山东省临沂市2019年中考数学复习第二章方程(组)与不等式(组)第二节一元二次方程及其应用要题随堂演练

合集下载

山东省临沂市2019年中考数学复习 第二章 方程(组)与不等式(组)第一节 方程(组)与不等式(组)

山东省临沂市2019年中考数学复习 第二章 方程(组)与不等式(组)第一节 方程(组)与不等式(组)

方程(组)与不等式(组)要题随堂演练1.(2018·济南中考)关于x 的方程3x -2m =1的解为正数,则m 的取值范围是( )A .m<-12B .m>-12C .m>12D .m<122.(2017·眉山中考)已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2ax +by =3,ax -by =1的解为⎩⎪⎨⎪⎧x =1,y =-1,则a -2b 的值是( )A .-2B .2C .3D .-33.(2018·恩施州中考)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利20元C .亏损10元D .亏损30元4.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A.⎩⎪⎨⎪⎧x +y =1003x +3y =100B.⎩⎪⎨⎪⎧x +y =100x +3y =100 C.⎩⎪⎨⎪⎧x +y =1003x +13y =100D.⎩⎪⎨⎪⎧x +y =1003x +y =100 5.(2018·临沂中考)任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.7·为例进行说明:设0.7·=x ,由0.7·=0.777 7…可知,10x =7.777 7…,∴10x-x =7,解方程得x =79.于是,得0.7·=79.将0.36··写成分数的形式是________. 6.《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上一只鸽子对地上觅食的鸽子说:“若从你们中飞来一只,则树下的鸽子就是整个鸽群的13;若从树上飞下去一只,则树上,树下的鸽子数一样多.”你知道树上树下共有________只.7.(2018·青岛中考)五月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水总量为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y 吨,根据题意列关于x ,y 的方程组为__________________.8.(2018·宿迁中考)解方程组:⎩⎪⎨⎪⎧x +2y =0,3x +4y =6.9.某专卖店有A ,B 两种商品.已知在打折前,买20件A 商品和10件B 商品用了400元;买30件A 商品和20件B 商品用了640元.A ,B 两种商品打相同折以后,某人买100件A 商品和200件B 商品一共比不打折少花640元,计算打了多少折?参考答案1.B 2.B 3.C 4.C5.4116.127.⎩⎪⎨⎪⎧x +y =200(1-15%)x +(1-10%)y =174 8.解:⎩⎪⎨⎪⎧x +2y =0,①3x +4y =6,② ①×2-②得-x =-6,解得x =6,∴6+2y =0,解得y =-3,∴方程组的解为⎩⎪⎨⎪⎧x =6,y =-3. 9.解:设打折前A 商品的单价为x 元/件,B 商品的单价为y 元/件.根据题意得⎩⎪⎨⎪⎧20x +10y =400,30x +20y =640, 解得⎩⎪⎨⎪⎧x =16,y =8. 打折前,购买100件A 商品和200件B 商品一共要用100×16+200×8=3 200(元),打折后,购买100件A 商品和200件B 商品一共要用3 200-640=2 560(元),∴2 5603 200=810. 答:打了八折.。

人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第二节 一元二次方程及其应用

人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第二节 一元二次方程及其应用
380
解:设参加交流会的茶叶制作商有 m 人.依题意得 m(m-1)=380,解得 m1=20,m2=-19(舍去). 答:参加交流会的茶叶制作商有 20 人.
4.(2022·荆州第 7 题 3 分)关于 x 的方程 x2-3kx-2=0 实数根的情况,
下列判断中正确的是
(B)
A.有两个相等实数根
B.有两个不等实数根
C.没有实数根
D.有一个实数根
5.(2020·荆州第 9 题 3 分)定义新运算“a*b”:对于任意实数 a,b,都
有 a*b=(a+b)(a-b)-1,其中等式右边是通常的加法、减法、乘法运
解:设小路宽为 x m, 由题意,得(16-2x)(9-x)=112. 整理,得 x2-17x+16=0. 解得 x1=1,x2=16>9(不合题意,舍去).∴x=1. 答:小路的宽应为 1m.
17.(数学文化)《田亩比类乘除捷法》是我国古代数学家杨辉的著作, 其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长 多阔几何?”意思是:一块矩形田地的面积为 864 平方步,只知道它的 长与宽共 60 步,问它的长比宽多多少步?根据题意,长比宽多__112__步.
100.8
解:设后两次采购价格的平均增长率为 x,依题意得 480(1+x)2=480+100.8,解得 x1=0.1,x2=-2.1(舍). 答:后两次采购价格的平均增长率为 10%.
解:设售价为 y 元/袋时,每周的销售额为 32 400 元.依题意可列方程
y-260
为 y100-
10
=32 400,解得 y1=360,y2=900.
第二节 一元二次方程及 其应用
【考情分析】湖北近 3 年主要考查:1.选择合适的方法解一元二次方程, 常在压轴题中涉及考查;2.用一元二次方程根的判别式判断方程根的情 况或者根据根的情况求字母系数的取值范围,根与系数的关系的应用; 3.一元二次方程的应用主要以选择题的形式考查列方程,常在解答题中 与不等式、函数的实际应用结合考查,难度较大,分值一般 3-10 分.

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第二节 一元二次方程及其应用

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第二节 一元二次方程及其应用
第二节 一元二次方程及 其应用
1.(2021·丽水)用配方法解方程 x2+4x+1=0 时,配方结果中正确的是
( D)
A.(x-2)2=5
B.(x-2)2=3
C.(x+2)2=5
D.(x+2)2=3
2.(2021·黔东南州)若关于 x 的一元二次方程 x2-ax+6=0 的一个根是
2,则 a 的值为
( D)
A.1
B. 2
C. 3
D.2
8.(2021·广州)方程 x2-4x=0 的实数解是 x1=0,x2=4 . 9.(2021·济宁)设 m,n 是方程 x2+x-2 021=0 的两个实数根,则 m2 +2m+n 的值为 22020020. 10.(2021·岳阳)已知关于 x 的一元二次方程 x2+6x+k=0 有两个相等 的实数根,则实数 k 的值为 9 .
6.(2021·龙东)有一个人患了流行性感冒,经过两轮传染后共有 144 人
患了流行性感冒,则每轮传染中平均一个人传染的人数是
( B)
A.14
B.11
C.10
D.9
7.(2021·绵阳)关于 x 的方程 ax2+bx+c=0 有两个不相等的实根 x1,
x2,若 x2=2x1,则 4b-9ac 的最大值是
12.(1)(2021·齐齐哈尔)解方程: x(x-7)=8(7-x);
解:∵x(x-7)=8(7-x), ∴x(x-7)+8(x-7)=0, ∴(x-7)(x+8)=0, 解得 x1=7,x2=-8.
(2)(2020·南京)解方程:x2-2x-3=0.
解:原方程可以变形为(x-3)(x+1)=0, ∴x-3=0 或 x+1=0, 解得 x1=3,x2=-1.
分率.设平均每次降价的百分率为 x,可列方程为

九年级数学中考复习专题——方程与不等式(附答案)

九年级数学中考复习专题——方程与不等式(附答案)

知识点一 一元一次方程及其解法1.一元一次方程:只含有一个未知数,并且未知数的次数为1,这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠.注意:x 前面的系数不为0.2.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 3.一元一次方程0(0)ax b a +=≠的求解步骤知识点二 二元一次方程(组)及解法1.二元一次方程:含有2个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程. 2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量,其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数,化二元一次方程组为一元一次方程.知识点三分式方程及其解法1.分式方程:分母中含有的方程叫做分式方程;2.分式方程的解法:(1)解分式方程的基本思路是把分式方程转化为整式方程。

(2)解分式方程的一般步骤:第一步:,将分式方程转化为整式方程;第二步:解整式方程;第三步:.(3)增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为的根,称为方程的增根。

因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为的根是增根应舍去。

(4)产生增根的原因:将分式方程化为整式方程时,在方程两边同乘以使最简公分母为的因式。

知识点四一元二次方程及其解法1.一元二次方程:只含有个未知数(一元),并且未知数最高次数是2(二次)的方程,叫做一元二次方程。

(山东专版)2019版中考数学总复习-第二章-方程(组)与不等式(组)2.4-不等式组(试卷部分)课

(山东专版)2019版中考数学总复习-第二章-方程(组)与不等式(组)2.4-不等式组(试卷部分)课

配清理人员方案?
解析 (1)设清理养鱼网箱和捕鱼网箱的人均支出费用分别为x元、y元.根据题意,得
15x 9 y 57 000, 10x 16 y 68 000,
解得
x
y
2 3
000, 000.
答:清理养鱼网箱和捕鱼网箱的人均支出费用分别为2 000元,3 000元.
(2)设分配a人清理养鱼网箱,则分配(40-a)人清理捕鱼网箱.
当x>100时,y2=
50
x
100 5
x-1
100=-
1 5
x2+70x-1
100=-
1 5
(x-175)2+5
025.
当x=175时,y2的值最大,最大值为5 025,
因为5 025>3 900,
(9分)
所以当每辆车的日租金为175元时,每天的净收入最多. (10分)
思路分析 (1)由于观光车能全部租出,故0<x≤100,再根据每天的净收入为正数,根据“净收
思路分析 利用不等式组的解集确定m+1与1的大小关系,利用m+1与1的大小关系构造不等 式,从而确定m的取值范围.
x 1 0,
5.(2018菏泽,9,3分)不等式组
1
1 2
x
0
的最小整数解是
.
答案 0
x 1 0,
解析
解不等式组
1
1 2
x
0
,得-1<x≤2,所以不等式组的最小整数解是0.
6.(2018济南,20,6分)解不等式组
(2)经统计,全部乡镇中学需要购进的教师用笔记本电脑台数比购进的学生用电脑台数的 1少9
5
0台,在两种电脑的总费用不超过预算438万元的情况下,至多能购进的学生用电脑和教师用笔 记本电脑各多少台?`

