三相异步电动机的降压启动控制线路
三相异步电动机降压启动控制电路
的。时间继电器也是机床中的常用电器之一, 是控制线路中的延时元件
时间继电器
继电器输入信号输入后,经一定的延时,才有 输出信号的继电器 称为时间继电器。
对于时间继电器而言,当电磁线圈通电或断电 后,经一段时间,延时触头状态才发生变化,即 延时触头才动作。
时间继电器的分类:空气式、电动式、晶体 管式等几大类
降压起动的方法
• 对于空载起动的三相笼型异步电动机常 采用降低电动机定子绕组电压的方法来 减少起动电流,
• 常用的方法有:
•
定子绕组串电阻降压起动
•
星-三角降压起动
•
定子绕组串自耦变压器降压起动
• 空载起动的三相绕线式异步电动机常采 用
• 转子绕组串电阻
• 转子绕组串频敏变阻器降压起动等
一、定子绕组串电阻降压启动控制
直流电磁式时间继电器
2.双金属片时间继电器 由于热惯性的原因,双金属片在受热后会慢慢弯曲,那
么安装在其上的触点的动作就有延时的特性。双金属片时间 继电器就是利用这个原理工作的,其延时时间在1min 以内。
时间继电器
• 常用的时间继电器外观如图2-1所示。
a)
b)
c)
d)
图2-1 时间继电器
a)JS7系列 b)JS11系列 c)JSZ3系列 d)JS14A
JS7-A 系列空气阻尼时间继电器
1.通电延时时间继电器
通电延时时间继电器的结构
当线圈1通电时,衔铁3被吸引,推板5使微动开关16立即 动作;而微动开关15还没有动作。推板5与活塞杆6之间有一段 距离,活塞杆6在塔形弹簧8的作用下向上移动。在活塞12的表 面固定有一层橡皮膜10。因此当活塞带动橡皮膜向上移动时, 空气室11容积扩张,形成局部真空,这样橡皮膜的上、下表面 就有一定的压力差,正是这个压力差导致活塞12不能迅速上移。 当有空气从进气口14进入时,活塞才逐渐上移,而且移动的速 度取决于进气口的开口大小。移动到最后位置时,杠杆7使微 动开关15动作。
三相异步电动机Y-△降压启动控制线路要点
讲授新课
一、概念 1.电动机的降压启动是在电源电压不变的情况下, 降低启动时加在电动机定子绕组上的电压,限制启动 电流,当电动机转速基本稳定后,再使工作电压恢复 到额定值。 2.三相笼型异步电动机常用的降压启动方法有:定 子绕组串电阻(或电抗器)降压启动;Y-△降压启动; 自耦变压器降压启动和延边三角形降压启动等。
缺点:手动、电路操作起来不方便
时间继电器自动控制Y-△降压启动线路
QS L1 L2 L3 0 FU2 1 FR 2 SB2 KM SB1 4 V1 W 1 KM△ 5 KT 6 M 3~ PE W 2 U2 V2 KMY KM△ KT KMY KM 3
FU1
“ “Y” △”接法 接法
FR U1
KM KMY 7
4kw
△
二、Y-△降压启动的特点
1.Y-△降压启动方法简便、经济可靠。Y接的启动 电流是正常运行△接的 1/3 ,启动转矩也只有正常运 行时的 1/3 ,因而, Y-△启动只适用于空载或轻载的 情况。另外,电动机额定运行状态是 Y 接的,不可采 用本方法启动。
额定运行状态 是Y接法
2.手动控制的 Y-△降压启动
3.目前中国生产的三相异步电动机,功率在4kW以 下的绕组一般采用Y形接法,4kW以上的一律采用△形 接法。 4.电动机定子绕组Y连接时的电压为△接时的,额 定运行为△接且容量较大的电动机,在启动时将定子 绕组作Y接,当转速升到一定值时,再改为△接,可 以达到降压启动的目的。这种启动方式称为三相异步 电动机的Y-△降压启动。Y接称为星形连接,△接称 为三角形连接。
操作按钮SB1和SB2,观察电动机的降压启动过程; 改变时间继电器KT的延时时间,比较电动机的降压启 动过程。
2.故障分析
三相异步电动机星形三角形降压起动控制线路安装
三相异步电动机星形三角形 降压起动控制线路介绍
星形降压起动控制线路
星形降压起动控制线路是通过将 电动机的三相绕组接成星形,从 而降低每相绕组的电压,实现降
压起动的目的。
在起动过程中,由于每相绕组所 承受的电压降低,电流也会相应 减小,从而减小了起动电流对电
网的冲击。
由于起动电压的降低,电动机的 起动转矩也会相应减小,因此适 用于对起动转矩要求不高的场合。
测试功能
按照电路图的要求,逐个测试控制线 路的功能,确保各部分工作正常。
记录与归档
根据实际情况,调整控制线路的参数 ,如降压起动的延时时间、电流等, 以达到最佳的运行效果。
03
三相异步电动机星形三角形 降压起动控制线路的故障排 除
故障诊断方法
观察法
通过观察控制线路的外 观,检查是否有明显的 破损或异常现象,如电 线断裂、元件烧毁等。
控制线路的优化与改进
