新课标全国卷高考数学答题卡(理科)模板word版
2023高考数学(理)(全国甲卷)
姓名:座位号(在此试卷上答题无效)绝密★启用前2023年普通高等学校招生全国统一考试数学(理科)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{31Z},A x x k k ==+Î,{32Z},B x x k k ==+Î,U 为整数集,则()U C A B =I A .{3Z},x x k k =ÎB .{31Z},x x k k =-ÎB .C .{31Z},x x k k =-ÎD .Æ2-若复数(i)(1i)2a a +-=,则a =A .1-B .0C .1D .23.执行下面的程序框图,输出的B =A .21B .34C .55D .894.向量1a b ==,c 且0a b c ++=,则cos a b b c ,<-->=A .15-B .25-C .25D .455.已知数列{}n a 中,n S 为{}n a 前n 项和,5354S S =-,则4S =A .7B .9C .15D .206.有50人报名足球俱乐部,60人报名乒乓球俱乐部,结束70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球,俱乐部的概率为A .0.8B .0.4C .0.2D .0.17.“22sin sin 1a b +=”是“cos cos 0a b +=”的A .充分条件但不是必要条件B .必要条件但不是充分条件C .充要条件D .既不是充分条件也不是必要条件8.已知双曲线22221(00),x y a b a b+=>>的离心率为,其中一条渐近线与圆22(2)(3)1x y -+-=交于A ,B 两点,则AB =A .15B C D 9.有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则两天中恰有1人连续参加两天服务的选择种数为A .120B .60C .40D .3010.已知()f x 为函数πcos(2)4y x =+向左平移π6个单位所得函数,则()y f x =与1122y x =-,交点个数为A .1B .2C .3D .411.在四棱锥P ABCD -中,底面ABCD 为正方形,4AB =,3PC PD ==,45PCA Ð=°,则△PBC 的面积为A .B .C .D .12.已知椭圆22196x y +=,F 1、F 2为两个焦点,O 为原点,P 为椭有圆上一点,123cos 5∠F PF =,则|OP =A .25B .302C .35D .352二、填空题:本题共4小题,每小题5分,共20分。
新课标全国高考理科数学试题(Word版)
普通高等学校招生全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,其中第II 卷第(22)-(24)题为选考题,其他题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1、答题前,考生务必先将自己的姓名,准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2、选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚。
3、请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4、保持卷面清洁,不折叠,不破损。
5、做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。
参考公式:样本数据n x x x ,,21的标准差 锥体体积公式222121[()()()]n s x x x x x x n =-+-++- 13V Sh =其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式V Sh = 24S R π= 343V R π=其中S 为底面面积,h 为高 其中R 为球的半径第I 卷 一、 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知集合{||2,}A x x R =≤∈},{|4,}B x x x Z =≤∈,则A B ⋂=(A)(0,2) (B)[0,2] (C){0,2] (D){0,1,2}(2)已知复数23(13)iz i +=-z 是z 的共轭复数,则z z •=A.14 B.12C.1D.2 (3)曲线2xy x =+在点(-1,-1)处的切线方程为(A )y=2x+1 (B)y=2x-1 C y=-2x-3 D.y=-2x-2(4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为(5)已知命题1p :函数22x x y -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p -∨和4q :()12p p ∧-中,真命题是(A )1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为(A )100 (B )200 (C )300 (D )400 (7)如果执行右面的框图,输入5N =,则输出的数等于(A )54 (B )45(C )65(D )56(8)设偶函数()f x 满足3()8(0)f x x x =-≥,则{|(2)0}x f x ->= (A) {|24}x x x <->或 (B) {|04}x x x <>或 (C) {|06}x x x <>或(D) {|22}x x x <->或(9)若4cos 5α=-,α是第三象限的角,则1tan21tan 2αα+=- (A) 12- (B) 12(C) 2 (D) -2(10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为 (A) 2a π(B) 273a π(C)2113a π (D) 25a π(11)已知函数|lg |,010,()16,10.2x x f x x x <≤⎧⎪=⎨-+>⎪⎩若,,a b c 互不相等,且()()(),f a f b f c ==则abc 的取值范围是 (A) (1,10)(B) (5,6)(C) (10,12)(D) (20,24)(12)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为(A)22136x y -= (B)22145x y -=(C) 22163x y -= (D)22154x y -= 第Ⅱ卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须做答,第(22)题~第(24)题为选考题,考试根据要求做答。
(完整word版)2016年新课标全国卷2高考理科数学试题及答案
一、选择题(本大题共12小题,共60.0分)1.已知z=(m+3)+(m-1)i在复平面内对应的点在第四象限,则实数m的取值范围是()A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3)2.已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=()A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}3.已知向量=(1,m),=(3,-2),且(+)⊥,则m=()A.-8B.-6C.6D.84.圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-B.-C.D.25.如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.96.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π7.若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=-(k∈Z)B.x=+(k∈Z)C.x=-(k∈Z)D.x=+(k∈Z)8.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A.7B.12C.17D.349.若cos(-α)=,则sin2α=()A. B. C.- D.-10.从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n构成n个数对(x1,y1),(x2,y2)…(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A. B. C. D.11.已知F1,F2是双曲线E:-=1的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则E的离心率为()A. B. C. D.212.已知函数f(x)(x∈R)满足f(-x)=2-f(x),若函数y=与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则(x i+y i)=()A.0B.mC.2mD.4m二、填空题(本大题共4小题,共20.0分)13.△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b= ______ .14.α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题是 ______ (填序号)15.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 ______ .16.若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b= ______ .三、解答题(本大题共8小题,共94.0分)17.S n为等差数列{a n}的前n项和,且a1=1,S7=28,记b n=[lga n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.(Ⅰ)求b1,b11,b101;(Ⅱ)求数列{b n}的前1000项和.18.某保险的基本保费为a(单位:元),继续购买该保险的投保人成为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险0 1 2 3 4 ≥5次数保费0.85a a 1.25a 1.5a 1.75a 2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险0 1 2 3 4 ≥5次数概率0.30 0.15 0.20 0.20 0.10 0.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值.19.如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交于BD于点M,将△DEF沿EF折到△D′EF的位置,OD′=.(Ⅰ)证明:D′H⊥平面ABCD;(Ⅱ)求二面角B-D′A-C的正弦值.20.已知椭圆E:+=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,|AM|=|AN|时,求△AMN的面积;(Ⅱ)当2|AM|=|AN|时,求k的取值范围.21.(Ⅰ)讨论函数f(x)=e x的单调性,并证明当x>0时,(x-2)e x+x+2>0;(Ⅱ)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.22.如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.(Ⅰ)证明:B,C,G,F四点共圆;(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.23.在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是(t为参数),l与C交与A,B两点,|AB|=,求l的斜率.24.已知函数f(x)=|x-|+|x+|,M为不等式f(x)<2的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b∈M时,|a+b|<|1+ab|.2016年全国统一高考数学试卷(新课标Ⅱ)(理科)答案和解析【答案】1.A2.C3.D4.A5.B6.C7.B8.C9.D 10.C 11.A 12.B13.14.②③④15.1和316.1-ln217.解:(Ⅰ)S n为等差数列{a n}的前n项和,且a1=1,S7=28,7a4=28.可得a4=4,则公差d=1.a n=n,b n=[lgn],则b1=[lg1]=0,b11=[lg11]=1,b101=[lg101]=2.(Ⅱ)由(Ⅰ)可知:b1=b2=b3=…=b9=0,b10=b11=b12=…=b99=1.b100=b101=b102=b103=…=b999=2,b10,00=3.数列{b n}的前1000项和为:9×0+90×1+900×2+3=1893.18.解:(Ⅰ)∵某保险的基本保费为a(单位:元),上年度出险次数大于等于2时,续保人本年度的保费高于基本保费,∴由该险种一续保人一年内出险次数与相应概率统计表得:一续保人本年度的保费高于基本保费的概率:p1=1-0.30-0.15=0.55.(Ⅱ)设事件A表示“一续保人本年度的保费高于基本保费”,事件B表示“一续保人本年度的保费比基本保费高出60%”,由题意P(A)=0.55,P(AB)=0.10+0.05=0.15,由题意得若一续保人本年度的保费高于基本保费,则其保费比基本保费高出60%的概率:p2=P(B|A)===.(Ⅲ)由题意,续保人本年度的平均保费与基本保费的比值为:=1.23,∴续保人本年度的平均保费与基本保费的比值为1.23.19.(Ⅰ)证明:∵ABCD是菱形,∴AD=DC,又AE=CF=,∴,则EF∥AC,又由ABCD是菱形,得AC⊥BD,则EF⊥BD,∴EF⊥DH,则EF⊥D′H,∵AC=6,∴AO=3,又AB=5,AO⊥OB,∴OB=4,∴OH=,则DH=D′H=3,∴|OD′|2=|OH|2+|D′H|2,则D′H⊥OH,又OH∩EF=H,∴D′H⊥平面ABCD;(Ⅱ)解:以H为坐标原点,建立如图所示空间直角坐标系,∵AB=5,AC=6,∴B(5,0,0),C(1,3,0),D′(0,0,3),A(1,-3,0),,,设平面ABD′的一个法向量为,由,得,取x=3,得y=-4,z=5.∴.同理可求得平面A D′C的一个法向量,设二面角二面角B-D′A-C的平面角为θ,则|cosθ|=.∴二面角B-D′A-C的正弦值为sinθ=.20.解:(Ⅰ)t=4时,椭圆E的方程为+=1,A(-2,0),直线AM的方程为y=k(x+2),代入椭圆方程,整理可得(3+4k2)x2+16k2x+16k2-12=0,解得x=-2或x=-,则|AM|=•|2-|=•,由AN⊥AM,可得|AN|=•=•,由|AM|=|AN|,k>0,可得•=•,整理可得(k-1)(4k2-k+4)=0,由4k2-k+4=0无实根,可得k=1,即有△AMN的面积为|AM|2=(•)2=;(Ⅱ)直线AM的方程为y=k(x+),代入椭圆方程,可得(3+tk2)x2+2t k2x+t2k2-3t=0,解得x=-或x=-,即有|AM|=•|-|=•,|AN|═•=•,由2|AM|=|AN|,可得2•=•,整理得t=,由椭圆的焦点在x轴上,则t>3,即有>3,即有<0,可得<k<2,即k的取值范围是(,2).21.解:(1)证明:f(x)=f'(x)=e x()=∵当x∈(-∞,-2)∪(-2,+∞)时,f'(x)>0∴f(x)在(-∞,-2)和(-2,+∞)上单调递增∴x>0时,>f(0)=-1即(x-2)e x+x+2>0(2)g'(x)==a∈[0,1]由(1)知,当x>0时,f(x)=的值域为(-1,+∞),只有一解使得,t∈[0,2]当x∈(0,t)时,g'(x)<0,g(x)单调减;当x∈(t,+∞),g'(x)>0,g(x)单调增;h(a)===记k(t)=,在t∈(0,2]时,k'(t)=>0,故k(t)单调递增,所以h(a)=k(t)∈(,].22.(Ⅰ)证明:∵DF⊥CE,∴Rt△DFC∽Rt△EDC,∴=,∵DE=DG,CD=BC,∴=,又∵∠GDF=∠DEF=∠BCF,∴△GDF∽△BCF,∴∠CFB=∠DFG,∴∠GFB=∠GFC+∠CFB=∠GFC+∠DFG=∠DFC=90°,∴∠GFB+∠GCB=180°,∴B,C,G,F四点共圆.(Ⅱ)∵E为AD中点,AB=1,∴DG=CG=DE=,∴在Rt△DFC中,GF=CD=GC,连接GB,Rt△BCG≌Rt△BFG,∴S四边形BCGF=2S△BCG=2××1×=.23.解:(Ⅰ)∵圆C的方程为(x+6)2+y2=25,∴x2+y2+12x+11=0,∵ρ2=x2+y2,x=ρcosα,y=ρsinα,∴C的极坐标方程为ρ2+12ρcosα+11=0.(Ⅱ)∵直线l的参数方程是(t为参数),∴直线l的一般方程y=tanα•x,∵l与C交与A,B两点,|AB|=,圆C的圆心C(-6,0),半径r=5,∴圆心C(-6,0)到直线距离d==,解得tan2α=,∴tanα=±=±.∴l的斜率k=±.24.解:(I)当x<时,不等式f(x)<2可化为:-x-x-<2,解得:x>-1,∴-1<x<,当≤x≤时,不等式f(x)<2可化为:-x+x+=1<2,此时不等式恒成立,∴≤x≤,当x>时,不等式f(x)<2可化为:-+x+x+<2,解得:x<1,∴<x<1,综上可得:M=(-1,1);证明:(Ⅱ)当a,b∈M时,(a2-1)(b2-1)>0,即a2b2+1>a2+b2,即a2b2+1+2ab>a2+b2+2ab,即(ab+1)2>(a+b)2,即|a+b|<|1+ab|.【解析】1. 解:z=(m+3)+(m-1)i在复平面内对应的点在第四象限,可得:,解得-3<m<1.故选:A.利用复数对应点所在象限,列出不等式组求解即可.本题考查复数的几何意义,考查计算能力.2. 解:∵集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z}={0,1},∴A∪B={0,1,2,3}.故选:C.先求出集合A,B,由此利用并集的定义能求出A∪B的值.本题考查并集的求法,是基础题,解题时要认真审题,注意并集定义的合理运用.3. 解:∵向量=(1,m),=(3,-2),∴+=(4,m-2),又∵(+)⊥,∴12-2(m-2)=0,解得:m=8,故选:D.求出向量+的坐标,根据向量垂直的充要条件,构造关于m的方程,解得答案.本题考查的知识点是向量垂直的充要条件,难度不大,属于基础题.4. 解:圆x2+y2-2x-8y+13=0的圆心坐标为:(1,4),故圆心到直线ax+y-1=0的距离d==1,解得:a=,故选:A.求出圆心坐标,代入点到直线距离方程,解得答案.本题考查的知识点是圆的一般方程,点到直线的距离公式,难度中档.5. 解:从E到F,每条东西向的街道被分成2段,每条南北向的街道被分成2段,从E到F最短的走法,无论怎样走,一定包括4段,其中2段方向相同,另2段方向相同,每种最短走法,即是从4段中选出2段走东向的,选出2段走北向的,故共有C42=6种走法.同理从F到G,最短的走法,有C31=3种走法.∴小明到老年公寓可以选择的最短路径条数为6×3=18种走法.故选:B.从E到F最短的走法,无论怎样走,一定包括4段,其中2段方向相同,另2段方向相同,每种最短走法,即是从4段中选出2段走东向的,选出2段走北向的,由组合数可得最短的走法,同理从F到G,最短的走法,有C31=3种走法,利用乘法原理可得结论.本题考查排列组合的简单应用,得出组成矩形的条件和最短走法是解决问题的关键,属基础题6. 解:由三视图知,空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,∴在轴截面中圆锥的母线长是=4,∴圆锥的侧面积是π×2×4=8π,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,∴圆柱表现出来的表面积是π×22+2π×2×4=20π∴空间组合体的表面积是28π,故选:C.空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,在轴截面中圆锥的母线长使用勾股定理做出的,写出表面积,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,做出圆柱的表面积,注意不包括重合的平面.本题考查由三视图求表面积,本题的图形结构比较简单,易错点可能是两个几何体重叠的部分忘记去掉,求表面积就有这样的弊端.7. 解:将函数y=2sin2x的图象向左平移个单位长度,得到y=2sin2(x+)=2sin(2x+),由2x+=kπ+(k∈Z)得:x=+(k∈Z),即平移后的图象的对称轴方程为x=+(k∈Z),故选:B.利用函数y= A sin(ωx+ φ)(A>0,ω>0)的图象的变换及正弦函数的对称性可得答案.本题考查函数yy= A sin(ωx+ φ)(A>0,ω>0)的图象的变换规律的应用及正弦函数的对称性质,属于中档题.8. 