第10章核酸的降解与核苷酸代谢ppt课件

合集下载

核苷酸代谢

核苷酸代谢

2个短反馈调节:由AMP反馈抑制ASS,由GMP反馈 抑制IMPD的活性所进行的反馈抑制来调节嘌呤 核苷酸的从头合成。
嘌呤从头合成
合成原料:Asp Gly Gln CO2 一碳单位 重要中间产物:PRPP 关键酶: PRPP合成/激酶 酰胺转移酶 阻断剂:氨基酸或一碳单位结构类似物 过程:在磷酸核糖的分子上逐步合成
药物名称 正常代谢物 治疗的疾病 主要作用的酶 作用的代谢途
别嘌呤醇(APO) 黄嘌呤、乌嘌呤、次黄嘌呤 黄嘌呤氧化酶 痛风 黄嘌呤氧化酶 嘌呤核苷酸分解
药物名称
正常代谢物 治疗的疾病 主要作用的酶 作用的代谢途径
利巴韦林(病毒唑),5-氮基咪唑4-羧酸核苷酸 5-氨基咪唑-4-羧酸核苷酸 广谱抗病毒药①呼吸道合胞病毒②流感 病毒③甲肝病毒④腺病毒等 5-磷酸核糖-5-氨基咪唑-4-N-琥珀基甲 酰胺合成酶( SAICARS) 嘌呤核苷酸合成
氮杂硫嘌呤(azathiopurine,AZTP)
别嘌呤醇(allopurinol,APO)等
嘌呤核苷酸的代谢类似物
3.嘧啶核苷酸代谢类似物
5-氟尿嘧啶(5-fluorouracil,5-FU) 5-碘-2-脱氧尿嘧啶 5-iodo-2-deoxyuridine,5-IDU 6-氮杂尿嘧啶(6-azauridine,6-AU)
2.嘧啶核苷酸代谢障碍 先天性乳清 乳清酸磷酸 酸尿症 核糖转移酶 乳清酸核苷酸 脱羧酶
遗传缺陷 遗传缺陷
一些抗代谢药物的功能
药物名称 正常代谢物 治疗的疾病
6-巯基嘌呤(6MP) 嘌呤核苷酸 ①白血病②自身免疫性病③妊娠滋养 细胞肿瘤等 主要作用的酶 ①IMP脱氢酶②腺苷酸代琥珀酸合成酶 作用的代谢途径 嘌呤核核苷酸合成
嘧啶核苷酸 从头合成的调节

核酸的结构和功能与核苷酸代谢 (共113张PPT)

核酸的结构和功能与核苷酸代谢 (共113张PPT)
2. 大多数真核mRNA的3´末端有一个多聚腺苷酸 (polyA)结构,称为多聚A尾。
O
C
H
+
3
N
N
5,5-三磷酸二脂键
N
N
5
CH2
O
O P
O
O P
O
O P
O
5
CH2
OO O
O B (m6A.A.G.C.U)
O
mRNA的5帽子结构— m7GpppNm
O O CH3 O P O CH2
O
B (m6A.A.G.C.U)
1975年 Temin和Baltimore发现逆转录酶 1981年 Gilbert和Sanger建立DNA 测序方法 1985年 Mullis创造PCR 技术 1990年 美国启动人类基因组方案(HGP)
1994年 中国人类基因组方案启动
2001年 美、英等国完成人类基因组方案根本框架
二、核酸的分类及分布
盘绕方向与DNA双螺旋方向相反
意义
DNA超螺旋结构整体或局部的拓扑学变化 及其调控对于DNA复制和RNA转录过程具有关键 作用。
〔二〕原核生物DNA的高级结构
〔三〕DNA在真核生物细胞核内的组装
真核生物染色体由DNA和蛋白质构成,其根 本单位是 核小体(nucleosome)。
核小体的组成
DNA:约200bp 组蛋白:H1
碱基垂直螺旋轴居双螺旋内側 ,与对側碱基形成氢键配对〔 互补配对形式:A=T; G C〕 。
相邻碱基平面距离0.34nm,螺 旋一圈螺距3.4nm,一圈10对 碱基。
碱基互补配对
A
T
C
G
〔二〕 DNA双螺旋结构模型要点 〔Watson, Crick, 1953〕