[精品课件](山东专版)2019版中考数学总复习 第二章 方程(组)与不等式(组)2.1 整式方程(试卷部分)

[精品课件](山东专版)2019版中考数学总复习 第二章 方程(组)与不等式(组)2.1 整式方程(试卷部分)

.
答案 15
解析 最后输出的结果是127,由3x-2=127,解得x=43,即输入的数是43;若前一次的结果是43,由
3x-2=43,解得x=15,即输入的数是15;而当3x-2=15时,解得x= 17 ,不是正整数,故输入的最小正整
3
数是15时,可按程序计算输出的结果为127.
考点二 一元二次方程及解法
答案 D 由一元二次方程根与系数的关系,得x1+x2=2m,x1x2=m2-m-1. 因为x1+x2=1-x1x2,所以2m=1-(m2-m-1), 解得m1=1,m2=-2. 又由题意得Δ=(-2m)2-4×1×(m2-m-1)≥0,
解得m≥-1.
综上,m的值为1.
6.(2016威海,5,3分)已知x1,x2是关于x的方程x2+ax-2b=0的两实数根,且x1+x2=-2,x1·x2=1,则ba的值 是 ( )
第二章
中考数学 (山东专用)
方程(组)与不等式(组)
§2.1 整式方程
五年中考
A组 2014—2018年山东中考题组
考点一 一元一次方程
1.(2018济南,7,4分)关于x的方程3x-2m=1的解为正数,则m的取值范围是 ( )
A.m<- 1 B.m>- 1 C.m> 1 D.m<1
2
2
2
2
答案 B 解方程3x-2m=1,得x= 1 2m .∵方程的解为正数,∴ 1 2m >0,解得m>- 1 .
答案 D x名工人可生产螺栓22x个,(27-x)名工人可生产螺母16(27-x)个,由于螺栓数目的2倍 与螺母数目相等,因此2×22x=16(27-x).
3.(2018菏泽,14,3分)一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第二节 一元二次方程及其应用

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第二节 一元二次方程及其应用

3.(2022·龙东)2022 年北京冬奥会女子冰壶比赛有若干支队伍参加了单 循环比赛,单循环比赛共进行了 45 场,则共有多少支队伍参加比赛( B ) A.8 支 B.10 支 C.7 支 D.9 支
4.(2022·河南)一元二次方程 x2+x-1=0 的根的情况是 A.有两个不等的实数根 B.没有实数根 C.有两个相等的实数根 D.只有一个实数根
D.8(1+x2)=11.52
8.(2021·龙东)有一个人患了流行性感冒,经过两轮传染后共有 144 人 患了流行性感冒,则每轮传染中平均一个人传染的人数是 ( B ) A.14 人 B.11 人
C.10 人 D.9 人
9.方程 x2-6x+5=0 的解为 11或或55. 10. (2022·连云港)若关于 x 的一元二次方程 mx2+nx-1=0(m≠0)的一 个解是 x=1,则 m+n 的值是 11 . 11. (2022·宿迁) 若关于 x 的一元二次方程 x2-2x+k=0 有实数根,则 实数 k 的取值范围是 kk≤≤11.
第二节 一元二次方程及 其应用
1.(2022·临沂)方程 x2-2x-24=0 的根是 A.x1=6,x2=4 B.x1=6,x2=-4 C.x1=-6,x2=4 D.x1=-6,x2=-4
(B )
2.(2022·武威)用配方法解方程 x2-2x=2 时,配方后正确的是( C ) A.(x+1)2=3 B.(x+1)2=6 C.(x-1)2=3 D.(x-1)2=6
18.(2022·嘉兴)设 a5是一个两位数,其中 a 是十位上的数字(1≤a≤
9).例如,当 a=4 时, a5 表示的两位数是 45.
(1)尝试: ①当 a=1 时,152=225=1×2×100+25; ②当 a=2 时,252=625=2×3×100+25; ③当 a=3 时,352=1 225=33××4×41×0010+025;

人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理

人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理

第二单元《方程(组)与不等式(组)》中考知识点梳理第5讲一次方程(组)第6讲一元二次方程第7讲分式方程三、知识清单梳理第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.。

2019年山东临沂中考数学试题(解析版)

2019年山东临沂中考数学试题(解析版)

