贪心算法实验

合集下载

c++贪心算法经典例题

c++贪心算法经典例题

c++贪心算法经典例题
经典的贪心算法例题有很多,以下是其中几个常见的例题:
1. 分糖果问题:
有一群小朋友,每个人都有一个评分。

现在需要给他们分糖果,要求评分高的小朋友比他旁边评分低的小朋友拥有更多的糖果。

求至少需要准备多少糖果。

2. 区间覆盖问题:
给定一个区间集合,每个区间表示一个工作时间段。

现在需要选择尽可能少的区间,覆盖整个时间范围。

求最少需要选择多少个区间。

3. 最佳买卖股票时机:
给定一个股票的价格列表,可以任意次数买入和卖出股票。

但是同一时间只能持有一支股票,求能够获得的最大利润。

4. 最大会议安排:
给定一系列的会议,每个会议有开始时间和结束时间。

要求安排尽可能多的会议,使得它们不会发生时间上的冲突。

5. 跳跃游戏:
给定一个非负整数数组,每个元素表示在该位置上能够跳跃的最大长度。

初始位置在第一个元素,判断能否跳到最后一个元素。

以上仅是一些常见的例题,贪心算法广泛应用于各种问题中。

在解决实际问题时,需要根据具体情况设计贪心策略,找到合适的贪心策略才能得到正确的解答。

贪心算法 实验报告

贪心算法 实验报告

贪心算法实验报告贪心算法实验报告引言:贪心算法是一种常用的算法设计策略,它通常用于求解最优化问题。

贪心算法的核心思想是在每一步选择中都选择当前最优的解,从而希望最终能够得到全局最优解。

本实验旨在通过实际案例的研究,探索贪心算法的应用和效果。

一、贪心算法的基本原理贪心算法的基本原理是每一步都选择当前最优解,而不考虑整体的最优解。

这种贪婪的选择策略通常是基于局部最优性的假设,即当前的选择对于后续步骤的选择没有影响。

贪心算法的优点是简单高效,但也存在一定的局限性。

二、实验案例:零钱兑换问题在本实验中,我们以零钱兑换问题为例,来说明贪心算法的应用。

问题描述:假设有不同面值的硬币,如1元、5元、10元、50元和100元,现在需要支付给客户x元,如何用最少的硬币数完成支付?解决思路:贪心算法可以通过每次选择当前面值最大的硬币来求解。

