湖南省邵阳县白仓镇中学2018年中考数学三模试卷(解析版)

合集下载

2018年湖南省邵阳市中考数学试卷(解析版)

2018年湖南省邵阳市中考数学试卷(解析版)

2018年湖南省邵阳市中考数学试卷一、选择题(本大题有10个小题,每小题3分,共30分。

在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)用计算器依次按键,得到的结果最接近的是()A.1.5 B.1.6 C.1.7 D.1.82.(3分)如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为()A.20°B.60°C.70°D.160°3.(3分)将多项式x﹣x3因式分解正确的是()A.x(x2﹣1)B.x(1﹣x2)C.x(x+1)(x﹣1)D.x(1+x)(1﹣x)4.(3分)下列图形中,是轴对称图形的是()A.B.C.D.5.(3分)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m6.(3分)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD 的大小是()A.80°B.120°C.100° D.90°7.(3分)小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:月份1234成绩(s)15.615.415.215体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100m短跑的成绩为()(温馨提示;目前100m短跑世界记录为9秒58)A.14.8s B.3.8sC.3s D.预测结果不可靠8.(3分)如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x 轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,则CD的长度是()A.2 B.1 C.4 D.29.(3分)根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐()A.李飞或刘亮B.李飞C.刘亮D.无法确定10.(3分)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)点A在数轴上的位置如图所示,则点A表示的数的相反数是.12.(3分)如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:.13.(3分)已知关于x的方程x2+3x﹣m=0的一个解为﹣3,则它的另一个解是.14.(3分)如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是.15.(3分)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为人.16.(3分)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.17.(3分)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A 沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是.18.(3分)如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB的面积为2,则k的值是.三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分。

湖南省邵阳市2018年中考数学试题(含解析).doc

湖南省邵阳市2018年中考数学试题(含解析).doc

2018年湖南省邵阳市中考数学试卷一、选择题(本大题有10个小题,每小题3分,共30分。

在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)用计算器依次按键,得到的结果最接近的是()A.1.5 B.1.6 C.1.7 D.1.82.(3分)如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为()A.20°B.60°C.70°D.160°3.(3分)将多项式x﹣x3因式分解正确的是()A.x(x2﹣1)B.x(1﹣x2)C.x(x+1)(x﹣1)D.x(1+x)(1﹣x)4.(3分)下列图形中,是轴对称图形的是()A.B.C.D.5.(3分)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m6.(3分)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100° D.90°7.(3分)小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100m短跑的成绩为()(温馨提示;目前100m短跑世界记录为9秒58)A.14.8s B.3.8sC.3s D.预测结果不可靠8.(3分)如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,则CD的长度是()A.2 B.1 C.4 D.29.(3分)根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐()A.李飞或刘亮B.李飞C.刘亮D.无法确定10.(3分)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)点A在数轴上的位置如图所示,则点A表示的数的相反数是.12.(3分)如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD 于点F,连接BF.写出图中任意一对相似三角形:.13.(3分)已知关于x的方程x2+3x﹣m=0的一个解为﹣3,则它的另一个解是.14.(3分)如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是.15.(3分)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为人.16.(3分)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.17.(3分)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是.18.(3分)如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB的面积为2,则k的值是.三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分。

湖南省邵阳市2018年中考数学试题(含解析)【精品】.doc

湖南省邵阳市2018年中考数学试题(含解析)【精品】.doc

2018年湖南省邵阳市中考数学试卷一、选择题(本大题有10个小题,每小题3分,共30分。

在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)用计算器依次按键,得到的结果最接近的是()A.1.5 B.1.6 C.1.7 D.1.82.(3分)如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为()A.20°B.60°C.70°D.160°3.(3分)将多项式x﹣x3因式分解正确的是()A.x(x2﹣1)B.x(1﹣x2)C.x(x+1)(x﹣1)D.x(1+x)(1﹣x)4.(3分)下列图形中,是轴对称图形的是()A.B.C.D.5.(3分)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m6.(3分)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100° D.90°7.(3分)小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:()(温馨提示;目前100m短跑世界记录为9秒58)A.14.8s B.3.8sC.3s D.预测结果不可靠8.(3分)如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,则CD的长度是()A.2 B.1 C.4 D.29.(3分)根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐()A.李飞或刘亮B.李飞C.刘亮D.无法确定10.(3分)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)点A在数轴上的位置如图所示,则点A表示的数的相反数是.12.(3分)如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD 于点F,连接BF.写出图中任意一对相似三角形:.13.(3分)已知关于x的方程x2+3x﹣m=0的一个解为﹣3,则它的另一个解是.14.(3分)如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是.15.(3分)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为人.16.(3分)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.17.(3分)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是.18.(3分)如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB的面积为2,则k的值是.三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分。

2018年湖南省邵阳市中考数学试卷含答案解析

2018年湖南省邵阳市中考数学试卷含答案解析

2018年湖南省邵阳市中考数学试卷一、选择题(本大题有10个小题,每小题3分,共30分。

在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)用计算器依次按键,得到的结果最接近的是()A.1.5 B.1.6 C.1.7 D.1.82.(3分)如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为()A.20°B.60°C.70°D.160°3.(3分)将多项式x﹣x3因式分解正确的是()A.x(x2﹣1)B.x(1﹣x2)C.x(x+1)(x﹣1)D.x(1+x)(1﹣x)4.(3分)下列图形中,是轴对称图形的是()A.B.C.D.5.(3分)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m6.(3分)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100°D.90°7.(3分)小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:()(温馨提示;目前100m短跑世界记录为9秒58)A.14.8s B.3.8sC.3s D.预测结果不可靠8.(3分)如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,则CD的长度是()A.2 B.1 C.4 D.29.(3分)根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐()A.李飞或刘亮 B.李飞C.刘亮D.无法确定10.(3分)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人 B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人 D.大、小和尚各100人二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)点A在数轴上的位置如图所示,则点A表示的数的相反数是.12.(3分)如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:.13.(3分)已知关于x的方程x2+3x﹣m=0的一个解为﹣3,则它的另一个解是.14.(3分)如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是.15.(3分)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为人.16.(3分)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.17.(3分)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是.18.(3分)如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB的面积为2,则k的值是.三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分。

湖南省邵阳市2018年中考数学试题(含解析)

湖南省邵阳市2018年中考数学试题(含解析)

2018年湖南省邵阳市中考数学试卷一、选择题(本大题有10个小题,每小题3分,共30分。

在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)用计算器依次按键,得到的结果最接近的是()A.1.5 B.1.6 C.1.7 D.1.82.(3分)如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为()A.20°B.60°C.70°D.160°3.(3分)将多项式x﹣x3因式分解正确的是()A.x(x2﹣1)B.x(1﹣x2)C.x(x+1)(x﹣1)D.x(1+x)(1﹣x)4.(3分)下列图形中,是轴对称图形的是()A.B.C.D.5.(3分)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m6.(3分)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD 的大小是()A.80°B.120°C.100° D.90°7.(3分)小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100m短跑的成绩为()(温馨提示;目前100m短跑世界记录为9秒58)A.14.8s B.3.8sC.3s D.预测结果不可靠8.(3分)如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x 轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,则CD的长度是()A.2 B.1 C.4 D.29.(3分)根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐()A.李飞或刘亮B.李飞C.刘亮D.无法确定10.(3分)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)点A在数轴上的位置如图所示,则点A表示的数的相反数是.12.(3分)如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:.13.(3分)已知关于x的方程x2+3x﹣m=0的一个解为﹣3,则它的另一个解是.14.(3分)如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是.15.(3分)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为人.16.(3分)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.17.(3分)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是.18.(3分)如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB的面积为2,则k的值是.三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分。