{来源}2019年山东临沂中考数学试卷 {适用范围:3. 九年级}{标题}山东省临沂市二〇一九年初中学业水平考试考试时间:120分钟 满分:120分{题型:1-选择题}一、选择题:本大题共 14小题,每小题3分,共42分. {题目}1.(2019年山东临沂T1)|-2019|=( )A .2019B .-2019C .12019D .-12019{答案}A{解析}本题考查了绝对值的概念,一个负数的绝对值是它的相反数,因此|-2019|=2019. {分值}3{章节:[1-1-2-4]绝对值} {考点:绝对值的意义} {类别:常考题} {类别:易错题} {难度:1-最简单}{题目}2.(2019年山东临沂T2)如图,a ∥b ,若∠1=110°,则∠2的度数是( )A .110°B .80°C .70°D .60°{答案}C{解析}本题考查了平行线的性质与对顶角的性质.两直线平行,同旁内角互补,又因为对顶角相等,所以∠2=∠3=180°-∠1=180°-110°=70°.{分值}3{章节:[1-5-3]平行线的性质}{考点:两直线平行同旁内角互补} {考点:两直线平行同位角相等} {考点:对顶角、邻补角} {类别:常考题} {难度:1-最简单}{题目}3.(2019年山东临沂T3)不等式1-2x ≥0的解集是( )A .x ≥2B .x ≥12C .x ≤2D .x ≤12{答案}D{解析}本题考查了一元一次不等式的解法.移项,得-2x ≥-1,两边都除以-2,得x ≤12,注意,不等式的两边都乘或除以一个负数时,不等号的方向要改变. {分值}3{章节:[1-9-2]一元一次不等式}abc 1 2 1 abc23{考点:解一元一次不等式}{类别:常考题}{类别:易错题}{难度:1-最简单}{题目}4.(2019年山东临沂T4)如图所示,正三棱柱的左视图是()A BC D{答案}A{解析}本题考查了识别几何体的三视图.左视图是从左面看几何体得到的平面图形,该正三棱柱的左面是一个正三角形,故它的左视图是正三角形.{分值}3{章节:[1-29-2]三视图}{考点:几何体的三视图}{类别:常考题}{难度:1-最简单}{题目}5.(2019年山东临沂T5)将a3b-ab进行因式分解,正确的是()A.a(a2b-b) B.ab(a-1)2C.ab(a+1)(a-1) D.ab(a2-1){答案}C{解析}本题考查了因式分解.把一个多项式分解因式时一般先提公因式,然后再考虑套用公式,分解因式一定要彻底.a3b-ab=ab(a2-1)=ab(a+1)(a-1).{分值}3{章节:[1-14-3]因式分解}{考点:因式分解-提公因式法}{考点:因式分解-平方差}{类别:常考题}{类别:易错题}{难度:1-最简单}{题目}6.(2019年山东临沂T6)如图,D是AB上的一点,DF交AC于点E,DE=EF,FC∥AB.若AB=4,CF=3,则BD的长是()A.0.5 B.1 C.1.5 D.2AFD EB C{答案}B{解析}本题考查了平行线的性质与全等三角形的判定与性质.∵FC∥AB,∴∠A=∠ECF,∠ADE =∠F.又∵DE=EF,∴△ADE≌△CFE,∴AD=CF=3,∴BD=AB-AD=4-3=1.{分值}3{章节:[1-12-2]三角形全等的判定}{考点:两直线平行内错角相等}{考点:全等三角形的判定ASA,AAS}{类别:常考题}{难度:2-简单}{题目}7.(2019年山东临沂T7)下列计算错误的是()A.(a3b)·( ab2) =a4b3B.(-mn3)2=m2n6 C.a5÷a2-=a3 D.xy2-15xy2=45xy2{答案}C{解析}本题考查了幂的运算性质与整式的运算.a5÷a2-=a)2(5--=a7,所以C错误.{分值}3{章节:[1-14-1]整式的乘法}{考点:合并同类项}{考点:积的乘方}{考点:单项式乘以单项式}{考点:同底数幂的除法}{类别:常考题}{类别:易错题}{难度:2-简单}{题目}8.(2019年山东临沂T8)经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A.23B.29C.13D.19{答案}B{解析}本题考查了概率的求法.求随机事件发生的概率,常用的方法有直接列举法、列表法与画树右转,一辆向左转的概率是29.{分值}3{章节:[1-25-2]用列举法求概率} {考点:两步事件放回}{类别:常考题}{难度:3-中等难度}{题目}9.(2019年山东临沂T9)计算211aaa---的结果正确的是()A.11a--B.11a-C.211aa---D.211aa--{答案}B{解析}本题考查了分式的运算.211a a a ---=12-a a -(a +1)=12-a a -112--a a =11a -.{分值}4{章节:[1-15-2-2]分式的加减} {考点:两个分式的加减} {类别:常考题} {难度:3-中等难度}{题目}10.(2019年山东临沂T10)小明记录了临沂市五月份某周每天的最高气温(单位:℃),列成下表:天数(天)1 2 1 3 最高气温(℃) 2226 28 29 A .26.25℃ B .27℃ C .28℃ D .29℃ {答案}B{解析}本题考查了加权平均数计算公式.这周最高气温的平均值是=73292822622⨯++⨯+=7189=27(℃). {分值}4{章节:[1-20-1-1]平均数}{考点:加权平均数(权重为整数比)} {类别:常考题} {难度:2-简单}{题目}11.(2019年山东临沂T11)如图,⊙O 中,»»AB AC =,∠ABC =75°,BC =2,则阴影部分的面积是( )A .22+3π B .22+3+3π C .24+3π D .42+3π{答案}A{解析}本题考查了圆心角与圆周角的性质、扇形的面积、等边三角形的判定与性质.连接OA ,OB ,OC ,∵»»AB AC =,∴AB =AC ,∠ACB =∠ABC =75°,∴∠BAC =30°,∴∠BOC =60°,又∵OB=OC ,∴△OBC 是等边三角形,∴OA =OB =BC =2.延长AO 交BC 于点D ,由对称性可知AD⊥BC ,则BD =21BC =1.于是S阴影= S 扇形OBC + S △OAB +S △OAC =3602602⋅π+21×2×1+21×2×1=2+32π.{分值}4{章节:[1-24-4]弧长和扇形面积}{考点:等边三角形的性质}{考点:等边三角形的判定}{考点:扇形的面积}{类别:常考题}{难度:3-中等难度}{题目}12.(2019年山东临沂T12)下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b) D.当x>-bk时,y>0{答案}D{解析}本题考查了一次函数的图象与性质.直线y=kx+b(k<0,b>0)经过第一、二、四象限,与x轴的交点坐标是(-bk,0),因此,当x>-bk时,y<0,故选项D错误.{分值}4{章节:[1-19-2-2]一次函数}{考点:一次函数的图象}{考点:一次函数的性质}{类别:常考题}{难度:3-中等难度}{题目}13.(2019年山东临沂T13)如图,在□ABCD中,M,N是BD上两点,BM=DN,连接AM,MC,CN,NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.OM=12AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND{答案}A{解析}本题考查了平行四边形的判定与性质、等腰三角形性质、矩形的判定.在□ABCD中,OA=OC,OB=OD,又∵BM=DN,∴OM=ON,∴四边形AMCN是平行四边形.当OM=12AC时,则OA=OM=OC,∴∠OAM=∠OMA,∠OCM=∠OMC,∴∠AMC=180°÷2=90°,∴□AMCN 是矩形.{分值}4{章节:[1-18-2-1]矩形}{考点:平行四边形对角线的性质}{考点:对角线互相平分的四边形是平行四边形}{考点:等边对等角}{考点:矩形的性质}{考点:矩形的性质}{类别:常考题}{难度:4-较高难度}{题目}14.(2019年山东临沂T14)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的函数关系如图所示,下列结论:①小球在空中经过的路程是40m;②小球抛出3秒后,速度越来越快; ③小球抛出3秒时速度为0;④小球的高度h =30m 时,t =1.5s. 其中正确的是( )A .①④B .①②C .②③④D .②③{答案}D{解析}本题考查了.由图象可知小球竖直向上达到最大高度40m 后再下落回来,因此小球在空中经过的路程是80m ,故①错误;小球抛出3秒时,速度为0,然后回落地面,速度越来越快,故②与③均正确;当小球的高度h =30m 时,即y =30,此时函数图象对称轴两侧各有一点纵坐标为30,也就是说存在两个时间点使小球的高度为30m(小球上升与回落),故④错误,事实上设抛物线的解析式为y =a(x -3)2+40,把(6,0)代入,得0=9a+40,解得a =940-,∴y =940-(x -3)2+40,当y =30时,940-(x -3)2+40=30,解得x 1=1.5,x 2=3.5,即当t =1.5s 或t =3.5s 时,小球的高度h =30m . {分值}4{章节:[1-22-3]实际问题与二次函数} {考点:足球运动轨迹问题} {考点:代数选择压轴} {类别:高度原创} {难度:4-较高难度}{题型:2-填空题}二、填空题:本大题共5个小题,每小题3分,共15分. {题目}15.(2019年山东临沂T15)计算:21×6-tan45°= . {答案31{解析}本题考查了二次根式的乘法运算与特殊角的三角形函数值.两个二次根式相乘,把被开方数相乘,再化简.21×6-tan45°=621⨯-131. {分值}3{章节:[1-16-2]二次根式的乘除} {考点:二次根式的乘法法则} {考点:特殊角的三角函数值} {类别:常考题} {难度:1-最简单}{题目}16.(2019年山东临沂T16)在平面直角坐标系中,点P(4,2)关于直线x =1的对称点的坐标是 . {答案}(-2,2){解析}本题考查了平面直角坐标系中点的坐标的对称性.点P(4,2)与关于直线x =1的对称点的坐标,它们到直线的x =1的距离相等,且纵坐标不变,故点P(4,2)关于直线x =1的对称点的坐标是(-2,2).对于该类问题,通过画图得解更直观.{分值}3{章节:[1-7-2]平面直角坐标系} {考点:平面直角坐标系} {考点:点的坐标} {类别:常考题} {难度:2-简单}{题目}17.(2019年山东临沂T17)用1块A 型钢板可制成4件甲种产品和1件乙种产品;用1块B 型钢板可制成3件甲种产品和2件乙种产品.要生产甲种产品37件,乙种产品18件,则恰好需用A 、B 两种型号的钢板共 块. {答案}11{解析}本题考查了二元一次方程组的实际应用.设恰好需用A 、B 两种型号的钢板分别为x 块、y块,根据题意,得⎩⎨⎧=+=+.182,3734y x y x 两式相加,得5x+5y =55,∴x+y =11.即恰好需用A 、B 两种型号的钢板共11块.{分值}3{章节:[1-8-3]实际问题与一元一次方程组} {考点:二元一次方程组的应用} {类别:常考题} {类别:思想方法} {难度:3-中等难度}{题目}18.(2019年山东临沂T18)一般地,如果x 4=a (a ≥0),则称x 为a 的四次方根.一个正数a的四次方根有两个,它们互为相反数,记为=10,则m = . {答案}±10{解析}本题考查了方根的知识.根据题意,得)4=104,即m 4=104,∴m =±10. {分值}3{章节:[1-6-1]平方根}{考点:算术平方根的平方} {类别:常考题} {难度:3-中等难度}{题目}19.(2019年山东临沂T19)如图,在△ABC 中,∠ACB =120°,BC =4,D 为AB 的中点,DC ⊥BC ,则△ABC 的面积是 .{答案}83{解析}本题考查了平行线分线段成比例定理,解直角三角形的知识.过点A 作AE ⊥BC 交其延长线于点E ,又∵DC ⊥BC ,∴AE ∥DC ,∴EC :CB =AD :DB ,又∵AD =BD ,∴EC =CB =4.∵∠ACB =120°,∴∠ACE =60°,∴AE =EC ·tan60°=43,∴S △ABC =21BC ·AE =21×4×43=83.CA DB{分值}3{章节:[1-28-1-2]解直角三角形}{考点:平行线分线段成比例}{考点:正切}{考点:几何填空压轴}{类别:常考题}{难度:4-较高难度}{题型:4-解答题}三、解答题:本大题共7个小题,共63分.{题目}20.(2019年山东临沂T20)解方程:2 5x=x3.{解析}本题考查了解分式方程,一般思路是通过去分母转化为整式方程求解,注意解分式方程一定要验根.{答案}解:方程两边都乘以x(x-2),得5x=3(x-2).去括号,得5x=3x-6.移项、合并同类项,得2x=6.系数化为1,得x=3.经检验,x=3是原方程的解.所以,原方程的解为x=3.{分值}7{章节:[1-15-3]分式方程}{考点:解含两个分式的分式方程}{类别:常考题}{难度:1-最简单}{题目}21.(2019年山东临沂T21)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程.