2020年人教版五年级数学下册知识点复习整理
2020年人教版数学五年级下册期末复习大纲
2020年人教版数学五年级下册期末复习大纲数的认识- 自然数、整数、有理数、小数的概念及性质- 分数的认识和应用- 数轴的使用和数的比较长度、质量和容量- 厘米、米、千米的换算- 克、千克的换算- 升、毫升的换算- 长度、质量和容量的估算和应用三角形和四边形- 三角形和四边形的特征和性质- 边长、周长和面积的计算- 三角形和四边形的分类和识别图形的变换- 翻折、镜像、旋转和平移的概念和操作- 图形的变换规律和特点- 利用变换进行图形的构造和判断数据统计- 数据的收集和整理- 图表的制作和分析- 平均数的计算和应用时、刻和日历- 时刻的表示和读写- 一天的时间单位及其换算- 日历的使用和计算金钱- 人民币的认识和阅读- 金钱的加减和换算- 金钱问题的应用和解决圆- 圆的认识和性质- 直径、半径的关系和计算- 圆的周长和面积的计算二维图形的认识- 正方形、长方形、平行四边形和梯形的特征和性质- 二维图形的分类和识别- 二维图形的周长和面积的计算分数的计算- 分数的加减和乘除法- 分数的化简和约分- 分数的应用和解决问题三角形的认识- 三角形的特征和性质- 三角形的分类和识别- 三角形的周长和面积的计算位置和方向- 位置关系的描述和判断- 方向的表示和判断- 行走路线的规划和解决问题数字的秘密- 数字的谜题和玩法- 数字的规律和应用- 数字游戏的策略和解决方法分数和小数的互换- 分数和小数的相互转换- 分数和小数在实际生活中的应用- 分数和小数问题的解决方法。
第二单元 因数与倍数--2024年五年级数学下册重难点知识点(人教版)
人教版五年级数学下册同步重难点知识点第二单元因数与倍数温馨提示:图片放大更清晰!1.掌握因数、倍数、质数、合数、奇数、偶数的概念,知道有关概念之间的联系和区别。
2.掌握求一个数的因数和倍数的方法。
3.掌握2、5、3的倍数的特征,并会利用特征来判断一个数是不是2、5或3的倍数。
4.能根据质数和合数的概念判断一个数是质数还是合数。
5.会运用数的奇偶性解决一些简单问题。
重点:掌握因数、倍数、质数、合数、奇数、偶数的概念,并能用其解决一些简单问题。
难点:掌握2、5、3的倍数的特征,并会利用特征判断一个数是不是2、5或3的倍数。
知识点一:认识因数和倍数根如果a×b=c(a,b,c都是不为0的自然数),那么a 和b就是c的因数, c就是a和b的倍数。
知识点二:找一个数的因数、倍数找一个数的因数从最小因数找起,一直找到它本身,哪两个数相乘的积等于这个数,那么这两个数就是这个数的因数。
找一个数的倍数,用这个数分别去乘自然数1,2,3,…所得的积都是这个数的倍数。
知识点三:2、5的倍数的特征个位上是0,2,4,6,8的数都是2的倍数。
个位上是0或5的数都是5的倍数。
个位上是0的数既是2的倍数又是5的倍数。
知识点四:3的倍数的特征3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
知识点五:质数和合数判断一个数是合数还是质数的方法:先找出这个数的因数,再根据质数和合数的定义去判断这个数是质数还是合数,1既不是质数也不是合数。
知识点六:奇数和偶数的运算性质奇数与偶数的和的奇偶性:奇数+偶数=奇数奇数+奇数=偶数偶数+偶数=偶数例1:因为8×1=8,8×2=16,8×3=24,8×4=32,…所以8的倍数有( )个,由此可见,一个数的倍数的个数是( )的,其中最小的倍数是( )。
例2:例3:《水浒传》是我国四大著名之一,书中描述写了108位梁山好汉,“108”的最小倍数是( ),108的所有因数中,质数有( )个,合数有( )个。
人教版五年级数学下册中知识点、易错点、易错题汇总
;4知识点易错点汇总★知识点归纳一、轴对称1、定义:把一个图形沿着某一条直线对折,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴。
折叠后重合的点是对应点,叫做对称点。
2、性质:对称点到对称轴的距离相等。
3、轴对称图形:指具有特殊形状的一个图形,它可以有一条或多条对称轴。
二、旋转1、定义:把一个图形绕某一点(或轴)转动一定的角度的图形变换叫做旋转。
2、旋转三要素:旋转点(旋转中心)、旋转方向、旋转角度钟表中指针运动的方向为顺时针方向,与钟表中指针的运动方向相反的方向为逆时针方向。
3、性质:图形绕着某一点旋转一定的度数,图形的对应点、对应线段都旋转了相应的度数,对应点到旋转点的距离相等,对应的线段和对应的角度相等。
图形旋转后,形状、大小都没有发生变化,只有位置变了。
4、旋转90°的方法(1)找出原图行的关键点或关键线段;(2)借助三角板或量角器作原图行关键点或线段与旋转中心所在线段的垂线(3)在所垂线上量出或数出与原线段相等的长度(即找到原图关键点的对应点);(4)顺次连接所找到的对应点,即可得到原图形旋转90°后的图形。
5、时钟上包含12大格,60小格,时钟上相邻两数字间即为一大格,一大格为30°;每一大格又平均分为了五个小格,一小格为6°三、平移1、定义:指在一个平面内,将一个图形上的所有点都按照某个方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
2、性质:平移不改变图形的形状和大小。
3、图形平移的步骤:(1)确定原图形位置、平移的方向、平移的距离。
(2)找出原图形的各关键点。
(3)根据题目要求将各个点依次平移,找出各个点的对应点。
(4)顺次连接平移后的各点。
◆习题:1、图形的变换包括:、、。
其中只是改变原图形位置的变换是、。
2、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫()图形,那条直线就是()。