解:∵输入的x=2,n=2,当输入的a为2时,S=2,k=1,不满足退出循环的条件;当再次输入的a为2时,S=6,k=2,不满足退出循环的条件;当输入的a为5时,S=17,k=3,满足退出循环的条件;故输出的S值为17,故选:C根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案.本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.9. 解:∵cos(-α)=,∴sin2α=cos(-2α)=cos2(-α)=2cos2(-α)-1=2×-1=-,故选:D.利用诱导公式化sin2α=cos(-2α),再利用二倍角的余弦可得答案.本题考查三角函数的恒等变换及化简求值,熟练掌握诱导公式化与二倍角的余弦是关键,属于中档题.10. 解:由题意,,∴π=.故选:C.以面积为测度,建立方程,即可求出圆周率π的近似值.古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.11.解:设|MF1|=x,则|MF2|=2a+x,∵MF1与x轴垂直,∴(2a+x)2=x2+4c2,∴x=∵sin∠MF2F1=,∴3x=2a+x,∴x=a,∴=a,∴a=b,∴c=a,∴e==.故选:A.设|MF1|=x,则|MF2|=2a+x,利用勾股定理,求出x=,利用sin∠MF2F1=,求得x=a,可得=a,求出a=b,即可得出结论.本题考查双曲线的定义与方程,考查双曲线的性质,考查学生分析解决问题的能力,比较基础.12. 解:函数f(x)(x∈R)满足f(-x)=2-f(x),即为f(x)+f(-x)=2,可得f(x)关于点(0,1)对称,函数y=,即y=1+的图象关于点(0,1)对称,即有(x1,y1)为交点,即有(-x1,2-y1)也为交点,(x2,y2)为交点,即有(-x2,2-y2)也为交点,…则有(x i+y i)=(x1+y1)+(x2+y2)+…+(x m+y m)=[(x1+y1)+(-x1+2-y1)+(x2+y2)+(-x2+2-y2)+…+(x m+y m)+(-x m+2-y m)]=m.故选B.由条件可得f(x)+f(-x)=2,即有f(x)关于点(0,1)对称,又函数y=,即y=1+的图象关于点(0,1)对称,即有(x1,y1)为交点,即有(-x1,2-y1)也为交点,计算即可得到所求和.本题考查抽象函数的运用:求和,考查函数的对称性的运用,以及化简整理的运算能力,属于中档题.13. 解:由cosA=,cosC=,可得sinA===,sinC===,sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,由正弦定理可得b===.故答案为:.运用同角的平方关系可得sinA,sinC,再由诱导公式和两角和的正弦公式,可得sinB,运用正弦定理可得b=,代入计算即可得到所求值.本题考查正弦定理的运用,同时考查两角和的正弦公式和诱导公式,以及同角的平方关系的运用,考查运算能力,属于中档题.14. 解:①如果m⊥n,m⊥α,n∥β,那么α∥β,故错误;②如果n∥α,则存在直线l⊂α,使n∥l,由m⊥α,可得m⊥l,那么m⊥n.故正确;③如果α∥β,m⊂α,那么m与β无公共点,则m∥β.故正确④如果m∥n,α∥β,那么m,n与α所成的角和m,n与β所成的角均相等.故正确;故答案为:②③④根据空间直线与平面的位置关系的判定方法及几何特征,分析判断各个结论的真假,可得答案.本题以命题的真假判断与应用为载体,考查了空间直线与平面的位置关系,难度中档.15. 解:根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3;∴根据甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3;又甲说,“我与乙的卡片上相同的数字不是2”;∴甲的卡片上写的数字不是1和2,这与已知矛盾;∴甲的卡片上的数字是1和3.故答案为:1和3.可先根据丙的说法推出丙的卡片上写着1和2,或1和3,分别讨论这两种情况,根据甲和乙的说法可分别推出甲和乙卡片上的数字,这样便可判断出甲卡片上的数字是多少.考查进行简单的合情推理的能力,以及分类讨论得到解题思想,做这类题注意找出解题的突破口.16. 解:设y=kx+b与y=lnx+2和y=ln(x+1)的切点分别为(x1,kx1+b)、(x2,kx2+b);由导数的几何意义可得k==,得x1=x2+1再由切点也在各自的曲线上,可得联立上述式子解得;从而kx1+b=lnx1+2得出b=1-ln2.先设切点,然后利用切点来寻找切线斜率的联系,以及对应的函数值,综合联立求解即可本题考查了导数的几何意义,体现了方程思想,对学生综合计算能力有一定要求,中档题17.(Ⅰ)利用已知条件求出等差数列的公差,求出通项公式,然后求解b1,b11,b101;(Ⅱ)找出数列的规律,然后求数列{b n}的前1000项和.本题考查数列的性质,数列求和,考查分析问题解决问题的能力,以及计算能力.18.(Ⅰ)上年度出险次数大于等于2时,续保人本年度的保费高于基本保费,由此利用该险种一续保人一年内出险次数与相应概率统计表根据对立事件概率计算公式能求出一续保人本年度的保费高于基本保费的概率.(Ⅱ)设事件A表示“一续保人本年度的保费高于基本保费”,事件B表示“一续保人本年度的保费比基本保费高出60%”,由题意求出P(A),P(AB),由此利用条件概率能求出若一续保人本年度的保费高于基本保费,则其保费比基本保费高出60%的概率.(Ⅲ)由题意,能求出续保人本年度的平均保费与基本保费的比值.本题考查概率的求法,是中档题,解题时要认真审题,注意对立事件概率计算公式、条件概率计算公式的合理运用.19.(Ⅰ)由底面ABCD为菱形,可得AD=CD,结合AE=CF可得EF∥AC,再由ABCD是菱形,得AC⊥BD,进一步得到EF⊥BD,由EF⊥DH,可得E F⊥D′H,然后求解直角三角形得D′H⊥OH,再由线面垂直的判定得D′H⊥平面ABCD;(Ⅱ)以H为坐标原点,建立如图所示空间直角坐标系,由已知求得所用点的坐标,得到的坐标,分别求出平面ABD′与平面AD′C的一个法向量,设二面角二面角B-D′A-C的平面角为θ,求出|cosθ|.则二面角B-D′A-C的正弦值可求.本题考查线面垂直的判定,考查了二面角的平面角的求法,训练了利用平面的法向量求解二面角问题,体现了数学转化思想方法,是中档题.20.(Ⅰ)求出t=4时,椭圆方程和顶点A,设出直线AM的方程,代入椭圆方程,求交点M,运用弦长公式求得|AM|,由垂直的条件可得|AN|,再由|AM|=|AN|,解得k=1,运用三角形的面积公式可得△AMN的面积;(Ⅱ)直线AM的方程为y=k(x+),代入椭圆方程,求得交点M,可得|AM|,|AN|,再由2|AM|=|AN|,求得t,再由椭圆的性质可得t>3,解不等式即可得到所求范围.本题考查椭圆的方程的运用,考查直线方程和椭圆方程联立,求交点,以及弦长公式的运用,考查化简整理的运算能力,属于中档题.21.从导数作为切入点探求函数的单调性,通过函数单调性来求得函数的值域,利用复合函数的求导公式进行求导,然后逐步分析即可该题考查了导数在函数单调性上的应用,重点是掌握复合函数的求导,以及导数代表的意义,计算量较大,中档题.22.(Ⅰ)证明B,C,G,F四点共圆可证明四边形BCGF对角互补,由已知条件可知∠BCD=90°,因此问题可转化为证明∠GFB=90°;(Ⅱ)在Rt△DFC中,GF=CD=GC,因此可得△GFB≌△GCB,则S四边形BCGF=2S△BCG,据此解答.本题考查四点共圆的判断,主要根据对角互补进行判断,注意三角形相似和全等性质的应用.23.(Ⅰ)把圆C的标准方程化为一般方程,由此利用ρ2=x2+y2,x=ρcosα,y=ρsinα,能求出圆C 的极坐标方程.(Ⅱ)由直线l的参数方程求出直线l的一般方程,再求出圆心到直线距离,由此能求出直线l的斜率.本题考查圆的极坐标方程的求法,考查直线的斜率的求法,是中档题,解题时要认真审题,注意点到直线公式、圆的性质的合理运用.24.(I)分当x<时,当≤x≤时,当x>时三种情况,分别求解不等式,综合可得答案;(Ⅱ)当a,b∈M时,(a2-1)(b2-1)>0,即a2b2+1>a2+b2,配方后,可证得结论.本题考查的知识点是绝对值不等式的解法,不等式的证明,难度中档.。
新课标卷高考数学答题卡完整版
20.
21.
18.
请在各题目的答题区域内作答 答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的 答案无效
第Ⅰ卷 一、选择题效(。 共 60 分)
1A B C D 2A B C D
3A B C D
4.保持卡面清洁,不要折叠、不要弄破。
5A B C D
9A B C D
6A B C D
10 A B C D
7A B C D
11 A B C D
第4 ⅡA 卷B C 二D、填空题(8共A 20B 分C) D
12 A B C D
新课标卷高考数学答题 卡
HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】
2018 年普通高等
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的 答案无效
学校招生全国统一
考
试
数学试题答题卡
姓名 ________________________ 准考 证号
考生条形码粘贴处
考生禁 缺考考生由监考员填涂
填:
右边的缺考标记.
正确填涂
填 涂
错误填涂
样√ × ○
例●
注 意 事 项
1.答题前,考生先将自己的姓名、准考证号填写清楚, 并认真检查监考员所粘贴的条形码;
2.选择题必须用 2B 铅笔填涂,解答题必须用毫米黑色签 字笔书写,字体工整,笔迹清楚;
3.请按照题号顺序在各题目的答题区域内作答,超出答 题区域书写的答案无效;在草稿纸、试题卷上答题无
13、______ ___ __ ___
14、_______
_______
1三骤157、、). _解(__答共__题7_0(分解_)_答应_写__出__文_超出黑色矩形边框限定区域的 请答在案各无题效目的答题区域内作答,超出黑色矩形边框限定区域的 答请案在无各效题目的答题区域内作答,超出黑色矩形边框限定区域的 答请案在无各效题目的答题区域内作答,超出黑色矩形边框限定区域的 答请案在无各效题目的答题区域内作答,超出黑色矩形边框限定区域的
2020年高考真题——数学(理)(全国卷Ⅲ)+Word版含解析
2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题目时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题目时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题目:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{(,)|,,}A x y x y y x *N ,{(,)|8}B x y x y ,则A B ∩中元素的个数为()A.2B.3C.4D.6【答案】C 【解析】【分析】采用列举法列举出A B ∩中元素的即可.【详解】由题意,A B ∩中的元素满足8y xx y ,且*,x y N ,由82x y x ,得4x ,所以满足8x y 的有(1,7),(2,6),(3,5),(4,4),故A B ∩中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.2.复数113i的虚部是()A.310B.110C.110D.310【答案】D 【解析】【分析】利用复数的除法运算求出z 即可.【详解】因为1131313(13)(13)1010i z i i i i ,所以复数113z i 的虚部为310.故选:D.【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题.3.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ,则下面四种情形中,对应样本的标准差最大的一组是()A.14230.1,0.4p p p pB.14230.4,0.1p p p pC.14230.2,0.3p p p pD.14230.3,0.2p p p p 【答案】B 【解析】【分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组.【详解】对于A 选项,该组数据的平均数为 140.1230.4 2.5A x ,方差为 222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s ;对于B 选项,该组数据的平均数为 140.4230.1 2.5B x ,方差为 222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s ;对于C 选项,该组数据的平均数为 140.2230.3 2.5C x ,方差为 222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s ;对于D 选项,该组数据的平均数为 140.3230.2 2.5D x ,方差为 222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s .因此,B 选项这一组的标准差最大.故选:B.【点睛】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t ,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为()(ln19≈3)A.60 B.63C.66D.69【答案】C 【解析】【分析】将t t 代入函数0.23531t KI t e结合 0.95I tK求得t即可得解.【详解】0.23531t KI t e∵,所以0.23530.951t KI t K e,则 0.235319t e ,所以,0.2353ln193t,解得353660.23t .故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.5.设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为()A.(14,0) B.(12,0) C.(1,0) D.(2,0)【答案】B 【解析】【分析】根据题中所给的条件OD OE ,结合抛物线的对称性,可知4COx COx,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x 与抛物线22(0)y px p 交于,C D 两点,且OD OE ,根据抛物线的对称性可以确定4DOx COx,所以(2,2)C ,代入抛物线方程44p ,求得1p ,所以其焦点坐标为1(,0)2,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.6.已知向量a ,b 满足||5a ,||6b ,6a b ,则cos ,= a a b ()A.3135B.1935C.1735 D.1935【答案】D 【解析】【分析】计算出a ab 、a b 的值,利用平面向量数量积可计算出cos ,a a b的值.【详解】5a ∵,6b ,6a b,225619a a b a a b .7a b,因此,1919cos ,5735a a b a a b a a b.故选:D.【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.7.在△ABC 中,cos C =23,AC =4,BC =3,则cos B =()A.19B.13C.12 D.23【答案】A 【解析】【分析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC,即可求得答案.【详解】∵在ABC 中,2cos 3C,4AC ,3BC 根据余弦定理:2222cos AB AC BC AC BC C2224322433AB可得29AB ,即3AB 由∵22299161cos 22339AB BC AC B AB BC故1cos 9B .故选:A.【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题.8.下图为某几何体的三视图,则该几何体的表面积是()A.B. C.6+2 D.【答案】C 【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S△△△根据勾股定理可得:AB AD DB ADB △是边长为的等边三角形根据三角形面积公式可得:2113sin 60222ADB S AB AD△该几何体的表面积是:632 .故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.9.已知2tan θ–tan(θ+π4)=7,则tan θ=()A.–2 B.–1C.1D.2【答案】D 【解析】【分析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案.【详解】2tan tan 74∵,tan 12tan 71tan,令tan ,1t t ,则1271tt t,整理得2440t t ,解得2t ,即tan 2 .故选:D.【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.10.若直线l 与曲线y =和x 2+y 2=15都相切,则l 的方程为()A.y =2x +1B.y =2x +12C.y =12x +1 D.y =12x +12【答案】D 【解析】【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线l在曲线y上的切点为 0x ,则00x ,函数y的导数为y,则直线l的斜率k,设直线l的方程为 0y x x,即00x x ,由于直线l 与圆2215x y,两边平方并整理得2005410x x ,解得01x ,015x(舍),则直线l 的方程为210x y ,即1122y x .故选:D.【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.11.设双曲线C :22221x y a b(a >0,b >0)的左、右焦点分别为F 1,F 2.P是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =()A.1B.2C.4D.8【答案】A 【解析】【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.【详解】ca∵,c ,根据双曲线的定义可得122PF PF a ,12121||42PF F PF F S P△,即12||8PF PF ,12F P F P ∵, 22212||2PF PF c ,22121224PF PF PF PF c ,即22540a a ,解得1a ,故选:A.【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.12.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则()A.a <b <cB.b <a <cC.b <c <aD.c <a <b【答案】A 【解析】【分析】由题意可得a 、b 、 0,1c ,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b ,得85b ,结合5458 可得出45b,由13log 8c ,得138c ,结合45138 ,可得出45c,综合可得出a 、b 、c 的大小关系.【详解】由题意可知a、b、0,1c ,222528log 3lg 3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg 522lg 5lg 25lg 5a b,a b ;由8log 5b ,得85b ,由5458 ,得5488b ,54b ,可得45b;由13log 8c ,得138c ,由45138 ,得451313c ,54c ,可得45c .综上所述,a b c .故选:A.【点睛】本题考查对数式大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.二、填空题目:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,201,x y x y x,,则z =3x +2y 的最大值为_________.【答案】7【解析】【分析】作出可行域,利用截距的几何意义解决.【详解】不等式组所表示的可行域如图因为32z x y ,所以322x zy ,易知截距2z 越大,则z 越大,平移直线32x y ,当322x zy 经过A 点时截距最大,此时z 最大,由21y x x,得12x y ,(1,2)A ,所以max 31227z 故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.14.262()x x的展开式中常数项是__________(用数字作答).【答案】240【解析】【分析】写出622x x二项式展开通项,即可求得常数项.