核苷酸代谢

核苷酸代谢

(三)嘧啶核苷酸合成的调控
三个酶受终产物的反馈抑制:氨甲酰磷酸合成酶Ⅱ
1)氨甲酰磷酸合成酶Ⅱ受 UMP抑制,影响UMP、CTP 合成。
ATCase
2)ATCase受CTP抑制;影响 UMP、CTP合成。
3)CTP合成酶受CTP抑制,只 影响CTP合成。
CTP合成酶
不同生物关键酶不同
都受终产物反馈抑制,但具体机制不同: 动物:氨甲酰磷酸合成酶Ⅱ
HGPRT缺陷的男性儿童表现为一种自毁容貌综合症 (Lesch-Nyhan Syndrome ) ,为先天性遗传疾病(缺 乏HGPRT),行为对立,侵略性强,自咬手指、脚趾、 嘴唇等,智力低下。
3、生理意义:
节省能量和氨基酸的消耗; 某些器官(脑、骨髓等)因酶的缺乏,
只能进行补救途径合成。
①核糖核苷酸还原酶(RR)含R1和R2蛋白; ②硫氧还蛋白(T)含巯基; ③硫氧还蛋白还原酶(TR)催化氧化型T的还
原,FAD为辅基。
酶体系催化反应由NADPH提供氢: NADPH →TR→T→RR→核糖核苷酸还原→ 脱氧核糖核苷酸。
孤电子转移
3’-自由基核苷酸形成
脱氧核苷酸形成
孤电子转移
2’-脱氧3’-自由基核苷酸形成
三、嘧啶的分解:
在肝中进行,分解产物均易溶于水。
§12 -2 核苷酸的生物合成
基本途径: 1、“从无到有”途径(de novo synthesis)
利用简单化合物,主要在肝中进行 2、补救途径(salvage)
替补途径,利用核苷酸分解产物,在 脑、骨髓中进行
2. 从头合成途径的三个特征:
1)参与从头合成途径的酶在细胞中以庞大 的多酶融合体出现;
1、经碱基(嘧啶或嘌呤)核苷磷酸化酶催化

10 核酸结构、功能与核苷酸代谢

10 核酸结构、功能与核苷酸代谢
第十章 核酸结构、功能与核苷酸代谢
第一节 核酸的化学组成
第二节 DNA的结构与功能
第三节 RNA的结构与功能 第四节 核酸的理化性质 第五节 核苷酸的代谢
核酸的研究历程: 1868年 Fridrich Miescher从脓细胞中提取“核素” 1944年 Avery等人证实DNA是遗传物质 1953年 Watson和Crick发现DNA的双螺旋结构 1968年 Nirenberg发现遗传密码 1975年 Temin和Baltimore发现逆转录酶 1981年 Gilbert和Sanger建立DNA 测序方法 1985年 Mullis发明PCR 技术 1990年 美国启动人类基因组计划(HGP) 2003年 美、英等国完成人类基因组计划
3、本质:双链间氢键的断裂。 4、DNA变性后的性质改变: 增色效应:DNA变性后对260nm 紫外光的吸收度增加的现象; 旋光性下降; 粘度降低; 生物学功能丧失或改变。
5、DNA热变性的解链曲线:如果在连续加热DNA的过程中以 温度对A260(absorbance,A,A260代表溶液在260nm处的 吸光率)值作图,所得的曲线称为解链曲线。 融解温度(melting temperature, Tm):加热DNA溶液,使 DNA解链,对260nm紫外光的吸收度达到最大值一半时的温 度。Tm的高低与DNA分子中G+C的含量有关,G+C的含量越 高,则Tm越高。
先合成 IMP,消耗5个ATP(6个高能磷酸键),再转变成 AMP 或GMP,又需要1个ATP。
嘌呤核苷酸从头合成的调节 调节方式:反馈调节和交叉调节
补救合成途径:利用体内游离的嘌呤或嘌呤核苷,经过简 单的反应,合成嘌呤核苷酸的过程。
参与补救合成的酶:

