《无机化学》第7章.化学键理论与分子结构

合集下载

内蒙古民族大学无机化学(吉大武大版)-第7章 化学键理论概述

内蒙古民族大学无机化学(吉大武大版)-第7章 化学键理论概述
第 7 章 化学键理论概述
前面我们已经掌握了原子的结构。那么原子又 是以怎样的方式形成分子,形成分子以后分子的化 学键、空间构型与分子的基本性质有何关系?这就 是本章所要讨论的问题。因为只有了解了分子的结 构才能了解分子的基本性质。 本章研究问题的思路: ① 原子—原子之间的相互作用即化学键。 ② 原子—原子之间相对位置即分子的空间构型。 ③ 化学键、分子的空间构型与物质之间的物理 性质、化学性质之关系,即结构决定性质。
半径增加。
Li + < Na + < K + < Rb + < Cs + F- < Cl- < Br- < I-
b ) 同周期的主族元素,从左至右离子电荷数升高,
最高价离子半径减小。 Na + > Mg 2 + > Al 3 + K + > Ca 2 。
c ) 同一元素,不同价态的离子,电荷高的半径小。
已明确了的化学键类型 1. 电价键:由正负离子构成。 包括离子键;电价配键;离子配键;离子偶极配键。 2. 共价键:由共用电子对构成。 ①双原子共价键:极性键;非极性键;电子对键(单、 双、叁键);共价配键;三电子键(如O2);
单电子键(如H2+)。 ②多原子共价键:共轭(离域)π 键;多中心键。
③由一方原子提供电子对构成的化学键,称配位键。 3. 金属键:由金属原子、离子、自由电子构成的多中
心共轭(离域)系统。
第七章
化学键与分子结构
§1 离子键理论
1916 年德国科学家 Kossel ( 科塞尔 ) 提出离子键理论。 1-1 离子键的形成 1. 形成过程 以 NaCl 为例 。 第一步 电子转移形成离子: Cl + e —— Cl - 3s 2 3p 5 —— 3s 2 3p 6 Na - e —— Na+ ,

