七年级数学第二学期第六周周演练测试题
七年级数学下册第六章实数周周测6全章新版新人教版
第六章实数周周测6一选择题1.下列数中:﹣8,2.7,0.66666…,0,2,9.181181118…是无理数的有()A.0个B.1个C.2个D.3个2.下列说法正确的是()A.任何数都有算术平方根B.只有正数有算术平方根C.0和正数都有算术平方根D.负数有算术平方根3.下列语句正确的是()A.9的平方根是﹣3B.﹣7是﹣49的平方根C.﹣15是225的平方根D.(﹣4)2的平方根是﹣44.的立方根是( )A.-1B.OC.1D. ±15.下列各数中,与数最接近的数是().A.4.99B.2.4C.2.5 D .2.36.有下列说法:①实数和数轴上的点一一对应;②不含根号的数一定是有理数;③负数没有平方根;④是17的平方根.其中正确的有()A.3个B.2个C.1个D.0个7.的立方根是()A.2B. 2C.8D.-88.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣59.已知实数x,y满足,则x-y等于()A.3B.-3C.1D.-110.如图,数轴上的点A,B,C,D分别表示数﹣1,1,2,3,则表示2﹣的点P应在()A.线段AO上B.线段OB上C.线段BC上D.线段CD上11.若,则估计的值所在的范围是()A. B. C. D.,则=()12.A.﹣1B.1C.D.二填空题的平方根是.14.一个数的平方根和它的立方根相等,则这个数是 .15.己知16.若某数的平方根为a+3和2a-15,则这个数是 .17.已知|a+1|+=0,则a﹣b= .18.定义运算“@”的运算法则为:x@y=xy﹣1,下面给出关于这种运算的几种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x﹣1=0;④若x@y=0,则(xy)@(xy)=0.其中正确结论的序号是.三解答题19.计算:(1);(2);(3)20.求未知数的值:(1)(2y﹣3)2﹣64=0;(2)64(x+1)3=27.21.实数a,b在数轴上的位置如图所示,请化简:.22.设a.b为实数,且=0,求a2﹣的值.23.3是2x﹣1的平方根,y是8的立方根,z是绝对值为9的数,求2x+y﹣5z的值.24.设的整数部分和小数部分分别是x,y,试求x,y的值与x﹣1的算术平方根.第六章实数周周测6 参考答案与解析一、选择题1.B2.C3.C4.C5.D6.A7.A8.B9.A 10.A 11.A 12.A二、填空题13.5 14.0 15.1.002 16.49 17.-9 18.①②④三、解答题19.解:(1)原式=-1+4+2×3=9.(2)原式=5-15=-10.(3)原式.20.解:(1)方程可化为(2y﹣3)2=64,由平方根的定义知,2y-3=8或2y-3=-8,解得y=5.5或y=-2.5.(2)方程可化为(x+1)³=2764,由立方根的定义知x+1=34,解得x=14.21.解:由数轴知,a<0<b,|a|<|b|,∴a-b<0,b+a>0,∴原式=b-a+a-(b+a)=-a.22.解:∵=0,∴,b=2,∴原式²+2+2²=2-2+2+4=6.23.解:∵3是2x﹣1的平方根,y是8的立方根,z是绝对值为9的数,∴2x-1=9,y=2,x=±9,∴x=5.当z=9时,2x+y-5z=2×5+2-5×9=-33.当z=-9时,2x+y-5z=2×5+2-5×(-9)=67.24.解:∵2<3,∴4<<5.∵的整数部分和小数部分分别是x,y,∴x=4,-2.则x-1=4-1=3。
第二中学七年级(下)数学周练试题(一)
EDCB第二中学七年级(下)数学周练试题(一)考试时间:120分钟 试卷满分:120分 编辑人:丁济亮一、选择题(请将唯一正确答案的代号填入括号内, 共12小题, 每小题3分, 共36分) 1.下列不是二元一次方程组的是( )A .⎪⎩⎪⎨⎧-=-=+961611y x y xB .⎩⎨⎧=-=+597412y x y xC .⎩⎨⎧=-=3223y xD .⎩⎨⎧=+-=413x y x 2.已知方程134x y -=,用含有x 的式子表示y ,正确的是( )A .134y x +=B .1234yx +=C .4123x y -=D .413x y -=3.方程组⎩⎨⎧=-=+24y x y x 的解是( ).A .⎩⎨⎧==3,1y x B .⎩⎨⎧==1,3y x C .⎩⎨⎧==2,2y x D .⎩⎨⎧==0,2y x4.若单项式723b a y x +与yx ba +-2831是同类项,则y x +的值为( )A. 4B.5C.6D.75.若41x y =⎧⎨=-⎩是关于y x 、的二元一次方程()212ax a y -+=的一个解,则a = ( )A .3B .-2C .2D .1436.如图,射线OC 的端点O 在直线AB 上,∠AOC 的度数比∠BOC 的3倍多20°,设∠AOC 和∠BOC 的度数分别为a °和b °,则下面所列方程组正确的是( ) A .18020a b a b +=⎧⎨=+⎩ B .180220a b a b +=⎧⎨=-⎩ C .180320a b a b +=⎧⎨=+⎩ D .90220a b a b +=⎧⎨=+⎩7.若∠A 与∠B 互补, ∠B 与∠C 互余, 则∠A 与∠C 的关系为( ) A .∠A +∠C =90° B .∠A –∠C =90° C .∠A +∠C =180° D .∠A –∠C =180° 8.将一副三角板如图摆放:两直角顶点重合,则 ∠BCE +∠ACD 的度数为( ). A .150° B .160° C .170°D .180°9.中央电视台2套“开心辞典”栏目中,有一期的 题目如图所示,两个天平都平衡,则三个球体的重量 等于( )个正方体的重量.A .2B .3C .4D .5OEDCB 10.已知:∠AOB =3∠BOC ,若∠BOC =30°,则∠AOC 等于( ) A .120°B .120°或60°C .30°D .30°或90°11.已知关于y x 、二元一次方程组277287x y k x y k+=+⎧⎨+=+⎩ 则x y -的值是( )A .1B .0C .-1D .212.如图,一条直线上有六点A 、B 、C 、D 、M 、N .以下说法:①图中共有15条线段;②若AM =DN ,则AN =DM ;③若B 为AD 的中点,则21=-CDCA BC ;④若线段AD 、CD 的中点分别为P 和Q ,则PQ =21AC .其中正确的有( )A . 1个B . 2个C . 3个D .4个 二、填空题(共4小题, 每小题3分, 共12分) 13.写出一个二元一次方程,使1,3x y =⎧⎨=⎩是它的一组解,这个二元一次方程为 .14.已知:如图,点O 在直线AB 上,OD 平分 ∠AOC ,OE 平分∠COB ,则∠DOE =________度.15.若213(2)(2)m n m xn y--+++=16是关于x 、y 的二元一次方程.则m =____,n =____.16.用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和2块D 型钢板.现需15块C 型钢板,18块D 型钢板,可恰好用A 型钢板、B 型钢板各多少块?若设恰好用A 型钢板x 块,B 型钢板y 块,则列出的方程组是______________. 三、解答题(共72分)17.解方程组(共2小题, 每小题6分, 共12分)(1) ⎩⎨⎧-=+=-15273y x y x (2) ⎪⎩⎪⎨⎧=++=++=-232181531794z y x z y x z x18.(7分)先化简下式,再求值:⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛--22312331221y x y x x ,其中2-=x ,32=y .19.(7分)已知2∶3∶=y x ,且1323-=+y x ,求()2011y x -的值.20.(8分)已知点C 是线段AB 上的一点,AC 的3倍与BC 的7倍相等,且AC 比BC 的2倍还长2cm ,求线段AC 和BC 的长。
2021-2022学年京改版七年级数学下册第六章整式的运算专题测试试题(含解析)
京改版七年级数学下册第六章整式的运算专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、对于任意实数m ,n ,如果满足2424m n m n ++=+,那么称这一对数m ,n 为“完美数对”,记为(m ,n ).若(a ,b )是“完美数对”,则3(3a +b )-(a +b -2)的值为 ( )A .﹣2B .0C .2D .3 2、已知下列一组数:1,34,59,716,925,…;用代数式表示第n 个数,则第n 个数是( ) A .2132n n -- B .221n n - C .2132n n +- D .221n n + 3、把式子()()2m n m ---去括号后正确的是( )A .2m n m ---B .2m n m +-+C .2m n m --+D .2m n m +--4、下列计算正确的是( )A .22224a b a b +=+()B .2225225104x y x xy y -=-+()C .2221122x y x xy y -=-+() D .221111123439x x x +=++() 5、下列各式中,计算结果为x 10的是( )A .x 5+x 5B .x 2•x 5C .x 20÷x 2D .(x 5)26、用“※”定义一种新运算:对于任何有理数a 和b ,规定a※a =aa +a 2.如1※2=1×2+22=6,则−4※2的值为( )A .-4B .8C .4D .-87、下列运算正确的是( )A .236a a a ⋅=B .352()a a =C .222()ab a b =D .632a a a ÷=8、小明发现一种方法来扩展数,并称这种方法为“展化”,步骤如下(以﹣11为例):①写出一个数:﹣11;②将该数加1,得到数:﹣10;③将上述两数依序合并在一起,得到第一次展化后的一组数:[﹣11,﹣10];④将[﹣11,﹣10]各项加1,得到[﹣10,﹣9],再将这两组数依序合并,可得第二次展化后的一组数:[﹣11,﹣10,﹣10﹣9];…按此步骤,不断展化,会得到一组数:[﹣11,﹣10,﹣10,﹣9,﹣10,﹣9,﹣9,﹣8]. 则这组数的第255个数是( )A .﹣5B .﹣4C .﹣3D .119、下列各式中,计算结果为6a 的是( )A .()42aB .7a a ÷C .82a a -D .23a a ⋅ 10、若0m >,3x m =,2y m =,则3x y m -的值为( )A .32 B .32- C .1 D .38第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将同样大小的正方形按下列规律摆放,下面的图案中,在第n 个图案中所有正方形的个数是_________个.(用含n 的式子表示)2、按由小到大的顺序排列三个连续奇数.(1)已知第一个数的相反数是﹣1,则第三个数为 _____;(2)设中间的数是2n +1(n 为正整数),这三个数的和为 _____(用含n 的式子表示).3、化简()()131x x ---得______.4、观察下面一列数,1,2,﹣3,﹣4,5,6,﹣7,﹣8,9,10,﹣11,﹣12,…则这列数的第2013个数是______.5、如果()24-264x m x ++是个完全平方式,那么m 的值是______.三、解答题(5小题,每小题10分,共计50分)1、在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,并且a 是多项式231x x --+的二次项系数,b是绝对值最小的数,c 是单项式212x y -的次数.请直接写出a 、b 、c 的值并在数轴上把点A ,B ,C 表示出来.2、马虎同学在计算A ﹣(ab ﹣2bc +4ac ﹣3)时,由于马虎,将“A ﹣”错看成了“A +”,求得的结果为3ab ﹣2ac +5bc .