2019年湖北省武汉市中考数学模拟试卷(含答案)

合集下载

2019年湖北省武汉市中考数学模拟试卷(含答案解析)

2019年湖北省武汉市中考数学模拟试卷(含答案解析)

2019年湖北省武汉市中考数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.我市2018年的最高气温为39℃,最低气温为零下7℃,则计算2018年温差列式正确的()A.(+39)﹣(﹣7)B.(+39)+(+7)C.(+39)+(﹣7)D.(+39)﹣(+7)2.无论a取何值时,下列分式一定有意义的是()A.B.C.D.3.下列运算正确的是()A.﹣a2b+2a2b=a2b B.2a﹣a=2C.3a2+2a2=5a4D.2a+b=2ab4.在一个不透明的布袋中装有40个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.30左右,则布袋中黄球可能有()A.12个B.14个C.18个D.28个5.如(x+a)与(x+3)的乘积中不含x的一次项,则a的值为()A.3B.﹣3C.1D.﹣16.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)7.由一些大小相同的小正方体搭成的几何体的左视图和俯视图,如图所示,则搭成该几何体的小正方体的个数最多是()A.7B.8C.9D.108.某校八年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛.各参赛选手成绩的数据分析如下表所示,则以下判断错误的是()A.八(2)班的总分高于八(1)班B.八(2)班的成绩比八(1)班稳定C.八(2)班的成绩集中在中上游D.两个班的最高分在八(2)班9.如图,在平面直角坐标系中,已知⊙A经过点E、B、O.C且点O为坐标原点,点C在y轴上,点E在x轴上,A(﹣3,2),则cos∠OBC的值为()A.B.C.D.10.如图,AD和AC分别是⊙O的直径和弦,且∠CAD=30°,OB⊥AD,交AC于点B,若OB=5,则BC的长是()A.5B.5C.5﹣10D.10﹣5二.填空题(共6小题,满分18分,每小题3分)11.计算﹣9的结果是.12.若m+n=1,mn=2,则的值为.13.为了弘扬中华传统文化,营造书香校园文化氛围,2017年12月11日,兴义市新电学校举行中华传统文化知识大赛活动该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是14.将一张长方形纸片按如图所示的方式折叠,BD 、BE 为折痕,若∠ABE =20°,则∠DBC 为 度.15.如图,在菱形ABCD 中,∠BAD =120°,CE ⊥AD ,且CE =BC ,连接BE 交对角线AC 于点F ,则∠EFC = °.16.已知二次函数y =x 2﹣4x +k 的图象的顶点在x 轴下方,则实数k 的取值范围是 .三.解答题(共8小题,满分72分)17.解方程组:.18.如图,点D 是AB 上一点,E 是AC 的中点,连接DE 并延长到F ,使得DE =EF ,连接CF .求证:FC ∥AB .19.某校八(1)班同学为了解2018年姜堰某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,请解答以下问题:(1)本次调查采用的调杳方式是(填“普査”或“抽样调查”),样本容量是;(2)补全频数分布直方图:(3)若将月均用水量的频数绘成扇形统计图,则月均用水量“15<x≤20”的圆心角度数是;(4)若该小区有5000户家庭,求该小区月均用水量超过20t的家庭大约有多少户?20.一个进行数值转换的运行程序如图所示,从“输入实数x”到“结果是否大于0”称为“一次操作”(1)判断:(正确的打“√”,错误的打“×”)①当输入x=3后,程序操作仅进行一次就停止.②当输入x为负数时,无论x取何负数,输出的结果总比输入数大.(2)探究:是否存在正整数x,使程序能进行两次操作,并且输出结果小于12?若存在,请求出所所有符合条件的x的值;若不存在,请说明理由.21.如图,以AB为直径作半圆O,点C是半圆上一点,∠ABC的平分线交⊙O于E,D为BE延长线上一点,且∠DAE=∠FAE.(1)求证:AD为⊙O切线;(2)若sin∠BAC=,求tan∠AFO的值.22.矩形AOBC中,OB=8,OA=4.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.(1)当点F运动到边BC的中点时,求点E的坐标;(2)连接EF、AB,求证:EF∥AB;(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.23.△ABC中,BC=12,高AD=8,矩形EFGH的一边GH在BC上,顶点E、F分别在AB、AC上,AD与EF交于点M.(1)求证:;(2)设EF=x,EH=y,写出y与x之间的函数表达式;(3)设矩形EFGH的面积为S,求S与x之间的函数表达式,并写出S的最大值.24.如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据题意列出算式即可.【解答】解:根据题意得:(+39)﹣(﹣7),故选:A.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.2.【分析】由分母是否恒不等于0,依次对各选项进行判断.【解答】解:当a=0时,a2=0,故A、B中分式无意义;当a=﹣1时,a+1=0,故C中分式无意义;无论a取何值时,a2+1≠0,故选:D.【点评】解此类问题,只要判断是否存在a使分式中分母等于0即可.3.【分析】根据合并同类项的法则,合并时系数相加减,字母与字母的指数不变.【解答】解:A、正确;B、2a﹣a=a;C、3a2+2a2=5a2;D、不能进一步计算.故选:A.【点评】此题考查了同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.还考查了合并同类项的法则,注意准确应用.4.【分析】利用频率估计概率得到摸到黄球的概率为0.3,然后根据概率公式计算即可.【解答】解:设袋子中黄球有x个,根据题意,得:=0.30,解得:x=12,即布袋中黄球可能有12个,故选:A.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.5.【分析】利用多项式乘以多项式法则计算,根据结果中不含x的一次项求出a的值即可.【解答】解:原式=x2+(a+3)x+3a,由结果不含x的一次项,得到a+3=0,解得:a=﹣3,故选:B.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.【分析】易得这个几何体共有2层,由俯视图可得第一层小正方体的个数,由左视图可得第二层小正方体的最多个数,相加即可.【解答】解:由俯视图易得最底层有6个小正方体,第二层最多有3个小正方体,那么搭成这个几何体的小正方体最多为3+6=9个.故选:C.【点评】考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.8.【分析】直接利用表格中数据,结合方差的定义以及算术平均数、中位数、众数得出答案.【解答】解:A、∵95>94,∴八(2)班的总分高于八(1)班,不符合题意;B、∵8.4<12,∴八(2)班的成绩比八(1)班稳定,不符合题意;C、∵93<94,∴八(2)班的成绩集中在中上游,不符合题意;D、无法确定两个班的最高分在哪个班,符合题意.故选:D.【点评】此题主要考查了方差的定义以及算术平均数、中位数、众数,利用表格获取正确的信息是解题关键.9.【分析】连接EC,由∠COE=90°,根据圆周角定理可得:EC是⊙A的直径,求出OE和OC,根据勾股定理求出EC,解直角三角形求出即可.【解答】解:过A作AM⊥x轴于M,AN⊥y轴于N,连接EC,∵∠COE=90°,∴EC是⊙A的直径,即EC过O,∵A(﹣3,2),∴OM=3,ON=2,∵AM⊥x轴,x轴⊥y轴,∴AM∥OC,同理AN∥OE,∴N为OC中点,M为OE中点,∴OE=2AN=6,OC=2AM=4,由勾股定理得:EC==2,∵∠OBC=∠OEC,∴cos∠OBC=cos∠OEC===,故选:B.【点评】此题考查了圆周角定理,勾股定理,坐标与图形性质,以及锐角三角函数定义,熟练掌握定理是解本题的关键.10.【分析】在Rt△AOB中,已知了OB的长和∠A的度数,根据直角三角形的性质可求得OA的长,也就得到了直径AD的值,连接CD,同理可在Rt△ACD中求出AC 的长,由BC=AC﹣AB即可得解.【解答】解:连接CD;Rt△AOB中,∠A=30°,OB=5,则AB=10,OA=5;在Rt△ACD中,∠A=30°,AD=2OA=10,∴AC=cos30°×10=×10=15,∴BC=AC﹣AB=15﹣10=5,故选:A.【点评】本题主要考查了直角三角形的性质和圆周角定理的应用,难度不大.二.填空题(共6小题,满分18分,每小题3分)11.【分析】直接化简二次根式,进而合并求出答案.【解答】解:原式=2﹣9×=2﹣3=﹣.故答案为:﹣.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.12.【分析】原式通分并利用同分母分式的加法法则计算,将m+n与mn的值代入计算即可求出值.【解答】解:∵m+n=1,mn=2,∴原式==.故答案为:【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.13.【分析】画出树状图,再根据概率公式列式进行计算即可得解.【解答】解:画树状图如下:共有20种机会均等的结果,其中一男一女占12种,则恰好抽中一男一女的概率是=,故答案为:.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.14.【分析】根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,再根据平角的度数是180°,∠ABE=20°,继而即可求出答案.【解答】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°,又∵∠ABE=20°,∴∠DBC=70°.故答案为:70.【点评】此题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.15.【分析】由菱形及菱形一个内角为120°,易得△ABC与△ACD为等边三角形.CE ⊥AD可由三线合一得CE平分∠ACD,即求得∠ACE的度数.再由CE=BC等腰三角形把∠E度数求出,用三角形内角和即能去∠EFC.【解答】解:∵菱形ABCD中,∠BAD=120°∴AB=BC=CD=AD,∠BCD=120°,∠ACB=∠ACD=∠BCD=60°,∴△ACD是等边三角形∵CE⊥AD∴∠ACE=∠ACD=30°∴∠BCE=∠ACB+∠ACE=90°∵CE=BC∴∠E=∠CBE=45°∴∠EFC=180°﹣∠E﹣∠ACE=180°﹣45°﹣30°=105°故答案为:105°【点评】本题考查了菱形的性质,等腰三角形及三线合一,三角形内角和.按照题目给的条件逐步综合信息即能求出答案.16.【分析】先根据函数解析式得出抛物线的开口向上,根据顶点在x轴的下方得出△>0,求出即可.【解答】解:∵二次函数y=x2﹣4x+k中a=1>0,图象的开口向上,又∵二次函数y=x2﹣4x+k的图象的顶点在x轴下方,∴△=(﹣4)2﹣4×1×k>0,解得:k<4,故答案为:k<4.【点评】本题考查了二次函数的图象与系数的关系和抛物线与x轴的交点,能根据题意得出(﹣4)2﹣4×1×k>0是解此题的关键.三.解答题(共8小题,满分72分)17.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②×3得:10x=50,解得:x=5,把x=5代入②得:y=3,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【分析】利用已知条件容易证明△ADE≌△CFE,得出角相等,然后利用平行线的判定可以证明FC∥AB.【解答】证明:∵E是AC的中点,∴AE=CE,又EF=DE,∠AED=∠FEC,在△ADE与△CFE中,,∴△ADE≌△CFE(SAS).∴∠EAD=∠ECF.∴FC∥AB.【点评】此题主要考查了全等三角形的性质与判定,平行线的判定定理.通过全等得角相等,然后得到两线平行时一种常用的方法,应注意掌握运用.19.【分析】(1)由抽样调查的定义及第1组的频数与频率可得答案;(2)根据频数=总数×频率可得m的值,据此即可补全直方图;(3)先求得n的值,再用360°乘以n可得答案;(4)用总户数乘以最后两组的频率之和可得答案.【解答】解:(1)本次调查采用的调杳方式是抽样调查,样本容量为6÷0.12=50,故答案为:抽样调查,50;(2)m=50×0.32=16,补全直方图如下:(3)∵n=10÷50=0.2,∴月均用水量“15<x≤20”的圆心角度数是360°×0.2=72°,故答案为:72°;(4)该小区月均用水量超过20t的家庭大约有5000×(0.08+0.04)=600(户).【点评】本题考查频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.20.【分析】(1)直接根据运算程序进而判断得出答案;(2)直接根据运算程序得出关于x的不等式进而求出答案.【解答】解:(1)①当输入x=3后,程序操作进行一次后得到3×(﹣2)+5=﹣1,故不可能就停止,故此说法错误;故答案为:×;②当输入x为负数时,无论x取何负数,输出的结果总比输入数大,正确;故答案为:√;(2)由题意可得:﹣2x+5≤0,且0<﹣2(﹣2x+5)+5<12,解得:≤x<,∵x为正整数,∴符合题意的x为:3,4.【点评】此题主要考查了一元一次不等式的应用,正确得出不等关系是解题关键.21.【分析】(1)先利用角平分线定义、圆周角定理证明∠4=∠2,再利用AB为直径得到∠2+∠BAE=90°,则∠4+∠BAE=90°,然后根据切线的判定方法得到AD为⊙O切线;(2)先利用圆周角定理得到∠ACB=90°,则sin∠BAC==,设BC=3k,AC =4k,所以AB=5k.连接OE交OE于点G,如图,利用垂径定理得OE⊥AC,所以OE∥BC,AG=CG=2k,则OG=k,EG=k,再证明△EFG∽△BFC,利用相似比得到=,于是可计算出FG=CG=k,然后根据正切的定义求解.【解答】(1)证明:∵BE平分∠ABC,∴∠1=∠2,∵∠1=∠3,∠3=∠4,∴∠4=∠2,∵AB为直径,∴∠AEB=90°,∵∠2+∠BAE=90°∴∠4+∠BAE=90°,即∠BAD=90°,∴AD⊥AB,∴AD为⊙O切线;(2)解:∵AB为直径,∴∠ACB=90°,在Rt△ABC中,∵sin∠BAC==,∴设BC=3k,AC=4k,则AB=5k.连接OE交OE于点G,如图,∵∠1=∠2,∴=,∴OE⊥AC,∴OE∥BC,AG=CG=2k,∴OG=BC=k,∴EG=OE﹣OG=k,∵EG∥CB,∴△EFG∽△BFC,∴===,∴FG=CG=k,在Rt△OGF中,tan∠GFO===3,即tan∠AFO=3.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理、垂径定理和解直角三角形.22.【分析】(1)首先确定点B坐标,再根据中点的定义求出点E坐标即可;(2)连接AB,分别求出∠EFC,∠ABC的正切值即可解决问题;(3)先作出辅助线判断出Rt△MED∽Rt△BDF,再确定出点E,F坐标进而EG=8﹣,GF=4﹣,求出BD,最后用勾股定理建立方程求出k即可得出结论;【解答】解:(1)∵四边形OACB是矩形,OB=8,OA=4,∴C(8,4),∵AE=EC,∴E(4,4),∵点E在y=上,∴E(4,4).(2)连接AB,设点F(8,a),∴k=8a,∴E(2a,4),∴CF=4﹣a,EC=8﹣2a,在Rt△ECF中,tan∠EFC===2,在Rt△ACB中,tan∠ABC==2,∴tan∠EFC=tan∠ABC,∴∠EFC=∠ABC,∴EF∥AB.(3)如图,设将△CEF沿EF折叠后,点C恰好落在OB上的G点处,∴∠EGF=∠C=90°,EC=EG,CF=GF,∴∠MGE+∠FGB=90°,过点E作EM⊥OB,∴∠MGE+∠MEG=90°,∴∠MEG=∠FGB,∴Rt△MEG∽Rt△BGF,∴=,∵点E(,4),F(8,),∴EC=AC﹣AE=8﹣,CF=BC﹣BF=4﹣,∴EG=EC=8﹣,GF=CF=4﹣,∵EM=4,∴=,∴GB=2,在Rt△GBF中,GF2=GB2+BF2,即:(4﹣)2=(2)2+()2,∴k=12,∴反比例函数表达式为y=.【点评】此题是反比例函数综合题,主要考查了根据条件求反比例函数解析式及其应用,利用图形性质表示出相关点的坐标,根据点与函数的关系找出关系式,涉及内容有锐角三角函数,三角形相似的性质和判定,勾股定理的应用,注意点(m,n)在函数y=的图象上,则mn=k的利用是解本题的关键.23.【分析】(1)先判断出AM是△AEF的高,再判断出△AEF∽△ABC,即可得出结论;(2)先判断出四边形EMDG是矩形,得出DM=EH,进而表示出AM=8﹣y,借助(1)的结论即可得出结论;(3)由矩形的面积公式得出函数关系式,即可得出结论.【解答】解:(1)∵四边形EFGH是矩形,∴EF∥BC,∵AD是△ABC的高,∴AD⊥BC,∴AM⊥EF,∵EF∥BC,∴△AEF∽△ABC,∴(相似三角形的对应边上高的比等于相似比);(2)∵四边形EFGH是矩形,∴∠FEH=∠EHG=90°,∵AD⊥BC,∴∠HDM=90°=∠FEH=∠EHG,∴四边形EMDH是矩形,∴DM=EH,∵EF=x,EH=y,AD=8,∴AM=AD﹣DM=AD﹣EH=8﹣y,由(1)知,,∴,∴y=8﹣x(0<x<12);(3)由(2)知,y=8﹣x,∴S=S=xy=x(8﹣x)=﹣(x﹣6)2+24,矩形EFGH∵a=﹣<0,∴当x=6时,S max=24.【点评】此题是相似形综合题,主要考查了矩形的性质,相似三角形的判定和性质,矩形的面积公式,掌握相似三角形的性质是解本题的关键.24.【分析】(1)根据正切函数,可得OB,根据旋转的性质,可得△DOC≌△AOB,根据待定系数法,可得函数解析式;(2)①根据相似三角形的判定,可得答案,②根据相似三角形的性质,可得PM与ME的关系,根据解方程,可得t的值,根据自变量与函数值的对应关系,可得答案.【解答】解:(1)在Rt△AOB中,OA=1,tan∠BAO==3,∴OB=3OA=3∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1.∴A,B,C的坐标分别为(1,0),(0,3),(﹣3,0),代入解析式为,解得,抛物线的解析式为y=﹣x2﹣2x+3;(2)∵抛物线的解析式为y=﹣x2﹣2x+3,∴对称轴为l=﹣=﹣1,∴E点坐标为(﹣1,0),如图,①当∠CEF=90°时,△CEF∽△COD,此时点P在对称轴上,即点P为抛物线的顶点,P(﹣1,4);②当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于M点,△EFC∽△EMP,∴===∴MP=3ME,∵点P的横坐标为t,∴P(t,﹣t2﹣2t+3),∵P在第二象限,∴PM=﹣t2﹣2t+3,ME=﹣1﹣t,∴﹣t2﹣2t+3=3(﹣1﹣t),解得t1=﹣2,t2=3,(与P在二象限,横坐标小于0矛盾,舍去),当t=﹣2时,y=﹣(﹣2)2﹣2×(﹣2)+3=3∴P(﹣2,3),∴当△CEF与△COD相似时,P点的坐标为(﹣1,4)或(﹣2,3).【点评】本题考查了二次函数综合题,解(1)的关键是利用旋转的性质得出OC,OD的长,又利用了待定系数法;解(2)的关键是利用相似三角形的性质得出MP=3ME.。

【中考模拟】湖北武汉市2019年 中考数学模拟试卷 (含答案)

【中考模拟】湖北武汉市2019年 中考数学模拟试卷 (含答案)

2019年 中考数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.2的倒数是( )A. B.﹣ C.2 D.﹣22.下列分式的约分不正确的是( )3.若A 和B 都是3次多项式,则A+B 一定是( )A.6次多项式B.3次多项式C.次数不高于3次的多项式D.次数不低于3次的多项式4.某排球队6名场上队员的身高(单位:cm)是180,184,188,190,192,194.现用一名身高为186 cm 的队员换下场上身高为192 cm 的队员,与换人前相比,场上队员的身高( )A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大5.已知多项式(x 2-mx+1)(x-2)的积中x 的一次项系数为零,则m 的值是( )A.1B.–1C.–2D.-0.56.已知A(-4,3),B(0,0),C(-2,-1),则三角形ABC 的面积为( )A.3B.4C.5D.67.如图是某几何体的三视图,则该几何体的体积是( )A.80πB.160πC.640πD.800π8.甲、乙各丢一次公正骰子比大小.若甲、乙的点数相同时,算两人平手;若甲的点数大于乙时,算甲获胜;若乙的点数大于甲时,算乙获胜.求甲获胜的机率是多少? A.31 B.21 C.125 D.127 9.右图是“东方”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请帮忙算一算,该洗发水的原价是( )A.22元B.23元C.24元D.26元10.如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O 、B 的对应点分别为O /,B /,连接BB /,则图中阴影部分的面积是( )A. B. C. D.二、填空题(本大题共6小题,每小题3分,共18分)11.计算: = .12.在扇形统计图中,其中一个扇形的中心角为72°,则这个扇形所表示的部分占总体的百分数为 . 13.= 。

2019年武汉市中考数学模拟试题与答案

2019年武汉市中考数学模拟试题与答案

2019年武汉市中考数学模拟试题与答案考生须知:1.本试卷满分为120分,考试时间为120分钟。

2.答题前,考生先将自己的”姓名”、“考号”、“考场"、”座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内。

3.保持卡面整洁,不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷 选择题(共30分)一、选择题(每小3分,共计30分。

每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。

) 1.我国每年淡水为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500用科学记数法表示为A .275×102B .2.75×103C .2.75×104D .0.275×1052. 在下列交通标志图中,既是轴对称图形,又是中心对称图形的是3.下列各式运算中正确的是A.336)2-(y y -=B.0130=C.448a a a -=÷- D.13169±=4. 一组数据是4,x ,5,10,11共五个数,其平均数为7,则这组数据的众数是 A .4 B .5 C .10 D .115.如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是 A .主视图 B .左视图 C .俯视图 D .主视图和俯视图 6. 函数a ax y -=与)0(≠=a xay 在同一坐标系中的图象可能是7. 已知关于x 的不等式组有四个整数解,则实数a 的取值范围A. -3<a ≤ 2B. -3≤a ≤ 2C.-3<a ≤-2D. -3≤ a <-28.如图,用若干个全等的正五边形可以拼成一个环状,图中所示的是前3个正五边形的拼接情况,要完全拼成一个圆环还需要的正五边形个数是A .5B .6C .7D .8 9.对于二次函数y =-14x 2+x -4,下列说法正确的是A .当x >0时,y 随x 的增大而增大B .当x =2时,y 有最大值-3C .图象的顶点坐标为(-2,-7)D .图象与x 轴有两个交点10. 如图,已知∠AOB=30°,以O 为圆心、a 为半径画弧交OA 、OB 于A 1、B 1,再分别以A 1、B 1为圆心、a 为半径画弧交于点C 1,以上称为一次操作.再以C 1为圆心,a 为半径重新操作,得到C 2.重复以上步骤操作,记最后一个两弧的交点(离点O 最远)为C K ,则点C K 到射线OB 的距离为A.a 2B.32a C .a D.3a 第Ⅱ卷 非选择题(共90分)二、填空题(本大共6小题,每小题3分,满分18分) 11.多项式ab ab b a --222的次数是 .12.函数y=的自变量x 的取值范围为 .13. Rt△ABC 中,∠C =90°,AC =3,BC =4.把它沿边BC 所在的直线旋转一周,所得到的几何体 的全面积为 .14.实数a 在数轴上的位置如图所示,化简()__12=+-a a15. 已知线段AB =8cm ,在直线AB 上画线段BC ,使BC =3cm ,则线段AC =__________.16.如图,直线l :y =-12x +1与坐标轴交于A ,B 两点,点M(m ,0)是x 轴上一动点,以点M 为圆心,2个单位长度为半径作⊙M,当⊙M 与直线l 相切时,则m 的值为 .三、解答题(共7小题,计72分) 17.(本题8分)计算:()cos --+-︒--01226012.18.(本题8分)先化简,再求值:(x 2-4x 2-4x +4 -2x -2 )÷ x 2+2xx-2 , 然后选取一个你喜欢的数代入求值.19.(本题10分)为了丰富同学们的课余生活,某学校将举行“亲近大自然”户外活动.现随机抽取了部分学生进行主题为“你最想去的景点是”的问卷调查,要求学生只能从“A (绿博园),B (人民公园),C (湿地公园),D (森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.(1)本次共调查了多少名学生? (2)补全条形统计图;(3)若该学校共有3 600名学生,试估计该校最想去湿地公园的学生人数.20.(本题10分)定义:在△ABC 中,∠C =30°,我们把∠A 的对边与∠C 的对边的比叫做∠A 的邻弦,记作 thi A ,即thi A =∠A 的对边∠C 的对边=BCAB .请解答下列问题:已知:在△ABC 中,∠C =30°.(1)若∠A =45°,求thi A 的值; (2)若thi A =3,则∠A = °;(3)若∠A 是锐角,探究thi A 与sin A 的数量关系 . 21.(本题12分)将△ABC绕点A 按逆时针方向旋转θ度,并使各边长变为原来的n 倍,得△AB′ C′ ,如图①所示,∠BAB′ =θ,AB B C AC n AB BC AC''''===,我们将这种变换记为[θ,n] . (13]得到△AB′ C′ ,则'AB C S ''∆:ABC S ∆ =_______ ;直线BC 与直线B′C′所夹的锐角为_______度;(2)如图②,△ABC中,∠BAC=30° ,∠ACB=90° ,对△ABC作变换[θ,n]得到△AB′ C′ ,使 点B 、C 、C '在同一直线上,且四边形ABB′C′为矩形,求θ和n 的值;(3)如图③ ,△ABC中,AB=AC,∠BAC=36° ,BC=1,对△ABC作变换[θ,n]得到△AB′C′ , 使点B 、C 、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n 的值.22.(本题12分)某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式。