无机化学化学键与分子结构选择题

无机化学化学键与分子结构选择题

(三)化学键与分子结构1.下列分子中,两个相邻共价键的夹角最小的是A、BF3 B、H2S C、NH3D、H2O2.下列分子中,两个相邻共价键的夹角最小的是A、BF3 B、CCl4C、NH3D、H2O3.下列分子和离子中,中心原子成键轨道不是sp2杂化的是A、NO 3-B、HCHOC、BF3D、NH34.NCl3分子中,N原子与三个氯原子成键所采用的轨道是A、两个sp轨道,一个p轨道成键B、三个sp3轨道成键C、P X、P y 、P z 轨道成键D、三个sp2轨道成键5.水分子中氧原子的杂化轨道是A、sp B、sp2C、sp3D、dsp26.下列化合物中,极性最大的是A、CS2B、H2S C、SO3D、SnCl47.下列分子中,偶极矩不等于零的是A、BeCl2B、BF3C、NF3 D、CO28.下列液态物质中只需克服色散力就能使之沸腾的是A、H2O B、CO C、HF D、Xe9.极化能力最强的离子应具有的特性是A、离子电荷高、离子半径大B、离子电荷高、离子半径小C、离子电荷低、离子半径小D、离子电荷低、离子半径大10.下列各组离子中,离子的极化力最强的是A、K+、Li+B、Ca2+、Mg2+C、Fe3+、Ti4+D、Sc3+、Y3+11.比较下列各组物质的熔点,正确的是A、NaCl > NaF B、CCl4> CBr4C、H2S > H2Te D、FeCl3 < FeCl212.下列各分子中,偶极矩不为零的分子为A、BeCl2B、BF3C、NF3D、CH413.下列各组离子化合物的晶格能变化顺序中,正确的是A、MgO> CaO> Al2O3B、LiF> NaCl >KIC、RbBr< CsI <KClD、BaS> BaO> BaCl214.下列物质熔点变化顺序中,不正确的是A、NaF> NaCl > NaBr > NaIB、NaCl< MgCl2< AlCl3<SiCl4C、LiF> NaCl >KBr > CsID、Al2O3>MgO> CaO> BaO15.下列原子轨道的n相同,且各有一个自旋方式相反的不成对电子,则沿X 轴方向可形成π 键的是A、P X-P XB、P X-P yC、P y-P ZD、P z-P z16.下列分子或离子中,键角最大的是A、XeF2B、NCl3C、CO32-D、PCl4+17.下列分子或离子中,具有反磁性的是A、O2B、O2-C、O2+D、O22-18.按分子轨道理论,下列稳定性排列正确的是A、O2 > O2+> O22-B、O2+> O2 > O22-C、O22-> O2 > O2+D、O2+> O22-> O219.下列各组原子轨道中不能叠加成键的是A、P X-P X B、P X-P Y C、S-P X D、S-P Z20.下列分子或离子中,中心原子的价层电子对几何构型为四面体,而分子(离子)的空间构型为V 字形的是A、NH4+B、SO2C、ICl-2D、OF221.几何形状是平面三角形的分子或离子是A、SO3B、SO-23C、CH-3D、PH322.几何形状是平面三角形的分子或离子是A、SO32-B、SnCl3-C、CH3-D、NO3-23.下列分子中偶极矩大于零的是A、SF4B、PF5C、SnF4 D、BF324.下列分子中偶极矩大于零的是A、BF3B、PF3C、SiF4 D、PF525.下列分子中属于非极性分子的是A、PH3B、AsH3C、BCl3 D、CHCl326.下列分子中属于非极性分子的是A、SF4B、PCl5C、PCl3 D、IF527.根据VSEPR理论,BrF3分子的几何构型为A、平面三角形B、三角锥形C、三角双锥形D、T字形28.下列各组物质中,沸点高低次序不正确的是A、HF>NH3B、S2(g)>O2C、NH3>PH3D、SiH4>PH329.下列体系中,溶质和溶剂分子间,三种分子间力和氢键都存在的是A、I2和CCl4溶液B、I2酒精溶液C、酒精的水溶液D、CH3Cl的CCl4溶液30.下列晶体中,熔化时只需克服色散力的是A、K B、H2O C、SiC D、SiF431.下列物质的熔点由高到低的顺序正确的是a、CuCl2b、SiO2c、NH3 d、PH3A、a > b > c > dB、b > a > c > dC、b > a > d > cD、a > b > d > c32.下列分子中,离域π 键类型为П33的是A、O3 B、SO3C、NO2 D、HNO333.根据分子轨道中电子排布,下列分子、离子稳定性顺序正确的是A、O2 >O+2>O-2> O-22B、O-22>O-2>O+2> O2 C、O+2>O-2> O-22> O2D、O+2>O2>O-2> O-2234.若中心原子采用s p3 d2杂化轨道成键的分子,其空间构型可能是A、八面体B、平面正方形C、四方锥形D、以上三种均有可能35.下列氟化物分子中,分子偶极矩不为零的是A、PF5 B、BF3C、IF5D、XeF436.下列化合物中具有氢键的是A、CH3F B、CH3OH C、CH3OCH3 D、C6H637.下列晶格能大小顺序中正确的是A、CaO>KCl> MgO>NaClB、NaCl> KCl> RbCl>SrOC、M g O>RbCl> SrO>BaOD、Mg O>NaCl> KCl> RbCl38.在下列各种含氢化合物中,有氢键的是A、CHF3 B、C2H6 C、C6H6 D、HCOOH E、CH439.HF具有反常的高沸点是由于A、范德华力B、极性共价键C、氢键D、离子键40.在石墨晶体中,层与层之间的结合力是A、金属键B、共价键C、范德华力D、大π键41.关于晶格能,下列说法中正确的是A、晶格能是指气态阳离子与气态阴离子生成1 mol离子晶体所释放的能量B、晶格能是由单质化合成1 mol 离子化合物时所释放的能量C、晶格能是指气态阳离子与气态阴离子生成离子晶体所释放的能量D、晶格能就是组成离子晶体时,离子键的键能42.下列物质中,既有离子键又有共价键的是A、KCl B、CO C、Na2SO4D、NH4+43.下列说法中,正确的是A、离子键和共价键相比,其作用范围更大B、所有高熔点物质都是离子型的C、离子型固体的饱和水溶液都是导电性极其良好D、阴离子总是比阳离子大44.下列原子轨道中各有一个自旋方向相反的不成对电子,则沿x 轴方向可形成 键的是A、2 s-4 d z2B、2 p x-2 p xC、2 p y-2 p yD、3 d xy-3 d xy45.下列说法中,正确的是A、相同原子间的双键键能是单键键能的两倍B、原子形成共价键的数目等于基态原子的未成对电子数C、分子轨道是由同一原子中能量相近、对称性匹配的原子轨道组合而成D、p y 和d xy 的线性组合形成π成键轨道和π反键轨道46.下列关于O22-和O2-的性质的说法中,不正确的是A、两种离子都比O2分子稳定性小B、O22-的键长比O2-键长短C、O22-是反磁性的,而O2-是顺磁性的D、O22-的键能比O2-的键能小47.下列分子和离子中,中心原子杂化轨道类型为s p3 d杂化,且分子(离子) 空间构型呈直线型的是A、ICl2-B、SbF4-C、CO2D、SO248.若中心原子采用sp3d杂化轨道成键的分子,其空间构型可能是A、三角双锥形B、变形四面体C、直线形D、以上三种均有可能49.AB2型的分子或离子,其中心原子可能采取的杂化轨道类型是A、s p B、s p2C、s p3 D、除A、B、C 外,还有s p3d50.下列物质熔点沸点变化顺序中,正确的一组是A、He >Ne >Ar B、HF >HCl >HBr C、CH4 < SiH4 < GeH4D、W >Cs >Ba51.下列物质熔点高低顺序正确的是A、He > Kr B、Na < Rb C、HF < HCl D、MgO > CaO52.下列化学键中,极性最弱的是A、H-F B、H-O C、O-F D、C-F53.下列叙述中正确的是A、F2的键能低于Cl2B、F的电负性低于Cl C、F2的键能大于Cl2D、F的第一电离能低于Cl54.OF2分子的中心原子采取的杂化轨道是A、s p2B、s p3C、s p D、d s p255.CH4分子中,C-H键是属于A、离子键B、p-p键C、s -s p3σ键D、配位共价键56.CO2分子中,碳原子轨道采取的杂化方式是A、s p B、s p2 C、s p3等性杂化D、s p3不等性杂化57.下列分子中属于极性分子的是A、SiCl4( g ) B、SnCl2( g ) C、CO2 D、BF358.下列各组判断中,正确的是A、CH4,CO2是非极性分子B、CHCl3,BCl3,H2S,HCl是极性分子C、CH4,H2S,CO2是非极性分子D、CHCl3,BCl3,HCl是极性分子59.下列各组判断中,不正确的是A、CH4,CO2,BCl3是非极性分子B、CHCl3,HCl,H2S是极性分子C、CH4,CO2,BCl3,H2S,是非极性分子D、CHCl3,HCl是极性分子60.为确定分子式为XY2的共价化合物是直线型还是弯曲型的,最好是测定它的A、与另一个化合物的反应性能B、偶极矩C、键能D、离子性百分数61.在单质碘的四氯化碳溶液中,溶质和溶剂分子之间存在着A、取向力B、诱导力C、色散力D、诱导力和色散力62.下列物质中属于以分子间作用力结合的晶体是A、KBr(s) B、CO2(s) C、CuAl2(s) D、SiC(s)63.下列物质在液态时只需要克服色散力就能使之沸腾的是A、O2B、CO C、HF D、H2O64.下列能形成分子间氢键的物质是A、NH3B、C2H4C、HI D、H2S65.下列氢键中最强的是A、S-H……O B、N-H……N C、F-H……F D、C-H……N66.HCl,HBr,HI三种物质的沸点依次升高的主要原因是A、范德华力减小B、取向力增大C、诱导力增大D、色散力增大67.下列化合物中,不存在氢键的是A、HNO3B、H2S C、H3BO3 D、H3PO368.下列化合物中,存在分子内氢键的是A、H2O B、NH3C、CH3F D、HNO369.SO2分子间存在着A、色散力B、色散力、诱导力C、色散力、取向力D、色散力、诱导力、取向力70.干冰升华时吸收的能量用于克服A、键能B、取向力C、诱导力D、色散力71.晶体溶于水时,其溶解热与下列两种能量的相对值有关的是A、离解能和电离能B、离解能和水合能C、水合能和晶格能D、晶格能和电离能72.电价键占优势的液态化合物的特征是A、凝固点低,导电性弱B、凝固点高,导电性强C、凝固点低,导电性强D、凝固点高,导电性弱73.下列说法中不正确的是A、σ键比π键的键能大B、形成σ键比形成π键电子云重叠多C、在相同原子间形成双键比形成单键的键长要短D、双键和叁键都是重键74.下列分子中C与O之间键长最短的是A、CO B、CO2C、CH3OH D、CH3COOH75.下列分子或离子中,呈反磁性的是A、B2B、O2C、CO D、NO76.下列分子和离子中,中心原子杂化轨道类型为s p3 d杂化,且分子(离子) 空间构型呈直线型的是A、ICl-2B、SbF-4C、IF3D、ICl-477.按分子轨道理论,O-2的键级是A、1 B、2 C、121D、22178.按分子轨道理论,下列稳定性大小顺序正确的是A、N-22>N-2>N2B、N2 >N-2> N-22C、N-2>N-22> N2D、N-2>N2 > N-2279.下列分子或离子中,磁性最强的是A、O2B、O2-C、O2+D、O22-80.在下列物质中,氧原子间化学键最稳定的是A、O22-B、O2-C、O2D、O2+81.下列分子中,中心原子以s p 3 d 2杂化的是A、IF5B、PCl5C、SF4D、XeF282.根据分子轨道理论,下列分子或离子中键级最高的是A、O22+B、O2+C、O2D、O2-83.用分子轨道理论来判断下列说法,不正确的是A、N2+的键能比N2分子的小B、CO+的键级是2.5C、N2-和O2+是等电子体系D、第二周期同核双原子分子中,只有Be2分子不能稳定存在84.按分子轨道理论,下列分子或离子中键级等于2的是A、O2-B、CN-C、Be2D、C285.下列说法中正确的是A、BCl3分子中B-Cl键是非极性的B、BCl3分子和B-Cl键都是极性的C、BCl3分子是极性分子,而B-Cl键是非极性键D、BCl3分子是非极性分子,而B-Cl键是极性键86.ClO3F分子的几何构型属于A、直线形B、平面正方形C、四面体形D、平面三角形87.下列物质中,属于极性分子的是A、PCl5(g) B、BCl3C、NCl3 D、XeF288.