01 02
采用先进的控制算法
为了更好地控制电动机的启动过Байду номын сангаас,可以采用先进的控制算法,如模糊 控制、神经网络等,对控制线路进行优化,提高电动机的启动性能和稳 定性。
引入智能传感器和执行器
为了实现更加精确的控制,可以引入智能传感器和执行器,实时监测和 控制电动机的各项参数,提高控制线路的响应速度和准确性。
线路短路或开路
03
如发现线路中有短路或开路现象,应检查线路 的连接是否正确,更换损坏的电线或元件。
控制线路逻辑错误
04
如发现控制线路无法正常工作,应检查控制线 路的逻辑关系是否正确,重新调整控制线路的
接线顺序。
维护与保养
1 2
3
定期检查
定期对控制线路进行检查,包括外观、元件、线路等,确保 控制线路的正常运行。
降压起动控制电路
精品课件
时间继电器
时间控制通常是利用时间继电器来实现的。 从得到动作信号起至触头动作或输出电路产生跳跃式改变有一 定延时时间,该延时时间又符合其准确度要求的继电器称为时间继 电器。 常用的时间继电器主要有电磁式、电动式、空气阻尼式、晶体 管式等。
精品课件
图3‐1 JZ7—A系列空气阻尼式时间继电器的外形和结构 a) 外形 b) 结构
1)电磁系统 由线圈、铁心和衔铁组成。 2)触头系统 包括两对瞬时触头(一常开、一常闭)和两对延时触头 (一常开、一常闭),瞬时触头和延时触头分别是两个微动开关的触头。 3)空气室 空气室为一空腔,由橡皮膜、活塞等组成。橡皮膜可随空 气的增减而移动,顶部的调节螺钉可调节延时时间。
精品课件
a)
b)
图3‐4 JS20系列时间继电器的外形与接线
精品课件
1结构及工作原理
出气孔 橡皮膜
通电延时型空气式时间继电器
进气孔 调节螺钉
微动开关2
释放弹簧 恢复弹簧
动铁心
静铁心
活塞
线 圈
精品课件
杠杆 微动开关1
1结构及工作原理 时间继电器线圈通电后
出气孔
进气孔 调节螺钉
橡皮膜
释放弹簧
活塞
恢复弹簧 动铁心
杠杆
静铁心
i
精品课件
瞬时动作的触点
1结构及工作原理
图23-5 串电阻降压启动手动控 制电路
精品课件
三相异步电动机降压启动控制线路
1.串电阻降压启动的工作原理 图23-5为三相异步电动机定子绕组串电阻降压启动的手动
切换控制电路。启动时,在电动机定子绕组中串入降压电阻R,
当电动机转速达到一定数值时,切除串入的电阻,实现降压 启动,额定运行。这。
三相异步电动机正反转及Y降压起动控制线路
实验六三相异步电动机正反转及Y—△降压起动控制线路一、实验目的1.进一步掌握三相异步电动机的正反转控制线路的接线方法。
2.进一步掌握三相异步电动机的Y—△降压起动控制线路的接线方法。
3.熟悉三相异步电动机的正反转及Y—△降压起动控制线路的工作原理。
4.熟悉三相异步电动机的正反转及Y—△降压起动控制线路的接线方法。
二、实验原理1. 三相异步电动机的正反转及Y—△降压起动控制线路如图一所示。
2. 正转Y—△降压起动控制过程如下:三相闸刀开关QS合闸通电后,指示灯D1亮启,表明控制线路处于“准备好”的状态,按起动按钮SB2后且在转换为△形接法(正常运行)之前,该指示灯保持亮启状态,以表明控制线路处于Y降压起动状态。
当转入△形正常运行状态后,D1指示灯熄灭,同时指示灯D2亮启,表明已进入正常运行状态,之后,只要不按停止按钮SB1,指示灯D2将一直保持亮启状态。
3. 反转Y—△降压起动控制过程如下:指示灯D1和D2的亮灭情况与正转降压起动控制过程类似。
三、实验仪器设备四、实验内容与步骤1.将交流接触器、热继电器、时间继电器、按钮开关在控制板上进行布置。
2.按照图一进行布线联接。
3.全部联接完成后应进行仔细检查核对,直至正确无误。
经指导教师确认接线正确后,方可合闸刀通电。
4.按起动按钮SB2,Y形降压起动,指示灯D1亮启,经延时若干秒后,电动机转换为△形正常运转,指示灯D1熄灭、D2亮启,此时电动机正向运转,按动停止按钮SB1,电动机停止运转。
5.按起动按钮SB3,Y形降压起动,指示灯D1亮启,经延时若干秒后,电动机转换为△形正常运转,指示灯D1熄灭、D2亮启,此时电动机反向运转,按动停止按钮SB1,电动机停止运转。
五、实验注意事项1.通电前应熟悉线路的操作顺序。
2.运行时应注意观察电动机、各电器元件和线路各部分工作是否正常。
若发现异常情况,必须立即切断电源开关。
六、实验报告内容1.简述三相异步电动机正反转及Y—△降压起动控制线路的工作原理。
三相笼型异步电动机的降压起动控制电路(电气控制课件)
定子回路串电阻(电抗)启动
定子回路串电阻减压起动控制电路:
电动机起动时,在三相定子电路中串接电阻R,使电动 机定子绕组电压降低;待电动机转速接近额定转速时,再将 串接电阻短接,使电动机在额定电压下正常运行。
定子回路串电阻(电抗)启动
➢电气原理图 ➢工作原理
合上电源开关 按下按钮SB1 KM1、KT线圈通电
M串电阻降压启动,KT延时 KM2线圈通电,KM1、KT线
圈断电
M全压运行
L2 L3
QS
FU1
KM1
R
KM2
FR
M 3~
主电路
FR
SB2
SB1 KM1
KM2
KT KM2
KM1
KM1 KT KM2
控制电路
定子回路串电阻(电抗)启动
❖ 这种起动方式不受电动机联结方式的限制,设备简单。在机床控 制中,作点动调整控制的电动机,常用串接电阻减压起动方式来 限制起动电流。
❖ 起动电阻一般采用由电阻丝绕制的板式电阻或铸铁电阻,电阻功 率大,限流能力强,但由于起动过程中能量消耗较大,也常将电 阻改用电抗,但电抗价格高,成本大。
定子回路串电阻或电抗 器起动控制电路
课题引入:
为什么要进行降压起动?
课题引入:
降压启动的实质:
启动时减小加在定子绕组上的电压,以减小起动电流; 启动后再将电压恢复到额定值,电动机进入正常工作状态。
课题引入:
三相 笼型 异步 电动 机的 降压 起动 方法
星-三角降压起动 自耦变压器降压起动 定子回路串电阻或电抗器 软启动器降压起动
三相异步电动机星三角降压启动的控制线路
05
三相异步电动机星三角 降压启动的控制线路案 例分析
案例一:某工厂电动机控制线路的改造
改造背景
改造方案
某工厂原有的电动机控制线路存在安全隐 患,需要对其进行改造。
采用星三角降压启动方式,对控制线路进 行优化,提高线路的安全性和稳定性。动方式,对控制线路进行紧急 维护,确保电梯正常运行。
效果评估
维护后,电梯控制线路恢复正常运行,保障了小 区居民的正常出行。
案例三:某大型机械电动机控制线路的设计
设计背景
某大型机械需要配备高效的电动机控制线路。
设计方案
采用星三角降压启动方式,根据机械的负载和运行要求,设计出高效 的控制线路。
按钮
用于手动控制电动机的启动和 停止。
空气开关
用于控制整个电路的通断,具 有短路保护功能。
热继电器
用于电动机的过载保护,当电 动机过载时会自动断开电路。
指示灯
用于指示电路的工作状态。
控制线路的工作原理
当按下启动按钮时,接触器线圈得电,主触点闭合,电动机星形连接启 动。
经过一定时间后,控制线路中的时间继电器动作,使接触器线圈失电, 主触点断开,同时另一组接触器线圈得电,将电动机由星形连接转换为
三相异步电动机星三角 降压启动的原理
星三角降压启动的定义
• 星三角降压启动是指三相异步电动机在启动时,通过改变定子绕组的接线方式,将原来三角形(△)接法的电动机转换为星 形(Y)接法,以降低启动电流和启动转矩,达到减小启动电流对电网的冲击,提高设备使用寿命的目的。
星三角降压启动的原理
• 当电动机启动时,通过接触器将电动机的三相绕组接成星形, 此时电动机的每相绕组承受的电压为电源电压的1/√3,从 而降低了启动电流。随着电动机转速的升高,当达到一定转 速后,通过另一组接触器将电动机的三相绕组接成三角形 (△),使电动机在全压下正常运行。
课题六 三相异步电动机降压起动控制线路
三、延边Δ降压起动控制线路
延边Δ降压起动是指电动机起动时,把定子绕组的一部分接成“Δ ”,另 一部分接成“Y”,使整个绕组接成延边Δ 。当电动机起动后,再把定子绕组接 成Δ 形全压运行。 该降压起动方法是在Y—Δ 降压起动方法的基础上加以改进而形成的,将Y 形和Δ 形两种接法结合起来,使电动机每相定子绕组所承受的电压小于Δ 接法 时的相电压,而大于Y形接法时的相电压,并且每相绕组电压的大小右随电动机 绕组抽头(U3、V3、W3)位置的改变而调节,从而克服了Y—Δ 降压起动时起动 电压较低、起动转矩偏小的缺点。它适用于定子绕组有九个出线头的JO3系列异 步电动机。
流。当电动机起动后,再把定子绕组改接成Δ,
使电动机全压运行。 由于起动转矩只有全压起动时的1/3,故这 种起动方法只适用于正常工作时定子绕组为三 角形联结的电动机的空载或轻载起动。
三、Y—Δ降压起动控制线路 1.按钮、接触器控制Y—Δ降压起动控制线路
接触器KM作引入 电源用; 接触器KMY、KMΔ 分别作Y形起动和Δ 运行用; SB1为起动按钮, SB2为Y—Δ 换接按钮, SB3为停止按钮; FU1作为主电路短 路保护; FU2作为控制电路 的短路保护; KH作为过载保护。
三、延边Δ降压起动控制线路
起动时,接 触器KM、KM 得 电,电动机M定 子绕组接成 运行时,接 触器KM、KMΔ 得 电,电动机定子 绕组接成Δ 形全 压运行
二、自耦变压器降压起动控制线路