为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分)78 83 86 86 90 94 97 92 89 86 84 81 81 84 8688 92 89 86 83 81 81 85 86 89 93 93 89 85 93整理上面的数据得到频数分布表和频数分布直方图:CA D BE回答下列问题:(1)以上30个数据中,中位数是 ;频数分布表中a = ,b = ; (2)补全频数分布直方图;(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数. {解析}本题考查了频数分布表和频数分布直方图、中位数、用样本估计总体等知识.(1)把30个数据按大小顺序排列,位于中间两个数的平均数即为中位数;根据频数分布表和频数分布直方图易于得到a 与b 的值,也可通过直接数30个数据得到a 与b 的值;(2)根据(1)中得到的a 与b 的值补全频数分布直方图即可;(3)先通过所抽取的30个数据计算优秀率,然后再估计该校七年级的优秀人数. {答案}解:(1)中位数是86,a =6,b =6. 解析:30个数据按大小顺序排列后位于第15、16位置处两个数据均为86,所以该组数据的中位数为86;由频数分布表和频数分布直方图可知b =6,∴a =30-5-11-6-2=6.(2)补全频数分布直方图如图所示;(3)所抽取的30名学生中,成绩不低于86分的有11+6+2=19人,优秀率为3019,可估计该校七年级300名学生中,达到优秀等级的人数为300×3019=190人. {分值}7{章节:[1-10-2]直方图} {考点:频数(率)分布表} {考点:频数(率)分布直方图} {考点:中位数}{考点:用样本估计总体} {类别:常考题} {难度:2-简单}{题目}22.(2019年山东临沂T22)鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC 方向开挖隧道,为了加快施工速度,要在小山的另一侧D (A ,C ,D 共线)处同时施工.测得∠CAB =30°,AB =4km ,∠ABD =105°,求BD 的长.{解析}本题考查了解直角三角形的实际应用.过点B 作BE ⊥AD 于点E ,则构造了具有特殊角的两个直角三角形,在Rt △ABE 中先求得BE 的长,再在Rt △BDE 中求得BD 的长. {答案}解:如图,过点B 作BE ⊥AD 于点E ,则∠ABE =90°-30°=60°,∠DBE =105°-60°=45°. 在Rt △ABE 中,∠A =30°,AB =4km ,∴BE =21AB =2(km ); 在Rt △BDE 中,BD =2222 =22(km ).答:BD 的长为22km .{分值}7{章节:[1-28-1-2]解直角三角形}{考点:解直角三角形的应用—测高测距离} {考点:特殊角的三角函数值} {类别:常考题} {难度:3-中等难度}{题目}23.(2019年山东临沂T23)如图,AB 是⊙O 的直径,C 是⊙O 上一点,过点O 作OD ⊥AB ,交BC 的延长线于点D ,交AC 于点E ,F 是DE 的中点,连接CF . (1)求证:CF 是⊙O 的切线. (2)若∠A =22.5°,求证:AC =DC .{解析}本题综合考查了圆的切线的判定,圆周角定理的推论,直角三角形斜边中线的性质,等腰三角形的性质,全等三角形的判定和性质等知识.(1)欲证CF 是⊙O 的切线,只需证明OC ⊥CF ,即证∠ACO+∠FCE =90°,再证∠FCE =∠AEO 易于获得结论;或者通过证明∠FCE =∠OCB 获得结论.(2)欲证AC =DC ,可通过证明△ACB 与△DCE 全等得到.显然两个三角形的对应角易证相等,ABOC FD EE还需证明一组边相等.而当∠A=22.5°,则∠COF=∠COB=2∠A =45°,得FC=OC.这样可知DE=2FC=2OC=AB,思路得以沟通,问题获解.{答案}解:(1)证明:方法1:∵AB是⊙O的直径,∴∠ACB=90°.在Rt△DCE中,CF是斜边的中线,∴FC=FE,∴∠FCE=∠FEC.∵∠FEC=∠AEO,∴∠FCE=∠AEO.∵OD⊥AB,∴∠A+∠AEO=90°,∵OA=OC,∴∠A=∠ACO,∴∠ACO+∠AEO=90°,∴∠ACO+∠FCE=90°,即∠FCO=90°,∴OC⊥CF,∴CF是⊙O的切线.方法2:∵AB是⊙O的直径,∴∠ACB=90°,∴∠D+∠DEC=90°.∵OD⊥AB,∴∠B+∠D=90°,∴∠B=∠DEC.在Rt△DCE中,CF是斜边的中线,∴FC=FE,∴∠FCE=∠FEC.∴∠FCE=∠B.∵OB=OC,∴∠B=∠OCB,∴∠FCE=∠OCB.∵∠ACB=∠ACO+∠OCB=90°,∴∠ACO+∠FCE=90°,即∠FCO=90°,∴OC⊥CF,∴CF是⊙O的切线.(2)∵∠A=22.5°,∴∠COB=2∠A =45°,∴∠COF=45°,由(1)得∠FCO=90°,∴∠CFO=∠COF=45°,∴FC=OC.在Rt△DCE中,CF是斜边的中线,∴DE=2CF,∵AB=2OC,∴AB=DE.∵∠A+∠B=90°,∠B+∠D=90°,∴∠A=∠D.又∵∠ACB=∠DCE=90°,∴△ACB≌△DCE(AAS),∴AC=DC.{分值}9{章节:[1-24-2-2]直线和圆的位置关系}{考点:等边对等角}{考点:直角三角形两锐角互余}{考点:等腰直角三角形}{考点:直角三角形斜边上的中线}{考点:全等三角形的判定ASA,AAS}{考点:直径所对的圆周角}{考点:切线的判定}{考点:圆的其它综合题}{类别:常考题}{难度:3-中等难度}{题目}24.(2019年山东临沂T24)汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m).当x=8(h)时达到警戒水位,开始开闸(1(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式;(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m?{解析}本题考查了一次函数与反比例函数的实际应用.(1)把表中数对分别描在坐标系中即可;(2)观察平面直角坐标系中所描的点,猜想开闸放水前和放水后最符合表中数据的函数解析式分别为一次函数与反比例函数,利用待定系数法分别求得函数解析式,然后把其余点代入解析式中进行验证,以确定猜想正确与否;(3)把y =6代入开闸放水后的函数解析式,即可求得相应的时间. {答案}解:(1)描点如图所示;(2)根据描点,可以猜想开闸放水前和放水后最符合表中数据的函数解析式分别为一次函数与反比例函数.设开闸放水前函数的解析式为y =kx +b (k ≠0),把x =0时y =14,x =2时y =15代入,得⎩⎨⎧=+=,152,14b k b 解得⎪⎩⎪⎨⎧==,21,14k b ∴一次函数的解析式为y =21x +14(0≤x ≤8). 当x =4时,y =21×4+14=16;当x =6时,y =21×6+14=17;当x =8时,y =21×8+14=18.均符合题意.所以开闸放水前的函数解析式为y =21x +14. 设开闸放水后的函数解析式为y =x k (k ≠0),把x =12时y =12,代入得k =12×12=144,∴y =x144. 把x =10,14,16,18,20分别代入,得y =14.4,10.3,8,7.2,均符合题意.∴开闸放水后的函yy数解析式为y =x144(x >8). (3)当y =6时,x 144=6.解得x =24. 答:预测24时水位达到6m .{分值}9{章节:[1-26-2]实际问题与反比例函数}{考点:待定系数法求一次函数的解析式}{考点:分段函数的应用}{考点:生活中的反比例函数的应用}{类别:高度原创}{类别:常考题}{难度:3-中等难度}{题目}25.(2019年山东临沂T25)如图,在正方形ABCD 中,E 是DC 边上一点,(与D 、C 不重合),连接AE ,将△ADE 沿AE 所在的直线折叠得到△AFE ,延长EF 交BC 于点G ,连接AG ,作GH ⊥AG ,与AE 的延长线交于点H ,连接CH .显然AE 是∠DAF 的平分线,EA 是∠DEF 的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角的平分线),并说明理由.{解析}本题综合考查了正方形的性质,互为余角的性质,直角三角形的性质,全等三角形的判定与性质等腰三角形的判定与性质等知识.由折叠及正方形的性质,极易得到Rt △ABG 与Rt △AFG 全等,进而可得AG 与GA 为角平分线,再通过图形直观观察,可发现GH 与CH 也是角平分线,进一步思考,利用等角的余角相等,易得∠HGE =∠HGC ;过点H 作HN ⊥BC 于点N ,再通过证△ABG ≌△GNH ,得△HCN 是等腰直角三角形,得到CH 是∠DCM 的平分线.{答案}解:AG 是∠BAF 的平分线,GA 是∠BGF 的平分线,GH 是∠EGC 的平分线,CH 是∠DCM 的平分线.证明如下:∵四边形ABCD 为正方形,∴∠D =∠B =90°,AB =AD .∵△ADE 沿AE 翻折至△AFE ,∴AD =AF ,∠D =∠AFE =90°,∴AB =AF .又∵AG =AG ,∴Rt △ABG ≌Rt △AFG (HL ).∴∠BAG =∠FAG ,∠BGA =∠FGA ,即GA 是∠BGF 的平分线,GH 是∠EGC 的平分线.∵GH ⊥AG ,∴∠AGH =90°,∴∠AGE+∠HGE =90°,∠AGB+∠HGC =90°,又∵∠AGB =∠AGE ,∴∠HGE =∠HGC ,即GH 是∠EGC 的平分线.如图,过点H 作HN ⊥BC 于点N ,则∠GNH =∠ABG =90°.∵∠AGB+∠HGC =90°,∠AGB+∠BAG =90°,∴∠HGC =∠BAG .∵∠GAE =21∠BAD =45°,∠AGH =90°,∴∠AHG =45°,∴AG =GH , ∴△ABG ≌△GNH (AAS ),∴BG =HN , GN =AB =BC ,∴BG =CN ,∴CN =HN ,∴∠HCN =45°,∴∠ECH =45°,即CH 是∠DCM 的平分线.A B M FHDE{分值}11{章节:[1-18-2-3] 正方形}{考点:角平分线的定义}{考点:直角三角形两锐角互余}{考点:互余}{考点:全等三角形的判定ASA,AAS}{考点:全等三角形的判定HL}{考点:等角对等边}{考点:等边对等角}{考点:正方形的性质}{考点:正方形有关的综合题}{考点:几何综合}{类别:常考题}{难度:4-较高难度}{题目}26.(2019年山东临沂T26)在平面直角坐标系中,直线y =x+2与x 轴交于点A ,与y 轴交于点B ,抛物线y =ax 2+bx+c(a <0)经过点A ,B .(1)求a ,b 满足的关系式及c 的值;(2)当x <0时,若y =ax 2+bx+c(a <0)的函数值随x 的增大而增大,求a 的取值范围;(3)如图,当a =-1时,在抛物线上是否存在点P ,使△PAB 的面积为1,若存在,请求出符合条件的所有点P 的坐标;若不存在,请说明理由.{解析}本题综合考查了二次函数y抛物线上几何图形的存在性问题.(1)根据直线y =x+2的解析式,先求得点A ,B 的坐标,进而可求c 的值与a ,b 满足的关系式;(2)根据对称轴方程x =ab 2 及二次函数的增减性易于得到a 的取值范围;(3)利用抛物线上三角形面积的常见求法,即设P (x ,-x 2-x +2),过点P 作与x 轴的垂线,交直线y =x +2于点C ,根据S △P AB =21OA ·PC 判断点P 是否存在,以及存在时求解点P 的坐标.{答案}解:(1)当x =0时,y =x +2=2,∴B (0,2);A B F HDEM当y =0时,x +2=0,x =-2,∴A (-2,0).因为抛物线y =ax 2+bx+c(a <0)经过点A ,B ,故把B (0,2)代入,得c =2;把A (-2,0)代入,得4a -2b+2=0,∴a ,b 满足的关系式为2a -b +1=0.(2)由题意,得a b 2-≥0,即a a 212+-≥0, 又∵a <0,∴a ≥21-且a <0,即21-≤a <0. (3)当a =-1时,2×(-1)-b +1=0,解得b =-1.∴y =-x 2-x +2.设P (x ,-x 2-x +2),过点P 作与x 轴的垂线,交直线y =x +2于点C ,则C (x ,x +2).于是S △P AB =21OA ·PC =21×2·|(-x 2-x +2)-(x +2)|=1. ∴|-x 2-2x |=1,∴x 2+2x =1,或x 2+2x =-1.解得,x 1=-1-2,x 2=-1+2,x 3=x 4=-1.当x =-1-2时,y =-2;当x =-1+2时,y =2;当x =-1时,y =2.综上可知,在抛物线上存在点P ,使△PAB 的面积为1,此时点P 的坐标为(-1-2,-2)或(-1+2,2)或(-1,2).{分值}13{章节:[1-22-1-4]二次函数y =ax2+bx+c 的图象和性质}{考点:待定系数法求一次函数的解析式}{考点:其他一次函数的综合题}{考点:二次函数y =ax2+bx+c 的性质}{考点:其他二次函数综合题}{考点:代数综合}{类别:常考题}{难度:5-高难度}。

