科学文献

合集下载

科普类文献

科普类文献

以下是一些科普类文献推荐:
1. **《从一到无穷大》**:这本书可以带领读者走进数学和物理的世界,了解基本的相对论、量子力学和粒子物理。

非常适合对科学感兴趣的读者。

2. **《宇宙的琴弦》**:一本通俗的科普读物,讲的是宇宙中弦论和超弦论的一些基础知识。

作者通过诙谐的语言以及具体例子让我们了解宇宙中的奥秘。

3. **《科学的世界》**:本书对物质的结构、物质运动变化规律及自然科学的原理、概念、理论进行了阐述,并且结合古代宇宙观、现代宇宙观以及人类对宇宙的探索历程,使读者对宇宙形成正确认识。

4. **《地球密码》**:这是一本关于地球科普的书籍,它从地质、地理知识入手,以地质年代为线索,通过解读地质、岩石、矿物,来探索地球的奥秘。

5. **《自然笔记》**:这本书主要是对自然的科普知识,通过精美的插图和通俗易懂的文字,让读者了解身边的自然世界。

6. **《时间简史》**:这本书是著名物理学家斯蒂芬·霍金的作品,是对广义相对论和黑洞的研究,但它以通俗的语言和简洁的描述,让读者了解宇宙的起源和演化的历程。

以上书籍仅供参考,如需了解更多信息,建议到图书馆或书店翻阅或咨询销售人员。

科技文献的定义

科技文献的定义

科技文献的定义科技文献是指记录科学研究成果、科技发展动态和科技管理经验的文献资料。

它是科学研究、技术创新和科技管理的重要依据和参考,对于推动科技进步和社会发展具有重要的作用。

科技文献的主要特点是准确性、权威性和时效性。

作为科学研究成果的记录,科技文献要求准确地反映研究方法、实验数据和结论,确保信息的真实性和可靠性。

同时,科技文献也需要具备权威性,即来源于有专业知识和经验的科学家、工程师和技术专家,经过同行评议和学术机构认可的论文、报告和专著等。

此外,科技文献还要具备时效性,及时反映科技发展的最新成果和动态,使读者能够及时了解科技前沿和最新趋势。

科技文献主要包括学术论文、科技报告、专利文献、技术标准和科技期刊等。

学术论文是科学研究成果的主要表现形式,它通过系统的实验或理论分析,提出新的理论、方法和结论,通过同行评议后发表在学术期刊上。

科技报告是研究项目的成果报告或研究机构的研究成果总结,它通常包含研究目的、方法、实验结果和结论等内容。

专利文献是专利申请和授权的文件,记录了发明创造的具体技术方案和实施方式。

技术标准是科技发展的规范和指南,通过规定产品的技术要求和测试方法,保障产品的质量和安全。

科技期刊是科学研究成果的重要发布渠道,它定期出版学术论文和研究报告,提供科技信息的交流和共享平台。

科技文献的利用可以促进科学研究的发展和技术创新的进步。

科学家和工程师可以通过查阅和分析科技文献,了解前人的研究成果和经验,避免重复劳动和错误,为自己的研究工作奠定基础。

科技管理人员可以通过研究科技文献,掌握科技发展的动态和趋势,制定科技政策和计划,引导科技创新和产业升级。

工程师和技术人员可以通过科技文献,学习新的技术方法和应用案例,提高自己的专业能力和技术水平。

科技文献是科学研究、技术创新和科技管理的重要资源和工具。

科技工作者应该重视科技文献的收集和利用,不断更新自己的知识和技能,推动科技进步和社会发展。

同时,科技出版机构和科技管理部门也应该加强对科技文献的管理和服务,提高科技文献的质量和影响力,为科技创新提供有力支持。

如何阅读科学文献

如何阅读科学文献

如何阅读科学文献阅读科学文献对于科研工作者和学术界的人士非常重要。

通过阅读科学文献,我们可以了解最新的研究进展,与同行进行交流与合作,提高自身的学术能力和水平。

然而,对于一些初学者或者对特定领域不熟悉的人来说,阅读科学文献可能是一项具有挑战性的任务。

在本文中,我将分享一些关于如何阅读科学文献的方法和技巧。

一、了解文献的分类和来源科学文献通常可以分为多种类型,包括期刊论文、会议论文、学位论文、专著和技术报告等。

这些文献来源的权威性和可信度有所不同,应根据需要选择合适的文献进行阅读。

常见的文献数据库包括PubMed、Scopus、Web of Science等,可以通过检索关键词或者作者的姓名来查找相关的文献。

二、阅读文献之前的准备工作在阅读科学文献之前,我们可以进行一些准备工作,以提高阅读效率和理解能力。

首先,要了解相关领域的基本知识和术语,这样在阅读文献时就能更好地理解和理解作者的观点和实验内容。

其次,可以查找文献的综述或者评论性文章,了解该领域的发展和当前的研究进展,从而对文献有一个整体的了解。

最后,可以制定一个阅读计划,设定合理的阅读时间和目标,提高阅读的效率。

三、阅读科学文献的技巧1. 精读和泛读结合对于篇幅较长或者对自己比较重要的文献,可以进行精读。

在精读时,要认真阅读摘要和介绍部分,了解研究的背景和目的,然后逐段、逐句进行仔细阅读,理解作者的实验设计和研究结果。

在阅读过程中,可以做一些标记或者写下关键点,以便于后续的回顾和整理。

对于篇幅较长或者对自己不是很重要的文献,可以进行泛读。

在泛读时,可以关注文献的结构、图表和重点段落,了解作者的主要观点和研究结果。

泛读可以帮助快速获取信息,筛选出对自己研究有用的文献。

2. 多角度阅读在阅读科学文献时,要注意从多个角度进行思考和分析。

可以思考文献的创新点、实验设计、结果解释以及与其他相关文献的联系。

可以尝试用自己的话总结和表达作者的观点和结论,以帮助更好地理解文献内容。

科学文献的名词解释

科学文献的名词解释

科学文献的名词解释
文献:
1. Abstract
2. Bibliographic Database
3. Editor
4. Index
一、Abstract:
抽象是科学文献中概述性段落的内容,即文章的摘要,它在文献的开头,能简要介绍文献的内容和目的,是科学文献查找、分析和利用的重要基础。

Abstract由一般性问题、技术方法、重要结果、结论和指出事实的综述性的评论组成,概述文献的内容及方法,是检索文献信息的重要依据。

二、Bibliographic Database:
文献数据库是以文献数据为基础建立起来的文献信息体系,其主要内容是存储文献信息(如书籍、期刊、报纸、图书、报告摘要、摘录、贴文等)的元数据,并提供跨文献的快速检索的功能。