自耦变压器降压启动控制线路
电路特点: 降压起动时:接触器KM1、KM2吸合;全压运行时:接触 器KM3吸合。 接触器KM1、KM2与KM3联锁
二、自耦变压器降压起动控制线路
二、自耦变压器降压起动控制线路
三、Y—Δ降压起动控制线路
三相异步电动机Y-△降压启动控制线路
4kw
△
新课
什么是Y-Δ降压启动? 是指电动机启动时,把定子绕组接成 Y形,以降低启动电压,限制启动电流。 经几秒,当电动机启动后,再把定子绕组 接成Δ形,使电动机全压运行。这种启动 方式称为三相异步电动机的Y-Δ降压启动。 Y接称为“星形连接” ,Δ接称为“三角 形连接”。
定子绕组的连接方式
定子绕组的手工接线方式
W2 U1 U2 V1 V2 W1
W2
U1
U2
V1
V2
W1
L1
L2
星形连接
L3
L1
L2 三角形连接
L3
在电路中我们怎样实现 Y-Δ自动换接呢?
新课
时间继电器自动控制的Y-Δ降压启动线路图
QS L1 L2 L3 0 FU2 1 FR 2 SB2 KM SB1 4 V1 W 1 KM△ 5 KT 6 M 3~ KM△ KT KMY KM KM△ 3
三相异步电动机Y-Δ降压启动控制线路
三、器材准备
交流接触器、晶体管式时间继电 器、热继电器、按钮、接线端子排、 熔断器、螺丝刀、尖嘴钳、万用表、 导线若干。
一看到大标题,问题小伙伴就要问 了:为什么要采用降压启动呢?
新课导入 知识回顾
1、异步电动机直接启动时,启动电流有什么特 点?启动电流是额定电流的多少倍? 三相异步电动机直接启动时,启动电流很 大,一般为额定电流的4-7倍。 2、直接启动可能会造成哪些问题?怎样解决? 造成电网电压波动,影响同一供电线路上 其他电气设备正常工作,减小自身启动转矩。 采用降压启动。
3.按图接线 按电气原理图,先接主电路从左向右、 自上而下地、先串联后并联的接线原则, 从开关QF的下端开始接线,最后接电源线。
电 动 机 定 子 绕 组 接 法
三相异步电动机降压起动电路
三相异步电动机降压起动电路1、串电阻降压起动的工作原理三相异步电动机定子绕组串电阻降压起动的手动切换掌握电路起动时,在电动机定子绕组中串入降压电阻R,当电动机转速达到肯定数值时,切除串入的电阻,实现降压起动,额定运行。
这种方式称为定子绕组串电阻(或电抗器)降压起动。
2.电路工作过程1)降压起动合上电源开关QS,按下起动按钮SB1,接触器KM1得电,KM1主触点闭合,电动机降压起动;同时KM1常开触点闭合自锁。
2)全压运行当电动机转速基本稳定后,按下按钮SB2,接触器KM2得电,KM2主触点闭合(R被短接切除),电动机全压运行;同时KM2常开触点闭合自锁。
3.特点1)该电路原理简洁,但起动、运行分两步操作,不够便利。
2)全压运行时KM1线圈始终得电,铺张。
3)电动机定子绕组串电阻降压起动不受绕组接法的限制,起动过程平稳。
4)起动时,加在定子绕组上电压为额定运行时全电压的一半,使得电动机的起动转矩只有额定转矩的四分之一。
因此,串电阻降压起动只适用于起动转矩不大的场合。
另外,考虑到起动时串入的电阻要消耗电能,故对大容量的电动机,通常用电抗器替代电阻,但它们的掌握电路完全相同。
2、Y-△降压起动的手动切换掌握电路1.原理三相异步电动机的定子绕组可以接成Y形或△形。
目前我国生产的三相异步电动机,功率在4kW以下的绕组一般采纳Y形接法,4kW以上的一律采纳△形接法。
额定运行为△接且容量较大的电动机,在起动时将定子绕组作Y接,当转速升到肯定值时,再改为△接,可以达到降压起动的目的。
这种起动方式称为三相异步电动机的Y-△降压起动。
Y接称为星形连接,△接称为三角形连接。
SB1是定子绕组作Y接降压起动按钮,SB2是△接的切换按钮,KM1是电源接触器,KM2是Y接接触器,KM3是△接接触器。
2.电路工作过程如下:1)降压起动合上电源开关QS,按下起动按钮SB1,电源接触器KM1和Y连接接触器KM2同时得电,KM1主触点、KM2主触点闭合,电动机作Y接降压起动。
三相异步电动机Y-Δ降压起动
时间继电器控制自动Y-Δ降压启动线路一.电路原理图
二.原理分析
1、启动过程:
合上电源开关QS→按下启动按钮SB1 →接触器KM1和KM2线圈通电→其常开主触头闭合,同时常开辅助触头闭合形成自锁→电动机三相绕组在Y形接法下降压启动;与此同时,时间继电器KT线圈通电计时→经过一段时间延时后,时间继电器KT常闭触点打开,常开触点闭合→接触器KM2线圈失电,其常闭辅助触点复位,而接触器KM3得电吸合并自锁→电动机三相绕组在Δ形接法下全压运行。
2、停止过程:
按下停止按钮SB2 →接触器KM1和KM3线圈失电→其常开主触头断开→电动机停止转动。
三.时间继电器端子简介:
2、7端:电子线圈接线端;
1、4或5、8:延时断开的常闭触点接线端;
1、3或6、8:延时闭合的常开触点接线端;。
三相异步电动机y-△降压启动控制电路工作原理
三相异步电动机y-△降压启动控制电路工作原理
三相异步电动机Y-Δ降压启动控制电路是一种常见的电动机
启动方式,多用于大功率电动机的启动过程中。
其工作原理如下:
1. 电源供电:当三相异步电动机需要启动时,通过主控制开关将电源连接到电动机的三相输入端。
2. Δ连接:在启动过程中,控制电路将电动机的三个定子绕组
分别连接成一个Δ形状,即将每个定子绕组的一个端子与另
一个定子绕组的另一个端子连接在一起。
3. 降压启动:通过一个时间继电器或者其他启动控制器来控制一个对应的继电器,使得在启动过程中,电动机的每个定子绕组通过一个降压启动器,即一个定子绕组与外部电阻串联连接,以降低电动机的电压。
4. 加载转矩:在降压启动的过程中,电动机的电压被降低,电机的转矩也被降低。
这样可以减轻电动机启动时的机械冲击,并且可以避免过大的电流冲击对线路和电机的损坏。
5. 过渡到Y连接:当电动机达到设定的启动时间或者转速后,控制电路将继电器动作,切断降压启动器的连接,在短时间内,使得电动机的三个定子绕组组成Y形状连接,使得电动机能
够正常运行。
总的来说,Y-Δ降压启动控制电路通过降低电动机的电压,减
小启动时的机械冲击,确保电动机的安全启动,并在启动后切换为正常运行状态。
[全]三相交流异步电动机降压起动控制电路
三相交流异步电动机降压起动控制电路用途:三相交流异步电动机的降压起动,用于大容量三相交流异步电动机空载和轻载起动时减小起动电流。
降压启动控制电路:Y-△起动、自耦补偿起动、延边三角形起动控制电路。
图1①降压原理:起动时,电动机定子绕组Y连接,运行时△连接。
Y-△降压起动控制电路图2②主电路分析:KM1、KM3——Y起动,KM1、KM2——△运行。
讨论:KM1、KM2、KM3容量关系。
③Y-△降压起动过程分析:按下起动按钮SB2—>KM1线圈通电自锁—>KM3线圈通电--M作Y接起动;—>KT线圈通电延时—>KM3线圈断电->KM2线圈通电自锁----M作△接行。
—>KT线圈断电复位。
自耦补偿起动图3①降压原理:起动时电动机定子绕组接自耦变压器的次级,运行时电动机定子绕组接三相交流电源,并将自耦变压器从电网切除。
②主电路:起动时,KM1主触点闭合,自耦变压器投入起动;运行时,KM2主触点闭合,电动机接三相交流电源,KM1主触点断开,自耦变压器被切除。
讨论:KM2与KM1的控制要求;KM1主触点的容量。
③控制电路:起动过程分析按动SB2->KM1线圈通电自锁->电动机M自耦补偿起动;->KT线圈通电延时-->KA线圈通电自锁->KM1、KT线圈断电-->KM2线圈通电->电动机M全压运行。
延边三角形降压起动图4①原理:绕组连接67、48、59构成延边三角形接法,绕组连接16、24、35为△接法。
图5②主电路分析 KM1、KM3使接点1、2、3接三相电源,67 、48、5 9对应端接在一起构成延边三角形接法,用于降压起动。
KM1、KM2使接点16、24、35接在一起,构成△连接,用于全压运行。
控制电路与Y-△起动控制电路相同,不再分析。
3.3三相异步电动机的降压起动控制线路
一、定子串电阻的降压起动控制线路
线路的控制过程:合上开关QS, 按下起动按钮 SB1,KM1线圈通电,使得KM1主触头闭合,定子串 电阻R起动,KM1的辅助触头同时闭合并自锁,电机持 续运行。时间继电器KT同时通电,延时一段时间后, KT常开触点闭合, KM2的线圈通电,使得KM2主触点 短接电阻, M全压运行。KM2的辅助常开触点闭合并 自锁 ,M连续运行。KM2辅助常闭触点断开,使得 KM1线圈断电, KT线圈断电。
正常运行时定子绕组接成三角形的三相鼠笼式异 步电动机,可以采用Y—Δ转换降压起动方式来限制起 动电流。
三、 Y—Δ降压起பைடு நூலகம்的控制线路
起动时将电动机定子绕组接成星形,加到电动机 的每相绕组上的电压为额定值的 (也就是相电压) 。
当转速接近额定转速时,定子绕组改成三角形, 使电动机在额定电压下正常运转。
三、 Y—Δ降压起动的控制线路
KMD的辅助常闭触点断开,使得KT线圈失电,KT 触点复原。
优点:星形起动电流降为原来三角形接法直接起 动时的1/3,起动电流约为电动机额定电流的2倍,起 动电流特性好、结构简单、价格低。
缺点:起动转矩降为原来三角形直接起动时的1/3 ,转矩特性差。
二、定子串自耦变压器降压启动控制线路
