x a d a c a b a ,,,,,,,,,,,()()()()()z b y b x b d b c b ,,,,,,,,,()()()()z c y c x c d c ,,,,,,,()()()z d y d x d ,,,,,()()()z y z x y x ,,,,,共21种情况. ……………………9分其中至少有一人的“服务满意度为1”的情况有15种. ……………………11分 所以至少有一人的“服务满意度”为1的概率为752115==p ……………………12分18(本题满分14分)(1)证明:如图:在△ABC 中,由E 、F 分别是AC 、BC 中点,得EF //AB ,又AB ⊄平面DEF ,EF ⊂平面DEF ,∴AB ∥平面DEF .………………4分 (2)∵平面ACD ⊥平面BCD 于CDAD ⊥CD , 且AD ⊂平面ACD∴AD ⊥平面BCD ,又BD ⊂平面BCD ,∴AD BD ⊥……………………7分 又∵CD BD ⊥,且AD CD D =∴BD ⊥平面ACD ,又AC ⊂平面ACD∴BD AC ⊥.………………………………………………………………9分 (3)由(2)可知AD ⊥平面BCD ,所以AD 是三棱锥A BCD -的高∴113BCD V AD S =⋅⋅……………………………………11分 又∵E 、F 分别是AC 、BC 边的中点,∴三棱锥E CDF -的高是三棱锥A BCD -高的一半三棱锥E CDF -的底面积是三棱锥A BCD -底面积的一半∴三棱锥E CDF -的体积114E CDF V V -=…………………………………12分∴211111344E CDF V V V V V V -=-=-=…………………………………13分∴12:4:3.V V =…………………………………14分 19.(本题满分14分) (1)证明:由正弦定理得cos sin cos sin A B B A=,整理为sin cos sin cos A A B B =,即sin2A =sin2B ∴2A =2B 或2A +2B =π,即A =B 或A +B =π2∵b a =A =B 舍去. 由A +B =π2可知c =π2,∴ΔABC 是直角三角形…………………6分(2)由(1)及2c =,得a =1b =…………………………………………………………7分在Rt ΔPAB 中,cos 2cos PA AB θθ=⋅= 所以,11sin()2cos sin()sin()26266PAC S PA AC πππθθθθθ∆=⋅⋅-=⋅⋅-=⋅-………………………………………………………………………………………………………9分1(sin cos )2θθθ=⋅2cos 2)θθ=-+)26πθ=-4-,62ππθ<<………………………………………………12分 因为62ππθ<<,所以,52666ππθπ<-<当262ππθ-=,即 3πθ=时,PAC S ∆最大值等于4.………………………………12分 20.(本题满分14分)(1)()ln 1(0)f x x x '=+>. …………………………………………………………1分 令()0f x '≥,得1ln 1ln x e -≥-=,11ln x ee-≥=; 令()0f x '≤,得10,x e⎛⎤∈ ⎥⎝⎦.…………………………………………………………3分()f x ∴的单调递增区间是1,e ⎡⎫+∞⎪⎢⎣⎭,单调递减区间是10,e ⎛⎤ ⎥⎝⎦,min 11()f x f e e ⎛⎫==- ⎪⎝⎭.()f x 无极大值………………………………………………………………………5分(2)()g x =ln (1)x x k x --,则()ln 1g x x k '=+-,由()0g x '=,得1ek x -=,所以,在区间1(0,e)k -上,()g x 为递减函数,在区间1(e ,)k -+∞上,()g x 为递增函数.……………………………………………………………………………………8分 当1e1k -≤,即1k ≤时,在区间[1,e]上,()g x 为递增函数,所以,()g x 最大值为()g e e ke k =-+. …………………10分 当11<e<e k -,即12k <<时,()g x 的最大值是(1)g 或()g e(1)g =()g e ,得1e k e =- 当11ek e <<-时,()0(1)g e e ek k g =-+>=,()g x 最大值为()g e e ke k =-+当21ek e ≤<-时,()0(1)g e e ek k g =-+<=,()g x 最大值为(1)0g = ………………………………………………………………………………12分 当1ee k -≥,即2k ≥时,在区间[1,e]上,()g x 为递减函数,所以()g x 最大值为(1)0g =.综上,当1e k e <-时,()g x 最大值为e ke k -+; 当1e k e ≥-时,()g x 的最大值是0 ……………………………………………………………………………14分21.(本题满分14分)解:(1=2分.将两边平方,并化简得2212x y +=,……………………………………………………4分.故轨迹1C 的方程是2212x y +=,它是长轴、短轴分别为2的椭圆………………4分.(2)由已知可得1)2AF x =-,(21)2BF =-,2(2)2CF x =-,因为2BF AF CF =+1)x -2)x -21)=-, 即得122x x +=, ① ……………………………………………………5分. 故线段AC 的中点为12(1,)2y y +,其垂直平分线方程为121212(1)2y y x x y x y y +--=---, ② ……………………………………………………………………………………………6分.因为,A C 在椭圆上,故有221112x y +=,222212x y +=,两式相减,得:2222121202x x y y -+-= ③ 将①代入③,化简得12121212122()x x y y y y y y x x -+-==+-+, ④ ………………………7分.将④代入②,并令0y =得,12x =,即T 的坐标为1(,0)2。