用VSEPR判断下列离子或分子几何构型为三角锥形的是A、SO3B、SO32-C、NO3-D、CH3+89.下列各组分子中,均有极性的一组是A、PF3,PF5B、SF4,SF6C、PF3,SF4D、PF5,SF690.下列物质中,含极性键的非极性分子是A、H2O B、HCl C、SO3D、NO291.下列各对物质中,分子间作用力最弱的是A、NH3和PH3B、He和Ne C、N2和O2D、H2O和CO292.下列分子中,分子间作用力最强的是A、CCl4B、CHCl3C、CH2Cl2 D、CH3Cl93.下列说法中正确的是A、色散力仅存在于非极性分子之间B、极性分子之间的作用力称为取向力C、诱导力仅存在于极性分子与非极性分子之间D、分子量小的物质,其熔点、沸点也会高于分子量大的物质94.在NaCl晶体中,Na+(或Cl-)离子的最大配位数是A、2 B、4 C、6 D、895.下列物质熔点变化顺序中,正确的一组是A、MgO>BaO> BN> ZnCl2>CdCl2B、BN>MgO>BaO>CdCl2>ZnCl2C、BN>MgO>BaO> ZnCl2>CdCl2D、BN> BaO>MgO> ZnCl2> CdCl296.ICl-2离子中,其中心原子I的杂化态为A、s p3B、s p2C、d s p3D、s p3 d97.CO-23的几何构型是A、平面三角形B、三角锥形C、T字形D、直线形98.下列分子中,偶极矩为零的是A、CO2B、SO2C、H2O D、NH399.下列化合物中,既存在离子键和共价键,又存在配位键的是A、NH4F B、NaOH C、H2S D、BaCl2100.下列氯化物的热稳定次序正确的是A、NaCl>MgCl2>AlCl3>SiCl4B、NaCl<MgCl2<AlCl3<SiCl4C、NaCl<MgCl2>AlCl3>SiCl4D、NaCl>MgCl2<AlCl3>SiCl4101.石英和金刚石的相似之处在于A、都具有四面体结构B、都是以共价键结合的原子晶体C、都具有非极性共价键D、其硬度和熔点相近102.如果正离子的电子层结构类型相同,在下述情况中极化能力较大的是A、离子的电荷多,半径大B、离子的电荷多,半径小C、离子的电荷少,半径大D、离子的电荷少,半径小103.下列离子中,极化率最大的是A、Na+B、I-C、Rb+D、Cl-104.下列离子中,属于(9~17)电子构型的是A、Li+B、F-C、Fe3+D、Pb2+105.下列离子中,变形性最大的是A、CO-23B、SO-24C、ClO-4D、MnO-4106.下列分子中,偶极矩不为零的是A、CO2B、BF3C、CHCl3 D、PCl5107.下列说法正确的是A、非极性分子内的化学键总是非极性的B、色散力仅存在于非极性分子之间C、取向力仅存在于极性分子之间D、有氢原子的物质分子间就有氢键108.按离子的电子构型分类,Li+属于A、9~17电子型B、2电子型C、8电子型D、18电子型C、B2 109.下列分子或离子中键级等于零的是A、O2B、O+2D、Ne2110.根据VSEPR理论,可判断下列分子中具有直线形结构的是A、CS2B、NO2 C、OF2D、SO2111.下列分子中,偶极矩不为零的是A、CCl4B、PCl5C、PCl3 D、SF6112.下列各组物质中,熔点最高的一组是A、NaI和SiI4B、NaI和SiF4 C、NaF和SiF4D、NaF和SiI4113.下列说法不正确的是A、离子晶体中,离子的电荷数越多,核间距离越大,晶格能越大B、离子晶体在熔融时能导电C、离子晶体的水溶液能导电D、离子晶体中,晶格能越大,通常熔点越高,硬度越大114.关于杂化轨道的下列说法,正确的是A、CH4分子中的s p3杂化轨道是由H原子的1个n s轨道和C原子的3个p轨道混合起来而形成的B、s p3杂化轨道是由同一原子中的1个n s轨道和3个n p轨道混合起来重新组合成的4个新的原子轨道C、凡是中心原子采取s p3杂化轨道成键的分子,其几何构型都是正四面体D、凡AB3型共价化合物,其中心原子A均采用s p3杂化轨道成键115.常态下:F2、Cl2是气态,Br2是液态,I2是固态,这是由于A、聚集状态不同B、电负性不同C、价电子构型不同D、色散力不同116.下列分子中极性最小的是A、H2O B、NH3C、H2S D、CO2117.下列化合物中,熔点最高的是A、CaO B、SrO C、BaO D、MgO118.下列关于共价键说法错误的是A、两个原子间键长越短,键越牢固B、两个原子半径之和约等于所形成的共价键键长C、两个原子间键长越长,键越牢固D、键的强度与键长无关119.下列关于杂化轨道说法错误的有A、所有原子轨道都参与杂化B、同一原子中能量相近的原子轨道参与杂化C、杂化轨道能量集中,有利于牢固成键D、杂化轨道中一定有一个电子120.s轨道和p轨道杂化的类型有A、s p,s p2B、s p,s p2,s p3C、s p,s p3 D、s p,s p2,s p3,s p3不等性121.下列晶体中具有σ键、大π键和分子间力的有A、MgO B、BN C、CO2(s) D、石墨122.下列关于晶体点缺陷说法错误的是A、点缺陷主要是由于升高温度和掺入杂质引起的B、置换固溶体可看做是一种点缺陷C、点缺陷仅限于晶体中的某一点上D、点缺陷可发生在晶体中的某些位置123.根据分子轨道理论解释He 2分子不存在,是因为其电子排布式为A、(σs1)2 (σ*s1)2B、(σs1)2 (σ2 s)2C、(σs1)2 (σ*s1)1 (σ2 s)1 D、(σs1)2(σ2p)2124.下列分子构型中以s p3杂化轨道成键的是A、直线形B、平面三角形C、八面体形D、四面体形125.非整数比化合物的化学式为A、AmBn+δB、AnBm C、AmBn (1+D、A1Bm (1+126.下列分子或离子中键角最小的是A、NH3B、PCl4+C、BF3D、H2O E、ICl2-127.下列叙述中错误的是A、相同原子间双键的键能等于单键键能的两倍B、对双原子分子来说,键能等于键离解能C、对多原子分子来说,原子化能等于各键键能总和D、键级、键能和键离解能都可作为衡量化学键牢固程度的物理量,其数值愈大,表示键愈强128.下列叙述中正确的是A、旋转操作后ψ 数值恢复但符号相反,这种原子轨道属于u对称B、H2O分子的C2旋转轴是通过O原子核并垂直于分子平面的轴C、HF的最高占有轨道是1π反键轨道D、HF分子中对成键有贡献的是进入3σ的电子129.IF5的空间构型是A、三角双锥形B、平面三角形C、四方锥形D、变形四面体130.下列键能大小顺序中正确的是A、O2+<O2<O2-B、NO<NO+C、N2>O2> O2+D、CO<NO<O2131.H2S分子的空间构型、中心原子的杂化方式分别为A、直线形、s p杂化B、V形、s p2杂化C、直线形、s p3 d杂化D、V 形、s p3杂化132.下列叙述中错误的是A、单原子分子的偶极矩等于零B、键矩愈大,分子的偶极矩也愈大C、有对称中心的分子,其偶极矩等于零D、分子的偶极矩是键矩的矢量和133.下列各组物质沸点高低顺序中正确的是A、HI>HBr>HCl>HFB、H2Te>H2Se>H2S>H2OC、NH3>AsH3>PH3D、CH4>GeH4>SiH4134.在金属晶体的面心立方密堆积结构中,金属原子的配位数为A、4 B、6 C、8 D、12135.下列离子中,极化力最大的是A、Cu+B、Rb+C、Ba2+D、Sr 2+136.下列离子半径大小次序中错误的是 A 、Mg 2+<Ca 2+ B 、Fe 2+>Fe 3+ C 、Cs +>Ba 2+ D 、F ->O 2-137.下列分子中至少有两个长度的键的是 A 、CS 2 B 、BF 3 C 、SF 4D 、XeF 4138.下列分子中,其空间构型不是“V”字形的是 A 、NO 2 B 、O 3 C 、SO 2 D 、BeCl 2139.下列分子中,其空间构型不是“V”字形的是 A 、NO 2 B 、O 3 C 、SO 2 D 、XeF 2140.由键级大小推断下列键长大小次序正确的是A 、N 2>N +2和NO>NO +B 、N 2>N +2和NO<NO +C 、N 2<N +2和NO<NO +D 、N 2<N +2和NO>NO +141.按照分子轨道理论,O 2的最高占有轨道是 A 、1πu B 、1πg C 、3σ u D 、3σ g142.下列式子中,X 是以s p 杂化轨道成键的是A 、 A -X -AB 、A =X =AC 、 A =••X -XD 、A -••••X -A 143.下列分子中,具有直线形结构的是 A 、OF 2 B 、NO 2 C 、SO 2D 、CS 2144.下列分子中,具有直线形结构的是 A 、OF 2 B 、NO 2 C 、SO 2D 、XeF 2145.已知H -H 、Cl -Cl 和H -Cl 的键能分别为436、243和431 kJ·mol -1,则下列反应H 2 ( g )+ Cl 2 ( g ) =2 HCl ( g )的焓变kJ·mol -1)为A 、-183B 、183C 、-248D 、248146.在25℃和标态下,已知NH 3的生成焓Δ f H m Θ =-46.2 kJ·mol -1,H -H 和N≡N 的键能分别为436和946 kJ·mol -1,则N -H 键的键能(kJ·mol -1)为A 、1173B 、-1173C 、391D 、-391147.已知C -H 的键能为416 kJ·mol -1,CH 3Cl(g)的原子化热为1574 kJ·mol -1,C -Cl 的键能(kJ·mol -1)为A 、326B 、-326C 、357D 、-357148.下列离子的电子结构中,未成对电子数等于零的是 A 、Cu 2+ B 、Mn 2+C 、Pb 2+D 、Fe 2+149.下列离子的电子结构中,未成对电子数等于零的是 A 、Cu 2+ B 、Mn 2+C 、Cd 2+D 、Fe 2+150.根据VSEPR 理论,可判断XeO 3和ClF 3的分子空间构型是A 、平面三角形和三角锥形B 、三角锥形和T 字形C 、T 字形和平面三角形D 、三角锥形和平面三角形151.原子轨道之所以要发生杂化是因为A 、进行电子重排B 、增加配对的电子数C 、增加成键能力D 、保持共价键的方向性152.在Br -CH =CH -Br 分子中,C -Br 键的轨道重叠方式是 A 、s p -p B 、s p 2-s C 、s p 2-p D 、s p 3-p153.在下列物种中,不具有孤电子对的是A、NCl3B、H2S C、OH -D、NH+4154.HNO3的沸点(86℃)比H2O的沸点(100℃)低得多的原因是A、HNO3的分子量比H2O的分子量大得多B、HNO3形成分子间氢键,H2O形成分子内氢键C、HNO3形成分子内氢键,H2O形成分子间氢键D、HNO3分子中有Π4大3π键,而H2O分子中没有155.PH3分子中P原子采取的杂化类型是A、s p B、s p2C、s p3 D、不等性s p3156.分子间的范德华力是随下列哪一个量值增加而增加?A、分子量B、温度C、电子数D、电离能157.CH3OCH3和HF分子之间存在的作用力有A、取向力、诱导力、色散力、氢键B、取向力、诱导力、色散力C、诱导力、色散力D、色散力158.下列各组物质中,两种分子间存在氢键的一组是A、CH3OH和HF B、HCl 和HBr C、C6H6和H2O D、H2S和H2O159.下列单键键能最大的是A、O-H B、F-H C、F-F D、N-H160.下列说法中正确的是A、非极性分子中没有极性键B、键长不是固定不变的C、四个原子组成的分子一定是四面体D、三个原子组成的分子一定是直线形161.下列分子中键有极性,分子也有极性的是A、PH3 B、SiF4C、BF3 D、CO2162.下列杂化轨道中可能存在的是A、n=1 的sp B、n=2 的sp3d C、n=2 的sp3D、n=3 的sd163.在H-C-H 分子中,四个原子处于同一平面上,C原子采用的杂化轨道是‖OA、spB、sp2C、sp3D、sp3d164.在乙烯(CH2=CH2)分子中,六个原子处于同一平面上,一条π键垂直于该平面,则C原子采用的杂化轨道是A、spB、sp2C、sp3D、sp3d165.乙醇和醋酸易溶于水而碘和二硫化碳难溶于水的根本原因是A、分子量不同B、有无氢键C、分子的极性不同D、分子间力不同166.在N2、O2和F2分子中,键的强度次序为N2 >O2 > F2。

