初中中考常见的19个数学最值模型,求最值的经典例题及答案解析
完整版)初中数学几何模型大全+经典题型(含答案)
完整版)初中数学几何模型大全+经典题型(含答案)通过将倍长中点相关线段进行旋转变换,可以构造出旋转全等模型。
这种模型的特点是,将相邻等线段所成角的一半旋转后拼接在一起,形成对称全等。
同时,也可以通过将两个等腰三角形或正多边形的夹角进行变化,来构造出模型变形。
如果遇到复杂图形找不到旋转全等,可以先找到两个正多边形或等腰三角形的公共极点,然后围绕公共极点找到两组相邻等线段,分组组成三角形证全等。
幂定理可以用等线段、等比值、等乘积进行代换,从而将两个数之间的比值转换成乘积。
在相似证明中,常用的辅助线是平行线,根据题目条件来确定比值并做出相应的平行线。
题目一:在半圆中,圆心为O,圆上有点C、E,CD垂直于AB,EF垂直于AB,EG垂直于CO。
证明CD等于GF。
题目二:在正方形ABCD内部,点P满足∠PAD=∠PDA=15度。
证明△PBC是正三角形。
题目三:在图中,ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点。
证明A2B2C2D2是正方形。
题目四:在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F。
证明∠DEN=∠F。
题目五:在△ABC中,H为垂心,O为外心,且OM垂直于BC于M。
1)证明AH等于2OM;2)如果∠BAC等于60度,证明AH等于AO。
1.设P为正三角形ABC内任意一点,连接PA,PB,PC,由三角形不等式可得PA+PB>AB。
PB+PC>BC。
PC+PA>CA。
将三式相加得到2PA+2PB+2PC>AB+BC+CA=3,即PA+PB+PC>3/2.又由于P到三角形三边的距离不超过1,所以PA+PB+PC<3,综上可得1.5≤PA+PB+PC<3,即所求不等式成立。
2.设P为正方形ABCD内任意一点,连接PA,PB,PC,PD。
由于正方形四边相等,所以PA+PC=2,PB+PD=2.又由于P到四边的距离不超过1,所以PA+PB+PC+PD<4.将前两式相加得到PA+PB+PC+PD=2(PA+PB)/2+2(PC+PD)/2≥2√(PA·PB)+2√(PC·P D)。
初中数学动点最值问题19大模型+例题详解,彻底解决压轴难题
动点最值问题永远都是中考最难的压轴类题目,很多同学都反应不知道该怎么下手寻找思路。
其实这类题目的题型有限,全部总结归纳就是这19种,希望同学们对每一种都能掌握技巧,再遇见类似的就能及时找到思路。
PS:可下载电子版打印高清版本,链接文末获取!
1、将军饮马模型(对称点模型)
2、利用三角形两边差求最值
3、手拉手全等取最值
4、手拉手相似取最值
5、平移构造平行四边形求最小
6、两点对称勺子型连接两端求最小
7、两点对称折线连两端求最小
8、时钟模型,中点两定边求最小值
9、时钟模型,相似两定边求最小值
10、转化构造两定边求最值
11、面积转化法求最值
12、相似转化法求最值
13、相似系数化一法求最值
14、三角函数化一求最值
15、轨迹最值
16、三动点的垂直三角形
17、旋转最值
18、隐圆最值-定角动弦
19、隐圆最值-动角定弦。
中考常见最值问题解法大全
中考中的最值问题,常常可以转化为求一个二次多项式的最值问题,也就是二次函数的最值问 题。问题背景多样,最终都可以殊途同归。以下列举几种常见求最值问题的类型及方法。 【知识点】 初中常见的非负数有: a²≥0,|b|≥0,√c≥0, 当a,b,c分别为0时取最小值为0. 常常利用二次函数的性质或配方法来求关于x的二次多项式ax²+bx+c的最值. 公式法: 二次函数y=ax²+bx+c的顶点坐标为(-b/2a,(4ac-b²)/4a), 当x=-b/2a时,y有最值(4ac-b²)/4a. 配方法: ax²+bx+c=a(x+b/2a) ²+(4ac-b²)/4a, 即当x=-b/2a时,y有最值(4ac-b²)/4a. 【题目类型分类解析】 一、常规题目一题多解 【例1】求y=-x²+2x+3的最大值. 解: 配方法: y=-(x-1)²+4,当x=1时,ymax=4. 公式法: y=-x²+2x+3的顶点坐标为(1,4), 所以当x=1时,ymax=4. 判别式法:由y=-x²+2x+3得,-x²+2x+3-y=0, △=4+4(3-y)=16-4y, 因为x的取值范围是全体实数, 原方程必有实数根, 所以△=16-4y≥0,y≤4,即ymax=4. 二、复杂题目换元法 【例2】求y=
的最值. 【总结】分式型,展开各项 解:y=