线路的控制过程:闭合QS,按下起动按钮SB2, 接触器KM1、KM3与时间继电器KT的线圈得电,KM1 KM3主触点闭合,电动机定子绕组经由自耦变压器接 至电源降压起动。当时间继电器KT延时时间到,其常 闭的延时触点打开 ,KM1、KM3线圈失电,KM1、 KM3主触点断开,将自耦变压器切除;同时,KT的常 开延时触点闭合,接触器线圈KM2得电,KM2主触点 闭合,电动机投人正常运行。KM2的辅助触点断开, 断开时间继电器线圈电路。
三相异步电动机降压启动控制线路电子教案
三相异步电动机降压启动控制线路电子教案
一、电动机降压启动控制线路简介
电动机降压启动控制线路是一种利用变压器降压,再由两只三相异步
电动机配合两只接触器实现安全启动的控制线路。
这种控制线路通常应用
在大电机的启动中,以满足启动过程中不产生过大的瞬时启动电流,减少
绝缘损耗和热效应,确保启动过程的安全和可靠性。
二、变压器的作用
电动机降压启动控制线路中的变压器是必不可少的组成部分,它的主
要作用是利用变压原理降低电动机的电压,以降低启动过程中的瞬时启动
电流,减少绝缘损耗。
变压器的发热量也比较低,可避免在启动过程中过
热的现象。
变压器一般分为上启动和下启动两种,上启动主要是将定子电压降低,以实现启动电流的降低,而下启动则是先将转子电压降低,再将定子电压
降低,以实现启动电流的降低。
三、三相异步电动机的原理
三相异步电动机是一种直流电动机的改进型,它由三个相位的线圈构成,其电流的三相调节相位差为120°,也就是说每个线圈的电流的相位
不同,而且每次在每个线圈上都有相同的有效值,这种调节相位的特点赋
予了三相电动机一种“自调相”的能力,电动机内部的三相电流可以自行
实现对磁场的调相,从而达到转子的旋转。
三相异步电动机Y-△降压启动控制线路
五、课堂小结 1.课堂小结 2.完成实验报告
谢谢观看
定州职教中心 范华威 2011.03.22
4kw △
二、Y-△降压启动的特点 1.Y-△降压启动方法简便、经济可靠。Y接的启动
电流是正常运行△接的1/3,启动转矩也只有正常运 行时的1/3,因而,Y-△启动只适用于空载或轻载的 情况。另外,电动机额定运行状态是Y接的,不可采 用本方法启动。
额定运行状态 是Y接法
2.手动控制的 Y-△降压启动
缺点:手动、电路操作起来不方便
时间继电器自动控制Y-△降压启动线路
QS L1 L2 L3
FU1
KM
““△Y””接接法法 降全压启运动行
FR U1 V1 W1
M 3~ PE W2 U2 V2
KMY
FU2SB2 3
KM△
SB1 4
KM△ 5 KT 6
KT KMY
KM
开 延始 时
KMY
计断时开
7 KMY
8
KM KM△
时间继电器自动控制Y-△降压启动线路的 工作原理:
QS L1 L2 L3
FU1
KM
FU2
1
0
FR
2
SB2 3
““△Y””接接法法 降全压启运动行
FR U1 V1 W1
M 3~ PE W2 U2 V2
KMY
SB1 4
KM△ 5
KT
543210 6
KM KMY
7 KMY
8
KM△
三相异步电动机Y-△降压启动 控制线路
3.目前中国生产的三相异步电动机,功率在4kW以 下的绕组一般采用Y形接法,4kW以上的一律采用△形 接法。
4.电动机定子绕组Y连接时的电压为△接时的,额 定运行为△接且容量较大的电动机,在启动时将定子 绕组作Y接,当转速升到一定值时,再改为△接,可 以达到降压启动的目的。这种启动方式称为三相异步 电动机的Y-△降压启动。Y接称为星形连接,△接称 为三角形连接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 March 2020
返回第一张
上一张幻灯片 下一张幻灯片
第三章
停止时,按下SB2即可实现。 串电阻降压启动的缺点:减小了电动机的启动转矩,同时启动时在
电阻上功率消耗也较大。
5 March 2020
图3‐7 时间继电器自动控制降压启动电路图
缺点:从降压启动到全压运转,需两次按动按钮,操作不便,且间 隔时间也不能准确掌握。
3. 时间继电器自动控制补偿器降压启动线路
5 March 2020
返回第一张
上一张幻灯片 下一张幻灯片
第三章
XJ01系列自动控制补偿器是由自耦变压器、交流接触器、中间继 电器、热继电器、时间继电器和按钮等电器元件组成。
第三章
上页公式中 Ist—电动机全压启动电流(A); IN—电动机额定电流(A); S—电源变压器容量(kVA); P—电动机功率(kW)