(1)请你帮助马虎同学求出这道题的正确结果;(2)当字母a 和b 满足什么关系时,正确的计算结果与字母c 的取值无关.3、先化简,再求值2a 2﹣[12(ab ﹣4a 2)+8ab ]﹣12ab ;其中a =1,b =﹣13.4、计算:2(1)(4)(1)x x x +---.5、化简.(1)2m ﹣3n ﹣5n ﹣7m ;(2)4(x 2﹣xy +6)﹣3(2x 2﹣xy ).---------参考答案-----------一、单选题1、C【分析】 先根据“完美数对”的定义2424a b a b ++=+,从而可得40a b +=,再去括号,计算整式的加减,然后将40a b +=整体代入即可得. 【详解】 解:由题意得:2424ab a b ++=+,即40a b +=, 则3(3)(2)932a b a b a b a b +-+-=+--+,822a b =++,2(4)2a b =++,202=⨯+,2=,故选:C .【点睛】本题考查了整式加减中的化简求值,掌握理解“完美数对”的定义是解题关键.2、B【分析】根据题意仔细观察给出的数字,找出其中存在的规律从而解题即可.【详解】 解:∵1=22111⨯-; 2322142⨯-=; 2523193⨯-=; ∴第n 个数是:221n n -. 故选:B .【点睛】 本题考查数字找规律,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.3、C【分析】由去括号法则进行化简,即可得到答案.【详解】解:()()22m n m m n m =----+-,故选:C【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.顺序为先大后小.4、D【分析】根据完全平方公式逐项计算即可.【详解】解:A.22224+4a b a ab b +=+(),故不正确; B.2225225204x y x xy y -=-+(),故不正确; C.2221124x y x xy y -=-+(),故不正确; D.221111123439x x x +=++(),正确; 故选D【点睛】本题考查了完全平方公式,熟练掌握完全平方公式(a ±b )2=a 2±2ab +b 2是解答本题的关键.5、D【分析】利用合并同类项的法则,同底数幂的乘法的法则,同底数幂的除法的法则,幂的乘方的法则对各项进行运算即可.【详解】解:A 、x 5+x 5=2x 5,故A 不符合题意;B 、x 2•x 5=x 7,故B 不符合题意;C 、x 20÷x 2=x 18,故C 不符合题意;D 、(x 5)2=x 10,故D 符合题意;【点睛】本题主要考查了合并同类项,同底数幂乘法,同底数幂除法,幂的乘方,熟知相关计算法则是解题的关键.6、A【分析】根据定义的新运算法则代入计算即可.【详解】解:a ※a =aa +a 2,∴−4※2=−4×2+22=−4,故选:A .【点睛】题目主要考查计算代数式的值,理解题目中心定义的运算是解题关键.7、C【分析】根据同底数幂的乘除法法则以及积的乘方法则,幂的乘方法则,逐一判断选项,即可.【详解】解:A. 235a a a ⋅=,故该选项错误,B. 236()a a =,故该选项错误,C. 222()ab a b =,故该选项正确,D. 633a a a ÷=,故该选项错误,故选C .本题主要考查同底数幂的乘除法法则以及积的乘方法则,熟练掌握上述法则是解题的关键.8、B【分析】依据题意列举前3次展化结果寻找规律,再按照规律倒推出结果.【详解】解:依题意有-11第1次展化为[﹣11,﹣10],有2个数-11第2次展化为[﹣11,﹣10,﹣10,﹣9],有22个数-11第3次展化为[﹣11,﹣10,﹣10,﹣9,﹣10,﹣9,﹣9,﹣8],有23个数由此可总结规律-11第n次展化为[﹣11,﹣10,﹣10,﹣9,﹣10,﹣9,﹣9,﹣8,……],有2n个数∴-11第8次展化有28=256个数∴第255位为-11第8次展化的这组数的倒数第二位数第8次展化的倒数第2位数由第7次展化后的倒数第2位数加1所得同理第7次展化的倒数第2位数由第6次展化后的倒数第2位数加1所得以此类推第4次展化的倒数第2位数由第3次展化后的倒数第2位数加1所得故第8次展化的倒数第2位数由第3次展化后的倒数第2位数加5所得则-9+5=-4故选:B.【点睛】此题主要考查了数字变化规律,观察得出每次展化之间的关系是解题的关键.9、B【分析】根据幂的运算法则即可求解.【详解】A. ()42a =8a ,故错误; B. 7a a ÷=6a ,正确;C. 82a a -不能计算,故错误;D. 23a a ⋅=5a ,故错误;故选B .【点睛】此题主要考查幂的运算,解题的关键是熟知其运算法则.10、D【分析】根据同底数幂的除法的逆运算及幂的乘方的逆运算解答.【详解】解:∵3x m =,2y m =,∴3x y m -=3()x y m m ÷=3÷8=38,故选D .【点睛】本题考查了同底数幂的除法的逆运算及幂的乘方的逆运算,解题的关键是熟练掌握运算法则.二、填空题1、4n-1【分析】根据题意分析可得:第1个图案中正方形的个数4×1-1=3个,第2个图案中正方形的个数4×2-1=7个,…,根据找到的规律可求出第n个图案中所有正方形的个数.【详解】解:观察图案,发现:第1个图案中,有4×1-1=3个正方形;第2个图案中,有4×2-1=7个正方形;第3个图案中,有4×3-1=11个正方形;……则第n个图案中正方形的个数是4n-1.故答案为:4n-1.【点睛】此题考查了整式的规律问题,解题的关键是正确分析题目中正方形的个数和序号的关系.2、5 6n+3【分析】(1)根据相反数的定义得到第一个数是1,再根据连续奇数的特点得到第三个数即可;(2)根据连续奇数的特点得到另外两个数,根据整式的加法计算即可.【详解】解:(1)∵由小到大的顺序排列三个连续奇数的第一个数的相反数是﹣1,∴第一个数是1,∴这三个数分别为1,3,5,故答案为:5;(2)设由小到大的顺序排列三个连续奇数中间的数是2n+1(n为正整数),则第一个数是2n-1,第三个数是2n+3,∴这三个数的和为2n-1+2n+1+2n+3=6n+3,故答案为:6n+3.【点睛】此题考查了相反数的定义,连续奇数的特点,整式的加减计算法则,熟记连续奇数的特点及正确掌握相反数的定义和整式加减法计算法则是解题的关键.3、22x-+【分析】去括号再合并同类项即可.【详解】()()---=--+=-+x x x x x13113322故答案为:22-+x【点睛】本题考查了整式的加减运算,其实质是去括号、合并同类项.但要注意运用乘法分配律时不要出现漏乘.4、2013【分析】由题意得出这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数,据此解答即可.【详解】解:根据题意可知,这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数,据此第2013个数的绝对值是2013,∵2013÷4=503…1,∴第2013个数为正数,则第2013个数为2013,故答案为:2013.【点睛】本题主要考查了数字的变化规律,根据已知数的规律得出这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数是解题的关键.5、-2或6【分析】由题意直接利用完全平方公式的结构特征判断即可求出m 的值.【详解】解:∵()24-264x m x ++是个完全平方式,∴4(2)16m -=±,解得:m =-2或6.故答案为:-2或6.【点睛】本题主要考查完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.三、解答题1、1a =-,0b =,3c =,见解析【解析】【分析】根据多项式中次数为2的单项式中的数字因数得出a =-1,根据绝对值最小的数是0得出b =0,根据单项式的次数是所有字母的指数和2+1=3,得出c =2+1=3,再把各数在数轴上表示即可.【详解】解:∵a 是多项式231x x --+的二次项系数,∴a =-1,∵b 是绝对值最小的数,∴b =0,∵c 是单项式212x y -的次数. ∴c =2+1=3,,将各数在数轴上表示如下:【点睛】本题考查的形式的项的系数,单项式的次数以及绝对值最小的数,用数轴表示数,掌握相关知识是解题关键.2、(1)ab −10ac +9bc +6;(2)当b =109a 时,正确的计算结果与字母c 的取值无关. 【解析】【分析】(1)先根据题意列出整式相加减的式子进行计算即可.(2)将ab −10ac +9bc +6写成(9b −10a )c +ab +6,即可得到当b =109a 时,正确的计算结果与字母c的取值无关.【详解】解:(1)由题意得,(3ab −2ac +5bc )−2(ab −2bc +4ac −3)=3ab −2ac +5bc −2ab +4bc −8ac +6=ab −10ac +9bc +6,∴正确结果为:ab −10ac +9bc +6;(2)ab −10ac +9bc +6=(9b −10a )c +ab +6,由题可得,9b −10a =0,∴b =109a , ∴当b =109a 时,正确的计算结果与字母c 的取值无关.【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键. 3、249a ab -,7.【解析】【分析】先去括号,再计算整式的加减,然后将,a b 的值代入计算即可得.【详解】 解:原式22112(28)22a ab a ab ab =--+-, 221122822a ab a ab ab =-+--, 249a ab =-, 将11,3a b ==-代入得:原式211(41397)-⨯⨯-=⨯=. 【点睛】本题考查了整式加减中的化简求值,熟练掌握整式加减的运算法则是解题关键.4、-x﹣5【解析】【分析】先根据多项式乘以多项式法则和完全平方公式进行计算,再合并同类项即可.【详解】解:(x+1)(x﹣4)﹣(x﹣1)2=x2﹣4x+x﹣4﹣x2+2x﹣1=-x﹣5.【点睛】本题考查了整式的混合运算,能正确根据运算法则进行化简是解此题的关键.5、(1)﹣5m﹣8n;(2)﹣2x2﹣xy+24【解析】【分析】(1)合并同类项进行化简;(2)原式去括号,合并同类项进行化简.【详解】解:(1)原式=(2﹣7)m+(﹣3﹣5)n=﹣5m﹣8n;(2)原式=4x2﹣4xy+24﹣6x2+3xy=﹣2x2﹣xy+24.【点睛】本题主要考查整式的加减运算,熟练掌握整式的加减运算是解题的关键.。
第六周初一下家庭作业
B. 3.6 0.6
D. 36 6
9、已知 (2a 1) 2 b 1 =0,则- a b 10、若 y= 1 4x 4x 1 4 ,则
2004
8、下列说法错误的是( A. 3 是 9 的平方根 C. 1 的平方根是 1
) B. 5 的平方等于 5 D.9 的算术平方根是 3
(1) 4 x 2 1 0 ; (2)3x 3 -81=0。
∠EAC 、∠BAC 的度数。 D B A E C
五、解答题(每题 6 分,共 30 分)
1、如图,EF∥AD,∠1 =∠2,∠BAC = 70°。将求∠AGD 的过程填写完整。 解:∵EF∥AD,( ∴ ∠2 = ∵ ∠1 = ∠2( ∴ ∠1 = ∠3( ∴AB∥ ( .( ) ) ) ) ) )
育才学校第二学期七年级第一次月考试卷
一、填空题(每题 3 分,共 30 分)
1、如图,如果 AB ∥ CD ,那么 A与C _______________。 2、如图,∠1+∠2=240°,b∥c,则∠3=________________。
姓名_______
二、选择题(每题 3 分,共 30 分)
A.5 B.2 C.3 ).
2 C. ( 13) 13
D.4
7、1- 2 的相反数是_________,绝对值是__________. C 8、 16 的平方根是
2
7、 下列各式中,正确的是( A. 3 5 3 5
6
2
的算术平方根是__________。 =_______.