2019年湖北省武汉市武昌区中考模拟数学试卷(二) (解析版)

2019年湖北省武汉市武昌区中考模拟数学试卷(二) (解析版)

2019年湖北省武汉市武昌区中考模拟数学试卷(二)一.选择题(共10小题)1.有理数3的相反数是()A.﹣3B.﹣C.3D.2.式子在实数范围内有意义,则x的取值范围是()A.x>﹣2B.x≥﹣2C.x<﹣2D.x≤﹣23.不透明的袋子中装有形状、大小、质地完全相同的5个球,其中3个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是2个白球、1个黑球B.摸出的是3个黑球C.摸出的是3个白球D.摸出的是2个黑球、1个白球4.若点A(1,2),B(﹣1,2),则点A与点B的关系是()A.关于x轴对称B.关于y轴对称C.关于直线x=1对称D.关于直线y=1对称5.如图所示的几何体的俯视图是()A.B.C.D.6.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x张甲种票,y张乙种票,则所列方程组正确的是()A.B.C.D.7.把八个完全相同的小球平分为两组,每组中每个分别写上1,2,3,4四个数字,然后分别装入不透明的口袋内搅匀,从第一个口袋内取出一个数记下数字后作为点P的横坐标x,然后再从第二个口袋中取出一个球记下数字后作为点P的纵坐标,则点P(x,y)落在直线y=﹣x+5上的概率是()A.B.C.D.8.如图,甲处表示2街6巷的十字路口,乙处表示6街1巷的十字路口.如果用(2,6)表示甲处的位置,那么“(2,6)→(3,6)→(4,6)→(5,6)→(6,6)→(6,5)→(6,4)→(6,3)→(6,2)→(6,1)”表示从甲处到乙处的一种路线(规定:只能沿线向下和向右运动),则从甲处到乙处的路线中经过丙处的走法共有()A.38种B.39种C.40种D.41种9.已知a,b,c满足a+b+c=0,4a+c=2b,则二次函数y=ax2+bx+c(a≠0)的图象的对称轴为()A.直线x=1B.直线x=﹣1C.直线x=D.直线x=﹣10.如图,在等腰三角形△ABC中,O为底边BC的中点,以O为圆心作半圆与AB,AC 相切,切点分别为D,E.过半圆上一点F作半圆的切线,分别交AB,AC于M,N.那么的值等于()A.B.C.D.1二.填空题(共6小题)11.化简的结果是.12.某校举行“中国诗词大会”的比赛每班限报一名选手,九(1)班甲、乙、丙、丁四位选手在班级选拔赛时的数据如表:甲乙丙丁平均分9.89.39.29.8方差 1.5 3.2 3.3 6.8根据表中数据,要从四个同学中选择一个成绩好且发挥稳定的参加比赛,应该选择是(填“甲”或“乙”或“丙”或“丁”)13.化简的结果是.14.如图,在矩形ABCD中,边AD沿DF折叠,点A恰好落在矩形的对称中心E处,则cos∠ADF=.15.如图,一次函数y=3x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣3,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为2,则k的值为.16.如图,在△ABC中,点D,E分别为AB,AC边上一点,且BE=CD,CD⊥BE.若∠A=30°,BD=1,CE=2,则四边形CEDB的面积为.三.解答题(共8小题)17.计算:(2a2)2﹣a•3a3+a5÷a.18.如图,AB∥CD,∠ADC=∠ABC.求证:∠E=∠F.19.“长跑”是中考体育考试项目之一,某中学为了解九年级学生“长跑”的情况,随机抽取部分九年级学生,测试其长跑成绩(男子1000米,女子800米),按长跑的时间的长短依次分为A,B,C,D四个等级进行统计,并绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)在这次调查中共抽取了名学生,扇形统计图中,D类所对应的扇形圆心角大小为;(2)补全条形统计图,所抽取学生“长跑”测试成绩的中位数会落在等级;(3)若该校九年级共有900名学生,请你估计该校C等级的学生约在多少人?20.如图,在下列10×10的网格中,横、纵坐标均为整数的点叫做格点,例如A(3,0),B(4,3)都是格点.将△AOB绕点O顺时针旋转90°得到△COD(点A,B的对应点分别为点C,D).(1)作出△COD;(2)下面仅用无刻度的直尺画△AOD的内心I,操作如下:第一步:在x轴上找一格点E,连接DE,使OE=OD;第二步:在DE上找一点F,连接OF,使OF平分∠AOD;第三步:找格点G,得到正方形OAGC,连接AC,则AC与OF的交点I是△OAD的内心.请你按步骤完成作图,并直接写出E,F,I三点的坐标.21.如图,AB是⊙O的直径,过圆外一点E作EF与⊙O相切于G,交AB的延长线于F,EC⊥AB于H,交⊙O于D,C两点,连接AG交DC于K.(1)求证:EG=EK;(2)连接AC,若AC∥EF,cos C=,AK=,求BF的长.22.随着《流浪地球》的热播,其同名科幻小说的销量也急剧上升.为应对这种变化,某网店分别花20000元和30000元先后两次增购该小说,第二次的数量比第一次多500套,且两次进价相同.(1)该科幻小说第一次购进多少套?(2)根据以往经验:当销售单价是25元时,每天的销售量是250套;销售单价每上涨1元,每天的销售量就减少10套.网店要求每套书的利润不低于10元且不高于18元.①直接写出网店销售该科幻小说每天的销售量y(套)与销售单价x(元)之间的函数关系式及自变量x的取值范围;②网店决定每销售1套该科幻小说,就捐赠a(0<a<7)元给困难职工,每天扣除捐赠后可获得的最大利润为1960元,求a的值.23.在△ABC中,∠ACB=90°,CD为高,BC=nAC(1)如图1,当n=时,则的值为;(直接写出结果)(2)如图2,点P是BC的中点,过点P作PF⊥AP交AB于F,求的值;(用含n 的代数式表示)(3)在(2)的条件下,若PF=BF,则n=.(直接写出结果)24.在平面直角坐标系xOy中,抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,0),B两点,与y轴交于C(0,3),对称轴为直线x=2.(1)请直接写出该抛物线的解析式;(2)设直线l与抛物线的对称轴的交点为F,在对称轴右侧的抛物线上有一点G,若=,且S△BAG=6,求点G的坐标;(3)若在直线y=上有且只有一点P,使∠APB=90°,求k的值.参考答案与试题解析一.选择题(共10小题)1.有理数3的相反数是()A.﹣3B.﹣C.3D.【分析】依据相反数的定义求解即可.【解答】解:3的相反数是﹣3.故选:A.2.式子在实数范围内有意义,则x的取值范围是()A.x>﹣2B.x≥﹣2C.x<﹣2D.x≤﹣2【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x+2≥0,解得x≥﹣2.故选:B.3.不透明的袋子中装有形状、大小、质地完全相同的5个球,其中3个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是2个白球、1个黑球B.摸出的是3个黑球C.摸出的是3个白球D.摸出的是2个黑球、1个白球【分析】根据白色的只有两个,不可能摸出三个进行解答.【解答】解:A.摸出的是2个白球、1个黑球是随机事件;B.摸出的是3个黑球是随机事件;C.摸出的是3个白球是不可能事件;D.摸出的是2个黑球、1个白球是随机事件,故选:C.4.若点A(1,2),B(﹣1,2),则点A与点B的关系是()A.关于x轴对称B.关于y轴对称C.关于直线x=1对称D.关于直线y=1对称【分析】根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【解答】解:∵点A(1,2),B(﹣1,2),∴点A与点B关于y轴对称,故选:B.5.如图所示的几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上往下看,易得一个长方形,且其正中有一条纵向实线,故选:B.6.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x张甲种票,y张乙种票,则所列方程组正确的是()A.B.C.D.【分析】分别利用有35名学生以及购票恰好用去750元,得出等式求出答案.【解答】解:设买了x张甲种票,y张乙种票,根据题意可得:.故选:B.7.把八个完全相同的小球平分为两组,每组中每个分别写上1,2,3,4四个数字,然后分别装入不透明的口袋内搅匀,从第一个口袋内取出一个数记下数字后作为点P的横坐标x,然后再从第二个口袋中取出一个球记下数字后作为点P的纵坐标,则点P(x,y)落在直线y=﹣x+5上的概率是()A.B.C.D.【分析】首先根据题意画出表格,然后由表格求得所有等可能的结果与数字x、y满足y =﹣x+5的情况,再利用概率公式求解即可求得答案.【解答】解:列表得:12341(1,1)(1,2)(1,3)(1,4)2(2,1)(2,2)(2,3)(2,4)3(3,1)(3,2)(3,3)(3,4)4(4,1)(4,2)(4,3)(4,4)∵共有16种等可能的结果,数字x、y满足y=﹣x+5的有(1,4),(2,3),(3,2),(4,1),∴数字x、y满足y=﹣x+5的概率为:.故选:B.8.如图,甲处表示2街6巷的十字路口,乙处表示6街1巷的十字路口.如果用(2,6)表示甲处的位置,那么“(2,6)→(3,6)→(4,6)→(5,6)→(6,6)→(6,5)→(6,4)→(6,3)→(6,2)→(6,1)”表示从甲处到乙处的一种路线(规定:只能沿线向下和向右运动),则从甲处到乙处的路线中经过丙处的走法共有()A.38种B.39种C.40种D.41种【分析】先确定从甲到丙的路线,再确定从丙到乙的路线,两种路线的乘积即为所求;【解答】解:从甲到丙有4条路线,从丙到乙有10条路线,∴从甲处到乙处经过丙处的走法共有4×10=40种,故选:C.9.已知a,b,c满足a+b+c=0,4a+c=2b,则二次函数y=ax2+bx+c(a≠0)的图象的对称轴为()A.直线x=1B.直线x=﹣1C.直线x=D.直线x=﹣【分析】根据a+b+c=0,4a+c=2b,可以求得a、b、c之间的关系,从而可以求得该函数的对称轴,本题得以解决.【解答】解:∵a+b+c=0,4a+c=2b,∴c=﹣2a,a=b,∵二次函数y=ax2+bx+c(a≠0),∴对称轴是直线x==,故选:D.10.如图,在等腰三角形△ABC中,O为底边BC的中点,以O为圆心作半圆与AB,AC 相切,切点分别为D,E.过半圆上一点F作半圆的切线,分别交AB,AC于M,N.那么的值等于()A.B.C.D.1【分析】连OM,ON,利用切线长定理知OM,ON分别平分角BMN,角CNM,再利用三角形和四边形的内角和可求得△OBM与△NOC还有一组角相等,由此得到它们相似,通过相似比可解决问题.【解答】解:连OM,ON,如图∵MD,MF与⊙O相切,∴∠1=∠2,同理得∠3=∠4,而∠1+∠2+∠3+∠4+∠B+∠C=360°,AB=AC∴∠2+∠3+∠B=180°;而∠1+∠MOB+∠B=180°,∴∠3=∠MOB,即有∠4=∠MOB,∴△OMB∽△NOC,∴=,∴BM•CN=BC2,∴=.故选:B.二.填空题(共6小题)11.化简的结果是.【分析】根据二次根式的性质解答.【解答】解:==.12.某校举行“中国诗词大会”的比赛每班限报一名选手,九(1)班甲、乙、丙、丁四位选手在班级选拔赛时的数据如表:甲乙丙丁平均分9.89.39.29.8方差 1.5 3.2 3.3 6.8根据表中数据,要从四个同学中选择一个成绩好且发挥稳定的参加比赛,应该选择是甲(填“甲”或“乙”或“丙”或“丁”)【分析】首先比较平均数,平均数相同时选择方差较小的参加比赛即可.【解答】解:∵=>>,∴从甲和丁中选择一人参加比赛,∵S甲2<S乙2<S丙2<S丁2,∴选择甲参赛;故答案为:甲.13.化简的结果是.【分析】首先通分,然后根据分式加减法的运算方法,求出算式的值是多少即可.【解答】解:,=+,=,=.14.如图,在矩形ABCD中,边AD沿DF折叠,点A恰好落在矩形的对称中心E处,则cos∠ADF=.【分析】根据折叠的性质得到AD=ED=AE,∠ADF=∠EDF=∠ADE,推出△DAE 的等边三角形,根据等边三角形的性质得到∠ADE=60°,求得∠ADF=30°,于是得到结论.【解答】解:如图,连接AE,∵把∠A沿DF折叠,点A恰好落在矩形的对称中心E处,∴AD=ED=AE,∠ADF=∠EDF=ADE,∴△DAE的等边三角形,∴∠ADE=60°,∴∠ADF=30°,∴cos∠ADF=,故答案为:.15.如图,一次函数y=3x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣3,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为2,则k的值为.【分析】作辅助线,先确定OQ长的最大时,点P的位置,当BP过圆心C时,BP最长,设B(t,3t),则CD=t﹣(﹣3)=t+3,BD=﹣3t,根据勾股定理计算t的值,可得k 的值.【解答】解:如图,连接BP,由对称性得:OA=OB,∵Q是AP的中点,∴OQ=BP,∵OQ长的最大值为2,∴BP长的最大值为2×2=4,如图,当BP过圆心C时,BP最长,过B作BD⊥x轴于D,∵CP=1,∴BC=3,∵B在直线y=3x上,设B(t,3t),则CD=t﹣(﹣3)=t+3,BD=﹣3t,在Rt△BCD中,由勾股定理得:BC2=CD2+BD2,∴32=(t+3)2+(﹣3t)2,解得t=0(舍)或﹣,∴B(﹣,﹣),∵点B在反比例函数y=(k>0)的图象上,∴k=(﹣)×(﹣)=.故答案为:.16.如图,在△ABC中,点D,E分别为AB,AC边上一点,且BE=CD,CD⊥BE.若∠A=30°,BD=1,CE=2,则四边形CEDB的面积为.【分析】作辅助线CK⊥AB,EH⊥AB,由两直线垂直得∠BMD=∠CKD=∠BHE=90°,角角边证明△CKD≌△BHE,其性质得DK=EH;设CK=x,根据直角三角的性质,线段的和差得AK=,EH=DK=x﹣,BH=4+﹣x;建立等量关系4+﹣x=x,求得CK=,DK═,最后由勾股定理,面积公式求得四边形CEDB的面积为.【解答】解:分别过点C、E两点作CK⊥AB,EH⊥AB交AB于点K和点H,设CK=x,如图所示:∵CD⊥BE,∴∠BMD=90°,∴∠EBH+∠CDB=90°,同理可得:∠EBH+∠BEH=90°,∴∠CDB=∠BEH,又∵CK⊥AB,EH⊥AB,∴∠CKD=∠BHE=90°,在△CKD和△BHE中,,∴△CKD≌△BHE(AAS),∴DK=EH,又∵Rt△AKC中,∠A=30°,∴AC=2x,AK=,又∵AC=AE+EC,CE=2,∴AE=2x﹣2,∴EH=DK=x﹣,又∵DK=DB+BK,BD=1,∴BK=x﹣﹣1,又∵AK=AH+BH+BK,∴BH=4+﹣x,又∵BH=CK,∴4+﹣x=x,解得:x=,∴DK=x﹣=,在Rt△CDK中,由勾股定理得:CD2=CK2+DK2==,∴===.故答案为.三.解答题(共8小题)17.计算:(2a2)2﹣a•3a3+a5÷a.【分析】分别求出每(2a2)2a=4a4;a•3a3=3a4;a5÷a=a4;再运算即可;【解答】解:(2a2)2﹣a•3a3+a5÷a=4a4﹣3a4+a4=2a4;18.如图,AB∥CD,∠ADC=∠ABC.求证:∠E=∠F.【分析】直接利用平行线的性质得出∠ABC=∠DCF,再利用已知得出∠E=∠F.【解答】证明:∵AB∥CD,∴∠ABC=∠DCF.又∵∠ADC=∠ABC∴∠ADC=∠DCF.∴DE∥BF.∴∠E=∠F.19.“长跑”是中考体育考试项目之一,某中学为了解九年级学生“长跑”的情况,随机抽取部分九年级学生,测试其长跑成绩(男子1000米,女子800米),按长跑的时间的长短依次分为A,B,C,D四个等级进行统计,并绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)在这次调查中共抽取了45名学生,扇形统计图中,D类所对应的扇形圆心角大小为104°;(2)补全条形统计图,所抽取学生“长跑”测试成绩的中位数会落在C等级;(3)若该校九年级共有900名学生,请你估计该校C等级的学生约在多少人?【分析】(1)这次调查中共抽取学生:8÷=45(名),D类所对应的扇形圆心角360°×=104(度);(2)B等级学生:45﹣8﹣20﹣13=4,据此补全条形统计图;(3)该校九年级900名学生中估计C等级的学生约有:900×=400(名).【解答】解:(1)这次调查中共抽取学生:8÷=45(名),D类所对应的扇形圆心角360°×=104(度),故答案为45,104°;(2)B等级学生:45﹣8﹣20﹣13=4补全条形统计图如下共有45名学生,因此中位数为第23,落在C等级.故答案为C;(3)该校九年级900名学生中估计C等级的学生约有:900×=400(名).答:该校九年级900名学生中估计C等级的学生约有400人.20.如图,在下列10×10的网格中,横、纵坐标均为整数的点叫做格点,例如A(3,0),B(4,3)都是格点.将△AOB绕点O顺时针旋转90°得到△COD(点A,B的对应点分别为点C,D).(1)作出△COD;(2)下面仅用无刻度的直尺画△AOD的内心I,操作如下:第一步:在x轴上找一格点E,连接DE,使OE=OD;第二步:在DE上找一点F,连接OF,使OF平分∠AOD;第三步:找格点G,得到正方形OAGC,连接AC,则AC与OF的交点I是△OAD的内心.请你按步骤完成作图,并直接写出E,F,I三点的坐标.【分析】(1)根据要求作图即可(2)根据要求作图即可【解答】解:(1)如图所示(2)如图所示,每格单位长度都为1,即可得E(5,0),F(4,﹣2),I(2,﹣1)21.如图,AB是⊙O的直径,过圆外一点E作EF与⊙O相切于G,交AB的延长线于F,EC⊥AB于H,交⊙O于D,C两点,连接AG交DC于K.(1)求证:EG=EK;(2)连接AC,若AC∥EF,cos C=,AK=,求BF的长.【分析】(1)连接OG.根据切线的性质得到∠OGE=90°,证明∠EKG=∠AGE,根据等腰三角形的判定定理证明结论;(2)连接OC,设CH=4k,根据余弦的定义、勾股定理用k表示出AC、AH,根据勾股定理列式求出k,设⊙O半径为R,根据勾股定理列式求出R,根据余弦的定义求出OF,计算即可.【解答】(1)证明:连接OG.∵EF是⊙O的切线,∴∠OGE=90°,即∠OGA+∠AGE=90°.∵OA=OG,∴∠OGA=∠OAG,∴∠OAG+∠AGE=90°.∵CD⊥AB,∴∠AHK=90°,则∠OAG+∠AKH=90°.∴∠AKH=∠AGE.∵∠AKH=∠EKG,∴∠EKG=∠AGE,∴EG=EK;(2)如图,连接OC,设CH=4k,∵cos∠ACH==,∴AC=5k,由勾股定理得,AH==3k,∵AC∥EF,∴∠CAK=∠EGA,又∠AKC=∠EKG,而由(1)知∠EKG=∠EGA,∴∠CAK=∠CKA,∴CK=AC=5k,HK=CK﹣CH=k.在Rt△AHK中,AH2+HK2=AK2,即(3k)2+k2=()2,解得,k=1,则CH=4,AC=5,AH=3,设⊙O半径为R,在Rt△OCH中,OH2+CH2=OC2,即(R﹣3)2+42=R2,解得,R=,由AC∥EF知,∠CAH=∠F,则∠ACH=∠GOF,在Rt△OGF中,cos∠ACH=cos∠GOF==,解得,OF=,∴BF=OF﹣OB=.22.随着《流浪地球》的热播,其同名科幻小说的销量也急剧上升.为应对这种变化,某网店分别花20000元和30000元先后两次增购该小说,第二次的数量比第一次多500套,且两次进价相同.(1)该科幻小说第一次购进多少套?(2)根据以往经验:当销售单价是25元时,每天的销售量是250套;销售单价每上涨1元,每天的销售量就减少10套.网店要求每套书的利润不低于10元且不高于18元.①直接写出网店销售该科幻小说每天的销售量y(套)与销售单价x(元)之间的函数关系式及自变量x的取值范围;②网店决定每销售1套该科幻小说,就捐赠a(0<a<7)元给困难职工,每天扣除捐赠后可获得的最大利润为1960元,求a的值.【分析】(1)设该科幻小说第一次购进m套,根据题意列方程即可得到结论;(2)根据题意列函数关系式即可;(3)设每天扣除捐赠后可获得利润为w元.根据题意得到w=(x﹣20﹣a)(﹣10x+500)=﹣10x2+(10a+700)x﹣500a﹣10000(30≤x≤38)求得对称轴为x=35+a,①若0<a<6,则30,则当x=35+a时,w取得最大值,解方程得到a1=2,a2=58,于是得到a=2;②若6<a<7,则38<35a,则当30≤x≤38时,w随x的增大而增大;解方程得到a=,但6<a<7,故舍去.于是得到结论.【解答】解:(1)设该科幻小说第一次购进m套,则=,∴m=1000,经检验,当m=1000时,m(m+500)≠0,则m=1000是原方程的解,答:该科幻小说第一次购进1000套;(2)根据题意得,y=250﹣10(x﹣25)=﹣10x+500(30≤x≤38);(3)设每天扣除捐赠后可获得利润为w元.w=(x﹣20﹣a)(﹣10x+500)=﹣10x2+(10a+700)x﹣500a﹣10000(30≤x≤38)对称轴为x=35+a,①若0<a<6,则30,则当x=35+a时,w取得最大值,∴(35+a﹣20﹣a)[﹣10x(35+a)+500]=1960∴a1=2,a2=58,又0<a≤6,则a=2;②若6<a<7,则38<35a,则当30≤x≤38时,w随x的增大而增大;∴当x=38时,w取得最大值,则(38﹣20﹣a)(﹣10×38+500)=1960,∴a=,但6<a<7,故舍去.综上所述,a=2.23.在△ABC中,∠ACB=90°,CD为高,BC=nAC(1)如图1,当n=时,则的值为;(直接写出结果)(2)如图2,点P是BC的中点,过点P作PF⊥AP交AB于F,求的值;(用含n 的代数式表示)(3)在(2)的条件下,若PF=BF,则n=.(直接写出结果)【分析】(1)设AC=2k,BC=3k,求出AD,BD即可解决问题.(2)过点P作PG∥AC交AB于点G.证明△PCE∽△PGF,即可解决问题.(3)设PF=x,AP=2nx,利用勾股定理构建方程求出n即可.【解答】解:(1)如图1中,∵BC=AC,∴可以假设AC=2k,BC=3k,∵∠ACB=∠ADC=90°,∴AB=k,∵•AC•BC=•AB•CD,∴CD=k,∴AD==k,BD=k,∴=,故答案为.(2)过点P作PG∥AC交AB于点G.∴∠PGF=∠CAD,∠GPC=90°,∵CD⊥AB,∠ACB=90°,∴∠CAD+∠ACD=90°,∠ACD+∠PCE=90°,∴∠PCE=∠CAD,∴∠PCE=∠PGF,又∵PF⊥AP,∴∠CPE+∠APG=∠FPG+∠APG=90°,∴∠CPE=∠GPF,∴△PCE∽△PGF,∴=,又∵点P是BC的中点,∴AC=2PG,∴==n.(3)由(2)可知=n,则可以假设PF=x,PE=nx,∵∠GPB=90°,PF=BF,则PF=BF=GF=x,则AG=2x,∵△PCE∽△PGF,∴==n,则CE=nGF=nx,又∵∠ACB=90°,则AE=PE=nx,在Rt△APF中,AP2+PF2=AF2,则x2+(2nx)2=(3x)2,∴n=,故答案为.24.在平面直角坐标系xOy中,抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,0),B两点,与y轴交于C(0,3),对称轴为直线x=2.(1)请直接写出该抛物线的解析式;(2)设直线l与抛物线的对称轴的交点为F,在对称轴右侧的抛物线上有一点G,若=,且S△BAG=6,求点G的坐标;(3)若在直线y=上有且只有一点P,使∠APB=90°,求k的值.【分析】(1)抛物线与x轴另外一个交点坐标为(3,0),则函数的表达式为:y=a(x ﹣1)(x﹣3)=a(x2﹣4x+3),即:3a=3,即可求解;(2)分点G在点B下方、点G在点B上方两种情况,分别求解即可;(3)由△P AS∽△BPT,则,即可求解.【解答】解:(1)∵抛物线过点A(1,0),且对成轴为直线x=2,则抛物线与x轴另外一个交点坐标为(3,0),则函数的表达式为:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),令x=0则3a=3,解得:a=1,故抛物线的表达式为:y=x2﹣4x+3…①;(2)过点B作BM∥x轴交对称轴于点M,设对称轴与x轴交于点N.∴,又AN=1,则BM=2,点B的坐标为(4,3),∵直线AB的解析式为y=kx+m,则,则,则y=x﹣1,①若点G在点B下方,则过点G作GQ∥y轴交AB于Q,则设点G(t,t2﹣4t+3),Q (t,t﹣1),∴S△BAG=6=S△AQG+S△BGQ=GQ×3=(t﹣1﹣t2+4t﹣3),即:t2﹣5t+8=0,△<0,无解;②若点G在点B上方,则过点G作GH∥AB交x轴于H,则S△BAG=6=S△ABH,即:AH×3=6,则AH=4,则H(﹣3,0),则可设直线GH的解析式为:y=x+t,将H(﹣3,0)代入得,t=3.∴直线GH的解析式为y=x+3…②,联立①②并解得:x=0或5(舍去0),∴G(5,8);(3)分别过点A,B作直线y=﹣的垂线,垂足分别为S,T,则△P AS∽△BPT,则,直线l的解析式为y=kx﹣k…③,联立①③并解得:x=1或k+3,则点B(k+3,k2+2k),设:PS=x,则x(k+2﹣x)=(k2+2k+)有两个相等实数根,△=(k+2)2﹣2k2﹣4k﹣1=0,解得:k=(舍去负值),故:k=.。