一般而言,文献数据库由代表文献的描述性元数据(如题名、作者、出版社、出版日期等)和用于检索所建立的全文索引组成。

三、Editor:
编辑是指组织、审查和整理文献内容,以便发表的这类编辑服务活动。

编辑可以编排、修改、撰写、组织文献,编辑从文献撰写、组织和修订等方面起着协调作用,以确保出版物的质量。

四、Index:
索引是科学文献检索的一个重要技术工具,它的主要目的是使读者能够轻松找到所需要的信息。

索引包括有关文献的词汇表,能够提供有用的参考资料,而无需检查整个文献的文本内容。

另外,索引还可以帮助读者了解文献的整体框架,有利于从文献中快速获取信息。

十大科技文献源

十大科技文献源

十大科技文献源科技的发展日新月异,不断推动着人类社会的进步。

以下是十大科技文献源,它们记录了人类在不同领域的探索和创新。

1.《自然》(Nature)作为世界上最古老的科学杂志之一,《自然》杂志为读者提供了丰富的科学研究成果和前沿的科技进展。

它既包括基础科学领域的研究,也关注应用科学的发展。

2.《科学》(Science)《科学》杂志是世界上最有影响力的综合性科学杂志之一,涵盖了各个学科领域的最新研究成果。

它以其高质量的科学报道和严谨的学术评审而闻名,是科学界的权威之一。

3.《人工智能》(Artificial Intelligence)《人工智能》期刊聚焦于人工智能领域的研究和应用,包括机器学习、自然语言处理、计算机视觉等。

它发布的论文对于推动人工智能技术的发展具有重要意义。

4.《物理评论快报》(Physical Review Letters)《物理评论快报》是物理学领域最具影响力的学术期刊之一,发表了许多重要的物理学突破性研究。

它以其简洁、精确和具有启发性的论文而受到广泛关注。

5.《细胞》(Cell)《细胞》杂志是细胞生物学和分子生物学领域的顶级期刊之一,报道了该领域的最新研究成果和突破性发现。

它对于理解生命的基本机制和疾病的发生机理具有重要意义。

6.《计算机视觉国际会议》(Conference on Computer Vision and Pattern Recognition)计算机视觉是人工智能领域的一个重要分支,该会议是该领域最重要的学术会议之一。

它汇集了来自全球的顶尖研究人员,分享了最新的计算机视觉技术和应用。

7.《美国国家科学院院刊》(Proceedings of the National Academy of Sciences)《美国国家科学院院刊》是美国国家科学院的官方期刊,发表了各个学科领域的重要研究成果。

它是一本跨学科的期刊,涵盖了自然科学、社会科学和工程技术等领域。

8.《医学》(The Lancet)《医学》杂志是世界上最具影响力的医学期刊之一,发表了许多重要的医学研究。

科学阅读的方法和技巧

科学阅读的方法和技巧

科学阅读的方法和技巧一、选择合适的文献1. 学术期刊:选择相关领域的学术期刊,如《Nature》、《Science》等,这些期刊发布的论文通常是经过同行评议且质量较高的。

2. 学术数据库:如Google学术、PubMed等,可以通过关键词检索相关文献。

3.学术会议:参考学术会议的论文集,了解最新的研究进展。

4.专业书籍:选择有权威性的专业书籍,如教科书、专著等。

二、调整阅读策略科学文献通常包含大量的专业术语和公式,阅读起来较为困难。

为了更好地理解文献内容,可以采用以下阅读策略:1.预览:先浏览全文的标题、摘要和关键词,了解文献的大致内容和观点。

2.筛选:根据自己的兴趣和研究方向,选择有重要参考价值的章节或段落进行重点阅读。

3.聚焦:在阅读过程中,将注意力聚焦在关键词、论证主线和实验结果等重要内容上。

4.意识流:尽量保持集中的阅读时间,避免受到干扰和分散注意力。

5.笔记:在阅读过程中做好笔记,记录关键信息和自己的理解和思考。

三、理解文献内容科学文献通常采用科学语言和专业术语,为了更好地理解文献内容,可以采用以下方法:1.查阅词典和参考书:查阅相关课本、词典、参考书籍等,弄清楚不熟悉的术语和概念。

2.加深背景知识:扩大自己的科学背景知识,了解相关领域的基本原理和理论框架。

3.多角度理解:通过阅读多个文献,了解不同研究观点和方法,从不同角度思考和分析问题。

4.精确解释:将复杂的概念或内容用自己的语言重新解释一遍,以确保自己理解透彻。

四、分析论证逻辑科学文献通常有一定的逻辑结构,分析论证逻辑有助于深入理解文献内容。

可以采用以下方法:1.总结主旨:通过阅读摘要、引言和结论等部分,总结文献的主旨和观点。

4.反思批判:对文献的内容进行批判性思考,发现可能存在的问题和不足之处。

五、扩展思考和应用1.感知科学思维:思考作者是如何发现问题、提出假设、设计实验和得出结论的,借鉴科学思维方法。

2.拓展思考:将文献中的观点与自己的观点进行比较和对比,思考存在的差异和原因,并以此为基础进行拓展思考。

科学文献阅读技巧详解

科学文献阅读技巧详解

科学文献阅读技巧详解科学文献阅读技巧详解在科学研究的道路上,掌握有效的文献阅读技巧至关重要。

想象一下,文献就像是一座座深奥的宝库,里面珍藏着无数宝贵的知识和经验。

然而,要想从这些宝库中获取有用的信息,需要具备一定的技巧和策略。

首先,当你面对一篇新的科学文献时,它可能会显得有些“冷漠”。

不过,不要担心,这只是因为它还没有“认识”你。

开始阅读前,先浏览摘要部分,这就像与文献“打个招呼”,让它知道你对它感兴趣。

接下来,进入文献的正文部分,你会发现它有如一位导游,带领你探索未知的领域。

要有耐心,不要急于求成。

有时候,文献会使用复杂的术语和句子,就像在说一门外语一样。

这时,不妨反复阅读,逐步理解每一个词语背后的含义,就像与文献进行一场深入的交流。

在阅读过程中,可以时常停下来思考,并做好记录。

文献常常会提出问题或者让你有新的启发,这就像它在与你进行互动,促使你深入思考。

记得,做好笔记非常重要,这有助于你将碎片化的信息整理成有条理的知识体系。

此外,不要忽视文献中的图表和数据。

它们就像文献的“视觉演示”,通过直观的方式展示研究结果。

深入理解图表背后的数据,有助于你更全面地把握文献的核心内容。

最后,要保持批判性思维。

就像与一位智者交谈一样,不要轻易接受文献中的每一个观点。

要学会提出问题,评估实验设计的有效性,并思考研究结果的可能局限性。

这样,你才能更好地理解文献,甚至为未来的研究提供新的思路和方法。

总结来说,科学文献阅读并非一项简单的任务,它需要技巧和耐心。

通过与文献建立良好的互动关系,你将能够开启一段充满发现和启发的学术之旅。

不断地练习和改进阅读技巧,相信你定能在科学研究的道路上越走越远。

中国科学引用文献格式

中国科学引用文献格式

中国科学(Science China)的引用文献格式通常遵循国际通用的科技文献引用规范,以下是一种常见的引用格式:
期刊文章:
作者. 文章标题. 刊名, 年份, 卷号(期号): 起始页码-结束页码.
例如:
王明, 李华, 赵丽. 量子通信的新进展. 科学通报, 2021, 66(12): 1234-1256.
书籍:
作者. 书名. 版本(初版可省略). 出版地: 出版社, 出版年份.
例如:
张三. 物理学导论. 第3版. 北京: 高等教育出版社, 2018.
学位论文:
作者. 论文标题. 学位级别. 授予单位, 年份.
例如:
李四. 量子计算的研究. 博士学位论文. 清华大学, 2022.
请注意,具体的引用格式可能会根据期刊或出版机构的要求有所不同,因此在撰写论文时应参照目标期刊或出版社的投稿指南进行调整。