2012年韶关高三模拟考试数学试题数学试题(理科)及答案

2012年韶关高三模拟考试数学试题数学试题(理科)及答案

2012年韶关高三模拟考试数学试题数学试题(理科)一、选择题:本大题共8小题,每小题5分,满分40分, 1.若复数(1)i ai ⋅+是纯虚数,则实数a 的值是( )A. 1B. 1-C.0D. 0或1-2.已知集合{||2,A x x x =≤∈R },{2,B x x =≤∈Z },则A B = ( )A. (0,2)B. [0,2]C. {0,2}D. {0,1,2}3.设25025..12,25,()2.a b c ===,则,,a b c 的大小关系是(C )A.a c b >>B. c a b >>C. a b c >>D.b a c >>4.一空间几何体的三视图如图所示,则该几何体的体积为.A. 1B. 3 C 6 D. 25.设向量(1,0)a =,11(,)22b = ,则下列结论正确的是 ( )A.a b =B.a b ⋅=C. a ∥bD. a b - 与b 垂直6.执行如图1所示的程序框图后,输出的值为5,则P 的取值范围( )A.715816P <≤B. 1516P >C. 715816P ≤< D.3748P <≤ 7. 下列四个判断:①某校高三一班和高三二班的人数分别是,m n ,某次测试数学平均分分别是,a b ,则这两个班的数学平均分为2a b +;②10名工人某天生产同一零件,生产的件数是15,17,14,10,15,1设其平均数为a ,中位数为b ,众数为c ,则有b a c >>;③从总体中抽取的样本12221111(,),(,),,(,),,n nn n i i i i x y x y x y x x y y n n ====∑∑ 若记,则回归直线y =bx a +必过点(,x y )④已知ξ服从正态分布(0N ,2)σ,且(20)0.4P ξ-≤≤=,则(2)0.2P ξ>=其中正确的个数有: ( )A .0个B . 1 个C .2 个D .3个8. 定义符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,设111sgn()1sgn()122()()22x x f x f x -+-+=⋅+ 2()f x ⋅,[0,1]x ∈,其中1()f x =12x +, 2()f x ⋅=2(1)x -, 若1[()][0,)2f f a ∈,则实数a 的取值范围是( )A. 1(0,]4B. 11(,)42C. 11(,]42D. 3[0,]8二、填空题:本大共7小题,考生作答6小题,每小题5分,满分30分.9.. 已知A 是单位圆上的点,且点A 在第二象限,点B 是此圆与x 轴正半轴的交点,记AOB α∠=, 若点A 的纵坐标为35.则sin α=______; tan(2)πα-=________.10.以抛物线24y x =的焦点为圆心,且被y 轴截得的弦长等于2的圆的方程为_________. 11.从如图所示的长方形区域内任取一个点()y x M ,,则点M 取自阴影部分的概率为____________.12.已知,x y 满足约束条件5000x y x y y ++⎧⎪-⎨⎪⎩≥≤≤,则24z x y =+的最小值是________.13.设()11f x x x =-++,若不等式121()a a f x a+--≥对任意实数0a ≠恒成立,则x 取值集合是______________.14.如图,AB 是圆O 的直径,DE AD =,6,8==BD AB , 则ADAC= ; 15.已知直线l 方程是11x ty t =+⎧⎨=-⎩(t 为参数),,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为1ρ=,则圆C 上的点到直线l 的距离最小值是三、解答题:本大题共6小题,满分80分.16. (12分)已知等比数列{}n a 的前n 项和为n S , 11a =,且1S ,22S ,33S 成等差数列. (1)求数列{}n a 通项公式; (2)设n n b a n =+,求数列{}n b 前n 项和n T .17.(14分)有一个3×4×5的长方体, 它的六个面上均涂上颜色. 现将这个长方体锯成60个1×1×1的小正方体,从这些小正方体中随机地任取1个,设小正方体涂上颜色的面数为ξ. (1)求0ξ=的概率;(2)求ξ的分布列和数学期望.图6BA18.(14分)如图5(1)中矩形ABCD 中,已知2AB =,AD =MN 分别为AD 和BC 的中点,对角线BD 与MN 交于O 点,沿MN 把矩形ABNM 折起,使平面ABNM 与平面MNCD所成角为60,如图5(2).(1) 求证:BO DO ⊥;(2) 求AO 与平面BOD 所成角的正弦值.19.(12分)在ABC ∆中,三个内角A ,B ,C 的对边分别为a ,b ,c ,其中2c =,且cos cos A b B a ==(1)求证:ABC ∆是直角三角形; (2)如图6,设圆O 过,,A B C 三点,点P 位于劣弧AC ︿上,求PAC ∆面积最大值.O A BD C M NAB DCMN O20.( 14分)在直角坐标系xOy 中,动点P 与定点(1,0)F 的距离和它到定直线2x =的距离之比P 的轨迹为1C ,Q 是动圆2222:C x y r +=(12)r <<上一点. (1)求动点P 的轨迹1C 的方程; (2)设曲线1C上的三点1122(,),(,)A x y B C x y 与点F 的距离成等差数列,若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k ;(3)若直线PQ 与1C 和动圆2C 均只有一个公共点,求P 、Q 两点的距离PQ 的最大值.21.(14分)已知函数()ln(1)f x x mx =++,当0x =时,函数()f x 取得极大值. (1)求实数m 的值;(2)已知结论:若函数()ln(1)f x x mx =++在区间(,)a b 内导数都存在,且1a >-,则存在0(,)x a b ∈,使得0()()()f b f af x b a-'=-.试用这个结论证明:若121x x -<<,函数121112()()()()()f x f x g x x x f x x x -=-+-,则对任意12(,)x x x ∈,都有()()f x g x >。