无机化学第7章 配位化合物

无机化学第7章 配位化合物
电子对,对中心离子的影响较大,使电子层结构发生变化, (n-1)d 轨道上的成单电子被强行配对(需要的能量叫“ 成对能”, P)腾出内层能量较低的 d轨道接受配位体的 孤电子对,形成内轨配合物。
(没有不成对电子)
d2sp3杂化
7.2.3 价键理论的应用
(1) 中心原子(或离子)接受电子的二种方式: a. 中心原子用外层轨道接纳配体电子 例如:[FeF6]4–,3d 6,
2. 软硬酸碱结合原则 软亲软,硬亲硬;软和硬,不稳定。 软硬酸碱理论在解释某些配合物的稳定性和元素在 自然界的存在状态等方面很成功。
1. 配位化合物定义 由中心原子(或离子)和几个配体分子(或离子) 以配位键相结合而形成的复杂分子或离子,通常称为配位
单元,含有配位单元的化合物称为配位化合物。
配位阳离子: [Co ( NH3 )6 ]3+ 和 [Cu ( NH3 )4 ]2+ 配位阴离子: [Cr(CN)6]3- 和 [Co(SCN)4]2- 中性配合物分子:Ni(CO)4 和Cu(NH2CH2COO)2
Co(NH3)63+: Co3+: 3d6
内轨型配合物,µ = 0 ,正八面体构型
4d 4s 4p
3d
4d 调整 3d 4s 4p
d 2 sp 杂 化 3d
NH3 NH3 NH3 NH 3 NH3 NH3
3
d 2 sp3杂 化 轨 道
CoF63– : Co3+: 3d6
外轨型配合物,µ = 4.90B.M.,正八面体构型
没有磁场
样 品 磁 铁 磁 铁
Question
根据实验测得的有效磁矩,判断下 列各种离子分别有多少个未成对电子? 哪个是外轨?哪个是内轨?
2 ① Fe(en) 2 5.5 B.M. ② Mn(SCN) 4 6 6.1 B.M. 2 4.3 B.M. ③ Mn(SCN) 4 1.8 B.M. ④ Co(SCN) 6 4 2 ⑤ Pt(CN) 4 0 B.M.