【详解】∵622x x其二项式展开通项:62612rrrr C xx T1226(2)r r r r x C x 1236(2)r r rC x 当1230r ,解得4r 622x x的展开式中常数项是:664422161516240C C .故答案为:240.【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握na b 的展开通项公式1C r n r r r n T ab ,考查了分析能力和计算能力,属于基础题.15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM,故122S△A BC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S △△△△111222AB r BC r AC r13322r解得:2r =,其体积:3433V r .故答案为:3.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.16.关于函数f (x )=1sin sin x x有如下四个命题:①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2对称.④f (x )的最小值为2.其中所有真命题的序号是__________.【答案】②③【解析】【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x 可判断命题④的正误.综合可得出结论.【详解】对于命题①,152622f,152622f,则66f f,所以,函数 f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数 f x 的定义域为,x x k k Z ,定义域关于原点对称, 111sin sin sin sin sin sin f x x x x f x x x x,所以,函数 f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x∵,11sin cos 22cos sin 2f x x x x x,则22f x f x,所以,函数 f x 的图象关于直线2x对称,命题③正确;对于命题④,当0x 时,sin 0x ,则 1sin 02sin f x x x,命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设数列{a n }满足a 1=3,134n n a a n .(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2n a n }的前n 项和S n .【答案】(1)25a ,37a ,21n a n ,证明见解析;(2)1(21)22n n S n .【解析】【分析】(1)利用递推公式得出23,a a ,猜想得出 n a 的通项公式,利用数学归纳法证明即可;(2)由错位相减法求解即可.【详解】(1)由题意可得2134945a a ,32381587a a ,由数列 n a 的前三项可猜想数列 n a 是以3为首项,2为公差的等差数列,即21n a n ,证明如下:当1n 时,13a 成立;假设n k 时,21k a k 成立.那么1n k 时,1343(21)4232(1)1k k a a k k k k k 也成立.则对任意的*n N ,都有21n a n 成立;(2)由(1)可知,2(21)2nnn a n 231325272(21)2(21)2n n n S n n ,①23412325272(21)2(21)2n n n S n n ,②由① ②得:23162222(21)2nn n S n 21121262(21)212n n n1(12)22n n ,即1(21)22n n S n .【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[0,200](200,400](400,600]1(优)216252(良)510123(轻度污染)6784(中度污染)72(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bcKa b c d a c b d,P(K2≥k)0.0500.0100.001k 3.841 6.63510.828【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析.【解析】【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率;(2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22列联表,计算出2K的观测值,再结合临界值表可得结论.【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43 100,等级为2的概率为510120.27100,等级为3的概率为6780.21100,等级为4的概率为7200.09100;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100(3)22 列联表如下:人次400人次400空气质量不好3337空气质量好228221003383722 5.820 3.84155457030K ,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.19.如图,在长方体1111ABCD A B C D 中,点,E F 分别在棱11,DD BB 上,且12DE ED ,12BF FB .(1)证明:点1C 在平面AEF 内;(2)若2AB ,1AD ,13AA ,求二面角1A EF A 的正弦值.【答案】(1)证明见解析;(2)427.【解析】【分析】(1)连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz ,利用空间向量法可计算出二面角1A EF A 的余弦值,进而可求得二面角1A EF A 的正弦值.【详解】(1)在棱1CC 上取点G ,使得112C G CG,连接DG 、FG 、1C E 、1C F ,在长方体1111ABCD A B C D 中,//AD BC 且AD BC ,11//BB CC 且11BB CC ,112C G CG ∵,12BF FB ,112233CG CC BB BF 且CG BF ,所以,四边形BCGF 为平行四边形,则//AF DG 且AF DG ,同理可证四边形1DEC G 为平行四边形,1//C E DG 且1C E DG ,1//C E AF 且1C E AF ,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz ,则 2,1,3A 、 12,1,0A 、 2,0,2E 、 0,1,1F ,0,1,1AE , 2,0,2AF , 10,1,2A E , 12,0,1A F,设平面AEF 的法向量为 111,,m x y z,由0m AE m AF,得11110220y z x z 取11z ,得111x y ,则 1,1,1m ,设平面1A EF 的法向量为 222,,n x y z,由110n A E n A F,得22222020y z x z ,取22z ,得21x ,24y ,则 1,4,2n,cos ,7m n m n m n,设二面角1A EF A 的平面角为,则cos 7,sin 7.因此,二面角1A EF A的正弦值为7.【点睛】本题考查点在平面的证明,同时也考查了利用空间向量法求解二面角角,考查推理能力与计算能力,属于中等题.20.已知椭圆222:1(05)25x y C m m 的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,求APQ 的面积.【答案】(1)221612525x y ;(2)52.【解析】【分析】(1)因为222:1(05)25x y C m m ,可得5a ,b m ,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,过点P 作x 轴垂线,交点为M ,设6x 与x 轴交点为N ,可得PMB BNQ △△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积.【详解】(1)∵222:1(05)25x y C m m 5a ,b m ,根据离心率154c e a ,解得54m或54m (舍), C 的方程为:22214255x y ,即221612525x y ;(2)∵点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,过点P 作x 轴垂线,交点为M ,设6x 与x 轴交点为N 根据题意画出图形,如图∵||||BP BQ ,BP BQ ,90PMB QNB ,又∵90PBM QBN ,90BQN QBN ,PBM BQN ,根据三角形全等条件“AAS ”,可得:PMB BNQ △△,∵221612525x y , (5,0)B ,651PM BN ,设P 点为(,)P P x y ,可得P 点纵坐标为1P y ,将其代入221612525x y,可得:21612525P x ,解得:3P x 或3P x ,P 点为(3,1)或(3,1) ,①当P 点为(3,1)时,故532MB ,∵PMB BNQ △△,||||2MB NQ ,可得:Q 点为(6,2),画出图象,如图∵(5,0)A ,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y ,根据点到直线距离公式可得P 到直线AQ的距离为:5d,根据两点间距离公式可得:AQ,APQ面积为:15252;②当P 点(3,1) 时,故5+38MB ,∵PMB BNQ △△,||||8MB NQ ,可得:Q 点为(6,8),画出图象,如图∵(5,0)A ,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y ,根据点到直线距离公式可得P 到直线AQ 的距离为:d ,根据两点间距离公式可得:AQAPQ面积为:1522 ,综上所述,APQ 面积为:52.【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.21.设函数3()f x x bx c ,曲线()y f x 在点(12,f (12))处的切线与y 轴垂直.(1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1.【答案】(1)34b ;(2)证明见解析【解析】【分析】(1)利用导数的几何意义得到'1(02f ,解方程即可;(2)由(1)可得'2311()32()(422f x x x x ,易知()f x 在11(,22 上单调递减,在1(,)2 ,1(,)2 上单调递增,且111111(1),(),(,(1)424244f c f c f c f c ,采用反证法,推出矛盾即可.【详解】(1)因为'2()3f x x b ,由题意,'1()02f ,即21302b 则34b;(2)由(1)可得33()4f x x x c ,'2311()33()422f x x x x ,令'()0f x ,得12x 或21x ;令'()0f x ,得1122x ,所以()f x 在11(,22 上单调递减,在1(,2 ,1(,)2 上单调递增,且111111(1),(,(),(1)424244f c f c f c f c ,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则(1)0f 或(1)0f ,即14c 或14c .当14c 时,111111(1)0,()0,()0,(1)0424244f c f c f c f c ,又32(4)6434(116)0f c c c c c c ,由零点存在性定理知()f x 在(4,1)c 上存在唯一一个零点0x ,即()f x 在(,1) 上存在唯一一个零点,在(1,) 上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c 时,111111(1)0,(0,(0,(1)0424244f c f c f c f c ,又32(4)6434(116)0f c c c c c c ,由零点存在性定理知()f x 在(1,4)c 上存在唯一一个零点0x ,即()f x (1,) 上存在唯一一个零点,在(,1) 上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;综上,()f x 所有零点的绝对值都不大于1.【点晴】本题主要考查利用导数研究函数的零点,涉及到导数的几何意义,反证法,考查学生逻辑推理能力,是一道有一定难度的题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点.(1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【答案】(1)(2)3cos sin 120【解析】【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值;(2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x ,则220t t ,解得2t 或1t (舍),则26412y ,即(0,12)A .令0y ,则2320t t ,解得2t 或1t (舍),则2244x ,即(4,0)BAB;(2)由(1)可知12030(4)AB k ,则直线AB 的方程为3(4)y x ,即3120x y .由cos ,sin x y 可得,直线AB 的极坐标方程为3cos sin 120 .【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.[选修4—5:不等式选讲](10分)23.设a ,b ,c R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c .【答案】(1)证明见解析(2)证明见解析.【解析】【分析】(1)由2222()2220a b c a b c ab ac bc 结合不等式的性质,即可得出证明;(2)不妨设max{,,}a b c a ,由题意得出0,,0a b c ,由222322b c b c bc a a a bc bc,结合基本不等式,即可得出证明.【详解】(1)2222()2220a b c a b c ab ac bc ∵,22212ab bc ca a b c .,,a b c ∵均不为0,则2220a b c , 222120ab bc ca a b c;(2)不妨设max{,,}a b c a ,由0,1a b c abc 可知,0,0,0a b c ,1,a b c a bc ∵, 222322224b c b c bc bc bc a a a bc bc bc.当且仅当b c 时,取等号,a ,即max{,,}abc .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.祝福语祝你马到成功,万事顺意!。
高考数学标准答题卡A3纸
高考数学标准答题卡A3纸在高考的数学考试中,标准答题卡是考生展现自己数学知识和解题技巧的重要平台。
而A3纸则是答题卡的常见规格之一,它具有严谨的数学题目解答空间和清晰的答题区域划分,为考生提供了良好的解题环境。
A3纸的尺寸为420mm x 297mm,这个尺寸对于解答数学题目来说是十分合适的。
它足够大,可以容纳复杂的数学公式和解题步骤,同时也方便考生进行画图和计算。
A3纸的质地通常比较厚实,这可以保证在多次使用和运输过程中不会轻易破损。
这对于高考这样大规模的考试来说是至关重要的,它可以确保考试的公正性和公平性。
在A3纸上解答数学题目时,考生需要注意以下几点。
必须保持卷面整洁,避免乱涂乱画。
需要严格按照题目的要求进行解答,如有需要,可以在答题卡上使用图形计算器或其他工具进行计算。
考生应当注意时间管理,合理分配解题时间,避免因时间不足而影响最终的成绩。
高考数学标准答题卡A3纸是高考数学考试中不可或缺的一部分。
它不仅为考生提供了充足的解题空间和良好的解题环境,还保证了考试的公正性和公平性。
因此,考生在使用A3纸解答数学题目时,应当严格遵守规则,保持良好的答题习惯,最终取得优异的成绩。
在每年的高考季节,数以万计的考生们聚集在同一个舞台上,面对着同样的挑战。
他们中的每一个,都以各自独特的方式,努力在这个被称为“人生大考”的场景中,展现出自己最出色的数学才能。
而他们所面对的,就是那张看似平凡,实则充满挑战的新课标全国卷高考数学答题卡。
这张答题卡,是每一位考生在数学知识、思维能力和解题技巧等方面的试金石。
它涵盖了众多题型,从选择题到填空题,从大题到小题,每一道题目都有其特定的难度和考察点。
它不仅要求考生们拥有扎实的基础知识,还要求他们具备灵活的思维和敏锐的解题能力。
仔细审视这张答题卡,我们可以看到它所包含的丰富内容。
它不仅考察了考生们对数学基础知识的掌握程度,还通过各种题型考察了他们的独立思考能力、创新思维和解决问题的能力。
湖北数学高考标准答题卡模板.doc
2011年普通高等学校招生全国统一考试(湖北卷) 数 学 答 题 卡(文科)姓 名 此次填左侧指定位置(高考填此处)______________________ 准考证号 一、选择题考 生 条 形 码 粘 贴处 1.答题前,考生先将自己的姓名、准考证号填写清楚,并认真检查监考员所粘贴的条形码; 2.选择题必须用2B 铅笔填涂,解答题必须用0.5毫米黑色签字笔书写,字体工整,笔迹清楚;3.请按照题号顺序在各题的答题区域内答题,超出答题区域的答案无效,在草稿纸、试题纸上的答案无效;4.保持卡面清洁,不要折叠,不要弄破. 注 意 事 项二、填空题11. ______________________________________________________________ 12. ______________________________________________________________ 13. ______________________________________________________________ 14. ______________________________________________________________ 15. ______________________________________________________________三、解答题16. 解:请在各题的答题区域内答题,超出黑色矩形边框限定区域的答案无效17.解:请在各题的答题区域内答题,超出黑色矩形边框限定区域的答案无效18. 解:题号一二161718192021总分得分请在各题的答题区域内答题,超出黑色矩形边框限定区域的答案无效试卷类型A B 1 [A] [B] [C] [D] 5 [A] [B] [C] [D] 9 [A] [B] [C] [D]2 [A] [B] [C] [D] 6 [A] [B] [C] [D] 10 [A] [B] [C] [D]3 [A] [B] [C] [D] 7 [A] [B] [C] [D]4 [A] [B] [C] [D] 8 [A] [B] [C] [D]班级: 姓名: 考号:19.解:请在各题的答题区域内答题,超出黑色矩形边框限定区域的答案无效20.解:请在各题的答题区域内答题,超出黑色矩形边框限定区域的答案无效21.解:请在各题的答题区域内答题,超出黑色矩形边框限定区域的答案无效。
(新高考)2021版12月内部特供卷 数学(二)答题卡
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 20.
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 21.
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 22.
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
(新高考)2020-2021 学年好教育云平台 12 月份 内部特供卷
数学答题卡(二)
姓 名:__________________________
准考证号:
贴条形码区
注意事项
1.答题前,考生先将自己的姓名,准考证号填 写清楚,并认真核准条形码上的姓名、准考 证号,在规定位置贴好条形码。
2.选择题必须用 2B 铅笔填涂;非选择题必须 用 0.5 mm 黑色签字笔答题,不得用铅笔或 圆珠笔答题;字体工整、笔限定区域的答案无效
第 I 卷 选择题
1 ABCD 2 ABCD 3 ABCD 4 ABCD
5 ABCD 6 ABCD 7 ABCD 8 ABCD
9 ABCD 10 ABCD 11 ABCD 12 ABCD
第 II 卷 非选择题
13、_____________________ 15、_____________________
14、_____________________ 16、_____________________
17.