韶关二模理

韶关二模理

2012届高中毕业班第二次模拟试题注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的班别、姓名、考号填写在答题卡的密封线内.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需要改动,用橡皮擦干净后,再选涂其它答案,答案不能写在试卷上.3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在另发的答题卷各题目指定区域内相应的位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.本试卷共4页,21小题,满分150分. 考试用时120分钟. 1.参考公式:锥体的体积公式13V Sh =其中S 为锥体的底面积,h 为锥体的高 球的表面积公式24S R π=,体积公式343V R π=其中R 为球的半径2.样本数据n x x x ,,,21⋅⋅⋅的样本方差2222121[()()()]n s x x x x x x n=-+-+⋅⋅⋅+-,其中x 为样本平均数.一、选择题:本大题共8小题,每小题5分,满分40分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设1z i =-(i 是虚数单位),则2z z+= A .22i - B .22i + C .3i - D . 3i +2.若集合2{|23},{|1,}M x x N y y x x R =-<<==+∈,则集合M N =A. (2,)-+∞B. (2,3)-C. [1,3)D. R3.已知ABCD 中,(3,7)AD = ,(2,3)AB =-,对角线AC 与BD 交于点O ,则CO 的坐标为A.1,52⎛⎫-⎪⎝⎭ B. 1,52⎛⎫⎪⎝⎭ C. 1,52⎛⎫- ⎪⎝⎭ D. 1,52⎛⎫-- ⎪⎝⎭4.给出以下三幅统计图及四个命题:①从折线统计图能看出世界人口的变化情况;②2050年非洲人口大约将达到15亿;③2050年亚洲人口比其他各洲人口的总和还要多;④从1957年到2050年各洲中北美洲人口增长速度最慢. 其中命题正确的是 A .①②B .①③C. ①④D .②④5. “α是锐角”是“2cos 1sin αα=-”的 A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件6. 已知某几何体的三视图如图1所示,则该几何体的体积为A. 4163π+B. 1632π+C. 8323π+D. 328π+7. 已知12)(-=x x f ,21)(x x g -=,规定:当)(|)(|x g x f ≥时, |)(|)(x f x h =;当)(|)(|x g x f <时, )()(x g x h -=,则)(x hA . 有最小值1-,最大值1B . 有最大值1,无最小值C . 有最小值1-,无最大值D . 有最大值1-,无最小值8.若对于定义在R 上的函数()f x ,其函数图象是连续的,且存在常数λ(R λ∈),使得()()0f x f x λλ++=对任意的实数x 成立,则称()f x 是“λ-同伴函数”.下列关于“λ-同伴函数”的叙述中正确的是 A .“-21同伴函数”至少有一个零点 B . 2()f x x =是一个“λ-同伴函数” C .2()log f x x =是一个“λ-同伴函数” D. ()0f x =是唯一一个常值“λ-同伴函数”二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