无机化学-共价键与分子结构

无机化学-共价键与分子结构
注意原子轨道的符号
(二)共价键理论:共价键的类型
◆ π键:成键轨道以“肩并肩”的方式发生轨道的重叠。
重叠部分对通过键轴的平面具有镜面反对称性。
(二)共价键理论:共价键的类型
两个原子之间必须有一个键,但可以形成多个π键,π键稳 定性相对于键较弱。
N原子: 2s2 2p3 2px1 2py1 2pz1
(二)共价键理论:杂化轨道理论(Pauling)
1、理论基本要点
成键时同一原子中能级相近的不同类型的原子轨道混合后,重
新形成一组同等数量的能量完全相同的新轨道 ——杂化轨道
● 杂化前后轨道数目不变 ● 杂化后轨道伸展方向,形状和能量发生改变
● 轨道成分变了
● 轨道的能量变了
结果是更有利于成键!
● 轨道的形状变了
(二)共价键理论:杂化轨道理论
在原子形成分子的过程中,经过激发、杂化、轨道重迭等过程
CH4 C(2s22p2)
激发
2s, px, py, pz
激发所需能量可由形成共价键数目 的增加而释放出更多的能量来补偿
杂化
sp3杂化轨 道
4个能量完全相 同的杂化轨道
(二)共价键理论:杂化轨道理论
杂化类型(s-p杂化):由s轨道和p轨道参与杂化, 根据参与杂化的p轨道数目又可分为sp、sp2、sp3
➢sp杂化(直线型)
2s
H: s
2p 2s
excited
O: px
2p
2p
sp
hybridization two sp hybrid orbital
+
+
Be-s
-+
- + +- -++ -

无机化学7章-共价键与分子的结构

无机化学7章-共价键与分子的结构

104°45′
孤电子对
O H
H H2O分子的空间构型——V形
第7章
共价键与分子的结构
不等性杂化:
中心原子ቤተ መጻሕፍቲ ባይዱ化后所形成的几个杂 化轨道所含原来轨道成分的比例不相 等,性质和能量不完全相同,称为不等 性杂化.
第7章
共价键与分子的结构
杂化轨道的类型与分子的空间构型
杂化轨道类型 参加杂化的轨道
杂化轨道数
中心原子Sn采取的杂化类型为SP 3杂化, SnCl4分子空间构型为正四面体型。
第7章
共价键与分子的结构
2、已知BF3的空间构型为平面正三角形,而 NF3是三角锥形,试用杂化理论给予说明。 B原子的价层电子构型:2S22P1 N原子的价层电子构型:2S 22P 3
第7章
共价键与分子的结构
7.1 价键理论 7.2杂化轨道理论 ※7.3 价层电子对互斥理论 7.4 分子轨道理论简介 7.5 分子间力与氢键 7.6晶体的结构与性质
孤电子对
107°
N
H
H
H NH3分子的空间构型——三角锥形
◆不等性杂化——参加杂化轨道含孤电子对
第7章
NH3共的形价成键: 与分子的结构
2s2p轨道
第7章
共价键与分子的结构
■ H2O的形成过程
2p 2s
H2O 孤电子对
sp3
sp3-s
(O的基态) 杂化 (杂化态) 成键 (化合态)
第7章
共价键与分子的结构
第7章
共价键与分子的结构
价键理论特点:
强调电子对和成键电子的定律,有键的概念, 直观易懂,空间结构解释成功。
但是该理论认为分子中的电子仍属于原来的原 子,有局限性,不能解释O2 具有顺磁性??

无机化学(周祖新)习题解答-第七章

无机化学(周祖新)习题解答-第七章

第七章分子结构和晶体习题解答(7)思考题1.举例说明下列概念的区别:离子键与共价键、共价键与配位键、σ键和Л键、极性键和非极性键、极性分子与非极性分子、分子间力与氢键。

1.离子键是得到电子的阴离子与失去电子的阳离子的强烈静电吸引作用;共价键是原子间通过共用电子对(或电子云重叠)而形成的相互吸引作用,无阴、阳离子;配位键也是共价键中的一种,只不过共用的一对电子有一个原子提供。

σ键是各自电子云用密度最大的一头相互重叠,以使重叠体积最大,两原子间形成共价键时首先肯定以σ键成键,但两原子间只能形成σ键一次。

Л键是在原子间已形成一根σ键后,其余原子轨道以“肩并肩”在侧面重叠的成键方式,其重叠体积比σ键要小,但两原子间根据各自的单电子数可形成几个Л键。

极性键是两不同原子间形成共价键时,由于两原子的电负性不同,吸引公用电子对的作用不同,使某一端带有部分正电荷,另一端带有部分负电荷,这就是极性键;若两相同的原子间形成共价键,由于彼此电负性相同,吸引共用电子对的能力相同,公用电子对不偏向任何一个原子,两原子不带“净”电荷,没有“正”或“负”的一端,即非极性键。

极性分子是整个分子中正、负电荷重心不重合,使分子一端带部分正电荷,为正极,另一端带部分负电荷,为负极。

分子之间由于偶极间的相互作用力为分子间力。

氢键是氢原子与电负性大、半径小的原子形成共价键后,由于氢原子唯一的电子被其他原子吸引到离氢原子核较远的地方,氢原子几乎成了“裸露”的质子,有很强的正电场,吸引另一电负性大、半径小的原子的孤对电子,形成了一种作用力,这个作用力本质上还是分子间作用力,但比一般的分子间力强。

2.离子键是怎样形成的?离子键的特征和本质是什么?为什么离子键无饱和性和方向性?2.离子键是失电子的金属阳离子和德电子的非金属阴离子通过静电引力形成的。

离子键的特征是无方向性、无饱和性。

其本质是正、负点电荷间的静电引力。

点电荷产生的电场向空间各个方向均匀传播,每一个在其电场中的异号电荷都会受到它的吸引作用,在理论上它可吸引无数个异号电荷,所以离子键无饱和性;由于点电荷产生的电场向空间各个方向的传播是均匀的,只要距离相等,不管在哪个方向,受到的作用里是一样的,这就是离子键的无方向性。

无机化学分子结构

无机化学分子结构
第九章
§9.1 §9.2 §9.3 §9.4 §9.5 §9.6
分子结构
Lewis理论 价键理论 杂化轨道理论 价层电子对互斥理论 分子轨道理论 键参数
化学键:分子或晶体中相邻原子(或离子)之间 强烈的吸引作用。
化学键种类:共价键、离子键、金属键。
共价键理论: Lewis理论(1916年) 价键理论(1927年, 1930年) 杂化轨道理论(1931年) 价层电子对互斥理论(1940年) 分子轨道理论(20世纪20年代末)
(LP)
2. 价层电子对尽可能远离,以使斥力最小。
电子对间夹角愈小,斥力愈大.
价层电子对间的斥力大小规律: • 与价层电子对的类型有关,
LP-LP > LP-BP > BP-BP
静电排斥
减小
因为成键电子对在两个原子核控制下,孤电子对仅在 一个原子核控制下,占有较大体积,排斥力更有效。
• 与是否形成π键 有关,叁键 > 双键 > 单键。 • 与中心原子和配位原子的电负性有关。
H2O H 2S O,S
(ⅥA)
思考题:解释C2H4,C2H2,CO2的分子构型。
已知: C2H2,CO2均为直线型;
C2H 4 的构型为:
H 121o H
C = C 118o
H
H
价层电子对 互斥理论
• 杂化轨道理论不能预测分子或离子的几何构型。 • 用杂化轨道理论讨论问题,是在已知分子构型,
尤其是键角的基础上进行的。 作业:P297,第二题 (1)HgCl2(5) NO2-(V型,115.4º)
9.2.2 价键理论的基本要点 1. 基本要点: 与共价键的特点
• 未成对价电子自旋方式相反; •原子轨道最大程度重叠(对称性一致)。