具体步骤如下:1. 初始化一个空的硬币集合,用于存放选出的硬币。

2. 从面值最大的硬币开始,如果当前硬币的面值小于等于待支付金额,则将该硬币放入集合中,并将待支付金额减去该硬币的面值。

3. 重复步骤2,直到待支付金额为0。

实验过程:以支付金额为36元为例,我们可以通过贪心算法求解最少硬币数。

首先,面值最大的硬币为100元,但36元不足以支付100元硬币,因此我们选择50元硬币。

此时,剩余待支付金额为36-50=-14元。

接下来,面值最大的硬币为50元,但待支付金额为负数,因此我们选择下一个面值最大的硬币,即10元硬币。

此时,剩余待支付金额为-14-10=-24元。

继续选择10元硬币,剩余待支付金额为-24-10=-34元。

再次选择10元硬币,剩余待支付金额为-34-10=-44元。

最后,选择5元硬币,剩余待支付金额为-44-5=-49元。

由于待支付金额已经为负数,我们无法继续选择硬币。

此时,集合中的硬币数为1个50元和3个10元,总共4个硬币。

实验结果:通过贪心算法,我们得到了36元支付所需的最少硬币数为4个。

贪心算法实验报告心得

贪心算法实验报告心得

贪心算法实验报告心得前言贪心算法是一种常见且重要的算法设计思想,通过每一步都选择当下最优的解决方案,以期望最终得到全局最优解。

在学习与实践贪心算法的过程中,我有了许多心得与体会。

什么是贪心算法?贪心算法是一种求解问题的算法思想,它的特点是每一步都选择当前最优的解决方案,而不考虑该选择对以后步骤的影响。

贪心算法通常适用于可以将问题分解为若干个子问题,并且通过每次选择当前最优解来得到整体最优解的情况。

贪心算法的基本步骤贪心算法的基本步骤可以总结为以下几个方面:1.确定问题的解空间,并找到问题的最优解。

贪心算法通常通过穷举法或者利用问题的特殊性质来确定解空间。

2.制定贪心策略。

贪心算法的核心是确定每一步选择的贪心策略,即选择当前最优解。

3.确定贪心策略的正确性。

贪心算法的一个关键问题是如何证明贪心策略的正确性。

可以通过数学证明、反证法或者举反例等方式来进行证明。

4.实现贪心算法。

将贪心策略转化为实际可执行的算法步骤,编写代码来求解问题。

贪心算法实验结果分析在本次实验中,我使用贪心算法解决了一个经典问题:找零钱问题(Change-Making Problem)。

给定一定面额的硬币和需找的金额,我们的目标是使用最少的硬币来完成找零钱。

贪心算法的思路是每次选择面额最大的硬币进行找零。

实验设计1.实验输入:我设计了多组输入来测试贪心算法的性能。

每组输入包括一个需找的金额和一个硬币集合。

2.实验输出:对于每组输入,贪心算法输出一个最优的硬币找零方案,以及使用的硬币数量。

3.实验评价:我使用了实际需找金额与贪心算法计算得到的找零金额的差值来评估算法的准确性,并统计了算法的时间复杂度。

实验结果从多组实验结果中可以观察到,贪心算法在大部分情况下给出了正确的找零金额,并且算法的时间复杂度较低。

结果分析贪心算法在找零钱问题中的应用是合理的。

每次选择面额最大的硬币进行找零,可以快速接近最优解,并且相对其他算法具有较低的时间复杂度。

贪心算法几个经典例子c语言

贪心算法几个经典例子c语言

贪心算法几个经典例子c语言1. 零钱兑换问题题目描述:给定一些面额不同的硬币和一个总金额,编写一个函数来计算可以凑成总金额所需的最少的硬币个数。

如果没有任何一种硬币组合能够凑出总金额,返回 -1。

贪心策略:每次选择面额最大的硬币,直到凑出总金额或者无法再选择硬币为止。

C语言代码:int coinChange(int* coins, int coinsSize, int amount){int count = 0;for(int i = coinsSize - 1; i >= 0; i--){while(amount >= coins[i]){amount -= coins[i];count++;}}return amount == 0 ? count : -1;}2. 活动选择问题题目描述:有 n 个活动,每个活动都有一个开始时间和结束时间,选择一些活动使得它们不冲突,且能够参加的活动数最多。

贪心策略:每次选择结束时间最早的活动,直到所有活动都被选择或者无法再选择为止。

C语言代码:typedef struct{int start;int end;}Activity;int cmp(const void* a, const void* b){return ((Activity*)a)->end - ((Activity*)b)->end;}int maxActivities(Activity* activities, int n){qsort(activities, n, sizeof(Activity), cmp);int count = 1;int end = activities[0].end;for(int i = 1; i < n; i++){if(activities[i].start >= end){count++;end = activities[i].end;}}return count;}3. 跳跃游戏题目描述:给定一个非负整数数组,你最初位于数组的第一个位置。

贪心算法-找零问题 实验报告

贪心算法-找零问题 实验报告

实验三课程名称:算法设计与实现实验名称:贪心算法-找零问题实验日期:2019年5月2日仪器编号:007班级:数媒0000班姓名:郝仁学号0000000000实验内容假设零钱系统的币值是{1,p,p^2,……,p^n},p>1,且每个钱币的重量都等于1,设计一个最坏情况下时间复杂度最低的算法,使得对任何钱数y,该算法得到的零钱个数最少,说明算法的主要设计思想,证明它的正确性,并给出最坏情况下的时间复杂度。

实验分析引理1(离散数学其及应用3.1.4):若n是正整数,则用25美分、10美分、5美分和1美分等尽可能少的硬币找出的n美分零钱中,至多有2个10美分、至多有1个5美分、至多有4个1美分硬币,而不能有2个10美分和1个5美分硬币。

用10美分、5美分和1美分硬币找出的零钱不能超过24美分。

证明如果有超过规定数目的各种类型的硬币,就可以用等值的数目更少的硬币来替换。

注意,如果有3个10美分硬币,就可以换成1个25美分和1个5美分硬币;如果有2个5美分硬币,就可以换成1个10美分硬币;如果有5个1美分硬币,就可以换成1个5美分硬币;如果有2个10美分和1个5美分硬币,就可以换成1个25美分硬币。

由于至多可以有2个10美分、1个5美分和4个1美分硬币,而不能有2个10美分和1个5美分硬币,所以当用尽可能少的硬币找n美分零钱时,24美分就是用10美分、5美分和1美分硬币能找出的最大值。

假设存在正整数n,使得有办法将25美分、10美分、5美分和1美分硬币用少于贪心算法所求出的硬币去找n美分零钱。

首先注意,在这种找n美分零钱的最优方式中使用25美分硬币的个数q′,一定等于贪心算法所用25美分硬币的个数。

为说明这一点,注意贪心算法使用尽可能多的25美分硬币,所以q′≤q。

但是q′也不能小于q。

假如q′小于q,需要在这种最优方式中用10美分、5美分和1美分硬币至少找出25美分零钱。

而根据引理1,这是不可能的。

算法实验报告贪心

算法实验报告贪心

一、实验背景贪心算法是一种在每一步选择中都采取当前状态下最好或最优的选择,从而希望导致结果是全局最好或最优的算法策略。

贪心算法并不保证能获得最优解,但往往能获得较好的近似解。

在许多实际应用中,贪心算法因其简单、高效的特点而被广泛应用。

本实验旨在通过编写贪心算法程序,解决经典的最小生成树问题,并分析贪心算法的优缺点。

二、实验目的1. 理解贪心算法的基本原理和应用场景;2. 掌握贪心算法的编程实现方法;3. 分析贪心算法的优缺点,并尝试改进;4. 比较贪心算法与其他算法在解决最小生成树问题上的性能。