科学文献阅读的注意事项

科学文献阅读的注意事项

科学文献阅读的注意事项科学文献阅读的注意事项在探索科学文献的广阔海洋时,如同旅行者在陌生土地上航行。

每一篇文献都是知识的岛屿,而你则是一位探险家,渴望在这些岛屿上发现宝藏。

然而,要想从这些文献中获得宝贵的知识和洞见,你需要具备一定的技巧和注意事项。

首先,作为一位文献的探险家,你应该学会如何“与文献对话”。

文献有时像是一个沉默的学者,蕴藏着无限的智慧。

当你打开一篇文献时,不要仅仅停留在表面信息的浏览上。

要善于提出问题,文献便会像是回答你的问题一样,逐渐揭示其内涵和深度。

其次,了解文献的“语言和风格”也是非常重要的。

每一篇文献都有其独特的表达方式和专业术语。

有时候,文献可能会使用复杂的句子结构或专业术语,这并不意味着你需要被吓倒。

相反,你可以像是学习一门新语言一样,逐步熟悉并理解这些语言的规则和习惯用法。

此外,保持“批判性思维”的能力也是阅读科学文献不可或缺的技能。

作为文献的探险家,你需要时刻保持怀疑和探索的精神。

不要轻信一切,而是要学会分析和评估文献的内容。

提出质疑,寻找证据,这样才能真正理解文献背后的意图和科学观点。

进一步地,要善于“比较和综合”不同的文献。

科学文献世界就像是一个多面体,不同的角度和视角可能带来不同的认知和发现。

因此,阅读多篇相关的文献,比较它们之间的异同,从中获取更为全面和深入的理解。

最后,永远不要忘记“记录和引用”的重要性。

在你的探险旅程中,收集到的每一个知识宝藏都应该被妥善保存和记录。

正确引用文献不仅是对知识贡献者的尊重,也是维护学术诚信的基础。

综上所述,阅读科学文献不仅是获取知识的途径,更是一种探险和发现的过程。

作为一名文献的探险家,你需要具备探索精神、批判思维、比较能力和记录技巧。

只有这样,你才能在科学的海洋中畅行无阻,发现属于你的知识宝藏。

科技文献定义

科技文献定义

科技文献定义科技文献是指记录和传播科学技术研究成果的文献资源。

它包括了科学研究的论文、学术期刊、会议论文集、科技报告、技术标准、专利文献等形式。

科技文献是科学研究和技术创新的重要载体,对于推动科技进步和促进学术交流具有重要意义。

科技文献的特点主要体现在以下几个方面。

首先,科技文献以学术性和专业性为特征,通常由专业学者、科研机构和科技企业发表或出版。

其次,科技文献具有较高的可信度和权威性,经过严格的同行评审程序,确保了内容的科学性和准确性。

再次,科技文献具有时效性,记录了最新的科学研究成果和技术发展动态。

最后,科技文献通过各种渠道和方式进行传播,包括印刷出版、电子期刊、学术会议、数据库等形式。

科技文献的编写和发布过程通常包括以下几个环节。

首先,科学研究人员进行实验和研究,形成研究成果。

然后,他们将研究成果整理和撰写成论文的形式。

在撰写过程中,他们需要对已有的相关文献进行综述和引用,以确保研究的完整性和可信度。

接下来,研究人员选择合适的学术期刊或会议进行投稿。

投稿后,编辑和审稿人会对论文进行评审和修改意见,最终确定是否接受和出版论文。

对于已经出版的科技文献,读者可以通过各种渠道获取和阅读,包括图书馆、互联网、数据库等。

科技文献在科学研究和技术创新中起着重要的作用。

首先,科技文献记录了科学研究的过程和结果,为其他研究人员提供了重要的参考和借鉴。

其次,科技文献促进了学术交流和合作,科研人员可以通过阅读文献了解最新的研究进展,开展合作研究项目。

同时,科技文献也为科技政策制定和决策提供了参考依据,对于推动科技进步和社会发展具有重要意义。

然而,科技文献的管理和利用也面临一些挑战。

首先,科技文献数量庞大,涉及的学科和领域也非常广泛,如何有效管理和检索文献成为了一个重要问题。

其次,科技文献的版权和知识产权保护也是一个亟待解决的问题,如何平衡科研人员的知识共享和出版机构的经济利益是一个难题。

此外,科技文献的语言和专业性也限制了一部分人群的阅读和理解,如何提高科技文献的传播和普及成为了一个重要课题。

科学探索的科学文献与资源获取

科学探索的科学文献与资源获取

科学探索的科学文献与资源获取在科学研究中,科学文献与资源的获取是非常重要的一环。

科学研究者需要准确、全面地了解各个领域的研究进展,以便能够针对性地开展自己的研究工作。

本文将介绍一些科学文献与资源获取的途径和方法,以帮助科研人员更好地开展科学探索。

1. 学术期刊学术期刊是科学研究者常用的资源之一。

在学术期刊中,研究者可以了解到最新的研究成果、方法和理论。

常见的学术期刊有《Science》、《Nature》等。

获取学术期刊的方法有多种,可以通过图书馆提供的电子数据库、在线期刊数据库或者直接购买期刊订阅服务等途径。

2. 学术会议学术会议是科学研究者交流和分享研究成果的重要场所。

研究者不仅可以借此结识同行,并与他们进行深入的学术讨论,还可以听取其他研究者的报告和演讲,了解最新的研究动态。

科学研究者可以通过查阅相关会议的官方网站、论文集或者参与会议的身份来获取相关资源。

3. 在线学术资源随着互联网的普及,许多学术资源已经通过在线平台提供给研究者使用。

一些知名机构和大学提供了免费的学术资源数据库,例如:Google学术、中国知网、PubMed等。

在这些平台上,研究者可以搜索到各个领域的学术论文、研究报告和会议论文等,并且可以免费获取或付费购买。

4. 合作与交流与其他研究者的合作和交流也是获取科学文献和资源的一种重要途径。

研究者可以通过与同行的合作进行资源的共享,例如相互交换自己的研究成果和论文。

此外,加入学术组织、参加学术研讨会等也是获取科学文献和资源的良好机会。

5. 专业图书馆和研究机构专业图书馆和研究机构通常都有丰富的学术资源和图书馆藏。

科研人员可以通过办理借阅证或者到图书馆进行现场查阅的方式来获取所需的科学文献和资源。

此外,一些大型研究机构还会提供科学文献的数字化资源或者专门的研究资源库,供科研人员使用。

总之,科学文献和资源的获取对于科学探索来说至关重要。

研究者可以通过学术期刊、学术会议、在线学术资源、合作与交流以及专业图书馆和研究机构等多种途径,获取到最新的研究成果和资源。

学习窍门如何有效阅读科学文献

学习窍门如何有效阅读科学文献

学习窍门如何有效阅读科学文献有效阅读科学文献的学习窍门科学文献是科研工作者获取最新科研进展、提升科研水平的重要来源。

然而,由于科学文献既深入又繁杂,对于普通读者来说进行有效阅读并非易事。

本文将介绍一些学习窍门,帮助读者有效阅读科学文献。

一、清楚阅读目的在开始阅读科学文献之前,务必明确阅读的目的。

例如,是为了了解某一具体问题的最新研究进展,还是为了获取某方面的背景知识。

明确阅读目的有助于筛选和整理重要信息,提高阅读效率。

二、抓住重点信息科学文献通常包含大量的数据、实验方法和讨论等内容。

为了有效阅读,可以通过以下方式抓住重点信息:1.注重摘要部分:摘要是论文内容的提炼,通过仔细阅读摘要,可以初步了解论文的主要观点、方法和结论,帮助读者判断是否需要深入阅读全文。

2.关注引言和讨论部分:这两个部分通常包含了研究的背景、意义、现有研究进展以及未来研究方向等信息。

通过阅读这些部分,可以更好地了解文献的研究背景和意义。

3.快速浏览实验方法:对于非专业领域的读者来说,实验方法可能相对较难理解。

可以通过快速浏览实验方法来了解研究所用的技术、仪器等,以及实验方案是否合理可行。

三、跳过细节部分科学文献中会有许多细节部分,如大量的实验数据、图表、推导过程等。

对于一般读者来说,可以适当跳过这些细节,将重点放在主要观点、结论和讨论部分上。

当然,如果读者对某些实验数据或细节感兴趣,也可以深入阅读。

四、积极阅读批评意见科学文献的评审过程通常由同行专家进行,他们会在论文中提出不同的观点、建议和批评。

对于读者来说,阅读这些批评意见有助于深入了解研究的优点、不足之处以及可能的局限性。

同时,批评意见也能提醒读者对研究结果持有适度的怀疑态度。

五、及时记录关键信息在阅读科学文献时,及时记录关键信息非常重要。

可以通过以下方式进行记录:1.摘录关键语句:将论文中的重要观点、结论或者给出的实验数据等关键信息摘录下来,以备后续查阅和引用。

2.记笔记:将自己的思考、对文献的批评意见或者扩展思路等记录在笔记本中,这有助于巩固对文献的理解和记忆。

10本必读的科学文献,汇总了最新研究成果!

10本必读的科学文献,汇总了最新研究成果!

10本必读的科学文献,汇总了最新研究成果!1. 引言1.1 概述本文《10本必读的科学文献,汇总了最新研究成果!》旨在介绍十篇具有重要价值的科学文献,并总结其最新的研究成果。