2012广东省各地月考联考模拟最新分类汇编(理数)8:圆锥曲线3.pdf

2012广东省各地月考联考模拟最新分类汇编(理数)8:圆锥曲线3.pdf

2012广东省各地月考联考模拟最新分类汇编(理): 圆锥曲线(3) 【广东省肇庆市2012届高三第一次模拟理】12. 短轴长为,离心率的椭圆的两焦点为,过作直线交椭圆于两点,则的周长为 ▲ 6. 【解析】由题知即,解得,由椭圆的定义知△ABF2的周长为. 【广东省湛江市2012届高三普通高考模拟测试(二)理】6. 设F是双曲线的左焦点,A(1,4),PPF| +|PA|的最小值为A. 5B.C. 7D. 9 【答案】D 【广东省镇江二中2012高三第三次月考理】椭圆短轴的一个端点看长轴的两个端点的视角为120°,则这个椭圆的离心率是 ( ) A. B.C.D. 【广东省镇江二中2012高三第三次月考理】 已知点是抛物线的焦点,为抛物线上任一点,,则的最小值为__________. 【答案】3 【广东省云浮中学2012届高三第一次模拟理】12.若双曲线的一条渐近线方程为,则以双曲线的顶点和焦点分别为焦点和顶点的椭圆的离心率为__________. 【答案】 【广东省深圳市松岗中学2012届高三理科模拟(1)】8.已知点是椭圆上一点,且在轴上方,、分别是椭圆的左、右焦点,直线的斜率为,则的面积是 (A) (B) (C) (D) 【答案】C 【广东省肇庆市2012届高三上学期期末理】19.(本小题满分14分) 一动圆与圆外切,与圆内切. (I)求动圆圆心M的轨迹方程.(II)圆心M的轨迹点,使直线与的斜率?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标). 1)设动圆圆心为,半径为. 由题意,得,, (1分) , 由椭圆定义知在以为焦点的椭圆上, (3分) 且,. (5分) 动圆圆心M的轨迹方程为. (6分) (II) 由(I)知动圆圆心M的轨迹是椭圆,它的两个焦点坐标分别为和 (7分) 设是椭圆上的点,由得 (9分) 即,这是实轴在轴,顶点是椭圆的两个焦点的双曲线,它与椭圆的交点即为点P。