无机化学分子结构性质与理论

无机化学分子结构性质与理论
(饱和性和方向性)以及单电子键等;更无法解释分子的立体结
构。于是泡林提出了现代价键理论和杂化轨道理论及价层电子 对互斥理论(统称价键理论).
无机化学分子结构性质和理论
第二节 价键理论(一)
——电子配对理论又称VB法
该理论认为,共价键是由不同原子的原子轨道或 电子云重叠形成的;成键原子的未成对电子自旋方向 相反;原子轨道重叠程度越大,共价健越稳定。
因HS2O此S32分- 子的立体结构就是原 其s-键的分子骨架在空间的
排布。这种分子骨架可以用现代实验手段测定。
实验证实,属于同一通式的分子或离子,其结构可
能相似,也可能完全不同。
如,H2S和H2O属同一通式H2A,结构很相似,都是 角型分子,仅夹角度数稍有差别,而CO32-离子和SO32离子属同一通式AO32-, 结构却不同:前者是平面型,后者 是立体的三角锥型。
分子结构与价层电子对的关系:
分子 构型
H2O 角形
NH3 三角锥体
CH4 正四面体
E
E
H
AY4 AXn
H
OE H
H
NH H
O
H
H
N
H
H H
无机化学分子结构性质和理论
H
CH HH
H
CH H
(4)价层电子对相互排斥的关系 l-l>>l-b>b-b(l为孤对电子对;b为键合电子对)
孤对电子对与键合电子对斥力不同使理想模型发生 畸变。
Z=(中心原子的族数+配原子的个数-离子的电荷数)/2 注:若配原子是氧族原子,则配原子个数不计。
例如: 分子 SO2 SO3 SO32- SO42- NO2+ CH4 NH3
Z 334 4 2

无机化学分子结构课件

无机化学分子结构课件
分析酸碱分子的结构特点,讨论结构与酸碱强度 之间的关系。
3
酸碱反应机理
详细介绍酸碱中和反应的机理,包括质子的转移 和电子的重新排布等。
氧化还原反应与分子结构关系
氧化还原反应基本概念
解释氧化数、氧化态、氧化还原电对等基本概 念。
氧化还原反应与分子结构
探讨分子结构对氧化还原反应活性和选择性的 影响。
氧化还原反应机理
离子晶体的结构类型
包括简单离子晶体(如NaCl)、复杂离子晶体(如CsCl、CaF2) 等。
金属晶体结构
金属键的形成
自由电子与金属离子间的相互作用形成金属键,构成金属晶体。
金属晶体的特性
良好的导电性、导热性、延展性和塑性。
金属晶体的结构类型
包括简单立方堆积、体心立方堆积、面心立方堆积等。
共价晶体结构
分子构型
甲烷分子由一个碳原子和四个氢原子组成,呈正四面体构 型。
键合方式
甲烷分子中,碳原子与氢原子之间通过共价键连接。
物理性质
甲烷在常温下为无色、无味的气体,难溶于水。
化学性质
甲烷是一种稳定的烷烃,不易发生化学反应。但在特定条 件下,如高温或催化剂作用下,可以发生裂解反应生成碳 和氢气。
氯化氢分子结构及其性质
疏水相互作用和π-π堆积作用
疏水相互作用的定义
疏水相互作用是非极性分子之间 的一种相互吸引力,它是由于非 极性分子在水中相互聚集以降低 体系能量的结果。
π-π堆积作用的定义
π-π堆积作用是芳香环之间的一 种相互吸引力,它是由于芳香环 中π电子的离域作用而产生的。
疏水相互作用和π-π 堆积作用的影响
分子构型
氨分子由一个氮原子和三个氢原子组成, 呈三角锥形构型。

化学键与分子结构 无机化学 ppt课件

化学键与分子结构 无机化学  ppt课件
1mol离子晶体时所放出来的能量称为晶格能, 单位为kJ·mol-1。
Ca2+ (g) + 2Cl- (g) → CaCl2 (s)
– H = U = 2260 kJ·mol-1
晶格能越大,离子键越强,相应的晶体熔点越
高,硬度越大。 ppt课件
7
6.1.3 离子键的特点
(1) 离子键的本质是静电引力
第章
化学键与分子结构
ppt课件
1
主要内容
§6.1 离子键理论
§6.2 共价键理论 §6.3 分子的极性、分子间力和氢键 §6.4 晶体结构简介
ppt课件
2
化学键
分子或晶体中相邻原子间的强相互作用称为化学键。
种类:离子键、金属键和共价键三种。
原子电负性差大于1.7, 离子键;
原子电负性差小于1.7 时,成共价键。
kJ·mol-1 ,此时两个氢原
ro
R
子之间形成了化学键。
ppt课r0件= 74 pm,E = -436 kJ·mol-1 20
为什么自旋相反的单电子能配对成键?
2
2
AB
A
B
吸引态(基态)
排斥态
共价键的本质:电性作用。
原子核对重叠负电区域的吸ppt课引件,使成键两原子相互接近。 21
2.价键理论的要点
正负离子间通过静电引力形成的化学键称为离子键。
由离子键形成的化合物或晶体称为离子化合物或离 子晶体。
如NaCl,KCl,CaO等金属元素的氧化物、氟化物和某些氯 化物。
Na→Na+ Cl→Cl-
2s 2 2p 6 3s 1 → 2s 2 2p 6 2s 2 2p 5 → 2s 2 2p 6

大学无机化学~~~分子结构

大学无机化学~~~分子结构

19
● sp2杂化 2p 2s
excited
2p sp2 2s
2s2p轨道
hybridization three sp2 hybrid orbital
F B + 3F B
F
F
20
● sp杂化 2p 2s
excited
Configuration of Be in ground state Hybrid orbital

28
2 分子轨道的形成
一、原子轨道线性组合 例如两个原子A和B的原子轨道ψ a和ψ b 组成分子轨 道时,线性组合方式如下: Ψ A=ψ a+ψ b Ψ B=ψ a-ψ b 线性组合时,有多少个原子轨道,就组合成多少个分 子轨道。 Ψ B(反键轨道)
A
B
Ψ A(成键轨道)
29
从原子轨道到分子轨道
3
1 化学键分类
• 1) 化学键: 分子中原子结合在一起的 强烈的相互作用,称为化学键。 • 2 )化学键主要分为: • 离子键、共价键、配位键和金属键 四大类型。键的强弱可用键参数衡量。
4
离子键
离子键 —— 即成键原子得失电子后形 成正、负离子,正、负离子间靠静 电引力结合在一起而形成的化学键。 • 特点:无方向性,无饱和性。
具体地说就是: S-S S─Px Px─Px
Py
Pz
Py─Py
Pz─Pz
是对称性一致的。它们可以组合成分子轨道。
S─Py, Px─Py, Px─Pz
是对称性不一致的。
31
它们不能组合成分子轨道。
(2)、最大重叠原则──对称性一致的原子轨道
组合成分子轨道时,总是按照最大重叠方向进行组合。

无机化学 化学键与分子结构

无机化学 化学键与分子结构

4.1.1 离子键的形成
子 (1)离子键理论 1916 年德国科学家 Kossel ( 科塞尔 ) 提出 ) 教 当活泼金属的原子与活泼的非金属原子相互化合时, 案 ① 当活泼金属的原子与活泼的非金属原子相互化合时,均有通 过得失电子而达到稳定电子构型的倾向; 过得失电子而达到稳定电子构型的倾向; 对主族元素,稳定结构是指具有稀有气体的电子结构, 对主族元素,稳定结构是指具有稀有气体的电子结构,如钠 稀有气体的电子结构 和氯;对过渡元素, 轨道一般处于半充满,例外较多。 和氯;对过渡元素,d 轨道一般处于半充满,例外较多。
价键理论 1927
杂化轨道理论 1931
§4.1 离子键理论
无 机 化 学 电 子 教 案
4.1.1 离子键的形成 4.1.2 离子键特点 4.1.3 离子特征 4.1.4 离子晶体 4.1.5 晶格能
离子型化合物: 离子型化合物:活泼金属原子与活泼非金属原子所形成的 化合物。 化合物。如KCl,CaO等。 , 等 主要以晶体形式存在 无 机 化 学 电 较高熔点和沸点 熔融或水溶解后能导电 ?
Zn 2+ , Cd 2+ , Hg 2+ , Cu + , Ag + 等(ns 2 np 6 nd10 )
电子构型, ④ (18+2)电子构型,如 电子构型
Pb 2+ , Sn 2+ , Bi 3+ , Tl +
无 机 化 学 电 子 教 案 电子构型, ⑤ 9 -17电子构型,如 电子构型
(n − 1)s 2 (n − 1)p 6 (n − 1)d10 ns 2
d = rMg 2 + + rO 2 − = 210 pm