2018年湖南省邵阳市中考数学试卷(含答案解析)-精编.doc

2018年湖南省邵阳市中考数学试卷(含答案解析)-精编.doc

2018年湖南省邵阳市中考数学试卷一、选择题(本大题有10个小题,每小题3分,共30分。

在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)用计算器依次按键,得到的结果最接近的是()A.1.5 B.1.6 C.1.7 D.1.82.(3分)如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为()A.20°B.60°C.70°D.160°3.(3分)将多项式x﹣x3因式分解正确的是()A.x(x2﹣1)B.x(1﹣x2)C.x(x+1)(x﹣1)D.x(1+x)(1﹣x)4.(3分)下列图形中,是轴对称图形的是()A.B.C.D.5.(3分)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m6.(3分)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100°D.90°7.(3分)小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:月份1234成绩(s)15.615.415.215体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100m短跑的成绩为()(温馨提示;目前100m短跑世界记录为9秒58)A.14.8s B.3.8sC.3s D.预测结果不可靠8.(3分)如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,则CD的长度是()A.2 B.1 C.4 D.29.(3分)根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐()A.李飞或刘亮 B.李飞C.刘亮D.无法确定10.(3分)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人 B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人 D.大、小和尚各100人二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)点A在数轴上的位置如图所示,则点A表示的数的相反数是.12.(3分)如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:.13.(3分)已知关于x的方程x2+3x﹣m=0的一个解为﹣3,则它的另一个解是.14.(3分)如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是.15.(3分)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为人.16.(3分)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.17.(3分)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是.18.(3分)如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB的面积为2,则k的值是.三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分。

全国市级联考湖南省邵阳市2018届初中毕业班中考数学复习三模试卷

全国市级联考湖南省邵阳市2018届初中毕业班中考数学复习三模试卷

全国市级联考湖南省邵阳市2018届初中毕业班中考数学复习三模试卷数学试题考试时间:90分钟 满分:120分一、选择题(共8小题;共24分) 1. 若|a ﹣1|=a ﹣1,则a 的取值范围是( ) A. a ≥1B. a ≤1C. a <1D. a >12. 计算a 2•a 3,结果正确的是( ) A. a 5B. a 6C. a 8D. a 93. 下列各统计量中,表示一组数据波动程度的量是( ). A. 平均数B. 众数C. 方差D. 频率4. 若△ABC ∽△A′B′C′且34AB A B ='',△ABC 的周长为15cm ,则△A′B′C′的周长为( )cm. A. 18B. 20C. 154D.8035. 如图所示几何体的俯视图是( )A. B. C. D.6. 有下列四个论断:①﹣13是有理数;② 2是分数;③2.131131113…是无理数;④π是无理数,其中正确的是( ) A. 4个B. 3个C. 2个D. 1个7. 若二次函数y=﹣x 2+4x+c 的图象经过A (1,y 1),B (﹣1,y 2),C (,y 3)三点,则y 1、y 2、y 3的大小关系是( ) A. y 1<y 2<y 3 B. y 1<y 3<y 2C. y 2<y 3<y 1D. y 2<y 1<y 38. 如图,下列图形均是完全相同的点按照一定的规律所组成的,第①个图形中一共有3个点,第②个图形中一共有8个点,第③个图形中一共有15个点,…,按此规律排列下去,第9个图形中点的个数是( )A. 80B. 89C. 99D. 109二、填空题(共7小题;共21分) 9. 当x =____时,分式13x -与无意义 10. 计算(2)(2)a a -+=_________.11. 据日本环境省估计,被地震海啸吞没然后流入太平洋的废墟垃圾共约5000000吨,其中5000000吨用科学记数法表示为________吨.12. 关于x 的一元二次方程22(21)(1)0x k x k +-+-=无实数根,则k 的取值范围为_________.13. 如图,菱形ABCD 的边长为2,∠A =60°,以点B 为圆心的圆与AD 、DC 相切,与AB 、CB 的延长线分别相交于点E 、F ,则图中阴影部分的面积为_____.14. 一次函数y 1=﹣x+2,反比例函数y 2= 8x-,当y 1<y 2时,x 的取值范围________.15. 如图,已知等边三角形OAB 与反比例函数(0,0)k y k x x=>>的图像交于A 、B 两点,将OAB ∆沿直线OB 翻折,得到OCB ∆,点A 的对应点为点C ,线段CB 交x轴于点D ,则BD DC 的值为_________.(已知sin15︒=)三、解答题(共11小题;共75分)16. 计算:101()2(1)2π-+---.17. 化简 211a a a a-⋅-. 18. 解不等式组 31432(1)6x x x -+<⎧⎨--≤⎩.19. 某校为了了解九年级学生(共450人)的身体素质情况,体育老师对九(1)班的50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制了如下部分频数分布表和部分频数分布直方图.请结合图表解答下列问题:(1)表中的m=________;(2)请把频数分布直方图补完整;(3)这个样本数据的中位数落在第________组;(4)若九年级学生一分钟跳绳次数(x)合格要求是x≥120,则估计九年级学生中一分钟跳绳成绩不合格的人数.20. 一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜.色外其余都相同,从中任意摸出1个球,是白球的概率为12(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表或画树状图等方法求出两次摸到的球都是白球的概率.21. 如图,已知△ABC,△C=90°,AC<BC,D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连接AD,若△B=37°,求△CAD的度数.22. 如图,在平面直角坐标系xOy中,过点(2,0)A-的直线交y轴正半轴于点B,将直线AB绕着点O顺时针旋转90°后,分别与x轴y轴交于点D、C.OB=,求直线AB的函数关系式;(1)若4△的面积是5,求点B的运动路径长.(2)连接BD,若ABD23. 直线y=﹣x+6与x轴交于A,与y轴交于B,直线CD与y轴交于C(0,2)与直线AB交于D,过D作DE△x轴于E(3,0).(1)求直线CD的函数解析式;(2)P是线段OA上一动点,点P从原点O开始,每秒一个单位长度的速度向A 运动(P与O,A不重合),过P作x轴的垂线,分别与直线AB,CD交于M,N,设MN的长为S,P点运动的时间为t,求出S与t之间的函数关系式(写出自变量的取值范围)(3)在(2)的条件下,当t为何值时,以M,N,E,D为顶点的四边形是平行四边形.(直接写出结果)24. 为了维护海洋权益,新组建的国家海洋局加大了在南海的巡逻力度.一天,我两艘海监船刚好在我某岛东西海岸线上的A、B两处巡逻,同时发现一艘不明国籍的船只停在C处海域.如图所示,AB=60海里,在B处测得C 在北偏东45º的方向上,A处测得C在北偏西30º的方向上,在海岸线AB上有一灯塔D,测得AD=120海里.(1)分别求出A 与C 及B 与C 的距离AC ,BC (结果保留根号)(2)已知在灯塔D 周围100海里范围内有暗礁群,我在A 处海监船沿AC 前往C 处盘查,途中有无触礁的危险?=1.41 1.73=2.45)25. 如图,矩形ABCD 中,AB =4,AD =3,M 是边CD 上一点,将△ADM 沿直线AM 对折,得到△ANM .(1)当AN 平分∠MAB 时,求DM 的长; (2)连接BN ,当DM =1时,求△ABN 的面积; (3)当射线BN 交线段CD 于点F 时,求DF 的最大值.26. (2017江苏省宿迁市,第25题,10分)如图,在平面直角坐标系xOy 中,抛物线2=23y x x --交x 轴于A △B 两点(点A 在点B 的左侧),将该抛物线位于x 轴上方曲线记作M ,将该抛物线位于x 轴下方部分沿x 轴翻折,翻折后所得曲线记作N ,曲线N 交y 轴于点C ,连接AC △BC △ △1)求曲线N 所在抛物线相应的函数表达式; △2)求△ABC 外接圆的半径;△3)点P 为曲线M 或曲线N 上的一动点,点Q 为x 轴上的一个动点,若以点B △C △P △Q 为顶点的四边形是平行四边形,求点Q 的坐标.。

湖南省邵阳市初中数学毕业学业考试模拟试题(三)(扫描(2021年整理)

湖南省邵阳市初中数学毕业学业考试模拟试题(三)(扫描(2021年整理)

湖南省邵阳市2018年初中数学毕业学业考试模拟试题(三)(扫描版)编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(湖南省邵阳市2018年初中数学毕业学业考试模拟试题(三)(扫描版))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为湖南省邵阳市2018年初中数学毕业学业考试模拟试题(三)(扫描版)的全部内容。