这些文献涵盖了多个领域,包括物理学、化学、生物学和医学等。

通过阅读这些文献,读者可以了解到各个领域中正在进行的前沿研究和最新成果。

1.2 文章结构本文分为引言、正文和结论三部分。

在引言部分,我们将简要介绍整篇文章的目的和内容安排。

在正文部分,我们将详细介绍每一篇选定的科学文献,并对其背景、主要研究内容以及所得出的结论与启示进行阐述。

最后,在结论部分,我们将对整篇文章进行概括性总结。

1.3 目的本文的目的是为读者推荐十本必读的科学文献,并简要介绍这些文献所涉及的领域以及其中所揭示的最新研究成果。

通过阅读这些精选文献并了解其中的核心观点和发现,读者可以迅速掌握当前科学研究的前沿动态,并对其领域中的关键问题有更深入的理解。

同时,这些文献也为广大科研工作者提供了重要的参考资料,激发他们在相应领域进行更具创新性的研究。

希望本文能为读者提供有益启示,并促进科学知识的传播和应用。

2. 文献一: XXXX2.1 背景介绍文献一是XXXX,这是一个重要的科学研究领域,并且已经引起了广泛的关注。

在背景介绍中,我们将引入该领域的发展历程、当前研究状态以及该文献所涉及的主要问题和挑战。

2.2 主要研究内容在这一部分中,我们将详细介绍文献一的主要研究内容。

我们将阐述作者们所采用的方法、实验设计和数据分析等方面的细节。

此外,我们还将呈现他们的实验结果,并进行解读和讨论。

2.3 结论与启示结论与启示部分将总结并评估文献一的重要发现。

我们将强调这些发现对该领域的贡献以及其对相关领域进一步研究的意义。

同时,我们还会探讨存在的局限性和可能需要解决的未解决问题。

请注意,在填写“XXXX”的位置时,请提供实际的文献标题或描述,以便能够针对具体情境作出回答。

3. 文献二: XXXX3.1 背景介绍在本节中,我们将介绍文献二的背景信息。

如何有效地进行科学文献阅读

如何有效地进行科学文献阅读

如何有效地进行科学文献阅读科学文献是科学研究的重要成果之一,阅读科学文献对于研究者来说至关重要。

然而,由于科学文献的数量庞大和内容的复杂性,有效地进行科学文献阅读变得至关重要。

本文将介绍一些有效的方法和技巧,帮助读者提高科学文献阅读的效率和质量。

一、准备阅读前的工作在开始阅读科学文献之前,需要进行一些准备工作。

首先,明确阅读的目的和需求。

根据自己的研究课题和问题,确定需要了解的领域和方向。

其次,建立一个合适的文献检索策略。

可以使用科学文献数据库,如Google Scholar、PubMed等来检索相关文献。

在检索时,使用关键词和逻辑运算符能够更准确地获得所需的文献。

最后,确定阅读的时间和地点。

选择一个安静、舒适的环境,避免干扰,以提高阅读的效果。

二、快速浏览和筛选文献在获取到一系列相关文献后,首先进行快速浏览和筛选。

阅读文献的标题、摘要和关键词,初步了解文献的内容和相关性。

根据自己的需求和判断,筛选出与研究主题相关且有可能有价值的文献。

这一步的目的是快速获得文献的概述,避免浪费时间在与研究无关的文献上。

三、详细阅读和理解文献在筛选出潜在有价值的文献后,进行详细阅读和理解。

首先,注意文献的结构和内容组织方式。

大部分科学文献一般包括引言、方法、结果和讨论等部分,对于不同的学科领域可能会有一些差异。

其次,重点关注文献的核心内容,有目的地进行阅读。

读者可以根据自己的需求,关注文献的方法和结果,也可以参考讨论部分来了解作者的观点和结论。

四、做好笔记和总结在阅读过程中,及时做好笔记和总结对于进一步理解和应用文献的内容至关重要。

读者可以使用摘要、标注和备注等工具,记录关键信息和自己的想法。

可以根据文献的不同部分,制作一个清晰的笔记和总结,以备后续查阅和参考。

同时,将文献与已有的知识体系整合,形成一个完整的理解框架。

五、批判性地思考和评估文献在阅读科学文献时,需要保持批判性思维,对文献进行评估和思考。

首先,评估文献的可靠性和可信度。

科学文献概述

科学文献概述

科学文献概述科学文献是科学研究中不可或缺的重要资源,它记录了科学家们的研究成果、实验数据和理论探索,为科学研究提供了有力的支持和指导。

本文将对科学文献的概念、特点以及使用方法进行概述,旨在帮助读者更好地理解和利用科学文献。

一、科学文献的概念科学文献是指科学研究者在进行科学研究过程中所发表的学术论文、研究报告、学位论文、会议论文等形式的文献资料。

它包含了科学家们的研究成果、实验数据、理论探索等内容,是科学研究的重要产出和交流方式。

二、科学文献的特点1. 学术性:科学文献是由科学研究者发表的,具有一定的学术性和专业性。

它经过同行评议,经过严格的学术审查和筛选,保证了其内容的可靠性和科学性。

2. 更新性:科学文献反映了科学研究的最新进展和成果,具有很强的时效性。

科学家们通过发表文献来及时分享自己的研究成果,使得科学研究能够不断推进和发展。

3. 可信性:科学文献是经过同行评议和学术审查的,其内容经过了严格的验证和检验,具有较高的可信性。

科学研究者可以通过查阅相关文献来获取可靠的信息和数据。

4. 多样性:科学文献的形式多样,包括学术论文、研究报告、学位论文、会议论文等。

不同形式的文献适用于不同的研究领域和目的,科学研究者可以根据自己的需要选择合适的文献来源。

三、科学文献的使用方法1. 文献检索:科学研究者可以通过文献检索工具(如数据库、图书馆目录等)来查找和获取相关的科学文献。

在进行文献检索时,可以根据关键词、作者、出版年限等进行筛选和过滤,以获取符合自己研究需求的文献。

2. 文献阅读:科学研究者在获取到相关文献后,需要进行仔细阅读和理解。

阅读科学文献时,可以先浏览摘要和关键词,了解文献的主要内容和研究方法;然后再深入阅读全文,理解作者的实验设计、数据分析和结论推断。

3. 文献引用:科学研究者在撰写学术论文或研究报告时,需要引用相关的科学文献来支持自己的观点和结论。

在引用文献时,需要遵循相应的引用格式和规范,确保引用的准确性和规范性。

科普类文献

科普类文献

科普类文献摘要:一、引言二、科普类文献的定义与特点三、科普类文献的发展历程四、科普类文献在我国的重要性五、科普类文献的分类六、科普类文献的创作与传播七、科普类文献的阅读方法与技巧八、结论正文:一、引言科普类文献是一种以普及科学知识为主要目的的文献,通过简明扼要、通俗易懂的方式向广大读者传播科学知识,提高大众的科学素养。

科普类文献在当今社会发挥着越来越重要的作用,它不仅满足了人们对科学知识的需求,还有助于推动我国科学技术的发展。

二、科普类文献的定义与特点科普类文献主要针对非专业领域的普通读者,以生动形象、简单易懂的方式介绍科学知识、科学原理和科学发现。

科普类文献的特点包括内容具有广泛性、通俗性、趣味性和时代性,形式多样,包括图书、文章、视频等。

三、科普类文献的发展历程科普类文献源远流长,可以追溯到古代的民间传说和神话。

随着科学技术的进步,科普类文献逐渐发展为独立的领域,涌现出了许多脍炙人口的科普作品。

四、科普类文献在我国的重要性在我国,科普类文献对于提高全民科学素质、推动科技创新和培养人才具有重要意义。

政府也高度重视科普工作,出台了一系列政策措施,推动科普类文献的创作与传播。

五、科普类文献的分类科普类文献根据内容和形式可以分为多种类型,如基础科学普及、应用科学普及、科学史普及、科学幻想等。

六、科普类文献的创作与传播科普类文献的创作需要作者具备丰富的科学知识、写作技巧和教育经验。

传播途径包括传统纸质媒体、网络媒体、影视媒体等。

七、科普类文献的阅读方法与技巧阅读科普类文献时,要注意挑选适合自己水平的书籍和文章,采用轻松、愉快的心态来学习。

同时,要善于运用批判性思维,辨别真伪,避免被伪科学所误导。

八、结论科普类文献是传播科学知识、提高全民科学素质的重要载体。

科技史经典文献

科技史经典文献

科技史经典文献科技史经典文献是人类智慧与创新的结晶,记录了科技进步与发展的历程。

下面将列举十个符合要求的科技史经典文献。

1. 《工具的性质》- 爱德华·哈伯马斯这本书探讨了工具在人类文明中的地位和作用,从哲学角度分析了工具对人类社会的影响。

2. 《机械观念的历史》- 卡尔·波普尔波普尔通过对机械观念的发展历史进行研究,提出了科学发展的理论框架,对科技进步有重要影响。

3. 《信息论导论》- 克劳德·香农香农的这本书奠定了现代通信与信息科学的基础,提出了信息熵等重要概念,对信息技术的发展起到了重要作用。

4. 《人工智能:一种现代的方法》- 斯图尔特·罗素、彼得·诺维格这本书是人工智能领域的经典教材,介绍了人工智能的基本原理、算法和应用,对人工智能的发展起到了重要推动作用。

5. 《计算机程序的构造和解释》- 哈罗德·阿贝尔森、杰拉尔德·塞斯特洛姆这本书是计算机科学领域的经典教材,通过解析器和编译器的设计,深入讲解了计算机程序的构造和解释方法。