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第二节 一元二次方程及其应用

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第二节 一元二次方程及其应用

6.(2021·通辽)关于 x 的一元二次方程 x2-(k-3)x-k+1=0 的根的情
况,下列说法中正确的是
( A)
A.有两个不相等的实数根
B.有两个相等的实数根
C.无实数根
D.无法确定
7.(2021·龙东)有一个人患了流行性感冒,经过两轮传染后共有 144 人
患了流行性感冒,则每轮传染中平均一个人传染的人数是 ( B )
A.14
B.11
C.10
D.9
8.(2021·昆明模拟)关于 x 的一元二次方程 x2-mx+(m+1)=0 有两个
相等的实数根,则代数式 8m-2m2+10 的值为
( D)
A.18
B.10
C.4
D.2
9.(2021·镇江)一元二次方程 x(x+1)=0 的两根分别为 x1=x10=0,,x2
=--11.
x2=
10.关于 x 的一元二次方程 3x2-4x-k=0 有实数根,则 k 的取值范围是
k≥k≥--43 . 11.(2020·江西)若关于 x 的一元二次方程 x2-kx-2=0 的一个根为 x =1,则这个一元二次方程的另一个根为__--2_2_.
12.(2021·海淀区校级模拟)如图,某小区规划在一个长
解:设降低 x 元,超市每天可获得销售利润 3 640 元,由题意,得 (38-x-22)160+x3×120=3 640, 整理得 x2-12x+27=0,∴x=3 或 x=9. ∵要尽可能让顾客得到实惠,∴x=9, ∴售价为 38-9=29(元/千克). 答:水果的销售价为每千克 29 元时,超市每天可获得销售利润 3 640 元.
( D)
5.(2021·湘潭)为执行国家药品降价政策,给人民群众带来实惠,某药