3、如图,∠1=70°,∠2=110°,∠3=80°,则∠4=_______________。
A C B D 第 1 题图 a 1 2
难点详解冀教版七年级数学下册第六章二元一次方程组综合练习练习题(无超纲)
七年级数学下册第六章二元一次方程组综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列方程是二元一次方程的是( )A .x ﹣xy =1B .x 2﹣y ﹣2x =1C .3x ﹣y =1D .1x﹣2y =1 2、下列方程中,①x +y =6;②x (x +y )=2;③3x -y =z +1;④m +1n=7是二元一次方程的有( )A .1个B .2个C .3个D .4个3、下列各式中是二元一次方程的是( )A .2327x y -=B .25x y +=C .123y x += D .234x y -=4、《孙子算经》记载:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”大致意思是:今有若干人乘车,若每3人共乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9人无车可乘.问共有多少人?有多少辆车?若设有x 人,有y 辆车,根据题意,所列方程组正确的是( )A .()229x x y x y ⎧-=⎨+=⎩B .()3229y x y x ⎧-=⎨+=⎩C .()3229x y y x ⎧-=⎨+=⎩D .()3229y x x y ⎧-=⎨+=⎩5、若关于x、y的二元一次方程25327x y mx y m+=⎧⎨-=⎩的解,也是方程320x y+=的解,则m的值为()A.-3 B.-2 C.2 D.无法计算6、若23xy=⎧⎨=⎩是方程31kx y+=的解,则k等于()A.35B.4-C.73D.147、佳佳坐在匀速行驶的车上,将每隔一段时间看到的里程碑上的数描述如下:则12:00时看到的两位数是()A.16 B.25 C.34 D.528、初一课外活动中,某兴趣小组80名学生自由组合分成12组,各组人数分别有5人、7人和8人三种情况,那么8人组最多可能有几组()A.5组B.6组C.7组D.8组9、下列方程中,是二元一次方程组的是()A.123xyx y=⎧⎨+=⎩B.231x yy x+=⎧⎨-=⎩C.1111x yx y⎧+=⎪⎨⎪+=⎩D.23x zx y+=⎧⎨+=⎩10、在一次爱心捐助活动中,八年级(1)班40名同学共捐款275元,已知同学们捐款的面额只有5元、10元两种,求捐5元和10元的同学各有多少名?若设捐5元的同学有x名,捐10元的有y 名,则可列方程组为()A.40510275x yx y-=⎧⎨+=⎩B.40105275x yx y+=⎧⎨-=⎩C.40510275x yx y+=⎧⎨+=⎩D.40105275x yx y+=⎧⎨+=⎩第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在2022新春佳节即将来临之际,某商家拟推出收费定制个性新春礼品,礼品主要包含三种:对联、门神和红包,如果定制对联3副、门神2副、红包5个,需付人民币31.5元;如果定制对联2副、门神1副、红包1个,需付人民币22元;某人想定制4副对联、3副门神、9个红包共需付人民币_______元.2、若21xy=⎧⎨=-⎩是方程x+ay=3的一个解,则a的值为 ______.3、新春佳节享团圆,吉祥如意在虎年!新年将至,某超市第一周销售吉祥、如意、团圆三种年货礼包的数量之比为3:1:4,吉祥、如意、团圆三种年货礼包的单价之比为1:5:2.第二周由于人工成本的增加,超市管理人员把如意礼包的单价在第一周的基础上上调20%,吉祥、团圆礼包的单价保持不变,预计第二周三种年货礼包的销售总额比第一周有所增加,其中团圆礼包增加的销售额占第二周总销售额112,如意礼包和团圆礼包的销售额之比是3:4,三种礼包的数量之和比第一周增加1932,则团圆礼包第一周与第二周的数量之比为_____________.4、两个长方形的长与宽的比都是2:1,大长方形的宽比小长方形的宽多3cm,大长方形的周长是小长方形周长的2倍,则大长方形的周长是___________cm.5、某超市有甲,乙,丙三种坚果礼盒,它们都是由a,b,c三种坚果组成,甲,乙,丙三种坚果礼盒的成本均为盒内a,b,c三种坚果的成本之和。
七年级初一数学下学期第六章 实数单元提优专项训练试题
七年级初一数学下学期第六章 实数单元提优专项训练试题一、选择题1.对于每个正整数n ,设()f n 表示(1)n n +的末位数字.例如:(1)2f =(12⨯的末位数字),(2)6f =(23⨯的末位数字),(3)2f =(34⨯的末位数字),…则(1)(2)(3)(2019)f f f f ++++的值为( ) A .4040 B .4038 C .0 D .40422.计算:122019(1)(1)(1)-+-++-的值是( ) A .1- B .1 C .2019 D .2019-3.在下列各数322 2,3,8, , ,36,0.10100100013π--⋯⋯ (两个1之间,依次增加1个0),其中无理数有( )A .6个B .5个C .4个D .3个4.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( )A .﹣40B .﹣32C .18D .10 5.下列各式中,正确的是( )A .±916=±34B .±916=34;C .±916=±38D .916=±34 6.在如图所示的数轴上,点B 与点C 关于点A 对称,A ,B 两点对应的实数分别是2和﹣1,则点C 所对应的实数是( )A .12B .22+C .221D .221 7.下列各组数的大小比较正确的是( )A 56B 3πC .5.329D . 3.1->﹣3.1 8.33x y ,则x 和y 的关系是( ).A .x =y =0B .x 和y 互为相反数C .x 和y 相等D .不能确定9.下列说法:①有理数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③某数的绝对值是它本身,则这个数是非负数;④16的平方根是±4,用式子表示是164=±.⑤若a ≥0,则2()a a =,其中错误的有( )A .1个B .2个C .3个D .4个10.已知实数x ,y 241x y -+y 2﹣9|=06x y + ) A .±3 B .3 C .﹣33 D .33二、填空题11.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是_______.12.已知,x 、y 是有理数,且y =2x -+ 2x -﹣4,则2x +3y 的立方根为_____.13.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.14.用⊕表示一种运算,它的含义是:1(1)(1)x A B A B A B ⊕=++++,如果5213⊕=,那么45⊕= __________. 15.对于有理数a ,b ,规定一种新运算:a ※b=ab +b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上).16.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________.17.对于实数a ,我们规定:用符号[]a 表示不大于[]a 的最大整数,称为a 的根整数,例如:,如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次: 10]33]1=→=这时候结果为1.则只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是__________.18.若x <0323x x ____________.19.若x 、y 分别是811-2x -y 的值为________.20.0.050.55507.071≈≈≈≈,按此规500_____________三、解答题21.定义:对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.将一个“奇异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()f a例如:19=a ,对调个位数字与十位数字后得到新两位数是91,新两位数与原两位数的和为9119110+=,和与11的商为1101110÷=,所以()1910f =根据以上定义,完成下列问题:(1)填空:①下列两位数:10,21,33中,“奇异数”有 .②计算:()15f = .()10f m n += .(2)如果一个“奇异数”b 的十位数字是k ,个位数字是21k -,且()8f b =请求出这个“奇异数”b(3)如果一个“奇异数”a 的十位数字是x ,个位数字是y ,且满足()510a f a -=,请直接写出满足条件的a 的值.22.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n 个a (a ≠0)记作a ⓝ,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:2③= ,(﹣12)⑤= ; (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成乘方的形式.(﹣3)④= ;5⑥= ;(﹣12)⑩= . (2)想一想:将一个非零有理数a 的圈n 次方写成乘方的形式等于 ;23.观察下列解题过程:计算231001555...5+++++解:设231001555...5S =+++++①则23410155555....5S =+++++②由-②①得101451S =-101514S -∴= 即10123100511555 (54)-+++++= 用学到的方法计算:2320191222...2+++++24.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,080b +-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).25.已知A 、B 在数轴上对应的数分别用a 、b 表示,且2110|2|02ab a ⎛⎫++-= ⎪⎝⎭,点P 是数轴上的一个动点.(1)求出A 、B 之间的距离;(2)若P 到点A 和点B 的距离相等,求出此时点P 所对应的数;(3)数轴上一点C 距A 点36c 满足||ac ac =-.当P 点满足2PB PC =时,求P 点对应的数.26.阅读下面的文字,解答问题:2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,而12<2212的小数部分.请解答下列问题:(121_______,小数部分是_________;(2)7的小数部分为15a ,b ,求7a b +(3)已知:100110x y +=+,其中x 是整数,且01y <<,求11024x y +-的平方根。
七年级数学第二周滚动检测试卷
七年级数学(第二周)滚动检测试卷一、选择题(本大题共9小题,每小题4分,满分36分)1.下列各数中:5,﹣,﹣3,0,﹣25.8,+2,负数有()A.1个B.2个C.3个D.4个2.某学校七年级8班同学的平均体重是50kg,若以此体重为基准,将52kg记为+2kg,则47.5kg记为()A.﹣2.5kg B.﹣2kg C.+2.5kg D.+50kg3.如图,比数轴上的点A表示的数大1的数是()A.﹣1B.0C.1D.﹣24.有理数a,b在数轴上对应的位置如图所示,则下列结论成立的是()A.a<0B.b>0C.a>0D.a<b5.如图,一滴墨水洒在数轴上,根据图中标出的数值判断墨迹盖住的整数个数是()A.2B.3C.4D.56.如果2x+3与5互为相反数,那么x等于()A.﹣4B.﹣1C.1D.47.若a为有理数,则|a|+a的结果为()A.正数B.负数C.不可能是负数D.正数、负数和零都有可能8.已知|a﹣2|+|b+3|=0,则a﹣b的值是( )A.2B.3C.4D.59.已知a、b是有理数.下列各式.①|a+b|<|a﹣b|,②a2+b2﹣2|a|﹣2|b|+1<0,③a2+b2+|a|+|b|+1<0,一定不成立的个数A.0B.1C.2D.3二、填空题(本大题共6小题,每小题5分,满分30分)10.将(+5)﹣(+2)﹣(﹣3)+(﹣9)写成省略加号和括号的和的形式为.11.在﹣2,3,4,﹣6这四个数中,取其中三个数相乘,所得的积最大为a,再取三个数所得的积最小为b,则a+b=.12.与﹣5的差为0的数是.13.在的绝对值与的相反数之间的整数是.14.规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w,则+=,﹣=.15.已知a,b,c在数轴上的位置如图所示.(1)a+b0;(2)c﹣b0;(3)a﹣b﹣c0;(用“>”“<”填写)三.解答题(共小题共4小题,每题4分,共16分)16.计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13;(2)(﹣12)÷4×(﹣6)÷2;(3);(4);四、解答题(本大题共3小题,满分18分)17.画出数轴,并在数轴上表示下列各数:2,﹣5,0,﹣3,1,﹣2.18.阅读下列内容:=1﹣,=,=﹣,=…=﹣,请完成下面的问题:如果有理数a,b满足|ab﹣2|+(1﹣b)2=0试求:(1)a=,b=;(2)+++…+的值.19.观察、猜想、验证、求值.从2开始,连续偶数相加,它们的和的情况如下(加数的个数为n,和为s):①2=1×2②2+4=6=2×3③2+4+6=12=3×4④2+4+6+8=20=4×5⑤2+4+6+8+10=30=5×6当n个连续偶数相加时,它们的和s与n之间有什么样的关系?请用公式表示出来,并由此计算2+4+6+…+202的值.。
2024年北师大版七年级下册数学周周测试题及答案(九)(考查范围:4.3-4.5)
周周测(九)______月______日建议用时:45分钟(考查范围:4.3-4.5)1.卞师傅用角尺平分一个角,如图,先在∠AOB两边上分别取OM=ON,然后使角尺两边相同刻度分别与M,N重合,角尺顶点为点P,则射线OP平分∠AOB,可由△OMP≌△ONP得知,其依据是(A)A.SSSB.SASC.ASAD.AAS2.如图,用纸板挡住了三角形的一部分,小明根据所学知识很快就重新画出了一个与原来完全一样的三角形,他的依据是(D)A.SSSB.SASC.AASD.ASA3.(2023·长春中考)如图,工人师傅设计了一种测零件内径AB的卡钳,卡钳交叉点O为AA',BB'的中点,只要量出A'B'的长度,就可以知道该零件内径AB的长度.依据的数学基本事实是(A)A.两边及其夹角分别相等的两个三角形全等B.两角及其夹边分别相等的两个三角形全等C.两条直线被一组平行线所截,所得的对应线段成比例D.两点之间线段最短⏜,交射线OB 4.如图,已知锐角∠AOB,在射线OA上取一点C,以点O为圆心、OC长为半径作MN于点D,连接CD;分别以点C,D为圆心、CD长为半径作弧,两弧交于点P,连接CP,DP;作射线OP.若∠AOP=20°,则∠ODP的度数是(C)A.110°B.120°C.130°D.140°5.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是(C)6.如图,在四边形ABCD中,AB∥DC,E为BC的中点,连接DE,AE,AE⊥DE,延长DE交AB的延长线于点F.若AB=5,CD=3,则AD的长为(C)A.2B.5C.8D.117.如图,AC,BD相交于点O,OB=OD,要使△AOB≌△COD,添加一个条件是OA=OC(答案不唯一).(只写一个)8.在△ABC中,AC=4,AB=6,则中线AD的取值范围是1<AD<5.9.如图,在△ACD与△BCE中,AD与BE相交于点P,若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠APB的度数为50°.10.(2022·铜仁中考)如图,点C 在BD 上,AB ⊥BD ,ED ⊥BD ,AC ⊥CE ,AB =CD.求证:△ABC ≌△CDE.【证明】因为AB ⊥BD ,ED ⊥BD ,AC ⊥CE ,所以∠B =∠D =∠ACE =90°,所以∠DCE +∠DEC =90°,∠BCA +∠DCE =90°, 所以∠BCA =∠DEC ,在△ABC 和△CDE 中,{∠BCA =∠DEC ∠B =∠D AB =CD,所以△ABC ≌△CDE (AAS).11.如图,已知△ABC 与线段DE ,AC =DE.利用尺规,运用“SAS ”作△DEF ≌△ACB. (保留作图痕迹,不写作法)【解析】如图,△DEF 为所作.12.小明利用一根长2 m 的竹竿来测量垂直于地面的路灯AB 的高度.他的方法如下:如图,在路灯前选一点P ,使BP =2 m,并测得∠APB =77°,然后把竖直的竹竿CD (CD =2m)在BP 的延长线上左右移动,使∠CPD =13°,此时测得BD =8.5 m .请根据这些数据,计算出路灯AB 的高度.【解析】因为∠CPD =13°,∠APB =77°, ∠CDP =∠ABP =90°,所以∠DCP =∠APB =77°.在△CPD 和△PAB 中,{∠CDP =∠PBACD =PB ∠DCP =∠BPA ,所以△CPD ≌△PAB (ASA). 所以DP =BA.因为BD =8.5 m,BP =2 m,所以DP =BD -BP =6.5 m,即AB =6.5 m . 答:路灯AB 的高度是6.5 m .13.如图,在四边形ABCD 中,AD =BC =4,AB =CD ,BD =6,点E 从D 点出发,以每秒1个单位的速度沿DA 向点A 匀速运动,点F 从点C 出发,以每秒3个单位的速度沿C →B →C 作匀速运动,点G 从点B 出发沿BD 向点D 匀速运动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动.(1)试证明:AD ∥BC ;(2)在运动过程中,小明发现当点G 的运动速度取某个值时,有△DEG 与△BFG 全等的情况出现,请你探究当点G 的运动速度取哪些值时,△DEG 与△BFG 全等. 【解析】(1)在△ABD 和△CDB 中,{AD =BC ,AB =CD ,BD =DB ,所以△ABD ≌△CDB (SSS), 所以∠ADB =∠CBD ,所以AD ∥BC ;。
【最新】浙教版七年级数学上册第六章周周清检测试题(附答案)
新浙教版七年级数学上册第六章周周清检测试题一、选择题(每小题3分,共30分)1.已知线段AB ,C 是线段AB 的中点,D 是BC 的中点,下列等式不正确的是( )A .CD =AC -DB B .CD =AD -BC C .CD =21AB -BD D .CD =31AB 2.已知线段AB =15 cm ,BC =5 cm ,且A ,B ,C 三点共线,则线段AC 等于( )A .20 cmB .10 cmC .20 cm 或10 cmD .不确定3.借助一副三角尺,你能画出下列哪个度数的角( )A .65°B .75°C .85°D .95°4.如图,已知直线AB ,CD 相交于点O ,OE 平分∠COB ,若∠EOB=55°,则∠BOD 的度数是( )A .35°B .55°C .70°D .110°5.如图,AB ⊥CD ,垂足为B ,AB =5 cm ,E 是直线CD 上一点(与B点不重合),那么线段AE 的长可能是( )A .5.5 cmB .3.5 cmC .5 cmD .2.5 cm6.如图,某汽车公司所运营的公路AB 段有四个车站依次是A ,C ,D ,B ,AC =CD =DB.现想在AB 段建一个加油站M ,要求使A ,C ,D ,B站的汽车到加油站M 所花的总时间最少,则M 的位置在( )A .在AB 之间 B .在CD 之间C .在AC 之间D .在BD 之间7.在一条直线上顺次取A ,B ,C 三点,已知AB =5 cm ,点O 是线段AC 的中点,且OB =1.5 cm ,则BC 的长是( )A .6B .8C .2或6D .2或88.如图,直线AB 与CD 相交于点O ,EO ⊥AB ,则∠1与∠2( )A .是对顶角B .相等C .互余D .互补9.在△ABC 中,∠C =90°,BC =3,AC =4,AB =5,则点C 到AB的距离为( )A .2.4B .3C .4D .无法确定10.如图,平面内∠AOB =∠COD =90°,∠COE =∠BOE ,OF 平分∠AOD ,则以下结论:①∠AOE =∠DOE ;②∠AOD +∠COB =180°;③∠COB -∠AOD =90°;④∠COE +∠BOE =180°,其中正确的个数有( )A .3个B .2个C .1个D .4个二、填空题(每小题3分,共18分)11.画线段AB =1 cm ,延长线段AB 到点C ,使BC =2 cm ,已知D 是BC 的中点,则线段AD =____cm .12.已知线段AB =12 cm ,C 是直线AB 上一点,AC ∶BC =3∶1,则A ,C 两点间的距离为 cm .13.如图,已知直线AB ,CD 和EF 相交于点O ,CD ⊥AB ,∠COE =27°18′,则∠DOF =__ ,∠AOF = ,∠DOE = .14.如图,当剪刀口∠AOB 增大20°时,∠COD 增大 .(第13题图) (第14题图) (第15题图) (第16题图)15.如图,O 是直线AB 上一点,OD 平分∠AOC ,OE 平分∠BOC ,则∠DOE 的度数为__ .16.对正方形ABCD 进行分割,如图1,其中E ,F 分别是BC ,CD 的中点,M ,N ,G 分别是OB ,OD ,EF 的中点,沿分化线可以剪出一副“七巧板”,用这些部件可以拼出很多图案,图2就是用其中6块拼出的“飞机”.若△GO M 的面积为1,则“飞机”的面积为____.三、解答题(共52分)17.(8分)计算:(1)95°18′-56.5°(结果用度、分、秒表示);(2)180°-12°50′24″(结果用度表示).18.(8分)若一个角的余角比它的补角的92还多1°,求这个角的度数.19.(8分)如图,C 为线段AB 的中点,点D 在线段CB 上,DA =8,DB =6,求线段CD 的长.20.(8分)线段AC ∶CD ∶DB =3∶4∶5.M ,N 分别是CD ,AB 的中点,且MN =2 cm ,求AB 的长.21.(10分)如图,已知直线AB,CD相交于点O,OE⊥AB,OF平分∠AOD,∠COE=50°,求∠AOF和∠DOE的度数.22.(10分)如图,三条直线AB,CD,EF相交于点O,∠AOF=3∠FOB,∠AOC=90°,求∠EOC的度数.参考答案:1~5:DCBCA 6~10:BDCAB11、2 12、9或18 13、27°18′ 62°42′ 152°42′ 14、20°15、90°16、1417、(1)38°48′ (2)167.16°18、63°19、CD=1 20、AB=24 cm21、∠AOF=70°,∠DOE=130°22、∠EOC=45°。
2024年七年级数学上册第二章有理数的运算复习题及答案解析周测(2.2)
0,该选项不成立;
D.