人教版五年级数学下册复习提纲及知识点
人教版五年级数学下册复习提纲及知识点1、复习提纲第一单元观察物体(三)1、不同角度观察一个物体,看到的面都是两个或三个相邻的面。
2、不可能一次看到长方体或正方体相对的面。
注意点1)这里所说的正面、左面和上面,都是相对于观察者而言的。
2)站在任意一个位置,最多只能看到长方体的3个面。
3)从不同的位置观察物体,看到的形状可能是不同的。
4)从一个或两个方向看到的图形是不能确定立体图形的形状的。
5)同一角度观察不同的立体图形,得到的平面图形可能是相同,也可能是不同的。
6)如果从物体的右面观察,看到的不一定和从左面看到的完全相同。
第二单元因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找。
(3)一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘以自然数。
(4)2、3、5的倍数特征1)个位上是0,2,4,6,8的数都是2的倍数。
2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。
3)个位上是0或5的数,是5的倍数。
4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。
同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。
5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。
3、完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。
如:6的因数有:1、2、3(6除外),刚好1+2+3=6,所以6是完全数,小的完全数有6、28等4:自然数按能不能被2整除来分:奇数、偶数。
人教版五年级下册数学总复习整理
五、复习长方体、正方体体积公式的推导
长方体的体积 = 长 × 宽 × 高
底面积 正方体的体积 = 棱长 ×棱长×棱长
长方体(或正方体)的 体积 = 底面积 × 高
底面积 可看作是高
六、体积与容积区别与联系
异同 点 区别
联系
意义不 同
测量方 法不同 单位名 称不同
体积
容积
物体所占空间的大 一个容器所能容纳物体的
人教版五年级数学下册 知识点整理
五(下) 第一单元 图形变换
图形变换的复习
一、注重整体把握教材
已学的知识 二年级: 初步感知生活中的轴对称、平移和旋转现象。
初步认识轴对称图形,能在方格纸上画简单的轴对称图 形和沿水平或垂直方向画平移后的图形。 现学的知识 五年级: 进一步认识轴对称,掌握图形成轴对称的特征和性质。 能 在方格纸上画出一个图形的轴对称图形。 进一步认识旋转,能在方格纸上把简单图形旋转90°。 初步学会用平移、对称和旋转的方法设计图案。 将学知识 六年级: 圆的对称性。
解决问题
小船最初在南岸,从南岸驶 向北岸,再从北岸返回南岸,不 断往返。
(1)小船摆渡11次后,船在南岸 还是北岸?为什么?
(2)有人说摆渡100次后,小船在 北岸,他的说法对吗?为什么?
分析: 在两点间行走,走奇数次后到与起点 相对处,走偶数次后回到起点处。
北京站是104路和103路电车的起发站。104 路每3分发一次车,103路每8分发一次车,这两 路电车同时发车以后,至少再过多少分又同时 发车?
10
单位:厘米
8 15
后
上
10 左
前
右
●
8
下
15
长方体六个面的面积,就是长方体的表面积。
人教版五年级数学下册知识点整理
人教版五年级数学下册知识点整理一、观察物体(三)1. 从不同方向观察一个立体图形。
- 就像我们看一个神秘的盒子,从前面看、上面看、左面看,看到的形状可能都不一样哦。
比如说一个由小正方体搭成的立体图形,从前面看可能是一排小正方形,从上面看可能是几排小正方形组成的一个大形状,从左面看又可能是另外一种排列的小正方形啦。
- 而且根据从不同方向看到的形状图,我们要能还原出这个立体图形可能的样子。
这就像玩拼图游戏,不过是用小正方体来拼。
有时候答案不是唯一的,就像有好几种搭小正方体的方法都能得到相同的观察结果呢。
二、因数与倍数。
1. 因数和倍数的概念。
- 因数和倍数就像一对好朋友。
如果整数a除以整数b(b≠0)的商正好是整数而没有余数,我们就说b是a的因数,a是b的倍数。
比如说6÷2 = 3,没有余数,那么2就是6的因数,6就是2的倍数。
而且一个数的因数是有限的,就像一个小圈子里的朋友,而一个数的倍数是无限的,就像有无数个远方的伙伴在等着它呢。
2. 2、3、5的倍数特征。
- 2的倍数特征很好记,个位上是0、2、4、6、8的数就是2的倍数,这些数看起来都很“双数”的感觉。
- 5的倍数特征呢,个位上是0或者5的数就是5的倍数,就像5元、10元的人民币面额一样,个位不是0就是5。
- 3的倍数特征有点特别。
一个数各位上的数字之和是3的倍数,这个数就是3的倍数。
比如说123,1+2 + 3=6,6是3的倍数,所以123也是3的倍数。
3. 质数和合数。
- 质数就像孤独的侠客,只有1和它本身两个因数。
像2、3、5、7这些数,它们只跟1和自己玩。
合数就不一样啦,合数是除了1和它本身还有别的因数的数,就像一个热闹的小团体,有很多小伙伴。
1既不是质数也不是合数,它就像一个特殊的存在,不属于这两个帮派。
三、长方体和正方体。
1. 长方体和正方体的认识。
- 长方体就像一个长长的盒子,它有6个面,每个面都是长方形(特殊情况下有两个相对的面是正方形)。
人教版五年级数学下册第一、二单元知识点复习
人教版五年级数学下册第一、二单元知识点复习【人教版五年级数学下册第一、二单元知识点复习】五年级数学下册的第一、二单元主要包含了一些基础的数学知识点,包括整数的加减法运算、算式的变形、相反数的概念以及简单的分数概念等。