广东省2012届高三数学(理科)全真模拟卷2

广东省2012届高三数学(理科)全真模拟卷2

广东省2012届高三全真模拟卷数学理科2一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知,a b 是实数,则“0a >且0b >”是“0a b +>且0ab >”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件2.已知全集U R =,集合{212}M x x =-≤-≤和{21,1,2,}N x x k k ==-=的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有 A. 3个 B. 2个 C. 1个 D. 无穷多 3. 若复数z 满足方程220z +=,则3z =A.±-- D. ± 4. 设0a >,对于函数()sin (0)sin x af x x xπ+=<<,下列结论正确的是A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值又无最小值5. 已知正四棱柱1111ABCD A B C D -中,1AA =2AB ,E 为1AA 重点,则异面直线BE 与1CD 所形成角的余弦值为(A 15356. 在二项式251()x x-的展开式中,含4x 的项的系数是( ) A .10- B .10 C .5- D .57.如图所示,f i (x )(i =1,2,3,4)是定义在[0,1]上的四个函数,其中满足性质:“对[0,1]中任意的x 1和x 2,任意λ∈[0,1],f [λx 1+(1-λ)x 2]≤λf (x 1)+(1-λ)f (x 2)恒成立”的只有( )A.f 1(x ),f 3(x )B.f 2(x )C.f 2(x ),f 3(x )D.f 4(x )8. 若a ,b ,c >0且a (a +b +c )+bc =4-23,则2a +b +c 的最小值为(A )3-1 (B) 3+1 (C) 23+2 (D) 23-2二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~12题)9.在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为 10.若三点(2,2),(,0),(0,)(0)A B a C b ab ≠共线,则11a b+的值等于__________. 11. 在数列{a n }中,若a 1=1,a n +1=2a n +3 (n ≥1),则该数列的通项a n =_________. 12. 执行下边的程序框图,输出的T= .(二)选做题(13 ~ 15题,考生只能从中选做两题)13. (不等式选讲选做题)函数log (3)1(0,1)a y x a a =+->≠的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则12m n+的最小值为_______.14. (坐标系与参数方程选做题)设M 、N 分别是曲线2sin 0ρθ+=和s ()4in πρθ+=上的动点,则M 、N 的最小距离是 15. (几何证明选讲选做题)如图,在正三角形ABC 中,E 、F 依次是AB 、AC 的中点,AD ⊥BC ,EH ⊥BC ,F G⊥BC ,D 、H 、G 为垂足,若将正三角形ABC 绕AD 旋转一周所得的圆锥的体积为V ,则其中由阴影部分所产生的旋转体的体积与V 的比值是 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤, 16. (本小题满分12分)设函数()f x a b =,其中向量(2cos ,1),(cos ,3sin 2),a x b x x x R ==∈(1) 若函数()1,,;33f x x x ππ⎡⎤=-∈-⎢⎥⎣⎦且求 (2) 若函数2sin 2y x =的图象按向量(,)()3c m n m π=<平移后得到函数()y f x =的图象,求实数m,n 的值。

广东省韶关市数学高考理数二模考试试卷

广东省韶关市数学高考理数二模考试试卷

广东省韶关市数学高考理数二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)已知全集U=R,集合,则()A .B .C .D .2. (2分)为虚数单位,则复数的虚部是()A .B .C .D .3. (2分)已知随机变量ξ服从正态分布, P(ξ≤4)=0.84,则P(ξ≤0)等于()A . 0.16B . 0.32C . 0.68D . 0.844. (2分) (2017高三下·上高开学考) 过双曲线﹣ =1(a>0,b>0)的右焦点F作直线y=﹣ x 的垂线,垂足为A,交双曲线左支于B点,若 =2 ,则该双曲线的离心率为()B . 2C .D .5. (2分)已知某几何体的三视图如图,其中正(主)视图中半圆的半径为1,则该几何体的体积为()A .B .C .D .6. (2分)运行如图所示的程序框图,则输出的数是5的倍数的概率为()B .C .D .7. (2分)(2017·池州模拟) 已知x,y满足约束条件,目标函数z=2x﹣3y的最大值是2,则实数a=()A .B . 1C .D . 48. (2分)某四棱台的三视图如图所示,则该四棱台的体积是()A . 4B .C .D . 69. (2分)在二项式(1﹣2x)n的展开式中,偶数项的二项式系数之和为128,则展开式的中间项的系数为()A . ﹣960B . 960C . 1120D . 168010. (2分)(2017·万载模拟) 函数f(x)=sin(ln )的图象大致为()A .B .C .D .11. (2分)已知f(x)=2sinωx(cosωx+sinωx)的图象在x∈[0,1]上恰有一个对称轴和一个对称中心,则实数ω的取值范围为()A . (,)B . [ ,)C . (, ]D . [ , ]12. (2分) (2016高二上·大连期中) 设定点F1(0,﹣3)、F2(0,3),动点P满足条件|PF1|+|PF2|=a+ (a>0),则点P的轨迹是()A . 椭圆B . 线段C . 不存在D . 椭圆或线段二、填空题 (共4题;共4分)13. (1分) (2016高一下·大庆期中) 若△ABC的面积为2 ,且∠B= ,则 =________.14. (1分) (2017高二下·赣州期末) 四根绳子上共挂有10只气球,绳子上的球数依次为1,2,3,4,每枪只能打破一只球,而且规定只有打破下面的球才能打上面的球,则将这些气球都打破的不同打法数是________.15. (1分) (2018高三上·邹城期中) 已知函数是定义在上的偶函数,其导函数为,且当时,,则不等式的解集为________.16. (1分) (2017高三上·东莞期末) 在△ABC中,∠ACB=120°,D是 AB 上一点,满足∠ADC=60°,CD=2,若CB ,则∠ACD的最大值为________.三、解答题 (共6题;共45分)17. (10分) (2016高二上·温州期中) 已知数列{an}满足:a1=1,an+1= an+ (n∈N*).(1)求最小的正实数M,使得对任意的n∈N*,恒有0<an≤M.(2)求证:对任意的n∈N*,恒有≤an≤ .18. (5分)某学校举行联欢会,所有参演的节目都由甲、乙、丙三名专业老师投票决定是否获奖,甲、乙、丙三名老师都有“获奖”“待定”“淘汰”三类票各一张,每个节目投票时,甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任意一类票的概率为,且三人投票相互没有影响,若投票结果中至少有两张“获奖”票,则决定该节目最终获一等奖;否则,该节目不能获一等奖.求某节目的投票结果是最终获一等奖的概率;19. (5分) (2017高三下·重庆模拟) 已知中心在坐标原点,焦点在轴上的椭圆过点,且它的离心率(I)求椭圆的标准方程;(II)与圆相切的直线交椭圆于、两点,若椭圆上一点满足,求实数的取值范围20. (10分)(2017·乌鲁木齐模拟) 已知函数f(x)=(ax+1)ex﹣(a+1)x﹣1.(1)求y=f(x)在(0,f(0))处的切线方程;(2)若x>0时,不等式f(x)>0恒成立,求a的取值范围.21. (10分)(2017·龙岩模拟) 以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点M的直角坐标为(1,0),若直线l的极坐标方程为ρcos(θ+ )﹣1=0,曲线C的参数方程是(t 为参数).(1)求直线l和曲线C的普通方程;(2)设直线l与曲线C交于A,B两点,求.22. (5分) (2017高二下·鞍山期中) 已知函数f(x)=|x+2|+|ax﹣4|.(Ⅰ)若a=1,存在x∈R使f(x)<c成立,求c的取值范围;(Ⅱ)若a=2,解不等式f(x)≥5.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共45分)17-1、17-2、18-1、19-1、20-1、20-2、21-1、21-2、22-1、。