湖南省邵阳市2018年初中数学毕业学业考试模拟试题(三)
参考答案。

湖南省邵阳市2018年中考数学试题(含解析)-精品

湖南省邵阳市2018年中考数学试题(含解析)-精品

2018年湖南省邵阳市中考数学试卷一、选择题(本大题有10个小题,每小题3分,共30分。

在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)用计算器依次按键,得到的结果最接近的是()A.1.5 B.1.6 C.1.7 D.1.82.(3分)如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为()A.20°B.60°C.70°D.160°3.(3分)将多项式x﹣x3因式分解正确的是()A.x(x2﹣1)B.x(1﹣x2)C.x(x+1)(x﹣1)D.x(1+x)(1﹣x)4.(3分)下列图形中,是轴对称图形的是()A.B.C.D.5.(3分)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m6.(3分)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD 的大小是()A.80°B.120°C.100°D.90°7.(3分)小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100m短跑的成绩为()(温馨提示;目前100m短跑世界记录为9秒58)A.14.8s B.3.8sC.3s D.预测结果不可靠8.(3分)如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x 轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,则CD的长度是()A.2 B.1 C.4 D.29.(3分)根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐()A.李飞或刘亮 B.李飞C.刘亮D.无法确定10.(3分)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人 B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人 D.大、小和尚各100人二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)点A在数轴上的位置如图所示,则点A表示的数的相反数是.12.(3分)如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:.13.(3分)已知关于x的方程x2+3x﹣m=0的一个解为﹣3,则它的另一个解是.14.(3分)如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是.15.(3分)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为人.16.(3分)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.17.(3分)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A 沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是.18.(3分)如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB的面积为2,则k的值是.三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分。

2018年湖南省邵阳市邵阳县中考数学模拟试卷(一)

2018年湖南省邵阳市邵阳县中考数学模拟试卷(一)

2018年湖南省邵阳市邵阳县中考数学模拟试卷(一)一、选择题(本大题有6个小题,每小题3分,共18分.在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)|﹣2|的值是()A.﹣2B.2C.﹣D.2.(3分)如图,一个水平放置的六棱柱,这个六棱柱的左视图是()A.B.C.D.3.(3分)在以下大众、东风、长城、奔驰四个汽车标志中,不是轴对称图形的是()A.B.C.D.4.(3分)一组数据7,9,6,8,10,12中,下面说法正确的是()A.中位数等于平均数B.中位数大于平均数C.中位数小于平均数D.中位数是85.(3分)下列运算中结果正确的是()A.4a+3b=7ab B.4xy﹣3xy=xy C.﹣2x+5x=7x D.2y﹣y=1 6.(3分)将抛物线y=2x2向上平移2个单位后所得抛物线的解析式是()A.y=2x2+2B.y=2(x+2)2C.y=2(x﹣2)2D.y=2x2﹣2二、填空题(共10小题;共30分)7.(3分)分解因式:ab3﹣4ab=.8.(3分)下列各数:,,5.12,﹣,0,,3.1415926,,﹣,2.181181118…(两个8之间1的个数逐次多1).其中是无理数的有个.9.(3分)据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为万元.10.(3分)x是怎样的实数时,式子在实数范围内有意义.11.(3分)某班共有50名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学到黑板板演,习惯用左手写字的同学被选中的概率是.12.(3分)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=°.13.(3分)已知实数m,n满足3m2+6m﹣5=0,3n2+6n﹣5=0,且m≠n,则=.14.(3分)如图,在⊙O中,△ABC是等边三角形,AD是直径,则∠ADB =°,∠ABD=°.15.(3分)如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC与点E,将△BCE绕点C顺时针旋转90°得到△DCF,若CE=1cm,则BF=cm.16.(3分)如图,曲线l是由函数y=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(﹣4,4),B(2,2)的直线与曲线l相交于点M、N,则△OMN的面积为.三、解答题(共9小题;共72分)17.计算:﹣1﹣2+|﹣|+(π﹣3.14)0﹣tan60°+.18.解不等式组:.19.先化简:÷+,再求当x+1与x+6互为相反数时代数式的值.20.抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.21.如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC 于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.22.在正方形网格中以点A为圆心,AB为半径作圆A交网格于点C(如图(1)),过点C作圆的切线交网格于点D,以点A为圆心,AD为半径作圆交网格于点E(如图(2)).问题:(1)求∠ABC的度数;(2)求证:△AEB≌△ADC;(3)△AEB可以看作是由△ADC经过怎样的变换得到的?并判断△AED的形状(不用说明理由).(4)如图(3),已知直线a,b,c,且a∥b,b∥c,在图中用直尺、三角板、圆规画等边三角形A′B′C′,使三个顶点A′,B′,C′,分别在直线a,b,c上.要求写出简要的画图过程,不需要说明理由.23.如图,点A(﹣10,0),B(﹣6,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB,∠CDA=90°.点P从点Q(8,0)出发,沿x轴向左以每秒1个单位长的速度向点A匀速运动,运动时间为t秒.(1)求点C的坐标.(2)当∠BCP=15°时,求t的值.(3)以PC为直径作圆,当该圆与四边形ABCD的边(或边所在的直线)相切时,求t的值.24.如图,点A在直线l上,点Q沿着直线l以3厘米/秒的速度由点A向右运动,以AQ为边作Rt△ABQ,使∠BAQ=90°,tan∠ABQ=,点C在点Q 右侧,CQ=1厘米,过点C作直线m⊥l,过△ABQ的外接圆圆心O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=CD,以DE、DF为邻边作矩形DEGF.设运动时间为t秒.(1)直接用含t的代数式表示BQ、DF;(2)当0<t<1时,求矩形DEGF的最大面积;(3)点Q在整个运动过程中,当矩形DEGF为正方形时,求t的值.25.如图,已知二次函数y=ax2+bx+c的象经过A(﹣1,0)、B(3,0)、N(2,3)三点,且与y轴交于点C.(1)求这个二次函数的解析式,并写出顶点M及点C的坐标;(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边形CDAN 是平行四边形;(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在,请说明理由.2018年湖南省邵阳市邵阳县中考数学模拟试卷(一)参考答案一、选择题(本大题有6个小题,每小题3分,共18分.在每小题给出的四个选项中只有一项是符合题目要求的)1.B;2.B;3.B;4.C;5.B;6.A;二、填空题(共10小题;共30分)7.ab(b+2)(b﹣2);8.4;9.5.4×106;10.x≥3;11.;12.120;13.﹣;14.60;90;15.2+;16.8;三、解答题(共9小题;共72分)17.;18.;19.;20.;21.;22.;23.;24.;25.;。

湖南省邵阳县白仓镇中学中考数学三模试卷(解析版)

湖南省邵阳县白仓镇中学中考数学三模试卷(解析版)