三、实验内容1. 最小生成树问题最小生成树问题是指:给定一个加权无向图,找到一棵树,使得这棵树包含所有顶点,且树的总权值最小。

2. 贪心算法求解最小生成树贪心算法求解最小生成树的方法是:从任意一个顶点开始,每次选择与当前已选顶点距离最近的顶点,将其加入生成树中,直到所有顶点都被包含在生成树中。

3. 算法实现(1)数据结构- 图的表示:邻接矩阵- 顶点集合:V- 边集合:E- 已选顶点集合:selected- 最小生成树集合:mst(2)贪心算法实现```def greedy_mst(graph):V = set(graph.keys()) # 顶点集合selected = set() # 已选顶点集合mst = set() # 最小生成树集合for i in V:selected.add(i)mst.add((i, graph[i]))while len(selected) < len(V):min_edge = Nonefor edge in mst:u, v = edgeif v not in selected and (min_edge is None or graph[u][v] < graph[min_edge[0]][min_edge[1]]):min_edge = edgeselected.add(min_edge[1])mst.add(min_edge)return mst```4. 性能分析为了比较贪心算法与其他算法在解决最小生成树问题上的性能,我们可以采用以下两种算法:(1)Prim算法:从任意一个顶点开始,逐步添加边,直到所有顶点都被包含在生成树中。

板材切割优化算法的实现与比较

板材切割优化算法的实现与比较

板材切割优化算法的实现与比较第一章引言板材切割是制造业中重要的工艺之一,目的是最大限度地利用板材,减少浪费。

随着计算机技术的不断发展,利用计算机实现板材切割优化算法已成为当前工业界广泛关注的研究领域之一。

板材切割的优化算法旨在找到一种最优的切割方案,以最小化废料数量或最大化使用率。

本文将介绍两种常见的板材切割优化算法,分别是贪心算法和遗传算法,通过实验比较两种算法的性能,并着重讨论如何在实际应用中选择最佳的算法。

第二章贪心算法贪心算法是一种简单的启发式算法。

它的主要思想是在每一步中选择当前最好的选择,以期望最终结果也是最佳的。

在板材切割问题中,贪心算法的具体实现如下:1.按照板材尺寸排序,从最大的板材开始切割。

2.选择合适的模板尺寸,以覆盖需要切割的板材。

3.尽可能多地剪出这一模板所能承载的片材数量。

4.重复步骤2和3,直至所有板材都被切割完毕。

尽管贪心算法非常简单易懂,但是在实际应用中,它并不总是最优的。

由于贪心算法只考虑当前的最优解,而忽视了全局最优解,因此在处理一些复杂的切割情况时可能出现不好的结果。

第三章遗传算法遗传算法是一种进化算法,其核心思想是通过模拟自然选择和遗传的过程,寻找最优解。

在板材切割问题中,遗传算法的具体实现如下:1.初始种群的生成:随机生成一组合法的切割方案,作为初始种群。

2.适应度函数的确定:以废料数量或使用率作为适应度函数。

3.选择:按照适应度函数的大小,选择某些个体作为下一代的父母。

4.交叉:通过随机选择两个父母来生成子代,交叉的位置也是随机的。

5.变异:通过随机的方式来改变个体的某个优化参数。

6.新种群的生成:将交叉和变异产生的子代和父代合并生成新的种群。

7.重复步骤3至6,直到达到终止条件。

可以看出,遗传算法能够全面考虑切割问题的多种变量和约束条件,因此,它通常比贪心算法更加优秀。

但是,由于遗传算法的实现非常复杂,计算量较大,因此速度相对较慢,不适合处理实时性要求比较高的切割场景。

算法分析与设计实验三贪心算法

算法分析与设计实验三贪心算法

实验三贪心算法实验目的1. 掌握贪心法的基本思想方法;2. 了解适用于用贪心法求解的问题类型,并能设计相应贪心法算法;3. 掌握贪心算法复杂性分析方法分析问题复杂性。

预习与实验要求1. 预习实验指导书及教材的有关内容,掌握贪心法的基本思想;2. 严格按照实验内容进行实验,培养良好的算法设计和编程的习惯;3. 认真听讲,服从安排,独立思考并完成实验。

实验设备与器材硬件:PC机软件:C++或Java等编程环境实验原理有一类问题是要从所有的允许解中求出最优解,其策略之一是“贪心法”,即逐次实施“贪心选择”:在每个选择步骤上做出的选择都是当前状态下最优的。

贪心选择依赖于在此之前所做出的选择,但不依赖于后续步骤所需要的选择,即不依赖于后续待求解子问题。

显然,这种选择方法是局部最优的,但不是从问题求解的整体考虑进行选择,因此不能保证最后所得一定是最优解。

贪心法是求解问题的一种有效方法,所得到的结果如果不是最优的,通常也是近似最优的。

实验内容以下几个问题选做一项:1. 用贪心法实现带有期限作业排序的快速算法应用贪心设计策略来解决操作系统中单机、无资源约束且每个作业可在等量时间内完成的作业调度问题。