−
由a<-1,0<b<1,得b-1<0,a-1<0,则
−
>0,该选项
成立.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
填空题
选择题
周测(2.2)
6. 关于有理数,下列说法不正确的是(
6
)
C.
7
8
9
-
10
11
D.
12
13
14
15
16
17
18
填空题
选择题
周测(2.2)
3. 下列计算中,正确的是(
A
)
8
9
解答题
A. -2+|-2|=0
B. (-4)+(+2)=-6
C. -3×
D. ÷
1
2
−
−
3
=-1
=2
4
5
6
7
10
11
12
13
14
15
16
17
18
填空题
选择题
周测(2.2)
C
)
D. 若一个数除以1,所得商为 ,求这个数
【解析】C. 列出算式是1÷ = ,该选项符合题意.
1
2
3
4
5
6
人教版数学七年级上册第6周周练
第六周人教版数学七年级上册周周练考查范围:2.11.如图所示,三角尺的面积为( )A.21π2ab r - B.212ab r - C.2ab r - D.ab2.已知一个医用口罩由1个口罩面和2条口罩耳绳组成,则m 个医用口罩的耳绳数量为( )A.2m -B.2m +C.2mD.2m3.一个三位数的个位数字是a ,十位数字是0,百位数字是b ,则这个三位数可表示为( )A.abB.a b +C.100a b +D.100b a +4.对于代数式15a ,下列解释不合理的是( )A.家鸡的市场价为15元/千克,a 千克家鸡需15a 元B.家鸡的市场价为a 元/千克,买15千克的家鸡共需15a 元C.等边三角形的边长为5a ,则这个三角形的周长为15aD.制作某种电器需要15道工序,已知完成每一道工序所需时间是a 小时,则完成这15道工序所需的时间为15a 小时5.某本书的原价为x 元, 售价为()60%3x -元, 则对售价解释合理的是( )A.先打 4 折再降 3 元B.先打 4 折再加 3 元C.先打 6 折再降 3 元D.先打 6 折再加 3 元6.下列各式中,不是单项式的是( )A.32xB.2023C.aD.1x + 7.下列说法中正确的是( )A.单项式x -的次数和系数都是0B.-2016是整式C.3D.多项式2333231x y x y--是五次三项式8.下列式子:22x,1a ,237ab,abc,-5x,0中,整式有( )A.6个B.5个C.4个D.3个9.小明x岁,小华比小明岁数的2倍大5岁,则小华_________岁.10.已知关于x,y的多项式51xy x mxy y-++-不含二次项,则m的值为_________. 11.如果一个整式具备以下三个条件:①它是一个关于字母x的二次三项式;②各项系数的和等于10;③它的二次项系数和常数项都比-2小1.请写出满足这些条件的一个整式:__________.12.请把下列各式的序号分别填入如图所示的相应圆圈内:①1,②s ab=,③r,④34,⑤25,⑥()m m n+,⑦2xx,⑧82mn.答案以及解析1.答案:A 解析:三角形的面积是12ab ,圆的面积为2πr ,所以三角尺的面积为21π2ab r -.故选A.2.答案:D解析:根据总口罩耳绳的条数2=⨯口罩数量,列出式子即可.3.答案:D解析:因为这个三位数的个位数字是a ,十位数字是0,百位数字是b ,所以这个三位数可表示为100b a +.故选D.4.答案:D解析:完成一道工序所需时间是a 时,完成15道工序,每道工序所有的时间不一定相同,因而所需的总费用不一定是15a 小时.故选项D 符合题意;故选:D.5.答案:C解析:“打6折”的含义为以原价的60%进行售卖,所以选项C 正确.6.答案:D解析:1x +是多项式.7.答案:B解析:A.x -单项式的次数和系数分别为:1和-1,故A 错误;B.整式包括单项式与多项式,故-2016是整式,故B 正确;C.D.多项式2333231x y x y --是五次三项式,故D 错误.故选B.8.答案:C解析:22x ,1a ,237ab ,ab c ,5x -,0,中,整式有22x ,237ab ,-5x ,0,共4个.故选C. 9.答案:25x +或52x + 解析:7小明x 岁,小华比小明岁数的2倍大5岁,∴小华的岁数为25x +,故答案为:25x +.10.答案:-1解析:()51151xy x mxy y m xy x y -++-=+-+-, 由题意得10m +=,1m =-.故答案为:-1.11.答案:23163x x -+-解析:满足这些条件的整式为23163x x -+-.12.答案:如图所示.。
学典数学学业水平测试卷七年级(下)周周导练第1-3章教师版
(2) ( 1 )8 ×48 4
解:原式= x9
解:原式= 1
(3) (-a2)3+(a3)2
解:原式= -a6+a6=0
(4) (-a3m)2n ÷(amn)5
解:原式= a6mn ÷a5mn=amn
16. (8 分)计算: (1) (- 1 a3-nbm-1)2 4
解:原 式= 1 a b 6-2n 2m-2 16
面积为 1.25×106 cm2. 12. 若单项式-6x2ym 与 1 xn-1y3 是同类项, 那么这两个单项式的积
3 是 -2x4y6 . 13. 如图①,将边长为 a 的大正方形剪去一个边长为 b 的小正方形 (a>b), 将剩下的阴影部分沿图中的虚线剪开, 拼接后得到图 ②,这种变化可以用含字母 a,b 的等式表示为 a2-b2=(a+b)(a-b) .
22. 若 x=2m+1,y=3+4m,则用 x 的代数式表示 y 为 y=(x-1)2+3 .
23. 已知(x-1)x+2=1,则整数 x= -2,0,2 .
二、解答题(本题满分 8 分) 24. 请看下面的解题过程:
“比较 2100 与 375 大小, 解 :∵2100=(24)25,375=(33)25, 又 ∵24=16,33=27,16<27, ∴2100<375”. 请你根据上面的解题过程,比较 3100 与 560 的 大小,并总结 本题 的解题方法.
解 :原 式 =(10a)2+(10b)3=25+216=241
(2) 求 102a+3b 的值;
解 :原 式 =(10a)2·(10b)3=25×216=5400
(3) 求 102a-3b 的值.