湖南省邵阳县白仓镇中学中考数学三模试卷(解析版)题号一二三总分评分一、选择题(每题只要一个正确答案,共10小题,总分值30分)1.在-1,0,1,2这四个数中,最小的数是〔〕A. -1B. 0C. 1D. 22.5月31日,观赏上海世博会的游客约为505 000人,505 000用迷信记数法表示为〔〕A. 505×103B. 5.05×103C. 5.05×104D. 5.05×1053. 以下计算,正确的选项是〔〕A. a2﹣a=aB. a2•a3=a6C. a9÷a3=a3D. 〔a3〕2=a64.如下图的图形是由7个完全相反的小正方体组成的平面图形,那么下面四个平面图形中不是这个平面图形的三视图的是〔〕A. B. C. D.5.点关于x轴的对称点〔3-2a ,2a-5〕是第三象限内的整点〔横、纵坐标都为整数的点,称为整点〕,那么点的坐标为( )A. 〔-1,1〕B. 〔1,-1〕C. 〔-1,-1〕D. 无法确定6.如图,圆锥的轴截面△ABC是一个以圆锥的底面直径为底边,圆锥的母线为腰的等腰三角形,假定圆锥的底面直径BC=4cm,母线AB=6cm,那么由点B动身,经过圆锥的正面抵达母线AC的最短路程是( )A. cmB. 6cmC. 3cmD. 4cm7.小明在参与区运动会前刻苦停止100米跑训练,教员对他10次的训练效果停止统计剖析,判别他的效果能否动摇,那么教员需求知道他这10次效果的〔〕A. 众数B. 方差C. 平均数D. 频数8.如图,正方形ABCD的边长为4,现有一动点P从点A动身,沿A→B→C→D→A的途径以每秒1个单位长度的速度匀速运动,设点P运动的时间为t,△APB的面积为S,那么以下图象能大致反映S与t的函数关系的是〔〕A. B.C. D.9.△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分红两个相似的三角形,其作法不正确的选项是A. B.C. D.10. 如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H区分在矩形ABCD各边上,且AE=CG,BF=DH,那么四边形EFGH周长的最小值为〔〕A. 5B. 10C. 10D. 15二、填空题〔共8小题;共24分〕11. 使式子有意义的x取值范围是________.12.如图,O为跷跷板AB的中点,支柱OC与空中MN垂直,垂足为点C,且OC=50cm,当跷跷板的一端B 着地时,另一端A离空中的高度为________ cm.13.四边形ABCD为圆O的内接四边形,∠BOD=100°,那么∠BCD=________ .14.〔2021•抚顺〕关于x的方程x2+2x﹣m=0有实数解,那么m的取值范围是________.15.如图,正方形ABCD绕点B逆时针旋转30°后失掉正方形BEFG,EF与AD相交于点H,延伸DA交GF于点K.假定正方形ABCD边长为,那么AK=________.16.A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提早0.4h抵达,这辆汽车原来的速度是________ km/h.17.假定(x+2)2+=0,那么xy= ________18. 如图,四边形OABC是平行四边形,点C在x轴上,正比例函数y= 〔x>0〕的图象经过点A〔5,12〕,且与边BC交于点D.假定AB=BD,那么点D的坐标为________.三、解答题〔共10小题;共66分〕19. 〔1〕计算:﹣4sin30°+〔2021﹣π〕0﹣22.〔2〕解不等式组:.20.先化简,再求值:,其中a是方程x2+x=6的一个根.21. 某学校为了解先生的课外阅读状况,随机抽取了50名先生,并统计他们平均每天的课外阅读时间t〔单位:min〕,然后应用所得数据绘制成如图不完整的统计图表.课外阅读时间频数散布表课外阅读时间t 频数百分比10≤t<30 4 8%30≤t<50 8 16%50≤t<70 a 40%70≤t<90 16 b90≤t<110 2 4%算计 50 100%请依据图表中提供的信息回答以下效果:〔1〕a=________,b=________;〔2〕将频数散布直方图补充完整;〔3〕假定全校有900名先生,估量该校有多少先生平均每天的课外阅读时间不少于50min?22.近年深圳停止高中招生制度革新,某初中学校取得保送〔目的生〕名额假定干,如今九年级四位德才兼备的先生小斌〔男〕、小亮〔男〕、小红〔女〕、小丽〔女〕都取得保送资历,且时机均等.〔1〕假定学校只要一个名额,那么随机选到小斌的概率是多少.〔2〕假定学校争取到两个名额,请用树状图或列表法求随机选到保送的先生恰恰是一男一女的概率.23.〔2021•甘孜州〕如图,某中学九年级数学兴味小组测量校内旗杆AB的高度,在C点测得旗杆顶端A的仰角∠BCA=30°,向前走了20米抵达D点,在D点测得旗杆顶端A的仰角∠BDA=60°,求旗杆AB的高度.〔结果保管根号〕24.如图,AB是⊙O的直径,E为弦AC的延伸线上一点,DE与⊙O相切于点D,且DE⊥AC,连结OD,假定AB=10,AC=6,求DE的长.25. 某学习小组在研讨函数y= x3﹣2x的图象与性质时,已列表、描点并画出了图象的一局部.x …﹣4 ﹣3.5 ﹣3 ﹣2 ﹣1 0 1 2 3 3.5 4 …y …﹣﹣ 0 ﹣﹣﹣…〔1〕请补全函数图象;〔2〕方程x3﹣2x=﹣2实数根的个数为________;〔3〕观察图象,写出该函数的两条性质.26.如图,矩形ABCD中,对角线AC的垂直平分线交AD、BC于点E、F,AC与EF交于点O,连结AF、CE.〔1〕求证:四边形AFCE是菱形;〔2〕假定AB=3,AD=4,求菱形AFCE的边长.27.△ABC中,D为AB边上恣意一点,DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α.〔1〕如图1,当α=60°时,求证:△DCE是等边三角形;〔2〕如图2,当α=45°时,求证:①= ;②CE⊥DE.〔3〕如图3,当α为恣意锐角时,请直接写出线段CE与DE的数量关系是:=________.28.如图,抛物线y=ax2+bx+c〔a≠0〕的对称轴为直线x=﹣1,且抛物线经过A〔1,0〕,C〔0,3〕两点,与x轴交于点B.〔1〕假定直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;〔2〕在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;〔3〕设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.参考答案与试题解析一、选择题1.【答案】A【解析】∵-1<0<1<2,∴最小的数是-1,应选A.【剖析】依据有理数的大小比拟法那么判别即可.正数都大于0,正数都小于0,正数大于一切正数.此题考察了对有理数的大小比拟的运用,关键是了解法那么正数都大于0,正数都小于0,正数大于一切正数.2.【答案】D【解析】【剖析】迷信记数法的表示方式为a×10n的方式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的相对值与小数点移动的位数相反.当原数相对值>10时,n是正数;当原数的相对值<1时,n是正数.【解答】505 000用迷信记数法表示为5.05×105.应选D.【点评】此题考察迷信记数法的表示方法.迷信记数法的表示方式为a×10n的方式,其中1≤|a|<10,n为整数.表示时关键要正确确定a的值以及n的值.3.【答案】D【解析】A.a2﹣a,不能兼并,A不契合题意;B.a2•a3=a5,B不契合题意;C.a9÷a3=a6,C不契合题意;D.〔a3〕2=a6,D契合题意.故答案为:D.[剖析】依据有理数的乘方,乘除法及减法法那么停止计算即可失掉答案.4.【答案】B【解析】依据立方体的组成可得出:A、是几何体的左视图,A不契合题意;B、不是几何体的三视图,B契合题意;C、是几何体的主视图,C不契合题意;D、是几何体的仰望图,D不契合题意.故答案为:B.【剖析】依据三视图的有关定义停止判别,即可失掉答案.5.【答案】A【解析】解答:点〔3-2a ,2a-5〕在第三象限内,所以,解得,所以,又由于点是整点,所以2a=4,所以点为〔-1,-1〕,又由于点与点关于x轴对称,所以点的坐标为〔-1,1〕.剖析:先依据点是第三象限内的整点求得a的值,从而求得点,再依据点与关于x轴对称求得的坐标.6.【答案】C【解析】解:沿母线AB把圆锥展开,如图,过B作BD⊥AC′于D,弧BC′=•2π•2=2π,设∠C′AB=n°,∴2π=,∴n=60,即∠DAB=60°,在Rt△ADB中,AD=AB=×6=3,∴BD=AD=3,所以由点B动身,经过圆锥的正面抵达母线AC的最短路程为3cm.应选C.【剖析】沿母线AB把圆锥展开,过B作BD⊥AC′于D,依据两点之间线段最短,失掉由点B动身,经过圆锥的正面抵达母线AC的最短路程为BD,BC′弧长为圆锥底面圆的周长的一半,再依据弧长公式计算出∠DAB,最后解Rt△ADB,即可失掉ND.此题考察了圆锥的展开图的有关计算:展开图为扇形,弧长为圆锥底面圆的周长,半径为圆锥的母线长.也考察了把平面图形中的效果转化为平面图形来处置.7.【答案】B【解析】【解答】众数、平均数是反映一组数据的集中趋向,而频数是数据出现的次数,只要方差是反映数据的动摇大小的.故为了判别效果能否动摇,需求知道的是方差.应选B.【剖析】依据众数、平均数、频数、方差的概念剖析.8.【答案】D【解析】【解答】解:当点P在AB上运动时,即0≤t≤4,S= •t•0=0;当点P在BC上运动时,即4<t≤8,S= ×4×〔t﹣4〕=2t﹣8;当点P在CD上运动时,即8<t≤12,S= ×4×4=8;当点P在DA上运动时,即12<t≤16,S= ×4×〔16﹣t〕=﹣2t+32;契合以上四种状况的函数图象为D选项,应选:D.【剖析】分点P在AB、BC、CD、DA上运动这四种状况,依据三角形面积公式列出函数解析式,由函数解析式即可得出函数图象.9.【答案】D【解析】【解答】A、在角∠BAC内作作∠CAD=∠B,交BC于点D,依据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,依据直角三角形斜边上的垂线,把原直角三角形分红了两个小直角三角形,图中的三个直角三角方式彼此相似的;A不契合题意;B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再区分以这两点为圆心,大于两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;依据直角三角形斜边上的垂线,把原直角三角形分红了两个小直角三角形,图中的三个直角三角形是彼此相似的;B不契合题意;C、以AB为直径作圆,该圆交BC于点D,依据圆周角定理,过AD两点作直线该直线垂直于BC,依据直角三角形斜边上的垂线,把原直角三角形分红了两个小直角三角形,图中的三个直角三角方式彼此相似的;C不契合题意;D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D契合题意;故答案为:D【剖析】依据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,区分作出直角三角形斜边上的垂线,依据直角三角形斜边上的垂线,把原直角三角形分红了两个小直角三角形,图中的三个直角三角方式彼此相似的;即可作出判别。