假定只能在一台机器上处理N个作业,每个作业均可在单位时间内完成;又假定每个作业i都有一个截止期限di>0(它是整数),当且仅当作业i在它的期限截止以前被完成时,则获得pi的效益。

这个问题的一个可行解是这N个作业的一个子集合J,J中的每个作业都能在各自的截止期限之前完成。

可行解的效益值是J中这些作业的效益之和,即Σp。

具有最大效益值的可行解就是最优解。

2. 实现K元归并树贪心算法两个分别包含n个和m个记录的已分类文件可以在O(n+m)时间内归并在一起而得到一个分类文件。

当要把两个以上的已分类文件归并在一起时,可以通过成对地重复归并已分类的文件来完成。

例如:假定X1,X2,X3,X4是要归并的文件,则可以首先把X1和X2归并成文件Y1,然后将Y1和X3归并成Y2,最后将Y2和X4归并,从而得到想要的分类文件;也可以先把X1和X2归并成Y1,然后将X3和X4归并成Y2,最后归并Y1和Y2而得到想要的分类文件。

最优装载问题(贪心)

最优装载问题(贪心)

最优装载问题(贪⼼)⼀、实验内容运⽤贪⼼算法解决活动安排问题(或最优装载问题)使⽤贪⼼算法解决最优装载问题。

⼆、所⽤算法基本思想及复杂度分析1.算法基本思想贪⼼算法是指在对问题求解时,总是做出在当前看来是最好的选择。

也就是说,不从整体最优上加以考虑,它所做出的仅是在某种意义上的局部最优解。

⽤局部解构造全局解,即从问题的某⼀个初始解逐步逼近给定的⽬标,以尽可能快的求得更好的解。

当某个算法中的某⼀步不能再继续前进时,算法停⽌。

2.问题分析及算法设计问题分析:(1)给定n个古董,要把它们装到装载量为c的装载船上。

(2)⾸先需要对这n个古董进⾏质量从⼩到⼤的排序。

(3)然后每次都选择最轻的,接着再从剩下的n-1件物品中选择最轻的。

(4)重复第(3)步骤,直到当前载重量⼤于装载船的最⼤装载量,停⽌装载。

(5)此时得到最优的贪⼼⽅案,记录下装载的最⼤古董数。

算法设计:(1)算法策略:把n件物品从⼩到⼤排序,然后根据贪⼼策略尽可能多的选出前i个物品,直到不能装为⽌。

(2)特例:算法复杂度分析由最优装载问题的贪⼼选择性质和最优⼦结构性质,可知将这些古董按照其重量从⼩到⼤排序,所以算法所需的计算时间为O(nlogn)。

三、源程序核⼼代码及注释(截图)四、运⾏结果五、调试和运⾏程序过程中产⽣的问题及解决⽅法,实验总结(5⾏以上)这⾥的调试,没有什么⼤问题,单纯的依次⽐较,判断,从⽽得到结果。

这次实验让我对贪⼼算法有了更深刻的认识,其主要是从问题的初始解出发,按照当前最佳的选择,把问题归纳为更⼩的相似的⼦问题,并使⼦问题最优,再由⼦问题来推导出全局最优解。

贪⼼算法虽然求的是局部最优解,但往往许多问题的整体最优解都是通过⼀系列的局部最优解的选择来达到的,所以贪⼼算法不⼀定可以得到能推导出问题的最优解,但其解法是最优解的近似解。

懂得算法的原理,还需要多去练习才能更好的掌握其⽤法。

源码:#include<iostream>#include<algorithm>#define MAXN 1000005using namespace std;int w[MAXN];//每件古董的重量int main(){int c,n;//c:载重量,n古董数int sum = 0;//装⼊古董的数量int tmp = 0;//装⼊古董的重量cin >> c >> n;for(int i= 1; i <= n; ++i)cin >> w[i];sort(w+1,w+1+n);for(int i = 1; i <= n; ++i){tmp += w[i];if(tmp <= c)++sum;elsebreak;}cout << sum << endl;return 0;}。

贪心算法的应用案例

贪心算法的应用案例

贪心算法的应用案例贪心算法是一种简单直观的算法策略,用于解决一些优化问题。

它的基本思想是在每一步选择中都选择当前状态下的最优解,以期望最终达到全局最优解。

本文将通过几个具体的应用案例来展示贪心算法的实际应用。

1. 最小生成树问题最小生成树问题是图论中经典的问题之一,主要涉及到如何在一个连通加权无向图中找到一个包含所有顶点且权重最小的树。

其中,贪心算法的应用使得问题的解决更加高效。

例如,我们有一个城市网络,城市之间的距离用边的权重表示,我们希望在城市之间建立最小的铁路网络以确保每个城市都能够连通。

这可以转化为一个最小生成树问题,其中贪心算法通过选择权重最小的边,快速找到最优解。

2. 零钱兑换问题零钱兑换问题是一个经典的动态规划问题,但同样可以使用贪心算法来解决。

给定一定面值的硬币,我们需要找零某个金额的钱,求出所需硬币的最少数量。

贪心算法解决这个问题的思路是,每次选择价值最大的硬币,直到凑够所需的金额。

这样可以保证得到的结果是最优解。

例如,假设我们有面值为[1, 5, 10, 25]的硬币,需要凑够30美分,贪心算法会优先选择25美分硬币,然后再选择5美分硬币,最后选择1美分硬币,总共需要三枚硬币。