通过对这些知识点的复习,可以提高学生对数学的理解和运用能力。
本文将对这些知识点进行全面的回顾和总结。
1. 整数的加法与减法在整数的加法和减法运算中,我们需要掌握以下几个要点:1.1 同号两数相加(或相减)为同号当两个整数的符号相同时,我们只需要将绝对值相加(或相减),并保持符号不变即可。
例如:“(+3) + (+5) = +8”、“(-7) - (-2) = -5”。
1.2 反号两数相加(或相减)为异号当两个整数的符号不同时,我们需要计算它们的绝对值相减,并将符号赋予绝对值较大的数。
例如:“(+4) + (-6) = -2”、“(+2) - (-3) = +5”。
2. 算式的变形在运算中,我们有时需要通过变形使得问题更容易计算。
具体的变形方式包括:2.1 同分母分数的加法与减法当我们需要计算同分母的两个分数时,我们只需要把它们的分子相加(或相减),分母保持不变。
例如:“1/4 + 3/4 = 4/4 = 1”、“5/6 - 2/6 = 3/6 = 1/2”。
2.2 分数与整数的加法与减法当我们需要计算一个分数和一个整数的和(或差)时,我们可以将整数视为分母为1的分数,然后按照同分母的加法(或减法)运算法则进行计算。
例如:“2/3 + 5 = 2/3 + 5/1 = (2 + 15)/3 = 17/3”。
3. 相反数的概念在数轴上,一个数的相反数与它距离原点的距离相等,方向相反。
例如,数轴上点A对应的数是-5,那么点B对应的数就是5,它们互为相反数。
4. 简单分数的概念分数由一个整数的分子和分母组成,分子表示被分割的单位数量,分母表示每个单位的份数。
例如,1/2表示一个单位被分成两份,其中的1表示的就是被分割的单位数量。
人教版数学五年级下册知识点归纳总结复习(第四单元)
4分数的意义和性质...。
..........温馨提示:把谁平均分,就应该把谁看作单位“1”。
分成若干份是指分成除0以外的任意整数份,分时一定是平均分,只有平均分才可以用分数来表示。
分数与除法之间的联系非常紧密,但分数不等同于除法,二者之间有一定的区别:除法是一种运算,分数是一种数。
特别注意:因为除法算式中的除数不能为0,所以在分数中分母也不能为0。
温馨提示:任何整数(0除外)都可以化成分母是1的假分数。
(4)短除法:先把这两个数公有的质因数按从小到大的顺序依次作除数,连续去除这两个数,直到得出的两个商只有公因数1为止,再把所有的除数相乘,所得的积就是这两个数的最大公因数。
以求12和18的最大公因数为例:12和18的最大公因数是2×3=6。
3.求两个数的最大公因数的特殊情况:(1)当两个数成倍数关系时,较小数就是它们的最大公因数;(2)当两个数的公因数只有1时,它们的最大公因数就是1。
4.把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
约分依据的是分数的基本性质。
5.分子和分母只有公因数1的分数是最简分数。
约分时,通常要约成最简分数。
6.几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
7.求两个数最小公倍数的方法:(1)列举法:先分别找出两个数的倍数,从中找出公倍数,再找出最小的那个;(2)筛选法:先找出两个数中较大数的倍数,从中圈出另一个数的倍数,再看哪一个最小;(3)分解质因数法:把每个数都写成几个质因数相乘的形式,其中相同的质因数与各自独有质因数的乘积就是这两个数的最小公倍数;(4)短除法:先把这两个数公有的质因数按从小到大的顺序依次作除数,连续去除这两个数,直到得出的两个商只有公因数1为止,再把所有的除数和最后所得的商连乘,所得的积就是它们的最小公倍数。
以求12和18的最小公倍数为例:12和18的最小公倍数是2×3×2×3=36。
人教版五年级下册数学复习知识要点整理
一图形的变换1、轴对称:把一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
(考点,判断一个图形是否是轴对称图形)2、轴对称图形的特点:①对应点在对称轴的两边②对应点到对称轴的距离相等(考点:画对称轴,注意用尺画虚线;画一个图形的轴对称图形,注意根据对应点到对称轴的距离相等,先找对应点,再连线。
例题见书本P4 例2)3、旋转:在平面内,一个图形绕着一个顶点或轴的运动叫做旋转。
(考点:钟面上指针的旋转;画一个图形的旋转后的图形。
注意,找到中心点,看清题意要求顺时针还是逆时针,钟面上一大格是30度,画图时找3、6、9、12时四个时刻的指针方向的边。
例题见书本P5 例3 例4)4、平移:一个图形沿着一条直线的运动称为平移。
二因数和倍数1、3×7=21,3和7是21的因数,21是3和7的倍数,不能说谁是倍数,谁是因数.2、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
3、一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
4、自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。
最小的奇数是1,最小的偶数是0。
任何一个自然数,不是奇数,就是偶数。
5、个位上是0,2,4,6,8的数都是2的倍数.6、个位上是0或5的数,是5的倍数。
7、一个数各位上的数的和是3的倍数,这个数就是3的倍数。
8、个位上是0的数既是2的倍数,又是5的倍数。
9、能同时被2、3、5整除(同时有因数2、3、5)的最小数是30,最大的两位数是90,最小的三位数是120.10、100以内的质数:二三五七和十一,(2、3、5、7、11)十三后面是十七,(13、17)还有十九别忘记,(19)二三九, 三一七,(23、29、31、四一,四三,四十七,(41、43、47)五三九, 六一七, (53、59、61、67)七一,七三,七十九, (71、73、79)八三,八九,九十七。