, 令1/x=t1,即x=1时,y max=4. 【例3】求y=
(x≥1)的最值. 【总结】二次根式型,把被开方数看成整体 解:y=
, 令√(x-1)=t,得y=-t²+2t+3,当√(x-1)=t=1,即x=2时,y max=4. 三、基本不等式问题 高中公式: a+b≥2√ab(a≥0,b≥0), 当且仅当a=b时,等号成立. (说明,可以利用完全平方公式进行配方证明,分别把a与b看成整体的平方) 【例4】求y=x+1/x(x>0)的最值. 根据基本不等式,得y=x+1/x≥2, 当且仅当x=1/x,即x=1(x=-1舍去)时,y=2. 配方法: y=x+1/x=
初三最值问题的常用解法及模型
初三最值问题的常用解法及模型一、引言初三数学中最值问题一直是学生们头疼的难题。
最值问题不仅仅是考察学生对知识点的掌握程度,更重要的是考验学生解决实际问题和推理的能力。
在本文中,我们将探讨初三数学中最值问题的常用解法及模型,帮助学生们更好地理解和应对这一难点。
二、常用解法1. 图形法最值问题常常可以通过图形法来解决。
给定一个函数y = f(x),可以通过画出其图像,然后找出函数的极值点来求解最值问题。
通过观察图像的特点,我们可以更直观地理解函数的最值点在何处,从而得到更准确的解。
2. 性质法有些最值问题可以通过利用函数的性质来解决。
关于一元二次函数的最值问题,我们可以通过一元二次函数的性质,如开口方向、顶点位置等来推导出最值点的位置,从而得到解的方法。
3. 等式法有些最值问题可以通过建立方程或不等式来解决。
通过建立关于未知数的方程或者不等式,我们可以将最值问题转化为解方程或解不等式的问题,从而得到最值点的位置。
三、常用模型1. 长方形面积最大问题给定一段定长的绳子,用这段绳子围成一个长方形,求这个长方形的面积最大是一个最值问题。
通过建立关于长方形面积的函数,然后利用导数的性质找出函数的最值点,从而求解长方形面积最大问题。
2. 等边三角形周长最小问题给定一个定长的线段,求能够围成等边三角形的线段最小是一个常见的最值问题。
通过建立关于等边三角形周长的函数,然后利用导数的性质找出函数的最值点,从而求解等边三角形周长最小问题。
3. 盒子体积最大问题给定一定面积的纸张,通过剪切和折叠,能够制成一个盒子,求使得盒子体积最大的折法是一个典型的最值问题。
通过建立关于盒子体积的函数,然后利用导数的性质找出函数的最值点,从而求解盒子体积最大问题。
四、个人观点和理解最值问题在初三数学中是一个重要的难点,但也是一个可以锻炼学生逻辑思维能力和数学推理能力的好机会。
通过多维度的解法和模型,学生们可以更好地理解和掌握最值问题的解法,并且能够将数学知识与实际问题相结合,培养出更强的数学建模能力。
初中数学最值问题典型例题(含答案分析)
中考数学最值问题总结考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。
(2、代数计算最值问题 3、二次函数中最值问题) 问题原型:饮马问题 造桥选址问题 (完全平方公式 配方求多项式取值 二次函数顶点) 出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。
解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A 、B 是直线l 同旁的两个定点. 问题:在直线l 上确定一点P ,使PA PB +的值最小. 方法:作点A 关于直线l 的对称点A ',连结A B '交l 于 点P ,则PA PB A B '+=的值最小例1、如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM .(1)求证:△AMB ≌△ENB ;(2)①当M 点在何处时,AM+CM 的值最小;②当M 点在何处时,AM+BM+CM 的值最小,并说明理由;(3)当AM+BM+CM 的最小值为 时,求正方形的边长。
AB A '′Pl例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)(1)求抛物线的解析式(2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.(3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.例3、如图1,四边形AEFG与ABCD都是正方形,它们的边长分别为a,b(b≥2a),且点F在AD上(以下问题的结果可用a,b表示)(1)求S△DBF;(2)把正方形AEFG绕点A逆时针方向旋转450得图2,求图2中的S△DBF;(3) 把正方形AEFG绕点A旋转任意角度,在旋转过程中,S△DBF是否存在最大值,最小值?如果存在,试求出最大值、最小值;如果不存在,请说明理由。