湖北武汉市2019年九年级数学中考模拟试卷(含答案)【含答案及解析】

湖北武汉市2019年九年级数学中考模拟试卷(含答案)【含答案及解析】

湖北武汉市 2019年九年级数学中考模拟试卷(含答
案)【含答案及解析】
姓名___________ 班级____________ 分数__________题号一二三总分
得分
一、单选题
1. 若a、b、c都是有理数,那么2a﹣3b+c的相反数是()
A. 3b﹣2a﹣c
B. ﹣3b﹣2a+c
C. 3b﹣2a+c
D. 3b+2a﹣c
2. 下列图形中,既是中心对称,又是轴对称图形的是()
A. B. C. D.
3. 火星和地球的距离约为34 000 000千米,用科学记数法表示34 000 000的结果是( )千米.
A. 0.34×108
B. 3.4×106
C. 34×106
D. 3.4×107
4. 等边三角形的两条高线相交成钝角的度数是()
A. 105°
B. 120°
C. 135°
D. 150°
5. 下列运算正确的是()
A. (x3)4=x7
B. (-x)2?x3=x5
C. (-x)4÷x=-x3
D. x+x2=x3
6. 下列命题中,正确的个数是( )
①13个人中至少有2人的生日是同一个月是必然事件;
②为了解我班学生的数学成绩,从中抽取10 名学生的数学成绩是总体的一个样本;
③一名篮球运动员投篮命中概率为0.7,他投篮10次,一定会命中7次;
④小颖在装有10个黑、白球的袋中,多次进行摸球试验,发现摸到黑球的频率在0.6附近波动,据此估计黑球约有6个.
A. 1
B. 2
C. 3
D. 4。

2019届武汉市中考数学模拟试卷解析版

2019届武汉市中考数学模拟试卷解析版

2019年武汉市中考数学模拟试卷一、选择题(共10小题,每小题3分,共30分) 1.实数2的值在( ) A .0和1之间B .1和2之间C .2和3之间D .3和4之间【考点】有理数的估计 【答案】B【解析】∵1<2<4,∴124<<,∴122<<.2.若代数式在31-x 实数范围内有意义,则实数x 的取值范围是( ) A .x <3B .x >3C .x ≠3D .x =3【考点】分式有意义的条件 【答案】C 【解析】要使31-x 错误!未找到引用源。

有意义,则x -3≠0,∴x ≠3 故选C.3.下列计算中正确的是( )A .a ·a 2=a 2B .2a ·a =2a 2C .(2a 2)2=2a 4D .6a 8÷3a 2=2a 4 【考点】幂的运算 【答案】B【解析】A . a ·a 2=a 3,此选项错误;B .2a ·a =2a 2,此选项正确;C .(2a 2)2=4a 4,此选项错误;D .6a 8÷3a 2=2a 6,此选项错误。

4.不透明的袋子中装有性状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球【考点】不可能事件的概率 【答案】A【解析】∵袋子中有4个黑球,2个白球,∴摸出的黑球个数不能大于4个,摸出白球的个数不能大于2个。

A 选项摸出的白球的个数是3个,超过2个,是不可能事件。

故答案为:A5.运用乘法公式计算(x+3)2的结果是()A.x2+9 B.x2-6x+9 C.x2+6x+9 D.x2+3x+9【考点】完全平方公式【答案】C【解析】运用完全平方公式,(x+3)2=x2+2×3x+32=x2+6x+9.故答案为:C6.已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是()A.a=5,b=1 B.a=-5,b=1C.a=5,b=-1 D.a=-5,b=-1【考点】关于原点对称的点的坐标.【答案】D【解析】关于原点对称的点的横坐标与纵坐标互为相反数.∵点A(a,1)与点A′(5,b)关于坐标原点对称,∴a=-5,b=-1,故选D.7.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()【考点】简单几何体的三视图.【答案】A【解析】从左面看,上面看到的是长方形,下面看到的也是长方形,且两个长方形一样大.故选A8.某车间20名工人日加工零件数如下表所示:日加工零件数 4 5 6 7 8人数 2 6 5 4 3这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、6【考点】众数;加权平均数;中位数.根据众数、平均数、中位数的定义分别进行解答.【答案】D【解析】5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数是第10,11个数的平均数,则中位数是(6+6)÷2=6;平均数是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故选D.9.如图,在等腰Rt△ABC中,AC=BC=22,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A.π2B.πC.22D.2【考点】轨迹,等腰直角三角形【答案】B【解析】取AB的中点E,取CE的中点F,连接PE,CE,MF,则FM=12PE=1,故M的轨迹为以F为圆心,1为半径的半圆弧,轨迹长为1212ππ⋅⋅=.10.平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.8【考点】等腰三角形的判定;坐标与图形性质【答案】A【解析】构造等腰三角形,①分别以A,B为圆心,以AB的长为半径作圆;②作AB的中垂线.如图,一共有5个C点,注意,与B重合及与AB共线的点要排除。

2019年最新武汉市中考数学第三次模拟试卷及答案解析

2019年最新武汉市中考数学第三次模拟试卷及答案解析
(2)当y2>y1>0时,写出自变量x的取值范围.
21.如图,AB为⊙O的直径,C为⊙O上一点,过C点的切线CE垂直于弦AD于点E,连OD交AC于点F.
(1)求证:∠BAC=∠DAC;
(2)若AF:FC=6:5,求sin∠BAC的值.
22.某地政府计划为农户购买农机设备提供补贴.其中购买Ⅰ型、Ⅱ型设备农民所投资的金额与政府补贴的额度存在下表所示的函数对应关系.
三、解答题(共8小题,共72分)下列各题解答应写出文字说明,证明过程或演算过程.
17.解方程:2x﹣3=3x+4.
18.如图,在△ABC中,AB=AC,点D是BC的中点,BF⊥AC于点F,交AD于点E,∠BAC=45°.求证:△AEF≌△BCF.
19.一位射击运动员在10次射击训练中,命中靶的环数如图.
型号
金额
Ⅰ型设备
Ⅱ型设备
投资金额x(万元)
xห้องสมุดไป่ตู้
5
x
2
4
补贴金额y(万元)
y1=kx(k≠0)
2
y2=ax2+bx(a≠0)
2.8
4
(1)分别求y1和y2的函数解析式;
(2)有一农户共投资10万元购买Ⅰ型、Ⅱ型两种设备,两种设备的投资均为整数万元,要想获得最大补贴金额,应该如何购买?能获得的最大补贴金额为多少?
A.( ,n)B.(m,n)C.( , )D.(m, )
7.如图,下列几何体的左视图不是矩形的是( )
A. B. C. D.
8.以下是某手机店1~4月份的统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为( )
A.4月份三星手机销售额为65万元
B.4月份三星手机销售额比3月份有所上升

2019年湖北省武汉市九年级中考数学模拟试卷(含答案)

2019年湖北省武汉市九年级中考数学模拟试卷(含答案)

2019年湖北省武汉市九年级中考数学模拟试卷一.选择题(每题3分,满分30分)1.方程4x2=81﹣9x化成一般形式后,二次项的系数为4,它的一次项是()A.9 B.﹣9x C.9x D.﹣92.二次函数y=﹣x2+2mx(m为常数),当0≤x≤1时,函数值y的最大值为4,则m的值是()A.±2 B.2 C.±2.5 D.2.53.下列银行标志图案中,是中心对称的是()A.B.C.D.4.下列事件中,是必然事件的是()A.掷一枚质地均匀的硬币,一定正面向上B.车辆随机到达一个路口,遇到红灯C.如果a2=b2,那么a=bD.将花生油滴在水中,油会浮在水面上5.天气预报说“中山市明天降水概率是20%”,理解正确的是()A.中山市明天将有20%的地区降水B.中山市明天降水的可能性较小C.中山市明天将有20%的时间降水D.中山市明天降水的可能性较大6.下列一元二次方程中,没有实数根的是()A.x2﹣2x=0 B.x2﹣2x+1=0 C.2x2﹣x﹣1=0 D.2x2﹣x+1=0 7.在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以C为圆心,r为半径的圆与边AB 有公共点,则r的取值范围为()A.r≥B.r=3或r=4 C.≤r≤3 D.≤r≤4 8.已知:如图,在扇形OAB中,∠AOB=100°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O恰好落在上的点D处,折痕交OA于点C,则的长为()A.2πB.3πC.4πD.5π9.如图,因为⊙O的直径CD过弦EF的中点G,弦EF不是直径,所以CD⊥EF,根据是()A.垂直于弦的直径平分这条线B.平分弦的直径垂直于这条弦C.平分弦(不是直径)的直径垂直于这条弦D.在同圆或等圆中,相等的弦所对的圆心角也相等10.如图,抛物线y=ax2+bx+c(a≠0)经过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,那么下列四个结论:(1)abc<0;(2)0<a<3;(3)﹣2<b<0 (4)设p=a+b+c,则﹣6<p<﹣3,其中正确的个数有()A.1 B.2 C.3 D.4二.填空题(每题3分,满分18分)11.已知方程x2﹣3x﹣k=0有一根是2,则k的值是.12.将抛物线y=﹣3x2向下平移4个单位,那么平移后所得新抛物线的表达式为.13.如图,电路图上有编号为①②③④⑤共5个开关和一个小灯泡,闭合开关①或同时闭合开关②③或同时闭合开关④⑤都可使小灯泡发光,任意闭合电路上其中的两个开关,小灯泡发光的概率为.14.某种商品,平均每天可销售40件,每件赢利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售5件,若每天要赢利2400元,则每件应降价元.15.如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠BOQ=.16.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是(写出所有正确结论的序号).三.解答题(共8小题,满分72分)17.(8分)解方程:2x2+4x﹣1=0(用配方法).18.(8分)如图,在△ABC中,以AB为直径的⊙O分别与BC、AC交于点F、D,点F 是弧BD的中点.(1)求证:AB=AC;(2)若∠BAC=45°,连结AF、BD交于点E,求证:AE=BC.19.(8分)在甲口袋中有三个球分别标有数码1,﹣2,3;在乙口袋中也有三个球分别标有数码4,﹣5,6;已知口袋均不透明,六个球除标码不同外其他均相同,小明从甲口袋中任取一个球,并记下数码,小林从乙口袋中任取一个球,并记下数码.(1)用树状图或列表法表示所有可能的结果;(2)求所抽取的两个球数码的乘积为负数的概率.20.(8分)如图,在△ABC中,AB=AC,过点B作BD⊥AC,垂足为D,若D是边AC 的中点,(1)求证:△ABC是等边三角形;(2)在线段BD上求作点E,使得CE=2DE.(要求:尺规作图,不写画法,保留作图痕迹)21.(8分)如图,△ABC内接于⊙O,AB是⊙O的直径,C是的中点,弦CE⊥AB于点H,连结A D,分别交CE、BC于点P、Q,连结BD(1)求证:∠ACH=∠CBD;(2)求证:P是线段AQ的中点;(3)若⊙O的半径为5,BH=8,求CE的长.22.(10分)“互联网+”时代,网上购物备受消费者青睐,某网店专售一款体恤衫,其成本为每件80元,当售价为每件140元时,每月可销售100条,为了吸引更多顾客,该网店采取降价措施,据市场调查反映:销售单价每降1元,则每月可多销售5件,设每件体恤衫的售价为x元(x为正整数),每月的销售量为y件.(1)直接写出y与x的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出400元资助贫困学生,为了保证捐款后每月利润不低于7475元,且让消费者得到最大的实惠,该如何确定体恤衫的销售单价?23.(10分)已知,平面直角坐标系中,A(0,4),B(b,0)(﹣4<b<0),将线段AB 绕点A逆时针旋转90°得到线段AC,连接BC.(1)如图1,直接写出C点的坐标:;(用b表示)(2)如图2,取线段BC的中点D,在x轴取一点E使∠DEB=45°,作CF⊥x轴于点F.①求证:EF=OB;②如图3,连接AE,作DH∥y轴交AE于点H,当OE=EF时,求线段DH的长度.24.(12分)如图,已知直线y=kx与抛物线y=mx2+n交于点A、C.(1)若m=﹣1,且点A坐标为A(1,2),求抛物线解析式与点C坐标;(2)如图1,若k=1,将直线y=x沿着x轴翻折,在第四象限交抛物线于点P,若,求mn的值;(3)如图2,已知抛物线与直线解析式分别为y=与y=x,若点B 为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(t,0)是x轴正半轴上的动点,记S△AEB=S1,S△EOD=S2,OE=s,OD=t,当满足∠BAE=∠BED =∠AOD的E点有两个时,求S 1•S2﹣(S1+)+的最小值,并求出此时E的坐标.参考答案一.选择题1.解:方程整理得:4x2+9x﹣81=0,则一次项是9x,故选:C.2.解:y=﹣x2+2mx=﹣(x﹣m)2+m2(m为常数),①若m≤0,当x=0时,y=﹣(0﹣m)2+m2=4,m不存在,②若m≥1,当x=1时,y=﹣(1﹣m)2+m2=4,解得:m=2.5;③若0≤m≤1,当x=m时,y=m2=4,即:m2=4,解得:m=2或m=﹣2,∵0≤m≤1,∴m=﹣2或2都舍去,故选:D.3.解:A、不是中心对称图形,本选项不符合题意;B、是中心对称图形,本选项符合题意;C、不是中心对称图形,本选项不符合题意;D、不是中心对称图形,本选项不符合题意.故选:B.4.解:A.掷一枚质地均匀的硬币,正面向上是随机事件.B.车辆随机到达一个路口,遇到红灯是随机事件;C.如果a2=b2,那么a=b,也可能是a=﹣b,此事件是随机事件;D.将花生油滴在水中,油会浮在水面上是必然事件;故选:D.5.解:天气预报说“中山市明天降水概率是20%”,理解正确的是中山市明天降水的可能性较小.故选:B.6.解:(A)△=4,故选项A有两个不同的实数根;(B)△=4﹣4=0,故选项B有两个相同的实数根;(C)△=1+4×2=9,故选项C有两个不同的实数根;(D)△=1﹣8=﹣7,故选项D有两个不同的实数根;故选:D.7.解:作CD⊥AB于D,如图所示:∵∠C=90°,AC=3,BC=4,∴AB==5,∵△ABC的面积=AB•CD=AC•BC,∴CD===,即圆心C到AB的距离d=,∵AC<BC,∴以C为圆心,r=或4为半径所作的圆与斜边AB只有一个公共点,∴若⊙C与斜边AB有公共点,则r的取值范围是≤r≤4.故选:D.8.解:如图,连接OD.根据折叠的性质知,OB=DB.又∵OD=OB,∴OD=OB=DB,即△ODB是等边三角形,∴∠DOB=60°.∵∠AOB=100°,∴∠AOD=∠AOB﹣∠DOB=40°,∴的长为=4π.故选:C.9.解:因为⊙O的直径CD过弦EF的中点G,弦EF不是直径,所以CD⊥EF,理由是平分弦(不是直径)的直径垂直于这条弦,故选:C.10.解:(1)由图象可知a>0,c=﹣3,∵对称轴x=﹣>0,∴b<0,∴abc>0;(2)将点(﹣1,0)代入函数解析,得a﹣b﹣3=0,∴﹣=﹣>0,∴0<a<3;(3)﹣=﹣>0,∴﹣3<b<0;(4)∵0<a<3,﹣3<b<0,∴﹣3<a+b<3,∴﹣6<a+b+c<0;∴(2)正确;故选:A.二.填空题11.解:把x=2代入方程x2﹣3x﹣k=0得4﹣6﹣k=0,解得k=﹣2.故答案为﹣2.12.解:∵抛物线y=﹣3x2向下平移4个单位,∴抛物线的解析式为y=﹣3x2﹣4,故答案为:y=﹣3x2﹣4.13.解:①②③④⑤两两组合有①②,①③,①④,①⑤,②③,②④,②⑤,③④,③⑤,④⑤,能发亮的有①②,①③,①④,①⑤,②③,④⑤,所以小灯泡发光的概率为=,故答案为:.14.解:设每件服装应降价x元,根据题意,得:(44﹣x)(40+5x)=2400解方程得x=4或x=32,∵在降价幅度不超过10元的情况下,∴x=32不合题意舍去,答:每件服装应降价4元.故答案是:4.15.解:连结OA,OD,∵△PQR是⊙O的内接正三角形,∴PQ=PR=QR,∴∠POQ=×360°=120°,∵BC∥QR,OP⊥QR,∵BC∥QR,∴OP⊥BC,∵四边形ABCD是⊙O的内接正方形,∴OP⊥AD,∠AOD=90°,∴=,∴∠AOP=∠DOP,∴∠AOP=×90°=45°,∴∠AOQ=∠POQ﹣∠AOP=75°.∵∠AOB=90°,∴∠QOB=15°,故答案为:15°.16.解:∠BAD与∠ABC不一定相等,选项①错误;连接BD,如图所示:∵GD为圆O的切线,∴∠GDP=∠ABD,又AB为圆O的直径,∴∠ADB=90°,∵CE⊥AB,∴∠AFP=90°,∴∠ADB=∠AFP,又∠PAF=∠BAD,∴△APF∽△ABD,∴∠ABD=∠APF,又∠APF=∠GPD,∴∠GDP=∠GPD,∴GP=GD,选项②正确;∵直径AB⊥CE,∴A为的中点,即=,又C为的中点,∴=,∴=,∴∠CAP=∠ACP,∴AP=CP,又AB为圆O的直径,∴∠ACQ=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,选项③正确;连接CD,如图所示:∵=,∴∠B=∠CAD,又∵∠ACQ=∠BCA,∴△ACQ∽△BCA,∴=,即AC2=CQ•CB,∵=,∴∠ACP=∠ADC,又∠CAP=∠DAC,∴△ACP∽△ADC,∴=,即AC2=AP•AD,∴AP•AD=CQ•CB,选项④正确,则正确的选项序号有②③④.故答案为:②③④三.解答题17.解:x2+2x﹣=0,x2+2x+1=+1,(x+1)2=x+1=±,所以x1=,x2=.18.(1)证明:∵点F是的中点,∴=,∴∠BAF=∠CAF,∵AB是直径,∴∠AFB=∠AFC=90°∵AF=AF,∴△AFB≌△AFC(ASA),∴AB=AC.(2)证明:∵AB是直径,∴∠ADB=90°,∵∠BAD=45°,∴∠ABD=∠BAD=45°,∴AD=DB,∵∠C+∠CBD=90°,∠C+∠CAF=90°,∴∠CBD=∠CAF,∵∠BDC=∠ADF=90°,∴△ADE≌△BDC(ASA),∴AE=BC.19.解:(1)列表如下:1 ﹣2 34 (1,4)(﹣2,4)(3,4)﹣5 (1,﹣5)(﹣2,﹣5)(3,﹣5)6 (1,6)(﹣2,6)(3,6)(2)由表可知,共有9种等可能结果,其中所抽取的两个球数码的乘积为负数的由4种结果,∴所抽取的两个球数码的乘积为负数的概率为.20.解:(1)证明:∵BD⊥AC,D是边AC的中点,∴BD是AC的垂直平分线,∴BA=BC,∵AB=AC,∴AB=AC=BC,∴△ABC是等边三角形;(2)如图,∵△ABC是等边三角形,∴∠ACB=60°,作∠ACB的平分线交BD于点E,根据30度角所对直角边等于斜边一半,点E即为所求作的点.21.(1)证明:∵AB是⊙O的直径,CE⊥AB,∴AB垂直平分CE,即H为CE中点,弧AC=弧AE又∵C是的中点,∴弧AC=弧CD∴弧AC=弧CD=弧AE∴∠ACH=∠CBD;(2)由(1)知,∠ACH=∠CBD,又∵∠CAD=∠CBD∴∠ACH=∠CAD,∴AP=CP又∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∴∠PCQ=90°﹣∠ACH,∠PQC=∠BQD=90°﹣∠CBD,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P是线段AQ的中点;(3)解:连接OC,∵BH=8,OB=OC=5,∴OH=3∴由勾股定理得:CH==4由(1)知:CH=EH=4,∴CE=8.22.解:(1)由题意可得:y=100+5(140﹣x)=﹣5x+800;(2)由题意,得w=(x﹣80)(﹣5x+800)=﹣5(x﹣120)2+8000∵﹣5<0,w有最大值,即当x=120时,w最大值为8000,∴应降价140﹣120=20(元).答:当销售单价降低20元时,每月获得的利润最大,最大利润是8000元.(3)由题意,得﹣5(x﹣120)2+8000=7475+400解得:x1=115,x2=125,∵抛物线开口向下,对称轴为直线x=120,∴当115≤x≤125时,符合该网店要求,而为了让顾客得到最大实惠,故x=115.答:销售单价定为115元时,既符合网店要求,又能让顾客得到最大实惠.23.解:(1)如图1,过点C作CM⊥AO于M,∵A(0,4),B(b,0),∴OA=4,OB=﹣b,∵将线段AB绕点A逆时针旋转90°得到线段AC,∴AB=AC,∠BAC=90°,∴∠BAO+∠CAO=90°,且∠CAO+∠ACM=90°,∴∠ACM=∠BAO,且AB=AC,∠AOB=∠AMC=90°,∴△ABO≌△CAM(AAS)∴CM=OA=4,AM=OB=﹣b,∴OM=AO﹣AM=4+b,∴点C(4,b+4)(2)①如图2,连接AD,OD,过点D作DN⊥AO,DM⊥OF,∵AB=AC,∠BAC=90°,点D是BC中点,∴AD=BD,∠ABC=45°,∠ADB=90°∵∠ADB=∠AOB=90°,且∠DAO+∠ADB=∠DBO+∠AOB,∴∠DAO=∠DBO,且∠AND=∠BMD=90°,AD=BD,∴△ADN≌△BDM(AAS)∴DN=DM,且DN⊥AO,DM⊥OF,∴OD平分∠AOF,∴∠AOD=∠DOM=45°=∠DEB,且BD=AD,∠DAO=∠DBO,∴△ADO≌△BDE(AAS)∴AO=BE=4,∵CF⊥x轴于点F,∴OF=4,∴BE=OF=4,∴BO=EF,②如图3,延长HD交BF于N,∵DH∥y轴,CF∥y轴,∴DH∥OA∥CF,且点D是BC中点,∴∴DN=CF=,BN=NF=BF=,∵OE=EF,OF=4,∴OE=EF=2,∴NE=∵∠DEB=45°,DN⊥BF,∴DN=NE,∴∴b=﹣2∴DN=NE=1,∴ON=NE=1,且DH∥y轴,∴HN=AO=2∴DH=HN﹣DN=124.解:(1)∵点A(1,2)在直线y=kx上∴k=2,即直线为y=2x∵点A(1,2)在抛物线y=mx2+n上,m=﹣1∴﹣1+n=2,解得:n=3∴抛物线解析式为y=﹣x2+3解得:(即点A)∴点C坐标为(﹣3,﹣6);(2)过点A作AM⊥x轴于点M,过点P作PN⊥x轴于点N∴∠OMA=∠ONP=90°∵点A在直线y=x上,设A(a,a)(a>0)∴OM=AM=a,∠AOM=45°∵点A关于x轴对称点A'(a,﹣a)∴直线y=x沿着x轴翻折得到直线OA'解析式为y=﹣x,∠PON=∠AOM=45°∴△AOM、△PON都是等腰直角三角形∵∴∴ON=PN=2a∴P(2a,﹣2a)∵点A、P都在抛物线y=mx2+n∴①﹣②消去n后整理得:ma=﹣1,即a=﹣①×4﹣②消去ma2后整理得:n=2a∴n=﹣∴mn=﹣2;(3)过点E作EH⊥x轴于点H解得:,,∵点A在第一象限∴A(1,),OA=,tan∠AOD=∴∠AOD=60°∴∠BAE=∠BED=∠AOD=60°设直线AB与x轴交点为F,则△AOF为等边三角形∴OF=OA=2,F(2,0)设直线AB解析式为:y=kx+b解得:∴直线AB:y=﹣x+2解得:(即点A)∴点B与点F重合,点B在x轴上∴OB=AB=OA=2∵∠BAE=∠BED,∠BEO=∠BAE+∠ABE=∠BED+∠OED∴∠ABE=∠OED∵∠BAE=∠AOD∴△ABE∽△OED∴即∴t==﹣(s﹣1)2+,故0<t<;∵OE=s,sin∠EOH==∴EH=OE=s∴S2=S△EOD=OD•EH=st==∵∴S1==∴S1•S2﹣(S1+)+=﹣[+]+=,令s(2﹣s)=u,则原式=u2﹣u+=,∵>0,∴当u=时,S1•S2﹣(S1+)+的最小值为,此时,s(2﹣s)=,解得:s1=,s2=,当s=或时,均满足0<t<;∴当OE=s1=时,OH=cos60°=,EH=sin60°=,∴E1(,)当OE=s2=时,OH=cos60°=,EH=sin60°=,∴E2(,),综上所述,E的坐标为:E1(,),E2(,).21。