凡不满足直接启动条件的,均须采用降压启动。 降压启动是指利用启动设备将电压适当降低后加到电动机的定子绕 组上进行启动,待电动机启动运转后,再使其电压恢复到额定值正常运 转。 常见的降压启动方法有四种:定子绕组串接电阻降压启动;自耦变 压器降压启动;Y-△降压启动;延边△降压启动。
故障现象
可能的原因
处理方法
延时触头不动作
(1)电磁线圈断线 (2)电源电压过低 (3)传动机构卡住或损坏
(1)更换线圈 (2)调高电源电压 配不严,漏气 (1)修理或更换气室
(2)橡皮膜损坏
(2)更换橡皮膜
延时时间变长
气室内有灰尘,使气道阻 清除气室内灰尘,使气道畅
第三章
第三章 三相异步电动机的降压启动 控制线路
第一节 三相鼠笼异步电动机降压启动控制线 第二节 三相绕线转子异步电动机降压启动控制线路
5 March 2020
返回第一张
上一张幻灯片 下一张幻灯片
第三章
第一节 三相鼠笼异步电动机降压启 动控制线路
前面介绍的各种控制线路在启动时,加在电动机定子绕组上的电压 为电动机的额定电压,属于全压启动,也称直接启动。 直接启动的优点:电气设备少,线路简单,维修量较小。
5 March 2020
返回第一张
上一张幻灯片 下一张幻灯片
第三章
图3‐1 JZ7—A系列空气阻尼式时间继电器的外形和结构 a) 外形 b) 结构
1)电磁系统 由线圈、铁心和衔铁组成。 2)触头系统 包括两对瞬时触头(一常开、一常闭)和两对延时触 头(一常开、一常闭),瞬时触头和延时触头分别是两个微动开关 的触头。 3)空气室 空气室为一空腔,由橡皮膜、活塞等组成。橡皮膜可随 空气的增减而移动,顶部的调节螺钉可调节延时时间。
停止时,只要按下 停止按钮SB,欠压脱扣 器KV线圈失电,衔铁下 落释放,通过机械操作 机构使补偿器掉闸,手 柄便自动回到“停止” 位置,电动机断电停转。
返回第一张
上一张幻灯片 下一张幻灯片
第三章
QJ10系列空气式手动补偿器的电路如图3‐8c)所示,其动作原 理如下:当手柄扳到“停止”位置时,所有的动、静触头均断开,电动
第三章
1. JZ7-A系列空气阻尼式时间继电器
空气阻尼式时间继电器又称气囊式时间继电器,是利用气囊中 的空气通过小孔节流的原理来获得延时动作的。 根据触头延时的特点,可分为通电延时动作型和断电延时复位 型两种。
( 1 )型号及含义:
( 2 ) 结构
JZ7-A系列空气阻尼式时间继电器的外形和结构如图3‐1所示。 它主要由以下几部分组成:
5 March 2020
返回第一张
上一张幻灯片 下一张幻灯片
第三章
4)传动机构 由推杆、活塞杆、杠杆及各种类型的弹簧等组成。 5)基座 用金属板制成,用以固定电磁机构和气室。 (3)工作原理 JZ7-A系列空气阻尼式时间继电器的工原, 示意 图如图3‐2所示。
图3‐2 JS7‐A系列空气阻尼式时间继电器结构原理图
第三章
5 March 2020
a)
b)
图3‐4 JS20系列时间继电器的外形与接线
a) 外形
b) 接线示意图
返回第一张
上一张幻灯片 下一张幻灯片
第三章
图3‐5 JS20系列通电延时型时继电器的电路图
(3)工作原理
JS20系列通电延时型时继电器的线路如图3‐5所示。它由电
源、电容充放电电路、电压鉴别电路、输出和指示电路五部分组成。 电源接通后,经整流滤波和稳压后的直流电经过RP1和R2向电容C2 充电。当场效应管V6的栅源电压Ugs低于夹断电压Up时,V6截止, 因而V7、V8也处于截止状态。随着充电的不断进行,电容C2的电位 按指数规律上升,当满足Ugs高于Up时,V6导通,V7、V8也导通, 继电器KA吸合,输出延时信号。同是电容C2通过R8和KA的常
5 March 2020
返回第一张
上一张幻灯片 下一张幻灯片
第三章
开触头放电,为下次动作做好准备。当切断电源时,继电器KA释放, 电路恢复原始状态,等待下次动作。调节RP1和RP2即可调整延时时 间。
晶体管时间继电器适用于以下场合: 1)当电磁式时间继电器不能满足要求时。 2)当要求的延时精度较高时。 3)控制回路相互协调需要无触点输出等。
缺点:启动电流很大,启动电流一般为额定电流的4~7倍。 规定:电源容量在180kVA以上,电动机容量在7kW以下的三相异步 电动机可采用直接启动。 判断一台电动机能否直接启动,还可以用下面的经验公式来确定:
I st 3 S I N 4 4P
5 March 2020
返回第一张
上一张幻灯片 下一张幻灯片
塞
通
2. 晶体管时间继电器
5 March 2020
返回第一张
上一张幻灯片 下一张幻灯片
( 1 )型号及含义:
第三章
( 2 ) 结构
JS20系列时间继电器的外形如下页图3‐4a)所示。 JS20系列通电延时型时间继电器的接线示意图如下页图3‐4b)所示.