湖南省邵阳市2018年中考数学试题(含解析)

湖南省邵阳市2018年中考数学试题(含解析)

2018年湖南省邵阳市中考数学试卷一、选择题(本大题有10个小题,每小题3分,共30分。

在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)用计算器依次按键,得到的结果最接近的是()A.1.5 B.1.6 C.1.7 D.1.82.(3分)如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为()A.20°B.60°C.70°D.160°3.(3分)将多项式x﹣x3因式分解正确的是()A.x(x2﹣1)B.x(1﹣x2)C.x(x+1)(x﹣1)D.x(1+x)(1﹣x)4.(3分)下列图形中,是轴对称图形的是()A.B.C.D.5.(3分)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m6.(3分)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD 的大小是()A.80°B.120°C.100°D.90°7.(3分)小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100m短跑的成绩为()(温馨提示;目前100m短跑世界记录为9秒58)A.14.8s B.3.8sC.3s D.预测结果不可靠8.(3分)如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x 轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,则CD的长度是()A.2 B.1 C.4 D.29.(3分)根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐()A.李飞或刘亮 B.李飞C.刘亮D.无法确定10.(3分)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人 B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人 D.大、小和尚各100人二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)点A在数轴上的位置如图所示,则点A表示的数的相反数是.12.(3分)如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:.13.(3分)已知关于x的方程x2+3x﹣m=0的一个解为﹣3,则它的另一个解是.14.(3分)如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是.15.(3分)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为人.16.(3分)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.17.(3分)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A 沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是.18.(3分)如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB的面积为2,则k的值是.三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分。

精选2018届湖南省邵阳县XX中学中考数学三模试卷(有答案)

精选2018届湖南省邵阳县XX中学中考数学三模试卷(有答案)