人教版数学五年级下册知识点归纳总结
【注意】长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。
(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。
*形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。
被浸没物体的体积等于
上升那部分水的体积
计算方法
①容器的底面积×上升那部分水的高度。
猜测,培养空间想象力和思维能力,能正确辨认从正面、侧面、上面观察到的简单物体的形状。
3、观察物体,从实物观察到对立体图形的观察有一个体验、认识、提高的过程,多观察物体,多画观察
到的图形,自己制作立体图形,有意识的训练想象能力,逐渐就会观察立体图形了。
4、观察物体,先要确定观察的位置(方向)(常选择上面、正面、左侧面、右侧面),再确定观察的形状,
高=棱长总和÷4-长-宽h=L÷4-a-b
正方体的棱长总和=棱长×12L=a×12
正方体的棱长=棱长总和÷12a=L÷12
4、长方体或正方体6个面的总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)
无底(或无盖)长方体表面积=长×宽+(长×高+宽×高)×2
6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。
计量容积一般就用体积单位。计量液体的体积,如水、油等,常用容积单位升和毫升,
也可以写成L和mL。
1升=1立方分米1毫升=1立方厘米1升=1000毫升
(1 L = 1 dm
31 mL = 1 cm31 L=1000mL)
长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但要从容器里面量长、
小单位大单位
÷进率
人教版五年级下册数学知识点总结+习题练习(分模块)
人教版五年级下册数学知识点总结+习题练习(分模块)第一部分知识梳理一、因数和倍数1、如果ab=c(a、b、c都是不为0的整数),那么我们就说a 和b是c的因数,c是a和b的倍数。
因数和倍数是相互依存的。
例如:38=24,3和8是24的因数,24是3和8的倍数。
2、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
3、一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
4、一个非零的自然数,既是它本身的倍数,又是它本身的因数。
5、找因数的方法:(1)列乘法算式:例如:要写出18的所有因数,方法如下:118=1829=1836=18所以,18的因数有:1、2、3、6、9、18共6个。
(2)列除法算式:例如:要写出24的所有因数,方法如下:241=24242=12243=8244=6245=4、8(因为4、8不是整数,所以5和4、8不是24的因数)所以,24的因数有:1、2、3、4、6、8、12、24共8个。
6、找倍数的方法:用这个数分别乘1、2、3、4、5…直到所乘的积接近所规定的限制范围为止,所乘得的积就是这个数的倍数。
例如:写出30以内4的倍数。
41=442=843=1244=1645=2046=2447=28 所以,30以内4的倍数有:4、8、12、16、20、24、28。
二、2、5、3的倍数的特征1、个位上是0、2、4、6、8的数都是2的倍数。
2、个位上是0或5的数都是5的倍数。
3、一个数各个数位上的数相加的和是3的倍数,这个数就是3的倍数。
4、同时是2、5的倍数的数末尾必须是0。
最小的两位数是10,最大的两位数是90。
同时是2、5、3的倍数的数末尾必须是0,而且各个数位上的数相加的和是3的倍数。
最小的两位数是30,最大的两位数是90。
三、奇数和偶数1、自然数中,是2的倍数的数叫做偶数,偶数也叫双数。
如:0、2、4、6、8、10、12、14、16…都是偶数。
人教版五年级数学下册知识点总复习《时间的计算、换算及应用》
人教版五年级数学下册知识点总复习《时间的计算、换算及应用》时间的计算、换算及应用是人教版五年级数学下册中的重要知识点。
本文将对该知识点进行总复。
时间的计算在数学中,我们经常需要进行时间的计算。
时间的计算涉及到时、分、秒的转换和运算。
常见的计算包括:1.时、分、秒的换算:时转换为分,分转换为秒。
例如,2小时等于120分钟,1分钟等于60秒。
2.时间的加减运算:将不同时间段进行相加或相减。
例如,10点30分加上1小时20分钟,等于11点50分。
3.时间的进退位运算:同样的时间在不同的单位下进行进位或退位。
例如,70分钟等于1小时10分钟。
时间的换算时间单位的换算主要涉及到小时、分钟和秒之间的转换。
常见的换算关系如下:1.1小时等于60分钟,1分钟等于60秒。
2.1分钟等于1/60小时,1秒等于1/60分钟。
在实际应用中,我们可以根据具体问题的需求,进行时间单位的换算,以方便计算和理解。
时间的应用时间的应用广泛存在于我们的生活中。
以下是一些常见的时间应用场景:1.日常生活中的计时:例如上学、上班、睡觉等。
2.运动比赛的计时:例如田径比赛、游泳比赛等。
3.列车、飞机等交通工具的时刻表查询和乘坐时间安排。
4.日历和倒计时的使用:例如倒数日、重要节日等。
在应用时间的过程中,我们需要掌握时间的计算和换算,以便更好地解决实际问题。
总结时间的计算、换算及应用是人教版五年级数学下册中的重要知识点。
通过对时间的计算,我们可以更好地理解和应用时间,解决实际问题。