怀文中学七年级数学第六周周周练
第 1 页 共 3 页怀文中学2012—2013学年度第二学期定时作业(6)初 一 数 学命题:叶兴农审核人:吴树荣 考试时间:2013-3-30 班级 学号 姓名 得分一、精心选一选(每题3分,共30分.) 1.下列各式计算正确的是A.a 3+a 3=a 6B.(3x)2=6x 2C.(x+y) 2= x 2+y 2D.(-x-y)(y-x)=x 2-y 22.下列计算正确的是 ( ) A .523824a a a =⋅ B.743532x x x =⋅ C. 2221243x x x =⋅ D.9331553x x x =⋅ 3.若()()124124x x mx k =⋅,适合此等式的m,k 的值是 ( )A.3,3==k mB.8,3==k mC.3,8==k mD.8,8==k m4. 下列算式中,结果为652--x x 的是 ( )A.()()16+-x xB.()()32+-x xC.()()16-+x xD.()()32--x x 5. ()()512-+-m m m 的计算结果正确的是 ( )A.5-4m -B. 54m +C.542+-m mD.542-+m m 6.一个四边形的四个内角可以都是( )A .锐角B .直角C .钝角D .以上答案都不对 7.若(8×106)(5×102)(2×10)=M×10a,则M ,a 的值为( )A.M=8,a=8B.M=2,a=9C.M=8,a=10D.M=5,a=10 8.化简2(21)(2)x x x x ---的结果是( )A .3x x --B .3x x -C .21x --D .31x - 9.若()()M y x y x ++=-2233,则M 等于( )A 、6xyB 、-6xyC 、±12xyD 、-12xy二、细心填一填 (每空3分,共24分) 10.计算:()()=⨯⨯⨯24103105_______11.22(3)(21)x x x --+-=____________ 12. 22______)(______8-=+-m m m13.2294b kab a ++是完全平方式,则_____=k14.如图,AD ⊥ BC 于D ,那么图中以AD 为高的三角形有___________个15.一个正方形的边长增加3cm ,它的面积就增加392cm ,这个正方形的边长是______16.若()()n x x mx x ++=-+3152,则______________,__________==n m第 2 页 共 3 页怀文中学新校区七年级数学第六周周周练班级 学号 姓名10.. ;11. ;12. , ; 13. ;14. ;15. ;16. , ;17.三、解答题 18.计算或化简(每题满分5分,共30分)(1) ()mm xx x 232÷⋅ (2) 1230)41()3(23----+-(3)()22323214a b a b a -⋅⎪⎭⎫ ⎝⎛-⋅ (4)223121(3)()232x y y xy +-⋅-(5) ()()y x y x 2352-+ (6)()()()()13221-+-++x x x x19.(本题满分6分)等腰三角形ABC 一腰AB 上的中线CD 将ABC ∆的周长分成cm 18和cm 27两部分,求该等腰三角形底边的长.20.(本题满分6分)画图与计算:(1)请画出下图中ABC ∆的高AECBA第 3 页 共 3 页和中线CF ;(2)若(1)中的ACF ∆的面积为20,BC=10 请求出AE 的长度.21.先化简,再求值(每题满分6分,共12分) (1)2)2(3)2)(2(b a b a b a -+-+,其中2,1=-=b a(2)已知522=-x x ,求代数式2)2(2)4()1)(1(-+---+x x x x x 的值.22.解方程 2(25)(2)6x x x x x --+=-四、挑战自我(每题满分10分)23.已知a(a-1)-(a 2-b)=4,求ab b a -+222的值;24..如图1,是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个大正方形.(1)图2中阴影部分(小正方形)的面积为____________________(用m 、n 表示); (2)观察图2,请你写出三个代数式2)(n m +、2)(n m -、mn 之间的等量关系式:___________________________________________________________; (3)根据(2)中的结论,若6-=+y x ,75.2=xy ,求y x -的值;(4)有许多代数恒等式可以通过不同的方法计算图形的面积得到.如图3,它表示了2232))(2(n mn m n m n m ++=++.试画出一个几何图形,使它的面积能表示2234)3)((n mn m n m n m ++=++.。
2022年中考特训浙教版初中数学七年级下册第六章数据与统计图表章节测试试卷(含答案解析)
初中数学七年级下册第六章数据与统计图表章节测试(2021-2022浙教考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是()A.100B.被抽取的100名学生家长C.被抽取的100名学生家长的意见D.全校学生家长的意见2、在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是()A.抽取乙校初二年级学生进行调查B.在丙校随机抽取600名学生进行调查C.随机抽取150名老师进行调查D.在四个学校各随机抽取150名学生进行调查3、今年我市有4万名考生参加中考,为了了解这些考生的数学成绩,从中抽取2 000名学生的数学成绩进行统计分析,在这个问题中,下列说法:①这4万名考生的中考数学成绩的全体是总体;②每个考生是个体;③2 000名考生是总体的一个样本;④样本容量是2 000. 其中说法正确的有( )A.4个B.3个C.2个D.1个4、某中学开展“眼光体育一小时”活动,根据学校实际情况,如图决定开设“A:踢毽子,B:篮球,C:跳绳,D:乒乓球”四项运动项目(每位同学必须选择一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,丙将调查结果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为()A.240 B.120 C.80 D.405、下面是两户居民家庭全年各项支出的统计图:根据统计图,下列对两户教育支出占全年总支出的百分比作出的判断中,正确的是()A.甲户比乙户大B.乙户比甲户大C.甲、乙两户一样大D.无法确定6、某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是()A.30,40 B.45,60 C.30,60 D.45,407、下列调查中,最适合采用全面调查的是()A.对全国中学生视力和用眼卫生情况的调查B.对某班学生的身高情况的调查C.对某鞋厂生产的鞋底能承受的弯折次数的调查D.对某池塘中现有鱼的数量的调查8、下列调查中,调查方式选择合理的是()A.为了解襄阳市初中每天锻炼所用时间,选择全面调查B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C.为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查9、如图是九年级某考生做的水滴入一个玻璃容器的示意图(滴水速度保持不变),能正确反映容器中水的高度(h)与时间(t)之间对应关系的大致图象是().A.B.C.D.10、为配合全科大阅读活动,学校团委对全校学生阅读兴趣调查的数据进行整理.欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是( )A.条形统计图B.频数直方图C.折线统计图D.扇形统计图二、填空题(5小题,每小题4分,共计20分)1、某校八年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作.A.“北斗卫星”;B.“5G时代”;C.“智轨快运系统”;D.“东风快递”;E.“高铁”.统计同学们所选内容的频数,绘制如图所示的折线统计图,则选“5G时代”的百分率为 ______.2、为了解中学生获取资讯的主要渠道,设置“A.报纸,B.电视,C.网络,D.身边的人,E.其他”五个选项(必选且只能选一项),随机抽取50名中学生进行问卷调查,根据调查结果绘制条形图如图该调查的方式是________,图中a的值是________.3、七年级(5)班20名女生的身高如下(单位:cm):153 156 152 158 156 160 163 145 152 153162 153 165 150 157 153 158 157 158 158(1)请你在下表中填出身高在以下各个范围的频数,百分比(每个范围包含下限,但不包含上限):(2)上表把身高分成___组,组距是___;(3)身高在___范围的人数最多.4、某兴趣班有A、B、C、D、E五个小组,如图是根据各小组人数分布绘制成的不完整统计图,则该班学生人数为___人.5、为了了解某县七年级8800名学生的视力情况,从中抽查了500名学生的视力情况进行统计分析,这个问题中的样本容量是______________.三、解答题(5小题,每小题10分,共计50分)1、某学习小组的同学想了解自己所在学校的同学每天在校体育活动的时间.小组成员讨论,想到了如下的调查方式.甲:抽取学校每个班学号是10,20,30的同学进行调查;乙:选择自己所在班级对全体同学进行调查;丙:选择每个班的体育委员进行调查;丁:在校门口,随机选择调查本校同学100人;戊:调查全校每一位同学.你认为哪些同学提出的调查方式比较合适?为什么?2、为了完成下列任务,你认为采用什么调查方式更合适?(1)了解一沓钞票中有没有假钞;(2)了解一批西瓜是否甜;(3)了解你们班同学是否喜欢科普类书籍.3、某学校为了推动运动普及,拟成立多个球类运动社团,为此,学生会采取抽样调查的方法,从足球、乒乓球、篮球、排球四个项目调查了若干名学生的兴趣爱好(要求每位同学只能选择其中一种自己喜欢的球类运动),并将调查结果绘制成了如下条形统计图和扇形统计图(不完整),请你根据图中提供的信息,解答下列问题:(1)本次调查的学生共有多少人;(2)请将条形统计图和扇形统计图补充完整;(3)若该学校共有学生2000人,根据以上数据分析,试估计选择足球运动的同学有多少人?4、下表是云南某地气象站本周平均气温变化(当天与上一天的变化)的情况:(记当日气温上升为正).(1)上周星期日的平均气温为15℃,本周日与上周日相比,气温是升高了还是下降了?升或降了多少℃?(2)以上周日平均气温作为0点,用折线统计图表示本周的气温变化情况.5、今年是中国共产党建党100周年,某校七年级开展“学党史,诵经典”主题诗歌诵比赛,评选出一、二、三等奖若干名.现随机抽取部分获奖学生的情况进行统计,绘制成如下统计图(均不完整).请你根据给出的信息完成下列问题:(1)本次统计抽取的获奖学生人数是多少?(2)补全条形统计图,并求出扇形统计图中二等奖的圆心角度数;(3)若本次比赛七年级有120名学生获奖,估计其中有多少人获三等奖?---------参考答案-----------一、单选题1、C【分析】根据样本的定义,结合题意,即可得到答案.【详解】解:某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是:被抽取的100名学生家长的意见.故选C.【点睛】本题考查样本的定义,解题的关键是熟练掌握样本的定义.2、D【分析】根据抽样调查的代表性和广泛性逐项进行判断即可得.【详解】A. 抽取乙校初二年级学生进行调查,不具有广泛性;B. 在丙校随机抽取600名学生进行调查,不具有代表性;C. 随机抽取150名老师进行调查,与考查对象无关,不可取;D. 在四个学校各随机抽取150名学生进行调查,具有代表性和广泛性,合理,故选D.【点睛】本题考查了抽样调查,样本的确定,解题的关键是要明确抽样调查的样本要具有代表性和广泛性.3、C【详解】试题解析:这4万名考生的数学中考成绩的全体是总体;每个考生的数学中考成绩是个体;2000名考生的中考数学成绩是总体的一个样本,样本容量是2000.故正确的是①④.故选C.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.4、D【详解】试题分析:调查的总人数是:80÷40%=200(人),则参加调查的学生中最喜欢跳绳运动项目的学生数是:200﹣80﹣30﹣50=40(人).故选D.考点:1.条形统计图;2.扇形统计图.5、B【分析】根据条形统计图求出甲户教育支出占全年总支出的百分比,再结合扇形统计图中的乙户教育支出占全年总支出的百分比是25%,进行比较即可.【详解】甲户教育支出占全年总支出的百分比1200÷(1200×2+2000+1600)=20%,乙户教育支出占全年总支出的百分比是25%.故选B.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.注意此题比较的仅仅是百分比的大小.6、B【详解】试题分析:由题意得,打羽毛球学生的比例为:1﹣20%﹣10%﹣30%=40%,则跑步的人数为:150×30%=45,打羽毛球的人数为:150×40%=60.故选B.考点:扇形统计图.7、B【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似来进行判断.【详解】A、对全国中学生视力和用眼卫生情况的调查,适合抽样调查,故此选项错误;B、对某班学生的身高情况的调查,适合全面调查,故此选项正确;C、对某鞋厂生产的鞋底能承受的弯折次数的调查,适合抽样调查,故此选项错误;D、对某池塘中现有鱼的数量的调查,适合抽样调查,故此选项错误;故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8、D【详解】A.为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B不符合题意;C.为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;D.为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;故选D.9、D【分析】先根据容器的上下的大小,判断水上升快慢和对应的图象,再对题中的每一种结论进行判断.【详解】解:由于容器的形状是下宽上窄,所以水的深度上升是先慢后快.表现出的函数图形为先缓,后陡.故选D.【点睛】本题考查单式折线统计图,解题关键在于根据容器的上下的大小,判断水上升快慢和对应的图象10、D【分析】根据题意,需要反映部分与总体的关系,故最适合的统计图是扇形统计图.【详解】欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是扇形统计图.故选D.【点睛】本题主要考查了统计图的应用,熟练掌握各种统计图的特点是解答本题的关键.二、填空题1、30%.【分析】根据折线图,先算出总人数,然后用“5G时代”的人数除以总人数即可得到答案.【详解】解:由折线图可知:这个班的总人数=25+30+10+20+15=100人∵“5G时代”的人数是30∴“5G时代”的百分率=30÷100=30%故答案为:30%.【点睛】本题主要考查了折线统计图,解题的关键在于能够准确地从折线图中获取信息求解.2、抽样调查 24【分析】根据“随机抽取50名中学生进行该问卷调查”可得该调查方式是抽样调查,根据调查的样本容量为50列出方程6+10+8+a+12=50,解方程即可.