6. 《人机交互》- 本·古巴古巴对人机交互的研究做出了重要贡献,他的这本书系统地介绍了人机交互的理论和实践,对用户界面设计产生了重要影响。

7. 《编程珠玑》- 乔恩·本特利本书以编程问题为案例,介绍了一系列解决问题的思路和方法,对编程技术的提高和优化起到了重要指导作用。

8. 《硅谷之火》- 迈克尔·斯沃茨这本书详细记录了硅谷科技产业的兴起和发展历程,介绍了一些重要的科技公司和创业故事,对理解科技创新的生态系统具有重要意义。

9. 《科技的冲击》- 阿尔文·托夫勒托夫勒在这本书中探讨了科技对人类社会的冲击,提出了信息革命的概念,对科技发展的影响和未来趋势进行了深入思考。

10. 《数学原理》- 亨利·波恩这本书是数学史上的经典之作,系统阐述了数学的基本原理和方法,为计算机科学等领域的发展提供了重要基础。

sci中的相关文献

sci中的相关文献

sci中的相关文献SCI(Science Citation Index)是科学引文索引,它涵盖了各个学科领域的学术期刊和会议论文,收录了世界上最重要的科学文献,并通过引文分析来评估文献的质量和影响力。

在SCI数据库中可以找到各个学科领域的相关文献。

以下是几个常见学科领域的SCI相关文献:1. 医学和生命科学领域:包括人类医学、生物学、生物化学、分子生物学、遗传学等。

相关期刊包括《Nature Medicine》、《The New England Journal of Medicine》、《Cell》等。

2. 工程科学和技术领域:包括机械工程、电子工程、化学工程、材料科学等。

相关期刊包括《Advanced Materials》、《IEEE Transactions on Industrial Electronics》、《Chemical Engineering Science》等。

3. 自然科学领域:包括物理学、化学、地球科学、天文学等。

相关期刊包括《Nature》、《Physical Review Letters》、《Chemical Reviews》、《Earth and Planetary Science Letters》等。

4. 社会科学领域:包括经济学、心理学、社会学、政治学等。

相关期刊包括《The American Economic Review》、《Psychological Science》、《American Journal of Sociology》等。

这些只是一部分常见的学科领域和相关期刊,实际上SCI涉及的学科领域非常广泛,覆盖了几乎所有的学术领域。

要获取更具体的相关文献信息,您可以登录SCI数据库进行搜索,或者参考相关学术期刊的官方网站。

科技史经典文献

科技史经典文献

科技史经典文献全文共四篇示例,供读者参考第一篇示例:一、《科技与文明》《科技与文明》是美国历史学家刘易斯·弗莱彦在1967年出版的一本重要著作,该书对科技与文明的关系进行了深入的探讨和研究。