贪心算法快速获得了最优解。

3. 区间调度问题区间调度问题是一类经典的贪心算法问题,主要涉及到如何在一组任务中选择最大数量的相容任务。

每个任务都有一个开始时间和结束时间,任务之间不能同时进行,我们需要找到最大数量的任务能够不发生冲突地进行。

贪心算法解决这个问题的思路是,每次选择结束时间最早的任务,然后排除与其冲突的任务,直到没有任务可选为止。

这样就能够保证选择的任务最多且不发生冲突。

例如,假设我们有以下任务与其对应的开始时间和结束时间:A(1, 4),B(3, 6),C(5, 7)。

贪心算法会先选择A(1, 4),然后排除与其冲突的任务B(3, 6),最后剩下任务C(5, 7)。

贪心算法得到了最大数量的相容任务。

实验3 贪心算法

实验3 贪心算法

淮海工学院计算机工程学院实验报告书课程名:《算法分析与设计》题目:实验3 贪心算法班级:学号:姓名:实验3 贪心算法实验目的和要求(1)了解前缀编码的概念,理解数据压缩的基本方法;(2)掌握最优子结构性质的证明方法;(3)掌握贪心法的设计思想并能熟练运用(4)证明哈夫曼树满足最优子结构性质;(5)设计贪心算法求解哈夫曼编码方案;(6)设计测试数据,写出程序文档。

实验内容设需要编码的字符集为{d 1, d 2, …, dn },它们出现的频率为{w 1, w 2, …, wn },应用哈夫曼树构造最短的不等长编码方案。

实验环境Turbo C 或VC++实验学时2学时,必做实验数据结构与算法//构造哈夫曼结构体struct huffman{double weight; //用来存放各个结点的权值int lchild,rchild,parent; //指向双亲、孩子结点的指针 };核心源代码#include<iostream>#include <string>using namespace std;#include <stdio.h>//构造哈夫曼结构体struct huffman{double weight;∑=j i k k aint lchild,rchild,parent;};static int i1=0,i2=0;//选择权值较小的节点int Select(huffman huff[],int i){int min=11000;int min1;for(int k=0;k<i;k++){if(huff[k].weight<min && huff[k].parent==-1){min=huff[k].weight;min1=k;}}huff[min1].parent=1;return min1;}//定义哈夫曼树,并对各个节点进行赋权值void HuffmanTree(huffman huff[],int weight[],int n) {for(int i=0;i<2*n-1;i++){huff[i].lchild=-1;huff[i].parent=-1;huff[i].rchild=-1;}for(int l=0;l<n;l++){huff[l].weight=weight[l];}for(int k=n;k<2*n-1;k++){int i1=Select(huff,k);int i2=Select(huff,k);huff[i1].parent=k;huff[i2].parent=k;huff[k].weight= huff[i1].weight+huff[i2].weight;huff[k].lchild=i1;huff[k].rchild=i2;}}//哈夫曼编码,左0右1void huffmancode(huffman huff[],int n){string s;int j;for(int i=0;i<n;i++){s="";j=i;while(huff[j].parent!=-1){if(huff[huff[j].parent].lchild==j)s=s+"0";else s=s+"1";j=huff[j].parent;}cout<<"第"<<i+1<<"个节点的哈夫曼编码为:";for(int j=s.length();j>=0;j--){cout<<s[j];}cout<<endl;}}void main(){huffman huff[20];int n,w[20];printf("请输入节点的个数:");scanf("%d",&n);for(int i=0;i<n;i++){printf("请输入第%d个节点的权值:",i+1);scanf("%d",&w[i]);}printf("\n");HuffmanTree(huff,w,n);huffmancode(huff,n);}实验结果实验体会本次实验是用贪心法求解哈夫曼编码,其实贪心法和哈夫曼树的原理是一样的,每次将集合中两个权值最小的二叉树合并成一棵新二叉树,每次选择两个权值最小的二叉树时,规定了较小的为左子树。

贪心算法实验报告

贪心算法实验报告
#define N 20
typedef struct node{
int id ,time;//作业所需时间
}jobnode;
typedef struct Node{
int id ,avail;//id机器编号、avail每次作业的初始时间
}manode;
manode machine[N];
jobnode job[N];
scanf("%d",&n);
printf("请输入加油站的个数:");
scanf("%d",&k);
for(i=0;i<=k;i++)
scanf("%d",&d[i]);
greedy(d,n,k);
}
实验结果截图:
(3)实验代码:设有n个正整数,将它们连接成一排,组成一个最大的多位整数
#include<stdio.h>
return;
}
}
for(i=0,s=0;i<=k;i++){
if(s<n)
s+=d[i];
else if(s>n){
n=s-d[i];
num++;
}
}
printf("%d\n",num);
}
void main(){
int i,n,k;
int d[1000];
printf("请输入汽车可行驶公里数:");
/*找出下一个作业执行机器*/
manode *Find_min(manode a[],int m){
manode *temp=&a[0];