核苷酸代谢

核苷酸代谢

第十章核苷酸代谢1. 核苷酸的分解代谢1)核酸的降解:核酸+H2O+核酸酶→单核苷酸+核苷酸酶→核苷+PPi+核苷酶→戊糖+碱基(嘌呤/嘧啶) +核苷酸酸化酶→戊糖-1-磷酸+碱基※核苷水解酶不对脱氧核糖核苷生效。

2)限制性内切酶:3)嘌呤核苷酸的降解:代谢中间产物——黄嘌呤,终产物尿酸(彻底分解为CO2和NH3)。

嘌呤核苷酸→嘌呤核苷→①腺嘌呤(脱氨→次黄嘌呤+黄嘌呤氧化酶→黄嘌呤)②鸟嘌呤(脱氨→黄嘌呤)黄嘌呤+黄嘌呤氧化酶→尿酸肌肉中的嘌呤核苷酸循环生成氨;AMP+AMP脱氨酶→IMP,肌肉中的IMP→AMP,这一过程为嘌呤核苷酸循环。

4)嘧啶核苷酸的降解:分解成磷酸、核糖和嘧啶碱。

①胞嘧啶+胞嘧啶脱氢酶→尿嘧啶+二氢尿嘧啶脱氢酶(开环)→β-脲基丙酸→β-丙氨酸(脱氨参与有机代谢)+NH3+CO2+H2O②胸腺嘧啶+二氢尿嘧啶脱氢酶→二氢胸腺嘧啶+二氢嘧啶酶→β-脲基异丁酸→β-氨基异丁酸(监测放化疗程度)+NH3+CO2+H2O5)尿酸过高与痛风:尿酸在体内过量积累会导致痛风症,别嘌呤醇可治疗痛风,因与次黄嘌呤相似,可抑制黄嘌呤氧化酶从而抑制尿酸生成。

尿酸中体内彻底分解形成CO2和氨。

2. 核苷酸的合成代谢:分布广、功能强;从头合成:利用核糖磷酸、氨基酸CO2和NH3等简单的前提分子,经过酶促反应合成核苷酸。

补救合成:简单、省能,无需从头合成碱基;利用体内现有的核苷和碱基再循环。

嘌呤核苷酸合成前体:次黄嘌呤核苷酸(IMP/肌苷酸)+5-磷酸核糖(起始物)↓活化形式1)嘌呤核糖核苷酸的从头合成途径:主要调节方式——反馈调节;ATP+5-磷酸核糖+5-磷酸核糖焦磷酸合成酶(PRPP合成酶)→5-磷酸核糖焦磷酸(PRPP)腺嘌呤核苷酸AMP鸟嘌呤核苷酸GMPIMP+Asp+腺苷酸琥珀酸合成酶→腺苷酸琥珀酸+腺苷酸琥珀酸裂合酶→延胡索酸+AMPIMP+IMP脱氢酶→黄嘌呤核苷酸+鸟嘌呤核苷酸合成酶→GMP补救合成途径:脑、骨髓组织缺乏从头合成所需要的酶,依靠嘌呤碱或嘌呤核苷合成嘌呤核苷酸。