山东省临沂市2019年中考[数学]考试真题与答案解析

山东省临沂市2019年中考[数学]考试真题与答案解析

山东省临沂市2019年中考[数学]考试真题与答案解析一、选择题本大题共14小题,每小题3分,共42分。

在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列温度比﹣2℃低的是( )A.﹣3℃B.﹣1℃C.1℃D.3℃答案解析:根据两个负数,绝对值大的反而小可知﹣3<﹣2,所以比﹣2℃低的温度是﹣3℃.故选:A.2.下列交通标志中,是中心对称图形的是( )A.B.C.D.答案解析:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:B.3.如图,数轴上点A对应的数是,将点A沿数轴向左移动2个单位至点B,则点B对应的数是( )A.B.﹣2C.D.答案解析:点A向左移动2个单位,点B对应的数为:2.故选:A.4.根据图中三视图可知该几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱答案解析:根据图中三视图可知该几何体是三棱柱.故选:B.5.如图,在△ABC中,AB=AC,∠A=40°,CD∥AB,则∠BCD=( )A.40°B.50°C.60°D.70°答案解析:∵在△ABC中,AB=AC,∠A=40°,∴∠ACB=70°,∵CD∥AB,∴∠ACD=180°﹣∠A=140°,∴∠BCD=∠ACD﹣∠ACB=70°.故选:D.6.计算(﹣2a3)2÷a2的结果是( )A.﹣2a3B.﹣2a4C.4a3D.4a4答案解析:原式=4a6÷a2=4a4.故选:D.7.设a2.则( )A.2<a<3B.3<a<4C.4<a<5D.5<a<6答案解析:∵23,∴42<5,∴4<a<5.故选:C.8.一元二次方程x2﹣4x﹣8=0的解是( )A.x1=﹣2+2,x2=﹣2﹣2B.x1=2+2,x2=2﹣2C.x1=2+2,x2=2﹣2D.x1=2,x2=﹣2答案解析:一元二次方程x2﹣4x﹣8=0,移项得:x2﹣4x=8,配方得:x2﹣4x+4=12,即(x﹣2)2=12,开方得:x﹣2=±2,解得:x1=2+2,x2=2﹣2.故选:B.9.从马鸣、杨豪、陆畅、江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是( )A.B.C.D.答案解析:根据题意画图如下:共有12种等可能情况数,其中恰好抽到马鸣和杨豪的有2种,则恰好抽到马鸣和杨豪的概率是;故选:C.10.《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行.问人与车各多少?设有x人,y辆车,可列方程组为( )A.B.C.D.答案解析:依题意,得:.故选:B.11.如图是甲、乙两同学五次数学测试成绩的折线图.比较甲、乙的成绩,下列说法正确的是( )A.甲平均分高,成绩稳定B.甲平均分高,成绩不稳定C.乙平均分高,成绩稳定D.乙平均分高,成绩不稳定答案解析:乙90,甲84,因此乙的平均数较高;S2乙[(100﹣90)2+(85﹣90)2+(80﹣90)2+(95﹣90)2]=50,S2甲[(85﹣84)2+(90﹣84)2+(80﹣84)2+(80﹣84)2+(85﹣84)2]=14,∵50>14,∴乙的离散程度较高,不稳定,甲的离散程度较低,比较稳定;故选:D.12.如图,P是面积为S的▱ABCD内任意一点,△PAD的面积为S1,△PBC的面积为S2,则( )A.S1+S2B.S1+S2C.S1+S2D.S1+S2的大小与P点位置有关答案解析:过点P作EF⊥AD交AD于点E,交BC于点F,∵四边形ABCD是平行四边形,∴AD=BC,∴S=BC•EF,,,∵EF=PE+PF,AD=BC,∴S1+S2,故选:C.13.计算的结果为( )A.B.C.D.答案解析:原式.故选:A.14.如图,在⊙O中,AB为直径,∠AOC=80°.点D为弦AC的中点,点E为上任意一点.则∠CED的大小可能是( )A.10°B.20°C.30°D.40°答案解析:连接OD、OE,∵OC=OA,∴△OAC是等腰三角形,∵点D为弦的中点,∴∠DOC=40°,∠BOC=100°,设∠BOE=x,则∠COE=100°﹣x,∠DOE=100°﹣x+40°,∵OC=OE,∠COE=100°﹣x,∴∠OEC=∠OCE=40°x,∵OD<OE,∠DOE=100°﹣x+40°=140°﹣x,∴∠OED<20°x,∴∠CED=∠OEC﹣∠OED>(40°x)﹣(20°x)=20°,∵∠CED<∠ABC=40°,∴20°<∠CED<40°故选:C.二、填空题15.不等式2x+1<0的解集是 x .答案解析:移项,得:2x<﹣1,系数化为1,得:x,故答案为x.16.若a+b=1,则a2﹣b2+2b﹣2= ﹣1 .答案解析:∵a+b=1,∴a2﹣b2+2b﹣2=(a+b)(a﹣b)+2b﹣2=a﹣b+2b﹣2=a+b﹣2=﹣1.故答案为:﹣1.17.点(,m)和点(2,n)在直线y=2x+b上,则m与n的大小关系是 m<n .答案解析:∵直线y=2x+b中,k=2>0,∴此函数y随着x的增大而增大,∵2,∴m<n.故答案为m<n.18.如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,H为AF与DG的交点.若AC=6,则DH= 1 .答案解析:∵D、E为边AB的三等分点,EF∥DG∥AC,∴BE=DE=AD,BF=GF=CG,AH=HF,∴AB=3BE,DH是△AEF的中位线,∴DH EF,∵EF∥AC,∴△BEF∽△BAC,∴,即,解得:EF=2,∴DH EF2=1,故答案为:1.19.我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点A(2,1)到以原点为圆心,以1为半径的圆的距离为 1 .答案解析:连接AO交⊙O于B,则线段AB的长度即为点A(2,1)到以原点为圆心,以1为半径的圆的距离,∵点A(2,1),∴OA,∵OB=1,∴AB1,即点A(2,1)到以原点为圆心,以1为半径的圆的距离为1,故答案为:1.三、解答题20.计算:sin60°.答案解析:原式.21.2020年是脱贫攻坚年.为实现全员脱贫目标,某村贫困户在当地政府支持帮助下,办起了养鸡场.经过一段时间精心饲养,总量为3000只的一批鸡可以出售.现从中随机抽取50只,得到它们质量的统计数据如下:质量/kg组中值频数(只)0.9≤x<1.1 1.061.1≤x<1.3 1.291.3≤x<1.5 1.4a1.5≤x<1.7 1.6151.7≤x<1.9 1.88根据以上信息,解答下列问题:(1)表中a= 12 ,补全频数分布直方图;(2)这批鸡中质量不小于1.7kg的大约有多少只?(3)这些贫困户的总收入达到54000元,就能实现全员脱贫目标.按15元/kg的价格售出这批鸡后,该村贫困户能否脱贫?答案解析:(1)a=50﹣8﹣15﹣9﹣6=12(只),补全频数分布直方图;故答案为:12;(2)3000480(只)答:这批鸡中质量不小于1.7kg的大约有480只;(3) 1.44(千克),∵1.44×3000×15=64800>54000,∴能脱贫,答:该村贫困户能脱贫.22.如图,要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α般要满足60°≤α≤75°,现有一架长5.5m的梯子.(1)使用这架梯子最高可以安全攀上多高的墙(结果保留小数点后一位)?(2)当梯子底端距离墙面2.2m时,α等于多少度(结果保留小数点后一位)?此时人是否能够安全使用这架梯子?(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,sin23.6°≈0.40,cos66.4°≈0.40,tan21.8°≈0.40.)答案解析:(1)由题意得,当α=75°时,这架梯子可以安全攀上最高的墙,在Rt△ABC中,sinα,∴AC=AB•sinα≈5.5×0.97≈5.3,答:使用这架梯子最高可以安全攀上5.3m的墙;(2)在Rt△ABC中,cosα0.4,则α≈66.4°,∵60°≤66.4°≤75°,∴此时人能够安全使用这架梯子.23.(9分)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系.当R=4Ω时,I=9A.(1)写出I关于R的函数解析式;(2)完成下表,并在给定的平面直角坐标系中画出这个函数的图象;R/Ω… 3 4 5 6 8 9 10 12 …I/A… 12 9 7.2 6 4.5 4 3.6 3 …(3)如果以此蓄电池为电源的用电器的限制电流不能超过10A,那么用电器可变电阻应控制在什么范围内?答案解析:(1)电流I是电阻R的反比例函数,设I,∵R=4Ω时,I=9A∴9,解得k=4×9=36,∴I;(2)列表如下:R/Ω3456891012I/A12 9 7.2 6 4.54 3.63(3)∵I≤10,I,∴10,∴R≥3.6,即用电器可变电阻应控制在不低于3.6欧的范围内.24.(9分)已知⊙O1的半径为r1,⊙O2的半径为r2.以O1为圆心,以r1+r2的长为半径画弧,再以线段O1O2的中点P为圆心,以O1O2的长为半径画弧,两弧交于点A,连接O1A,O2A,O1A交⊙O1于点B,过点B作O2A的平行线BC交O1O2于点C.(1)求证:BC是⊙O2的切线;(2)若r1=2,r2=1,O1O2=6,求阴影部分的面积.【解答】(1)证明:连接AP,∵以线段O1O2的中点P为圆心,以O1O2的长为半径画弧,∴O1P=AP=O2P,∴∠O1AO2=90°,∵BC∥O2A,∴∠O1BC=∠O1AO2=90°,过点O2作O2D⊥BC交BC的延长线于点D,∴四边形ABDO2是矩形,∴AB=O2D,∵O1A=r1+r2,∴O2D=r2,∴BC是⊙O2的切线;(2)解:∵r1=2,r2=1,O1O2=6,∴O1A,∴∠BO1C=60°,∴O1C=2O1B=4,∴BC2,∴S阴影2π.25.(11分)已知抛物线y=ax2﹣2ax﹣3+2a2(a≠0).(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其解析式;(3)设点P(m,y1),Q(3,y2)在抛物线上,若y1<y2,求m的取值范围.答案解析:(1)∵抛物线y=ax2﹣2ax﹣3+2a2=a(x﹣1)2+2a2﹣a﹣3.∴抛物线的对称轴为直线x=1;(2)∵抛物线的顶点在x轴上,∴2a2﹣a﹣3=0,解得a或a=﹣1,∴抛物线为y x2﹣3x或y=﹣x2+2x﹣1;(3)∵抛物线的对称轴为x=1,则Q(3,y2)关于x=1对称点的坐标为(﹣1,y2),∴当a>0,﹣1<m<3时,y1<y2;当a<0,m<﹣1或m>3时,y1<y2.26.(13分)如图,菱形ABCD的边长为1,∠ABC=60°,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,G,AE,EF的中点分别为M,N.(1)求证:AF=EF;(2)求MN+NG的最小值;(3)当点E在AB上运动时,∠CEF的大小是否变化?为什么?答案解析:(1)连接CF,∵FG垂直平分CE,∴CF=EF,∵四边形ABCD为菱形,∴A和C关于对角线BD对称,∴CF=AF,∴AF=EF;(2)连接AC,∵M和N分别是AE和EF的中点,点G为CE中点,∴MN AF,NG CF,即MN+NG(AF+CF),当点F与菱形ABCD对角线交点O重合时,AF+CF最小,即此时MN+NG最小,∵菱形ABCD边长为1,∠ABC=60°,∴△ABC为等边三角形,AC=AB=1,即MN+NG的最小值为;(3)不变,理由是:延长EF,交DC于H,∵∠CFH=∠FCE+∠FEC,∠AFH=∠FAE+∠FEA,∴∠AFC=∠FCE+∠FEC+∠FAE+∠FEA,∵点F在菱形ABCD对角线BD上,根据菱形的对称性可得:∠AFD=∠CFD∠AFC,∵AF=CF=EF,∴∠AEF=∠EAF,∠FEC=∠FCE,∴∠AFD=∠FAE+∠ABF=∠FAE+∠CEF,∴∠ABF=∠CEF,∵∠ABC=60°,∴∠ABF=∠CEF=30°,为定值.。

2019临沂中考数学(Word及答案)

2019临沂中考数学(Word及答案)