湖南省邵阳县2019届中考数学三模试卷姓名:__________ 班级:__________考号:__________考试时间100分钟满分120分1.下列说法正确的是()A. 对角线相等的四边形是平行四边形B. 对角线互相平分的四边形是平行四边形C. 对角线互相垂直的四边形是平行四边形D. 对角线互相垂直且相等的四边形是平行四边形2.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“友”相对的面上的汉字是()A. 爱B. 国C. 善D. 诚3.平面直角坐标系中的点P(2﹣m,m)在第一象限,则m的取值范围在数轴上可表示为()A. B.C. D.4.如图,用直尺和圆规画∠AOB的平分线OE,其理论依据是()A. SASB. ASAC. AASD. SSS5.如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则等于()A. B. C. D.6.以二元一次方程组的解为坐标的点(x,y)在平面直角坐标系的()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F.若AB=4,BC=6,则FD的长为()A. B. 4 C. D.8.如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于()A. B. C. D.9.把方程x2-8x+3=0化成(x+m)2=n的形式,则m,n的值是().A. 4,13B. -4,19C. -4,13D. 4,1910. 如图,菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形EMCN的面积之比为()A. 4:3B. 3:2C. 14:9D. 17:911.在平面直角坐标系xOy中,一直线经过点A(﹣3,0),点B(0,),⊙P的圆心P的坐标为(1,0),与y轴相切于点O,若将⊙P沿x轴向左平移,平移后得到⊙P′,当⊙P′与直线相交时,横坐标为整数的点P′共有()A. 1个B. 2个C. 3个D. 4个12.如图,锐角三角形ABC中,∠C=45°,N为BC上一点,NC=5,BN=2,M为边AC上的一个动点,则BM+MN的最小值是().A. B. C. D.二、填空题(共8小题;共24分)13.到线段两个端点的距离相等的点有________.14.(2017•德州)如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是________.15.两个同样的直角三角板如图所示摆放,使点F,B,E,C在一条直线上,则有DF∥AC,理由是________16.如果实数x、y满足方程组,那么x2﹣y2的值为________.17.若点A(﹣2,b)在第三象限,则点B(﹣b,4)在第________象限.18.若抛物线y=x2+bx+c经过A(﹣2,0),B(4,0)两点,则这条抛物线的解析式为________.19. 有七张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,O)的概率是________.20.观察下列各式:22﹣1=1×3,32﹣1=2×4,42﹣1=3×5,52﹣1=4×6,…,根据上述规律,第n个等式应表示为________.三、解答题(共9小题;共60分)21.已知:3x=2,3y=5,求3x+y+32x+3y的值.22.先化简,再求值:÷(1﹣),其中x=0.23.一家商店将某种服装按成本价提高40%标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本多少元?24.如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.25.某市出租车的收费标准是:行程不超过3千米起步价为10元,超过3千米后每千米增收1.8元.某乘客出租车x千米.(1)试用关于x的代数式分情况表示该乘客的付费.(2)如果该乘客坐了8千米,应付费多少元?(3)如果该乘客付费26.2元,他坐了多少千米?26. 如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB,CD的上方,求AB和CD的距离.27.如图,在△ABC中,AB=AC=10,sinB= ,(1)求边BC的长;(2)将△ABC绕着点C旋转得△A′B′C,点A的对应点A′,点B的对应点B′.如果点A′在BC边上,那么点B和点B′之间的距离等于多少?28.已知函数y=ax2与直线y=2x﹣3的图象交于点A(1,b).(1)求a,b的值;(2)求两函数图象另一交点B的坐标.29.已知,如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A、B两点,点A在点B左侧,点B的坐标为(1,0)、C(0,﹣3).(1)求抛物线的解析式.(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?如存在,求点P的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题1.【答案】B【解析】【解答】解:A、对角线相等的四边形不一定是平行四边形,例如:等腰梯形的对角线相等,故本选项错误;B、对角线互相平分的四边形是平行四边形,故本选项正确;C、对角线互相垂直的四边形不一定是平行四边形,例如:菱形的对角线互相垂直,故本选项错误;D、对角线互相垂直平分且相等的四边形是平行四边形,故本选项错误;故选:B.【分析】根据平行四边形的判定定理对以下选项进行判断,也可以举出反例;2.【答案】C【解析】【解答】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“友”字相对的字是“善”.故选:C.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答3.【答案】B【解析】【解答】解:∵平面直角坐标系中的点P(2﹣m,m)在第一象限,∴,解得0<m<2,在数轴上表示为:.故选B.【分析】根据第一象限内点的坐标特点列出关于m的不等式组,求出m的取值范围,在数轴上表示出来即可.4.【答案】D【解析】【解答】解:连接CE、DE,在△OCE和△ODE中,,∴△OCE≌△ODE(SSS),∴∠AOE=∠BOE.因此画∠AOB的平分线OE,其理论依据是:SSS.故选:D.【分析】首先连接CE、DE,然后证明△OCE≌△ODE,根据全等三角形的性质可得∠AOE=∠BOE.5.【答案】D【解析】【分析】利用△DAO与△DEA相似,对应边成比例即可求解.【解答】∠DOA=90°,∠DAE=90°,∠ADE是公共角,∠DAO=∠DEA∴△DAO∽△DEA∴=即=∵AE=AD∴=故选D.【点评】本题的关键是利用相似三角形中的相似比,再利用中点和正方形的性质求得它们的比值.6.【答案】A【解析】【解答】解:①+②得:4y=8,解得:y=2,把y=2代入①得:x+6=7,解得:x=1,即点的坐标为(1,2),所以该点在第一象限,故选A.【分析】先解方程组,求出方程组的解,即可得出点的坐标,即可得出选项.7.【答案】C【解析】【解答】解:∵E是AD的中点,∴AE=DE,∵△ABE沿BE折叠后得到△GBE,∴AE=EG,AB=BG,∴ED=EG,∵在矩形ABCD中,∴∠A=∠D=90°,∴∠EGF=90°,∵在Rt△EDF和Rt△EGF中,,∴Rt△EDF≌Rt△EGF(HL),∴DF=FG,设DF=x,则BF=4+x,CF=4﹣x,在Rt△BCF中,62+(4﹣x)2=(4+x)2,解得x= .故选:C.【分析】根据点E是AD的中点以及翻折的性质可以求出AE=DE=EG,然后利用“HL”证明△EDF和△EGF全等,根据全等三角形对应边相等可证得DF=GF;设FD=x,表示出FC、BF,然后在Rt△BCF中,利用勾股定理列式进行计算即可得解.8.【答案】B【解析】【解答】解:如图,设B′C′与CD相交于点E,在Rt△ADE和Rt△AB′E,,∴Rt△ADE≌Rt△AB′E(HL),∴∠EAB′=∠EAD,∵旋转角为30°,∴∠BAB′=30°,∴∠EAD= (90°﹣30°)=30°,在Rt△ADE中,ED=ADtan30°=1× = ,∴这个风筝的面积=2×S△ADE=2× ×1× = ;故选:B.【分析】设B′C′与CD相交于点E,然后利用“HL”证明Rt△ADE和Rt△AB′E全等,根据全等三角形对应角相等可得∠EAB′=∠EAD,再根据旋转角求出∠BAB′=30°,再解直角三角形求出ED的长,然后利用三角形的面积公式列式进行计算即可得解.9.【答案】C【解析】【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】∵x2-8x+3=0∴x2-8x=-3∴x2-8x+16=-3+16∴(x-4)2=13∴m=-4,n=13故选C.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.10.【答案】C【解析】【解答】解:∵ME∥AD,∴△MEC∽△DAC,∴,∵菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm得到菱形EFGH,∴AE=1cm,EC=3cm,∴= ,∴= ,∴图中阴影部分图形的面积与四边形EMCN的面积之比为:= .故选:C.【分析】首先得出△MEC∽△DAC,则= ,进而得出= ,即可得出答案.11.【答案】C【解析】【解答】解:如图所示,∵点P的坐标为(1,0),⊙P与y轴相切于点O,∴⊙P的半径是1,若⊙P与AB相切时,设切点为D,由点A(﹣3,0),点B(0,),∴OA=3,OB=,由勾股定理得:AB=2,∠DAM=30°,设平移后圆与直线AB第一次相切时圆心为M(即对应的P′),∴MD⊥AB,MD=1,又因为∠DAM=30°,∴AM=2,M点的坐标为(﹣1,0),即对应的P′点的坐标为(﹣1,0),同理可得圆与直线第二次相切时圆心N的坐标为(﹣5,0),所以当⊙P′与直线l相交时,横坐标为整数的点P′的横坐标可以是﹣2,﹣3,﹣4共三个.故选:C.【分析】在解答本题时要先求出⊙P的半径,继而求得相切时P′点的坐标,根据A(﹣3,0),可以确定对应的横坐标为整数时对应的数值.12.【答案】C【解析】解答:如图所示,先作点N关于AC的对称点N′,由两点之间线段最短可知BN′即为BM+MN的最小值,根据对称的性质可知N′C=NC=5,∠ACB=∠ACN′=45°,即∠B CN′=90°,在Rt△BCN′中,BN′===.故答案为:C.分析:先作点N关于AC的对称点N′,由两点之间线段最短可知BN′即为BM+MN的最小值,根据对称的性质可知N′C=NC=5,∠BCN′=90°,再利用勾股定理即可求出BN′的长.二、填空题13.【答案】无数个【解析】【解答】解:到线段两个端点的距离相等的点有无数个.【分析】到线段两个端点的距离相等的点在该线段的垂直平分线上.14.【答案】同位角相等,两直线平行【解析】【解答】解:由图形得,有两个相等的同位角存在,所以依据:同位角相等,两直线平行,即可得到所得的直线与已知直线平行.故答案为:同位角相等,两直线平行.【分析】过直线外一点作已知直线的平行线,只有满足同位角相等,才能得到两直线平行.15.【答案】内错角相等两直线平行或(垂直于同一条直线的两直线平行)【解析】【解答】∵∠C=∠F=90°,DF∥AC故答案为:内错角相等两直线平行或(垂直于同一条直线的两直线平行)【分析】根据平行线的判定定理填写即可。

湖南省邵阳县XX中学2018年中考数学三模试卷(带解析)

湖南省邵阳县XX中学2018年中考数学三模试卷(带解析)