希望本文的总复习可以帮助大家加深对时间知识的理解和掌握。
人教版五年级下册数学知识点整理
人教版五年级下册数学知识点整理五年级下册数学重要知识点第一单元方程1、表示相等关系的式子叫做等式。
2、含有未知数的等式是方程。
3、方程一定是等式;等式不一定是方程。
等式方程4、等式两边同时加上或减去同一个数,所得结果仍然是等式。
这是等式的性质。
等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。
这也是等式的性质。
5、求方程中未知数的过程,叫做解方程。
解方程时常用的关系式:一个加数=和-另一个加数减数=被减数-差被减数=减数+差一个因数=积÷另一个因数除数=被除数÷商被除数=商×除数注意:解完方程,要养成检验的好习惯。
6、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。
奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数7、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)8、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题。
B、理清题目的等量关系。
C、设未知数,一般是把所求的数用X表示。
D、根据等量关系列出方程E、解方程F、检验G、作答。
第二单元确定位置1、确定位置时,竖排叫做列,横排叫做行。
确定第几列一般从左往右数,确定第几行一般从前往后数。
2、数对(x,)第1个数表示第几列(x),第2个数表示第几行(),写数对时,是先写列数,再写行数。
3、从地球仪上看,连接北极和南极两点的是经线,垂直于经线的线圈是纬线,经线和纬线、分别按一定的顺序编排表示“经度”和“纬度”,“经度”和“纬度”都用度(°)、分(′)、秒(″)表示。
4、将某个点向左右平移几格,只是列(x)上的数字发生加减变化,向左减,向右加,行()上的数字不变。
举例:将点(6,3)的位置向右平移2个单位后的位置是(8,3),列6+2=8;将点(6,3)的位置向左平移2个单位后的位置是(4,3),列6-2=4。
人教版小学五年级下册数学知识点整理(全)
班别:
姓名:
学:
4. 【长方体和正方体的关系】 长方体和正方体都有 6 个面,8 个顶点,12 条棱,正方体是长、宽、高都相
等的长方体,即正方体是特殊的长方体。 5. 【棱长公式】
长方体: 长方体的棱总和=(长+宽+高)×4 长=棱长总和÷4-宽-高 宽=棱长总和÷4-长-高 高=棱长总和÷4-长-宽 正方体: 正方体的棱长总和=棱长×12 正方体棱长=棱长总和÷12 6. 【表面积】 长方体或正方体 6 个面的总面积,叫做它的表面积。 7. 【表面积计算】 长方体: 长方体的表面积=(长×宽+长×高+宽×高)×2
8
14. 【求两数的最小公倍数的方法】 (1)观察两数的关系,是否为特殊情况; ① 两数为倍数关系,较大的数为最小公倍数; ② 两数为互质关系,两数的乘积为最小公倍数; (2)不是特殊情况,可以用列举法,筛选法,分解质因数法,短除法求。
14. 【比较分数大小的方法】 (1)同分母分数相比,分子大的分数就大;(同母子大大) (2)同分子分数相比,分母小的分数反而大。(同子母小大)
有余数,这时,除数和商就是这个数的因数; 如:求 18 的因数: 18÷1=18,18÷2=9,18÷3=6,所以 1,18,2,9,3,6 是 18 的因数。
3. 【因数的特征】 一个数的因数的个数是有限的,其中最小的因数是 1,最大的因数是它本身。
4. 【找一个数倍数的方法】 列乘法算式求:用这个数×非 0 自然数,得到的积,就是这个数的倍数。 如:求 2 的倍数: 2×1=2,2×2=4,2×3=6,2×4=8,2×5=10,…。 所以,2 的倍数有:2,4,6,8,…。
5. 【倍数的特征】 一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大公倍数。
人教版五年级下册数学知识点整理
姓名人教版小学数学五年级下册知识点归纳第一单元观察物体(三)1.一般从正面、左面、上面观察物体2.根据从一个方向看到的图形,用小正方体摆,可以拼摆出不同的几何体。
3.根据从三个方向看到的图形摆几何体:先从一个方向看到的图形推测可能出现的各种情况,再结合从其他两个方向看到的图形分析,最后确定几何体形状。
☆具体步骤是:①根据从上面看到的图形摆出第一层;②根据从前面看到的图形在上一步基础上往上层添加;③根据从左面看到的图形修正上一步摆好的几何体;④从三个方向看最终摆出的几何体,验证是否符合要求。
第二单元因数和倍数1.因数和倍数的认识:在整数除法中,如果商是整数且没有余数(或者说余数为0),我们就说除数是被除数的因数(也称约数),被除数是除数的倍数。
例如:12÷6=2,我们就说6是12的因数,12是6的倍数。
12÷2=6,所以2是12的因数,12是2的倍数。
特别注意:因数和倍数是相互依存的。
为了方便,在研究因数和倍数的时候,我们所指的数是自然数(一般不包括0)。
例如:在1.2÷0.6=2中,因为出现了小数,所以不存在因数与倍数。
一个数的因数的个数是有限的,其中一个数的最小因数是1,最大因数是它本身。
一个数的倍数的个数是无限的,其中一个数的最小倍数是它本身,没有最大倍数。
如果两个数都是一个数的倍数,那么这两个数的和(或差)也是这个数的倍数。
例如:21和14都是7的倍数,那么21与14的和是7的倍数,差也是7的倍数。
2.2、3、5的倍数特征:2的倍数特征:个位上是0,2,4,6或8的数,都是2的倍数。
5的倍数特征:个位上是0或5的数,都是5的倍数。