湖北省武汉市2019届中考数学模拟试卷(四)含答案解析

湖北省武汉市2019届中考数学模拟试卷(四)含答案解析

2019年湖北省武汉市四月调考九年级数学模拟试卷(四)一、选择题(共10小题,每小题3分,共30分)1.下列各数中,最小的数是()A.﹣2 B.1 C.0 D.﹣32.式子有意义,则x的取值范围是()A.x≥2 B.x≤2 C.x≥﹣2 D.x≤﹣23.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米.将2500000用科学记数法表示应为()A.0.25×107B.2.5×107C.2.5×106D.25×1054.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好是9.4环,方差分别是S甲2=0.90,S乙2=1.22,S丙2=0.43,S丁2=1.68,在本次射击测试中,成绩最稳定的是()A.甲B.乙C.丙D.丁5.下列计算正确的是()A.3a﹣a=2 B.b2•b3=b6C.a3÷a=a2D.(a3)4=a76.如图,在矩形ABCD中,AD=10,AB=6,E为BC上一点,DE平分∠AEC,则CE的长为()A.1 B.2 C.3 D.47.如图所示,该几何体的左视图是()A. B.C.D.8.某市努力改善空气质量,近年来空气质量明显好转,根据该市环保局公布的2010﹣2019这五年各年的空气质量:优良的天数,绘制成如图折线图,则这五年的全年空气质量优良天数平均为()A.343天B.344天C.345天D.346天9.下列图形都是由同样大小的黑点按一定的规律组成,其中第①个图形中一共有4个黑点,第②个图形中一共有9个黑点,第③个图形中一共有14个黑点,…,则第⑩个图形中黑点的个数是()A.44 B.48 C.49 D.5410.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A 出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A.B.C.D.二、填空题(共6小题,每小题3分,共18分)11.计算:÷=.12.因式分解:x2﹣2x+1=.13.在5瓶饮料中,有2瓶已过了保质期,从这5瓶饮料中任取1瓶,取到没有过保质期饮料的概率为.14.如图,2×2网格(2019•武汉模拟)如图,点A、B在双曲线y=的第一象限分支上,AO的延长线交第三象限的双曲线于C,AB的延长线与x轴交于点D,连接CD与y轴交于点E,若AB=BD,S△ODE=,则k=.16.如图,△ABC中,∠ABC=45°,AB=,BC=12,以AC为直角边,A为直角顶点作等腰直角△ACD,则BD的长为.三、解答题(共8题,共72分)17.直线y=2x+b经过点(3,5),求关于x的不等式2x+b≥0的解集.18.如图,BD是▱ABCD的对角线,E、F分别为BD上两点,AC交BD于O.(1)请你添加一个条件,使得△ABE≌△CDF,并证明;(2)在问题(1)中,当AC与EF满足什么条件时,四边形AECF是矩形,请说明理由.19.不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为.(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率.20.四边形ABDC在如图所示的平面直角坐标系中,将四边形ABDC向右平移4个单位长度后得四边形A1B1D1C1,再将四边形ABDC绕点O旋转180°后得到四边形A2B2D2C2.(1)在图中画出四边形A1B1D1C1与四边形A2B2D2C2;(2)四边形A1B1D1C1与四边形A2B2D2C2关于点P成中心对称,则点P的坐标为;(3)直接写出过A2、B2、D2三点的外接圆的直径为.21.已知AB是⊙O的直径,AT是⊙O的切线,AT=AB,OT交⊙O于M(1)如图1,BT交⊙O于E,求证:sin∠BTO=;(2)如图2,若TC切⊙O于点C,求tan∠CBM的值.22.为了抓住世博会商机,某商店决定购进A,B两种世博会纪念品,若购进A种纪念品10件,B 种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元,(1)求购进A,B两种纪念品每件需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?23.如图1,共直角边AB的两个直角三角形中,∠ABC=∠BAD=90°,AC交BD于P,且tan∠C=.(1)求证:AD=AB;(2)如图2,BE⊥CD于E交AC于F.①若F为AC的中点,求的值;②当∠BDC=75°时,请直接写出的值.24.已知抛物线经过A(﹣2,0),B(0,2),C(,0)三点,一动点P从原点出发以1个单位/秒的速度沿x轴正方向运动,连接BP,过点A作直线BP的垂线交y轴于点Q.设点P的运动时间为t秒.(1)求抛物线的解析式;(2)当BQ=AP时,求t的值;(3)随着点P的运动,抛物线上是否存在一点M,使△MPQ为等边三角形?若存在,请直接写t 的值及相应点M的坐标;若不存在,请说明理由.2019年湖北省武汉市四月调考九年级数学模拟试卷(四)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.下列各数中,最小的数是()A.﹣2 B.1 C.0 D.﹣3【考点】有理数大小比较.【分析】在数轴上表示出各数,再根据数轴的特点即可得出结论.【解答】解:如图所示,故选D.【点评】本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.2.式子有意义,则x的取值范围是()A.x≥2 B.x≤2 C.x≥﹣2 D.x≤﹣2【考点】二次根式有意义的条件.【分析】因为是二次根式,所以被开方数大于或等于0,列不等式求解.【解答】解:根据二次根式的性质,被开方数大于或等于0,可知:x﹣2≥0,解得:x≥2.故选A.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米.将2500000用科学记数法表示应为()A.0.25×107B.2.5×107C.2.5×106D.25×105【考点】科学记数法—表示较大的数.【专题】应用题.【分析】在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.【解答】解:根据题意:2500000=2.5×106.故选C.【点评】把一个数写成a×10n的形式,叫做科学记数法,其中1≤|a|<10,因此不能写成25×105而应写成2.5×106.4.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好是9.4环,方差分别是S甲2=0.90,S乙2=1.22,S丙2=0.43,S丁2=1.68,在本次射击测试中,成绩最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差是用来衡量一组数据波动大小的量,故由甲乙丙丁的方差可直接作出判断.【解答】解:∵0.43<0.90<1.22<1.68,∴丙成绩最稳定,故选:C.【点评】本题主要考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.下列计算正确的是()A.3a﹣a=2 B.b2•b3=b6C.a3÷a=a2D.(a3)4=a7【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】依据合并同类项法则、同底数幂的乘法则、同底数幂的除法则、幂的乘方法则法则进行判断即可.【解答】解:A.3a﹣a=2a,故A错误;B.b2•b3=b2+3=b5,故B错误;C.a3÷a=a2,故C正确;D.(a3)4=a12,故D错误.故选:C.【点评】本题主要考查的是同底数幂的运算,掌握运算法则是解题的关键.6.如图,在矩形ABCD中,AD=10,AB=6,E为BC上一点,DE平分∠AEC,则CE的长为()A.1 B.2 C.3 D.4【考点】矩形的性质;角平分线的性质.【分析】根据平行线的性质以及角平分线的性质证明∠ADE=∠AED,根据等角对等边,即可求得AE的长,在直角△ABE中,利用勾股定理求得BE的长,则CE的长即可求解.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEC=∠ADE,又∵∠DEC=∠AED,∴∠ADE=∠AED,∴AE=AD=10,在直角△ABE中,BE===8,∴CE=BC﹣BE=AD﹣BE=10﹣8=2.故选B.【点评】本题是平行四边形的性质,以及勾股定理,等腰三角形的判定定理:等角对等边,正确求得AE的长是关键.7.如图所示,该几何体的左视图是()A. B.C.D.【考点】简单几何体的三视图.【分析】根据左视图是左视图是从物体的左面看得到的视图,找到从左面看所得到的图形即可.【解答】解:从左面看可得到左边有2个上下的正方形,故选:C.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图,主要考查了学生的空间想象能力.8.某市努力改善空气质量,近年来空气质量明显好转,根据该市环保局公布的2010﹣2019这五年各年的空气质量:优良的天数,绘制成如图折线图,则这五年的全年空气质量优良天数平均为()A.343天B.344天C.345天D.346天【考点】算术平均数;折线统计图.【分析】利用折线统计图得到这五年的全年空气质量优良天数,然后根据平均数的定义求解.【解答】解:(334+333+345+347+356)÷5=343,故选A【点评】本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.9.下列图形都是由同样大小的黑点按一定的规律组成,其中第①个图形中一共有4个黑点,第②个图形中一共有9个黑点,第③个图形中一共有14个黑点,…,则第⑩个图形中黑点的个数是()A.44 B.48 C.49 D.54【考点】规律型:图形的变化类.【分析】仔细观察图形的变化情况找到规律,利用规律解答即可.【解答】解:观察图形发现:第一个图形有5×(1+1)﹣6=4个黑点;第二个图形有5×(2+1)﹣6=9个黑点;第三个图形有5×(3+1)﹣6=14个黑点;第四个图形有5×(4+1)﹣6=19个黑点;…第一个图形有5×(n+1)﹣6=5n﹣1个黑点;当n=10时,有50﹣1=49个黑点,故选C.【点评】本题考查了图形的变化类问题,解题的关键是仔细观察图形的变化规律,然后利用规律求解.10.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A 出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】数形结合.【分析】求出CE 的长,然后分①点P 在AD 上时,利用三角形的面积公式列式得到y 与x 的函数关系;②点P 在CD 上时,根据S △APE =S 梯形AECD ﹣S △ADP ﹣S △CEP 列式整理得到y 与x 的关系式;③点P 在CE 上时,利用三角形的面积公式列式得到y 与x 的关系式,然后选择答案即可.【解答】解:∵在矩形ABCD 中,AB=2,AD=3,∴CD=AB=2,BC=AD=3,∵点E 是BC 边上靠近点B 的三等分点,∴CE=×3=2,①点P 在AD 上时,△APE 的面积y=x •2=x (0≤x ≤3),②点P 在CD 上时,S △APE =S 梯形AECD ﹣S △ADP ﹣S △CEP ,=(2+3)×2﹣×3×(x ﹣3)﹣×2×(3+2﹣x ),=5﹣x+﹣5+x ,=﹣x+,∴y=﹣x+(3<x ≤5),③点P 在CE 上时,S △APE =×(3+2+2﹣x )×2=﹣x+7,∴y=﹣x+7(5<x ≤7),故选:A .【点评】本题考查了动点问题函数图象,读懂题目信息,根据点P 的位置的不同分三段列式求出y 与x 的关系式是解题的关键.二、填空题(共6小题,每小题3分,共18分)11.计算:÷= 2 .【考点】二次根式的乘除法.【分析】利用二次根式乘除法的运算法则,即可得出结论.【解答】解:÷===2.故答案为:2.【点评】本题考查了二次根式的乘除法,解题的关键是:能熟练运用二次根式乘除法的运算法则解决问题.12.因式分解:x2﹣2x+1=(x﹣1)2.【考点】因式分解-运用公式法.【专题】计算题;因式分解.【分析】原式利用完全平方公式分解即可.【解答】解:原式=(x﹣1)2.故答案为:(x﹣1)2【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.13.在5瓶饮料中,有2瓶已过了保质期,从这5瓶饮料中任取1瓶,取到没有过保质期饮料的概率为.【考点】概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵在5瓶饮料中,有2瓶已过了保质期,∴从这5瓶饮料中任取1瓶,取到没过保质期饮料的概率为;故答案为.【点评】此题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.如图,2×2网格(2019•武汉模拟)如图,点A、B在双曲线y=的第一象限分支上,AO的延长线交第三象限的双曲线于C,AB的延长线与x轴交于点D,连接CD与y轴交于点E,若AB=BD,S△ODE=,则k=2.【考点】反比例函数系数k的几何意义;相似三角形的判定与性质.【分析】作AF⊥x轴于F,BG⊥x轴于G,则BG∥AF,由AB=BD,得出FG=DG,BG=AF,设A(a,),则B(2a,),C(﹣a,﹣),即可得到DG=FG=a,OD=3a,作CH⊥y轴于H,则△ODE∽△HCD,得出=,即=,求得OE=,然后根据S△ODE=OD•OE=,得出×3a×=,解得k=2.【解答】解:作AF⊥x轴于F,BG⊥x轴于G,则BG∥AF,∴AB=BD,∴FG=DG,BG=AF,设A(a,),则B(2a,),C(﹣a,﹣),∴DG=FG=2a﹣a=a,∴OD=3a,作CH⊥y轴于H,∴CH∥y轴,∴△ODE∽△HCD∴=,即=,∴OE=,∴S△ODE=OD•OE=,∴×3a×=,∴k=2.故答案为2.【点评】本题考查了反比例函数系数k的几何意义以及系数三角形的判定和性质,作出辅助线构建相似三角形是解题的关键.16.如图,△ABC中,∠ABC=45°,AB=,BC=12,以AC为直角边,A为直角顶点作等腰直角△ACD,则BD的长为13.【考点】旋转的性质;勾股定理.【专题】计算题.【分析】由于AD=AC,∠CAD=90°,则可将△ABD绕点A顺时针旋转90°得△AEC,如图,根据旋转的性质得∠BAE=90°,AB=AE,BD=CE,于是可判断△ABE为等腰直角三角形,则∠ABE=45°,BE=AB=5,易得∠CBE=90°,然后在Rt△CBE中利用勾股定理计算出CE=13,从而得到BD=13.【解答】解:∵△ADC为等腰直角三角形,∴AD=AC,∠CAD=90°,将△ABD绕点A顺时针旋转90°得△AEC,如图,∴∠BAE=90°,AB=AE,BD=CE,∴△ABE为等腰直角三角形,∴∠ABE=45°,BE=AB=×=5,∵∠ABC=45°,∴∠CBE=45°+45°=90°,在Rt△CBE中,CE===13,∴BD=13.故答案为13.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决本题的关键的利用旋转得到直角三角形CBE.三、解答题(共8题,共72分)17.直线y=2x+b经过点(3,5),求关于x的不等式2x+b≥0的解集.【考点】一次函数与一元一次不等式.【专题】探究型.【分析】先把点(3,5)代入直线y=2x+b,求出b的值,再根据2x+b≥0即可得出x的取值范围.【解答】解:∵直线y=2x+b经过点(3,5),∴5=2×3+b,解得b=﹣1,∵2x+b≥0,∴2x﹣1≥0,解得x≥.【点评】本题考查的是一次函数与一元一次不等式,先根据题意得出关于x的一元一次不等式是解答此题的关键.18.如图,BD是▱ABCD的对角线,E、F分别为BD上两点,AC交BD于O.(1)请你添加一个条件,使得△ABE≌△CDF,并证明;(2)在问题(1)中,当AC与EF满足什么条件时,四边形AECF是矩形,请说明理由.【考点】矩形的判定;全等三角形的判定与性质;平行四边形的性质.【分析】(1)根据平行四边形的性质得一边相等、一角相等,然后找到另外一个相等的角或相等的边即可证明全等;(2)首先得到四边形AECF是平行四边形,然后利用对角线相等的四边形是矩形即可判定.【解答】证明:(1)添加条件AE=CF即可证得△ABE≌△CDF,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,在△ABE和△CDF中,∴△ABE≌△CDF;(2)当AC=EF时,四边形AECF是矩形,证明:∵四边形ABCD是平行四边形,∴∠BAC=∠DCA,∵∠BAE=∠DCF,∴∠EAO=∠FCO,∴AE∥CF,∵AE=CF,∴四边形AECF是平行四边形,∵AC=EF,∴四边形AECF是矩形.【点评】此题主要考查了矩形形的判定.矩形的判别方法是说明一个四边形为矩形形的理论依据,常用三种方法:①定义;②四角相等;③对角线相等.具体选择哪种方法需要根据已知条件来确定.19.不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为.(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率.【考点】列表法与树状图法.【分析】(1)首先设袋中黄球的个数为x个,由从中任意摸出一个球,它是蓝球的概率为,利用概率公式即可得方程:=,解此方程即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸到不同颜色球的情况,再利用概率公式求解即可求得答案.【解答】解:(1)设袋中黄球的个数为x个,∵从中任意摸出一个球,它是蓝球的概率为,∴=,解得:x=1,∴袋中黄球的个数为1个;(2)画树状图得:∵共有12种等可能的结果,两次摸到不同颜色球的有10种情况,∴两次摸到不同颜色球的概率为:P==.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.20.四边形ABDC在如图所示的平面直角坐标系中,将四边形ABDC向右平移4个单位长度后得四边形A1B1D1C1,再将四边形ABDC绕点O旋转180°后得到四边形A2B2D2C2.(1)在图中画出四边形A1B1D1C1与四边形A2B2D2C2;(2)四边形A1B1D1C1与四边形A2B2D2C2关于点P成中心对称,则点P的坐标为(2,0);(3)直接写出过A2、B2、D2三点的外接圆的直径为.【考点】作图-旋转变换;三角形的外接圆与外心;作图-平移变换.【专题】作图题.【分析】(1)利用网格特点和平移、旋转的性质画图;(2)根据中心对称的性质,点P为各对应点的连线的交点,然后确定P点位置,写出P点坐标;(3)利用勾股定理分别计算出A2D2=,A2B2=B2D2=,则根据勾股定理的逆定理可判断过A2、B2、D2三点的三角形为直角三角形,∠A2B2D2=90°,然后根据圆周角定理可得到过A2、B2、D2三点的外接圆的直径为.【解答】解:(1)如图,四边形A1B1D1C1与四边形A2B2D2C2为所作;(2)点P的坐标为(2,0);(3)A2D2==,A2B2=B2D2==,因为A2D22=A2B22+B2D22,所以过A2、B2、D2三点的三角形为直角三角形,∠A2B2D2=90°,所以A2D2为过A2、B2、D2三点的外接圆的直径,即过A2、B2、D2三点的外接圆的直径为.故答案为(2,0),.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.利用勾股定理的逆定理和圆周角定理是解决(3)问的关键.21.已知AB是⊙O的直径,AT是⊙O的切线,AT=AB,OT交⊙O于M(1)如图1,BT交⊙O于E,求证:sin∠BTO=;(2)如图2,若TC切⊙O于点C,求tan∠CBM的值.【考点】切线的性质.【分析】(1)作OF⊥BT于F,根据等腰直角三角形的性质得出BF=EF=OF,再利用三角函数解答即可;(2)根据切线的性质和平行线分线段成比例定理进行解答即可.【解答】解:(1)作OF⊥BT于F,则BF=EF=OF,∴sin∠BTO===(2)∵BC∥OT,则∠CBM=∠BMO=∠ABM,作MN⊥AB于N,∴tan∠AOT==2,∴=2,设ON=x,MN=2x,则OM=x=OB,∴BN=(+1)x,∴tan∠CBM=tan∠ABM===.【点评】本题考查的是切线的判定和平行线分线段成比例定理的应用,掌握经过半径的外端且垂直于这条半径的直线是圆的切线、灵活运用平行线分线段成比例定理是解题的关键.22.为了抓住世博会商机,某商店决定购进A,B两种世博会纪念品,若购进A种纪念品10件,B 种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元,(1)求购进A,B两种纪念品每件需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?【考点】一元一次不等式组的应用;二元一次方程组的应用.【专题】压轴题;方案型.【分析】(1)关系式为:A种纪念品10件需要钱数+B种纪念品5件钱数=1000;A种纪念品5件需要钱数+B种纪念品3件需要钱数=550;(2)关系式为:A种纪念品需要的钱数+B种纪念品需要的钱数≤10000;购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍;(3)计算出各种方案的利润,比较即可.【解答】解:(1)设A,B两种纪念品每件需x元,y元.,解得:.答:A,B两种纪念品每件需50元,100元;(2)设购买A种纪念品a件,B种纪念品b件.,解得20≤b≤25.则b=20,21,22,23,24,25;对应的a=160,158,156,154,152,150答:商店共有6种进货方案.(3)解:设利润为W元,则W=20a+30b=20(200﹣2b)+30b=﹣10b+4000(20≤b≤25),∴W随着b的增大而减小,∴当b=20时,W最大,此时a=160时,W最大,=4000﹣10×20=3800(元),∴W最大答:方案获利最大为:A种纪念品160件,B种纪念品20件,最大利润为3800元.【点评】解决本题的关键是读懂题意,找到符合题意的相应的关系式是解决问题的关键,注意第二问应求得整数解.23.如图1,共直角边AB的两个直角三角形中,∠ABC=∠BAD=90°,AC交BD于P,且tan∠C=.(1)求证:AD=AB;(2)如图2,BE⊥CD于E交AC于F.①若F为AC的中点,求的值;②当∠BDC=75°时,请直接写出的值.【考点】相似形综合题.【分析】(1)根据AD∥BC得=,又tan∠C=故故AD=AB.(2)①在图2中,过D作DH⊥BC于H,延长BE交AD延长线于G,易证ABHD为正方形,设其边长为a,DG=b,根据△ABC∽△DGC,得到a、b的关系即可解决问题.②根据条件推出∠HDC=∠DCG=30°即可解决问题.【解答】解:(1)∵∠DAB+∠ABC=180°,∴AD∥BC,∴=,∵tan∠C=,∴,∴AD=AB.(2)①在图2中,过D作DH⊥BC于H,延长BE交AD延长线于G,易证ABHD为正方形,设其边长为a,DG=b,∵AG∥BC,∴,∵AF=FC,∴AG=BC,∴四边形ABCG是平行四边形,∵∠ABC=90°∴四边形ABCG是矩形,∴FB=FC,∠BCG=∠AGC=90°,∴∠FBC=∠FCB,∵∠FBC+∠BC,E=90°,∠BCE+∠ECG=90°,∴∠ECG=∠FBC,∴∠DCG=∠ACB,∵∠ABC=∠DGC=90°∴△ABC∽△DGC,∴,∴,∴a2﹣ab﹣b2=0,∴a=(或a=舍弃),∵DG∥BC,∴====,②由1可知四边形ABHD是正方形,∵∠BDC=75°,∠BDH=45°,∴∠HDC=∠DCG=30°,∵∠DGC=90°,∴∠CDG=60°,∠DGE=30°,设DE=m,则DG=2DE=2a,DC=2DG=4a,∴EC=3a,∴=3.【点评】本题考查正方形的判定和性质、相似三角形的判定和性质、勾股定理等知识,添加辅助线构造特殊图形是解决问题的关键.24.已知抛物线经过A(﹣2,0),B(0,2),C(,0)三点,一动点P从原点出发以1个单位/秒的速度沿x轴正方向运动,连接BP,过点A作直线BP的垂线交y轴于点Q.设点P的运动时间为t秒.(1)求抛物线的解析式;(2)当BQ=AP时,求t的值;(3)随着点P的运动,抛物线上是否存在一点M,使△MPQ为等边三角形?若存在,请直接写t 的值及相应点M的坐标;若不存在,请说明理由.【考点】二次函数综合题;一次函数的应用;全等三角形的应用;等腰三角形的性质;等边三角形的性质.【专题】压轴题.【分析】(1)已知3点求抛物线的解析式,设解析式为y=ax2+bx+c,待定系数即得a、b、c的值,即得解析式.(2)BQ=AP,要考虑P在OC上及P在OC的延长线上两种情况,有此易得BQ,AP关于t的表示,代入BQ=AP可求t值.(3)考虑等边三角形,我们通常只需明确一边的情况,进而即可描述出整个三角形.考虑△MPQ,发现PQ为一有规律的线段,易得OPQ为等腰直角三角形,但仅因此无法确定PQ运动至何种情形时△MPQ为等边三角形.若退一步考虑等腰,发现,MO应为PQ的垂直平分线,即使△MPQ为等边三角形的M点必属于PQ的垂直平分线与抛物线的交点,但要明确这些交点仅仅满足△MPQ为等腰三角形,不一定为等边三角形.确定是否为等边,我们可以直接由等边性质列出关于t的方程,考虑t的存在性.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c,∵抛物线经过A(﹣2,0),B(0,2),C(,0)三点,∴,解得,∴y=﹣x2﹣x+2.(2)∵AQ⊥PB,BO⊥AP,∴∠AOQ=∠BOP=90°,∠PAQ=∠PBO,∵AO=BO=2,∴△AOQ≌△BOP,∴OQ=OP=t.①如图1,当t≤2时,点Q在点B下方,此时BQ=2﹣t,AP=2+t.∵BQ=AP,∴2﹣t=(2+t),∴t=.②如图2,当t>2时,点Q在点B上方,此时BQ=t﹣2,AP=2+t.∵BQ=AP,∴t﹣2=(2+t),∴t=6.综上所述,t=或6时,BQ=AP.(3)当t=﹣1时,抛物线上存在点M(1,1);当t=3+3时,抛物线上存在点M(﹣3,﹣3).分析如下:∵AQ⊥BP,∴∠QAO+∠BPO=90°,∵∠QAO+∠AQO=90°,∴∠AQO=∠BPO.在△AOQ和△BOP中,,∴△AOQ≌△BOP,∴OP=OQ,∴△OPQ为等腰直角三角形,∵△MPQ为等边三角形,则M点必在PQ的垂直平分线上,∵直线y=x垂直平分PQ,∴M在y=x上,设M(x,y),∴,解得或,∴M点可能为(1,1)或(﹣3,﹣3).①如图3,当M的坐标为(1,1)时,作MD⊥x轴于D,则有PD=|1﹣t|,MP2=1+|1﹣t|2=t2﹣2t+2,PQ2=2t2,∵△MPQ为等边三角形,∴MP=PQ,∴t2+2t﹣2=0,∴t=﹣1+,t=﹣1﹣(负值舍去).②如图4,当M的坐标为(﹣3,﹣3)时,作ME⊥x轴于E,则有PE=3+t,ME=3,∴MP2=32+(3+t)2=t2+6t+18,PQ2=2t2,∵△MPQ为等边三角形,∴MP=PQ,∴t2﹣6t﹣18=0,∴t=3+3,t=3﹣3(负值舍去).综上所述,当t=﹣1+时,抛物线上存在点M(1,1),或当t=3+3时,抛物线上存在点M(﹣3,﹣3),使得△MPQ为等边三角形.【点评】本题是二次函数、一次函数及三角形相关知识的综合题目,其中涉及的知识点有待定系数法求抛物线,三角形全等,等腰、等边三角形性质及一次函数等基础知识,在讨论动点问题是一定要注意考虑全面分情形讨论分析.总体来说本题难度较高,其中技巧需要好好把握.。