广东省韶关市2024年数学(高考)部编版第二次模拟(提分卷)模拟试卷

广东省韶关市2024年数学(高考)部编版第二次模拟(提分卷)模拟试卷

广东省韶关市2024年数学(高考)部编版第二次模拟(提分卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题已知复数(i 为虚数单位),则复数在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限第(2)题已知长方体的一条棱长为2,体积为16,则其外接球表面积的最小值为( )A .B .C .D .第(3)题设等差数列的前项和为,已知,,则A .B .C .D .第(4)题已知四棱锥的底面为平行四边形,,,,平面ABCD ,直线PD 与平面PAC 所成角为,则( )A .B .C .D .第(5)题集合,集合,则( )A .B .C .D .第(6)题已知向量满足,且与夹角的余弦值为,则( )A .36B .C .32D .第(7)题在复数范围内,方程的解有( )A .个B .个C .个D .无数个第(8)题已知,,且,则( )A.B .C .D .二、多项选择题(本题包含3小题,每小题6分,共18分。

在每小题给出的四个选项中,至少有两个选项正确。

全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题已知抛物线过点,过点的直线交抛物线于,两点,点在点右侧,若为焦点,直线,分别交抛物线于,两点,则( )A.B .有最小值4C .D .A ,P ,Q 三点共线第(2)题已知椭圆的左、右焦点分别为是圆上且不在x 轴上的一点,且的面积为.设C 的离心率为e ,,则( )A .B .C .D .第(3)题若对任意的,,且,都有,则m 的值可能是( )A.B .C .D.1三、填空(本题包含3个小题,每小题5分,共15分。

请按题目要求作答,并将答案填写在答题纸上对应位置) (共3题)第(1)题已知函数,当时,恒成立,则实数的最大值为______.第(2)题已知,,,则___________.第(3)题若为函数的导函数,数列满足,则称为“牛顿数列”.已知函数,数列为“牛顿数列”,其中,则______.四、解答题(本题包含5小题,共77分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