中考数学《最值问题》及参考答案
中考数学《最值问题》及参考答案一、轴对称求最小值1.如图,四边形ABCD是边长为6的正方形,△ABC是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的值最小,求这个最小值.2.四边形ABCD中,∠BAD=122°,∠B=∠D=90°,在BC、CD上分别找一点M、N,当△AMN周长最小时,求∠MAN的度数.3.如图,∠AOB =45°,OC为∠AOB内部一条射线,点D为射线OC上一点,OD=√2,点E、F分别为射线0A、OB上的动点,求△DEF周长的最小值.二、垂线段最短求最值4.如图,矩形ABCD中,AD=3,AB=4,M为线段BD上一动点,MP⊥CD于点P,MQ⊥BC于点Q,求PQ 的最小值.5.如图,边长为6的等边三角形ABC中,E是对称轴AD上一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF,则在点E运动的过程中,求DF的最小值.6.如图所示,在RtΔABC中,∠C=90°,AC=4,BC=3,P为AB上一动点(不与A、 B重合),作PE ⊥AC于点E,PF⊥BC于点F,连接EF,求EF的最小值.7.如图,在ΔABC中,∠BAC=90,AB=6,BC=10,BD平分∠ABC,若P,Q分别是BD,AB上的动点,求PA+PQ的最小值.8.如图,Rt△ABC中,∠C=90°,以AB为边在AB上方作正方形ABDE,过点D作DF⊥CB,交CB的延长线于点F,连接BE,P,N分别为AC,BE上的动点,连接AN, PN,若DF=5,AC=9,求AN+PN的最小值.二、两点之间,线段最短求最值9.如图,等边△ABC的边长为4,过点B的直线l⊥AB,且△ABC与△A´B´C´公关于直线l对称,D为线段BC´上一动点,求AD+CD的最小值是( )10.如图,在长方形ABCD中,AB=3,AD=4,动点P满足S△PCD=14S长方形ABCD´,求点P到A,B两点的距离之和PA+PB的最小值.三、三角形三边的关系求最值问题11.如图,在平面直角坐标系中,平行四边形ABCD的坐标分别为A(-1,0)、B(0,2)、 C(4,2)、D(3,0),点P是AD边上的一个动点,若点A关于BP的对称点为A´,求则A´C的最小值.参考答案1.析:连接BP.因为点B 与点D 关于直线AC 对称,所以PB=PD .所以PD+PE =PB+PE≥BE,所以PD+PE 的最小值即为BE 的长.BE =AB =6,则PD+PE 的值最小为6.2.析:如图,延长AB 到A ´使得BA ´=AB,延长AD 到A ´使得DA"=AD,连接A ´A"与BC 、CD 分别交于点M 、N.∵∠ABC=∠ADC=90° ∴ A 、A ´关于BC 对称,A 、A"关于CD 对称,此时ΔAMN 的周长最小∵BA=BA ´,MB ⊥ AB ∴MA =MA ´同理:NA=NA" ∴∠A ´=∠MAB,∠A"=∠NAD∵∠AMN =∠A ´+∠MAB =2∠A ´,∠ANM =∠A"+∠NAD =2∠A"∴∠AMN +∠ANM = 2(∠A ´+∠A")∵∠BAD=122° ∴ ∠A ´+LA"=180°-∠BAD=58° ∴∠AMN +∠ANM=2x58°=116∴∠MAN =180-116°=64°3.析:作点D 作关于OA 的对称点P,点D 关于OB 的对称点Q,连接PQ,与OA 的交点为点E,与OB 的交点为点F.△DEF 的最小周长为DE +EF +QF =PE+EF+QF =PQ连接OP 、OQ,则OP=0Q=√2 ∵∠POQ =2∠AOB=90°∴ΔOPQ 是等腰直角三角形∴PQ =√2OD=2∴ΔDEF 的周长的最小值是2.4.析:如图,连接CM∵MP ⊥CD 于点P,MQ ⊥BC 于点Q ∴∠CPM =∠CQM=90°∴四边形ABCD 是矩形∴BC=AD=3,CD=AB=4,∠BCD=90°∴四边形PCQM 是矩形,PQ =CM∴BD =√32+42=5当CM ⊥BD 时,CM 最小,则PQ 最小,此时,S △BCD =1 2BD ·CM=12BC ·CD ∴PQ 的最小值为125.5.析:取线段AC 的中点G,连接EG∵ΔABC 为等边三角形,AD 为△ABC 的对称轴∴CD=CG=1 2AB=3,∠ACD =60° ∵ ∠ECF =60°∴∠FCD =∠ECG在ΔFCD 和ΔECG 中,FC =EC,∠FCD=∠ECG,DC=GC∴ΔFCD ≌AECG ∴DF =GE当EG ⊥AD 时,EG 最短,即DF 最短∵点G 为AC 的中点,EG=DF=1 2CD=32 6.