湖南省邵阳县2018年中考数学三模试卷姓名:__________ 班级:__________考号:__________考试时间100分钟满分120分题号一二总分评分一、选择题(每小题只有一个正确答案,共12小题,满分36分)1.下列说法正确的是()A. 对角线相等的四边形是平行四边形B. 对角线互相平分的四边形是平行四边形C. 对角线互相垂直的四边形是平行四边形D. 对角线互相垂直且相等的四边形是平行四边形2.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“友”相对的面上的汉字是()A. 爱B. 国C. 善D. 诚3.平面直角坐标系中的点P(2﹣m,m)在第一象限,则m的取值范围在数轴上可表示为()A. B.C. D.4.如图,用直尺和圆规画∠AOB的平分线OE,其理论依据是()A. SASB. ASAC. AASD. SSS5.如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则等于()A. B. C. D.6.以二元一次方程组的解为坐标的点(x,y)在平面直角坐标系的()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F.若AB=4,BC=6,则FD的长为()A. B. 4 C. D.8.如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于()A. B. C. D.9.把方程x2-8x+3=0化成(x+m)2=n的形式,则m,n的值是().A. 4,13B. -4,19C. -4,13D. 4,1910. 如图,菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形EMCN的面积之比为()A. 4:3B. 3:2C. 14:9D. 17:911.在平面直角坐标系xOy中,一直线经过点A(﹣3,0),点B(0,),⊙P的圆心P的坐标为(1,0),与y轴相切于点O,若将⊙P沿x轴向左平移,平移后得到⊙P′,当⊙P′与直线相交时,横坐标为整数的点P′共有()A. 1个B. 2个C. 3个D. 4个12.如图,锐角三角形ABC中,∠C=45°,N为BC上一点,NC=5,BN=2,M为边AC上的一个动点,则BM+MN的最小值是().A. B. C. D.二、填空题(共8小题;共24分)13.到线段两个端点的距离相等的点有________.14.(2017•德州)如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是________.15.两个同样的直角三角板如图所示摆放,使点F,B,E,C在一条直线上,则有DF∥AC,理由是________16.如果实数x、y满足方程组,那么x2﹣y2的值为________.17.若点A(﹣2,b)在第三象限,则点B(﹣b,4)在第________象限.18.若抛物线y=x2+bx+c经过A(﹣2,0),B(4,0)两点,则这条抛物线的解析式为________.19. 有七张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,O)的概率是________.20.观察下列各式:22﹣1=1×3,32﹣1=2×4,42﹣1=3×5,52﹣1=4×6,…,根据上述规律,第n个等式应表示为________.三、解答题(共9小题;共60分)21.已知:3x=2,3y=5,求3x+y+32x+3y的值.22.先化简,再求值:÷(1﹣),其中x=0.23.一家商店将某种服装按成本价提高40%标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本多少元?24.如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD 的度数.25.某市出租车的收费标准是:行程不超过3千米起步价为10元,超过3千米后每千米增收1.8元.某乘客出租车x千米.(1)试用关于x的代数式分情况表示该乘客的付费.(2)如果该乘客坐了8千米,应付费多少元?(3)如果该乘客付费26.2元,他坐了多少千米?26. 如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB,CD的上方,求AB和CD的距离.27.如图,在△ABC中,AB=AC=10,sinB= ,(1)求边BC的长;(2)将△ABC绕着点C旋转得△A′B′C,点A的对应点A′,点B的对应点B′.如果点A′在BC边上,那么点B和点B′之间的距离等于多少?28.已知函数y=ax2与直线y=2x﹣3的图象交于点A(1,b).(1)求a,b的值;(2)求两函数图象另一交点B的坐标.29.已知,如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A、B两点,点A在点B 左侧,点B的坐标为(1,0)、C(0,﹣3).(1)求抛物线的解析式.(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?如存在,求点P的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题1.【答案】B【解析】【解答】解:A、对角线相等的四边形不一定是平行四边形,例如:等腰梯形的对角线相等,故本选项错误;B、对角线互相平分的四边形是平行四边形,故本选项正确;C、对角线互相垂直的四边形不一定是平行四边形,例如:菱形的对角线互相垂直,故本选项错误;D、对角线互相垂直平分且相等的四边形是平行四边形,故本选项错误;故选:B.【分析】根据平行四边形的判定定理对以下选项进行判断,也可以举出反例;2.【答案】C【解析】【解答】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“友”字相对的字是“善”.故选:C.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答3.【答案】B【解析】【解答】解:∵平面直角坐标系中的点P(2﹣m,m)在第一象限,∴,解得0<m<2,在数轴上表示为:.故选B.【分析】根据第一象限内点的坐标特点列出关于m的不等式组,求出m的取值范围,在数轴上表示出来即可.4.【答案】D【解析】【解答】解:连接CE、DE,在△OCE和△ODE中,,∴△OCE≌△ODE(SSS),∴∠AOE=∠BOE.因此画∠AOB的平分线OE,其理论依据是:SSS.故选:D.【分析】首先连接CE、DE,然后证明△OCE≌△ODE,根据全等三角形的性质可得∠AOE=∠BOE.5.【答案】D【解析】【分析】利用△DAO与△DEA相似,对应边成比例即可求解.【解答】∠DOA=90°,∠DAE=90°,∠ADE是公共角,∠DAO=∠DEA∴△DAO∽△DEA∴=即=∵AE=AD∴=故选D.【点评】本题的关键是利用相似三角形中的相似比,再利用中点和正方形的性质求得它们的比值.6.【答案】A【解析】【解答】解:①+②得:4y=8,解得:y=2,把y=2代入①得:x+6=7,解得:x=1,即点的坐标为(1,2),所以该点在第一象限,故选A.【分析】先解方程组,求出方程组的解,即可得出点的坐标,即可得出选项.7.【答案】C【解析】【解答】解:∵E是AD的中点,∴AE=DE,∵△ABE沿BE折叠后得到△GBE,∴AE=EG,AB=BG,∴ED=EG,∵在矩形ABCD中,∴∠A=∠D=90°,∴∠EGF=90°,∵在Rt△EDF和Rt△EGF中,,∴Rt△EDF≌Rt△EGF(HL),∴DF=FG,设DF=x,则BF=4+x,CF=4﹣x,在Rt△BCF中,62+(4﹣x)2=(4+x)2,解得x= .故选:C.【分析】根据点E是AD的中点以及翻折的性质可以求出AE=DE=EG,然后利用“HL”证明△EDF和△EGF全等,根据全等三角形对应边相等可证得DF=GF;设FD=x,表示出FC、BF,然后在Rt△BCF 中,利用勾股定理列式进行计算即可得解.8.【答案】B【解析】【解答】解:如图,设B′C′与CD相交于点E,在Rt△ADE和Rt△AB′E,,∴Rt△ADE≌Rt△AB′E(HL),∴∠EAB′=∠EAD,∵旋转角为30°,∴∠BAB′=30°,∴∠EAD= (90°﹣30°)=30°,在Rt△ADE中,ED=ADtan30°=1× = ,∴这个风筝的面积=2×S△ADE=2× ×1× = ;故选:B.【分析】设B′C′与CD相交于点E,然后利用“HL”证明Rt△ADE和Rt△AB′E全等,根据全等三角形对应角相等可得∠EAB′=∠EAD,再根据旋转角求出∠BAB′=30°,再解直角三角形求出ED的长,然后利用三角形的面积公式列式进行计算即可得解.9.【答案】C【解析】【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】∵x2-8x+3=0∴x2-8x=-3∴x2-8x+16=-3+16∴(x-4)2=13∴m=-4,n=13故选C.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.10.【答案】C【解析】【解答】解:∵ME∥AD,∴△MEC∽△DAC,∴,∵菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm得到菱形EFGH,∴AE=1cm,EC=3cm,∴= ,∴= ,∴图中阴影部分图形的面积与四边形EMCN的面积之比为:= .故选:C.【分析】首先得出△MEC∽△DAC,则= ,进而得出= ,即可得出答案.11.【答案】C【解析】【解答】解:如图所示,∵点P的坐标为(1,0),⊙P与y轴相切于点O,∴⊙P的半径是1,若⊙P与AB相切时,设切点为D,由点A(﹣3,0),点B(0,),∴OA=3,OB=,由勾股定理得:AB=2,∠DAM=30°,设平移后圆与直线AB第一次相切时圆心为M(即对应的P′),∴MD⊥AB,MD=1,又因为∠DAM=30°,∴AM=2,M点的坐标为(﹣1,0),即对应的P′点的坐标为(﹣1,0),同理可得圆与直线第二次相切时圆心N的坐标为(﹣5,0),所以当⊙P′与直线l相交时,横坐标为整数的点P′的横坐标可以是﹣2,﹣3,﹣4共三个.故选:C.【分析】在解答本题时要先求出⊙P的半径,继而求得相切时P′点的坐标,根据A(﹣3,0),可以确定对应的横坐标为整数时对应的数值.12.【答案】C【解析】解答:如图所示,先作点N关于AC的对称点N′,由两点之间线段最短可知BN′即为BM+MN的最小值,根据对称的性质可知N′C=NC=5,∠ACB=∠ACN′=45°,即∠B CN′=90°,在Rt△BCN′中,BN′===.