【详解】解:由题意知,该调查方式是抽样调查,由样本容量为50可知:6+10+6+a+4=50,解得a=24,故答案为:抽样调查;24.【点睛】此题主要考查了条形统计图,以及抽样调查,关键是读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.3、310 150~160【分析】(1)找出各个组中的人数,然后除以总人数即可得出所占百分比;(2)通过所给的数据把各个范围中的人数填入相应表格,根据所填写的信息及题意确定分成的组数、组距;(3)根据所填信息确定身高在哪个范围的人数最多即可.【详解】(1)填表:(2)上表把身高分成3组,组距是10;(3)身高在150~160范围最多.【点睛】本题考查的是从统计图表中获取信息,关键是找出各个组中的人数,通过所给的数据把各个范围中的人数填入相应表格,然后据此得出相关结论.4、50【分析】根据A组人数和所占的百分比,可以计算出该班学生人数.【详解】解:5÷10%=50(人),即该班学生有50人,故答案为:50.【点睛】本题考查了条形统计图、扇形统计图,掌握条形统计图与扇形统计图的特点并能读懂统计图中的相关信息是解题的关键.5、500【分析】根据样本容量的定义可得答案,样本容量:一个样本包括的个体数量叫做样本容量.【详解】解:为了了解某县七年级8800名学生的视力情况,从中抽查了500名学生的视力情况进行统计分析,这个问题中的样本容量是500.故答案为:500.【点睛】此题主要考查了样本容量,关键是注意样本容量只是个数字,没有单位.三、解答题1、作为抽样调查,甲、丁的方法都可行.理由见解析.【分析】根据抽样调查和全面调查的特点即可作出判断.抽样调查具有广泛性、代表性;适合普查的一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.【详解】解:作为抽样调查,甲、丁的方法都可行.理由如下:乙只考虑到自己所在班级,而不同年级的学生体育活动的时间是有差别的,因此样本不具有代表性.丙调查体育委员,这个群体比较特殊,样本同样不具有广泛性和代表性.戊同学提出的是普查,若学校规模较小则可行的,若学校规模很大则操作性就降低了.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2、(1)普查;(2)抽样调查;(3)普查【分析】根据抽查方式和意义,逐一判断选择即可.【详解】(1)假钞必须查实,故采用普查;(2)西瓜是消费品,不能逐一品尝,故采用抽样调查;(3)一个班的学生数量有限,故可采用普查.【点睛】本题考查了调查的两种方式,根据实际灵活选择是解题的关键.3、(1)400人;(2)画图见解析;(3)500人【分析】(1)由喜欢足球的有100人,占比25%,列式10025%,再计算即可得到答案;(2)分别求解喜欢排球的占比为:10%,喜欢篮球的占比为:25%,喜欢篮球的人数为:40025%100⨯=人,喜欢乒乓球的人数有:40040%160⨯=人,再补全图形即可;(3)由样本中喜欢足球的占比乘以总体的总人数即可得到答案.【详解】解:(1)由喜欢足球的有100人,占比25%,可得:本次调查的学生共有100400 25%=人,(2)喜欢排球的占比为:40100%10%, 400⨯=所以喜欢篮球的占比为:140%25%10%25%,---=喜欢篮球的人数为:40025%100⨯=人,喜欢乒乓球的人数有:40040%160⨯=人,所以补全图形如下:(3)该学校共有学生2000人,则选择足球运动的同学有:200025%500⨯=人.【点睛】本题考查的是从条形图与扇形图中获取信息,补全条形图与扇形图,利用样本估计总体,熟练的从两个图形中得到互相关联的信息是解本题的关键.4、(1)本周日与上周日相比,气温下降了,降了1℃;(2)见解析【分析】(1)把表中数据相加,得负为下降,得正为上升;(2)根据图表中的气温变化情况计算出这七天的气温,从而画出折线统计图即可.【详解】解:(1)3.5+8.9+2.6﹣7.6+6.5﹣9.4﹣5.5=﹣1,答:本周日与上周日相比,气温下降了,降了1℃;(2)星期一气温:15+3.5=18.5(℃);星期二气温:18.5+8.9=27.4(℃);星期三气温:27.4+2.6=30(℃);星期四气温:30﹣7.6=22.4(℃);星期五气温:22.4+6.5=28.9(℃);星期六气温:28.9﹣9.4=19.5(℃);星期日气温:19.5﹣5.5=14(℃).【点睛】本题主要考查了有理数加减的实际应用,折线统计图,解题的关键在于能够熟练掌握有理数加减计算法则.5、(1)40;(2)图见解析,108°;(3)72人【分析】(1)根据条形图可得一等奖人数为4人,根据扇形图可得一等奖所占百分比为10%,根据频率公式即可求解;(2)根据样本容量减去一等奖,二等奖人数可三等奖人数即可补全条形图如图,然后求出二等奖所占百分比,利用360°×二等奖百分比便可求出扇形圆心角;(3)先求出样本的百分比,然后用样本的百分比乘以年级总数即可.【详解】解:(1)∵一等奖人数为4人,一等奖所占百分比为10%,本次统计随机抽取部分获奖学生人数为4÷10%=40人;(2)三等奖人数为40-4-12=24,补全条形图如图,∵二等奖所占百分比为12÷40×100%=30%,∴扇形统计图中二等奖的圆心角度数360°×30%=108°;(3)∵样本中获三等奖的百分比为24÷40×100%=60%,∴本次比赛七年级有120名学生中获三等奖人数为120×60%=72人.【点睛】本题考查条形统计图与扇形统计图获取信息,样本容量,补画条形图,求扇形圆心角,用样本的百分比含量估计总体中的数量,习题难度适中,能灵活运用统计知识是解题关键.。
2021-2022学年浙教版初中数学七年级下册第六章数据与统计图表定向攻克试题(含解析)
初中数学七年级下册第六章数据与统计图表定向攻克(2021-2022浙教考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、下列调查中,适合采用全面调查(普查)方式的是()A.对綦江河水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班50名同学体重情况的调查D.对某类烟花爆竹燃放安全情况的调查2、每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查.在这次调查中,个体是()A.500名学生B.所抽取的50名学生对“世界读书日”的知晓情况C.50名学生D.每一名学生对“世界读书日”的知晓情况3、下列调查中,适宜采用全面调查方式的是()A.了解一批圆珠笔的使用寿命B.了解全国九年级学生身高的现状C.考查人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件4、在下列四项调查中,方式正确的是()A.了解本市中学生每天学习所用的时间,采用全面调查的方式B.为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C.了解某市每天的流动人口数,采用全面调查的方式D.了解全市中学生的视力情况,采用抽样调查的方式5、如图所示的两个统计图,女生人数多的学校是()A.甲校B.乙校C.甲、乙两校女生人数一样多D.无法确定6、我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是( )A.条形图B.扇形图C.折线图D.频数分布直方图7、为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1008、某学生某月有零花钱a元,其支出情况如图所示,那么下列说法不正确的是()A.该学生捐赠款为0.6a元B.捐赠款所对应的圆心角为240°C.捐赠款是购书款的2倍D.其他消费占10%9、某校九(1)班的全体同学最喜欢的球类运动用如图所示的统计图来表示,下面说法正确的是( )A.从图中可以直接看出喜欢各种球类的具体人数B.从图中可以直接看出全班的总人数C.从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况D.从图中可以直接看出全班同学现在最喜欢各种球类的人数的大小关系10、为了估计湖里有多少条鱼,小刚先从湖里捞出了100条鱼做上标记,然后放回湖里去.经过一段时间,带有标记的鱼完全混合于鱼群后,小刚又从湖里捞出200条鱼,如果其中15条有标记,那么估计湖里有鱼()A.1333条B.3000条C.300条D.1500条二、填空题(5小题,每小题4分,共计20分)1、一个扇形图中各个扇形的圆心角的度数分别是45︒、60︒、120︒、135︒,则各个扇形占圆的面积的百分比分别是________.2、某班将安全知识竞赛成绩整理后绘制成直方图,图中从左至右前四组的百分比分别是4%、12%、40%、28%,第五组的频数是8,则:①该班有50名同学参赛;②第五组的百分比为16%;③成绩在70﹣80分的人数最多;④80分以上的学生有14名,其中正确的个数有 __个.3、要想了解中国疫情的变化情况,最好选用 ___统计图;了解奥运会各项目获奖与总奖牌数的情况,最好选用 ___统计图.4、某兴趣班有A、B、C、D、E五个小组,如图是根据各小组人数分布绘制成的不完整统计图,则该班学生人数为___人.5、对一批产品进行抽样调查统计部分结果如下:根据以上数据,随机抽取一个产品合格的概率大约是______(保留两位小数)三、解答题(5小题,每小题10分,共计50分)1、“十一”黄金周期间,北京故宫游园人数大幅度增加,在7天假期中每天旅游的人数较之前一天的变化情况如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):(1)若9月30日故宫的游园人数为2.1万人,请你计算这7天中每天的游园人数.(2)“十一”黄金周期间,北京故宫游园人数最多和最少分别是哪一天?游园人数为多少?(3)故宫门票是60元一张,请计算出“十·一”黄金周期间,北京故宫的门票总收入(万元).(4)9月30日的游园人数为2.1万人,用折线统计图表示黄金周期间游园人数情况.2、某校数学兴趣小组的同学,为了了解初一学生上学期参加公益活动的情况,随机调查了学校部分初一学生,并用得到的数据绘制了下面两幅统计图(统计图不完整)根据统计图中的信息完成下列问题:(1)本次随机调查了名学生;(2)扇形统计图中的a=;(3)对于“参加公益活动为6天”的扇形,对应的圆心角为度.3、2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)表2:小静随机抽取10名学生居家减压方式统计表(单位:人)表3:小新随机抽取60名学生居家减压方式统计表(单位:人)根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.4、从1984年起,我国先后参加了第23至29届夏季奥运会,取得了骄人的成绩.(1)查阅资料,了解我国在历届夏季奥运会金牌榜上的排名,以及所获金牌总数、奖牌总数、奖牌分布等情况;(2)你能从查阅到的图表中得到哪些信息?你有什么感触?与同学进行交流.5、(1)设法收集你所在地区连续30天的空气污染指数;(2)空气质量等级划分如下:根据上述划分,请将你收集到的数据制作成频数直方图.---------参考答案-----------一、单选题1、C【详解】对綦江河水质情况的待查,只能是调查;对端午节期间市场上粽子质量情况的调查,和“对某类烟花爆竹燃放安全情况的调查”,根据调查的破坏性,只能是抽样调查;全面调查是所考察的全体对象进行调查. “对某班50名同学体重情况的调查”的容量较小适合采用全面调查方式;故选C2、D【分析】个体是总体中的每一个调查的对象,据此判定即可.【详解】在这次调查中,个体是每一名学生对“世界读书日”的知晓情况故选:D.【点睛】本题考查了调查中个体的定义,掌握理解个体的概念是解题关键.3、D【详解】试题解析:A、了解一批圆珠笔芯的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项错误;B、了解全国九年级学生身高的现状,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;C、考察人们保护海洋的意识,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;D、检查一枚用于发射卫星的运载火箭的各零部件,事关重大,应用普查方式,故本选项正确;故选D.4、D【详解】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.详解:A、了解本市中学生每天学习所用的时间,调查范围广适合抽样调查,故A不符合题意;B、为保证运载火箭的成功发射,对其所有的零部件采用全面调查的方式,故B不符合题意;C、了解某市每天的流动人口数,无法普查,故C不符合题意;D、了解全市中学生的视力情况,采用抽样调查的方式,故D符合题意;故选D.点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5、D【详解】试题分析:根据题意,结合扇形图的性质,扇形统计图只能得到每部分所占的比例,具体人数不能直接体现,易得答案.解:根据题意,因不知道甲乙两校学生的总人数,只知道两校女生占的比例,故无法比较两校女生的人数,故选D.6、B【分析】根据统计图的特点判定即可.【详解】解:统计图中,能凸显由数据所表现出来的部分与整体的关系的是扇形图.故选:B.【点睛】本题考查了统计图的特点,条件统计图能反映各部分的具体数值,扇形统计图能反映各个部分占总体的百分比,折线统计图能反映样本或总体的趋势,频数分布直方图能反映样本或总体的分布情况,熟练掌握各统计图的特点是解题的关键.7、C【详解】本题考查的对象是了解一批电视机的使用寿命,故样本是所抽取的100台电视机的使用寿命.故选C.8、B【分析】根据扇形统计图给出的信息逐项计算即可.【详解】试题分析:捐赠款的圆心角的度数为:360°×60%=216°.选项B错误故选B【点睛】本题考查扇形统计图.9、D【详解】考点:扇形统计图.分析:利用扇形统计图的特点,可以得到各类所占的比例,但总数不确定,不能确定每类的具体人数.解答:因为扇形统计图直接反映部分占总体的百分比大小,不能反映具体数量的多少和变化情况,所以A、B、C都错误.10、A【分析】在样本中“捕捞200条鱼,发现其中15条有标记”,即可求得有标记的所占比例,而这一比例也适用于整体,据此即可解答.【详解】设湖中有x条鱼,则:15:200=100:x解得:x=40003≈1333(条).故选A.【点睛】本题考查了通过样本去估计总体,只需将样本“成比例地放大”为总体即可.二、填空题1、12.5%、16.7%、33.3%、37.5%【分析】用各个扇形的圆心角的度数分别除以360︒ ,再乘以百分百,即可求解.【详解】 解:45100%12.5%360︒⨯=︒; 60100%16.7%360︒⨯≈︒; 120100%33.3%360︒⨯≈︒; 135100%37.5%360︒⨯=︒. 故答案为:12.5%、16.7%、33.3%、37.5%.【点睛】本题主要考查了扇形的圆心角所占的百分比,解题的关键是熟练掌握各个扇形占圆的面积的百分比等于各个扇形的圆心角的度数分别除以360︒ ,再乘以百分百.2、3【分析】根据频数分布直方图中每一组内的频率总和等于1,可得出第五组的百分比,又因为第五组的频数是8,即可求出总人数,根据总人数即可得出80分以上的学生数,从而得出正确答案.