《无机化学》第7章化学键理论与分子结构

《无机化学》第7章化学键理论与分子结构

《无机化学》第7章化学键理论与分子结构无机化学是研究无机物质的性质、结构和合成方法的科学。

无机化学中的化学键理论与分子结构是无机化学的重要内容之一化学键是由原子之间电子的相互作用而形成的,在无机化学中,电子主要通过离子键、共价键和金属键来相互作用。

化学键的类型取决于参与形成键的原子的电子数目和结合能力。

离子键是由阳离子和阴离子之间的静电相互作用形成的。

在化学键中,金属原子失去电子成为阳离子,非金属原子获得电子成为阴离子,从而形成的化合物具有离子晶体结构。

离子键通常具有高熔点和可溶性的特点。

共价键是由非金属原子之间的共享电子形成的。

共价键的形成过程涉及到原子间的电子云的重叠,从而共享外层电子。

共价键可以根据电子云的叠加程度分为σ键和π键。

σ键是主要的共价键,π键则是由额外的p轨道重叠形成。

在分子中,共价键的形成能够使得原子达到稳定的价电子层结构。

金属键是由金属原子之间的电子云形成的。

金属原子的价电子在整个金属晶体中自由移动,形成了金属键。

金属键的形成使得金属具有良好的导电性和热导性。

分子结构是由化学键连接在一起的原子的组合。

分子结构决定了分子的性质和反应行为。

分子结构的研究可以通过实验方法,如X射线晶体结构分析、核磁共振谱等技术,也可以通过计算化学方法进行预测和模拟。

简单分子的结构可以由初始条件和分子对称性来确定,而复杂分子的结构则需要借助实验和计算方法的综合分析。

通过对化学键理论和分子结构的研究,我们可以了解无机化合物的形成和性质,为无机化学的应用和发展提供理论基础。

此外,还可以通过对分子结构的研究来设计和合成具有特定性质和功能的无机化合物。

综上所述,化学键理论与分子结构是无机化学中的重要内容,通过研究化学键的类型和分子结构,可以揭示无机物质的性质和反应行为,并为无机化学的应用和研究提供基础。

无机化学的发展离不开对化学键理论和分子结构的深入研究。

普通化学无机化学2013化学键与分子结构

普通化学无机化学2013化学键与分子结构

2021/4/9
11
三、没有绝对的离子键(△x≥1.7)
2021/4/9
12
即使是在典型的离子化合物中,离子间的作用 力也不完全是静电作用,仍有原子轨道重叠的 成分,即离子键也有共价键成分。如CsF中也 有8%的共价性。
两个离子间的电负性差值越大,键的离子性成 分越高。
活泼金属原子的电负性较小,活泼非金属原子
2021/4/9
15
(2)离子的电子构型 离子的电子构型大致有如下几种:
2021/4/9
16
(1)2 电子构型 ns2 最外层为两个电子的离子Li+、Be2+等。
(2)8 电子构型 ns2np6 最外层为8个电子的离子Na+、Mg2+等。
2021/4/9
17
(3)9~17 电子构型(不饱和电子构型)
最外层为9~17个电子的离子如: Fe2+(3s23p63d6) Fe3+(3s23p63d5) Mn2+(3s23p63d5) Cr3+(3s23p63d3) 一般为d区元素。
ns2 np6 nd1-9
2021/4/9
18
(4)18 电子构型: ns2np6nd10 如: Cu+(3s23p63d10) Ag+(4s24p64d10) Zn2+(3s23p63d10) Cd2+(4s24p64d10)
一般为ds区元素及p区高氧化态的金属正离子 Sn4+(4s24p64d10) Pb4+(5s25p65d10)
2021/4/9
19
(5)18+2电子构型:
(n-1)s2 (n-1)p6 (n-1)d10 ns2 Sn2+( 4s24p64d105s2) Pb2+(5s25p65d106s2) Sb3+(4s24p64d105s2) Bi3+(5s25p65d106s2)

无机化学7.3化学键理论

无机化学7.3化学键理论

)
2
(
* 1S
)1
]
键级= 2 1 0.5 2
He2+ 可以存在。
5. Li2 [(1s)2 (*1s) 2 (2s)2 ]
键级= 2 0 1 2
6. Be2 [[(1s)2 (*1s) 2 (2s)2 (*2s) 2]
键级= 2 2 0 2
Be2不能稳定存在
7.
B2 [ ( 1S
)2
MO法优缺点
1. 把分子作为一个整体处理(对比:VB法定域 键),成功解释了单电子键、三电子键、离域键、 O2和B2分子的顺磁性及一些复杂分子的形成,随 着计算机科学的发展,前景看好。
2.不如VB法直观,比较抽象。
作业: 7-21
7.3.5 化学键参数与分子的物理性质
➢ 化学键参数(Bond parameters)
这种分子中的原子通过共用电子对的形式而形成
的化学键称为“共价键”,相应的分子称为“共价分 子”。
Lewis式
结构式
HCl
H:Cl
H-Cl 单键
O2
O::O
O=O 双键
N2
N┇┇N
N N 参键
H2
H:H
H-H 单键
(1) Lewis学说成绩 1. 指出了共价键与离子键的差异; 2. 解释了一些简单的非金属单质和化合物分子的形
(1)一个原子其价电子层有未共用电子对,
又称孤对电子。
CO
(2)另一个原子其价电子层有空轨道。
如:CO (一个键,一个 键和一个 配位 键)
π CO
π
2s2 2p4
7. 3.4 分子轨道法(Meleeular Orbital Theory, MO法)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)方向性
①根据原子轨道最大重叠原理,形成共价键时,原 子间总是尽可能沿着原子轨道最大重叠的方向成 键,原子轨道重叠越多,两核间电子概率密度越 大,形成的键越牢固。
②在形成共价键时,除s轨道能在任何方向最大重叠 外,其它p、d、f 轨道只能沿一定方向才能最大重 叠成键。所以,当一个 A原子与其它一个或几个 B 原子形成共价分子时,B原子在A原子周围的成键 方位是一定的,这就是共价键的方向性。
激发
2p
2s
(激发态)
杂 化
p (杂化态)
sp2
3个sp2杂化轨道
杂化轨道理论
+
σ 2 sp -p
F
F
σ 2 sp -p
+
- + - +
B
F
120° F
-
F +
B
+F
-
平面三角形
图9-8 sp2杂化轨道的空间取向和BF3分子构型
sp2杂化
BF3分子形成时中心B原子的轨道杂化情况 和分子的空间构型。
对于同核双原子分子和多原子分子,如 H2 , O2,P4,S8等,由于成键原子的电负性相同, 共用电子对不发生偏移,核间的电子云密集区 域在两核的中间位置,两原子核正电荷所形成 的正电荷重心和成键电子对的负电荷重心恰好 重合,这种键叫非极性共价键。
极性共价键
NH3 等,成键原子的电负性不同,共用电子对 发生偏移,核间的电子云密集区域偏向电负性 较大的原子一端,使之带部分负电荷,电负性 较小的原子一端则带部分正电荷,键的正负电 荷重心不重合,这种键叫极性共价键。
BF3分子的空间构型
(3) sp3杂化: 杂化轨道间夹角109.5 º ,正四面体结构。
【例9-3】解释CH4分子空间构型—sp3杂化
2 2p2 C 2s 6 已知实验事实::
4个C—H键等同
键角109。28, 正四面体
CH4分子空间构型—等性sp3杂化 2p 2p 激发 2s (基态) 2s (激发态)
Ca,
各物质结构层次与化学键和分子间力的关系 原子 化学键
2H
共价键
分子
分子间力
晶体类型
H2O(s) 分子晶体
H2O (l) O Na → Na+ Cl → Cl共价键 离子键
Na+Cl-(s)
离子晶体
C
金属键
C(金刚石)
Na (s)
原子晶体
金属晶体
Na
7.1 共价键理论
7.1.1 经典路易斯(Lewis)学说
键角180。
直线形分子
BeCl2分子空间构型—等性sp杂化 2p 2p
激发
2s (基态)
2s (激发态)
杂 化
2p
σ sp—p
与2个Cl的3p (化合态) 轨道重叠成键
2p
sp (杂化态)
2个sp杂化轨道
BeCl2的空间构型—sp杂化
Cl
3p
-
+
+ - - +
sp
Be
+
Cl
3p
-
180°
Cl
Be
键能越大,共价键越牢固,形成的分子越稳定。
(2)键长
分子中两成键原子核间的平均距离称为键长或
键距,用符号L表示,单位为pm。
由表 7-2数据可以得出,同一族元素的单质或
同一类型的化合物的双原子分子,键长随原子
序数的增加而增大;两个相同原子之间形成的
不同化学键,其键数越多,则键长越短,键能
就越大,键就越牢固。
现代价键理论
CH≡CH的形成
C—Hσ键
C—Cσ键
碳碳叁键
π键
H——C ≡ C——H
180° 直线型分子
◎π键易断开,不能单独存在,只能与σ键共 存于具有双键或叁键的分子中,
例:N NFra bibliotekσ π π
◎σ键比π键牢固,σ键是构成分子的骨架,能 单独存在于两原子间,以共价结合的两原子 间一定并且只能有一个σ键。