湖北省武汉市2019年中考数学模拟试卷含答案解析

湖北省武汉市2019年中考数学模拟试卷含答案解析

湖北省武汉市2019年中考数学模拟试卷含答案解析一.选择题(共10小题)1.比﹣1小2的数是()A.3 B.1 C.﹣2 D.﹣32.若代数式在实数范围内有意义,则实数x的取值范围是()A.x>3 B.x=3 C.x≠0 D.x≠33.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A.最高分B.中位数C.方差D.平均数4.将点P(﹣5,4)先向右平移4个单位长度,再向下平移2个单位长度后的坐标是()A.(﹣1,6)B.(﹣9,6)C.(﹣1,2)D.(﹣9,2)5.图中三视图对应的正三棱柱是()A.B.C.D.6.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.507.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤78.如图,从汉口驾车到武昌不同的线(每条线路只能单次过汉江或长江)走法有()A.10种B.12种C.15种D.24种9.一辆汽车刹车后行驶的距离s(单位:米)关于行驶时间t(单位:秒)的函数解析式是s=15t﹣6t2,那么距离s与行驶时间t的函数图象大致是()A.B.C.D.10.如图,正方形ABCD和等边△AEF都内接于圆O,EF与BC、CD别相交于点G、H.若AE =6,则EG的长为()A.B.3﹣C.D.2﹣3二.填空题(共6小题)11.计算:的结果是.12.不透明的袋子中装有红色小球1个、绿色小球2个,除颜色外无其他差别.随机摸出一个小球后,放回后摇匀再随机摸出一个小球,则摸出两个绿球的概率为.13.计算:的结果是.14.一根长40cm的金属棒,欲将其截成x根7cm长的小段和y根9cm长的小段,剩余部分作废料处理.若使废料最少,则正整数x应为.15.如图,在四边形ABCD中,AB∥CD,2AB=2BC=CD=10,tan B=,则AD=.16.如图,△DEF的三个顶点分别在反比例函数与(x>0,m>n>0)的图象上,DB⊥x轴于B,FE⊥x轴于C,点B为OC中点,△DEF的面积为2,则m与n满足的数量关系是三.解答题(共5小题)17.计算:(﹣2x2)3+2x2•x418.如图,∠1+∠2=180°,∠3=∠C.求证:DE∥BC.19.“大美武汉•诗意江城”,某校数学兴趣小组就“最想去的武汉市旅游景点”随机调查了本校3000名学生中的部分学生,提供四个景点选择:A、黄鹤楼;B、东湖海洋世界;C、极地海洋世界;D、欢乐谷.要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)一共调查了学生人;(2)扇形统计图中表示“最想去的景点D”的扇形圆心角为度;(3)如果A、B、C、D四个景点提供给学生优惠门票价格分别为20元、30元、40元、60元,根据以上的统计估计全校学生到对应的景点所需要门票总价格是多少元?20.已知矩形ABCD,其中AD>AB,依题意先画出图形,然后解答问题.(1)F为DC边上一点,把△ADF沿AF折叠,使点D恰好落在BC上的点E处.在图1中先画出点E,再画出点F,若AB=8,AD=10,直接写出EF的长为;(2)把△ADC沿对角线AC折叠,点D落在点E处,在图2先画出点E,AE交CB于点F,连接BE.求证:△BEF是等腰三角形.21.如图,△ABC中,AB=AC,以AB为直径的圆O交BC于点D,交AC于点E,过点D作DF⊥AC于点F,交AB的延长线于点G.(1)求证:DF是⊙O的切线;(2)已知BD=,CF=2,求DF和BG的长.22.某公司根据市场需求销售A、B两种型号的净水器,每台A型净水器比每台B型净水器进价多200元,用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等.(1)求每台A型、B型净水器的进价各是多少元?(2)该公司计划用不超过9.8万元购进A,B两种型号的净水器共50台,其中A型、B 型净水器每台售价分别为2500元、2180元,设A型净水器为x台.①求x的取值范围.②若公司决定从销售A型净水器的利润中每台捐献a(100<a<150)元给贫困村饮水改造爱心工程,求售完这50台净水器后获得的最大利润.23.在△ACB和△DCE中,AB=AC,DE=DC,点E在AB上(1)如图1,若∠ACB=∠DCE=60°,求证:∠DAC=∠EBC;(2)如图2,设AC与DE交于点P.①若∠ACB=∠DCE=45°,求证:AD∥CB;②在①的条件下,设AC与DE交于点P,当tan∠ADE=时,直接写出的值.24.(1)抛物线y=ax2﹣2x+2经过点E(2,2),其顶点为C点.①求抛物线的解析式,并直接写出C点坐标;②将直线y=x沿y轴向上平移b(b>0)个单位长度交抛物线于A、B两点,若∠ACB=90°,求b的值.(2)是否存在点D(1,m),使抛物线y=x2﹣x+上任意一点P到x轴的距离等于P点到点D的距离,若存在,请求点D的坐标,若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.比﹣1小2的数是()A.3 B.1 C.﹣2 D.﹣3【分析】根据题意可得算式,再计算即可.【解答】解:﹣1﹣2=﹣3,故选:D.2.若代数式在实数范围内有意义,则实数x的取值范围是()A.x>3 B.x=3 C.x≠0 D.x≠3【分析】分式的分母不等于零.【解答】解:依题意得:3﹣x≠0.解得x≠3.故选:D.3.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A.最高分B.中位数C.方差D.平均数【分析】根据中位数的意义分析.【解答】解:某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的中位数.故选:B.4.将点P(﹣5,4)先向右平移4个单位长度,再向下平移2个单位长度后的坐标是()A.(﹣1,6)B.(﹣9,6)C.(﹣1,2)D.(﹣9,2)【分析】直接利用平移中点的变化规律求解即可.【解答】解:将点P(﹣5,4)先向右平移4个单位长度,再向下平移2个单位长度后的坐标是(﹣5+4,4﹣2),即(﹣1,2),故选:C.5.图中三视图对应的正三棱柱是()A.B.C.D.【分析】利用俯视图可淘汰C、D选项,根据主视图的侧棱为实线可淘汰B,从而判断A 选项正确.【解答】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确.故选:A.6.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.50【分析】根据黑球的频率稳定在0.4附近得到黑球的概率约为0.4,根据概率公式列出方程求解可得.【解答】解:根据题意得=0.4,解得:n=20,故选:A.7.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤7【分析】先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.【解答】解:解不等式3x﹣m+1>0,得:x>,∵不等式有最小整数解2,∴1≤<2,解得:4≤m<7,故选:A.8.如图,从汉口驾车到武昌不同的线(每条线路只能单次过汉江或长江)走法有()A.10种B.12种C.15种D.24种【分析】结合图形知从汉口只过一座桥梁的有3种可能,需要过两座桥梁的有4×3=12种可能,据此可得答案.【解答】解:由图知,从汉口只过一座桥梁的有3种可能,需要过两座桥梁的有4×3=12种可能,所以依据右图,从汉口驾车到武昌不同的线路(每条线路只能单次过汉江或长江)走法有15种,故选:C.9.一辆汽车刹车后行驶的距离s(单位:米)关于行驶时间t(单位:秒)的函数解析式是s=15t﹣6t2,那么距离s与行驶时间t的函数图象大致是()A.B.C.D.【分析】利用配方法求二次函数最值的方法解答即可.【解答】解:∵s=15t﹣6t2=﹣6(t﹣1.25)2+9.375,∴汽车刹车后1.25秒,行驶的距离是9.375米后停下来,∴图象上1.25秒达到行驶距离的最大值是9.375米,故选:D.10.如图,正方形ABCD和等边△AEF都内接于圆O,EF与BC、CD别相交于点G、H.若AE =6,则EG的长为()A.B.3﹣C.D.2﹣3【分析】连接AC、BD、OF,AC与EF交于P点,则它们的交点为O点,如图,利用正方形和等边三角形的性质得到∠COF=60°,AC⊥BD,∠BCA=45°,利用含30度的直角三角形三边的关系得到OP=OF=OC,OP=PF=,从而得到PC=OP=,然后利用△PCG为等腰直角三角形得到PG=PC=,从而得到EG的长.【解答】解:连接AC、BD、OF,AC与EF交于P点,则它们的交点为O点,如图,∵正方形ABCD和等边△AEF都内接于圆O,∴∠COF=60°,AC⊥BD,∠BCA=45°,∵EF∥BD,∴AC⊥EF,∴PE=PF=EF=3,在Rt△OPF中,OP=OF=OC,∵OP=PF=,∴PC=OP=,∵△PCG为等腰直角三角形,∴PG=PC=,∴EG=PE﹣PG=3﹣.故选:B.二.填空题(共6小题)11.计算:的结果是﹣.【分析】根据二次根式的加减法计算即可.【解答】解:=,故答案为:,12.不透明的袋子中装有红色小球1个、绿色小球2个,除颜色外无其他差别.随机摸出一个小球后,放回后摇匀再随机摸出一个小球,则摸出两个绿球的概率为.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:红色小球用数字1表示,两个绿色小球分别用2和3表示,列表得:由上表可知,从袋子总随机摸出两个小球可能会出现9个等可能的结果,其中两球都是绿色的结果有4个,∴摸出两个绿球的概率为,故答案为:.13.计算:的结果是.【分析】先变形,再根据分式的加法法则求出即可.【解答】解:=+===,故答案为:.14.一根长40cm的金属棒,欲将其截成x根7cm长的小段和y根9cm长的小段,剩余部分作废料处理.若使废料最少,则正整数x应为 3 .【分析】根据金属棒的长度是40cm,则可以得到7x+9y≤40,再根据x,y都是正整数,即可求得所有可能的结果,分别计算出剩料的长度,即可得到答案.【解答】解:根据题意得:7x+9y≤40,则x≤,∵40﹣9y≥0且y是正整数,∴y的值可以是1或2或3或4,当y=1时,x,则x=4,此时,所剩的废料是:40﹣9﹣4×7=3cm,当y=2时,x,则x=3,此时,所剩的废料是:40﹣2×9﹣3×7=1cm,当y=3时,x,则x=1,此时,所剩的废料是:40﹣3×9﹣7=6cm,当y=4时,x,则x=0(舍去),最少的是:x=3,y=2,故答案为:3.15.如图,在四边形ABCD中,AB∥CD,2AB=2BC=CD=10,tan B=,则AD=3.【分析】过A作AF⊥CD于F,过C作CE⊥AB于E,根据矩形的性质得出AF=CE,AE=CF,求出AF和DF长,再根据勾股定理求出即可.【解答】解:∵2AB=2BC=CD=10,∴AB=BC=5,过A作AF⊥CD于F,过C作CE⊥AB于E,则∠AEC=∠AFD=∠BEC=90°,AF∥CE,∵AB∥CD,∴四边形AECF是矩形,∴AE=CF,AF=CE,∵在Rt△BEC中,tan B==,又∵BC=5,CE=3,BE=4,∴AE=CF=5﹣4=1,AF=CE=3,∵CD=10,∴DF=10﹣1=9,在Rt△AFD中,由勾股定理得:AD===3,故答案为:.16.如图,△DEF的三个顶点分别在反比例函数与(x>0,m>n>0)的图象上,DB⊥x轴于B,FE⊥x轴于C,点B为OC中点,△DEF的面积为2,则m与n满足的数量关系是m﹣n=8【分析】设D(a,),则F(2a,),E(2a,),根据S△DEF=S梯形BCFD﹣S梯形BCED 列出等式,整理即可求得.【解答】解:设D(a,),则F(2a,),E(2a,),∵S△DEF=S梯形BCFD﹣S梯形BCED,△DEF的面积为2,∴2=(+)•a﹣(+),整理得,m﹣n=8,故答案为m﹣n=8.三.解答题(共5小题)17.计算:(﹣2x2)3+2x2•x4【分析】根据单项式乘单项式法则,幂的乘方与积的乘方计算法则解答.【解答】解:原式=﹣8x6+2x6=﹣6x6.18.如图,∠1+∠2=180°,∠3=∠C.求证:DE∥BC.【分析】欲证明DE∥BC,只要证明∠C=∠AED即可.【解答】解:∵∠1+∠DHE=180°,∠1+∠2=180°,∴∠DHE=∠2,∴DH∥AC,∴∠3=∠AED,又∵∠3=∠C,∴∠C=∠AED,∴DE∥BC.19.“大美武汉•诗意江城”,某校数学兴趣小组就“最想去的武汉市旅游景点”随机调查了本校3000名学生中的部分学生,提供四个景点选择:A、黄鹤楼;B、东湖海洋世界;C、极地海洋世界;D、欢乐谷.要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)一共调查了学生100 人;(2)扇形统计图中表示“最想去的景点D”的扇形圆心角为144 度;(3)如果A、B、C、D四个景点提供给学生优惠门票价格分别为20元、30元、40元、60元,根据以上的统计估计全校学生到对应的景点所需要门票总价格是多少元?【分析】(1)由A景点的人数及其所占百分比可得总人数;(2)先求出C和D的人数,再用360°乘以D人数所占百分比可得答案;(3)先求出样本中人均费用,再乘以总人数即可得.【解答】解:(1)被调查的总人数为15÷15%=100(人),故答案为:100;(2)C景点人数为100×26%=26(人),则D景点人数为100﹣(15+19+26)=40(人),所以“最想去的景点D”的扇形圆心角为360°×=144°,故答案为:144;(3)样本中平均每人的费用为=43.1(元)则估计全校学生到对应的景点所需要门票总价格是43.1×3000=129300元.20.已知矩形ABCD,其中AD>AB,依题意先画出图形,然后解答问题.(1)F为DC边上一点,把△ADF沿AF折叠,使点D恰好落在BC上的点E处.在图1中先画出点E,再画出点F,若AB=8,AD=10,直接写出EF的长为 5 ;(2)把△ADC沿对角线AC折叠,点D落在点E处,在图2先画出点E,AE交CB于点F,连接BE.求证:△BEF是等腰三角形.【分析】(1)在BC上截取AE=AD得点E,作AF垂直DE交CD于点F(或作∠AED的平分线AF交CD于点F,或作EF垂直AE交CD于点F等等);(2)作DH垂直AC于点H,延长DH至点E,使HE=DH.方法一证明△ABE≌△CEB(SSS).方法二证明FA=FC即可解决问题.【解答】解:(1)如图1,在BC上截取AE=AD得点E,作AF垂直DE交CD于点F(或作∠AED的平分线AF交CD于点F,或作EF垂直AE交CD于点F等等),∵四边形ABCD是矩形,∴AB=CD=8,AD=BC=10,∠B=∠C=90°,在Rt△ABE中,BE==6,∴EC=10﹣6=4,设EF=DF=x,在Rt△EFC中,则有x2=(8﹣x)2+42,解得x=5,∴EF=5.故答案为:5;(2)证明:如图2,作DH垂直AC于点H,延长DH至点E,使HE=DH.方法1:∵△ADC≌△AEC,∴AD=AE=BC,AB=DC=EC,在△ABE与△CEB中,,∴△ABE≌△CEB(SSS),∴∠AEB=∠CBE,∴BF=EF,∴△BEF是等腰三角形.方法2:∵△ADC≌△AEC,∴AD=AE=BC,∠DAC=∠EAC,又∴AD∥BC,∴∠DAC=∠ACB,∴∠EAC=∠ACB,∴FA=FC,∴FE=FB,∴△BEF是等腰三角形.21.如图,△ABC中,AB=AC,以AB为直径的圆O交BC于点D,交AC于点E,过点D作DF⊥AC于点F,交AB的延长线于点G.(1)求证:DF是⊙O的切线;(2)已知BD=,CF=2,求DF和BG的长.【分析】(1)连接OD,根据圆周角定理得到AD⊥BC,结合等腰三角形的性质知BD=CD,再根据OA=OB知OD∥AC,从而由DF⊥AC可得OD⊥DF,即可得证;(2)连接BE.BE∥DF,可得DF是△BEC的中位线,设AE=x,则AC=AB=x+4,根据勾股定理列方程可得x的值,证明△GOD∽△GAF,列比例式可得BG的长.【解答】解:(1)∵AB是⊙O的直径,∴∠ADB=90°,连接OD,∵∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,又∵OA=OB,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是圆O的切线;(3)连接BE.∵CD=BD=2,∵CF=2,∴DF===4,∵AB是直径,∴∠AEB=∠CEB=90°,∴BE⊥AC,∵DF⊥AC,∴DF∥BE,∴EF=FC=2,∴BE=2DF=8,设AE=x,则AC=AB=x+4由勾股定理得:AB2=AE2+BE2,(x+4)2=82+x2,x=6,∴AE=6,AB=4+6=10,∵OD∥AF,∴△GOD∽△GAF,∴=,∴=,∴BG=.22.某公司根据市场需求销售A、B两种型号的净水器,每台A型净水器比每台B型净水器进价多200元,用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等.(1)求每台A型、B型净水器的进价各是多少元?(2)该公司计划用不超过9.8万元购进A,B两种型号的净水器共50台,其中A型、B 型净水器每台售价分别为2500元、2180元,设A型净水器为x台.①求x的取值范围.②若公司决定从销售A型净水器的利润中每台捐献a(100<a<150)元给贫困村饮水改造爱心工程,求售完这50台净水器后获得的最大利润.【考点】B7:分式方程的应用.【专题】522:分式方程及应用;524:一元一次不等式(组)及应用;533:一次函数及其应用.【分析】(1)根据题意可以列出相应的分式方程,从而可以解答本题;(2)①根据购买资金=A型净水器的进价×购进数量+B型净水器的进价×购进数量结合购买资金不超过9.8万元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围;②由总利润=每台A型净水器的利润×购进数量+每台B型净水器的利润×购进数量﹣a×购进A型净水器的数量,即可得出w关于x的函数关系式,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m﹣200)元,根据题意得:,解得:m=2000,经检验,m=2000是分式方程的解,∴m﹣200=1800.答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元;(2)①根据题意得:2000x+1800(50﹣x)≤98000,解得:x≤40∴x的取值范围为:0≤x≤40且为x整数;②总利润w=(2500﹣2000)x+(2180﹣1800)(50﹣x)﹣ax=(120﹣a)x+19000,∵100<a<150,∴i).当100<a<120时,120﹣a>0,w随x增大而增大,∴当x=40时,w取最大值,最大值为(120﹣a)×40+19000=23800﹣40a,ii).当a=120时,w为一个定值w=0+19000=19000,iii)当120<a<150时,120﹣a<0,w随x的增大而减小,∴当x=0时,w取最大值,其最大值为:(120﹣a)×0+19000=19000,综上,当100<a<120时,19000<23800﹣40a<19800,∴售完这50台净水器后获得的最大利润为23800﹣40a.23.在△ACB和△DCE中,AB=AC,DE=DC,点E在AB上(1)如图1,若∠ACB=∠DCE=60°,求证:∠DAC=∠EBC;(2)如图2,设AC与DE交于点P.①若∠ACB=∠DCE=45°,求证:AD∥CB;②在①的条件下,设AC与DE交于点P,当tan∠ADE=时,直接写出的值.【考点】KY:三角形综合题.【专题】153:代数几何综合题;16:压轴题.【分析】(1)由等腰三角形的底角等于60°得出△ACB和△DCE都是等边三角形,再由“SAS”证得△DCA≌△ECB即可得出结论;(2)①由等腰三角形的底角等于45°得出△ACB和△DCE都是等腰直角三角形,由cos ∠ACB=cos∠DCE得出即,证得△ECB∽△DCA得出∠B=∠DAC=45°,求出∠DAC=∠ACB=45°即可得出结论;②作EH∥AD交AC于点H,则,由△ECB∽△DCA得,求得∠ADE=∠ACE,tan∠ACE=tan∠ADE=,可设AE=2m,则AC=4m,即BE=2m,可得AD=,EH=,即可得出结果.【解答】(1)证明:∵AB=AC,DE=DC,∠ACB=∠DCE=60°,∴△ACB和△DCE都是等边三角形,∴BC=AC,EC=DC,∠DCA=∠ECB,在△DCA和△ECB中,,∴△DCA≌△ECB(SAS),∴∠DAC=∠EBC;(2)①证明:∵AB=AC,DE=DC,∠ACB=∠DCE=45°,∴△ACB和△DCE都是等腰直角三角形,∠CAB=∠CDE=90°,∠ECB=∠DCA,∴cos∠ACB=cos∠DCE,∴即,又∵∠ECB=∠DCA,∴△ECB∽△DCA,∴∠B=∠DAC=45°,∴∠DAC=∠ACB=45°,∴AD∥CB;②解:作EH∥AD交AC于点H,如图2所示:则:,由①中的△ECB∽△DCA得:,∵∠DAC=∠B═45°=∠DEC,∴∠ADE=∠ACE,∴tan∠ACE=tan∠ADE=,设AE=2m,∴tan∠ACE==,∴AC=4m,∴BE=AB﹣AE=AC﹣AE=4m﹣2m=2m,∴AE=BE,∴BC=AC=4m,∵EH∥AD,AD∥CB,∴EH∥CB,∴EH是△ABC的中位线,∴EH=BC=×4m=2m,AD===m,∴==.24.(1)抛物线y=ax2﹣2x+2经过点E(2,2),其顶点为C点.①求抛物线的解析式,并直接写出C点坐标;②将直线y=x沿y轴向上平移b(b>0)个单位长度交抛物线于A、B两点,若∠ACB=90°,求b的值.(2)是否存在点D(1,m),使抛物线y=x2﹣x+上任意一点P到x轴的距离等于P点到点D的距离,若存在,请求点D的坐标,若不存在,请说明理由.【考点】HF:二次函数综合题.【专题】535:二次函数图象及其性质;55D:图形的相似;67:推理能力.【分析】(1)将点E坐标代入解析式可求解;(2)如图1,过点C作MN⊥y轴,过点A作AF⊥MN,过点B作BH⊥MN,设平移后直线解析式为:y=x+b,由根与系数关系可得x A+x B=3,x A•x B=2﹣b,通过证明△ACF∽△CBH,可得,可求b的值;(3)设设P(a,b),由题意可得b=PD,由两点距离公式可求解.【解答】解:(1)∵抛物线y=ax2﹣2x+2经过点E(2,2),∴2=4a﹣4+2,∴a=1,∴抛物线解析式为:y=x2﹣2x+2,∵y=x2﹣2x+2=(x﹣1)2+1,∴顶点坐标为(1,1);(2)如图1,过点C作MN⊥y轴,过点A作AF⊥MN,过点B作BH⊥MN,设平移后直线解析式为:y=x+b,∴,∴x2﹣3x+2﹣b=0,设A(x A,y A),B(x B,y B),则x A+x B=3,x A•x B=2﹣b,∵∠ACB=90°,∴∠BCH+∠ACF=90°,且∠BCH+∠HBC=90°,∴∠HBC=∠ACF,且∠BHC=∠AFC=90°,∴△ACF∽△CBH,∴,∴,∴y A•y B+x A•x B+2=y A+y B+x A+x B,∴(x A+b)(x B+b)+2﹣b+2=x A+b+x B+b+3,∴b2﹣b=0,∴b=1,b=0(舍去)(3)设P(a,b),则b=a2﹣a+,由题可知,b=PD,∴b2=(a﹣1)2+(m﹣b)2,∴(4﹣2m)b+m2﹣4=0,∵任意一点P,∴4﹣2m=0,∴m=2,∴D(1,2).。