韶关市2012届高三模拟考试数学试题数学试题(理科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生要务必填写答题卷上密封线内的有关项目.2.选择题每小题选出答案后,用铅笔把答案代号填在答题卷对应的空格内.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.请考生保持答题卷的整洁.考试结束后,将答题卷和答题卡交回. 参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面面积,h 为锥体的高.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数(1)i ai ⋅+是纯虚数,则实数a 的值是( )A. 1B. 1-C.0D. 0或1-2.已知集合{||2,A x x x =≤∈R },{|2,B x x =≤∈Z },则A B = ( )A. (0,2)B. [0,2]C. {0, 2}D. {0,1,2}3.设2525..12,25,()2.a b c ===,则,,a b c 的大小关系是(C )A.a c b >>B. c a b >>C. a b c >>D.b a c >>4.一空间几何体的三视图如图所示,则该几何体的体积为.A. 1B. 3 C 6 D. 25.设向量(1,0)a = ,11(,)22b = ,则下列结论正确的是 ( )A.a b=B.2a b ⋅=C. a ∥bD. a b - 与b垂直6.执行如图1所示的程序框图后,输出的值为5,则P 的取值范围( )A.715816P <≤B. 1516P >C.715816P ≤<D.3748P <≤7. 下列四个判断:①某校高三一班和高三二班的人数分别是,m n ,某次测试数学平均分分别是,a b ,则这两个班的数学平均分为2a b +;②10名工人某天生产同一零件,生产的件数是15,17,14,10,15设其平均数为a ,中位数为b ,众数为c ,则图1有b a c >>;③从总体中抽取的样本12221111(,),(,),,(,),,nnn n ii i i x y x y x y x x y y nn ====∑∑ 若记,则回归直线y =b x a +必过点(,x y )④已知ξ服从正态分布(0N ,2)σ,且(20)0.4P ξ-≤≤=,则(2)0.2P ξ>= 其中正确的个数有: ( )A .0个B . 1 个C .2 个D .3个8. 定义符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,设111sgn()1sgn()122()()22x x f x f x -+-+=⋅+2()f x ⋅,[0,1]x ∈,其中1()f x =12x +, 2()f x ⋅=2(1)x -, 若1[()][0,)2f f a ∈,则实数a 的取值范围是( )A. 1(0,]4B. 11(,)42C. 11(,]42D. 3[0,]8二、填空题:本大共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.. 已知A 是单位圆上的点,且点A 在第二象限,点B 是此圆与x 轴正半轴的交点,记A OB α∠=, 若点A 的纵坐标为35.则s i n α=_____________;tan(2)πα-=_______________.10.以抛物线24y x =的焦点为圆心,且被y 轴截得的弦长等于2的圆的方程为__________________.11.从如图所示的长方形区域内任取一个点()y x M ,,则点M 取自阴影部分的概率为____________.12.已知,x y 满足约束条件5000x y x y y ++⎧⎪-⎨⎪⎩≥≤≤,则24z x y =+的最小值是_________.13.设()11f x x x =-++,若不等式121()a a f x a+--≥对任意实数0a ≠恒成立,则x 取值集合是_______________________.(二)选做题(14~15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图,AB 是圆O 的直径,DE AD =,6,8==BD AB ,则A D A C= ;15.(坐标系与参数方程选做题)已知直线l 方程是11x ty t =+⎧⎨=-⎩(t 为参数),,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为1ρ=,则圆C 上的点到直线l 的距离最小值是 三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16. (本小题满分12分)已知等比数列{}n a 的前n 项和为n S , 11a =,且1S ,22S ,33S 成等差数列. (1)求数列{}n a 通项公式;(2)设n n b a n =+,求数列{}n b 前n 项和n T .17.(本小题满分14分)有一个3×4×5的长方体, 它的六个面上均涂上颜色. 现将这个长方体锯成60个1×1×1的小正方体,从这些小正方体中随机地任取1个,设小正方体涂上颜色的面数为ξ. (1)求0ξ=的概率; (2)求ξ的分布列和数学期望.18.