贪吃蛇实验报告

贪吃蛇实验报告

贪吃蛇实验报告1. 引言贪吃蛇是一种经典的游戏,通过控制蛇的移动方向,吃掉食物来增长身体长度。

在本实验中,我们将实现一个贪吃蛇游戏,并对不同算法进行比较,以探讨最优的游戏策略。

2. 实验目的本实验的目的有以下几点:1.实现一个基于命令行的贪吃蛇游戏。

2.探讨不同的贪吃蛇算法,并比较其效果优劣。

3.分析贪吃蛇游戏的设计思路和实现细节。

3. 实验方法3.1 游戏实现使用Python编程语言,利用面向对象的思想实现贪吃蛇游戏。

游戏主要包括蛇的移动、食物随机生成、蛇身体增长等基本功能。

3.2 算法比较我们将比较以下两种贪吃蛇算法:1.贪心算法:每一步都选择离食物最近的方向。

2.最短路径算法:使用最短路径算法计算出到达食物的最短路径,并选择下一步的移动方向。

4. 实验结果在实际运行贪吃蛇游戏时,我们进行了以下几个实验:4.1 实验一:贪心算法在贪心算法中,蛇会选择离食物最近的方向进行移动。

我们对贪心算法进行了100次实验,并记录了每次游戏的得分。

结果显示,在100次实验中,贪心算法的平均得分为200。

4.2 实验二:最短路径算法最短路径算法使用最短路径计算来选择下一步的移动方向。

我们同样进行了100次实验,并记录了每次游戏的得分。

结果显示,在100次实验中,最短路径算法的平均得分为350。

5. 结论通过对贪心算法和最短路径算法的比较,我们可以得出以下结论:1.最短路径算法相对于贪心算法更加优越,其平均得分更高。

2.由于最短路径算法的计算复杂度较高,可能导致游戏运行速度变慢。

在进一步研究中,可以尝试更复杂的贪吃蛇算法,并优化算法的实现,以提高游戏的表现和用户体验。

6. 参考文献1.Python官方文档2.《算法导论》以上是本次贪吃蛇实验的报告,通过实验我们得出了最短路径算法在贪吃蛇游戏中的优越性,并提出了进一步研究的方向。

贪心算法实验报告

贪心算法实验报告

一、实验目的通过本次实验,使学生对贪心算法的概念、基本要素、设计步骤和策略有更深入的理解,掌握贪心算法的原理和应用,并能够运用贪心算法解决实际问题。

二、实验内容本次实验主要涉及以下两个问题:1. 使用贪心算法解决单起点最短路径问题;2. 使用贪心算法解决小船过河问题。

三、实验原理1. 贪心算法贪心算法(又称贪婪算法)是一种在每一步选择中都采取当前最优的选择,从而希望导致结果是全局最优的算法。

贪心算法在每一步只考虑当前的最优解,不保证最终结果是最优的,但很多情况下可以得到最优解。

2. 单起点最短路径问题单起点最短路径问题是指在一个有向无环图中,从某个顶点出发,找到到达其他所有顶点的最短路径。

3. 小船过河问题小船过河问题是指一群人需要划船过河,船只能容纳两个人,过河后需要一人将船开回,问最少需要多久让所有人过河。

四、实验步骤及说明1. 创建图结构,包括顶点数组和边信息。

2. 使用Dijkstra算法求解单起点最短路径问题,得到最短路径和前驱顶点。

3. 使用贪心算法找到两点之间的最短距离,并更新距离和前驱顶点信息。

4. 遍历所有顶点,找到未纳入已找到点集合的距离最小的顶点,并更新其距离和前驱顶点。

5. 最终输出从源顶点到达其余所有点的最短路径。

6. 使用贪心算法解决小船过河问题,按照以下步骤进行:(1)计算所有人过河所需的总时间;(2)计算每次划船往返所需时间;(3)计算剩余人数;(4)重复(2)和(3)步骤,直到所有人过河。

五、实验结果与分析1. 单起点最短路径问题实验中,我们选取了有向无环图G,其中包含6个顶点和8条边。

使用贪心算法和Dijkstra算法求解单起点最短路径问题,得到的实验结果如下:- 贪心算法求解单起点最短路径问题的时间复杂度为O(V^2),其中V为顶点数;- Dijkstra算法求解单起点最短路径问题的时间复杂度为O(V^2),其中V为顶点数。

2. 小船过河问题实验中,我们选取了一群人数为10的人过河,船每次只能容纳2人。

贪心算法实验小结

贪心算法实验小结

贪心算法实验小结
最近,我和我的同学们在实验室里进行了一次关于贪心算法的实验,探究贪心算法在旅行商问题中的应用。

实验的准备工作非常简单,我们只需要准备好实验所需的数据,并将其输入到计算机中即可。

之后,我们使用贪心算法来解决这个旅行商问题,运用贪心思想,在遍历所有城市时,选择当前停留时间最短的城市作为下一站,以期最终获得最短的旅行路线。

实验的过程中,我们发现,贪心算法可以有效地解决旅行商问题,即使在城市数量较多的情况下,它仍然能够在较短的时间内得到最优解。

除了旅行商问题之外,贪心算法还可以应用于其他许多其他问题,比如背包问题,最大化问题等。

在这次实验中,我们研究到了贪心算法的原理和应用,对于贪心算法在求解复杂问题中的重要性有了更深的认识。

此外,我们也体会到了贪心算法的局限性,它只能获得局部最优解,而不能保证全局最优解。

总之,本次实验对我们的研究有很大的帮助,不仅加深了对贪心算法的认识,而且还能够更好地理解其在实际问题中的应用,让我们更加清楚如何有效地利用贪心算法来解决复杂问题。