2019年湖北省武汉市武昌区中考模拟数学试卷(二) (解析版)

2019年湖北省武汉市武昌区中考模拟数学试卷(二) (解析版)

2019年湖北省武汉市武昌区中考模拟数学试卷(二)一.选择题(共10小题)1.有理数3的相反数是()A.﹣3B.﹣C.3D.2.式子在实数范围内有意义,则x的取值范围是()A.x>﹣2B.x≥﹣2C.x<﹣2D.x≤﹣23.不透明的袋子中装有形状、大小、质地完全相同的5个球,其中3个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是2个白球、1个黑球B.摸出的是3个黑球C.摸出的是3个白球D.摸出的是2个黑球、1个白球4.若点A(1,2),B(﹣1,2),则点A与点B的关系是()A.关于x轴对称B.关于y轴对称C.关于直线x=1对称D.关于直线y=1对称5.如图所示的几何体的俯视图是()A.B.C.D.6.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x张甲种票,y张乙种票,则所列方程组正确的是()A.B.C.D.7.把八个完全相同的小球平分为两组,每组中每个分别写上1,2,3,4四个数字,然后分别装入不透明的口袋内搅匀,从第一个口袋内取出一个数记下数字后作为点P的横坐标x,然后再从第二个口袋中取出一个球记下数字后作为点P的纵坐标,则点P(x,y)落在直线y=﹣x+5上的概率是()A.B.C.D.8.如图,甲处表示2街6巷的十字路口,乙处表示6街1巷的十字路口.如果用(2,6)表示甲处的位置,那么“(2,6)→(3,6)→(4,6)→(5,6)→(6,6)→(6,5)→(6,4)→(6,3)→(6,2)→(6,1)”表示从甲处到乙处的一种路线(规定:只能沿线向下和向右运动),则从甲处到乙处的路线中经过丙处的走法共有()A.38种B.39种C.40种D.41种9.已知a,b,c满足a+b+c=0,4a+c=2b,则二次函数y=ax2+bx+c(a≠0)的图象的对称轴为()A.直线x=1B.直线x=﹣1C.直线x=D.直线x=﹣10.如图,在等腰三角形△ABC中,O为底边BC的中点,以O为圆心作半圆与AB,AC 相切,切点分别为D,E.过半圆上一点F作半圆的切线,分别交AB,AC于M,N.那么的值等于()A.B.C.D.1二.填空题(共6小题)11.化简的结果是.12.某校举行“中国诗词大会”的比赛每班限报一名选手,九(1)班甲、乙、丙、丁四位选手在班级选拔赛时的数据如表:甲乙丙丁平均分9.89.39.29.8方差 1.5 3.2 3.3 6.8根据表中数据,要从四个同学中选择一个成绩好且发挥稳定的参加比赛,应该选择是(填“甲”或“乙”或“丙”或“丁”)13.化简的结果是.14.如图,在矩形ABCD中,边AD沿DF折叠,点A恰好落在矩形的对称中心E处,则cos∠ADF=.15.如图,一次函数y=3x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣3,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为2,则k的值为.16.如图,在△ABC中,点D,E分别为AB,AC边上一点,且BE=CD,CD⊥BE.若∠A=30°,BD=1,CE=2,则四边形CEDB的面积为.三.解答题(共8小题)17.计算:(2a2)2﹣a•3a3+a5÷a.18.如图,AB∥CD,∠ADC=∠ABC.求证:∠E=∠F.19.“长跑”是中考体育考试项目之一,某中学为了解九年级学生“长跑”的情况,随机抽取部分九年级学生,测试其长跑成绩(男子1000米,女子800米),按长跑的时间的长短依次分为A,B,C,D四个等级进行统计,并绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)在这次调查中共抽取了名学生,扇形统计图中,D类所对应的扇形圆心角大小为;(2)补全条形统计图,所抽取学生“长跑”测试成绩的中位数会落在等级;(3)若该校九年级共有900名学生,请你估计该校C等级的学生约在多少人?20.如图,在下列10×10的网格中,横、纵坐标均为整数的点叫做格点,例如A(3,0),B(4,3)都是格点.将△AOB绕点O顺时针旋转90°得到△COD(点A,B的对应点分别为点C,D).(1)作出△COD;(2)下面仅用无刻度的直尺画△AOD的内心I,操作如下:第一步:在x轴上找一格点E,连接DE,使OE=OD;第二步:在DE上找一点F,连接OF,使OF平分∠AOD;第三步:找格点G,得到正方形OAGC,连接AC,则AC与OF的交点I是△OAD的内心.请你按步骤完成作图,并直接写出E,F,I三点的坐标.21.如图,AB是⊙O的直径,过圆外一点E作EF与⊙O相切于G,交AB的延长线于F,EC⊥AB于H,交⊙O于D,C两点,连接AG交DC于K.(1)求证:EG=EK;(2)连接AC,若AC∥EF,cos C=,AK=,求BF的长.22.随着《流浪地球》的热播,其同名科幻小说的销量也急剧上升.为应对这种变化,某网店分别花20000元和30000元先后两次增购该小说,第二次的数量比第一次多500套,且两次进价相同.(1)该科幻小说第一次购进多少套?(2)根据以往经验:当销售单价是25元时,每天的销售量是250套;销售单价每上涨1元,每天的销售量就减少10套.网店要求每套书的利润不低于10元且不高于18元.①直接写出网店销售该科幻小说每天的销售量y(套)与销售单价x(元)之间的函数关系式及自变量x的取值范围;②网店决定每销售1套该科幻小说,就捐赠a(0<a<7)元给困难职工,每天扣除捐赠后可获得的最大利润为1960元,求a的值.23.在△ABC中,∠ACB=90°,CD为高,BC=nAC(1)如图1,当n=时,则的值为;(直接写出结果)(2)如图2,点P是BC的中点,过点P作PF⊥AP交AB于F,求的值;(用含n 的代数式表示)(3)在(2)的条件下,若PF=BF,则n=.(直接写出结果)24.在平面直角坐标系xOy中,抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,0),B两点,与y轴交于C(0,3),对称轴为直线x=2.(1)请直接写出该抛物线的解析式;(2)设直线l与抛物线的对称轴的交点为F,在对称轴右侧的抛物线上有一点G,若=,且S△BAG=6,求点G的坐标;(3)若在直线y=上有且只有一点P,使∠APB=90°,求k的值.参考答案与试题解析一.选择题(共10小题)1.有理数3的相反数是()A.﹣3B.﹣C.3D.【分析】依据相反数的定义求解即可.【解答】解:3的相反数是﹣3.故选:A.2.式子在实数范围内有意义,则x的取值范围是()A.x>﹣2B.x≥﹣2C.x<﹣2D.x≤﹣2【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x+2≥0,解得x≥﹣2.故选:B.3.不透明的袋子中装有形状、大小、质地完全相同的5个球,其中3个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是2个白球、1个黑球B.摸出的是3个黑球C.摸出的是3个白球D.摸出的是2个黑球、1个白球【分析】根据白色的只有两个,不可能摸出三个进行解答.【解答】解:A.摸出的是2个白球、1个黑球是随机事件;B.摸出的是3个黑球是随机事件;C.摸出的是3个白球是不可能事件;D.摸出的是2个黑球、1个白球是随机事件,故选:C.4.若点A(1,2),B(﹣1,2),则点A与点B的关系是()A.关于x轴对称B.关于y轴对称C.关于直线x=1对称D.关于直线y=1对称【分析】根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【解答】解:∵点A(1,2),B(﹣1,2),∴点A与点B关于y轴对称,故选:B.5.如图所示的几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上往下看,易得一个长方形,且其正中有一条纵向实线,故选:B.6.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x张甲种票,y张乙种票,则所列方程组正确的是()A.B.C.D.【分析】分别利用有35名学生以及购票恰好用去750元,得出等式求出答案.【解答】解:设买了x张甲种票,y张乙种票,根据题意可得:.故选:B.7.把八个完全相同的小球平分为两组,每组中每个分别写上1,2,3,4四个数字,然后分别装入不透明的口袋内搅匀,从第一个口袋内取出一个数记下数字后作为点P的横坐标x,然后再从第二个口袋中取出一个球记下数字后作为点P的纵坐标,则点P(x,y)落在直线y=﹣x+5上的概率是()A.B.C.D.【分析】首先根据题意画出表格,然后由表格求得所有等可能的结果与数字x、y满足y =﹣x+5的情况,再利用概率公式求解即可求得答案.【解答】解:列表得:12341(1,1)(1,2)(1,3)(1,4)2(2,1)(2,2)(2,3)(2,4)3(3,1)(3,2)(3,3)(3,4)4(4,1)(4,2)(4,3)(4,4)∵共有16种等可能的结果,数字x、y满足y=﹣x+5的有(1,4),(2,3),(3,2),(4,1),∴数字x、y满足y=﹣x+5的概率为:.故选:B.8.如图,甲处表示2街6巷的十字路口,乙处表示6街1巷的十字路口.如果用(2,6)表示甲处的位置,那么“(2,6)→(3,6)→(4,6)→(5,6)→(6,6)→(6,5)→(6,4)→(6,3)→(6,2)→(6,1)”表示从甲处到乙处的一种路线(规定:只能沿线向下和向右运动),则从甲处到乙处的路线中经过丙处的走法共有()A.38种B.39种C.40种D.41种【分析】先确定从甲到丙的路线,再确定从丙到乙的路线,两种路线的乘积即为所求;【解答】解:从甲到丙有4条路线,从丙到乙有10条路线,∴从甲处到乙处经过丙处的走法共有4×10=40种,故选:C.9.已知a,b,c满足a+b+c=0,4a+c=2b,则二次函数y=ax2+bx+c(a≠0)的图象的对称轴为()A.直线x=1B.直线x=﹣1C.直线x=D.直线x=﹣【分析】根据a+b+c=0,4a+c=2b,可以求得a、b、c之间的关系,从而可以求得该函数的对称轴,本题得以解决.【解答】解:∵a+b+c=0,4a+c=2b,∴c=﹣2a,a=b,∵二次函数y=ax2+bx+c(a≠0),∴对称轴是直线x==,故选:D.10.如图,在等腰三角形△ABC中,O为底边BC的中点,以O为圆心作半圆与AB,AC 相切,切点分别为D,E.过半圆上一点F作半圆的切线,分别交AB,AC于M,N.那么的值等于()A.B.C.D.1【分析】连OM,ON,利用切线长定理知OM,ON分别平分角BMN,角CNM,再利用三角形和四边形的内角和可求得△OBM与△NOC还有一组角相等,由此得到它们相似,通过相似比可解决问题.【解答】解:连OM,ON,如图∵MD,MF与⊙O相切,∴∠1=∠2,同理得∠3=∠4,而∠1+∠2+∠3+∠4+∠B+∠C=360°,AB=AC∴∠2+∠3+∠B=180°;而∠1+∠MOB+∠B=180°,∴∠3=∠MOB,即有∠4=∠MOB,∴△OMB∽△NOC,∴=,∴BM•CN=BC2,∴=.故选:B.二.填空题(共6小题)11.化简的结果是.【分析】根据二次根式的性质解答.【解答】解:==.12.某校举行“中国诗词大会”的比赛每班限报一名选手,九(1)班甲、乙、丙、丁四位选手在班级选拔赛时的数据如表:甲乙丙丁平均分9.89.39.29.8方差 1.5 3.2 3.3 6.8根据表中数据,要从四个同学中选择一个成绩好且发挥稳定的参加比赛,应该选择是甲(填“甲”或“乙”或“丙”或“丁”)【分析】首先比较平均数,平均数相同时选择方差较小的参加比赛即可.【解答】解:∵=>>,∴从甲和丁中选择一人参加比赛,∵S甲2<S乙2<S丙2<S丁2,∴选择甲参赛;故答案为:甲.13.化简的结果是.【分析】首先通分,然后根据分式加减法的运算方法,求出算式的值是多少即可.【解答】解:,=+,=,=.14.如图,在矩形ABCD中,边AD沿DF折叠,点A恰好落在矩形的对称中心E处,则cos∠ADF=.【分析】根据折叠的性质得到AD=ED=AE,∠ADF=∠EDF=∠ADE,推出△DAE 的等边三角形,根据等边三角形的性质得到∠ADE=60°,求得∠ADF=30°,于是得到结论.【解答】解:如图,连接AE,∵把∠A沿DF折叠,点A恰好落在矩形的对称中心E处,∴AD=ED=AE,∠ADF=∠EDF=ADE,∴△DAE的等边三角形,∴∠ADE=60°,∴∠ADF=30°,∴cos∠ADF=,故答案为:.15.如图,一次函数y=3x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣3,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为2,则k的值为.【分析】作辅助线,先确定OQ长的最大时,点P的位置,当BP过圆心C时,BP最长,设B(t,3t),则CD=t﹣(﹣3)=t+3,BD=﹣3t,根据勾股定理计算t的值,可得k 的值.【解答】解:如图,连接BP,由对称性得:OA=OB,∵Q是AP的中点,∴OQ=BP,∵OQ长的最大值为2,∴BP长的最大值为2×2=4,如图,当BP过圆心C时,BP最长,过B作BD⊥x轴于D,∵CP=1,∴BC=3,∵B在直线y=3x上,设B(t,3t),则CD=t﹣(﹣3)=t+3,BD=﹣3t,在Rt△BCD中,由勾股定理得:BC2=CD2+BD2,∴32=(t+3)2+(﹣3t)2,解得t=0(舍)或﹣,∴B(﹣,﹣),∵点B在反比例函数y=(k>0)的图象上,∴k=(﹣)×(﹣)=.故答案为:.16.如图,在△ABC中,点D,E分别为AB,AC边上一点,且BE=CD,CD⊥BE.若∠A=30°,BD=1,CE=2,则四边形CEDB的面积为.【分析】作辅助线CK⊥AB,EH⊥AB,由两直线垂直得∠BMD=∠CKD=∠BHE=90°,角角边证明△CKD≌△BHE,其性质得DK=EH;设CK=x,根据直角三角的性质,线段的和差得AK=,EH=DK=x﹣,BH=4+﹣x;建立等量关系4+﹣x=x,求得CK=,DK═,最后由勾股定理,面积公式求得四边形CEDB的面积为.【解答】解:分别过点C、E两点作CK⊥AB,EH⊥AB交AB于点K和点H,设CK=x,如图所示:∵CD⊥BE,∴∠BMD=90°,∴∠EBH+∠CDB=90°,同理可得:∠EBH+∠BEH=90°,∴∠CDB=∠BEH,又∵CK⊥AB,EH⊥AB,∴∠CKD=∠BHE=90°,在△CKD和△BHE中,,∴△CKD≌△BHE(AAS),∴DK=EH,又∵Rt△AKC中,∠A=30°,∴AC=2x,AK=,又∵AC=AE+EC,CE=2,∴AE=2x﹣2,∴EH=DK=x﹣,又∵DK=DB+BK,BD=1,∴BK=x﹣﹣1,又∵AK=AH+BH+BK,∴BH=4+﹣x,又∵BH=CK,∴4+﹣x=x,解得:x=,∴DK=x﹣=,在Rt△CDK中,由勾股定理得:CD2=CK2+DK2==,∴===.故答案为.三.解答题(共8小题)17.计算:(2a2)2﹣a•3a3+a5÷a.【分析】分别求出每(2a2)2a=4a4;a•3a3=3a4;a5÷a=a4;再运算即可;【解答】解:(2a2)2﹣a•3a3+a5÷a=4a4﹣3a4+a4=2a4;18.如图,AB∥CD,∠ADC=∠ABC.求证:∠E=∠F.【分析】直接利用平行线的性质得出∠ABC=∠DCF,再利用已知得出∠E=∠F.【解答】证明:∵AB∥CD,∴∠ABC=∠DCF.又∵∠ADC=∠ABC∴∠ADC=∠DCF.∴DE∥BF.∴∠E=∠F.19.“长跑”是中考体育考试项目之一,某中学为了解九年级学生“长跑”的情况,随机抽取部分九年级学生,测试其长跑成绩(男子1000米,女子800米),按长跑的时间的长短依次分为A,B,C,D四个等级进行统计,并绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)在这次调查中共抽取了45名学生,扇形统计图中,D类所对应的扇形圆心角大小为104°;(2)补全条形统计图,所抽取学生“长跑”测试成绩的中位数会落在C等级;(3)若该校九年级共有900名学生,请你估计该校C等级的学生约在多少人?【分析】(1)这次调查中共抽取学生:8÷=45(名),D类所对应的扇形圆心角360°×=104(度);(2)B等级学生:45﹣8﹣20﹣13=4,据此补全条形统计图;(3)该校九年级900名学生中估计C等级的学生约有:900×=400(名).【解答】解:(1)这次调查中共抽取学生:8÷=45(名),D类所对应的扇形圆心角360°×=104(度),故答案为45,104°;(2)B等级学生:45﹣8﹣20﹣13=4补全条形统计图如下共有45名学生,因此中位数为第23,落在C等级.故答案为C;(3)该校九年级900名学生中估计C等级的学生约有:900×=400(名).答:该校九年级900名学生中估计C等级的学生约有400人.20.如图,在下列10×10的网格中,横、纵坐标均为整数的点叫做格点,例如A(3,0),B(4,3)都是格点.将△AOB绕点O顺时针旋转90°得到△COD(点A,B的对应点分别为点C,D).(1)作出△COD;(2)下面仅用无刻度的直尺画△AOD的内心I,操作如下:第一步:在x轴上找一格点E,连接DE,使OE=OD;第二步:在DE上找一点F,连接OF,使OF平分∠AOD;第三步:找格点G,得到正方形OAGC,连接AC,则AC与OF的交点I是△OAD的内心.请你按步骤完成作图,并直接写出E,F,I三点的坐标.【分析】(1)根据要求作图即可(2)根据要求作图即可【解答】解:(1)如图所示(2)如图所示,每格单位长度都为1,即可得E(5,0),F(4,﹣2),I(2,﹣1)21.如图,AB是⊙O的直径,过圆外一点E作EF与⊙O相切于G,交AB的延长线于F,EC⊥AB于H,交⊙O于D,C两点,连接AG交DC于K.(1)求证:EG=EK;(2)连接AC,若AC∥EF,cos C=,AK=,求BF的长.【分析】(1)连接OG.根据切线的性质得到∠OGE=90°,证明∠EKG=∠AGE,根据等腰三角形的判定定理证明结论;(2)连接OC,设CH=4k,根据余弦的定义、勾股定理用k表示出AC、AH,根据勾股定理列式求出k,设⊙O半径为R,根据勾股定理列式求出R,根据余弦的定义求出OF,计算即可.【解答】(1)证明:连接OG.∵EF是⊙O的切线,∴∠OGE=90°,即∠OGA+∠AGE=90°.∵OA=OG,∴∠OGA=∠OAG,∴∠OAG+∠AGE=90°.∵CD⊥AB,∴∠AHK=90°,则∠OAG+∠AKH=90°.∴∠AKH=∠AGE.∵∠AKH=∠EKG,∴∠EKG=∠AGE,∴EG=EK;(2)如图,连接OC,设CH=4k,∵cos∠ACH==,∴AC=5k,由勾股定理得,AH==3k,∵AC∥EF,∴∠CAK=∠EGA,又∠AKC=∠EKG,而由(1)知∠EKG=∠EGA,∴∠CAK=∠CKA,∴CK=AC=5k,HK=CK﹣CH=k.在Rt△AHK中,AH2+HK2=AK2,即(3k)2+k2=()2,解得,k=1,则CH=4,AC=5,AH=3,设⊙O半径为R,在Rt△OCH中,OH2+CH2=OC2,即(R﹣3)2+42=R2,解得,R=,由AC∥EF知,∠CAH=∠F,则∠ACH=∠GOF,在Rt△OGF中,cos∠ACH=cos∠GOF==,解得,OF=,∴BF=OF﹣OB=.22.随着《流浪地球》的热播,其同名科幻小说的销量也急剧上升.为应对这种变化,某网店分别花20000元和30000元先后两次增购该小说,第二次的数量比第一次多500套,且两次进价相同.(1)该科幻小说第一次购进多少套?(2)根据以往经验:当销售单价是25元时,每天的销售量是250套;销售单价每上涨1元,每天的销售量就减少10套.网店要求每套书的利润不低于10元且不高于18元.①直接写出网店销售该科幻小说每天的销售量y(套)与销售单价x(元)之间的函数关系式及自变量x的取值范围;②网店决定每销售1套该科幻小说,就捐赠a(0<a<7)元给困难职工,每天扣除捐赠后可获得的最大利润为1960元,求a的值.【分析】(1)设该科幻小说第一次购进m套,根据题意列方程即可得到结论;(2)根据题意列函数关系式即可;(3)设每天扣除捐赠后可获得利润为w元.根据题意得到w=(x﹣20﹣a)(﹣10x+500)=﹣10x2+(10a+700)x﹣500a﹣10000(30≤x≤38)求得对称轴为x=35+a,①若0<a<6,则30,则当x=35+a时,w取得最大值,解方程得到a1=2,a2=58,于是得到a=2;②若6<a<7,则38<35a,则当30≤x≤38时,w随x的增大而增大;解方程得到a=,但6<a<7,故舍去.于是得到结论.【解答】解:(1)设该科幻小说第一次购进m套,则=,∴m=1000,经检验,当m=1000时,m(m+500)≠0,则m=1000是原方程的解,答:该科幻小说第一次购进1000套;(2)根据题意得,y=250﹣10(x﹣25)=﹣10x+500(30≤x≤38);(3)设每天扣除捐赠后可获得利润为w元.w=(x﹣20﹣a)(﹣10x+500)=﹣10x2+(10a+700)x﹣500a﹣10000(30≤x≤38)对称轴为x=35+a,①若0<a<6,则30,则当x=35+a时,w取得最大值,∴(35+a﹣20﹣a)[﹣10x(35+a)+500]=1960∴a1=2,a2=58,又0<a≤6,则a=2;②若6<a<7,则38<35a,则当30≤x≤38时,w随x的增大而增大;∴当x=38时,w取得最大值,则(38﹣20﹣a)(﹣10×38+500)=1960,∴a=,但6<a<7,故舍去.综上所述,a=2.23.在△ABC中,∠ACB=90°,CD为高,BC=nAC(1)如图1,当n=时,则的值为;(直接写出结果)(2)如图2,点P是BC的中点,过点P作PF⊥AP交AB于F,求的值;(用含n 的代数式表示)(3)在(2)的条件下,若PF=BF,则n=.(直接写出结果)【分析】(1)设AC=2k,BC=3k,求出AD,BD即可解决问题.(2)过点P作PG∥AC交AB于点G.证明△PCE∽△PGF,即可解决问题.(3)设PF=x,AP=2nx,利用勾股定理构建方程求出n即可.【解答】解:(1)如图1中,∵BC=AC,∴可以假设AC=2k,BC=3k,∵∠ACB=∠ADC=90°,∴AB=k,∵•AC•BC=•AB•CD,∴CD=k,∴AD==k,BD=k,∴=,故答案为.(2)过点P作PG∥AC交AB于点G.∴∠PGF=∠CAD,∠GPC=90°,∵CD⊥AB,∠ACB=90°,∴∠CAD+∠ACD=90°,∠ACD+∠PCE=90°,∴∠PCE=∠CAD,∴∠PCE=∠PGF,又∵PF⊥AP,∴∠CPE+∠APG=∠FPG+∠APG=90°,∴∠CPE=∠GPF,∴△PCE∽△PGF,∴=,又∵点P是BC的中点,∴AC=2PG,∴==n.(3)由(2)可知=n,则可以假设PF=x,PE=nx,∵∠GPB=90°,PF=BF,则PF=BF=GF=x,则AG=2x,∵△PCE∽△PGF,∴==n,则CE=nGF=nx,又∵∠ACB=90°,则AE=PE=nx,在Rt△APF中,AP2+PF2=AF2,则x2+(2nx)2=(3x)2,∴n=,故答案为.24.在平面直角坐标系xOy中,抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,0),B两点,与y轴交于C(0,3),对称轴为直线x=2.(1)请直接写出该抛物线的解析式;(2)设直线l与抛物线的对称轴的交点为F,在对称轴右侧的抛物线上有一点G,若=,且S△BAG=6,求点G的坐标;(3)若在直线y=上有且只有一点P,使∠APB=90°,求k的值.【分析】(1)抛物线与x轴另外一个交点坐标为(3,0),则函数的表达式为:y=a(x ﹣1)(x﹣3)=a(x2﹣4x+3),即:3a=3,即可求解;(2)分点G在点B下方、点G在点B上方两种情况,分别求解即可;(3)由△P AS∽△BPT,则,即可求解.【解答】解:(1)∵抛物线过点A(1,0),且对成轴为直线x=2,则抛物线与x轴另外一个交点坐标为(3,0),则函数的表达式为:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),令x=0则3a=3,解得:a=1,故抛物线的表达式为:y=x2﹣4x+3…①;(2)过点B作BM∥x轴交对称轴于点M,设对称轴与x轴交于点N.∴,又AN=1,则BM=2,点B的坐标为(4,3),∵直线AB的解析式为y=kx+m,则,则,则y=x﹣1,①若点G在点B下方,则过点G作GQ∥y轴交AB于Q,则设点G(t,t2﹣4t+3),Q (t,t﹣1),∴S△BAG=6=S△AQG+S△BGQ=GQ×3=(t﹣1﹣t2+4t﹣3),即:t2﹣5t+8=0,△<0,无解;②若点G在点B上方,则过点G作GH∥AB交x轴于H,则S△BAG=6=S△ABH,即:AH×3=6,则AH=4,则H(﹣3,0),则可设直线GH的解析式为:y=x+t,将H(﹣3,0)代入得,t=3.∴直线GH的解析式为y=x+3…②,联立①②并解得:x=0或5(舍去0),∴G(5,8);(3)分别过点A,B作直线y=﹣的垂线,垂足分别为S,T,则△P AS∽△BPT,则,直线l的解析式为y=kx﹣k…③,联立①③并解得:x=1或k+3,则点B(k+3,k2+2k),设:PS=x,则x(k+2﹣x)=(k2+2k+)有两个相等实数根,△=(k+2)2﹣2k2﹣4k﹣1=0,解得:k=(舍去负值),故:k=.。