核苷酸代谢

核苷酸代谢

IMP
FAICAR AICAR
SAICAR
CAIR
AIR
FGAM
P
O CH2 O O- P P OH OH
限速步骤
PRPP
Gln Glu
P
O CH2 O
NH2 5-磷酸核糖胺 (5--PRA)
OH OH
第三阶段: 第三阶段:由IMP生成 生成AMP和GMP 生成 和
延胡索酸
腺苷酸代琥珀 酸裂解酶
竞争抑制
以假乱真
6-MP 的作用机制:
1,竞争抑制HGPRT,使PRPP分子中的 ,竞争抑制 分子中的R-5-P不能 , 分子中的 不能 向嘌呤及次黄嘌呤转移,阻断嘌呤核苷酸的补救 向嘌呤及次黄嘌呤转移,阻断嘌呤核苷酸的补救 途径。 途径。 2,可在体内经核糖化生成6-MP核苷酸,抑制 ,可在体内经核糖化生成 核苷酸, 核苷酸 抑制IMP 转变为AMP及GMP的反应。 的反应。 转变为 及 的反应 3,反馈抑制PRPP酰胺转移酶而干扰磷酸核糖胺的 ,反馈抑制 酰胺转移酶而干扰磷酸核糖胺的 酰胺转移酶 从头合成。 形成,阻断从头合成 形成,阻断从头合成。
谷氨酰胺
G
N
N
R-5-P
AMP 和GMP 在激酶作用下, 经过两步 在激酶作用下, 磷酸化反应, 磷酸化反应, 进一步分别生成 ATP 和 GTP。 。 AMP
ATP
激酶
ADP
ATP
激酶
ATP
ADP
ADP
GAP
ATP
激酶
GDP
ATP
激酶
GTP
ADP
ADP
或经底物水平磷酸化
嘌呤核苷酸的合成要点
在磷酸核糖分子上逐步合成嘌呤环; 在磷酸核糖分子上逐步合成嘌呤环; PRPP是重要的中间代谢物, PRPP是重要的中间代谢物,它不仅参与嘌呤 是重要的中间代谢物 核苷酸的从头合成, 核苷酸的从头合成,而且参与嘧啶核苷酸的 从头合成及两类核苷酸的补救合成。 从头合成及两类核苷酸的补救合成。是5’-磷 酸核糖的活性供体; 酸核糖的活性供体; 的活性供体 关键酶为PRPP酰胺转移酶。 关键酶为PRPP酰胺转移酶。 PRPP酰胺转移酶

核酸的降解与核苷酸的代谢

核酸的降解与核苷酸的代谢

第十章 核酸的降解与核苷酸的代谢学习要求:通过本章学习,熟悉核酸的降解过程,掌握核酸酶的分类及其作用方式;了解核苷酸分解过程及不同生物嘌呤核苷酸分解代谢的区别;了解核苷酸从头合成途径的过程,掌握合成原料及嘌呤核苷酸与嘧啶核苷酸的合成特点,重点掌握核苷酸合成途径的调节,熟悉补救合成途径的过程和意义;熟悉核苷酸代谢与氨基酸代谢及糖代谢的相互关系;了解核苷酸代谢的有关理论对医药及生产实践的指导意义。

动物、植物和微生物都能合成各种核苷酸,因此核苷酸与氨基酸不同,不属于营养必需物质。

细胞内存在多种游离的核苷酸,它们具有多种重要的生理作用:①作为合成核酸的原料。

②ATP 在生物体内能量的贮存和利用中处于中心地位,是最重要的高能化合物。

此外,GTP 在能量利用方面也有一定作用。

③参与代谢和代谢调节。

某些核苷酸或其衍生物是重要的信息物质,如 cAMP 是多种激素作用的第二信使;cGMP 也与代谢调节有关。

④组成辅酶。

腺苷酸是辅酶Ⅰ、辅酶Ⅱ、辅酶A 和FAD 四种辅酶的组成成分。

⑤活化中间代谢物。

UTP 和CTP 可使代谢物NDP (核苷二磷酸)化,成为活性代谢物直接用作合成原料,如UDP-葡萄糖称为“活性葡萄糖”,是合成糖原、糖蛋白的活性原料;CDP-甘油二酯是合成磷脂的活性原料。

ATP 使蛋氨酸腺苷化生成的S-腺苷蛋氨酸(SAM )作为甲基的直接供体,是合成肾上腺素、肌酸等物质的活性原料。

第一节 核酸的酶促降解一、核酸的降解生物组织中的核酸往往以核蛋白的形式存在,动物和异养型微生物可分泌消化酶类分解食物或体外的核蛋白和核酸。

核蛋白可分解成核酸与蛋白质,核酸由各种水解酶催化逐步水解,生成核苷酸、核苷、戊糖和碱基等,这些水解产物均可被吸收,但动物体较少利用这些外源性物质作为核酸合成的原料,进入小肠粘膜细胞的核苷酸、核苷绝大部分进一步被分解。