弗莱彦认为,科技是现代社会的基石,科技的发展对文明和社会的进步起着至关重要的作用。

他指出,科技的发展不仅改变了人类的生产方式和生活方式,还影响着社会结构和文化传承,是推动历史进程的动力之一。

《科技与文明》的出版引起了广泛的关注和讨论,被誉为科技史研究的经典之作。

这本书揭示了科技与文明之间的紧密联系,为我们理解科技对社会的影响提供了重要的理论依据和启示。

通过对这本著作的研读和思考,我们可以更好地把握科技的发展规律,引导科技创新,实现科技与文明的和谐发展。

二、《工业与帝国》《工业与帝国》是英国历史学家埃里克·霍布斯鲍姆在1968年出版的一部重要著作,该书系统地分析了工业革命对英国帝国建设和全球化进程的影响。

霍布斯鲍姆认为,工业革命是现代世界发展的起点,推动了资本主义经济体系的兴起和全球经济秩序的形成。

《工业与帝国》深入挖掘了工业革命对社会、政治、经济和文化的多方面影响,揭示了英国帝国建设的历史背景和演变过程。

这部著作被誉为工业革命史研究的经典之作,为我们理解工业革命的本质和意义提供了重要的参考依据和理论支持。

通过对《工业与帝国》的研究和阐释,我们可以更好地理解工业革命对世界历史的影响和意义,认识到科技创新对社会的深远影响,引导我们更好地应对全球化时代的挑战和机遇。

三、《机械效率》《机械效率》是法国工程师弗朗索瓦·塞罗在1835年出版的一本重要著作,该书系统地研究了机械工程原理和力学效率问题。

塞罗通过理论分析和实际案例,深入探讨了机械装置的设计原理和效率提升方法,为工程师和科学家提供了重要的理论指导和实践经验。

《机械效率》被认为是现代机械工程学的奠基之作,为我们理解机械原理和力学效率提供了重要的参考依据和指导方针。

科学研究 方法 的参考文献

科学研究 方法 的参考文献

科学研究方法的参考文献
关于科学研究方法的参考文献有很多,我将列举一些经典的参
考文献供你参考:
1. 《科学研究的逻辑与方法》(作者,李沃墉)。

这本书系统地介绍了科学研究的逻辑和方法,包括科学研究
的基本原理、科学探索的途径、科学实验的设计与分析等内容,是
一部经典的科学研究方法论著作。

2. 《社会科学研究方法》(作者,戴森)。

这本书主要介绍了社会科学领域的研究方法,包括问卷调查、访谈、观察等常用的研究方法,对于社会科学研究者具有较高的参
考价值。

3. 《定性研究方法》(作者,马克思)。

这本书系统地介绍了定性研究的方法论和实践技巧,包括案
例研究、文献分析、内容分析等定性研究方法,对于从事定性研究
的学者和学生提供了宝贵的指导。

4. 《定量研究方法》(作者,柯林斯)。

这本书主要介绍了定量研究的基本原理和技术方法,包括实验设计、数据采集与分析、统计推断等内容,对于从事定量研究的学者和学生具有较高的参考价值。

以上是一些关于科学研究方法的经典参考文献,它们涵盖了科学研究的基本原理、途径和方法,对于帮助你全面了解科学研究方法具有重要意义。

希望对你有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Rhythm Tracking Using Multiple Hypotheses David Rosenthal and Masataka Goto and Yoichi MuraokaInternational Media Research Foundation2-14-1Nishi-Waseda,Shinjuku-ku,Tokyo169,JAPAN.dfr@ School of Science and Engineering,Waseda University3-4-1Ohkubo Shinjuku-ku,Tokyo169,JAPAN.goto,muraoka@.waseda.ac.jpAbstractWe briefly describe two rhythm-tracking systems,called,respectively,Machine Rhythm and BTS.Given a MIDI stream as input,Machine Rhythm produces an interpretation that is essentially isomorphic to the rhythmic information represented in normal musical notation.The output of the program defines the placement of measures and assigns rhythmic values(half-note beats,quarter-note beats,etc.)to each note.Although Machine Rhythm is not a real-time system,it processes the MIDI information sequentially,paving the way for possible future real-time implementations.The program attempts to handle some of the more sophisticated rhythm-tracking operations of which humans are capable,such as changes from duple to triple meter or changes in tempo.BTS tracks beats using raw audio signals as input in general,a much more difficult problem than tracking it from MIDI data.BTS accomplishes this task by leveraging the fact that for a large corpus of music rock and pop songs the beat is indicated with some reliability by the bass and snare drums.BTS’s non-reliance on MIDI data enables it to handle a broad range of multimedia applications for which MIDI-based beat-tracking programs cannot be used,and the fact that it works in real time enables its application in a variety of live performance situations.Both Machine Rhythm and BTS use a similar strategy for managing uncertain or noisy input data namely,the strategy of pursuing multiple hypotheses.1.Rhythm Tracking IssuesRhythm tracking and related psychoacoustical and psychological issues have been treated by a number of researchers from a variety of disciplines([Allen and Dan-nenberg,1990],[Bamberger,1980],[Chung,1989],[Dannenberg and Mont-Reynaud,1987],[Desain and Honing,1989],[Driesse,1991], [Goto and Muraoka,1994],[Katayose et al.,1989],[Lee,1985], [Longuet-Higgens and Lee,1984],[Rosenthal,1992],[Schloss,1985], [Sloboda,1983],and[Vercoe,1985])1.One reason that building a computer rhythm-tracker is difficult is that input data is often noisy or ambigu-ous.At any given point in the rhythm-tracking process, several interpretations may appear plausible;only fur-ther on in the processing does the correct interpretation become clear.One way of managing this situation is to maintain a number of hypotheses,which are periodi-cally ranked and selected.Another problem is that human rhythm-trackers op-erate in a much more information-rich environment than do computer rhythm-trackers.Beat-tracking and rhythm-parsing,in humans,are part of an array of audi-tory information-processing methods which interact in ways that we only partly understand.In a reasonable model of human auditory processes,many other pro-cesses act on the incoming auditory data.These include: parsing the music into separate events,estimating the power associated with each event,separating the mu-sic into streams,noting repeated patterns,parsing the harmonic structure,recognizing instruments,and so on.1For the sake of brevity,we will assume that the reader is familiar with the general problems of beat-finding,and concentrate on issues which are specific to Machine Rhythm and BTS.We assume that these processes interact and inform each other and the rhythm-tracking processes.The processes of rhythm-tracking itself is also less unary than is assumed by previous simpler models.It appears that humans normally track several levels of rhythmic activity that is,in a given situation we may track a beat at the measure level,the half-note level,the quarter-note level,and so on.Again,although we don’t really understand the degree of cooperation between these processes,a reasonable model is that they are autonomous to some degree,yet informed enough of each other to maintain coordination.2.Machine RhythmMachine Rhythm,developed at the MIT Media Lab-oratory as part of one of the authors’(Rosenthal)Ph.D. dissertation,addresses some of the issues raised in the last section.First of all,Machine Rhythm deals with ambiguous input by creating a number of conjectures to cover the range of reasonable explanations.Machine Rhythm’s strategy amounts to beam search of a hierarchical space of rhythmic hypotheses(see also[Allen and Dan-nenberg,1990]).Machine Rhythm also attempts to duplicate the information-rich environment