5 March 2020
返回第一张
上一张幻灯片 下一张幻灯片
2. 按钮、接触器、中 间继电器控制补偿器降压 启动控线路
按钮、接触器、中间继电 器控制的补偿器降压启动电路 如右图3‐9所示。
右图3‐9 按钮、接触器、中间继电 器控制补偿器降压启动电路图
5 March 2020
返回第一张
上一张幻灯片 下一张幻灯片
其线路的工作原理如下:合上电源开关QS。 (1)降压启动:
第三章
(2)全压运转: 当电动机转速上升到接近额定转速时,
5 March 2020
返回第一张
上一张幻灯片 下一张幻灯片
第三章
停止时,按下SB3即可。 优点: 1)启动时若操作者误按SB2,接触器KM3线圈也不会得电,避 免电动机全压启动; 2)由于接触器KM1的常开触头与KM2线圈串联,所以当降压启动完 毕后,接触器KM1、KM2均失电,即使接触器KM3出现故障使触头 无法闭合时,也不会使电动机在低压下运行。
5 March 2020
返回第一张
上一张幻灯片 下一张幻灯片
第三章
图3‐8 QJ3系列手动控制补偿器
a) 结构图 b)、c) 电路图 1—启动静触头 2—热继电器 3—自耦变压器 4—欠压保护装置
5—停止按钮 6—操作手柄 7—油箱
5 March 2020
当电动机的转速上 升到一定值时,将手柄 向后迅速扳到“运行” 位置,使右边三个动触 头与下面一排的三个运 行静触头接触,这时, 自耦变压器脱离,电动 机与三相电源L1、L2、 L3直接相接全压运行。
1.5 Y-△降压启动控制线路
Y-△降压启动是指电动机启动时,把定子绕组接成Y形,以降低
启动电压,限制启动电流。待电动机启动后,再把定子绕组改接成△
形,使电动机全压运行。凡是在正常运行时定子绕组作△形连接的异
步电动机,均可采用这种降压启动方法。
电动机启动时接成Y形,加在每相定子绕组上的启动电压只有△形
1.2 中间继电器
( 1 )中间继电器的型号及含义:
( 2 )中间继电器的结构及工作原理
5 March 2020
返回第一张
上一张幻灯片 下一张幻灯片
第三章
中间继电器的结构及工作原理与接触器基本相同,因而中间继电 器又称为接触器式继电器。但中间继电器的触头对数多,且没有主辅之 分,各对触头允许通过的电流大小相同,多数为5A。因此,对于工作 电流小于5A的电气控制线路,可用中间继电器代替接触器实施控制。
a)通电延时型
b)断电延时型
1—线圈 2—铁心 3—衔铁 4—反力弹簧 5—推板 6—活塞杆 7—塔形弹簧 8—弱弹簧9—橡皮膜
10—空气室壁 11—调节螺钉 12—进气孔 13—活塞 14、16‐微动开关 15—杠杆 17—推杆
5 March 2020
返回第一张
上一张幻灯片 下一张幻灯片
第三章
优点:延时范围较大(0.4~180s),且不受电压和频率波动的影响; 可以做成通电和断电两种延时形式;结构简单、寿命长、价格低.
QJ3系列补偿器的电路图如下页图3‐8b)所示,其动作原理如 下:当手柄板到“停止”位置时,装在主轴上的动触头与两排静触 头都不接触,电动机处于断电停止状态。
当手柄向前推到“启动”位置时,动触头与上面的一排启动静触 头接触,三相电源L1、L2、L3通过右边三个动、静触头接入自耦变 压器,又经自耦变压器的三个65%(或80%)抽头接入电动机进行降 压启动;左边两个动、静触头接触则把自耦变压器接成了Y形。
返回第一张
上一张幻灯片 下一张幻灯片
第三章
1.4 自耦变压器(补偿器)降压启动控制线路
自耦变压器降压启动是指电动机启动时利用自耦变压器来降低