故答案为:C.分析:先作点N关于AC的对称点N′,由两点之间线段最短可知BN′即为BM+MN的最小值,根据对称的性质可知N′C=NC=5,∠BCN′=90°,再利用勾股定理即可求出BN′的长.二、填空题13.【答案】无数个【解析】【解答】解:到线段两个端点的距离相等的点有无数个.【分析】到线段两个端点的距离相等的点在该线段的垂直平分线上.14.【答案】同位角相等,两直线平行【解析】【解答】解:由图形得,有两个相等的同位角存在,所以依据:同位角相等,两直线平行,即可得到所得的直线与已知直线平行.故答案为:同位角相等,两直线平行.【分析】过直线外一点作已知直线的平行线,只有满足同位角相等,才能得到两直线平行.15.【答案】内错角相等两直线平行或(垂直于同一条直线的两直线平行)【解析】【解答】∵∠C=∠F=90°,DF∥AC故答案为:内错角相等两直线平行或(垂直于同一条直线的两直线平行)【分析】根据平行线的判定定理填写即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省邵阳县白仓镇中学2018年中考数学三模试卷姓名:__________ 班级:__________考号:__________考试时间90分钟满分120分一、选择题(每小题只有一个正确答案,共10小题,满分30分)1.在-1,0,1,2这四个数中,最小的数是()A. -1B. 0C. 1D. 22.5月31日,参观上海世博会的游客约为505 000人,505 000用科学记数法表示为()A. 505×103B. 5.05×103C. 5.05×104D. 5.05×1053. 下列计算,正确的是()A. a2﹣a=aB. a2•a3=a6C. a9÷a3=a3D. (a3)2=a64.如图所示的图形是由7个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是()A. B. C. D.5.已知点关于x轴的对称点(3-2a ,2a-5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),那么点的坐标为( )A. (-1,1)B. (1,-1)C. (-1,-1)D. 无法确定6.如图,圆锥的轴截面△ABC是一个以圆锥的底面直径为底边,圆锥的母线为腰的等腰三角形,若圆锥的底面直径BC=4cm,母线AB=6cm,则由点B出发,经过圆锥的侧面到达母线AC的最短路程是( )A. cmB. 6cmC. 3cmD. 4cm7.小明在参加区运动会前刻苦进行100米跑训练,老师对他10次的训练成绩进行统计分析,判断他的成绩是否稳定,则老师需要知道他这10次成绩的()A. 众数B. 方差C. 平均数D. 频数8.如图,正方形ABCD的边长为4,现有一动点P从点A出发,沿A→B→C→D→A的路径以每秒1个单位长度的速度匀速运动,设点P运动的时间为t,△APB的面积为S,则下列图象能大致反映S与t的函数关系的是()A. B.C. D.9.已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是A. B.C. D.10. 如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为()A. 5B. 10C. 10D. 15二、填空题(共8小题;共24分)11. 使式子有意义的x取值范围是________.12.如图,O为跷跷板AB的中点,支柱OC与地面MN垂直,垂足为点C,且OC=50cm,当跷跷板的一端B 着地时,另一端A离地面的高度为________ cm.13.四边形ABCD为圆O的内接四边形,已知∠BOD=100°,则∠BCD=________ .14.(2017•抚顺)已知关于x的方程x2+2x﹣m=0有实数解,那么m的取值范围是________.15.如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK=________.16.已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h 到达,这辆汽车原来的速度是________ km/h.17.若(x+2)2+=0,则xy= ________18. 如图,四边形OABC是平行四边形,点C在x轴上,反比例函数y= (x>0)的图象经过点A(5,12),且与边BC交于点D.若AB=BD,则点D的坐标为________.三、解答题(共10小题;共66分)19. (1)计算:﹣4sin30°+(2014﹣π)0﹣22.(2)解不等式组:.20.先化简,再求值:,其中a是方程x2+x=6的一个根.21. 某学校为了解学生的课外阅读情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间t(单位:min),然后利用所得数据绘制成如图不完整的统计图表.课外阅读时间频数分布表请根据图表中提供的信息回答下列问题:(1)a=________,b=________;(2)将频数分布直方图补充完整;(3)若全校有900名学生,估计该校有多少学生平均每天的课外阅读时间不少于50min?22.近年深圳进行高中招生制度改革,某初中学校获得保送(指标生)名额若干,现在九年级四位品学兼优的学生小斌(男)、小亮(男)、小红(女)、小丽(女)都获得保送资格,且机会均等.(1)若学校只有一个名额,则随机选到小斌的概率是多少.(2)若学校争取到两个名额,请用树状图或列表法求随机选到保送的学生恰好是一男一女的概率.23.(2015•甘孜州)如图,某中学九年级数学兴趣小组测量校内旗杆AB的高度,在C点测得旗杆顶端A 的仰角∠BCA=30°,向前走了20米到达D点,在D点测得旗杆顶端A的仰角∠BDA=60°,求旗杆AB的高度.(结果保留根号)24.如图,AB是⊙O的直径,E为弦AC的延长线上一点,DE与⊙O相切于点D,且DE⊥AC,连结OD,若AB=10,AC=6,求DE的长.25. 某学习小组在研究函数y= x3﹣2x的图象与性质时,已列表、描点并画出了图象的一部分.(1)请补全函数图象;(2)方程x3﹣2x=﹣2实数根的个数为________;(3)观察图象,写出该函数的两条性质.26.如图,矩形ABCD中,对角线AC的垂直平分线交AD、BC于点E、F,AC与EF交于点O,连结AF、CE.(1)求证:四边形AFCE是菱形;(2)若AB=3,AD=4,求菱形AFCE的边长.27.已知△ABC中,D为AB边上任意一点,DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α.(1)如图1,当α=60°时,求证:△DCE是等边三角形;(2)如图2,当α=45°时,求证:①= ;②CE⊥DE.(3)如图3,当α为任意锐角时,请直接写出线段CE与DE的数量关系是:=________.28.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.参考答案与试题解析一、选择题1.【答案】A【解析】∵-1<0<1<2,∴最小的数是-1,故选A.【分析】根据有理数的大小比较法则判断即可.正数都大于0,负数都小于0,正数大于一切负数.本题考查了对有理数的大小比较的应用,关键是理解法则正数都大于0,负数都小于0,正数大于一切负数.2.【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】505 000用科学记数法表示为5.05×105.故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.表示时关键要正确确定a的值以及n的值.3.【答案】D【解析】A.a2﹣a,不能合并,A不符合题意;B.a2•a3=a5,B不符合题意;C.a9÷a3=a6,C不符合题意;D.(a3)2=a6,D符合题意.故答案为:D.[分析】根据有理数的乘方,乘除法及减法法则进行计算即可得到答案.4.【答案】B【解析】根据立方体的组成可得出:A、是几何体的左视图,A不符合题意;B、不是几何体的三视图,B符合题意;C、是几何体的主视图,C不符合题意;D、是几何体的俯视图,D不符合题意.故答案为:B.【分析】根据三视图的有关定义进行判别,即可得到答案.5.【答案】A【解析】解答:点(3-2a ,2a-5)在第三象限内,所以,解得,所以,又因为点是整点,所以2a=4,所以点为(-1,-1),又因为点与点关于x轴对称,所以点的坐标为(-1,1).分析:先根据点是第三象限内的整点求得a的值,从而求得点,再根据点与关于x轴对称求得的坐标.6.【答案】C【解析】解:沿母线AB把圆锥展开,如图,过B作BD⊥AC′于D,弧BC′=•2π•2=2π,设∠C′AB=n°,∴2π=,∴n=60,即∠DAB=60°,在Rt△ADB中,AD=AB=×6=3,∴BD=AD=3,所以由点B出发,经过圆锥的侧面到达母线AC的最短路程为3cm.故选C.【分析】沿母线AB把圆锥展开,过B作BD⊥AC′于D,根据两点之间线段最短,得到由点B出发,经过圆锥的侧面到达母线AC的最短路程为BD,BC′弧长为圆锥底面圆的周长的一半,再根据弧长公式计算出∠DAB,最后解Rt△ADB,即可得到ND.本题考查了圆锥的展开图的有关计算:展开图为扇形,弧长为圆锥底面圆的周长,半径为圆锥的母线长.也考查了把立体图形中的问题转化为平面图形来解决.7.【答案】B【解析】【解答】众数、平均数是反映一组数据的集中趋势,而频数是数据出现的次数,只有方差是反映数据的波动大小的.故为了判断成绩是否稳定,需要知道的是方差.故选B.【分析】根据众数、平均数、频数、方差的概念分析.8.【答案】D【解析】【解答】解:当点P在AB上运动时,即0≤t≤4,S= •t•0=0;当点P在BC上运动时,即4<t≤8,S= ×4×(t﹣4)=2t﹣8;当点P在CD上运动时,即8<t≤12,S= ×4×4=8;当点P在DA上运动时,即12<t≤16,S= ×4×(16﹣t)=﹣2t+32;符合以上四种情况的函数图象为D选项,故选:D.【分析】分点P在AB、BC、CD、DA上运动这四种情况,根据三角形面积公式列出函数解析式,由函数解析式即可得出函数图象.9.【答案】D【解析】【解答】A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B不符合题意;C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;故答案为:D【分析】根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断。

相关文档
最新文档