【详解】解:第五组所占的百分比是:1﹣4%﹣12%﹣40%﹣28%=16%,故②正确;则该班有参赛学生数是:8÷16%=50(名),故①正确;从直方图可以直接看出成绩在70~80分的人数最多,故③正确;80分以上的学生有:50×(28%+16%)=22(名),故④错误;其中正确的个数有①②③,共3个;故答案为:3.【点睛】本题考查了数据的统计分析,根据频率分布直方图得出正确信息是解题关键.3、折线扇形【分析】根据折线统计图不仅能够表示数量的多少而且能够表示数量的增减变化趋势;扇形统计图能够表示部分与整体之间的关系进行解答即可.【详解】解:根据统计图的特点可知:要想了解中国疫情,既要知道每天患病数量的多少,又要反映疫情变化的情况和趋势,最好选用折线统计图;了解奥运会各项目获奖与总奖牌数的情况,最好选用扇形统计图.故答案为:折线,扇形.【点睛】此题考查了统计图的选择,掌握三种统计图的特点和作用是解答此题的关键.4、50【分析】根据A组人数和所占的百分比,可以计算出该班学生人数.【详解】解:5÷10%=50(人),即该班学生有50人,故答案为:50.【点睛】本题考查了条形统计图、扇形统计图,掌握条形统计图与扇形统计图的特点并能读懂统计图中的相关信息是解题的关键.5、0.94【分析】根据表中给出的合格率数据即可得出该产品的合格率.【详解】解:根据给出的数据可得,该产品的合格率大约是0.94,三、解答题1、 (1)10月1日 5.3万人,10月2日 5.9万人,10月3日6.2万人,10月4日6.9万人,10月5日5.6万人,10月6日5.8万人,10月7日3.4万人;(2)游园人数最多的是10月4日,达到6.9万人,最少的是10月7日,3.4万人;(3) 2346万元, (4)见解析【分析】(1)根据每一天的人数比前一天的变化情况,求出各天的游客人数,(2)根据(1)的结果进行判断即可,(3)求出这7天的总游客人数,即可求出门票总收入,(4)利用描点、连线,画出折线统计图.【详解】(1)10月1日 2.1+3.2=5.3万人,10月2日 5.3+0.6=5.9万人,10月3日 5.9+0.3=6.2万人,10月4日 6.2+0.7=6.9万人,10月5日 6.9-1.3=5.6万人,10月6日 5.6+0.2=5.8万人,10月7日 5.8-2.4=3.4万人,(2)游园人数最多的是10月4日,达到6.9万人,最少的是10月7日,3.4万人,(3)60×(5.3+5.9+6.2+6.9+5.6+5.8+3.4)=2346万元,答:北京故宫的门票总收入2346万元.(4)用折线统计图表示黄金周期间游园人数情况如图所示:【点睛】考查正数、负数的意义,折线统计图的意义和制作方法,从统计表中获取数量及数量关系式解决问题的关键.2、(1)100;(2)25;(3)54.【分析】(1)根据4天的人数及百分比求出总人数即可;(2)先算出参加公益活动7天的人数,再用总人数减去其它天数的人数,求出参加公益活动为5天的人数,再用5天的人数除以总人数即可求出;(3)根据圆心角=360°×百分比计算即可.【详解】解:(1)本次随机调查的学生数是:30÷30%=100(名);故答案为:100;(2)7天的人数有:100×5%=5(名),5天的人数有:100﹣10﹣15﹣30﹣15﹣5=25(名),则扇形统计图中的a%=25100×100%=25%.即a=25;故答案为:25;(3)“参加公益活动为6天”的扇形,对应的圆心角为:360°×15100=54°;故答案为:54.【点睛】本题考查了条形统计图、扇形统计图等知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.3、(1)小新同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,小莹同学调查的只是男生,不具有代表性,小静同学调查的人数偏少,具有片面性,对整体情况的反映容易造成偏差;(2)260.【分析】(1)根据抽取样本的原则,为使样本具有代表性、普遍性、可操作性的原则进行判断;(2)样本中“采取室内体育锻炼减缓压力”的占2660,因此估计总体600人的2660是采取室内体育锻炼减缓压力的人数.【详解】解:(1)小新同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,小莹同学调查的只是男生,不具有代表性,小静同学调查的人数偏少,具有片面性,对整体情况的反映容易造成偏差.(2)2660026060⨯=(人),答:该校九年级600名学生中利用室内体育活动方式进行减压的大约有260人.【点睛】本题考查样本估计总体的统计方法,理解选取样本的原则是正确判断的前提.4、(1)见解析;(2)见解析【分析】(1)根据题意查阅资料并记录即可;(2)根据统计图逐个分析即可.【详解】解:(1)答案不唯一.查阅资料,可以得到很多相关图表.例如:我国在第23至29届奥运会金牌榜上的排名(2)答案不唯一.例如,表格说明我国体育在世界的排名逐步提高;折线图说明历届奥运会我国获得的金牌数(除第24届外)都在提高,且近三届提高幅度较大;条形图反映出历届奥运会我国获得的奖牌数(除第24届外)都在提高,特别是第29届北京奥运会提高幅度较大;扇形图则反映了北京奥运会上获得奖牌的分布情况,其中金牌占的份额最大.【点睛】此题考查了统计表、条形统计图、折线统计图以及扇形统计图的应用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.5、(1)见解析;(2)见解析【分析】(1)调查本地区连续30天的空气污染指数即可;(2)根据所调查的数据填好频数分布表,进而即可画出相应的频数分布直方图.【详解】解:(1)本地区连续30天的空气污染指数如下:32,41,53,37,33,34,38,34,52,47,45,32,27,22,38,52,63,39,32,29,21,30,48,42,45,39,36,25,27,36;(2)频数分布表如下:∴频数分布直方图如下:【点睛】本题考查了画频数分布表以及频数分布直方图的能力,利用所调查的数据画出相应的频数分布表是解决本题的关键.。
上海民办华二初级中学七年级数学下册第六单元《数据的收集、整理与描述》检测卷(包含答案解析)
一、选择题1.某校学生参加体育兴趣小组情况的统计图如图所示,若参加人数最少的小组有50人,则参加人数最多的小组有()A.50人B.70人C.80人D.200人2.“三农问题”是指农业、农村、农民这三个问题。
随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的收入分别是40000元和60000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是()A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入为2.1万D.前年年收入不止①②③三种农作物的收入3.下列调查中,适宜抽样调查的是()A.了解某班学生的身高情况B.选出某校短跑最快的学生参加全市比赛C.了解全班同学每周体育锻炼的时间D.调查某批次汽车的抗撞击能力4.如图是一个扇形统计图,那么以下从图中得出的结论:①A占总体的25%;②表示B的扇形的圆心角是18 ;③C和D所占总体的百分比相等;④分别表示A、B、C的扇形的圆心角的度数之比为5:1:7.正确的有()A.1个B.2个C.3个D.4个5.生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的雀鸟有5只.请你帮助工作人员估计这片山林中雀鸟的数量约为()A.1000只B.10000只C.5000只D.50000只6.一组数据的最小值为6,最大值为29,若取组距为5,则分成的组数应为()A.4B.5C.6D.77.以下调查中,适合用抽样调查的是()A.了解我校初一(1)班学生的视力情况B.企业招聘,对应聘人员进行面试C.检测武汉市的空气质量D.了解北斗导航卫星的设备零件的质量情况8.下列调查中,适宜采用全面调查方式的是()A.调查某河的水质情况B.了解一批手机电池的使用寿命C.调查某品牌食品的色素含量是否达标D.了解全班学生参加社会实践活动的情况9.为了解某中学八年级学生的视力情况,从该中学中随机调查了100名学生的视力情况.下列说法正确的是()A.该中学八年级学生是总体B.这100名八年级学生是总体的一个样本C.每一名八年级学生的视力是个体D.100名学生是样本容量10.下列调查中,最适宜采用全面调查(普查)的是()A.调查一批袋装食品是否含有防腐剂B.对一批导弹的杀伤半径的调查C.了解某校学生的身高情况D.对重庆市居民生活垃圾分类情况的调查11.下列调查中,适合采用全面调查的是()A.对某校诺如病毒传染情况的调查B.对全市学生每天睡眠时间的调查C.对钱塘江水质的调查D.对某品牌日光灯质量情况的调查12.以下调查中,最适合采用全面调查的是()A.检测长征运载火箭的零部件质量情况B.了解全国中小学生课外阅读情况C.调查某批次汽车的抗撞击能力D.检测某城市的空气质量二、填空题13.某商场2019年1~4月份的投资总额一共是2005万元,商场2019年第一季度每月利润统计图和2019年1~4月份利润率统计图如下(利润率=利润÷投资金额).则商场2019年4月份利润是______万元.14.进行数据的调查收集,一般可分为以下六个步骤,但它们的顺序弄乱了,正确的顺序是__________.(用字母按顺序写出即可)A.明确调查问题;B.记录结果;C.得出结论;D.确定调查对象;E.展开调查;F.选择调查方法.15.为了解七年级学生对年级设置的4门校本课程的选修情况,年级长对本年级所有七年级学生的课程选修数据进行收集,并绘制成如图的扇形统计图,若参加“七彩数学”的人数为120人,则参加“STEAM课程”的人数是__________.16.某公司有员工700人举行元旦庆祝活动(如图),A、B、C 分别表示参加各种活动的人数的百分比,规定每人只参加一项且每人都要参加,则下围棋的员工共有_____人.17.为了了解某市八年级8000名学生的体重情况,从中抽查了500名学生的体重进行统计分析,在这个问题中,样本是_____________18.我国是稀土资源最丰富的国家.如图是全球稀土资源储量分布统计图,图中表示“中国”的扇形的圆心角是_________度.19.为最大程度减少因疫情延迟开学带来的影响,实现“离校不离教、停课不停学”,我市全面开展了形式多样的“线上教学”活动.为了解教学效果,某校对“线上教学”的满意度进行了抽样调查,将抽样调查结果进行统计并绘制成如下两幅不完整的统计图.请结合图中所给的信息,计算表示“非常满意”和“满意”的总人数为_____.20.电影公司随机收集了2000部电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数14050300200800510好评率0.40.20.150.250.20.1好评率是指一类电影中获得好评的部数与该类电影的部数的比值.电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么第____类电影的好评率增加0.1,第____类电影的好评率减少0.1,可以使获得好评的电影总部数与样本中的电影总部数的比值达到最大.三、解答题21.某校初二年段进行了中考体育项目长跑的模拟测试,从中抽取部分学生的成绩等级进行统计,根据成绩等级绘制成如图所示的两个统计图(不完整).请结合统计图完成下列各题:(1)此次共抽取了多少名学生的成绩?(2)请把条形统计图补充完整;(3)求在扇形统计图中,成绩“合格”类所对应的圆心角度数;22.今年受疫情影响,我市中小学生全体在家线上学习.为了了解学生在家主动锻炼身体的情况,某校随机抽查了部分学生,对他们每天的运动时间进行调查,并将调查统计的结果分为四类:每天运动时间t≤20分钟的学生记为A类,20分钟<t≤40分钟记为B类,40分钟<t≤60分钟记为C类,t>60分钟记为D类.收集的数据绘制如下两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)这次共抽取了_________名学生进行调查统计;(2)扇形统计图中D类所对应的扇形圆心角大小为_________;(3)将条形统计图补充完整;(4)如果该校共有1500名学生,请你估计该校B类学生约有多少人?23.初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了________名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为________度;(3)请将频数分布直方图补充完整;(4)如果全市有12000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?24.某校课题研究小组对本校九年级全体同学体育测试情况进行调查,他们随即抽查部分同学体育测试成绩(由高到低分A.B.C.D四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了_____名同学的体育测试成绩,扇形统计图中B级所占的百分比b ___,D级所在小扇形的圆心角的大小为______;(2)请直接补全条形统计图;(3)若该校九年级共有600名同学,请估计该校九年级同学体育测试达标(测试成绩C 级以上,含C级)的人数25.为积极响应市委市政府“加快建设天蓝·水碧·地绿的美丽长沙”的号召,我市某街道决定从备选的五种树中选购一种进行栽种,工作人员在街道辖区范围内随机抽取了部分居民,进行“我最喜欢的一种树”的调查活动(每人限选其中一种树),并将调查结果整理后,绘制成下面两个统计图:请根据所给信息解答以下问题:(1)这次参与调查的居民人数为;(2)请将条形统计图补充完整;(3)请计算扇形统计图中“枫树”所在扇形的圆心角度数;(4)该街道辖区内现有居民6万人,请你估计这6万人中最喜欢玉兰树的有多少人?26.已知某水库上周日的水位是20m,下表是该水库今年某周的水位记录情况.星期一二三四五六日水位变化/米+0.15+0.3-0.2+0.05-0.25+0.1+0.15问:(1)本周星期三的水位是多少米?星期日的水位是多少米?(2)本周哪一天的水位最高,最高水位是多少米,哪一天的水位最低,最低水位是多少米;(3)以上周日水位为0点,用折线统计图表示本周的水位变化情况.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据题意和统计图中的数据可以求得总的人数,进而求得参加人数最多的小组的人数.【详解】解:由题意可得,参加体育兴趣小组的人数一共有:50÷25%=200(人),∴参加人数最多的小组的有:200×(1-25%-35%)=200×40%=80(人),故选C.【点睛】本题考查了扇形统计图,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.2.C解析:C 【分析】根据扇形统计图中各项目的圆心角即可得到每部分占总体的百分比,据此对各选项逐一判断即可得到答案. 【详解】A 、前年①的收入为40000×117360=13000,去年①的收入为60000×117360=19500,此选项错误;B 、前年③的收入所占比例为360135117360--×100%=30%,去年③的收入所占比例为360126117360--×100%=32.5%,此选项错误;C 、去年②的收入为60000×126360=21000=2.1(万元),此选项正确; D 、前年年收入即为①②③三种农作物的收入,此选项错误, 故选:C . 