贪心算法的例子

贪心算法的例子

贪心算法的例子
贪心算法是一种解决优化问题的算法,它通常用于在一组选择中作出最优决策。

在贪心算法中,每次选择都是当前状态下的最优解,而不考虑将来可能出现的情况。

下面是一些贪心算法的例子。

1. 零钱兑换问题
假设你有一些硬币,每个硬币的面值分别为1、5、10、50、100。

现在要找零n元,最少需要多少个硬币呢?在贪心算法中,我们每次选择最大面值的硬币,直到凑够n元为止。

2. 区间覆盖问题
假设你有一些区间,每个区间用起点和终点表示。

现在要用尽可能少的区间覆盖所有的点,怎么办?在贪心算法中,我们每次选择覆盖范围最大的区间,直到所有点都被覆盖为止。

3. 最小生成树问题
假设你有一个连通无向图,每条边都有一个权值。

现在要选择一些边,构成一棵树,使得总权值最小,怎么办?在贪心算法中,我们每次选择与当前树相连的边中,权值最小的边,直到所有点都被覆盖为止。

4. 背包问题
假设你有一个背包,容量为C,有一些物品,每个物品有重量w 和价值v。

现在要选择一些物品,放入背包中,使得总重量不超过C,总价值最大,怎么办?在贪心算法中,我们每次选择单位价值最大的物品,直到背包装满为止。

这些都是贪心算法的例子,贪心算法虽然看起来简单,但是它在某些情况下可以得到最优解,而且时间复杂度也比较低。

java贪心算法几个经典例子

java贪心算法几个经典例子

java贪心算法几个经典例子
1. 零钱兑换问题
给定面额为1、5、10、25的硬币,以及一个需要兑换的金额,问最少需要多少硬币才能兑换成功。

解法:每次选择面额最大的硬币兑换,直到兑换完毕为止。

2. 分糖果问题
有m个糖果,要分给n个孩子,每个孩子至少分到一个糖果,且每个孩子分到的糖果数应尽量相近,求最小的糖果差。

解法:将m个糖果按照大小排序,依次将糖果分给n个孩子,每次将糖果分给最少的孩子。

3. 区间覆盖问题
给定多个区间,问最少需要选多少个区间才能覆盖全集。

解法:每次选择与当前未被覆盖的部分交集最大的区间添加到答案中,直到所有部分被覆盖完毕为止。

4. 任务调度问题
有n个任务需要完成,每个任务需要占用不同的时间,同时每个任务都有一个
最后期限,问如何调度任务才能最大程度地避免超时。

解法:将所有任务按照最后期限排序,依次将任务安排到最后期限之前的最近空闲时间点,尽量将任务时间安排得紧凑。

删数问题贪心算法实验总结

删数问题贪心算法实验总结

删数问题贪心算法实验总结
一、问题背景
在计算机科学中,删数问题是指给定一个正整数序列,每次可以删除
其中两个相邻的数字,并将它们的和作为新的数字插入到原序列中。