in which human rhythm-tracking apparently takes place,by emulating some of the auditory processing functions that affect rhythm parsing.In particular,Machine Rhythm segregates the MIDI stream into voices,and searches the result-ing separated voices for melodic patterns.Detection of such a pattern constitutes evidence that there is abeat whose period is a multiple of the length of the pattern.Machine Rhythm also groups nearly simulta-neous notes into chords,which can then be viewed as unary events.Machine Rhythm’s scheme for chord-construction is based on results from psychoacoustical experiments reported in[Bregman,1990].2.1Overview of Machine RhythmThe overall operation of Machine Rhythm may be summarized as follows:1.The system first preprocesses the entire performance. During the preprocessing stage the MIDI information is grouped into chords(notes with nearly simultaneous onset)and voices(e.g.,melody and accompaniment).2.Machine Rhythm then selects an initial segment of the performance usually2-3seconds called the startup segment,and makes a number of hypotheses about the rhythm of the initial segment.3.The system then processes the remainder of the per-formance sequentially,one note(or chord)at a time. Each hypothesis is extended to account for the new note.If the way in which hypotheses should be ex-tended is ambiguous,Machine Rhythm will produce several hypotheses.As a result,the number of hy-potheses grows exponentially in the number of notes processed.4.When the number of hypotheses exceeds a preset limit,the hypotheses are ranked,and the lower-ranked hypotheses are discarded.Hypotheses are ranked ac-cording to the following criteria:Stronger beats(such as the beginnings of measures or half-measures)are more likely to occur on chords rather than single notes.Stronger beats are more likely to occur on notes of longer duration,or notes where the time-interval to the next note is longer.It is preferable that the period of a beat should coin-cide with the period of a detected melodic pattern.Beats which have uniform or slowly changing peri-ods are preferable to those which do not.A manager-module checks for informative interac-tions among these criteria,and makes some context-sensitive decisions as to how to apply them.5.Machine Rhythm also incorporates a module which detects changes in rhythmic subdivision,the most common example of which is a triplet.2.2Test ResultsWe tested Machine Rhythm on a corpus of92per-formances.Of these the largest block was taken from 55movements from Mozart piano sonatas performed by Mike Hawley of the MIT Media Lab.An additional data set taken from37Mozart sonata movements consisted of performances by one of the authors(Rosenthal).We also tested the system,less formally,on a variety of folksongs,national anthems,etc..Each test consisted of two parts:we first checked whether the startup module could correctly parse the beginning of the piece.If it was successful,we then checked whether the parser could continue without"los-ing the beat,"that is,given that it had parsed a measure correctly,what were the chances that it would parse the following measure correctly.The results were as fol-lows:The startup module succeeded62%of the time for the Hawley performances and65%percent of the time for the Rosenthal performances.Given that it had parsed a measure correctly,the program would parse the next measure correctly95%of the time for the Hawley performances and98.5%of the time in the Rosenthal performances.More details on the tests can be found in [Rosenthal,1992].3.BTS(A Real-time Beat Tracking Systemfor Musical Acoustic Signals)BTS,developed at the Muraoka Lab at Waseda Uni-versity as part of one of the authors’(Goto)M.S.thesis, also addresses some of the issues raised in the first sec-tion of this paper,though the approach differs from that of Machine Rhythm.BTS processes a monaural acoustic signal of music and recognizes temporal positions of beats in real time. Most previous rhythm-trackers were not able to process acoustic signals that contain sounds of various instru-ments,especially drums.They were able to process only MIDI signals or acoustic signals played on a few instruments in non-real time.BTS deals with commer-cially distributed popular music such as rock and pop music in which mainly drums maintain the beat.3.1Specifications of BTSBTS works on assumptions that fit a large class of popular music.The tempo of an input song is con-strained to be between70M.M.and180M.M.and al-most constant;popular songs have less tempo variation than do classical works.The time signature is assumed to be4/4,this being the most frequent time-signature in the repertoire we are considering.BTS reports beat information(BI)that consists of: the temporal position of a beat(beat time),its location in a half-measure(beat type),and the current tempo. BI corresponding to a quarter note is broadcast to the Ethernet as an RMCP2packet synchronized to the mu-sic.This enables other computers on the Ethernet to 2RMCP stands for remote music control protocol,which is a com-munication protocol between servers and clients in the RMCP system [Goto and Hashimoto,1993].use the BI in various ways.For example,a worksta-tion connected to a MIDI instrument may create drum sounds or clapping sounds in time to the input music.A workstation with a graphics engine may also create computer graphics synchronized with music.Beat type indicates whether a beat is a strong beat or a weak beat i.e.,BTS can track beats at the half-note level.To infer beat type,BTS assumes that a bass drum (BD )mainly sounds on a strong beat (the first or third quarter notes in a measure)and a snare drum (SD )on a weak beat (the second or fourth).This does not mean that all BD and SD must sound on the strong and weak beats,respectively,but rather that that arrangement should be the most frequent.3.2Main Issues