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 19.
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
2024年高考真题汇编(数学)(新课标卷+全国卷)PDF版含答案
2024年高考真题汇编数学(新课标卷+全国卷)目录2024年普通高等学校招生全国统一考试(新课标I卷)数学2024年普通高等学校招生全国统一考试(新课标II卷)数学2024年普通高等学校招生全国统一考试(全国甲卷)理科数学2024年普通高等学校招生全国统一考试(全国甲卷)文科数学(部分)参考答案2024年普通高等学校招生全国统一考试(新课标I 卷)数学一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ()A.{1,0}-B.{2,3}C.{3,1,0}--D.{1,0,2}-2.若1i 1zz =+-,则z =()A.1i -- B.1i -+ C.1i- D.1i+3.已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =()A.2- B.1- C.1D.24.已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A.3m- B.3m -C.3m D.3m5.,则圆锥的体积为()A. B. C. D.6.已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是()A.(,0]-∞B.[1,0]-C.[1,1]- D.[0,)+∞7.当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A.3B.4C.6D.88.已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A.(10)100f > B.(20)1000f >C.(10)1000f <D.(20)10000f <二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则()(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A.(2)0.2P X >>B.(2)0.5P X ><C.(2)0.5P Y >> D.(2)0.8P Y ><10.设函数2()(1)(4)f x x x =--,则()A.3x =是()f x 的极小值点B.当01x <<时,()2()f x f x<C.当12x <<时,4(21)0f x -<-< D.当10x -<<时,(2)()f x f x ->11.造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A.2a =- B.点在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点()00,x y 在C 上时,0042y x ≤+三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.13.若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .16.已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x yC a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.17.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为427,求AD .18.已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.19.设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.2024年普通高等学校招生全国统一考试(新课标II 卷)数学一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知1i z =--,则z =()A.0B.1C.D.22.已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则()A.p 和q 都是真命题B.p ⌝和q 都是真命题C.p 和q ⌝都是真命题D.p ⌝和q ⌝都是真命题3.已知向量,a b满足1,22a a b =+= ,且()2b a b -⊥ ,则b = ()A.12B.22C.32D.14.某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理下表亩产量[900,950)[950,1000)[1000,1050)[1100,1150)[1150,1200)频数612182410据表中数据,结论中正确的是()A.100块稻田亩产量的中位数小于1050kgB.100块稻田中亩产量低于1100kg 的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg 至300kg 之间D.100块稻田亩产量的平均值介于900kg 至1000kg 之间5.已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为()A.221164x y +=(0y >)B.221168x y +=(0y >)C.221164y x +=(0y >)D.221168y x +=(0y >)6.设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =与()y g x =恰有一个交点,则=a ()A.1- B.12C.1D.27.已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为()A.12B.1C.2D.38.设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为()A.18B.14C.12D.1二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9.对于函数()sin 2f x x =和π()sin(2)4g x x =-,下列正确的有()A.()f x 与()g x 有相同零点B.()f x 与()g x 有相同最大值C.()f x 与()g x 有相同的最小正周期D.()f x 与()g x 的图像有相同的对称轴10.抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则()A.l 与A 相切B.当P ,A ,B 三点共线时,||PQ =C.当||2PB =时,PA AB ⊥D.满足||||PA PB =的点P 有且仅有2个11.设函数32()231f x x ax =-+,则()A.当1a >时,()f x 有三个零点B.当0a <时,0x =是()f x 的极大值点C.存在a ,b ,使得x b =为曲线()y f x =的对称轴D.存在a ,使得点()()1,1f 为曲线()y f x =的对称中心三、填空题:本大题共3小题,每小题5分,共15分.12.记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S =________.13.已知α为第一象限角,β为第三象限角,tan tan 4αβ+=,tan tan 1αβ=+,则sin()αβ+=_______.14.在如图的4×4方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有________种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =.(1)求A .(2)若2a =,sin sin 2C c B =,求ABC 的周长.16.已知函数3()e x f x ax a =--.(1)当1a =时,求曲线()y f x =在点()1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.17.如图,平面四边形ABCD 中,8AB =,3CD =,AD =,90ADC ︒∠=,30BAD ︒∠=,点E ,F 满足25AE AD = ,12AF AB =,将AEF △沿EF 对折至PEF !,使得PC =.(1)证明:EF PD ⊥;(2)求面PCD 与面PBF 所成的二面角的正弦值.18.某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若0.4p =,0.5q =,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.(2)假设0p q <<,(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?(ii )为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?19.已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =,过1n P -作斜率为k 的直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ;(2)证明:数列{}n n x y -是公比为11kk+-的等比数列;(3)设n S 为12n n n P P P ++ 的面积,证明:对任意的正整数n ,1n n S S +=.2024年普通高等学校招生全国统一考试(全国甲卷)理科数学一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设5i z =+,则()i z z +=()A.10iB.2iC.10D.2-2.集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð()A.{}1,4,9 B.{}3,4,9C.{}1,2,3 D.{}2,3,53.若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为()A.5B.12C.2- D.72-4.等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =()A.2- B.73C.1D.25.已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.6.设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.237.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A.B.C. D.8.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A.1+ B.1- C.32D.19.已知向量()()1,,,2a x x b x =+=,则()A.“3x =-”是“a b ⊥”的必要条件B.“3x =-”是“//a b”的必要条件C.“0x =”是“a b ⊥”的充分条件 D.“1x =-+”是“//a b”的充分条件10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A.①③ B.②④C.①②③D.①③④11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A.32B.C.72D.212.已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为()A.2B.3C.4D.二、填空题:本题共4小题,每小题5分,共20分.13.1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______.14.已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙______.15.已知1a >,8115log log 42a a -=-,则=a ______.16.有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间262450乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+则认为该工厂产品的优级品率提高了,根据抽取的150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?12.247≈)附:22()()()()()n ad bcKa b c d a c b d-=++++()2P K k≥0.0500.0100.001 k 3.841 6.63510.82818.记n S为数列{}n a的前n项和,且434n nS a=+.(1)求{}n a的通项公式;(2)设1(1)nn nb na-=-,求数列{}n b的前n项和为n T.19.如图,在以A,B,C,D,E,F为顶点的五面体中,四边形ABCD与四边形ADEF均为等腰梯形,//,//BC AD EF AD,4,2AD AB BC EF====,ED FB==M为AD的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值.20.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.21.已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.(二)选考题:共10分,请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.[选修4-5:不等式选讲]23.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.2024年普通高等学校招生全国统一考试(全国甲卷)文科数学(部分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ()A.{}1,2,3,4 B.{}1,2,3C.{}3,4 D.{}1,2,92.设z =,则z z ⋅=()A.-iB.1C.-1D.23.若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为()A.5B.12C.2- D.72-4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=()A.2- B.73C.1D.295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是()A.14B.13C.12D.236.已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.7.曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为()A.16B.32C.12D.8.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A.B.C.D.9.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A.1+B.1- C.32D.1原10题略10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A.①③ B.②④C.①②③D.①③④11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A.32B.C.72D.2二、填空题:本题共4小题,每小题5分,共20分.原13题略12.函数()sin f x x x =在[]0,π上的最大值是______.13.已知1a >,8115log log 42a a -=-,则=a ______.14.曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.15.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的通项公式.16.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求点M 到ABF 的距离.17.已知函数()()1ln 1f x a x x =--+.(1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1ex f x -<恒成立.18.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.19.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.20.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.参考答案2024年普通高等学校招生全国统一考试(新课标I 卷)数学参考答案一、单项选择题【答案】1.A 【解析】【详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-.故选:A.【答案】2.C 【解析】【详解】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.【答案】3.D 【解析】【详解】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.【答案】4.A 【解析】【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.【答案】5.B 【解析】【详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r=即=,故3r=,故圆锥的体积为1π93⨯=.故选:B.【答案】6.B【解析】【详解】因为()f x在R上单调递增,且0x≥时,()()e ln1xf x x=++单调递增,则需满足()2021e ln1aa-⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a-≤≤,即a的范围是[1,0]-.故选:B.【答案】7.C【解析】【详解】因为函数siny x=的的最小正周期为2πT=,函数π2sin36y x⎛⎫=-⎪⎝⎭的最小正周期为2π3T=,所以在[]0,2πx∈上函数π2sin36y x⎛⎫=-⎪⎝⎭有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C【答案】8.B【解析】【详解】因为当3x<时()f x x=,所以(1)1,(2)2f f==,又因为()(1)(2)f x f x f x>-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f>+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f>+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.二、多项选择题【答案】9.BC 【解析】【详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误;因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<,而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误,故选:BC .【答案】10.ACD 【解析】【详解】对A ,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B ,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x>,错误;对C ,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减,所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->,所以(2)()f x f x ->,正确;故选:ACD.【答案】11.ABD 【解析】【详解】对于A :设曲线上的动点(),P x y ,则2x >-4x a -=,04a -=,解得2a =-,故A 正确.对于B24x +=,而2x >-,()24x+=.当0x y ==()2844=-=,故()在曲线上,故B 正确.对于C :由曲线的方程可得()()2221622y x x =--+,取32x =,则2641494y =-,而64164525624510494494494---=-=>⨯,故此时21y >,故C 在第一象限内点的纵坐标的最大值大于1,故C 错误.对于D :当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =--≤++,故0004422y x x -≤≤++,故D 正确.故选:ABD.三、填空题【答案】12.32【解析】【详解】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x ya b-=得2b y a =±,即22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225b AF a ==,又122AF AF a -=,得1222513AF AF a a =+=+=,解得4a =,代入25ba=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:32【答案】13.ln 2【解析】【详解】由e x y x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e x y x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 2【答案】14.12【解析】【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==.从而()()()441234113382kk k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==.而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==.所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲的总得分不小于2的概率为2312p p +=.故答案为:12.四、解答题【答案】15.(1)由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得22222cos 222a b c C ab ab +-===,因为()0,πC ∈,所以sin 0C >,从而sin 2C ==,又因为sin C B =,即cos 2B =,注意到()0,πB ∈,所以π3B =.(2)由(1)可得π3B =,2cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ232162sin sin sin 124622224A ⎛⎫⎛⎫==+=⨯=⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin 1234a b c==,从而623136,4222a c b c +====,由三角形面积公式可知,ABC 的面积可表示为211316233sin 222228ABC S ab C c c c +==⋅⋅= ,由已知ABC 的面积为3+,可得2338c =,所以c =【答案】16.(1)由题意得2239941b a b =⎧⎪⎪⎨⎪+=⎪⎩,解得22912b a ⎧=⎨=⎩,所以12e ==.