既是2的倍数又是5的倍数的特征:个位上是0的数,既是2的倍数,又是5的倍数。
3的倍数特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
例如:168,1+6+8=1515能够被3整除所以168是3的倍数。
4的倍数特征:一个数的最后两位是4的倍数,这个数就是4的倍数。
人教版五年级数学下册复习重点考点分析带测试题,拿给同学们练习!
2020—2021学年度第二学期部编版五年级语文复习重点考点分析一、因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。
2、因数和倍数:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
3、奇数:不能被2整除的数,也就是个位上是1、3、5、7、9的数。
偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。
5、质数(或素数):只有1和它本身两个因数。
合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。
1:只有1个因数。
“1”既不是质数,也不是合数。
二、分数的意义和性质1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。
2、单位“1”:一个物体、一个计量单位或是一些物体等都可以看作一个整体。
一个整体可以用自然数1来表示,我们通常把它叫做单位“1”。
3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
4、分数的基本性质分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
5、公因数、最大公因数几个数公有的因数叫这些数的公因数。
其中最大的那个就叫它们的最大公因数。
(1)几个数的公因数只有1,就说这几个数互质。
(2)求两个数的最大公因数的方法。
(3)最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。
6、公倍数、最小公倍数几个数公有的倍数叫这些数的公倍数。
其中最小的那个就叫它们的最小公倍数。
7、约分和通分(1)约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
(2)通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。
8、比分数的大小分母相同,分子大,分数就大;分子相同,分母小,分数才大。
三、分数的加减法1、同分母分数加、减法的计算分母不变,分子相加、减。
计算的结果能约分的要约分成最简分数。
2020年人教版数学五年级下册1-3单元知识点总结
2020年人教版五年级下册数学知识点总结第一单元观察物体1、长方体(或正方体)放在桌子上,从不同角度观察,一次最多能看到3个面(或说成:最多同时能看到3个面)。
2、从多个角度观察立体图形:先根据平面图找出要拼搭的立体图形有几层;然后确定要拼搭的立体图形有几排;最后根据平面图形确定每层和每排的小正方体的个数。
第二单元因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。
在研究因数和倍数的时候,我们所说的数指的是非0的整数。
(不包括小数、分数)大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
2х6=12,2和6是12的因数,12是2和6的倍数。
因数与倍数之间的关系是相互的,不能单独存在。
只能说2是12的因数,12是2的倍数。
不能说2是因数,12是倍数。
找因数的方法:24的因数有()。
一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
60以内7的倍数有()一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
1是任何整数(0除外)的因数。
也是任何整数(0除外)的最小因数。
一个数的因数至少有1个,这个数是1。
除1以外的任何整数至少有两个因数(0除外)。
一个数的最小倍数 = 一个数的最大因数 =这个数它本身2、自然数按能不能被2整除来分:奇数偶数奇数:不能被2整除的数偶数:能被2整除的数。
最小的奇数是1,最小的偶数是0。
个位上是0,2,4,6,8的数都是2的倍数。
个位上是0或5的数,是5的倍数。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
既是2的倍数又是3和5的倍数的特征:个位上是0且各位上的数的和是3的倍数。
能同时被2、3、5整除的最小的两位数是30,最大的两位数是90,最小的三位数是120,最大的三位数是990。
3、自然数按因数的个数来分:质数、合数、1。
质数:只有1和它本身两个因数,这样的数叫做质数(或素数)。
合数:除了1和它本身还有别的因数,这样的数叫做合数。
五年级数学下册知识点整理人教版
人教版小学数学知识点整理:五年级下册一、学习目标:1.理解分数的意义和基本性质,会比较分数的大小,会把假分数化成带分数或整数,会进行整数、小数的互化,能够比较熟练地进行约分和通分;2.掌握因数和倍数、质数和合数、奇数和偶数等概念,以及2、3、5的倍数的特征;会求100以内的两个数的最大公因数和最小公倍数;3.理解分数加、减法的意义,掌握分数加、减法的计算方法,比较熟练地计算简单的分数加、减法,会解决有关分数加、减法的简单实际问题;4.知道体积和容积的意义以及度量单位,会进行单位之间的换算,感受有关体积和容积单位的实际意义;5.结合具体情境,探索并掌握长方体和正方体的体积和表面积的计算方法,探索某些实物体积的测量方法;6.能在方格纸上画出一个图形的轴对称图形,以及将简单图形旋转90度;欣赏生活中的图案,灵活运用平移、对称和旋转在方格纸上设计图案;7.通过丰富的实例,理解众数的意义,会求一组数据的众数,并解释结果的实际意义;根据具体的问题,能选择适当的统计量表示数据的不同特征;8.认识复式折线统计图,能根据需要选择合适的统计图表示数据。