秘密★启用前 试卷类型:A2019年临沂市初中学业水平考试试题数 学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共8页,满分120分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置.考试结束后,将本试卷和答题卡一并交回.2.答题注意事项见答题卡,答在本试卷上不得分.第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的. 1.|2019|-= (A )2019.(B )2019-.(C )12019. (D )12019-. 2.如图,a ∥b ,若1∠=110︒, 则2∠的度数是 (A )110︒.(B )80︒. (C )70︒.(D )60︒.3.不等式120x -≥的解集是 (A )2x ≥.(B )12x ≥.(C )2x ≤.(第2题图)21bac(D )12x ≤.4.如图所示,正三棱柱的左视图是(A ) (B )(C )(D ) 5.将3a b ab -进行因式分解,正确的是 (A )2()a a b b -.(B )2(1)ab a -.(C )(1)(1)ab a a +-.(D )2(1)ab a -.6.如图,D 是AB 上的一点,DF 交AC 于点E , DE =EF ,FC ∥AB .若AB =4,CF =3,则BD 的长是(A )0.5. (B )1. (C )1.5. (D )2.7.下列计算错误的是 (A )3243()()a b ab a b ⋅=. (B )3226()mn m n -=.(C )523a a a -÷=.(D )2221455xy xy xy -=.8.经过某十字路口的汽车,可能直行,也可能向左转或向右转. 如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是 (A )23. (B )29. (C )13.(D )19.(第6题图)EABCFD (第4题图)9.计算211aaa---的结果正确的是(A)11a--.(B)11a-.(C)211aa---.(D)211aa--.10.小明记录了临沂市五月份某周每天的最高气温(单位:℃),列成下表:天数(天) 1 2 1 3最高气温(℃)22 26 28 29则这周最高气温的平均值是(A)26.25℃. (B)27℃.(C)28℃.(D)29℃.11.如图,⊙O中,AB AC=,75ACB∠=︒,2BC=,则阴影部分的面积是(A)2π23 +.(B)2π233++.(C)2π43 +.(D)4π23 +.12.下列关于一次函数00y kx b k b<>=+(,)的说法,错误的是(A)图象经过第一、二、四象限.(B)y随x的增大而减小.(C)图象与y轴交于点0b(,).(D)当bxk>-时,0y>.(第11题图)AB CO13.如图,在ABCD 中,M ,N 是BD 上两点,BM DN =,连接AM ,MC ,CN ,NA .添加一个条件,使四边形AMCN 是矩形,这个条件是 (A )12OM AC =. (B )MB MO =.(C )BD AC ⊥.(D )AMB CND ∠=∠.14.从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m ; ②小球抛出3秒后,速度越来越快; ③小球抛出3秒时速度为0; ④小球的高度h =30m 时,t =1.5s .其中正确的是(A )①④. (B )①②. (C )②③④. (D )②③.O(第13题图)NAMB CD(第14题图)h/第Ⅱ卷(非选择题共78分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在答题卡规定的区域内,在试卷上答题不得分.二、填空题(本大题共5小题,每小题3分,共15分) 15tan 45°= . 16.在平面直角坐标系中,点(4,2)P 关于直线1x =的对称点的坐标是 . 17.用1块A 型钢板可制成4件甲种产品和1件乙种产品;用1块B 型钢板可制成3件甲种产品和2件乙种产品. 要生产甲种产品37件,乙种产品18件,则恰好需用A ,B 两种型号的钢板共 块.18.一般地,如果4(0)x a a =≥,则称x 为a 的四次方根.一个正数a 的四次方根有两个,它们互为相反数,记为10=,则m = .19.如图,在ABC △中,120ACB ∠=︒,4BC =,D 为AB 的中点,DC BC ⊥,则ABC △的面积是 .三、解答题(本大题共7小题,共63分) 20.(本小题满分7分)解方程:532x x=-. (第19题图)D CBA争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程.为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分):78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 86 83 81 81 85 86 89 93 93 89 85 93 整理上面的数据得到频数分布表和频数分布直方图:回答下列问题:(1)以上30个数据中,中位数是 ;频数分布表中a = ,b = ; (2)补全频数分布直方图;(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数. 22.(本小题满分7分)鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC 方向开挖隧道,为加快施工进度,要在小山的另一侧D (A ,C ,D 共线)处同时施工.测得30CAB ∠=︒,4km AB =,105ABD ∠=︒,求BD 的长.成绩(分) 频数 78≤x <82 5 82≤x <86 a 86≤x <90 11 90≤x <94 b 94≤x <982(第22题图)ABCD30°105°(第21题图)109094分数频数12246788286988 08如图,AB 是⊙O 的直径,C 是⊙O 上一点,过点O 作OD AB ⊥,交BC 的延长线于点D ,交AC 于点E ,F 是DE 的中点,连接CF .(1)求证:CF 是⊙O 的切线; (2)若22.5A ∠=︒,求证:AC DC =.24.(本小题满分9分)汛期到来,山洪暴发. 下表记录了某水库20h 内水位的变化情况,其中x 表示时间 (单位:h ),y 表示水位高度(单位:m ).当x=8(h )时达到警戒水位,开始开闸放水.x /h 0 2 4 6 8 10 12 14 16 18 20 y /m14 1516171814.41210.3987.2(第24题图)(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点; (2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式;(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m ?(第23题图) DOE CFBAx /h24681012141618206 7 11 10 9 8 16 15 14 13 12 1718 y /m O25.(本小题满分11分)如图,在正方形ABCD 中,E 是DC 边上一点(与D ,C 不重合),连接AE ,将ADE △沿AE 所在的直线折叠得到AFE △,延长EF 交BC 于点G ,连接AG ,作GH AG ⊥,与AE 的延长线交于点H ,连接CH .显然AE 是DAF ∠的平分线,EA 是DEF ∠的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限小于180︒的角的平分线),并说明理由.26.(本小题满分13分)在平面直角坐标系中,直线2y x =+与x 轴交于点A ,与y 轴交于点B ,抛物线2(0)y ax bx c a =++<经过点A ,B .(1)求a ,b 满足的关系式及c 的值;(2)当0x <时,若2(0)y ax bx c a =++<的函数值随x 的增大而增大,求a 的取值范围; (3)如图,当1a =-时,在抛物线上是否存在点P ,使PAB △的面积为1,若存在,请求出符合条件的所有点P 的坐标;若不存在,请说明理由.AOBxy (第25题图)HGMFECBAD秘密★启用前 试卷类型:A2019年临沂市初中学业水平考试试题数学参考答案及评分标准说明:解答题给出了部分解答方法,考生若有其它解法,应参照本评分标准给分. 一、选择题(每小题3分,共42分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 答案ACDACBCBBBADAD二、填空题(每小题3分,共15分)15.31-; 16.(-2,2); 17.11; 18.±10; 19.83. 三、解答题(7小题,共63分) 20.解:方程两边乘()2x x -,得()532x x =-. --------------------------------------------------------------------------------------- 3分解得3x =-. ------------------------------------------------------------------------------------------------ 5分检验:当3x =-时,()20x x -≠. ------------------------------------------------------------- 6分所以,原分式方程的解为3x =-. -------------------------------------------------------------- 7分 21.解:(1)中位数是86;a =6,b =6. ------------------------------------------------------------------ 3分(2)补全统计图如下:10频数 12 8。

中考数学复习第二单元方程(组)与不等式(组)课时训练一元一次不等式(组)及其应用

中考数学复习第二单元方程(组)与不等式(组)课时训练一元一次不等式(组)及其应用

课时训练(七)一元一次不等式(组)及其应用(限时:35分钟)|夯实基础|1.[2019·广安]若m>n,下列不等式不一定成立的是()A.m+3>n+3B.-3m<-3nC.>D.m2>n22.[2019·陇南]不等式2x+9≥ (x+2)的解集是()A.x≤B.x≤-3C.x≥D.x≥-33.[2018·益阳]不等式组211-2的解集在数轴上表示正确的是 ()图K7-14.[2019·德州]不等式组2(-112-1-2的所有非负整数解的和是()A.10B.7C.6D.05.[2019·南充]若关于x的不等式2x+a≤1只有2个正整数解,则a的取值范围为 ()A.-5<a<-3B.- ≤a<-3C.-5<a≤-3D.- ≤a≤-36.[2019·聊城]若不等式组12-1无解,则m的取值范围为()A.m≤2B.m<2C.m≥2D.m>27.[2019·重庆B卷]某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分超过120分,他至少要答对的题的个数为()A.13B.14C.15D.168.[2019·绵阳]红星商店计划用不超过4200元的资金购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种9.[2019·株洲]若a 为有理数,且2-a 的值大于1,则a 的取值范围为 . 10.[2019·益阳]不等式组-1 0 -的解集为 .11.[2019·大庆]已知x=4是不等式ax -3a -1<0的解,x=2不是不等式ax -3a -1<0的解,则实数a 的取值范围是 . 12.[2019·包头]已知不等式组 2 9 - 1 - 1的解集为x>-1,则k 的取值范围是 .13.[2019·宜宾]若关于x 的不等式组-2-12 - 2- 有且只有两个整数解,则m 的取值范围是 .14.[2018·山西]2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高之和不超过115 cm .某厂家生产符合该规定的行李箱,已知行李箱的宽为20 cm,长与高的比为8∶11,则符合此规定的行李箱的高的最大值为cm .15.(1)解不等式:4(x -1)-12<x.(2)[2019·新疆]解不等式组: 2 ( -2 ①22 -②并把解集在数轴上表示出来.16.若不等式组2112(-的整数解是关于x的方程2x-4=ax的解,求a的值.17.[2019·荆州]为拓宽学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生.现有甲、乙两种大型客车,它们的载客量和租金如表所示:2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为辆.(3)学校共有几种租车方案?最少租车费用是多少? |拓展提升|18.[2019·镇江]下列各数轴上表示的x的取值范围可以是不等式组2(2-1 -0的解集的是()图K7-219.[2019·重庆B卷]若数a使关于x的不等式组-21(--2(1-有且仅有三个整数解,且使关于y的分式方程1-2-11-=-3的解为正数,则所有满足条件的整数a的值之和是() A.-3 B.-2 C.-1 D.1【参考答案】1.D2.A3.A4.A [解析]解不等式5x +2>3(x -1),得x>-2;解不等式12x -1≤ -2x ,得x ≤ ; ∴不等式组的解集为-2<x ≤ .∴不等式组的非负整数解为0,1,2,3,4,这些非负整数解的和为10. 故选A .5.C [解析]解不等式2x +a ≤1 得:x ≤1-2, 不等式有两个正整数解,一定是1和2, 根据题意得:2≤1-2<3,解得:-5<a ≤-3. 故选C .6.A [解析]解不等式1 < 2-1,得x>8,当4m ≤8时,原不等式组无解,∴m ≤2 故选A . 7.C [解析] 设小华答对的题的个数为x 题,则答错或不答的题的个数为(20-x )题,可列不等式10x -5(20-x )>120,解得x>142,即他至少要答对的题的个数为15题.故选C . 8.C [解析]设该店购进甲种商品x 件,则购进乙种商品(50-x )件, 根据题意,得:0 100( 0- 200 10 20( 0- 0解得:20≤x<25,∵x 为整数,∴x=20,21,22,23,24, ∴该店进货方案有5种. 9.a<1 10.x<-311.a ≤-1 [解析]因为x=4是不等式ax -3a -1<0的解,所以4a -3a -1<0,a<1, 因为x=2不是不等式ax -3a -1<0的解, 所以2a -3a -1≥0 所以a ≤-1,所以a ≤-1.12.k ≤-2 [解析] 解2x +9>-6x +1得x>-1.解x -k>1得x>k +1.∵不等式组的解集为x>-1,∴k +1≤-1,解得k ≤-2.13.-2≤m<1 [解析]-2-1 ① 2 - 2- ② 解不等式①得:x>-2, 解不等式②得:x ≤2 ,∴不等式组的解集为-2<x ≤2,∵不等式组只有两个整数解, ∴0≤2 <1,解得:-2≤m<1,故答案为-2≤m<1.14.55 [解析] 设长为8x cm,高为11x cm,由题意可得20+8x +11x ≤11 解得:x ≤ .∴11x ≤ .15.解:(1)化简4(x -1)-12<x 得4x -4-12<x , ∴3x<92,∴x<2,∴原不等式的解集为x<2.(2)解不等式①,得:x<2. 解不等式②,得:x>1.所以,不等式组的解集为:1<x<2. 在数轴上表示如图所示:16.解:解不等式组得-1 -所以不等式组的解集为-3<x<-1, 则满足条件的整数解为-2,把x=-2代入方程2x -4=ax ,得-4-4=-2a ,解得a=4.17.[解析] (1)设参加此次研学活动的老师有x 人,学生有y 人,根据“若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生” 即可得出关于x ,y 的二元一次方程组,解之即可得出结论.(2)利用租车总辆数(至少)=师生人数÷ 结合每辆客车上至少要有2名老师,即可得出租车总辆数为8辆.(3)设租35座客车m 辆,则需租30座的客车(8-m )辆,根据8辆车的座位数不少于师生人数及租车总费用不超过3000元,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,结合m 为正整数即可得出租车方案数.设租车总费用为w 元,根据租车总费用= 00×租用35座客车的数量+ 20×租用30座客车的数量,即可得出w 关于m 的函数关系式,再利用一次函数的性质即可解决最值问题.解:(1)设参加此次研学活动的老师有x 人,学生有y 人, 依题意,得: 1 10 1 - 解得: 1 2答:参加此次研学活动的老师有16人,学生有234人.(2)8 [解析] ∵每辆车上至少要有2名老师,∴客车总数不超过8辆,又要保证所有师生都有车坐,∴客车总数不能小于2 1= 0 (取整为8)辆,综合起来可知租车总辆数为8辆.故答案为:8.(3)设租35座客车m 辆,则需租30座的客车(8-m )辆, 依题意,得: 0(8- 2 1 00 20(8- 000解得:2≤m ≤ 12.∵m 为正整数,∴m=2,3,4,5,∴共有4种租车方案. 设租车总费用为w 元,则w=400m +320(8-m )=80m +2560, ∵80>0,∴w 的值随m 值的增大而增大, ∴当m=2时,w 取得最小值,最小值为2720. ∴学校共有4种租车方案,最少租车费用是2720元. 18.B [解析]由x +2>a 得x>a -2,A .由数轴知x>-3,则a=-1,∴-3x -6<0,解得x>-2,与数轴不符;B .由数轴知x>0,则a=2,∴3x -6<0,解得x<2,与数轴相符合;C .由数轴知x>2,则a=4,∴7x -6<0,解得x<,与数轴不符;D .由数轴知x>-2,则a=0,∴-x -6<0,解得x>-6,与数轴不符;故选B . 19.A [解析] 第一部分:解一元一次不等式组 -2 1( - ①-2 (1- ② 解不等式①,得:x ≤ 解不等式②,得:x> 2 11. 因为有且仅有三个整数解, 所以三个整数解分别为:3,2,1. 所以2 11的范围为0≤2 11<1,解得-2. ≤a<3.第二部分:求分式方程1-2-11-=-3的解,得y=2-a ,根据分式方程的解为正数和分式方程的分母不能为零,得0 1 即 2-0 2- 1解得:a<2且a ≠1. 第三部分:根据第一部分a 的范围和第二部分a 的范围,找出a 的公共范围:-2. ≤a<2且a ≠1所以满足条件的整数a 为-2,-1,0. 它们的和为:-2-1+0=-3. 故选A .。