植物一般不能消化体外的有机物。

所有生物细胞都含有核酸代谢的酶类,能分解细胞内的各种核酸促进其更新。

核酸的降解与核苷酸代谢

核酸的降解与核苷酸代谢
核酸的降解和核苷酸代谢
(Degradation of nucleic acid and nucleotides metabolism)
一、核酸和核苷酸的分解代谢 二、核苷酸的生物合成
核苷酸的功能
• 核苷酸是核酸生物合成的前体 • 核苷酸衍生物是许多生物合成的活性中间物,例如: UDP-葡萄糖和CDP-二酯酰甘油分别是糖原和磷酸甘油 酯合成的中间物 • ATP是生物能量代谢中通用的高能化合物 • 腺苷酸是三种重要辅酶的组分
嘌呤碱的分解
• 嘌呤碱的分解首先是在各种脱氨酶的作用下水解 脱去氨基。 • 脱氨反应也可以在核苷或核苷酸的水平上进行, 在动物组织中腺嘌呤脱氨酶的含量极少,而腺嘌 呤核苷脱氨酶和腺嘌呤核苷酸脱氨酶的活性极高。
嘌呤碱基的脱氨
嘌呤的降解
腺嘌呤 H2 O
腺嘌呤脱氨酶
鸟嘌呤 H2O
鸟嘌呤脱氨酶
NH3 NH3 黄嘌呤氧化酶 次黄嘌呤 黄嘌呤 H2O+O2 H2 O2 尿囊素 H2O 尿囊
素酶
尿酸氧化酶 黄嘌 呤氧 化酶
H2O+O2 H2 O2
CO2+H2O2
尿囊酸酶
尿酸 2H2O+O2 尿素 + 乙醛酸
尿囊酸
H2 O
脲酶
4NH3 + 2CO2
嘌呤的分解代谢
NH2 N N H N N N N H O NH N NH2 O N H N H O H N
O NH
Adenine
+H2O NH3 OH N N H N 次黄嘌呤氧化酶 黄嘌呤氧化酶 H 2O N 次黄嘌呤 H 2O 2 腺嘌呤脱氨酶
and swelling in their feet.
A CASE STUDY : GOUT
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

N-甲酰氨基咪唑-4-羧酰胺核糖核苷酸
次黄嘌呤核苷 酸IMP
腺苷酸琥珀 酸合成酶
由IMP合成 AMP 和 GMP
腺苷酸琥珀酸
腺苷酸琥珀 酸裂合酶
延胡索酸
激酶
AMP
激酶
ADP
ATP ADP
ATP ADP
GMP
激酶
激酶
GDP
ATP ADP
ATP ADP
ATP GTP
• 嘌呤核苷酸从头合成特点
• 嘌呤核苷酸是在磷酸核糖分子上逐步 合成的。
天冬氨酸
合成原料:谷氨酰胺、天冬氨酸、 CO2、磷酸核糖。
合成特点:用原料先合成嘧啶环,然 后再与磷酸核糖连接生成嘧啶核苷酸
•合成过程 (1) 尿嘧啶核苷酸的合成
谷氨酰胺 + HCO3-
氨基甲酰磷 酸合成酶II
2ATP 2ADP+Pi
谷氨酸 + 氨基甲酰磷酸
氨基甲酰磷酸合成酶 I、II 的区别
3、嘌呤核苷酸的相互转变
AMP
腺苷酸代 琥珀酸
NH3
IMP
GMP XMP
4、脱氧核糖核苷酸的生成
在核苷二磷酸水平上进行 (N代表A、G、U、C等碱基)
脱氧核苷酸的生成
核糖核苷酸还原酶,Mg2+
NDP
dNDP
二磷酸核糖核苷
二磷酸脱氧核苷
还原型硫氧化 还原蛋白-(SH)2
氧化型硫氧 化还原蛋白
S
S
• IMP的合成需5个ATP,6个高能磷酸键。 AMP或GMP的合成又需1个ATP
•从头合成的调节
调节方式:反馈调节和交叉调节
__
_
+
+
R-5-P PRPP合成酶
酰胺转移酶
PRPP
_PRA
ATP
_
腺苷酸代 琥珀酸
AMP ADP ATP
IMP
XMP GMP GDP GTP
_
腺苷酸代
AMP
IMP
琥珀酸
CPS-I
分布 氮源
肝细胞线粒体中 氨
变构激活剂 N-乙酰谷氨酸
功能
尿素合成
CPS-II
胞液(所有细胞) 谷氨酰胺 无 嘧啶 合成
(2)胞嘧啶核苷酸的合成
尿苷酸激酶
ATP
ADP
二磷酸核苷激酶
UDP
ATP
ADP
UTP
CTP合成酶
谷氨酰胺 ATP
谷氨酸 ADP+Pi
(3) dTMP或TMP的生成
脱氧核苷酸还原酶
AMP
GMP
二、核苷酸的生物合成 (一)嘌呤核糖核苷酸的合成 1 次黄嘌呤核苷酸(IMP)的合成
甘氨酰 胺核糖 核苷酸 合成酶
谷胺酰胺 磷酸核糖 焦磷酸酰 胺转移酶
5-磷酸核糖胺
甘氨酰胺核苷酸
甘氨酰胺核苷酸
甲酰甘氨酰胺核糖核苷酸