and SolutionsThe principle beat-tracking issues addressed by BTS are as follows:1.It is generally impossible to obtain precise onset times from acoustic signals that contain sounds of various instruments.BTS employs sophisticated means of estimating the onset time in the frequency analysis stage.First,BTS finds multiple interpretations corresponding to various time-window widths,one of which is con-firmed by subsequent processing.Second,the reli-ability of an onset time is calculated by a process which takes into account such factors as the rapidity of increase in power,and the power present in nearby time-frequency regions.The higher the reliability of an onset time,the greater its importance in subsequent processing.2.BTS should be able to recover the correct tracking even if the current hypothesis becomes incorrect.BTS manages multiple agents that track beats accord-ing to different strategies and then examines multiple hypotheses in parallel.Even if some agents lose track of beats,BTS will track correct beats as long as other agents have the correct hypothesis.Each agent inter-prets onset time and makes his own hypothesis,which consists of next beat time predicted,its beat type,its reliability,and current inter-beat-interval.BTS gen-erates BI on the basis of the most reliable and stable hypothesis.3.BTS must acquire the characteristic frequencies of BD and SD dynamically.BTS,like human listeners,utilizes BD and SD as prin-ciple clues to the location of strong and weak beats.Because the sounds of BD and SD are not known in ad-vance,BTS automatically acquires the characteristic frequencies of these sounds during the beat-tracking process.Note that BTS cannot simply use the detected BD and SD to track the beats,because this detection process is too noisy.The detected BD and SD are only used to determine the beat type (strong or weak)of an already detected beat.3.3Overview of BTSFigure 1shows the overview of BTS implemented on a distributed memory parallel computer,the Fujitsu AP1000which consists of 64processing elements called cells.The number of cells assigned to each process is indicated at the bottom right of rectangles.Figure 1:Overview of BTSFirst,Frequency Analysis finds notes’onset times in an input acoustic signal digitized by A/D Conversion and also detects BD and SD.Second,multiple agents in Beat Prediction interpret the onset times found pre-viously and make parallel hypotheses:each agent first calculates the inter-beat-interval;it then predicts the next beat time,and infers its beat type,and finally eval-uates its own reliability.BI Generation assembles BI on the basis of the most reliable hypothesis.Finally,BI Transmission transmits the BI to other application programs via the Ethernet.3.4Test ResultsWe tested BTS for 30popular songs in the rock and pop music genre.These songs were sampled from com-mercial compact discs and satisfied the assumptions stated above.Their tempi ranged from 78M.M.to 167M.M.BTS correctly tracked beats in 27songs out of 30songs in real time.After the BD and SD had sounded stably for a few measures,the beat type was obtained correctly.The three failures occurred as follows:In two songs,the beat type was reversed as if BD were SD,because BTS could not acquire their characteristic frequencies correctly.In the other song,BTS tracked beats correctly,for the most part,but during about three measures in the middle,the beat type was reversed due to some irregular rhythm in the drums.References[Allen and Dannenberg,1990]Paul Allen and Roger Dannenberg.Tracking musical beats in real time,Pro-ceedings of the1990ICMC,pp.140-143,1990. [Bamberger,1980]Jeanne Bamberger.Cognitive structuring in the apprehension of simple rhythms. Archives de Psychologie,48:171-199,1980. [Bregman,1990]Albert Bregman.Auditory Scene Analysis.The MIT Press,Cambridge,1990. [Chung,1989]Joseph Chung.An Agency for the Per-ception of Musical Beats,M.S.Thesis,Massachusetts Institute of Technology,1989.[Dannenberg and Mont-Reynaud,1987]Roger Dan-nenberg and Bernard Mont-Reynaud.Following an im-provisation in real time,Proceedings of the1987ICMC, pp.241-248,1987.[Desain and Honing,1989]Peter Desain and Henkjan Honing.Quantization of musical time:a connectionist puter Music Journal,13:56-66,1989. [Driesse,1991]Anthonie Driesse.Real-time tempo tracking using rules to analyze rhythmic qualities,Pro-ceedings of the1991ICMC,pp.578-581,1991. [Goto and Hashimoto,1993]Masataka Goto and Y uji Hashimoto:A distributed cooperative system to play MIDI instruments---toward a remote session, IPSJ SIG Notes,Vol.93,No.109,93-MUS-4-1,1993 (in Japanese).[Goto and Muraoka,1994]Masataka Goto and Yoichi Muraoka.A real-time beat tracking system for musical acoustic signals,IPSJ SIG Notes,94-MUS-7,1994(in Japanese,in press).[Katayose et al.,1989]H.Katayose,H.Kato,M. Imai,and S.Inokuchi.An approach to an artificial music expert,Proceedings of the1989ICMC,pp.139-146,1989.[Lee,1985]Christopher Lee.The rhythmic interpre-tation of simple musical sequences:toward a percep-tual model.In Howell,Cross,and West(eds.),Musical Structure and Cognition,pp.53-69,1985.[Longuet-Higgens and Lee,1984]H.C.Longuet-Higgens and Christopher Lee.The rhythmic interpre-tation of monophonic music,Music Perception,1:424-441,1984.[Rosenthal,1992]David Rosenthal.Machine Rhythm:Computer Emulation of Human Rhythm Per-ception,Ph.D.Thesis,Massachusetts Institute of Tech-nology,1992.[Schloss,1985]W.Andrew Schloss.On The Au-tomatic Transcription of Percussive Music---From Acoustic Signal to High-Level Analysis,Ph.D.Thesis, CCRMA,Stanford University,1985.[Sloboda,1983]John Sloboda.The communication of musical metre in piano performance,Quarterly Jour-nal of Experimental Psychology,35A:377-386,1983. [Vercoe,1985]Barry Vercoe.The synthetic per-former in the context of live performance.Proceedings of the1985ICMC,pp.25-31,1985.。

相关文档
最新文档