(2)法一:3312032APk -==--,则直线AP 的方程为132y x =-+,即260x y +-=,352AP ==,由(1)知22:1129x y C +=,设点B 到直线AP 的距离为d ,则1255352d ==,则将直线AP 沿着与AP 垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:20x y C ++=,1255=,解得6C =或18C =-,当6C =时,联立221129260x y x y ⎧+=⎪⎨⎪++=⎩,解得03x y =⎧⎨=-⎩或332x y =-⎧⎪⎨=-⎪⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,当()0,3B -时,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当33,2B ⎛⎫--⎪⎝⎭时,此时12lk =,直线l 的方程为12y x =,即20x y -=,当18C =-时,联立2211292180x y x y ⎧+=⎪⎨⎪+-=⎩得22271170y y -+=,227421172070∆=-⨯⨯=-<,此时该直线与椭圆无交点.综上直线l 的方程为3260x y --=或20x y -=.法二:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP 的距离1255d =,设()00,B x y,则220012551129x y =⎪+=⎪⎩,解得00332x y =-⎧⎪⎨=-⎪⎩或0003x y =⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一.法三:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离5d =,设(),3sin B θθ,其中[)0,2θ∈π1255=,联立22cos sin 1θθ+=,解得cos 21sin 2θθ⎧=-⎪⎪⎨⎪=-⎪⎩或cos 0sin 1θθ=⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一;法四:当直线AB 的斜率不存在时,此时()0,3B -,16392PAB S =⨯⨯= ,符合题意,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当线AB 的斜率存在时,设直线AB 的方程为3y kx =+,联立椭圆方程有2231129y kx x y =+⎧⎪⎨+=⎪⎩,则()2243240k x kx ++=,其中AP k k ≠,即12k ≠-,解得0x =或22443k x k -=+,0k ≠,12k ≠-,令22443k x k -=+,则2212943k y k -+=+,则22224129,4343k k B k k ⎛⎫--+ ⎪++⎝⎭同法一得到直线AP 的方程为260x y +-=,点B 到直线AP 的距离1255d =,5=,解得32k =,此时33,2B ⎛⎫-- ⎪⎝⎭,则得到此时12lk =,直线l 的方程为12y x =,即20x y -=,综上直线l 的方程为3260x y --=或20x y -=.法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当l 的斜率存在时,设3:(3)2PB y k x -=-,令()()1122,,,P x y B x y ,223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消y 可得()()22224324123636270k x k k x k k +--+--=,()()()2222Δ24124433636270k kk k k =--+-->,且AP k k ≠,即12k ≠-,21222122241243,36362743k k x x k PB k k x x k ⎧-+=⎪⎪+==⎨--⎪=⎪+⎩,A 到直线PB距离192PAB d S ==⋅ ,12k ∴=或32,均满足题意,1:2l y x ∴=或332y x =-,即3260x y --=或20x y -=.法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当直线l 斜率存在时,设3:(3)2l y k x =-+,设l 与y 轴的交点为Q ,令0x =,则30,32Q k ⎛⎫-+⎪⎝⎭,联立223323436y kx k x y ⎧=-+⎪⎨⎪+=⎩,则有()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,其中()()22223Δ8343436362702k k k k k ⎛⎫=--+--> ⎪⎝⎭,且12k ≠-,则2222363627121293,3434B B k k k k x x k k ----==++,则211312183922234P B k S AQ x x k k +=-=+=+,解的12k =或32k =,经代入判别式验证均满足题意.则直线l 为12y x =或332y x =-,即3260x y --=或20x y -=.【答案】17.(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥,又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB ,而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥,根据平面知识可知//AD BC ,又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .(2)如图所示,过点D 作DE AC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =,所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF ,根据二面角的定义可知,DFE ∠即为二面角A CP D --的平面角,即sin 7DFE ∠=,即tan DFE ∠=因为AD DC ⊥,设AD x =,则CD =,由等面积法可得,2DE =,又242xCE -==,而EFC 为等腰直角三角形,所以2EF =,故242tan 4DFE x∠==x =AD =.【答案】18.(1)0b =时,()ln 2xf x ax x=+-,其中()0,2x ∈,则()()()112,0,222f x a x x x x x =+=+∈--',因为()22212x x x x -+⎛⎫-≤= ⎪⎝⎭,当且仅当1x =时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥-,所以a 的最小值为2-.,(2)()()3ln12x f x ax b x x=++--的定义域为()0,2,设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n --,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++--,而()()()()3322ln221ln 122m m f m a m b m am b m a m m -⎡⎤-=+-+--=-++-+⎢⎥-⎣⎦,2n a =-+,所以()2,2Q m a n --也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a .(3)因为()2f x >-当且仅当12x <<,故1x =为()2f x =-的一个解,所以()12f =-即2a =-,先考虑12x <<时,()2f x >-恒成立.此时()2f x >-即为()()3ln21102x x b x x +-+->-在()1,2上恒成立,设()10,1t x =-∈,则31ln 201t t bt t+-+>-在()0,1上恒成立,设()()31ln 2,0,11t g t t bt t t+=-+∈-,则()()2222232322311tbtbg t bt t t -++=-+=-'-,当0b ≥,232332320bt b b b -++≥-++=>,故()0g t '>恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当203b -≤<时,2323230bt b b -++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当23b <-,则当01t <<<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍;综上,()2f x >-在()1,2上恒成立时23b ≥-.而当23b ≥-时,而23b ≥-时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1,即()2f x >-的解为()1,2.综上,23b ≥-.【答案】19.(1)首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k ka a a k m d-=+=+',得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可.换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的(),i j 就是()()()1,2,1,6,5,6.(2)由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m -++,共3m -组.(如果30m -=,则忽略②)故数列1,2,...,42m +是()2,13-可分数列.(3)定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立,则数列1,2,...,42m +一定是(),i j -可分数列:命题1:,i A j B ∈∈或,i B j A ∈∈;命题2:3j i -≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i -≠.此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k ->-,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++--+,共21k k -组;③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,42m +是(),i j -可分数列.第二种情况:如果,i B j A ∈∈,且3j i -≠.此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124241k k +<+,即2114k k ->,故21k k >.由于3j i -≠,故()()2141423k k +-+≠,从而211k k -≠,这就意味着212k k -≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组;③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =-,共212k k --组;④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k --个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j -可分数列.至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j -可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i -=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +-+=.但这导致2112k k -=,矛盾,所以,i B j A ∈∈.设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +-+=,即211k k -=.所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m -,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m -+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +-.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.而根据之前的结论,使得数列1242,,...,m a a a +是(),i j -可分数列的(),i j 至少有()21m m +-个.所以数列1242,,...,m a a a +是(),i j -可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+-++⎝⎭≥=>=++++++++.这就证明了结论.2024年普通高等学校招生全国统一考试(新课标II 卷)数学参考答案一、单项选择题【答案】1.C 【解析】【详解】若1i z =--,则z ==.故选:C.【答案】2.B 【解析】【详解】对于p 而言,取=1x -,则有101x +=<,故p 是假命题,p ⌝是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题,综上,p ⌝和q 都是真命题.故选:B.【答案】3.B 【解析】【详解】因为()2b a b -⊥ ,所以()20b a b -⋅= ,即22b a b =⋅,又因为1,22a a b =+=,所以22144164a b b b +⋅+=+= ,从而22=b .故选:B.【答案】4.C 【解析】【详解】对于A,根据频数分布表可知,612183650++=<,所以亩产量的中位数不小于1050kg ,故A 错误;对于B ,亩产量不低于1100kg 的频数为341024=+,所以低于1100kg 的稻田占比为1003466%100-=,故B 错误;对于C ,稻田亩产量的极差最大为1200900300-=,最小为1150950200-=,故C 正确;对于D ,由频数分布表可得,亩产量在[1050,1100)的频数为100(612182410)30-++++=,所以平均值为1(692512975181025301075241125101175)1067100⨯⨯+⨯+⨯+⨯+⨯+⨯=,故D 错误.故选;C.【答案】5.A 【解析】【详解】设点(,)M x y ,则0(,),(,0)P x y P x ',因为M 为PP '的中点,所以02y y =,即(,2)P x y ,又P 在圆2216(0)x y y +=>上,所以22416(0)x y y +=>,即221(0)164x y y +=>,即点M 的轨迹方程为221(0)164x y y +=>.故选:A 【答案】6.D 【解析】【详解】解法一:令()()f x g x =,即2(1)1cos 2a x x ax +-=+,可得21cos a x ax -=+,令()()21,cos a x F x ax G x =-=+,原题意等价于当(1,1)x ∈-时,曲线()y F x =与()y G x =恰有一个交点,注意到()(),F x G x 均为偶函数,可知该交点只能在y 轴上,可得()()00F G =,即11a -=,解得2a =,若2a =,令()()F x G x =,可得221cos 0x x +-=因为()1,1x ∈-,则220,1cos 0x x ≥-≥,当且仅当0x =时,等号成立,可得221cos 0x x +-≥,当且仅当0x =时,等号成立,则方程221cos 0x x +-=有且仅有一个实根0,即曲线()y F x =与()y G x =恰有一个交点,所以2a =符合题意;综上所述:2a =.解法二:令()()()2()1cos ,1,1h x f x g x ax a x x =-=+--∈-,原题意等价于()h x 有且仅有一个零点,因为()()()()221cos 1cos h x a x a x ax a x h x -=-+---=+--=,则()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即()020h a =-=,解得2a =,若2a =,则()()221cos ,1,1h x x x x =+-∈-,又因为220,1cos 0x x ≥-≥当且仅当0x =时,等号成立,可得()0h x ≥,当且仅当0x =时,等号成立,即()h x 有且仅有一个零点0,所以2a =符合题意;故选:D.【答案】7.B 【解析】【详解】解法一:分别取11,BC B C 的中点1,D D ,则11AD A D ==可知111131662222ABC A B C S S =⨯⨯⨯==⨯= 设正三棱台111ABC A B C -的为h ,则(11115233ABC A B C V h -=++=,解得433h =,如图,分别过11,A D 作底面垂线,垂足为,M N ,设AM x =,。
2013年高考理科数学全国新课标卷1试题与答案word解析版
2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷I)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,理1)已知集合A ={x |x 2-2x >0},B ={x |<x,则( ). A .A ∩B = B .A ∪B =R C .B ⊆A D .A ⊆B2.(2013课标全国Ⅰ,理2)若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ).A .-4B .45-C .4D .45 3.(2013课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样4.(2013课标全国Ⅰ,理4)已知双曲线C :2222=1x y a b-(a >0,b >0)则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x± D .y =±x5.(2013课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]6.(2013课标全国Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ).A .500π3cm3B .866π3cm3C .1372π3cm3D .2048π3cm37.(2013课标全国Ⅰ,理7)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ).A .3B .4C .5D .68.(2013课标全国Ⅰ,理8)某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π9.(2013课标全国Ⅰ,理9)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ).A .5B .6C .7D .8 10.(2013课标全国Ⅰ,理10)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y +B .22=13627x y +C .22=12718x y +D .22=1189x y +11.(2013课标全国Ⅰ,理11)已知函数f (x )=220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若|f (x )|≥ax ,则a 的取值范围是( ). A .(-∞,0] B .(-∞,1] C .[-2,1] D .[-2,0]12.(2013课标全国Ⅰ,理12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n n b a +,则( ). A .{Sn}为递减数列 B .{Sn}为递增数列C .{S2n -1}为递增数列,{S2n}为递减数列D .{S2n -1}为递减数列,{S2n}为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2013课标全国Ⅰ,理13)已知两个单位向量a,b的夹角为60°,c=ta+(1-t)b.若b·c=0,则t=__________.14.(2013课标全国Ⅰ,理14)若数列{an}的前n项和2133n nS a=+,则{an}的通项公式是an=_______.15.(2013课标全国Ⅰ,理15)设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=__________.16.(2013课标全国Ⅰ,理16)若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2对称,则f(x)的最大值为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC中,∠ABC=90°,ABBC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=12,求PA;(2)若∠APB=150°,求tan∠PBA.18.(2013课标全国Ⅰ,理18)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.19.(2013课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(2013课标全国Ⅰ,理20)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.21.(2013课标全国Ⅰ,理21)(本小题满分12分)设函数f(x)=x2+ax+b,g(x)=e x(cx+d).若曲线y =f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(2013课标全国Ⅰ,理22)(本小题满分10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC,延长CE交AB于点F,求△BCF外接圆的半径.23.(2013课标全国Ⅰ,理23)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程为45cos,55sinx ty t=+⎧⎨=+⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.(2013课标全国Ⅰ,理24)(本小题满分10分)选修4—5:不等式选讲:已知函数f(x)=|2x-1|+|2x +a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈1,22a⎡⎫-⎪⎢⎣⎭时,f(x)≤g(x),求a的取值范围.2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷I 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.答案:B解析:∵x (x -2)>0,∴x <0或x >2.∴集合A 与B 可用图象表示为:由图象可以看出A ∪B =R ,故选B.2.答案:D解析:∵(3-4i)z =|4+3i|, ∴55(34i)34i 34i (34i)(34i)55z +===+--+. 故z 的虚部为45,选D. 3.答案:C 解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样.4.答案:C解析:∵c e a ==,∴22222254c a b e a a +===. ∴a 2=4b 2,1=2b a ±. ∴渐近线方程为12b y x x a =±±. 5.答案:A解析:若t ∈[-1,1),则执行s =3t ,故s ∈[-3,3).若t ∈[1,3],则执行s =4t -t 2,其对称轴为t =2.故当t =2时,s 取得最大值4.当t =1或3时,s 取得最小值3,则s ∈[3,4].综上可知,输出的s ∈[-3,4].故选A.6.答案:A解析:设球半径为R ,由题可知R ,R -2,正方体棱长一半可构成直角三角形,即△OBA 为直角三角形,如图.BC =2,BA =4,OB =R -2,OA =R ,由R 2=(R -2)2+42,得R =5, 所以球的体积为34500π5π33=(cm 3),故选A. 7.