最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编

最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编

中考数学方程(组)与不等式(组)复习知识点总结一、方程【知识梳理】1、知识结构方程分式方程的应用分式方程的解法分式方程的概念分式方程的关系根的判别式,根与系数一元二次方程的解法念一元二次方程的有关概一元二次方程二元一次方程组的应用二元一次方程组的解法二元一次方程组一元一次方程的应用一元一次方程的解法一元一次方程整式方程2、知识扫描(1)只含有一个未知数,并且未知数的次数是1的整式方程,叫做一元一次方程。

(2)含有2个未知数,并且所含未知数的项的次数都是1次,这样的方程叫二元一次方程.(3)含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.(4)二元一次方程组的解法有法和法.(5)只含有1 个未知数,并且未知数的最高次数是2且系数不为0的整式方程,叫做一元二次方程,其一般形式为)0(02a cbx ax。

(6)解一元二次方程的方法有:①直接开平方法;②配方法;③公式法;④因式分解法例:(1)042x(2)0342x x(3)4722x x (4)0232x x(7)一元二次方程的根的判别式:ac b42叫做一元二次方程的根的判别式。

对于一元二次方程)0(02a cbx ax当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根;反之也成立。

(8)一元二次方程的根与系数的关系:如果)0(02acbx ax的两个根是21,x x 那么ab x x 21,ac x x 21(9)一元二次方程)0(02a cbx ax的求根公式:)04(2422ac baacb bx(10)分母中含有未知数的方程叫分式方程.(11)解分式方程的基本思想是将分式方程通过去分母转化为整式方程.◆解分式方程的步骤◆1、去分母,化分式方程为整式方程;◆2、解这个整式方程;◆3、验根。

注意:(1)解分式方程的基本思想是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.(2)因为解分式方程时可能产生增根,所以解分式方程必须检验,检验是解分式方程必要的步骤.二、不等式【知识梳理】1、知识结构解法性质概念不等式2、知识扫描(1) 只含有一个未知数,并且未知数的次数是1,系数不为 0 的不等式,叫做一元一次不等式。

山东省临沂市2019年中考数学复习 第二章 方程(组)与不等式(组)第三节 分式方程及其应用要题随堂

山东省临沂市2019年中考数学复习 第二章 方程(组)与不等式(组)第三节 分式方程及其应用要题随堂

分式方程及其应用要题随堂演练1.(2018·株洲中考)关于x 的分式方程2x +3x -a=0解为x =4,则常数a 的值为( ) A .a =1B .a =2C .a =4D .a =102.对于非零实数a ,b ,规定a⊕b=1b -1a,若2⊕(2x -1)=1,则x 的值为( ) A.56B.54C.32 D .-163.(2018·淄博中考)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来.实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A.60x -60(1+25%)x =30 B.60(1+25%)x -60x =30 C.60×(1+25%)x -60x =30 D.60x -60×(1+25%)x=30 4.(2018·济南中考)若代数式x -2x -4的值是2,则x =______. 5.(2018·潍坊中考)当m =______时,解分式方程x -5x -3=m 3-x会出现增根. 6.(2018·常德中考)分式方程1x +2-3x x 2-4=0的解为x =________. 7.(2018·南通中考)解方程:1x -2=1-x 2-x-3.8.(2018·菏泽中考)列方程(组)解应用题:为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式2 电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?参考答案1.D 2.A 3.C 4.6 5.2 6.-17.解:去分母得1=x -1-3x +6,解得x =2.经检验,x =2是增根,∴分式方程无解.8.解:设台式电脑的单价为x 万元,则笔记本电脑的单价为1.5x 万元.由题意得24x +7.21.5x =120,解得x =0.24.经检验,x =0.24为原方程的解,且符合题意.1.5x =1.5×0.24=0.36.答:台式电脑的单价为0.24万元,笔记本电脑的单价为 0.36 万元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程及其应用
要题随堂演练
1.(2018·台湾中考)若一元二次方程式x 2
-8x -3×11=0的两根为a ,b ,且a >b ,则a -2b 的值为
( )
A .-25
B .-19
C .5
D .17 2.(2018·泰安中考)一元二次方程(x +1)(x -3)=2x -5根的情况是( )
A .无实数根
B .有一个正根,一个负根
C .有两个正根,且都小于3
D .有两个正根,且有一根大于3
3.若关于x 的一元二次方程kx 2
+2x -1=0有两个不相等的实数根,则实数k 的取值范围是( )
A .k >-1
B .k >1
C .k≠0
D .k>-1且k≠0 4.(2018·潍坊中考)已知关于x 的一元二次方程mx 2-(m +2)x +m 4=0有两个不相等的实数根x 1,x 2.若1x 1
+1x 2
=4m ,则m 的值是( ) A .2
B .-1
C .2或-1
D .不存在 5.(2018·眉山中考)我市某楼盘准备以每平方6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4 860元的均价开盘销售,则平均每次下调的百分率是( )
A .8%
B .9%
C .10%
D .11% 6.用配方法解方程x 2+2x =8时,方程可变形为( )
A .(x -2)2=9
B .(x -1)2=8
C .(x -1)2=3
D .(x +1)2=9
7.(2018·内江中考)关于x 的一元二次方程x 2+4x -k =0有实数根,则k 的取值范围是____________.
8.(2018·威海中考)关于x 的一元二次方程(m -5)x 2
+2x +2=0有实根,则m 的最大整数解是__________.
9.随着阿里巴巴、淘宝网、京东、小米等互联网巨头的崛起,催生了快递行业的高速发展.据调查,某家小型快递公司,今年一月份与三月完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.
(1)求该快递公司投递快递总件数的月平均增长率;
(2)如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年4
月份的快递投递任务?如果不能,请问至少需要增加几名业务员?
参考答案
1.D 2.D 3.D 4.A 5.C 6.D
7.k≥-4 8.m =4
9.解:(1)设该快递公司投递快递总件数的月平均增长率为x ,
由题意得10×(1+x)2=12.1,
解得x 1=10%,x 2=-210%(舍).
答:该快递公司投递快递总件数的月平均增长率为10%.
(2)4月:12.1×1.1=13.31(万件),21×0.6=12.6<13.31,
∴该公司现有的21名快递投递业务员不能完成今年4月份的快递投递任务. ∵22<13.310.6<23,
∴至少还需增加2名业务员.。

相关文档
最新文档