甲酰

甘氨

脒核

糖核

苷酸

合成






甲酰甘氨酰胺核糖核苷酸
能够抑制嘧啶核苷酸合成的抗代谢药物也 是一些嘧啶核苷酸的类似物,通过对酶的竞 争性抑制而干扰或抑制嘧啶核苷酸的合成。
主要的抗代谢药物是5-氟尿嘧啶(5-FU)。 5-FU在体内可转变为F-dUMP,其结构与dUMP 相似,可竞争性抑制胸苷酸合成酶的活性, 从而抑制胸苷酸的合成。
UMP UDP
UDP
dUDP
CTP CDP dCDP dCMP
TMP合酶
dUMP
N5, N10-甲烯FH4
FH2
FH4 FH2还原酶
NADP+ NADPH+H+脱氧胸苷一磷酸 dTMP
从头合成的调节
- ATP + CO2+ 谷氨酰胺
氨基甲酰磷酸
天冬氨酸 -
氨基甲酸天冬氨酸
PRPP UMP
- 嘌呤核苷酸
ATP + 5-磷酸核糖
•合成过程
腺嘌呤 + PRPP APRT AMP + PPi 次黄嘌呤 + PRPP HGPRT IMP + PPi
鸟嘌呤 + PRPP HGPRT GMP + PPi
腺嘌呤核苷
腺苷激酶
AMP
ATP ADP
•补救合成的生理意义
补救合成节省从头合成时的能量和一些 氨基酸的消耗。
体内某些组织器官,如脑、骨髓等只能 进行补救合成。
嘧啶核苷酸的结构
(一)嘧啶核苷酸的合成代谢 从头合成途径 补救合成途径
1、嘧啶核苷酸的从头合成 •定义
嘧啶核苷酸的从头合成是指利用磷酸核糖、 氨基酸、一碳单位及二氧化碳等简单物质为 原料,经过一系列酶促反应,合成嘧啶核苷 酸的途径。
•合成部位
主要是肝细胞胞液
•嘧啶合成的元素来源
氨基甲 酰磷酸
肝是体内从头合成嘌呤核苷酸的主要器官, 其次是小肠和胸腺,而脑、骨髓则无法进行此 合成途径。
•嘌呤碱合成的元素来源
CO2
甘氨酸
天冬氨酸
甲酰基 (一碳单位)
甲酰基 (一碳单位)
谷氨酰胺 (酰胺基)
嘌呤碱合成的元素来源
合成原料:天冬氨酸、谷氨酰胺、甘 氨酸、一碳基团、CO2、磷酸核糖。
合成特点:磷酸核糖为起始物,逐步 加原料合成嘌呤环,形成重要中间产物 IMP(次黄嘌呤核苷酸),再由它转变 为AMP和GMP。
一、核苷酸代谢的动态
氨基酸 葡萄糖 磷酸 核酸的降解
核苷酸的从头合成
单核苷酸库
核苷酸的降解 核酸的合成
核苷酸的降解 产物的再利用
1、嘌呤核苷酸的从头合成
•定义
嘌呤核苷酸的从头合成途径是指利用磷酸 核糖、氨基酸、一碳单位及二氧化碳等简单物 质为原料,经过一系列酶促反应,合成嘌呤核 苷酸的途径。
•合成部位