答案:C解析:∵S m -1=-2,S m =0,S m +1=3,∴a m =S m -S m -1=0-(-2)=2,a m +1=S m +1-S m =3-0=3.∴d =a m +1-a m =3-2=1.∵S m =ma 1+12m m (-)×1=0,∴112m a -=-. 又∵a m +1=a 1+m ×1=3,∴132m m --+=. ∴m =5.故选C.8.答案:A解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r =2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr 2×4×12+4×2×2=8π+16.故选A. 9.答案:B解析:由题意可知,a =2C m m ,b =21C m m +,又∵13a =7b ,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+), 即132171m m +=+.解得m =6.故选B. 10.答案:D解析:设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上,∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①-②,得1212121222=0x x x x y y y y a b (+)(-)(+)(-)+, 即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2, 而1212y y x x --=k AB =011=312-(-)-,∴221=2b a . 又∵a 2-b 2=9,∴a 2=18,b 2=9. ∴椭圆E 的方程为22=1189x y +.故选D. 11.答案:D解析:由y =|f (x )|的图象知:①当x >0时,y =ax 只有a ≤0时,才能满足|f (x )|≥ax ,可排除B ,C.②当x ≤0时,y =|f (x )|=|-x 2+2x |=x 2-2x .故由|f (x )|≥ax 得x 2-2x ≥ax .当x =0时,不等式为0≥0成立.当x <0时,不等式等价于x -2≤a .∵x -2<-2,∴a ≥-2.综上可知:a ∈[-2,0].12.答案:B第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.答案:2解析:∵c =t a +(1-t )b ,∴b ·c =t a ·b +(1-t )|b |2.又∵|a |=|b |=1,且a 与b 夹角为60°,b ⊥c ,∴0=t |a ||b |cos 60°+(1-t ),0=12t +1-t . ∴t =2. 14.答案:(-2)n -1 解析:∵2133n n S a =+,① ∴当n ≥2时,112133n n S a --=+.② ①-②,得12233n n n a a a -=-, 即1n n a a -=-2. ∵a 1=S 1=12133a +, ∴a 1=1. ∴{a n }是以1为首项,-2为公比的等比数列,a n =(-2)n -1. 15.答案:5- 解析:f (x )=sin x -2cos xx x ⎫⎪⎭, 令cos αsin α=- 则f (x )α+x ),当x =2k π+π2-α(k ∈Z )时,sin(α+x )有最大值1,f (x )即θ=2k π+π2-α(k ∈Z ), 所以cos θ=πcos 2π+2k α⎛⎫- ⎪⎝⎭=πcos 2α⎛⎫- ⎪⎝⎭=sin α=5=-. 16.答案:16解析:∵函数f (x )的图像关于直线x =-2对称,∴f (x )满足f (0)=f (-4),f (-1)=f (-3),即15164,0893,b a b a b =-(-+)⎧⎨=-(-+)⎩解得8,15.a b =⎧⎨=⎩∴f (x )=-x 4-8x 3-14x 2+8x +15.由f ′(x )=-4x 3-24x 2-28x +8=0,得x 1=-2x 2=-2,x 3=-2易知,f (x )在(-∞,-2)上为增函数,在(-22)上为减函数,在(-2,-2上为增函数,在(-2)上为减函数.∴f (-2=[1-(-22][(-22+8(-2)+15]=(-8--=80-64=16.f (-2)=[1-(-2)2][(-2)2+8×(-2)+15]=-3(4-16+15)=-9.f (-2)=[1-(-22][(-22+8(-2+15]=(-8++=80-64=16.故f (x )的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=11732cos 30424+-︒=.故PA . (2)设∠PBA =α,由已知得PB =sin α.在△PBA sin sin(30)αα=︒-,cos α=4sin α.所以tan αtan ∠PBA 18.(1)证明:取AB 的中点O ,连结OC ,OA 1,A 1B .因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C .又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)解:由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB ,所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz .由题设知A (1,0,0),A 1(00),C (0,0,B (-1,0,0).则BC =(1,0,1BB =1AA =(-1,0),1AC =(0,. 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则10,0,BC BB ⎧⋅=⎪⎨⋅=⎪⎩n n即0,0.x x ⎧=⎪⎨-+=⎪⎩可取n =1,-1).故cos 〈n ,1AC 〉=11A CA C⋅n n =. 所以A 1C 与平面BB 1C 1C 19.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B 2,这批产品通过检验为事件A ,依题意有A =(A 1B 1)∪(A 2B 2),且A 1B 1与A 2B 2互斥,所以P (A )=P (A 1B 1)+P (A 2B 2)=P (A 1)P (B 1|A 1)+P (A 2)P (B 2|A 2)=41113161616264⨯+⨯=. (2)X 可能的取值为400,500,800,并且 P (X =400)=41111161616--=,P (X =500)=116,P (X =800)=14. 所以X 的分布列为EX =1111400+500+80016164⨯⨯⨯=506.25. 20. 解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP R QM r =,可求得Q (-4,0),所以可设l:y =k (x +4).由l 与圆M,解得k =4±. 当k =4时,将4y x =+22=143x y +, 并整理得7x 2+8x -8=0,解得x 1,2=47-±. 所以|AB |2118|7x x -=. 当4k =-时,由图形的对称性可知|AB |=187. 综上,|AB |=|AB |=187. 21.解:(1)由已知得f(0)=2,g(0)=2,f′(0)=4,g′(0)=4.而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4.从而a=4,b=2,c=2,d=2.(2)由(1)知,f(x)=x2+4x+2,g(x)=2e x(x+1).设函数F(x)=kg(x)-f(x)=2k e x(x+1)-x2-4x-2,则F′(x)=2k e x(x+2)-2x-4=2(x+2)(k e x-1).由题设可得F(0)≥0,即k≥1.令F′(x)=0得x1=-ln k,x2=-2.①若1≤k<e2,则-2<x1≤0.从而当x∈(-2,x1)时,F′(x)<0;当x∈(x1,+∞)时,F′(x)>0.即F(x)在(-2,x1)单调递减,在(x1,+∞)单调递增.故F(x)在[-2,+∞)的最小值为F(x1).x-4x1-2=-x1(x1+2)≥0.而F(x1)=2x1+2-21故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x-e-2).从而当x>-2时,F′(x)>0,即F(x)在(-2,+∞)单调递增.而F(-2)=0,故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2,则F(-2)=-2k e-2+2=-2e-2(k-e2)<0.从而当x≥-2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围是[1,e2].请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(1)证明:连结DE,交BC于点G.由弦切角定理得,∠ABE=∠BCE.而∠ABE=∠CBE,故∠CBE=∠BCE,BE=CE.又因为DB⊥BE,所以DE为直径,∠DCE=90°,由勾股定理可得DB=DC.(2)解:由(1)知,∠CDE=∠BDE,DB=DC,故DG是BC的中垂线,所以BG设DE的中点为O,连结BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°,所以CF⊥BF,故Rt△BCF外接圆的半径等于2.23.解:(1)将45cos,55sinx ty t=+⎧⎨=+⎩消去参数t,化为普通方程(x-4)2+(y-5)2=25,即C1:x2+y2-8x-10y+16=0.将cos,sinxyρθρθ=⎧⎨=⎩代入x2+y2-8x-10y+16=0得ρ2-8ρcos θ-10ρsin θ+16=0. 所以C1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C2的普通方程为x2+y2-2y=0.由2222810160,20x y x yx y y⎧+--+=⎨+-=⎩解得1,1xy=⎧⎨=⎩或0,2.xy=⎧⎨=⎩所以C1与C2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫⎪⎝⎭.24.解:(1)当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0. 设函数y=|2x-1|+|2x-2|-x-3,则y=1 5,,212,1,236, 1.x xx xx x⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x∈(0,2)时,y<0. 所以原不等式的解集是{x|0<x<2}.(2)当x∈1,22a⎡⎫-⎪⎢⎣⎭时,f(x)=1+a.不等式f(x)≤g(x)化为1+a≤x+3.所以x≥a-2对x∈1,22a⎡⎫-⎪⎢⎣⎭都成立.故2a -≥a -2,即43a ≤. 从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。
2013年高考真题——理科数学(新课标Ⅱ卷) Word版含答案
绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数 学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合M={x|(x-1)2< 4,x ∈R },N={-1,0,1,2,3},则M ∩N =( ) (A ){0,1,2} (B ){-1,0,1,2} (C ){-1,0,2,3} (D ){0,1,2,3} (2)设复数z 满足(1-i )z=2 i ,则z =( ) (A )-1+i(B )-1-i(C )1+i(D )1-i(3)等比数列{a n }的前n 项和为S n ,已知S 3 = a 2 +10a 1 ,a 5 = 9,则a 1=( ) (A )13 (B )13- (C )19 (D )19- (4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β。
直线l 满足l ⊥m ,l ⊥n ,,l l αβ⊄⊄,则( )(A )α∥β且l ∥α(B )α⊥β且l ⊥β(C )α与β相交,且交线垂直于l(D )α与β相交,且交线平行于l(5)已知(1+ɑx )(1+x )5的展开式中x 2的系数为5,则ɑ=( ) (A )-4 (B )-3(C )-2(D )-1(6)执行右面的程序框图,如果输入的N=10,那么输出的S=(A )11112310++++ (B )11112!3!10!++++ (C )11112311++++ (D )11112!3!11!++++(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为(A) (B)(C)(D)(8)设a=log 36,b=log 510,c=log 714,则(A )c >b >a (B )b >c >a (C )a >c >b (D)a >b >c(9)已知a >0,x ,y 满足约束条件()133x x y y a x ⎧≥⎪+≤⎨⎪≥-⎩,若z=2x+y 的最小值为1,则a=(A) 14 (B) 12(C)1 (D)2(10)已知函数f(x)=x 3+ax 2+bx+c ,下列结论中错误的是 (A )∃x α∈R,f(x α)=0(B )函数y=f(x)的图像是中心对称图形(C )若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减(D )若x 0是f (x )的极值点,则()0'0f x =(11)设抛物线y 2=3px(p>0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为(A )y 2=4x 或y 2=8x (B )y 2=2x 或y 2=8x(C )y 2=4x 或y 2=16x (D )y 2=2x 或y 2=16x(12)已知点A (-1,0);B (1,0);C (0,1),直线y=ax+b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是(A )(0,1)(B)112⎛⎫- ⎪ ⎪⎝⎭( C) 113⎛⎤ ⎥ ⎦⎝(D) 11,32⎡⎫⎪⎢⎣⎭第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。
2019年高考真题——理科数学(全国卷)Word版含答案
2019年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i - (2)已知集合{1A =,{1,}B m =,AB A =,则m = (A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A BC D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若C B a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD = (A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos αα+=,则cos 2α=(A ) (B ) (C (D (8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
2020年高考真题——数学(理)(全国卷Ⅲ)+Word版含解析
2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( )A. 2B. 3C. 4D. 6【答案】C 【解析】 【分析】采用列举法列举出AB 中元素的即可.【详解】由题意,A B 中的元素满足8y x x y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故AB 中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题. 2.复数113i-的虚部是( ) A. 310-B. 110-C.110D.310【答案】D 【解析】【分析】利用复数的除法运算求出z 即可. 【详解】因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D.【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题. 3.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是( ) A. 14230.1,0.4p p p p ==== B. 14230.4,0.1p p p p ==== C. 14230.2,0.3p p p p ==== D. 14230.3,0.2p p p p ====【答案】B 【解析】 【分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组. 【详解】对于A 选项,该组数据的平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=;对于B 选项,该组数据的平均数为()()140.4230.1 2.5B x =+⨯++⨯=,方差为()()()()222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s =-⨯+-⨯+-⨯+-⨯=;对于C 选项,该组数据的平均数为()()140.2230.3 2.5C x =+⨯++⨯=,方差为()()()()222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s =-⨯+-⨯+-⨯+-⨯=;对于D 选项,该组数据的平均数为()()140.3230.2 2.5D x =+⨯++⨯=,方差为()()()()222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s =-⨯+-⨯+-⨯+-⨯=.因此,B 选项这一组的标准差最大. 故选:B.【点睛】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1et I K t --+,其中K为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为( )(ln19≈3) A. 60 B. 63C. 66D. 69【答案】C 【解析】 【分析】将t t *=代入函数()()0.23531t K I t e--=+结合()0.95I tK *=求得t*即可得解.【详解】()()0.23531t K I t e--=+,所以()()0.23530.951t K I t K e**--==+,则()0.235319t e*-=,所以,()0.2353ln193t *-=≈,解得353660.23t *≈+≈. 故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题. 5.设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( ) A. (14,0) B. (12,0) C. (1,0) D. (2,0)【答案】B 【解析】 【分析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4COx COx π∠=∠=,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果. 【详解】因为直线2x =与抛物线22(0)y px p =>交于,C D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx COx π∠=∠=,所以(2,2)C ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目. 6.已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=+a a b ( ) A. 3135-B. 1935-C.1735D.1935【答案】D 【解析】 【分析】计算出()a ab ⋅+、a b +的值,利用平面向量数量积可计算出cos ,a a b <+>的值. 【详解】5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()2222257a b a ba ab b +=+=+⋅+=-=,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 故选:D.【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题. 7.在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( ) A.19B. 13C. 12D.23【答案】A 【解析】 【分析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC+-=⋅,即可求得答案.【详解】在ABC 中,2cos 3C =,4AC =,3BC = 根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅2224322433AB =+-⨯⨯⨯可得29AB = ,即3AB = 由22299161cos22339AB BC AC B AB BC +-+-===⋅⨯⨯故1cos 9B =. 故选:A.【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题. 8.下图为某几何体的三视图,则该几何体的表面积是( )A. 6+42B. 4+42C. 6+23D. 4+23【答案】C 【解析】 【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:AB AD DB ===∴ADB △是边长为根据三角形面积公式可得:211sin 6022ADB S AB AD =⋅⋅︒==△∴该几何体的表面积是:632=⨯++故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题. 9.已知2tan θ–tan(θ+π4)=7,则tan θ=( ) A. –2 B. –1C. 1D. 2【答案】D 【解析】 【分析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案. 【详解】2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=. 故选:D.【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.10.若直线l 与曲线y 和x 2+y 2=15都相切,则l 的方程为( ) A. y =2x +1 B. y =2x +12C. y =12x +1 D.y =12x +12【答案】D 【解析】 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案. 【详解】设直线l在曲线y =(0x ,则00x >,函数y =y '=,则直线l的斜率k =, 设直线l的方程为)0y x x =-,即00x x -+=, 由于直线l 与圆2215x y +== 两边平方并整理得2005410x x --=,解得01x =,015x =-(舍), 则直线l 的方程为210x y -+=,即1122y x =+. 故选:D.【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.11.设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1,F 2P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( ) A. 1 B. 2C. 4D. 8【答案】A 【解析】 【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案. 