(本小题满分14分)如图5(1)中矩形A B C D 中,已知2A B =,AD =M N 分别为A D 和B C 的中点,对角线B D 与M N 交于O 点,沿M N 把矩形A B N M 折起,使平面A B N M 与平面MN C D 所成角为60,如图5(2).(1) 求证:B O D O ⊥;(2) 求A O 与平面B O D 所成角的正弦值.OABDC MNABDC MNO图6B A19.(本小题满分12分)在A B C ∆中,三个内角A ,B ,C 的对边分别为a ,b ,c ,其中2c =,且cos cos 1A b Ba==(1)求证:A B C ∆是直角三角形;(2)如图6,设圆O 过,,A B C 三点,点P 位于劣弧AC ︿上,求P A C ∆面积最大值.20.(本小题满分14分)在直角坐标系xOy 中,动点P 与定点(1,0)F 的距离和它到定直线2x =的距离之比是2,设动点P 的轨迹为1C ,Q 是动圆2222:C x y r +=(12)r <<上一点.(1)求动点P 的轨迹1C 的方程;(2)设曲线1C上的三点1122(,),(1,(,)2A x yBC x y 与点F 的距离成等差数列,若线段A C 的垂直平分线与x 轴的交点为T ,求直线B T 的斜率k ;(3)若直线PQ 与1C 和动圆2C 均只有一个公共点,求P 、Q 两点的距离P Q 的最大值.21.(本小题满分14分)已知函数()ln(1)f x x mx =++,当0x =时,函数()f x 取得极大值. (1)求实数m 的值;(2)已知结论:若函数()ln(1)f x x mx =++在区间(,)a b 内导数都存在,且1a >-,则存在0(,)x a b ∈,使得0()()()f b f a f x b a-'=-.试用这个结论证明:若121x x -<<,函数121112()()()()()f x f x g x x x f x x x -=-+-,则对任意12(,)x x x ∈,都有()()f x g x >;(3)已知正数12,,,n λλλL ,满足121n λλλ+++=L ,求证:当2n ≥,n N ∈时,对任意大于1-,且互不相等的实数12,,,nx x x L ,都有1122()n n f x x x λλλ+++>L 1122()()()nn f x f xf x λλλ+++L . 2012届高考模拟测试数学试题(理科)参考答案和评分标准一.选择题:CACBD ABB 二填空题:9. 35(2分)247(3分) 10. 22(1)2x y -+= 11.1312. 15-13. 33(,][,)22-∞-+∞ 14. 43 15.1三、解答题: 本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本题满分14分)解:(1)设数列{}n a 的公比为q ,……………1分若1q =,则111S a ==,21244S a ==,31399S a ==,故13231022S S S +=≠⨯,与已知矛盾,故1q ≠,………………………………………………2分从而得1(1)111nnn a q qS qq--==--,………………………………………………4分由1S ,22S ,33S 成等差数列,得132322S S S +=⨯, 即321113411qqqq--+⨯=⨯--,解得13q =……………………………………………5分所以11113n n n a a q--⎛⎫=⋅= ⎪⎝⎭.………………………………………………6分(2)由(1)得,11()3n n n b a n n -=+=+,………………………………7分所以12(1)(2)()n n T a a a n =++++++ 1(1)(1)(12)12nn b q n n S n q-+=++++=+- ………………………………10分2111()(1)333.12213nn n n n n --+++-=+=-……………………………12分 17.(本题满分12分)(1)60个1×1×1的小正方体中,没有涂上颜色的有6个,61(0)6010P ξ=== … (3分)(2)由(1)可知1(0)10P ξ==;11(1)30P ξ==;2(2)5P ξ==;2(3)15P ξ==… (7分)分布列… (10分)E ξ=0×110+1×1130+2×25+3×215=4730…(12分)18(本题满分14分)解:(1)由题设,M ,N 是矩形的边AD 和BC 的中点,所以AM ⊥MN, BC ⊥MN, 折叠垂直关系不变,所以∠AMD 是平面A B N M 与平面M N C D 的平面角,依题意,所以∠AMD=60o , ………………………………………………………………………………………………………2分 由AM=DM ,可知△MAD 是正三角形,所以AD=2,在矩形ABCD 中,AB=2,AD=,所以,BD=BO=OD=,由勾股定理可知三角形BOD 是直角三角形,所以BO⊥DO ……………………………………………………………………………………… 5分 解(2)设E ,F 是BD ,CD 的中点,则EF ⊥CD, OF ⊥CD, 所以,CD ⊥面OEF, O E C D ⊥ 又BO=OD,所以O E ⊥BD, O E ⊥面ABCD, O E ⊂面B O D , 平面BOD ⊥平面ABCD过A 作AH ⊥BD ,由面面垂直的性质定理,可得AH ⊥平面BOD ,连结OH ,…………………… 8分 所以OH 是AO 在平面BOD 的投影,所以∠AOH 为所求的角,即AO 与平面BOD 所成角。

相关文档
最新文档