【点睛】本题主要考查扇形统计图,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数,并且通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.3.D解析:D 【分析】普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据此特征进行判断. 【详解】A. 了解某班学生的身高情况,范围较小,容易操作,适合普查,故该选项错误;B. 选出某校短跑最快的学生参加全市比赛,要求比较严格,适合普查,故该选项错误;C. 了解全班同学每周体育锻炼的时间,范围较小,容易操作,适合普查,故该选项错误;D. 调查某批次汽车的抗撞击能力,破坏性大,适合抽样调查,故本选项正确. 故选:D 【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查,无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度高的调查、事关重大的调查往往选用普查.4.D【分析】①根据A 的圆心角是90°,即可得到结论; ②用360°×5%即可得到结论;③根据C 和D 所占总体的百分比得到结论; ④A 、B 、C 的扇形的圆心角的度数即可得到结论. 【详解】 解:①90360×100%=25%;故符合题意; ②表示B 的扇形的圆心角是360°×5%=18°,故符合题意; ③∵C 所占总体的百分比=1-5%-25%-35%=35%,故符合题意; ④表示A 、B 、C 的扇形的圆心角的度数分别为90°,18°,126°, ∴表示A 、B 、C 的扇形的圆心角的度数之比为5:1:7,故符合题意; 故选:D . 【点睛】本题考查了扇形统计图,正确的识别图形是解题的关键.5.B解析:B 【分析】由题意可知:重新捕获500只,其中带标记的有5只,可以知道,在样本中,有标记的占到 5500.而在总体中,有标记的共有100只,根据比例即可解答. 【详解】解:100÷5500=10000只. 故选B . 【点睛】本题考查了用样本估计总体的知识,体现了统计思想,统计的思想就是用样本的信息来估计总体的信息.6.B解析:B 【分析】用极差除以组距,如果商是整数,组数=这个整数加1,如果商不是整数,用进一法,确定组数; 【详解】∵296234.655-==, ∴分成的组数是5组. 故答案选B .本题主要考查了频数分布直方图,准确计算是解题的关键.7.C解析:C【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:A、了解我校初一(1)班学生的视力情况,必须准确,故适合普查;B、企业招聘,对应聘人员进行面试,必须准确,故适合普查;C、检测武汉市的空气质量,适合抽样调查;D、了解北斗导航卫星的设备零件的质量情况,必须准确,故适合普查.故选:C.【点睛】此题主要考查了全面调查与抽样调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.8.D解析:D【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A、调查某河的水质情况,适合抽样调查,不合题意;B、了解一批手机电池的使用寿命,适合抽样调查,不合题意;C、调查某品牌食品的色素含量是否达标,适合抽样调查,不合题意;D、了解全班学生参加社会实践活动的情况,适合全面调查,符合题意.故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.C解析:C【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】A.该中学八年级学生的视力情况是总体,故本选项不合题意;B.这100名八年级学生的视力情况是总体的一个样本,故本选项不合题意;C.每一名八年级学生的视力是个体,故本选项符合题意;D.100是样本容量,故本选项不合题意.故选:C.【点睛】本题考查了总体、个体、样本、样本容量的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.10.C解析:C【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、调查一批袋装食品是否含有防腐剂,最适宜采用抽样调查,故本选项不合题意;B、对一批导弹的杀伤半径的调查,最适宜采用抽样调查,故本选项不合题意;C、了解某校学生的身高情况,最适宜采用全面调查(普查);D、对重庆市居民生活垃圾分类情况的调查,最适宜采用抽样调查,故本选项不合题意;故选:C.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.11.A解析:A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A.对某校诺如病毒传染情况的调查,适合全面调查;B.对全市学生每天睡眠时间的调查,适合抽查;C.对钱塘江水质的调查,适合抽查;D.对某品牌日光灯质量情况的调查,适合抽查.故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12.A解析:A【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可.【详解】A.检测长征运载火箭的零部件质量情况,必须全面调查才能得到准确数据;B.了解全国中小学生课外阅读情况,量比较大,用抽样调查;C.调查某批次汽车的抗撞击能力,具有破坏性,用抽样调查;D.检测某城市的空气质量,不可能全面调查,用抽样调查.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题13.120【分析】根据条形统计图可以得出一二三月份的利润再根据折线统计图中各月份的利润率可以求出前三个月的成本进而求出四月份的成本再求出四月份的利润【详解】解:一月份的成本:125÷200=625万元二解析:120【分析】根据条形统计图可以得出一、二、三月份的利润,再根据折线统计图中各月份的利润率,可以求出前三个月的成本,进而求出四月份的成本,再求出四月份的利润.【详解】解:一月份的成本:125÷20.0%=625万元,二月份的成本:120÷30.0%=400万元,三月份的成本:130÷26.0%=500万元,四月份的成本:2005−625−400−500=480万元,四月份的利润为:480×25.0%=120万元,故答案为:120.【点睛】考查条形统计图、折线统计图的意义和制作方法,从统计图中获取数据和数据之间的关系式正确解答的关键.14.ADFEBC【解析】数据的收集调查分为以下6个骤明确调查问题根据调查问题确定调查对象然后根据这些选择调查方法然后展开调查记录结果进行分析最后得出结论;所以正确地顺序是ADFEBC解析:ADFEBC【解析】数据的收集调查分为以下6个骤,明确调查问题,根据调查问题确定调查对象,然后根据这些选择调查方法,然后展开调查,记录结果进行分析,最后得出结论;所以正确地顺序是ADFEBC.15.160【分析】先根据参加七彩数学的人数为120人占被调查人数的30求出被调查的总人数再用总人数乘以参加STEAM课程的人数对应的百分比即可得【详解】∵参加七彩数学的人数为120人占被调查人数的30∴解析:160【分析】先根据参加“七彩数学”的人数为120人,占被调查人数的30%求出被调查的总人数,再用总人数乘以参加“STEAM课程”的人数对应的百分比即可得.【详解】∵参加“七彩数学”的人数为120人,占被调查人数的30%,∴被调查的总人数为120÷30%=400(人),∴参加“STEAM课程”的人数是400×40%=160(人),故答案为:160人.【点睛】本题考查了扇形统计图,解答本题的关键是明确题意,明确扇形统计图的特点,利用数形结合的思想解答.16.154【分析】因为下围棋人数所占百分比为(1-38-40)则用公司员工总数×下围棋人数所占百分比即可【详解】解:700×(1-38-40)=700×22=154(人)故答案为:154【点睛】本题考查解析:154【分析】因为下围棋人数所占百分比为(1-38%-40%),则用公司员工总数×下围棋人数所占百分比即可.【详解】解:700×(1-38%-40%)=700×22%=154(人)故答案为:154.【点睛】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.17.抽查的500名学生的体重【分析】总体是指考查的对象的全体个体是总体中的每一个考查的对象样本是总体中所抽取的一部分个体而样本容量则是指样本中个体的数目我们在区分总体个体样本样本容量这四个概念时首先找出解析:抽查的500名学生的体重【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:由题意知,在这个问题中,样本是指被抽取得到500名学生的体重,故答案为:抽查的500名学生的体重.【点睛】此题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.18.8【分析】根据扇形统计图中的数据可以计算出图中表示中国的扇形的圆心角的度数【详解】解:由题意可得图中表示中国的扇形的圆心角是:360°×43=1548°故答案为:1548【点睛】本题考查扇形统计图解解析:8.【分析】根据扇形统计图中的数据可以计算出图中表示“中国”的扇形的圆心角的度数.【详解】解:由题意可得,图中表示“中国”的扇形的圆心角是:360°×43%=154.8°,故答案为:154.8.【点睛】本题考查扇形统计图,解答本题的关键是明确题意,求出相应的圆心角的度数.19.70【分析】由两个统计图可知满意不满意较差的人数为40+50+10=100人占调查人数的1﹣15﹣35=50可求出调查人数进而求出非常满意的人数最后计算非常满意和满意人数之和即可【详解】解:调查的总解析:70【分析】由两个统计图可知,“满意、不满意、较差”的人数为40+50+10=100人,占调查人数的1﹣15%﹣35%=50%,可求出调查人数,进而求出“非常满意”的人数,最后计算“非常满意”和“满意”人数之和即可.【详解】解:调查的总人数:(40+50+10)÷(1﹣15%﹣35%)=200(人),“非常满意”的人数:200×15%=30(人),因此“非常满意、满意”的人数为:30+40=70(人),故答案为:70.【点睛】考核知识点:条形图和扇形图.从条形图和扇形图获取信息是关键.20.五二【分析】只要两类电影的好评率发生变化根据各类电影的部数即可确定答案【详解】∵表格中只有两类电影的好评率数据发生变化某类电影的好评率增加01某类电影的好评率减少01且第五类的电影部数最多第二类的电解析:五二【分析】只要两类电影的好评率发生变化,根据各类电影的部数即可确定答案.【详解】∵表格中只有两类电影的好评率数据发生变化,某类电影的好评率增加0.1,某类电影的好评率减少0.1,且第五类的电影部数最多,第二类的电影部数最少,∴只要第五类电影的好评率增加0.1,第二类电影的好评率减少0.1,可以使获得好评的电影总部数与样本中的电影总部数的比值达到最大.故答案为:五,二.【点睛】此题考查统计量的选择,利用表格中的各类电影的部数确定变化的依据是解题的关键.三、解答题21.(1)120名;(2)见详解;(3)144°【分析】(1)根据良好的=的人数除以所占的百分比,即可得出抽取的学生人数;(2)先算出合格率,不合格率,再求出优秀率,进而求出优秀人数,即可把统计图补充完整;(3)用360°×合格的百分比,即可求解.【详解】(1)由条形统计图可知:良好的人数有42名,对应的百分比为:35%,∴抽取的学生有:42÷35%=120(名);(2)∵合格率=48÷120×100%=40%,不合格率=6÷120×100%=5%,∴优秀率=1-40%-5%-35%=20%,∴优秀人数=120×20%=24(名),条形统计图如下:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学第二学期第六周周演练测试题
姓名:______ 满分:100分 得分:_____
一.填空(每空2分,共34分)
1.由不在同一条直线上的 条线段 而成的图形叫做三角形.
2.在△ABC 中,∠A=68°,∠B=47°则∠C= °.
3. 在△ABC 中,∠C = 60°,∠A -∠B = 20°,则∠B = °
4.三角形任意两边之和 第三边.
5.三角形的一个外角等于 的两个内角的和,三角形的任意一个外角都大于与它不相邻的 .
6.若等腰三角形的两边长分别为3和7,则其周长为 。
7.如图1,木工师傅做完门框后,为了防止变形,常常像图中所示,那样钉上两条斜拉的木条这样做的数学道理是 .
8.如图2,∠C = 48°,∠E = 25°,∠BDF = 140°,则∠EFD= °,∠A= °.
(图1) (图2) (图3) (图4) (图5) 9.如图3,图中三角形的个数为 .
10.如图4,已知∠1=∠DAC ,∠2 =∠3,则AD 为 的平分线,BE 为 的平分线
11.如图5,D 、E 是边AC 的三等分点,BD 是△ABE 中 边上的中线,BE 是△DBC 中 边上的中线.
12.以长为3㎝,5㎝,7㎝,10㎝的四条线段中的三条线段为边,可以画 个三角形。
二、选择题(每题3分,共30分) 1.下列图形不稳定的是( )
A. 钝角三角形
B. 等边三角形
C. 平行四边形
D. 直角三角形 2.下列图形稳定的是( )
A. 长方形
B. 正方形
C. 平行四边形
D. 钝角三角形 3.下列长度的三条线段中,能组成三角形的是( )
A. 3cm ,5cm ,8cm
B. 8cm ,8cm ,18cm
C. 2cm ,2cm ,2cm
D. 3cm ,40cm ,8cm 4.如果线段a ,b ,c 能组成三角形,那么它们的长度可能是( ) A. 1∶2∶4 B. 1∶3∶4 C. 3∶4∶7 D. 2∶3∶4
5.如果三角形的两边分别为7和2,且它的周长为偶数,那么第三边的长为( ) A. 3 B. 5 C. 7 D. 9
6.在⊿ABC 中,D 、E 分别是AB 、AC 边上的点,DE ∥BC,∠ADE= 30°, ∠C=120°,则∠A=( ) A. 60° B. 45°
C. 30°
D. 20°
A
B
C
D
E
F
A
B
C C
C
B D D D E
E
E B
1
2 3
A
A
7.如图6,∠A=70°∠B=60°∠BCD=20°则∠α等于( )
A.30°
B.20°
C.50°
D.80°
8.如图7,AB ∥CD,AD.BC 相交于O 点,∠BAD=35°,∠BOD=76则∠C 的度数是( ) A.31° B.35°
C.41° D.76° 图6 9.在⊿ABC 中,∠A=2∠B=75°,则∠C=( )
A .30°
B .135°
C .105°
D .67.5° 10.下列条件中,能判断为直角三角形的是( )。
A. ∠A=2∠B=3∠C B.∠A+∠B=2∠C C. ∠A=∠B=30° D. ∠A+∠B=∠C
三、解答题(每小题9分,共36分) 图7 1.一个三角形的三边之比为2∶3∶4,周长为36cm ,求此三角形三边的长。
2.如图,在⊿ABC 中,∠A=70°,∠B=50°,CD 平分∠ACB .求∠ACD 与∠BDC 的度数.
3.如图,在△ABC 中,AD 是高,AE 是∠BAC 的平分线,若∠B = 65°, ∠C = 45°,求:∠DAE 的度数。
4. 如图,∠1 = 20°,∠2 = 25°,∠A = 35°,求∠BDC 的度数。
A
B C
D E
A
B
C
D
1
2
A
B
O C
D
1
2
3
46
62
38
2030
25150
20
135
45
α
α
α
α
°
°°
°°
°°
°
°。