【详解】5ca=,c ∴=,根据双曲线的定义可得122PF PF a -=, 12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=, 12F P F P ⊥,()22212||2PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A.【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.12.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A. a <b <c B. b <a <cC. b <c <aD. c <a <b【答案】A 【解析】 【分析】由题意可得a 、b 、()0,1c ∈,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b =,得85b =,结合5458<可得出45b <,由13log 8c =,得138c =,结合45138<,可得出45c >,综合可得出a 、b 、c 的大小关系. 【详解】由题意可知a、b、()0,1c ∈,()222528log 3lg 3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg 522lg 5lg 25lg 5a b ⎛⎫⎛⎫++⎛⎫==⋅<⋅==< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,a b ∴<; 由8log 5b =,得85b =,由5458<,得5488b <,54b ∴<,可得45b <; 由13log 8c =,得138c =,由45138<,得451313c <,54c ∴>,可得45c >. 综上所述,a b c <<. 故选:A.【点睛】本题考查对数式大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩,,则z =3x +2y 的最大值为_________. 【答案】7 【解析】【分析】作出可行域,利用截距的几何意义解决. 【详解】不等式组所表示的可行域如图因为32z x y =+,所以322x zy =-+,易知截距2z 越大,则z 越大, 平移直线32x y =-,当322x zy =-+经过A 点时截距最大,此时z 最大, 由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,(1,2)A ,所以max 31227z =⨯+⨯= 故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.14.262()x x+的展开式中常数项是__________(用数字作答).【答案】240 【解析】 【分析】写出622x x ⎛⎫+ ⎪⎝⎭二项式展开通项,即可求得常数项.【详解】622x x ⎛⎫+ ⎪⎝⎭ 其二项式展开通项:()62612rrrr C xx T -+⎛⎫⋅⋅ ⎪⎝⎭= 1226(2)r r r r x C x --⋅=⋅1236(2)r r r C x -=⋅当1230r -=,解得4r =∴622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=.故答案为:240.【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握()na b +的展开通项公式1C r n r rr n T a b -+=,考查了分析能力和计算能力,属于基础题.15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________. 【答案】23π 【解析】 【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值. 【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示, 其中2,3BC AB AC ===,且点M 为BC 边上的中点, 设内切圆的圆心为O ,由于AM =122S =⨯⨯=△ABC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()13322r =⨯++⨯=解得:22r,其体积:3433V r π==.. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径. 16.关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图像关于y 轴对称. ②f (x )的图像关于原点对称. ③f (x )的图像关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③ 【解析】 【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x π-<<可判断命题④的正误.综合可得出结论. 【详解】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误. 故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.设数列{a n }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【解析】 【分析】(1)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可; (2)由错位相减法求解即可.【详解】(1)由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+, 证明如下:当1n =时,13a =成立; 假设n k =时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立. 则对任意的*n N ∈,都有21n a n =+成立; (2)由(1)可知,2(21)2nnn a n ⋅=+⋅231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅,① 23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bcKa b c d a c b d-=++++,【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析.【解析】【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率;(2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22⨯列联表,计算出2K的观测值,再结合临界值表可得结论.【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:人次400≤人次400>空气质量不好 33 37空气质量好 228()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.19.如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值. 【答案】(1)证明见解析;(2)427.【解析】 【分析】(1)连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz -,利用空间向量法可计算出二面角1A EF A --的余弦值,进而可求得二面角1A EF A --的正弦值.【详解】(1)在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG 、1C E 、1C F ,在长方体1111ABCD A B C D -中,//AD BC 且AD BC =,11//BB CC 且11BB CC =,112C G CG =,12BF FB =,112233CG CC BB BF ∴===且CG BF =,所以,四边形BCGF 为平行四边形,则//AF DG 且AF DG =, 同理可证四边形1DEC G 为平行四边形,1//C E DG ∴且1C E DG =,1//C E AF ∴且1C E AF =,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz -,则()2,1,3A 、()12,1,0A 、()2,0,2E 、()0,1,1F , ()0,1,1AE =--,()2,0,2AF =--,()10,1,2A E =-,()12,0,1A F =-,设平面AEF 的法向量为()111,,m x y z =,由0m AE m AF ⎧⋅=⎪⎨⋅=⎪⎩,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,则()1,1,1m =-, 设平面1A EF 的法向量为()222,,n x y z =,由1100n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,则()1,4,2n =,37cos ,7321m n m n m n⋅<>===⨯⋅, 设二面角1A EF A --的平面角为θ,则7cos 7θ=,242sin 1cos 7θθ∴=-=. 因此,二面角1A EF A --的正弦值为427. 【点睛】本题考查点在平面的证明,同时也考查了利用空间向量法求解二面角角,考查推理能力与计算能力,属于中等题.20.已知椭圆222:1(05)25x y C m m +=<<,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【答案】(1)221612525x y +=;(2)52. 【解析】 【分析】(1)因为222:1(05)25x y C m m +=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积.【详解】(1)222:1(05)25x y C m m +=<< ∴5a =,b m =,根据离心率c e a ====, 解得54m =或54m =-(舍), ∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=; (2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N 根据题意画出图形,如图||||BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=︒,又90PBM QBN ∠+∠=︒,90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”, 可得:PMB BNQ ≅△△,221612525x y +=, ∴(5,0)B ,∴651PM BN ==-=,设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时, 故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2), 画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:222311110555125211d ⨯-⨯+===+, 根据两点间距离公式可得:()()22652055AQ =++-=,∴APQ 面积为:15555252⨯=;②当P 点(3,1)-时,故5+38MB ==,PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8), 画出图象,如图(5,0)A-,(6,8)Q,可求得直线AQ的直线方程为:811400x y-+=,根据点到直线距离公式可得P到直线AQ的距离为:()2283111405185185811d⨯--⨯+===+,根据两点间距离公式可得:()()226580185AQ=++-=∴APQ面积为:1518522185=,综上所述,APQ面积为:52.【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.21.设函数3()f x x bx c=++,曲线()y f x=在点(12,f(12))处的切线与y轴垂直.(1)求b.(2)若()f x有一个绝对值不大于1的零点,证明:()f x所有零点的绝对值都不大于1.【答案】(1)34b=-;(2)证明见解析【解析】【分析】(1)利用导数的几何意义得到'1()02f=,解方程即可;(2)由(1)可得'2311()32()()422f x x x x=-=+-,易知()f x在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c -=--=+=-=+,采用反证法,推出矛盾即可. 【详解】(1)因为'2()3f x x b =+, 由题意,'1()02f =,即21302b ⎛⎫⨯+= ⎪⎝⎭ 则34b =-; (2)由(1)可得33()4f x x x c =-+, '2311()33()()422f x x x x =-=+-, 令'()0f x >,得12x >或21x <-;令'()0f x <,得1122x -<<, 所以()f x 在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增, 且111111(1),(),(),(1)424244f c f c f c f c -=--=+=-=+, 若()f x 所有零点中存在一个绝对值大于1的零点0x ,则(1)0f ->或(1)0f <, 即14c >或14c <-. 当14c >时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=->-=+>=->=+>, 又32(4)6434(116)0f c c c c c c -=-++=-<,由零点存在性定理知()f x 在(4,1)c --上存在唯一一个零点0x ,即()f x 在(,1)-∞-上存在唯一一个零点,在(1,)-+∞上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾; 当14c <-时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=-<-=+<=-<=+<, 又32(4)6434(116)0f c c c c c c -=++=->,由零点存在性定理知()f x 在(1,4)c -上存在唯一一个零点0x ',即()f x (1,)+∞上存在唯一一个零点,在(,1)-∞上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;综上,()f x 所有零点的绝对值都不大于1.【点晴】本题主要考查利用导数研究函数的零点,涉及到导数的几何意义,反证法,考查学生逻辑推理能力,是一道有一定难度的题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t ⎧=--⎨=-+⎩(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点.(1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【答案】(1)(2)3cos sin 120ρθρθ-+=【解析】【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值; (2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A .令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -AB ∴==(2)由(1)可知12030(4)AB k -==--, 则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.[选修4—5:不等式选讲](10分)23.设a ,b ,c ∈R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c .【答案】(1)证明见解析(2)证明见解析.【解析】【分析】(1)由2222()2220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明; (2)不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bcbc +++=⋅==,结合基本不等式,即可得出证明. 【详解】(1)2222()2220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. ,,a b c 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<; (2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--=,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=. 当且仅当b c =时,取等号,a ∴≥,即3max{,,}4abc .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.。
2021年高考真题——数学(新高考全国Ⅰ卷)+Word版含解析
2021年高考真题——数学(新高考全国Ⅰ卷)+Word版含解析2021年普通高等学校招生全国统一考试数学试卷,共22小题,满分150分,考试用时120分钟。
请考生注意以下事项:1.在答题卡上填写姓名、考生号、考场号和座位号,并用2B铅笔填涂试卷类型(A)。
2.选择题答案用2B铅笔在答题卡上涂黑,如需改动,用橡皮擦干净后再涂其他答案。
非选择题必须用黑色字迹的钢笔或签字笔作答,写在答题卡各题目指定区域内相应位置上,如需改动,先划掉原来的答案,然后再写上新答案,不准使用铅笔和涂改液。
3.考试结束后,请将试卷和答题卡一并交回。
一、选择题:共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合$A=x-2<x<4$,$B=\{2,3,4,5\}$,则$A$为()A。
$\{2\}$。
B。
$\{2,3\}$。
C。
$\varnothing$。
D。
$\{3,4\}$2.已知$z=2-i$,则$z(z+i)$为()A。
$6-2i$。
B。
$4-2i$。
C。
$6+2i$。
D。
$4+2i$3.已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为()A。
2.B。
2$\sqrt{2}$。
C。
4.D。
4$\sqrt{2}$4.下列区间中,函数$f(x)=7\sin\left(x-\dfrac{\pi}{6}\right)$单调递增的区间是()A。
$\left(0,\dfrac{\pi}{2}\right)$。
B。
$\left(\dfrac{\pi}{2},\pi\right)$。
C。
$\left(\dfrac{3\pi}{2},2\pi\right)$。
D。
$\left(\dfrac{\pi}{2},\dfrac{3\pi}{2}\right)$5.已知$F_1,F_2$是椭圆$C:x^2+y^2=1$的两个焦点,点$M$在$C$上,则$MF_1\cdot MF_2$的最大值为()A。
高考数学套用18个规范答题模板-2020版word.doc
模板一求函数值例1【2018年理数全国卷II】已知是定义域为的奇函数,满足.若,则A. B. 0 C. 2 D. 50【答案】C【解析】▲模板构建已知函数解析式求函数值,常伴随对函数的单调性、奇偶性、周期性和对称性的考查,其解题思路如下:【变式训练】【2018年江苏卷】函数满足,且在区间上,则的值为________.模板二函数的图象例2【2018年理数全国卷II】函数的图像大致为A. AB. BC. CD. D【答案】B【解析】为奇函数,舍去A,舍去D;,所以舍去C;因此选B.▲模板构建有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.结合导数解答此类问题的基本要点如下:【变式训练】【2018年全国卷Ⅲ文】函数的图像大致为模板三 函数的零点问题例3 【2018届北京市十一学校3月零模】已知函数()131,2xf x x ⎛⎫=- ⎪⎝⎭那么在下列区间中含有函数()f x 零点的是( ) A. 10,3⎛⎫ ⎪⎝⎭ B. 11,32⎛⎫ ⎪⎝⎭ C. 12,23⎛⎫ ⎪⎝⎭ D. 2,13⎛⎫⎪⎝⎭【答案】B▲模板构建 利用零点存在性定理可以根据函数y=f(x)在某个区间端点处函数值的符号来确定零点所在区间.这种方法适用于不需要确定零点的具体值,只需确定其大致范围的问题.基本的解题要点为:【变式训练】【2018年江苏卷】若函数在内有且只有一个零点,则在上的最大值与最小值的和为________. 模板四 三角函数的性质例4【2018届福建省漳州市5月测试】已知函数(,),满足,且对任意,都有.当取最小值时,函数的单调递减区间为( )A. ,ZB. ,Z C. ,Z D.,Z【答案】A 【解析】那么,函数,当时,取得最小值,,,即函数,令,得,所以,函数的单调递减区间为: ,,故选A.▲模板构建 在利用三角函数的性质求最值或值域时,要注意:(1)先确定函数的定义域;(2)将已知函数化简为y=Asin(ωx+φ)+k 的形式时,尽量化成A>0,ω>0的情况;(3)将ωx+φ视为一个整体.解题思路为:【变式训练】【2018辽宁省凌源市模拟】已知函数()2cos 3sin sin 2f x x x x π⎛⎫=-++⎪⎝⎭,当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 的最小值与最大值之和为__________. 模板五 三角函数的图象变换例5.将函数()2sin 4f x x π⎛⎫=+ ⎪⎝⎭的图象上各点的横坐标缩小为原来的12,再向右平移φ(φ>0)个单位后得到的图象关于直线2x π=对称,则φ的最小值是( )A. 4πB. 3πC. 34πD. 38π【答案】D▲模板构建 三角函数图象变换的主要类型:在x 轴方向上的左、右平移变换,在y 轴方向上的上、下平移变换,在x 轴或y 轴方向上的伸缩变换.其基本步骤如下:【变式训练】【2018湖南省长郡中学模拟】为了得到函数2sin 23y x π⎛⎫=+⎪⎝⎭的图象,只需把函数cos 23y x π⎛⎫=- ⎪⎝⎭的图象( )A. 向左平移2π个单位长度 B. 向右平移2π个单位长度C. 向左平移4π个单位长度D. 向右平移4π个单位长度模板六 解三角形例6【2018年理数全国卷II 】在中,,,,则A.B.C.D.【答案】A▲模板构建 利用正弦定理、余弦定理都可以进行三角形的边、角之间的互化,当已知三角形的两边及一边的对角,或已知两角及一角的对边时,可以利用正弦定理求解三角形中的有关量;如果已知三边或两边及其夹角,则可利用余弦定理进行求解.其基本思路如下:【变式训练】【2018河南省南阳市第一中学模拟】在ABC ∆中,内角,,A B C 所对的边分别为(),,,sin cos cos 3cos a b c B a B b A c B +=.(1)求B ;(2)若3,b ABC =∆的面积为3ABC ∆的周长. 模板七 利用函数性质解不等式例7已知定义在R 上的偶函数()f x 在[)0,+∞上递减且()10f =,则不等式()414log log 0f x f x ⎛⎫+≥ ⎪⎝⎭的解集为__________. 【答案】1,44⎡⎤⎢⎥⎣⎦▲模板构建 函数性质法主要适用于解决抽象函数对应的不等式问题.其解题要点如下:【变式训练】【2018届广东省模拟(二)】已知函数,当时,关于的不等式的解集为__________.模板八 利用基本不等式求最值 例8.【2018广西钦州质量检测】已知(,为正实数),则的最小值为__________. 【答案】【解析】∵a ,b ∈R+,a+4b=1 ∴=≥,当且仅当,即a=2b 时上述等号成立,故答案为:9▲模板构建 拼凑法就是将函数解析式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求最值.应用此法求最值的基本思路如下:【变式训练】已知,x y +∈R ,且满足22x y xy +=,那么34x y +的最小值为____.