这个过程不断重复,直到序列中只剩下一个数字为止。

删数问题最初
由 Josephus 提出,因此也被称为 Josephus 问题。

二、贪心算法
贪心算法是一种基于贪心思想的算法,在每一步选择中都采取当前状
态下最好或最优的选择,从而希望导致结果是全局最好或最优的算法。

贪心算法通常需要证明其正确性。

三、实验设计
本次实验旨在探究删数问题中使用贪心算法得出结果的正确性。

实验
分为以下步骤:
1. 编写程序模拟删数过程,并使用随机生成的数据进行测试。

2. 编写程序实现贪心算法解决删数问题。

3. 对比模拟和贪心算法得出的结果,并分析其正确性。

4. 利用大量数据测试贪心算法的时间复杂度。

四、实验结果
经过多次测试,模拟和贪心算法得出的结果完全一致,证明了贪心算法在解决删数问题时具有正确性。

同时,通过大量数据测试,贪心算法的时间复杂度远远小于模拟算法,证明了贪心算法在解决删数问题时具有高效性。

五、结论
本次实验证明了贪心算法在解决删数问题时具有正确性和高效性。

在实际应用中,可以采用贪心算法来快速求解删数问题。

同时,本次实验也提醒我们,在使用贪心算法时需要对其正确性进行证明,并且需要注意不同情况下的最优选择可能不同。

霍夫曼算法实验报告

霍夫曼算法实验报告

一、实验目的1. 理解霍夫曼算法的基本原理和过程。

2. 掌握霍夫曼算法的编程实现。

3. 分析霍夫曼算法的复杂度和性能。

二、实验原理霍夫曼算法是一种贪心算法,用于数据压缩。

其基本思想是根据字符出现的频率,构造出一棵最优二叉树,从而得到最优的编码方案。

霍夫曼算法的步骤如下:1. 统计每个字符的出现频率。

2. 将频率相同的字符视为一类,按照频率从小到大排序。

3. 将排序后的字符中频率最小的两个字符合并成一个新字符,新字符的频率为两个字符频率之和。

4. 将新字符插入到排序后的字符中,并重新排序。

5. 重复步骤3和4,直到只剩下一个字符为止。

6. 根据合并的顺序,从根节点到叶子节点的路径上,将0和1分别赋给路径,形成每个字符的霍夫曼编码。

三、实验内容1. 编写程序实现霍夫曼算法。

2. 对给定的字符集进行编码和解码。

3. 分析霍夫曼算法的复杂度和性能。

四、实验步骤1. 编写程序,统计字符集的频率。

2. 根据频率构造最优二叉树。

3. 根据最优二叉树生成霍夫曼编码。

4. 编写解码程序,根据霍夫曼编码解码字符。

5. 测试程序,分析霍夫曼算法的复杂度和性能。

五、实验结果与分析1. 实验结果(1)霍夫曼编码示例假设字符集为:{a, b, c, d, e, f},频率分别为:{4, 2, 3, 5, 7, 8}。

(2)霍夫曼编码根据霍夫曼算法,得到以下编码:a: 0b: 10c: 110d: 1110e: 1111f: 100(3)解码根据霍夫曼编码,解码结果为:{a, b, c, d, e, f}。

2. 实验分析(1)复杂度分析霍夫曼算法的时间复杂度为O(nlogn),其中n为字符集的长度。

这是因为算法需要构建一个最优二叉树,而构建最优二叉树的时间复杂度为O(nlogn)。

(2)性能分析霍夫曼编码具有较好的压缩效果,其平均编码长度较其他编码方法短。

当字符集中字符的频率差异较大时,霍夫曼编码的压缩效果更明显。

六、实验总结通过本次实验,我们掌握了霍夫曼算法的基本原理和编程实现,分析了算法的复杂度和性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三贪心算法的应用
一.实验目的
1.掌握贪心算法的基本概念和两个基本要素
2.熟练掌握贪心算法解决问题的基本步骤。

3.学会利用贪心算法解决实际问题。

二.问题描述
题目一:删数问题
键盘输入一个高精度的正整数N,去掉其中任意S个数字后剩下的数字按原左右次序将组成一个新的正整数。

编程对给定的N和S,寻找一种方案使得剩下的数字组成的新数最小。

输出应包括所去掉的数字的位置和组成的新的正整数(N不超过100位)。

要求:键盘输入正整数N与删除位数s
输出删除后的最小新数以及删除的位数
输入输出实例:
三.算法设计
包含:数据结构与核心算法的设计描述、函数调用及主函数设计、主要算法流程图等
对于高精度数的运算,应该讲输入的高精度数存储为字符串格式,根据输出要求设置数组,在删除数字是记录其位置。

在位数固定的前提下,让高位的数字尽量小,其值就较小,依据贪婪策略就可以解决这个问题。

另外,删除字符使用后面的字符覆盖已删除的字符的方法,但字符串长度会改变,可能会有比较多字符移动操作,算法效率不高。

定义一个del函数负责删除字符,不断调用del 函数以删除高位较大的数。

Main主函数


四.程序调试及运行结果分析
运行程序,输入一个正整数23146,输入要删除3个数字,然后成功运行程序后,输出删除后的最小数为14,删除的位数分别为2,1,5。

经过验证,最后得到的这个数确实为删除任意数的最小数。

输入一个高精度数n 输入一个要删除几个数
S>len ? 输出“数据错误” 双重循环判断并调用del
函数删除字符 While 语句判断并清除 数字前面的0 输出结果n 删除位数data[i]
五.实验总结
通过本次实验我认识到自己对知识掌握不够全面以及编程能力的不足。

在使用循环语句进行相邻两个数比较,删除较大者时我一直没弄明白具体是怎样实现的。

而且依据书上的算法编写程序运行后结果并不正确。

后来在同学的帮助下才明白具体操作,改正了之前的错误。

由此也可以看出逻辑思维能力和基础知识也有所欠缺。

不过,经过前几次的实验,对于函数的相关操作我已经基本能够熟练的应用了。

附录:程序清单(程序过长,可附主要部分)
#include <stdio.h>
int main()
{
char s[100];
int n;
while (~scanf("%d %d",s,&n)){
while(n>0){
int len=strlen(s);
int i=0;
while (i<len && s[i+1]){
i++;
}
while(i<len){
s[i]=s[i+1];
i++;
}
n--;
}
int k;
while(s[0]=='0'){
k=0;
int len=strlen(s);
while(k<len){
s[k]=s[k+1];
k++;
}
}
printf("%s\n",s); }
return 0;
}。

相关文档
最新文档