CH4 总成键:4 sp3杂化轨道的空间分布:正四面体 →电子和分子几何构型:正四面体。 4个sp3 杂化轨道等价→ sp3 等性杂化
现代价键理论
(a)最大重叠
(b)、(c)非最大重叠
3. 共价键的特征: 具有饱和性和方向性
(1)饱和性:
当两原子接近时,只有自旋方向相反的未 成对(单个)价电子才能配对形成稳定的共价 键。一个成键原子的价层电子中含有几个单电 子,这个原子最多只能和相同数目自旋方向相 反的单电子配对形成共价键,即原子所能形成 共价键的数目,是由其单电子数决定的,共价 键的这种特性叫做共价键的饱和性。
Lewis式 HCl H:Cl
结构式 H-Cl 单键
O2
N2 H2
O::O
N┇┇N H:H
O=O 双键
N N 参键 H-H 单键
2. 价键理论的基本要点
1930 年鲍林等人,把海特勒和伦敦应用 量子力学原理处理 H2 形成的成果推广应 用到其它分子的形成,并加以发展提出 了现代价键理论。
价键理论的基本要点:
pz – pz(或py-py)
pz pz
+ -
+
+
-
+
-
+
-
x
■特点:重叠程度小,易断开,与σ 共存。
肩并肩重叠形成π键
CH2=CH2
肩并肩重叠形成π键. π键重叠程度较小, 键较不牢固 不能自由旋转.
【例9-7】N2 分子的形成 :
2s 2px 2py 2pz
N
σ π π
N
2s 2px 2py 2pz
4.共价键的类型
(1)根据原子轨道重叠方式不同可分为: σ键:头碰头 π键:肩并肩
“头碰头”重叠—σ键
s s
+
s
+ +
+ +
+
px
s-s + + s-px + +
p x- p x
x
-
+
px
px
x -
-
+ +
-
-
+ +
x
■特点:重叠程度大,牢固,可单独存在
头碰头重叠形成σ键
“肩并肩”重叠—π键
(2)杂化轨道:
杂化所形成新的原子轨道叫做杂化轨道。
2.杂化轨道理论基本要点
①孤立的原子,其轨道不发生杂化,只有在形成 分子的过程中才有可能发生。
②原子形成共价键时,可以运用杂化轨道成键。
不同的杂化方式导致杂化轨道的空间分布不同,
由此决定了分子的空间几何构型不同。
③ 只有能量相近的原子轨道才能进行杂化。
过程叫做 sp杂化,所形成的两个能量相等的轨
道叫做 sp杂化轨道。其间的夹角为 180。每个
sp杂化轨道均含有 50% s轨道成分和 50%p 轨 道成分。
杂化轨道理论
【例9-1】解释BeCl2分子空间构型---sp杂化
2 Be 的外层电子排布: 2s 4
已知实验事实: 有2个等同的Be—Cl键
π

成键轨道 由s-s, s-p, p-p 等原子轨道组成 由p-p,p-d 等原子轨道组成 原子轨道以“肩并肩”方 式 重叠程度较小
度分布
存在形式
集中两核之间
两原子间形成的单键
分散在节面的上、下
两原子间形成双键或三键 时存在 键能较小,稳定性较差
键的性质 键能较大,稳定性较高
5.键参数: 表征化学键基本性质的物理量。共价键的 键参数主要有键能、键长、键角及键的极性等。 (1)键能: 在一定温度和标准压力下,断裂气态分 子的单位物质的量的化学键,使它变成气态原 子或原子团时所需要的能量,称为键能,用 E 表示,其SI单位为kJ· mol﹣1。 △意义:
Cl
直线形
图9-7 BeCl2分子构型和sp杂化轨道的空间取向
sp杂化
sp - sp轨道间夹角180°,呈直线型。
BeCl2(g) 分子
(2)sp2杂化

形成分子时, 其中心原子用1个ns轨道和2 个 np 轨道杂化组合成 3 个 sp2 杂化轨道的 过程叫做 sp2 杂化,所形成的三个能量相 等的轨道叫做sp2杂化轨道。每个sp2杂化
对于异核双原子分子和多原子分子,如HCl、
成键原子的电负性相差越大,键的极 性就越大。当成键原子的电负性差值很大 ( ≥ 2.0 )时,可认为成键电子对完全转 移到电负性较大的原子上,此时原子变为 离子,形成离子键。 △极性强弱的比较:
离子键>极性共价键>非极性共价键
7.1.3 杂化轨道理论
为了解决现代价键理论无法解决的问题, 1931年,鲍林等人在价键理论的基础上提出了 杂化轨道理论,进一步丰富和发展了现代价键
(3)键角
分子中同一原子形成的相邻两个化学键之间的夹 角称为键角。 键角是反映分子空间构型的主要参数。对于双 原子分子,两原子排成直线型。但对于多原子分子, 知道了分子内全部化学键的键长和键角,分子的空间 几何构型也就确定了。
(4)键的极性:
共价键分为非极性共价键和极性共价键。
键的极性是由成键原子的电负性不同而引起的。
④形成的杂化轨道的数目等于参加杂化的原子轨
道数目。 ⑤杂化轨道的形状和空间伸展方向与杂化前轨道 相比都发生了改变,使电子云更加集中,成键 时重叠程度更大,成键能力更强,形成的分子 更加稳定。
3.杂化轨道类型与分子空间构型的关系:
(1)sp杂化 形成分子时, 中心原子采用1个ns轨
道和1个np轨道杂化,组合成2个sp杂化轨道的
相关文档
最新文档