模板九 不等式恒成立问题例9【2018年天津卷文】已知a∈R,函数若对任意x∈[–3,+),f(x)≤恒成立,则a 的取值范围是__________. 【答案】[,2] 【解析】▲模板构建 分离参数法是求解不等式恒成立问题的常用方法,其解题要点如下:【变式训练】【2018河南省中原名校联考】已知函数()()1ln ,0mf x x m x m x=-+->,当[]1,x e ∈时, ()0f x >恒成立,则实数m 的取值范围为( )A. 10,2⎛⎫ ⎪⎝⎭B. ()1,+∞C. ()0,1D. 1,2⎛⎫+∞ ⎪⎝⎭模板十 简单的线性规划问题 例10【2018年理北京卷】若x ,y 满足,则2y−x 的最小值是_________.【答案】3 【解析】 不等式可转化为,即, 满足条件的在平面直角坐标系中的可行域如下图令,由图象可知,当过点时,取最小值,此时,的最小值为.▲模板构建线性规划问题是指在线性约束条件下求解线性目标函数的最值问题,解决此类问题最基本的方法是数形结合法.其基本的解题步骤如下:【变式训练】【河南省2018年高考一模】设不等式组表示的平面区域为D,若圆C:不经过区域D上的点,则r的取值范围为A. B.C. D.模板十一数列的通项与求和例11【2018年专家猜题卷】数列的前项和为,已知,. (Ⅰ)证明:数列是等比数列;(Ⅱ)求数列的前项和.【答案】(1)见解析;(2).【解析】(1)证明:∵,∴,∴,又,∴,∴数列是以1为首项,2为公比的等比数列.(2)由(1)知,,∴,∴,①. ②①-②得,∴.▲模板构建数列的通项与求和问题的解题步骤如下:【变式训练】【2018年理数天津卷】设是等比数列,公比大于0,其前n项和为,是等差数列.已知,,,.(I)求和的通项公式;(II)设数列的前n项和为,(i)求;(ii)证明.模板十二 空间中的平行与垂直 例12【2018年江苏卷】在平行六面体中,.求证:(1); (2).【答案】见解析 【解析】证明:(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1.因为AB 平面A 1B 1C ,A 1B 1平面A 1B 1C , 所以AB ∥平面A 1B 1C .▲模板构建 证明空间中的平行与垂直的步骤如下:【变式训练】【2018南京市、盐城市一模】如图所示,在直三棱柱111ABC A B C -中, CA CB =,点,M N 分别是11,AB A B 的中点.(1)求证: BN ∥平面1A MC ; (2)若11A M AB ⊥,求证: 11AB A C ⊥.模板十三 求空间角例13【2018吉林省实验中学模拟】如图, AB 为圆O 的直径,点E , F 在圆O 上, //AB EF ,矩形ABCD 和圆O 所在的平面互相垂直,已知2AB =, 1EF =. (Ⅰ)求证:平面DAF ⊥平面CBF ;(Ⅱ)当AD 的长为何值时,二面角D FE B --的大小为60︒.(Ⅱ)设EF 中点为G ,以O 为坐标原点, OA OG AD 、、方向分别为x 轴、y 轴、z 轴方向建立空间直角坐标系(如图).设(0)AD t t =>,则点D 的坐标为()1,0,t ,则()1,0,C t -,又()()131,0,0,1,0,0,,,02A B F ⎛⎫- ⎪ ⎪⎝⎭,∴,因此,当AD 的长为64时,平面DFC 与平面FCB 所成的锐二面角的大小为60°. ▲模板构建 空间角的求解可以用向量法.向量法是通过建立空间直角坐标系把空间图形的几何特征代数化,避免寻找角和垂线段等诸多麻烦,使空间点、线、面的位置关系的判定和计算程序化、简单化,具体步骤如下:【变式训练】在四棱柱1111ABCD A B C D -中,底面ABCD 是正方形,且12BC BB ==, 1160A AB A AD ∠=∠=︒.(1)求证: 1BD CC ⊥;(2)若动点E 在棱11C D 上,试确定点E 的位置,使得直线DE 与平面1BDB 所成角的正弦值为7. 模板十四 直线与圆的位置关系例14【2018四川省绵阳市南山中学模拟】若圆2244100x y x y ++--=上至少有三个不同的点到直线:0l ax by +=的距离为22,则直线l 的斜率的取值范围是( ) A. 23,23⎡⎤-+⎣⎦ B. 23,32⎡⎤---⎣⎦C. 23,23⎡⎤--+⎣⎦D. 23,23⎡⎤---⎣⎦【答案】B【解析】圆2244100x y x y ++--=可化为()()222218x y ++-= 则圆心为(-2,2),半径为32,1+240b ba a⎛⎫⎛⎫-⨯≤⎪ ⎪⎝⎭⎝⎭由直线l的斜率k=-ab则上式可化为k2+4k+1≤0解得2323k--≤≤-+故选B▲模板构建几何法是通过比较圆心到直线的距离与圆的半径的大小来确定直线和圆的位置关系的方法,其基本步骤如下:【变式训练】【2018北京市丰台区模拟】已知直线210x y--=和圆()2211x y-+=交于,A B两点,则AB=__________.模板十五圆锥曲线中的最值与范围问题例15【2018辽宁省凌源模拟】知椭圆()2222:10x yC a ba b+=>>的离心率为3,且过点33,2⎛⎫-⎪⎪⎝⎭.过椭圆C右焦点且不与x轴重合的直线l与椭圆C交于()()1122,,,P x y Q x y两点,且12y y+≠.(1)求椭圆C的方程;(2)若点1Q与点Q关于x轴对称,且直线1Q P与x轴交于点R,求RPQ∆面积的最大值.【解析】(I )依题意,22222393{1,4,caa ba b c=+==+解得3,3,3a b c===,故椭圆C的方程为221123x y+=;(2)依题意,椭圆右焦点F坐标为()3,0,设直线():30l x my m=+≠,直线l 与椭圆C 方程联立223,{ 1,123x my x y =++=化简并整理得()224630m y my ++-=, ∴12122263,44m y y y y m m +=-=-++, 由题设知直线1Q P 的方程为()121112y y y y x x x x +-=--,令0y =得()()()11212211221112121233y x x my y my y x y x y x x y y y y y y -++++=-==+++ 22643464m m m m -+=+=-+,∴点(当且仅当22911m m +=+即2m =±时等号成立) ∴RPQ ∆的面积存在最大值,最大值为1.▲模板构建 与圆锥曲线有关的最值问题的变化因素多,解题时需要在变化的过程中掌握运动规律,抓住主变元,目标函数法是避免此类问题出错的法宝,应注意目标函数式中自变量的限制条件(如直线与椭圆相交,Δ>0等).解题步骤如下:【变式训练】【2018·合肥市质检】已知点F 为椭圆E : 22221x y a b+= (a >b >0)的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线142x y+=与椭圆E 有且仅有一个交点M .(1)求椭圆E 的方程; (2)设直线142x y+=与y 轴交于P ,过点P 的直线l 与椭圆E 交于不同的两点A ,B ,若λ|PM |2=|P A |·|PB |,求实数λ的取值范围.模板十六 圆锥曲线中的探索性问题例16【2018届河南省师范大学附属中学高三8月开学】已知椭圆的右焦点为,为椭圆的上顶点,为坐标原点,且是等腰直角三角形.(1)求椭圆的方程; (2)是否存在直线交椭圆于两点,且使为的垂心(垂心:三角形三条高的交点)?若存在,求出直线的方程;若不存在,请说明理由. 【答案】(1)(2)【解析】(1)由△OMF 是等腰直角三角形得b=1,a =故椭圆方程为(2)假设存在直线l 交椭圆于P,Q 两点,且使F 为△PQM 的垂心 设P (,),Q (,) 因为M (0,1),F (1,0),故,故直线l 的斜率于是设直线l 的方程为由得由题意知△>0,即<3,且 由题意应有,又故解得或经检验,当时,△PQM 不存在,故舍去;当时,所求直线满足题意综上,存在直线l ,且直线l 的方程为▲模板构建 圆锥曲线中的探索性问题在高考中多以解答题的形式呈现,常用假设存在法求解,其解题要点如下:【变式训练】【2018届广西柳州市高三上学期摸底】已知过抛物线()2:20C y px p =>的焦点F ,斜率为2的直线交抛物线于()()()112212,,,A x y B x y x x <两点,且6AB =.(1)求该抛物线C 的方程;(2)已知抛物线上一点(),4M t ,过点M 作抛物线的两条弦MD 和ME ,且MD ME ⊥,判断直线DE 是否过定点?并说明理由. 模板十七 离散型随机变量例17【2018辽宁省凌源市模拟】共享单车因绿色、环保、健康的出行方式,在国内得到迅速推广.最近,某机构在某地区随机采访了10名男士和10名女士,结果男士、女士中分别有7人、6人表示“经常骑共享单车出行”,其他人表示“较少或不选择骑共享单车出行”.(1)从这些男士和女士中各抽取一人,求至少有一人“经常骑共享单车出行”的概率;(2)从这些男士中抽取一人,女士中抽取两人,记这三人中“经常骑共享单车出行”的人数为X ,求X 的分布列与数学期望.▲模板构建公式法就是直接利用古典概型、互斥事件、对立事件、相互独立事件以及独立重复试验、条件概率等的求解方法或计算公式求解离散型随机变量的概率的方法.其基本步骤如下:【变式训练】某城市随机抽取一年(365天)内100天的空气质量指数API(Air Pollution Index)的监测数据,结果统计如下:API[0,50](50,100](100,150](150,200](200,250](250,300]大于300中度重重度污染空气质量优良轻微污染轻度污染中度污染污染天数101520307612列联表,并判断(Ⅰ)若本次抽取的样本数据有30天是在供暖季,其中有7天为重度污染,完成下面22能否有95%的把握认为该市本年空气重度污染与供暖有关?非重度污染 重度污染 合计 供暖季 非供暖季 合计10020P(K )k ≥ 0.250.15 0.10 0.05 0.025 0.010 0.005 0.0010k1.3232.072 2.7063.841 5.024 6.635 7.879 10.828附: ()()()()()22K n ad bc a b c d a c b d -=++++(Ⅱ)政府要治理污染,决定对某些企业生产进行管控,当API 在区间[]0,100时企业正常生产;当API 在区间(]100,200时对企业限产30%(即关闭30%的产能),当API 在区间(]200,300时对企业限产50%,当API 在300以上时对企业限产80%,企业甲是被管控的企业之一,若企业甲正常生产一天可得利润2万元,若以频率当概率,不考虑其他因素:①在这一年中随意抽取5天,求5天中企业被限产达到或超过50%的恰为2天的概率; ②求企业甲这一年因限产减少的利润的期望值.模板十八 线性回归方程例18【2018年理数全国卷II 】下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案】(1)利用模型①预测值为226.1,利用模型②预测值为256.5,(2)利用模型②得到的预测值更可靠.【解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.▲模板构建线性回归方程常用来预估某变量的值,因此选择恰当的拟合函数是解题的关键,一般解题要点如下:(1)作图.依据样本数据画出散点图,确定两个变量具有线性相关关系.(2)计算.计算出,,,xiyi的值;计算回归系数,.(3)求方程.写出线性回归直线方程y=x+.【变式训练】【2018湖南省长沙市第一中学模拟】2017年4月1日,新华通讯社发布:国务院决定设立河北雄安新区.消息一出,河北省雄县、容城、安新3县及周边部分区域迅速成为海内外高度关注的焦点. (1)为了响应国家号召,北京市某高校立即在所属的8个学院的教职员工中作了“是否愿意将学校整体搬迁至雄安新区”的问卷调查,8个学院的调查人数及统计数据如下:调查人数(x) 10 20 30 40 50 60 70 80愿意整体搬迁人数(y)8 17 25 31 39 47 55 66请根据上表提供的数据,用最小二乘法求出变量y关于变量x的线性回归方程y bx a=+(b保留小数点后两位有效数字);若该校共有教职员工2500人,请预测该校愿意将学校整体搬迁至雄安新区的人数;(2)若该校的8位院长中有5位院长愿意将学校整体搬迁至雄安新区,现该校拟在这8位院长中随机选取4位院长组成考察团赴雄安新区进行实地考察,记X为考察团中愿意将学校整体搬迁至雄安新区的院长人数,求X的分布列及数学期望.参考公式及数据:882122111,ˆˆ,16310,20400·ni iii i ini iiix y n x yb a y b x x y xx n x====-⋅⋅==-⋅==-∑∑∑∑.答案部分模板一求函数值【变式训练】【答案】【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由得函数的周期为4,所以因此模板二函数的图象【变式训练】【答案】D【解析】当时,,排除A,B.,当时,,排除C故正确答案选D.模板三函数的零点问题【变式训练】【答案】–3【解析】分析:先结合三次函数图象确定在上有且仅有一个零点的条件,求出参数a,再根据单调性确定函数最值,即得结果.详解:由得,因为函数在上有且仅有一个零点且,所以,因此从而函数在上单调递增,在上单调递减,所以,模板四三角函数的性质【变式训练】【答案】1 2模板五三角函数的图象变换【变式训练】【答案】C【解析】故选C模板六解三角形【变式训练】【解析】(1)由题意及正弦定理得()+=,B A B B AC B sin sin cos sin cos3sin cos()∴+==,sin sin sin sin3sin cosB A B BC C B()Q,∈Cπ0,∴>,sin0C∴=,B Bsin3cosB=∴tan3∴2220a c +=,∴()222236a c a c ac +=++=,6a c ∴+=,又23b =,ABC ∴∆的周长为623+.模板七 利用函数性质解不等式 【变式训练】【答案】【解析】 当时,是上的增函数,且,所以可以转化为,结合函数的单调性,可以将不等式转化为,解得,从而得答案为.模板八 利用基本不等式求最值 【变式训练】【答案】526+ 【解析】由22x y xy +=,得1112x y+=. ∴()1134342x y x y x y ⎛⎫+=++ ⎪⎝⎭=4355262y x x y ++≥+.当且仅当432y xx y =且22x y xy +=时等号成立.∴34x y +的最小值为526+模板九 不等式恒成立问题 【变式训练】【答案】C【解析】记函数()f x 在[]1,e 上的最小值为()g m : ()()1ln mf x x m x x=-+-的定义域为()0,+∞. ()211m mf x x x++'=-. 令()0f x '=,得m x =或1x =.①0m 1<≤时,对任意的1x e <<,()0f x '>, ()f x 在[]1,e 上单调递增, ()f x 的最小值为()11m f =-②当1m e <<时,()f x 的最小值为()()m m 1m 1lnm f =--+;故实数m 的取值范围为()0,1. 故选C.模板十 简单的线性规划问题 【变式训练】【答案】A 【解析】作出不等式组表示的平面区域, 得到如图的及其内部,其中,,圆:表示以为圆心,半径为的圆,由图可得,当半径满足或时,圆不经过区域上的点,,当或时,圆不经过区域上的点,故选模板十一 数列的通项与求和 【变式训练】【答案】(Ⅰ),;(Ⅱ)(i ).(ii )证明见解析.【解析】(I )设等比数列的公比为q.由可得.因为,可得,故.设等差数列的公差为d ,由,可得由,可得从而故所以数列的通项公式为,数列的通项公式为(II )(i )由(I ),有,故.(ii )因为,所以.模板十二 空间中的平行与垂直 【变式训练】【答案】见解析【解析】证明:(1)因为111ABC A B C -是直三棱柱,所以11//AB A B ,且11AB A B =, 又点,M N 分别是11,AB A B 的中点,所以1MB A N =,且1//MB A N .则由侧面11ABB A ⊥底面ABC ,侧面11ABB A ⋂底面ABC AB =,CM AB ⊥,且CM ⊂底面ABC ,得CM ⊥侧面11ABB A .又1AB ⊂侧面11ABB A ,所以1AB CM ⊥. 又11AB A M ⊥, 1,A M MC ⊂平面1A MC ,且1A M MC M ⋂=,所以1AB ⊥平面1A MC .又1AC ⊂平面1A MC ,所以11AB A C ⊥. 模板十三 求空间角【变式训练】【解析】(1)连接1A B , 1A D , AC , 因为1AB AA AD ==, 1160A AB A AD ∠=∠=︒, 所以1A AB ∆和1A AD ∆均为正三角形, 于是11A B A D =.设AC 与BD 的交点为O ,连接1A O ,则1A O BD ⊥, 又四边形ABCD 是正方形,所以AC BD ⊥, 而1AO AC O ⋂=,所以BD ⊥平面1A AC .所以OA 、OB 、1OA 两两垂直.如图,以点O 为坐标原点, OA u u u v的方向为x 轴的正方向,建立空间直角坐标系O xyz -,则()1,0,0A , ()0,1,0B , ()0,1,0D -, ()10,0,1A , ()1,0,0C -, ()0,2,0DB =u u u v, ()111,0,1BB AA ==-u u u v u u u v , ()111,1,0D C DC ==-u u u u v u u u v, 由()111,0,1DD AA ==-u u u u v u u u v,易求得()11,1,1D --.设111D E DC λ=u u u u v u u u u v ([]0,1λ∈), 则()()1,1,11,1,0E E E x y z λ++-=-,即()1,1,1E λλ---, 所以()1,,1DE λλ=--u u u v.模板十四 直线与圆的位置关系【变式训练】【答案】2模板十五 圆锥曲线中的最值与范围问题【变式训练】【解析】 (1)由题意,得a =2c ,b =3c ,则椭圆E 为2222143x y c c+=.∵直线142x y+=与y 轴交于P (0,2), ∴|PM |2=54,当直线l 与x 轴垂直时,|P A |·|PB |=(2+3)×(2-3)=1, ∴λ|PM |2=|P A |·|PB |⇒λ=45, 当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2,A (x 1,y 1),B (x 2,y 2),由222{ 34120y kx x y =++-=⇒(3+4k 2)x 2+16kx +4=0, 依题意得,x 1x 2=2434k+,且Δ=48(4k 2-1)>0,∴|P A |·|PB |=(1+k 2)x 1x 2=(1+k 2)·2434k +=1+2134k +=54λ, ∴λ=45 (1+2134k +), ∵k 2>14,∴45<λ<1.综上所述,λ的取值范围是[45,1). 模板十六 圆锥曲线中的探索性问题【变式训练】【答案】(1)24y x =(2)()8,4-【解析】(1)拋物线的焦点,02p F ⎛⎫⎪⎝⎭ ,∴直线AB 的方程为: 2p y x ⎫=-⎪⎭.联立方程组22{ 2y pxp y x =⎫=-⎪⎭,消元得: 22204p x px -+=, ∴212122,4p x x p x x +==.∴6AB ===解得2p =.∴抛物线C 的方程为: 24y x =.(2)由(1)可得点()4,4M ,可得直线DE 的斜率不为0, 设直线DE 的方程为: x my t =+, 联立2{4x my ty x=+=,得2440y my t --=, 则216160m t ∆=+>①.设()()1122,,,D x y E x y ,则12124,4y y m y y t +==-. ∵()()11224,44,4MD ME x y x y ⋅=--⋅--()()12121212416416x x x x y y y y =-+++-++()2222121212124164164444y y y y y y y y ⎛⎫=⋅-+++-++ ⎪⎝⎭ ()()()2212121212343216y y y y y y y y =-++-++22161232160t m t m =--+-=即2212321616t t m m -+=+,得: ()()226421t m -=+, ∴()6221t m -=±+,即48t m =+或44t m =-+, 代人①式检验均满足0∆>,∴直线DE 的方程为: ()4848x my m m y =++=++或()44x m y =-+. ∴直线过定点()8,4-(定点()4,4不满足题意,故舍去). 模板十七 离散型随机变量 【变式训练】【解析】(Ⅰ)根据以上数据得到如下列联表: 非重度污染 重度污染 合计 供暖季 23 7 30 非供暖季 65 5 70 合计 8812100()22100657235 5.213 3.84188127030K ⨯⨯-⨯=≈>⨯⨯⨯,②企业甲这一年的利润的期望值为25750365(2210010100⨯⨯+⨯⨯ 11311222)502.9721005100+⨯⨯+⨯⨯=万元,故企业甲这一年因限产减少的利润的期望值是3652502.97227.03⨯-=万元. 模板十八 线性回归方程 【变式训练】【解析】(1)由已知有 1221163108453645,36,0.820400845ˆ54ni i i n i i x y n x y x y b x n x==-⋅⋅-⨯⨯====≈-⨯⨯-⋅∑∑, 360.80450a =-⨯=,故变量 y 关于变量 x 的线性回归方程为0.8y x =,所以当 2500x =时,25000.802000y =⨯=.(2)由题意可知X 的可能取值有1,2,3,4.()()132253534488131,2147C C C C P X P X C C ⋅⋅======,()()2145354488313,4714C C C P X P X C C ⋅======. 所以 X 的分布列为()1331512341477142E X =⨯+⨯+⨯+⨯=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.保持卡面清洁,不要折叠、不要弄破。
一、选择题(每小题 5 分,共 60 分)
1A B C D 2A B C D
3A B C D
4A B C D
5A B C D 6A B C D 7A B C D 8A B C D
二、填空题(每小题 5 分,共 20 分)
9 ABCD 10 A B C D 11 A B C D 12 A B C D
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
19、(本小题满分 12 分)
考场号
姓名
线…ห้องสมุดไป่ตู้……………………
班级
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 20、(本小题满分 12 分)
例√× ○
●
1.答题前,考生先将自己的姓名、准考证号填写清楚,并
注 意
认真检查监考员所粘贴的条形码;
2.选择题必须用 2B 铅笔填涂,解答题必须用 0.5 毫米黑 色签字笔书写,字体工整,笔迹清楚;
事 3.请按照题号顺序在各题目的答题区域内作答,超出答题
项
区域书写的答案无效;在草稿纸、试题卷上答题无效。
…………………………………………密…………………………………封…………………………………………
座位号
普通高等学校招生全国统一考试
数学(理)试题答题卡
姓名
________________________
准考证号
考生禁填:缺考考生由 监考员填涂右 边的缺考标记.
考生条形码粘贴处
正确填涂 填
涂 样 错误填涂
13. ———————————
14. ————————————
15.
16.
———————————
————————————
三、解答题(共 70 分,解答应写出文字说明,证明过程或演算步骤)
17、(本小题满分 12 分)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 18、(本小题满分 12 分)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 21、(本小题满分 12 分)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 .题(10 分)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效