甲酰甘氨脒核糖核苷


5-氨基咪唑核糖核苷酸
N5-羧基氨基咪唑 核苷酸合成酶
氨基咪唑 核糖核苷 酸合成酶
甲酰甘氨脒核糖核苷酸 5-氨基咪唑核糖核苷酸
N5-羧基氨基咪唑核苷酸
N5-羧基氨基咪唑核糖核苷酸 N5-羧基氨基咪唑核糖核苷酸变位酶
N-琥珀酰-5-氨基咪 唑-4-酰胺核糖核苷 酸合成酶
N-琥珀酰-5-氨基咪唑 -4-羧酰胺核糖核苷酸
2、核酸酶的功能
生物体内的核酸酶负责细胞内外催化核 酸的降解
参与DNA的合成与修复及RNA合成后的 剪接等重要基因复制和基因表达过程
负责清除多余的、结构和功能异常的核 酸,同时也可以清除侵入细胞的外源性 核酸
在消化液中降解食物中的核酸以利吸收 体外重组DNA技术中的重要工具酶
第二节 核苷酸的代谢
第十章 核酸的降解 与核苷酸代谢
第一节 核酸的降解与核酸酶类
一、核酸的降解
食物核蛋白
蛋白质
胃酸
核酸(RNA及DNA)
胰核酸酶
核苷酸
胰、肠核苷酸酶
核苷
磷酸
核苷酶
碱基
戊糖
二、核酸酶(Nuclease)
1、核酸酶的定义及分类
核酸酶是指作用于核酸的磷酸二酯键的酶 依据底物不同分类
DNA酶(deoxyribonuclease, DNase): 专一降解DNA
β-氨基异丁酸
肝 尿素
甲基丙二酸单酰CoA
琥珀酰CoA
TCA
糖异生
本章思考题
1.名词解释
生物化学.静态生化.动态生化.构件分子.生物大分子
2.生物化学发展分为几个阶段? 3.你了解哪些重大生化成就? 4.生命是怎样形成的? 5.生物化学研究哪些内容?
- 嘧啶核苷酸
UTP CTP
2、 嘧啶核苷酸的补救合成
嘧啶 + PRPP 嘧啶磷酸核糖转移酶 磷酸嘧啶核苷 + PPi
尿嘧啶核苷 + ATP 尿苷激酶 UMP +ADP
胸腺嘧啶核苷 + ATP
胸苷激酶
TMP +ADP
3、嘧啶核苷酸的抗代谢物
• 嘧啶类似物
胸腺嘧啶(T)
5-氟尿嘧啶(5-FU)
•某些改变了核糖结构的核苷类似物
GTP
+
XMP _ATP
+GMP
ADP GDP
ATP GTP
2、嘌呤核苷酸的补救合成途径 • 定义
利用体内游离的嘌呤或嘌呤核苷, 经过简单的反应,合成嘌呤核苷酸的过 程,称为补救合成(或重新利用)途径。
•参与补救合成的酶
1.腺嘌呤磷酸核糖转移酶 (adenine phosphoribosyl transferase, APRT) 2.次黄嘌呤-鸟嘌呤磷酸核糖转移酶 (hypoxanthine- guanine phosphoribosyl transferase, HGPRT) 3.腺苷激酶(adenosine kinase)
NADP+ 硫氧化还原蛋白还原酶 NADPH + H+ (FAD)
激酶 dNDP + ATP
dNTP + ADP
(二)嘌呤核苷酸的分解代谢
核苷酸酶
核苷酸
核苷
Pi
核苷磷酸化酶
1-磷酸核糖 碱基
AMP GMP
H 黄嘌呤氧化酶
(次黄嘌呤)
X
G
(黄嘌呤)
黄嘌呤 氧化酶
嘌呤碱的最终 代谢唑核苷酸
N-琥珀酰-5-氨基咪唑4-羧酰胺核糖核苷酸
N-琥珀酰-5-氨基咪唑 -4-酰胺核糖核苷 酸裂合酶
5-氨基咪唑-4-羧酰胺核苷酸
5-氨基咪唑-4-羧酰胺核 糖核苷酸
相关文档
最新文档