二、学习难点:1.用轴对称的知识画对称图形;2.确区别平移和旋转的现象,并能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形;3.理解因数和倍数的意义;因数和倍数等概念间的联系和区别;正确判断一个常见数是质数还是合数;4.长方体表面积的计算方法;长方体、正方体体积计算;5.理解、归纳分数与除法的关系;用除法的意义理解分数的意义;6.理解真分数和假分数的意义及特征;7.理解和掌握分数和小数互化的方法。
三、知识点概括总结:1.轴对称:如果一个图形沿一条直线折叠,直线两侧的图形能够互相重合,这个图形就叫做轴对称图形,这时,我们也说这个图形关于这条直线(成轴)对称。
对称轴:折痕所在的这条直线叫做对称轴。
如下图所示:2.轴对称图形的性质:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版五年级数学下册知识点整理第一单元《观察物体三》1、摆物体:根据从一个角度看到的物体形状,可以摆出不同的立体图形。
2、确定立体图形:根据从三个不同方向看到的形状还原立体图形,先从一个方向看到的形状分析,推测可能出现的各种情况;再结合从其他两个方向看到的形状综合分析;最后确定立体图形。
第二单元因数和倍数3、因数和倍数。
在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的余数.又如整数a能被b整除(a÷b=c),那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
4、因数:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
一个数的因数的求法:用乘法成对地按顺序找,或用除法找。
5、倍数:一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘自然数。
6、自然数按能不能被2整除分为:奇数偶数奇数:不是2的倍数的数叫做奇数。
偶数:是2的倍数的数叫做偶数。
最小的奇数是1,最小的偶数是0。
7、3、5倍数的特征:个位上是0,2,4,6,8的数都是2的倍数。
个位上是0或5的数,是5的倍数。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。
同时是2、3、5的倍数,个位上是0并且各位上的数的和是3的倍数,这个数就同时是2、3、5的倍数。
最大的两位数是90,最小的两位数是30,最小的三位数是120。
8、自然数按因数的个数来分:质数、合数、质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
如2,3,5,7,11,13,17,19……都是质数。
合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
如4,6,8,9,10,12,14,15,16,18,20,22,26,49……都是合数。
合数至少有三个因数,1、它本身、别的因数9、“1”既不是质数,也不是合数。
最小的质数是2,最小的合数是4。
10、20以内的质数:有8个(2、3、5、7、11、13、17、19)(1)所有的奇数都是质数。
不对,因为9是奇数,但不是质数,而是合数。
(2)所有的偶数都是合数。
不对,因为2是偶数,但不是合数,是质数。
(3)在1,2,3,4,5,…中,除了质数以外都是合数。
不对,因为1既不是质数也不是合数。
(4)两个质数的和是偶数。
不对,因为2是质数也是偶数,而其他的质数都是奇数,偶数+奇数=奇数。
11、100以内的质数(共 25 个):2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、9712、奇数+奇数=偶数(如:5+7=12 3+5=8 ……)奇数+偶数=奇数(如:1+4=5 7+2=9 ……)偶数+偶数=偶数(如:2+4=6 8+6=14 ……)奇数×奇数=奇数(如:5×7=35 7×9=63 ……)奇数×偶数=偶数(如:5×8=40 7×8=56 ……)偶数×偶数=偶数(如: 8×12=96 14×24=336 ……)13、公因数、最大公因数几个数公有的因数叫这些数的公因数。
其中最大的那个因数就叫它们的最大公因数。
用短除法分解质因数(一个合数写成几个质数相乘的形式)例:12=2×2×3用短除法求两个数或三个数的最大公因数(除到互质为止,把所有的除数连乘起来).几个数的公因数只有1,就说这几个数互质。
14、两数互质的特殊情况:⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;⑷2和所有奇数互质;⑸质数与比它小的合数互质;15、如果两数是倍数关系时,那么较小的数就是它们的最大公因数。
如果两数互质时,那么1就是它们的最大公因数。
16、公倍数、最小公倍数几个数公有的倍数叫这些数的公倍数。
其中最小的那个就叫它们的最小公倍数。
用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)17、如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。
如果两数互质时,那么它们的积就是它们的最小公倍数。