(完整版)2019年武汉市中考数学模拟试题及答案

(完整版)2019年武汉市中考数学模拟试题及答案

22019 年武汉市中考数学模拟试卷一、选择题(共 10 小题,每小题 3 分,共 30 分) 1.下列各数中,最小的数是 ( )A.-2B.-0.1C .0D.|- 3|2. 若代数式1x + 3在实数范围内有意义,则 x 的取值范围是( )A .x <-3B .x >-3C .x ≠-3D .x =-33. 某校在“校园十佳歌手”比赛中,六位评委给 1 号选手的评分如下:90、96、91、96、95、94,那么这组数据的众数和中位数分别是( ) A .96、94.5 B .96、95 C .95、94.5 D .95、95 4. 点 A (2,-3)关于 x 轴对称的点的坐标是( ) A .(2,3) B .(-2,-3) C .(2,-3) D .(3,-2) 5. 如图,由 5 个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .6. 在一个不透明的袋中装有 2 个黄球和 2 个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸出一个球,那么两次都摸到黄球的概率是()1 A.81 B.6 1 C.4 1D.27. 已知关于 x ,y 的二元一次方程组,若 x +y >3,则 m 的取值范围是()A .m >1B .m <2C .m >3D .m >58. 如图,直线 y = kx (k < 0) 与双曲线 y = - x交于 A (x 1 , y 1 ), B (x 2 , y 2 ) 两点,则3x 1 y 2 - 8x 2 y 1 的值为()xB.-10C.5D.10yAoB279. 我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如 1,3,6,10…)和“正方形数”(如 1,4,9,16…),在小于 200 的数中,设最大的“三角形数”为 m ,最大的“正方形数”为 n ,则 m+n 的值为( )A .33B .301C .386D .57110. 如图,已知直线 l 与⊙O 相离,OA ⊥l 于点 A ,OA=5,OA 与⊙O 相交于点 P ,AB 与⊙O 相切于点 B ,BP 的延长线交直线 l 于点 C .若在⊙O 上存在点 Q ,使△QAC 是以 AC 为底边的等腰三角形,则⊙O 的半径的最小值为( )A .B . 2C .D .二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)11. 计算:- 12 的结果为12. 下表记录了一名球员在罚球线上投篮的结果,这名球员投篮一次,投中的概率(精确到 0.1)约是13 计算 3x - 9 的结果为x - 3 x - 314. 如图,在平行四边形 ABCD 中,点 E 为 BC 中点,且 AB =AE .若 AE 平分∠DAB ,∠EAC =25°,则∠AED 的度数为ABDC投篮次数 10 50 100 150 200 250 300 500 投中次数 4356078104123151249投中频率0.40 0.70 0.60 0.52 0.52 0.49 0.51 0.50第14 题图第16 题图15.已知抛物线y=-x2+mx+2-m,在自变量x 的值满足-1≤x≤2的情况下.若对应的函数值y 的最大值为6,则m 的值为.16..如图,在△ABC 中,∠ABC=15°,∠ACB=37.5°,点D 是边BC 上的一点,且∠DAC=75°,则B D 的值为.DC三、解答题(共8 题,共72 分)17.(本题8 分)计算:a g a2g a3+ (-2a3 )2- (-a)618.(本题8 分)如图,已知:AD∥BC,∠A=∠C,求证:AB∥DC.A D EF B C19.(本题8 分)某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D 四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A 级:90 分~100 分;B 级:75 分~89 分;C 级:60 分~74 分;D 级:60 分以下)(1)请把条形统计图补充完整;(2)样本中D 级的学生人数占全班学生人数的百分比是;(3)扇形统计图中A 级所在的扇形的圆心角度数是;(4)若该校九年级有500 名学生,请你用此样本估计体育测试中A 级和B 级的学生人数约为人.20.(本题 8 分)如图,在平面直角坐标系中,点 A、B、C 的坐标分别为(-1,3)、 (-4,1 )、(-2,1),先将△ABC沿一确定方向平移得到△A1B1C1,点 B 的对应点 B1的坐标是(1,2),再将△A1B 1C1绕原点 O 顺时针旋转90°得到△A2B2C2,点 A1的对应点为点 A2.(1)画出△A1B1C1;(2)画出△A2B2C2;(3)求出在这两次变换过程中,点 A 经过点 A1到达点 A2的路径总长.第20 题图21.(本题8 分)如图,⊙O 是△ABC 的外接圆,AC 为直径, =,BE⊥DC 交DC 的延长线于点E.(1)求证:∠1=∠BCE;(2)求证:BE 是⊙O 的切线;(3)若EC=1,CD=3,求cos∠DBA.22.(本题10 分)某网店专门销售某种品牌的漆器笔筒,成本为30 元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240 件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150 元给希望工程,为了保证捐款后每天剩余利润不低于3600 元,试确定该漆器笔筒销售单价的范围.23.(本题10 分)已知:△ABC 中,点D 为边BC 上一点,点E 在边AC 上,且∠ADE=∠B(1)如图1,若AB=AC,求证:CE =BDCD AC(2)如图2,若AD=AE,求证:CE =BDCD AE(3)在(2)的条件下,若∠DAC=90°,且CE=4,tan∠BAD=1,则AB=2124.(本题12 分)已知,抛物线y=- x2+bx+c 交y 轴于点C,经过点Q(2,2).直线2y=x+4 分别交 x 轴、y 轴于点 B、A.(1)求抛物线的解析式;(2)如图 1,点P 为抛物线上一动点(不与点 C 重合),PO 交抛物线于 M,PC 交AB 于N,连MN.求证:MN∥y 轴;(3)如图,2,过点 A 的直线交抛物线于 D、E,QD、QE 分别交 y 轴于G、H.求证:CG •CH 为定值.C MB O xPC QGD OH xE图 2图 1F AH33 22 6参考答案一、选择题(共 10 小题,每小题 3 分,共 30 分)题号 12 3 4 5 6 7 8 9 10 答案A C A AB CDBCC二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)11.12. 0.5 13. 314. 85°15. m=8 或- 216. 16.6 + 22第 16 题提示:如图,作∠AEB=15°,把△ABD 绕点 A 逆时针旋转 150°得到△AEF ,连接 CF ,DF ,作 CH ⊥EF 则∠FEC=30°,∠CFE=45°,设 CH=FH=1,则 EH= BD = EF = 1 + CD=CF=∴ BD = 1 + = + DC 2BD CE17. 4 a 6 18. 略19.解: (1)总人数为 10÷20%=50 人,则 D 级的学生人数为 50﹣10﹣23﹣12=5 人.据此可补全条形图;(2)D 级的学生人数占全班学生人数的百分比是 1﹣46%﹣24%﹣20%=10%;(3)A 级占 20%,所在的扇形的圆心角为 360×20%=72°;(4)A 级和 B 级的学生占 46%+20%=66%; 故九年级有 500 名学生时,体育测试中 A 级和 B 级的学生人数约为 500×66%=330 人.2 33 520.解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.(3)OA1=42+42=4 2,点 A 经过点 A1到达A2的路径总长为21.(1)过点B 作BF⊥AC 于点F,在△ABF 与△DBE 中,∴△ABF≌△DBE(AAS)∴BF=BE,∴∠1=∠BCE(2)连接OB,∵AC 是⊙O 的直径,∴∠ABC=90°,即∠1+∠BAC=90°,∵∠BCE+∠EBC=90°,且∠1=∠BCE,∴∠BAC=∠EBC,52+12+180 =26+2 2π.90·π·4 2∵OA=OB,∴∠BAC=∠OBA,∴∠EBC=∠OBA,∴∠EBC+∠CBO=∠OBA+∠CBO=90°,∴BE 是⊙O 的切线;(3)由(2)可知:∠EBC=∠CBF=∠BAC,在△EBC 与△FBC 中,,∴△EBC≌△FBC(AAS),∴CF=CE=1,由(1)可知:AF=DE=1+3=4,∴AC=CF+AF=1+4=5,∴cos∠DBA=cos∠DCA= =22. 解:(1)由题意得:,解得:.故y 与x 之间的函数关系式为:y=﹣10x+700,(2)由题意,得﹣10x+700≥240,解得x≤46,设利润为w=(x﹣30)•y=(x﹣30)(﹣10x+700),w=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,∵﹣10<0,∴x<50 时,w 随x 的增大而增大,∴x=46 时,w 大=﹣10(46﹣50)2+4000=3840,答:当销售单价为46 元时,每天获取的利润最大,最大利润是3840 元;(3)w﹣150=﹣10x2+1000x﹣21000﹣150=3600,﹣10(x﹣50)2=﹣250,x﹣50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55 时,捐款后每天剩余利润不低于3600 元.23.证明:(1) (1) ∵△BAD∽△CDE∴ CE =BD =BDCD AB AC(2)在线段AB 上截取DB=DF ∴∠B=∠DFB=∠ADE2x5x22∵AD=AE ∴∠ADE=∠AED ∴∠AED=∠DFB同理:∵∠BAD+∠BDA=180°-∠B,∠BDA+∠CDE=180°-∠ADE ∴∠BAD=∠CDE∵∠AFD=180°-∠DFB,∠DEC=180°-∠AED∴∠AFD=∠DEC ∴△AFD∽△DEC ∴CE=DF=BDCD AD AE(3)过点E 作EF⊥BC 于F∵∠ADE=∠B=45°∴∠BDA+∠BAD=135°,∠BDA+∠EDC=135°∴∠BAD=∠EBC∵tan∠BAD=tan∠EDF=EF=1DF 2∴设EF=x,DF=2x,则DE=5x在DC 上取一点G,使∠EGD=45°∴△BAD∽△GDE∵AD=AE∴∠AED=∠ADE=45°∵∠AED=∠EDC+∠C=45°,∠C+∠CEG=45°∴∠EDC=∠GEC ∴△EDC∽△GEC∴CG=EG=CE∴CG=,CG =4 10CE DE CD 4 5 又CE2=CD·CG∴42=CD·410 ,CD=25∴2x +x +410= 25,解得x =2 105∵△BAD∽△GDE∴DE=DG=AD AB∴ AB =DG=3x=6 5524.(1)y=-1x2+x+2;2⎧y =kx + 2 1 2(2)设PM:y=mx,PC:y=x+2.由⎪⎨y =-1x2+x + 2得x +(k-1)x=0,21-k ⎧y =mx⎩⎪ 212-4 2x p= .由⎪得x +(m-i)x-2=0,x p•x m=-4,∴x m= = .2 ⎨y -1 x2+x + 2 2xpk -1 ⎩⎪ 210102⎩ ⎨ 1由⎧ y = kx + 2 得 x N = ⎨y = x + 42 k -1=x M , ∴MN ∥y 轴.(3)设 G (0,m ),H (0,n ).得 QG :y= 2 - m x+m ,QH :y= 2 - nx+n.2 2⎧y = 2 - mx + m 由 ⎪ 2 图 1 得 x =m-2. 同理得 x =n-2. ⎨ ⎪ y = - 1 ⎩ 2x 2+ x + 2D E ⎧ y = kx + 4 1 设 AE :y=kx+4,由⎪ y = - x 2+ x + 2, 得 x 2-(k-i)x +2=0 2 ⎩⎪ 2∴x D•x E =4,即(m-2)•(n-2)=4. ∴CG•CH=(2-m )•(2-n )=4.y N ACMBOxPy A C QG D OHxE图 2。

2019年最新湖北省武汉市中考数学模拟试卷(2)含答案解析

2019年最新湖北省武汉市中考数学模拟试卷(2)含答案解析

九年级数学中考模拟试卷一、选择题:1.已知下列结论:①在数轴上只能表示无理数;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是( )A.①②B.②③C.③④D.②③④2.下列关于分式的判断,正确的是()A.当x=2时,的值为零B.无论x为何值,的值总为正数C.无论x为何值,不可能得整数值D.当x3时,有意义3.下列运算正确的是()A.x2+x3=x5B.(x+y)2=x2+y2C.x2•x3=x6D.(x2)3=x64.下列事件是必然事件的是()A.打开电视机正在播放广告B.投掷一枚质地均匀的硬币100次,正面向上的次数为50次C.任意一个一元二次方程都有实数根D.在平面上任意画一个三角形,其内角和是180°5.若关于的x方程x2+3x+a=0有一个根为-1,则a的值为( )A.-4 B.-2 C.2 D.-46.在平面直角坐标系中,点A(2,﹣3)在第()象限.A.一B.二C.三D.四7.如图,是由几个相同的小正方体组成的一个几何体的三视图,这个几何体可能是()A. B. C. D.8.如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()A.8,6B.8,5C.52,53D.52,529.如图,由7个形状,大小完全相同的正六边形组成的网格,正六边形的顶点称为格点,已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是()A. B.2 C. D.310.如图,D为BC上一点,且AB=AC=BD,则图中∠1与∠2关系是()A.∠1=2∠2B.∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°二、填空题:11.–3的绝对值是,倒数是,相反数是 .12.近似数2.13×103精确到位.13.一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,算得摸到红球的频率是20%,则袋中有个红球.14.如图,E是正方形ABCD的BC边的延长线上一点,若CE=CA,AE交CD于F,则∠FAC= .15.已知m是整数,且一次函数y=(m+4)x+m+2的图像不经过第二象限,则m= .16.矩形ANCD中,AD=5,CD=3,在直线BC上取一点E,使△ADE是以DE为底的等腰三角形,过点D作直线AE的垂线,垂足为点F,则EF= .三、解答题:17.解方程:5x2﹣3x=x+118.如图所示,已知AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.19.为进一步加强和改进学校体育工作,切实提高学生体质健康水平,决定推进“一校一球队、一级一专项、一人一技能”活动计划,某校决定对学生感兴趣的球类项目(A:足球,B:篮球,C:排球,D:羽毛球,E:乒乓球)进行问卷调查,学生可根据自己的喜好选修一门,李老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图)(1)将统计图补充完整;(2)求出该班学生人数;(3)若该校共用学生3500名,请估计有多少人选修足球?(4)该班班委5人中,1人选修篮球,3人选修足球,1人选修排球,李老师要从这5人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.20.如图,Rt△ABO的顶点A是双曲线y=kx-1与直线y=-x-(k+1)在第二象限的交点.AB⊥x 轴于B,且S△ABO=1.5.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.21.如图,在⊙O中,半径OA⊥OB,过点OA的中点C作FD∥OB交⊙O于D、F两点,且CD=,以O为圆心,OC为半径作,交OB于E点.(1)求⊙O的半径OA的长;(2)计算阴影部分的面积.22.母亲节前夕,某淘宝店主从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为2:3,单价和为200元.(1)求A、B两种礼盒的单价分别是多少元?(2)该店主购进这两种礼盒恰好用去9600元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?(3)根据市场行情,销售一个A种礼盒可获利10元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?四、综合题:23.如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线EF上的B′处,得到折痕EC,将点A落在直线EF上的点A′处,得到折痕EN.(1)若∠BEB′=110°,则∠BEC= °,∠AEN= °,∠BEC+∠AEN= °.(2)若∠BEB′=m°,则(1)中∠BEC+∠AEN的值是否改变?请说明你的理由.(3)将∠ECF对折,点E刚好落在F处,且折痕与B′C重合,求∠DNA′.24.抛物线y=-x2+2x+3与x轴相交于A、B两点(点A在B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A,B,C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF//DE交抛物线于点F,设点P的横坐标为m:①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?②设△BCF的面积为S,求S与m的函数关系式.参考答案1.B2.B3.D4.D5.C6.D7.B8.D9.B10.D11.答案为:3;-,3;12.答案为:十位.13.答案为:6.14.答案为:22.5°15.答案为:-2,-3;16.【解答】解;如图1中,∵四边形ABCD是正方形,∴AD=BC=5,AB=CD=3,∠ABC=∠C=∠ABE=90°,AD∥EC∵AE=AD=5,∴∠AED=∠ADE=∠DEC,在RT△ABE中,∵AE=5,AB=3,∴EB=4,在△EDF和△EDC中,△EDF≌△EDC∴EF=EC=EB+BC=9.如图2中,∵AD=AE=5,AB=3,∴BE=4,∴EC=1,∵AD∥BC,∴∠ADE=∠DEC=∠AED,在△EDF和△EDC中,∴△DEF≌△DEC,∴EF=EC=1,综上所述EF=9或1.故答案为9或1.17.解:(1)由原方程,得5x2﹣4x﹣1=0,因式分解,得(5x+1)(x﹣1)=0于是得5x+1=0或x﹣1=0,则x1=﹣0.2,x2=1;18.证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.19.解:(1)调查的家长总数为:360÷60%=600人,很赞同的人数:600×20%=120人,不赞同的人数:600﹣120﹣360﹣40=80人;(2)“赞同”态度的家长的概率是60%;(3)表示家长“无所谓”的圆心角的度数为:24°.20.略21.【解答】解;(1)连接OD,∵OA⊥OB,∴∠AOB=90°,∵CD∥OB,∴∠OCD=90°,在RT△OCD中,∵C是AO中点,CD=,∴OD=2CO,设OC=x,∴x2+()2=(2x)2,∴x=1,∴OD=2,∴⊙O的半径为2.(2)∵sin∠CDO==,∴∠CDO=30°,∵FD∥OB,∴∠DOB=∠ODC=30°,∴S圆=S△CDO+S扇形OBD﹣S扇形OCE=×+﹣=+.22.【解答】解:(1)设A种礼盒单价为2x元,B种礼盒单价为3x元,依据题意得:2x+3x=200,解得:x=40,则2x=80,3x=120,答:A种礼盒单价为80元,B种礼盒单价为120元;(2)设购进A种礼盒a个,B种礼盒b个,依据题意可得:,解得:30≤a≤36,∵a,b的值均为整数,∴a的值为:30、33、36,∴共有三种方案;(3)设店主获利为w元,则w=10a+(18﹣m)b,由80a+120b=9600,得:a=120﹣b,则w=(3﹣m)b+1200,∵要使(2)中方案获利都相同,∴3﹣m=0,∴m=3,此时店主获利1200元.23.【解答】解:(1)由折叠的性质可得,∠BEC=∠B'EC,∠AEN=∠A'EN,∵∠BEB′=110°,∴∠AEA'=180°﹣110°=70°,∴∠BEC=∠B'EC=0.5∠BEB′=55°,∠AEN=∠A'EN=0.5∠AEA'=35°.∴∠BEC+∠AEN=55°+35°=90°;(2)不变.由折叠的性质可得:∠BEC=∠B'EC,∠AEN=∠A'EN,∵∠BEB′=m°,∴∠AEA'=180°﹣m°,可得∠BEC=∠B'EC=0.5∠BEB′=0.5m°,∠AEN=∠A'EN=0.5∠AEA'=0.5(180°﹣m°),∴∠BEC+∠AEN=0.5m°+0.5(180°﹣m°)=90°,故∠BEC+∠AEN的值不变;(3)由折叠的性质可得:∠B'CF=∠B'CE,∠B'CE=∠BCE,∴∠B'CF=∠B'CE=∠BCE=×90°=30°,在Rt△BCE中,∵∠BEC与∠BCE互余,∴∠BEC=90°﹣∠BCE=90°﹣30°=60°,∴∠B'EC=∠BEC=60°,∴∠AEA'=180°﹣∠BEC﹣∠B'EC=180°﹣60°﹣60°=60°,∴∠AEN=0.5∠AEA'=30°,∴∠ANE=90°﹣∠AEN=90°﹣30°=60°,∴∠ANE=∠A'NE=60°24.解:(1)A(-1,0),B(3,0),C(0,3).抛物线的对称轴是:x=1.(2)①设直线BC的函数关系式为:y=kx+b.把B(3,0),C(0,3)分别代入得:3k+b=0,b=3解得:k= -1,b=3.所以直线BC的函数关系式为:y=-x+3.当x=1时,y= -1+3=2,∴E(1,2).当x=m时,y=-m+3,∴P(m,- m+3).在y=-x2+2x+3中,当x=1时,y=4 ∴D(1,4) 当x=m时,y=-m2+2m+3∴F(m,-m2+2m+3)∴线段DE=4-2=2,线段PF=-m2+2m+3-(-m+3)=-m2+3m.∵PF//DE,∴当PE=DE时,四边形PEDF为平行四边形.由-m2+2m=2解得:m=1,m=2(不合题意,舍去).因此,当m=2时,四边形PEDF为平行四边形.②设直线PF与x轴交于点M,由B(3,0),O(0,0)可得:OB=OM+MB=3.∵即.。

湖北省武汉市2019年中考数学模拟试卷(5月份)(含答案)

湖北省武汉市2019年中考数学模拟试卷(5月份)(含答案)