第三单元长方体和正方体18、长方体和正方体都是立体图形。
正方体也叫立方体。
19、相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
(长、宽、高都各有4条,分别平行并且相等)20、长方体的特征:①面:有6个面,都是长方形(特殊情况下最多有两个相对的面是正方形)。
相对的面完全相同。
②棱:有12条棱。
相对的棱长度相等。
③顶点:有8个顶点。
21、正方体的特征:①面:有6个面都是正方形,6个面完全相同。
②棱:有12条棱。
12条棱的长度相等。
③顶点:有8个顶点。
22、正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
23、至少要8个小正方体才能拼成一个稍大的正方体。
24、长方体的棱长总和=(长+宽+高)×4 L=(a+b+h)×4 或长方体的棱长总和=长×4+宽×4+高×4长=棱长总和÷4-宽-高 a=L÷4-b-h宽=棱长总和÷4-长-高 b=L÷4-a-h高=棱长总和÷4-长-宽 h=L÷4-a-b正方体的棱长总和=棱长×12 L=a×12正方体的棱长=棱长总和÷12 a=L÷1225、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)或长方体的表面积=长×宽×2+长×高×2+宽×高×226、无底(或无盖5个面)长方体表面积= 长×宽+(长×高+宽×高)×2S=2(ab+ah+bh)-abS=2(ah +bh )+ab27、无底又无盖(4个面)长方体表面积=(长×高+宽×高)×2 S=2(ah +bh ) 28、正方体的表面积=棱长×棱长×6 S=a ×a ×6 29、物体所占空间的大小叫做物体的体积。
30、长方体的体积=长×宽×高 V=abh 31、长=体积÷宽÷高 a=V ÷b ÷h宽=体积÷长÷高 b=V ÷a ÷h 高=体积÷长÷宽 h= V ÷a ÷b32、正方体的体积=棱长×棱长×棱长 V=a ×a ×a=a 3底面积: 长方体或正方体底面的面积叫做底面积。
底面积=长×宽 33、长方体和正方体的体积统一公式:长、正方体的体积都=底面积×高 V=s ×h V=sh34、箱子、油桶、仓库等容器所能容纳物体的体积,通常叫做他们的容积。
长方体和正方体容器容积的计算方法,跟体积的计算方法相同,但要从里面量长、宽、高。
(所以物体的体积大于它的容积)。
35、常用的容积单位有升和毫升也可以写成L 和ml 。
1升=1立方分米 1毫升=1立方厘米 1升=1000毫升 36、a 3读作“a 的立方”表示3个a 相乘,(即a ·a ·a ) 【体积单位换算】 高级单位 低级单位低级单位 高级单位体积单位进率:1立方米=1000立方分米=1000000立方厘米 1立方分米=1000立方厘米=1升=1000毫升 1立方分米=1升 1立方厘米=1毫升1平方米=100平方分米=10000平方厘米 1平方千米=100公顷=1000000平方米37、长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。
(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。
38、排水法:(计算不规则物体的体积) 39、把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。
第四单元 分数的意义和性质40、单位“1”表示:一个物体、一个计量单位或是一些物体都可以看成一个整体。
这个整体可以用自然数1来表示,我们通常把它叫做单位“1”。
把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
3÷4可以表示把单位“1”平均分成4份,取其中的4份;也可以表示把3个饼平均分成4份,取其中的一份。
41、分数与除法的关系:除法中的被除数相当于分数的分子,除数相当于分母,除号相当于分数线。
被除数÷除数=除数被除数 a ÷b =ba42、分数既可以表示分率,也可以表示具体的数量。
分数后不带单位表示两个量之间的倍数关系;分数带有单位表示一个具体的数量。
43、分数大小的比较:分母相同的两个分数,分子大的分数较大。
×进率÷进率分子相同的两个分数,分母小的分数较大。
异分母分数,先化成同分母分数(分数单位相同), 再进行比较。
44、真分数和假分数:真分数分子比分母小的分数叫做真分数。
真分数比1小。
假分数分子比分母大或分子和分母相等的分数叫做假分数。
假分数大于1或等于1。
45、把假分数化成整数或带分数:用分子÷分母。
能整除的,所得的商就是整数;不能整除的,所得的商就是带分数的整数部分,余数是就是分数部分的分子,分母不变。
46、带分数化假分数的方法:分母不变,用分母×整数的积再加分子作分子。
整数化假分数的方法:分母不变, 整数×分母作分子。
47、分数的基本性质——分数的分子和分母同时乘上或除以相同的数(0除外),分数的大不变。
48、约分——把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
(方法就是分子和分母同时除以它们的公因数(逐次约分)或分子和分母同时除以他们的最大公因数(一次约分)) 49、分子、分母是互质数的分数,叫做最简分数。
50、 通分——把异分母分数化成和原来分数相等的同分母的分数,叫做通分。
方法:先求出原来几个分母的最小公倍数,再根据分数的基本性质把各个分数化成用这个最小公倍数作公分母的分数。
51、 分数和小数的互化。
小数化成分数:原来有几位小数,就在1后面写几个0作分母,把原来的小数去掉小数点作分子;化成分数后,能约分的要约分。
分数化小数:用分子除以分母,除不尽的按要求保留几位小数。