2019年湖北省武汉市中考数学模拟试卷一.选择题(满分30分,每小题3分)1.某天的最高气温是9℃,最低气温是﹣2℃,那么这天的温差是()A.﹣2℃B.9℃C.﹣9℃D.11℃2.若分式有意义,则x的取值范围是()A.x≠0 B.C.D.3.下列各组单项式中,为同类项的是()A.a3与a2B. a2与2a2C.2xy与2x D.﹣3与a4.从标有a、b、c、1、2的五张卡牌中随机抽取一张,抽到数字卡牌的概率是()A.B.C.D.5.下列整式的运算中,正确的是()A.(a2)3=a5B.4a2﹣2a2=2a2C.a2•a3=a6D.a3+a2=a56.P(4,﹣3)关于x轴对称点的坐标是()A.(4,3)B.(﹣4,﹣3)C.(﹣4,3)D.(﹣3,4)7.已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是()A.圆柱B.圆锥C.球体D.棱锥8.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如表:选手甲乙丙丁平均数(环)9.2 9.2 9.2 9.2方差(环2)0.35 0.15 0.25 0.27则这四个中,成绩发挥最稳定的是()A.甲B.乙C.丙D.丁9.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()A.40°B.50°C.80°D.100°10.如图,在▱ABCD中,E、F分别是边BC、CD的中点,AE、AF分别交BD于点G、H,则图中阴影部分图形的面积与▱ABCD的面积之比为()A.7:12 B.7:24 C.13:36 D.13:72二.填空题(满分18分,每小题3分)11.计算﹣=.12.计算:﹣=.13.已知盒子里有4个黄色球和n个红色球,每个球除颜色不同外均相同,则从中任取一个球,取出红色球的概率是,则n的值是.14.已知△ABC中的∠B=∠A+10°,∠C=∠B+10°,则∠A=,∠B=,∠C=.15.已知二次函数y=ax2+bx+c(c<0)的图象开口向上,对称轴为直线x=1,下列结论中一定正确的是(填序号即可).①b<0;②4a+2b+c<0;③a+c>b;④a+b≤t(at+b)(t是一个常数).16.如图,在矩形ABCD中,AB=2,BC=6,点E、F分别在BC、CD上,若AE=,∠EAF =45°,则AF的长为.三.解答题(共8小题,满分72分)17.(8分)解方程组.18.(8分)已知:如图,点A,F,C,D在同一直线上,AF=DC,AB∥DE,AB=DE,求证:BC∥EF.19.(8分)某校为了解学生的课外阅读情况,对部分学生进行了调查,并统计他们平均每天的课外阅读时间t(单位:min),然后利用所得数据绘制如下两幅不完整的统计图.请你根据以上信息解答下列问题:(1)本次调查活动采取了调查方式,样本容量是.(2)图2中C的圆心角度数为度,补全图1的频数分布直方图.(3)该校有900名学生,估计该校学生平均每天的课外阅读时间不少于50min的人数.20.(8分)某电器超市销售每台进价分别为2000元、1700元的A、B两种型号的空调,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(进价、售价均保持不变,利润=销售总收入﹣进货成本)(1)求A、B两种型号的空调的销售单价;(2)若超市准备用不多于54000元的金额再采购这两种型号的空调共30台,求A种型号的空调最多能采购多少台?21.(8分)如图,在△ABC中,以AC为直径的⊙O与BC交于点D,DE是⊙O的切线且DE⊥AB,垂足为E,E D的延长线与AC的延长线交于点F.(1)求证:AB=AC;(2)若⊙O的半径为3,BE=1,求tan F的值.22.(10分)点Q(﹣8,1)是反比例函数y=图象上的一点.(Ⅰ)求k的值;(Ⅱ)如图,点P是反比例函数y=(x<0)的图象上的一个动点,过点P分别作x 轴、y轴的垂线,垂足为B、C.直线BC交反比例函数y=(x>0)图象于点A,过点A 作AD⊥x轴,垂足为D,若△BOC的面积为4,问△DOC的面积是否为定值?说明理由.23.(10分)(1)如图1,在△ABC中,AB>AC,点D,E分别在边AB,AC上,且DE∥BC,若AD=2,AE=,则的值是;(2)如图2,在(1)的条件下,将△ADE绕点A逆时针方向旋转一定的角度,连接CE 和BD,的值变化吗?若变化,请说明理由;若不变化,请求出不变的值;(3)如图3,在四边形ABCD中,AC⊥BC于点C,∠BAC=∠ADC=θ,且tanθ=,当CD=6,AD=3时,请直接写出线段BD的长度.24.(12分)如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(﹣1,0),B(4,m)两点,且抛物线经过点C(5,0)(1)求抛物线的解析式.(2)点P是抛物线上的一个动点(不与点A点B重合),过点P作直线PD⊥x轴于点D,交直线AB于点E.当PE=2ED时,求P点坐标;(3)如图2所示,设抛物线与y轴交于点F,在抛物线的第一象限内,是否存在一点Q,使得四边形OFQC的面积最大?若存在,请求出点Q的坐标;若不存在,说明理由.参考答案一.选择题1.解:9﹣(﹣2)=11(℃)答:这天的温差是11℃.故选:D.2.解:由题意得:1﹣2x≠0,解得:x≠,故选:B.3.解:A、相同字母的指数不同不是同类项,故A错误;B、字母相同且相同字母的指数也相同,故B正确;C、字母不同的项不是同类项,故C错误;D、字母不同的项不是同类项,故D错误;故选:B.4.解:∵从标有a、b、c、1、2 的五张卡牌中随机抽取一张有5种等可能结果,其中抽到数字卡片的有2种可能,∴抽到数字卡牌的概率是.故选:B.5.解:A、(a2)3=a6,故此选项错误;B、4a2﹣2a2=2a2,故此选项正确;C、a2•a3=a5,故此选项错误;D、a3+a2,无法合并,故此选项错误,故选:B.6.解:P(4,﹣3)关于x轴对称点的坐标是(4,3).故选:A.7.解:∵主视图和左视图都是三角形,∴此几何体为椎体,∵俯视图是一个圆,∴此几何体为圆锥.故选:B .8.解:∵S 甲2=0.35,S 乙2=0.15,S 丙2=0.25,S 丁2=0.27, ∴S 甲2>S 丁2>S 丙2=S 乙2, ∵甲、乙、丙、丁的平均数相同, ∴成绩发挥最稳定的是乙. 故选:B . 9.解:∵OB =OC∴∠BOC =180°﹣2∠OCB =100°, ∴由圆周角定理可知:∠A =∠BOC =50° 故选:B .10.解:∵BE ∥AD ,E 是B 的中点, ∴△BEG ∽△DAG , ∴==,即BG =BD ,同理可得,DH =BD , ∴GH =BD ,∴S △AGH =S △ABD =S 四边形ABCD , ∵E 、F 分别是边BC 、CD 的中点, ∴EF ∥BD ,EF =BD , ∴△CEF ∽△CBD , ∴==,∴S △CEF =S △BCD =S 四边形ABCD ,∴图中阴影部分图形的面积=(+)S 四边形ABCD =S 四边形ABCD ,即图中阴影部分图形的面积与▱ABCD 的面积之比为=7:24, 故选:B .二.填空题11.解:原式=2﹣3=﹣.故答案为:﹣.12.解:原式==1.故答案为:1.13.解:由题意得:=解得:n=16;故答案为:16.14.解:设:∠A=x°,则:∠B=10°+x°,∠C=20°+x°,而∠B+∠A+∠C=180°,解得:x=50,故:答案是50°,60°,70°.15.解:①如图所示,抛物线开口方向向上,则a>0.∵对称轴在y轴右侧,∴a、b异号,∴b<0,故①正确;②∵x=﹣=1,∴2a=﹣b.∴4a+2b+c=﹣2b+2b+c=c<0.∴4a+2b+c<0.故②正确;③∵无法判断抛物线与x轴的交点坐标,∴无法判断当x=﹣1时,y的符号,∴a+c﹣b>0,即a+c>b不一定成立.故③错误;④根据图示知,当x=1时,y有最小值;当t≠1时,有at2+bt+c≥a+b+c,所以a+b≤t(at+b)(m为实数).故④正确.综上所述,正确的结论是:①②④.故答案是:①②④.16.解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=x,AN=6﹣x,∵AB=2,∴AM=BM=1,∵AE=,AB=2,∴BE=1,∴ME===,∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴,∴,解得x=2.∴==2.故答案为:2.三.解答题17.解:,由①得:x=3+y③,把③代入②得:3(3+y)﹣8y=14,所以y=﹣1.把y=﹣1代入③得:x=2,∴原方程组的解为.18.证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AC=DF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴∠BCA=∠EFD,∴BC∥EF.19.解:(1)本次调查活动采取了抽样调查方式,样本容量是4÷8%=50,故答案为:抽样,50;(2)∵C时间段的人数为50﹣(4+8+16+2)=20(人),∴图2中C的圆心角度数为360°×=144°,补全条形图如下图所示:故答案为:144;(3)(名)答:估计该校有684名学生平均每天的课外阅读时间不小于50 min.20.解:(1)设A、B两种型号的空调的销售单价分别为x元,y元,根据题意,得:,解得:,答:A、B两种型号的空调的销售单价分别为2500元,2100元;(2)设采购A种型号的空调a台,则采购B型号空调(30﹣a)元,根据题意,得:2000a+1700(30﹣a)≤54000,解得:a≤10,答:A种型号的空调最多能采购10台.21.(1)证明:连接OD.∵DE是⊙O的切线,∴OD⊥DE,∵DE⊥AB,∴OD∥AB,∴∠ODC=∠B.∵OC=OD,∴∠OCD=∠ODC,∴∠B=∠OCD,∴AB=AC;(2)解:由(1)可知,OD∥AE,∴,∴∴∴,.在△OFD中,∵OF2=OD2+FD2,∴,∴.22.解:(Ⅰ)把点Q(﹣8,1)代入y=得k=﹣8×1=﹣8;(Ⅱ)△DOC的面积为定值.理由如下:设P(t,﹣),∵PC⊥y轴,PB⊥x轴,∴B(t,0),C(0,﹣),设直线BC的解析式为y=kx+b,把B(t,0),C(0,﹣)代入得,解得,∴直线BC的解析式为y=x﹣,解方程x﹣=得x=t(舍去)或x=t,即A点的横坐标为t,∴△DOC的面积=×(﹣)×t=2﹣2,23.解:(1)∵DE∥BC,∴===;故答案为:;(2)的值不变化,值为;理由如下:由(1)得:DE∥B,∴△ADE∽△ABC,∴=,由旋转的性质得:∠BAD=∠CAE,∴△ABD∽△ACE,∴==;(3)在AB上截取AM=AD=3,过M作MN∥BC交AC于N,把△AMN绕A逆时针旋转得△A DE,连接CE,如图所示:则MN⊥AC,DE=MN,∠DAE=∠BAC,∴∠AED=∠ANM=90°,∵AC⊥BC于点C,∠BAC=∠ADC=θ,且tanθ==,∴BC:AC:AB=3:4:5,同(2)得:△ABD∽△ACE,∴==,∵MN∥BC,∴△AMN∽△ABC,∴=,∴MN=×AM=×3=,∵∠BAC=∠ADC=θ,∴∠DAE=∠ADC=θ,∴AE∥CD,∴∠CDE+∠AED=180°,∴∠CDE=90°,∴CE===,∴BD=CE=×=.24.解:(1)∵点B(4,m)在直线y=x+1上,∴m=4+1=5,∴B(4,5),把A、B、C三点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+4x+5;(2)设P(x,﹣x2+4x+5),则E(x,x+1),D(x,0),则PE=|﹣x2+4x+5﹣(x+1)|=|﹣x2+3x+4|,DE=|x+1|,∵PE=2ED,∴|﹣x2+3x+4|=2|x+1|,当﹣x2+3x+4=2(x+1)时,解得x=﹣1或x=2,但当x=﹣1时,P与A重合不合题意,舍去,∴P(2,9);当﹣x2+3x+4=﹣2(x+1)时,解得x=﹣1或x=6,但当x=﹣1时,P与A重合不合题意,舍去,∴P(6,﹣7);综上可知P点坐标为(2,9)或(6,﹣7);(3)存在这样的点Q,使得四边形OFQC的面积最大.如图,过点Q作QP⊥x轴于点P,设Q(n,﹣n2+4n+5)(n>0),则PO=n,PQ=﹣n2+4n+5,CP=5﹣n,四边形OFQC的面积=S四边形PQFO +S△PQC=×(﹣n2+4n+5+5)•n+×(5﹣n)×(﹣n2+4n+5)=﹣n2+n+=﹣(n﹣)2+,当n=时,四边形OFQC的面积取得最大值,最大值为,此时点Q的坐标为(,).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年湖北省武汉市中考数学模拟试卷一.选择题(满分30分,每小题3分)1.-10+3的结果是()A .-7B .7C .-13D .132.下列分式中,无论x 取何值,分式总有意义的是()A .251x B .112+x C .113+x D .x x 2+3.下列各组单项式中,为同类项的是()A .a 3与a 2B .21a 2与2a 2C .2xy 与2x D .-3与a 4.在不透明袋子里装有颜色不同的16个球,每次从袋子里摸出1个球记录下颜色后再放回,经过多次重复试验,发现摸到白球的颎率稳定在0.5,估计袋中白球有()A .16个B .12个C .8个D .5个5.若多项式(x +1)(x -3)=x 2+ax +b ,则a ,b 的值分别是()A .a =2,b =3B .a =-2,b =-3C .a =-2,b =3D .a =2,b =-36.P (4,-3)关于x 轴对称点的坐标是()A .(4,3)B .(-4,-3)C .(-4,3)D .(-3,4)7.如图所示几何体的左视图正确的是()A B C D8.组由正整数组成的数据:2、3、4、5、a 、b ,若这组数据的平均数为3,众数为2,则a 为()A .1B .2C .3D .49.已知23C =2123⨯⨯=3,53C =321345⨯⨯⨯⨯=10,46C =43213456⨯⨯⨯⨯⨯⨯=15,……观察以上计算过程,寻找规律.计算58C =()A .72B .56C .42D .4010.如图,⊙O 内切于正方形ABCD ,边AD 、CD 分别与⊙O 切于点E 、F ,点M 、N 分别在线段DE 、DF上,且MN 与⊙O 相切,若△MBN 的面积为8,则⊙O 的半径为()A .6B .22C .10D .23二.填空题(满分18分,每小题3分)11.计算:1-x x -11-x =_____________;12.计算:12-27=__________;13.同时抛掷三枚质地均匀的硬币,出现两枚正面向下,一枚正面向上的概率是__________;14.在▱ABCD 中,∠A =30°,AD =43,连接BD ,若BD =4,则线段CD 的长为__________;15.如图,在边长为2的等边△ABC 中,D 是BC 的中点,点E 在线段AD 上,连结BE ,在BE 的下方作等边△BEF ,连结DF .当△BDF 的周长最小时,∠DBF 的度数是__________;16.二次函数y =-2x 2-4x +5的最大值是__________;三.解答题(共8小题,满分72分)17.(8分)解方程组:⎩⎨⎧1321134=+=-y x y x .18.(8分)如图,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AD 上,求证:∠1=∠2.19.(8分)定安县定安中学初中部三名学生竞选校学生会主席,他们的笔试成绩和演讲成绩(单位:分)分别用两种方式进行统计,如表和图.AB C 笔试859590口试___8085(1)请将表和图中的空缺部分补充完整;(2)图中B 同学对应的扇形圆心角为_____度;(3)竞选的最后一个程序是由初中部的300名学生进行投票,三名候选人的得票情况如图(没有弃权票,每名学生只能推荐一人),则A 同学得票数为_____,B 同学得票数为_____,C 同学得票数为_____;(4)若每票计1分,学校将笔试、演讲、得票三项得分按4:3:3的比例确定个人成绩,请计算三名候选人的最终成绩,并根据成绩判断_____当选.(从A 、B 、C 、选择一个填空)20.(8分)某中学原计划加工一批校服,现有甲、乙两个工厂加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天加工这种校服24件,且单独加工这批校服甲厂比乙厂要多用20天.(1)求这批校服共有多少件?(2)为了尽快完成这批校服,若先由甲、乙两工厂按原速度合作一段时间后,甲工厂停工,而乙工厂每天的速度提高25%,乙工厂单独完成剩下的部分,且乙工厂全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂加工多少天?21.(8分)如图,PA 、PB 是⊙O 的切线,A ,B 为切点,D 为⊙O 上一点.(1)求证:∠P =180°-2∠D ;(2)如图2,PE ∥BD 交AD 于点E ,若DE =2AE ,tan ∠OPE =31,⊙O 的半径为210,求AE 的长.22.(10分)如图1,在平面直角坐标系xOy 中,双曲线y =xk (k ≠0)与直线y =ax +b (a ≠0)交于A 、B 两点,直线AB 分别交x 轴、y 轴于C 、D 两点,E 为x 轴上一点.已知OA =OC =OE ,A 点坐标为(3,4).(1)将线段OE 沿x 轴平移得线段O ′E ′(如图1),在移动过程中,是否存在某个位置使|BO ′-AE ′|的值最大?若存在,求出|BO ′-AE ′|的最大值及此时点O ′的坐标;若不存在,请说明理由;(2)将直线OA 沿射线OE 平移,平移过程中交y =xk (x >0)的图象于点M (M 不与A 重合),交x 轴于点N (如图3).在平移过程中,是否存在某个位置使△MNE 为以MN 为腰的等腰三角形?若存在,求出M 的坐标;若不存在,请说明理由.23.(10分)如图,已知△ABC 和△ADE ,点D 在BC 边上,DA =DC ,∠ADE =∠B ,边DE 与AC 相交于点F .(1)求证:AB •AD =DF •BC ;(2)如果AE ∥BC ,求证:DC BD =FEDF .24.(12分)如图,在平面直角坐标系中,抛物线y =ax 2+bx -3交x 轴于点A (-1,0)和点B (3,0),与y 轴交于点C ,顶点是D ,对称轴交x 轴于点E .(1)求抛物线的解析式;(2)点P 是抛物线在第四象限内的一点,过点P 作PQ ∥y 轴,交直线AC 于点Q ,设点P 的横坐标是m .①求线段PQ 的长度n 关于m 的函数关系式;②连接AP ,CP ,求当△ACP 面积为835时点P 的坐标;(3)若点N 是抛物线对称轴上一点,则抛物线上是否存在点M ,使得以点B ,C ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出线段BN 的长度;若不存在,请说明理由.参考答案一.选择题1.解:-10+3=-(10-3)=-7,故选:A.2.解:A、x=0时分式无意义,故A错误;B、无论x取何值,分式总有意义,故B正确;C、当x=-1时,分式无意义,故C错误;D、当x=0时,分式无意义,故D错误;故选:B.3.解:A、相同字母的指数不同不是同类项,故A错误;B、字母相同且相同字母的指数也相同,故B正确;C、字母不同的项不是同类项,故C错误;D、字母不同的项不是同类项,故D错误;故选:B.4.解:设袋中白球有x个,根据题意得:=0.5,解得:x=8,经检验:x=8是分式方程的解,故袋中白球有8个.故选:C.5.解:(x+1)(x-3)=x2+ax+b,x2-2x-3=x2+ax+b,a=-2,b=-3,故选:B.6.解:P(4,-3)关于x轴对称点的坐标是(4,3).故选:A.7.解:从几何体的左面看所得到的图形是:故选:A.8.解:∵数据:2、3、4、5、a、b的平均数为3,∴2+3+4+5+a+b=18,即a+b=4,又∵数据的众数为2,∴a =b =2,故选:B .9.解:C 85==56,故选:B .10.解:设⊙O 与MN 相切于点K ,设正方形的边长为2a .∵AD 、CD 、MN 是切线,∴AE =DE =DF =CF =a ,MK =ME ,NK =NF ,设MK =ME =x ,NK =NF =y ,在Rt △DMN 中,∵MN =x +y ,DN =a -y ,DM =a -x ,∴(x +y )2=(a -y )2+(a -x )2,∴ax +ay +xy =a 2,∵S △BMN =S 正方形ABCD -S △ABE -S △DMN -S △BCN =8,∴4a 2-×2a ×(a +x )-(a -x )(a -y )-×2a ×(a +y )=8,∴a 2-(ax +ay +xy )=8,∴a 2=8,∴a =2,∴AB =2a =4,∴⊙O 的半径为2,故选:B .二.填空题(共6小题,满分18分,每小题3分)11.解:原式==1.故答案为:1.12.解:原式=2-3=-.故答案为:-.13.解:画树状图为:共有8种等可能的结果数,其中两枚正面向下,一枚正面向上的结果数为3,所以两枚正面向下,一枚正面向上的概率=.故答案为.14.解:作DE⊥AB于E,如图所示:∵∠A=30°,∴DE=AD=2,∴AE=DE=6,BE===2,∴AB=AE-BE=4,或AB=AE+BE=8,∵四边形ABCD是平行四边形,∴CD=AB=4或8;故答案为:4或8.15.解:如图,连接CF,∵△ABC、△BEF都是等边三角形,∴AB=BC=AC,BE=EF=BF,∠BAC=∠ABC=∠ACB=∠EBF=∠BEF=∠BFE=60°,∴∠ABC-∠EBD=∠EBF-∠EBD,∴∠ABE=∠CBF,在△BAE和△BCF中,,∴△BAE≌△BCF(SAS),∴∠BCF=∠BAD=30°,如图,作点D关于CF的对称点G,连接CG,DG,则FD=FG,∴当B,F,G在同一直线上时,DF+BF的最小值等于线段BG长,此时△BDF的周长最小,由轴对称的性质,可得∠DCG=2∠BCF=60°,CD=CG,∴△DCG是等边三角形,∴DG=DC=DB,∴∠DBG=∠DGB=∠CDG=30°,故答案为:30°.16.解:y=-2x2-4x+5=-2(x+1)2+7,即二次函数y=-x2-4x+5的最大值是7,故答案为:7.三.解答题(共8小题,满分72分) 17.解:,①+②×3得:10x=50,解得:x=5,把x=5代入②得:y=3,则方程组的解为.18.证明:∵AB=AC,点D是BC的中点,∴∠BAD=∠CAD,∵AB=AC,AE=AE,∴△ABE≌△ACE(SAS)∴∠1=∠2.19.解:(1)由条形图知,A演讲得分为90分,补全图形如下:故答案为:90;(2)扇图中B同学对应的扇形圆心角为360°×40%=144°,故答案为:144;(3)A同学得票数为300×35%=105,B同学得票数为300×40%=120,C同学得票数为300×25%=75,故答案为:105、120、75;(4)A的最终得分为=92.5(分),B的最终得分为=98(分),C的最终得分为=84(分),∴B最终当选,故答案为:B.20.解:(1)设这批校服共有x件,依题意,得:-=20,解得:x=960.答:这批校服共有960件.(2)设甲工厂加工了y天,则乙工厂加工了(2y+4)天,依题意,得:16y+24y+24×(1+25%)(y+4)=960,解得:y=12,∴2y+4=28.答:乙工厂加工28天.21.(1)证明:如图1,连接OA,OB,∵PA,PB为⊙O的切线,∴∠OAP=∠OBP=90°,∴∠P=360°-90°-90°-∠AOB=180°-∠AOB,∵∠AOB=2∠D,∴∠P=180°-2∠D;(2)过点O作OG⊥AD,连接OB,OE,连接OA交PE于点F 由(1)得,∠OPA=90°-∠DOB⊥PB;OA⊥PA∴∠POA=180°-90°-∠OPA=∠D又∵PE∥BD,∴∠D=∠PEA∴∠PEA=∠POA∵∠PFO=∠EFA∴△OPF∽△EFA∴∠OPE=∠OAD∴tan∠OAD=tan∠OPE==∴OG=AG∴在△OAG中,由勾股定理得AG2+OG2=OA2⇒,解得AG=6∴AD=12又∵DE=2AE∴AE=AD==422.解:(1)如图1中,∵A(3,4),∴OA==5,∵OA=OC=OE,∴OA=OC=OE=5,∴C(-5,0),E(5,0),把A、C两点坐标代入y=ax+b得到,解得,∴直线的解析式为y=x+,把A(3,4)代入y=中,得到k=12,∴反比例函数的解析式为y=,把A向左平移5个单位得A1(-2,4),作B关于x轴的对称点B1,则有|BO′-AE′|=|BO′-A1O′|=B1O′-A1O′|≤A1B1,直线AC:y=x+,双曲线:∴B(-8,-),B1(-8,),∴A1B1==,直线A1B1:y=x+,令y=0,可得x=-,∴O′(-,0).∴|BO′-AE′|的最大值为,此时点O′的坐标(-,0).(2)设M(m,),则N(m-,0),NE2=(5-m+)2,ME2=(5-m)2+()2,MN2=()2+()2若MN=ME,则有,(5-m)2+()2=()2+()2,解得m=或(舍弃),∴M(,),若MN=NE,则有(5-m+)2=()2+()2,解得m=8或3(舍弃),∴M(8,),综上所述,满足条件的点M的坐标为(,)或(8,).23.(1)证明:∵DA=DC,∴∠DAC=∠C,又∵∠ADE=∠B,∴△ABC∽△FDA,∴=,∴AB•AD=DF•BC;(2)证明:∵∠ADE+∠CDF=∠B+∠BAD,∠ADE=∠B,∴∠CDF=∠BAD,∵AE∥BC,∴∠E=∠CDF,∠C=∠EAF,∴∠BAD=∠E,又∵∠ADE=∠B,∴△ABD∽△E DA,∴=,∵DA=DC,∴∠DAC=∠C,∴∠EAF=∠DAC,即AC平分∠DAE,作FM⊥AD于M,FN⊥AE于N,则FM=FM,∵===,∴=.24.解:(1)抛物线的表达式为:y=a(x+1)(x-3)=a(x2-2x-3),故-3a=-3,解得:a=1,故抛物线的表达式为:y=x2-2x-3;(2)设点P(m,m2-2m-3),①将点A、C的坐标代入一次函数表达式并解得:直线AC的表达式为:y=-3x-3,则点Q(m,-3m-3),n=PQ=m2-2m-3+3m+3=m2+m;②连接AP交y轴于点H,同理可得:直线AP的表达式为:y=(m-3)x+m-3,则OH=3-m,则CH=m,△ACP面积=×CH×(xP-xA)=m(m+1)=,解得:m=(不合题意的值已舍去),故点P(,-);(3)点C(0,-3),点B(3,0),设点M(m,n),n=m2-2m-3,点N(1,s),①当BC是边时,点C向右平移3个单位向上平移3个单位得到B,同样点M(N)向右平移3个单位向上平移3个单位得到N(M),即m±3=1,n±3=s,解得:m=-2或4,s=8或2,故点N(1,2)或(1,8),则BN=2或2;②当BC是对角线时,由中点公式得:3=m+1,-3=s+n,解得:s=0,故点N(1,0),则BN=2,综上,BN=2或2或2.。

相关文档
最新文档