析: 连接CP.∵∠C=90,AC=3,BC =4 ∴AB =√32+42=5∵PE ⊥AC,PF ⊥BC,∠C=90°∴四边形CFPE 是矩形∴EF =CP由垂线段最短可得CP ⊥AB 时,线段EF 的值最小S △ABC=1 2BC ·AC=12AB ·CP ∴1 2×4×3=12×5·CP ∴CP =2.4 7.如图,作点Q 关于直线BD 的对称点Q ´∵BD 平分∠ABC ∴点Q 在BC 上连接PQ ´,则PA+PQ 的最小值即为PA+PQ ´的最小值∴当A 、P 、Q ´三点共线且AQ ´⊥BC 时,PA+PQ 的值最小过点A 作AM ⊥BC 于点M,则PA+PQ 的最小值即为AM 的长∵AB=6,BC=10 ∴AC ²=10²-6²=64 ∴AC=8∵ S △ABC =1 2AM ·BC=1 2AB ·AC ∴AM=AB·AC BC =48 10=4.88.析:连接AD ,与BE 交于点O∵四边形ABDE 是正方形 ∴BE ⊥AD,OD =OA ,点A 与点D 关于直线BE 对称 求PN + AN 的最小值,只需D ,N ,P 在同一条直线上,由于P ,N 分别是AC 和BE 上的动点,过点D 作DP ⊥AC 于P 交BE 于点 N ,此时PN + AN =PN+ND=PD ,由△ABC ≌ △BDF 可知,BF= AC = 9,BC=DF=5,易知四边形DFCP 是矩形,CF=PD=BF+BC=9+5=149.析:如图,连接AD∵△ABC 是边长为4的等边三角形 ∴AB =BC=4,∠ABC=60° ∵△ABC 与△ A ´B ´C ´关于直线l 对称∴A ´B=BC,∠AB ´C ´=60°∴∠CBC ´=60°=∠A ´BD∴△BCD ≌△BA ´D(SAS)∴A ´D=CD ∴CD +AD =AD +A ´D当A 、D 、A ´三点共线时,AD+A ´D 最小,此时CD+AD 最小,最小为4+4=8.10.析:如图,设APC 的CD 边上的高是h.∵S △PCD =1 2S 长形ABCD ,AD=4 ∴1 2·CD ·h =1 4CD ·AD ∴h=12AD=2 ∵动点P 在与CD 平行且与CD 的距离是2的直线l 上连接AC 交直线l 于点P ´∵l//CD,AD=4,四边形ABCD 是长方形 ∴l ⊥AD,l ⊥BC∴直线l 是BC 边的垂直平分线 ∴BP ´=CP ´∴AP ´+BP ´=AP ´+CP ´ ∴ AC 的长是最短距离∴AC=√32+4=5,PA +PB 的最小值为5.11.析:连接BA ´∵AB=√5,BC =4若点A 关于BP 的对称点为A ´ ∴BA ´=BA=√5在△BA ´C 中,A ´C ≥BC-BA ´,即AC ´≥4-√5∴AC ´的最小值为4-√5。
初中数学最值问题典型例题(含答案分析)
中考数学最值问题总结考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。
(2、代数计算最值问题3、二次函数中最值问题)问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。
解题总思路:找点关于线的对称点实现“折”转“直”几何基本模型:条件:如下左图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA PB+的值最小.方法:作点A关于直线l的对称点A',连结A B'交l于点P,则PA PB A B'+=的值最小例1、如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2)①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;(3)当AM+BM+CM的最小值为时,求正方形的边长。
ABA'′Pl例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)(1)求抛物线的解析式(2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.(3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.例3、如图1,四边形AEFG与ABCD都是正方形,它们的边长分别为a,b(b≥2a),且点F 在AD上(以下问题的结果可用a,b表示)(1)求S△DBF;(2) 把正方形AEFG绕点A逆时针方向旋转450得图2,求图2中的S△DBF;(3) 把正方形AEFG绕点A旋转任意角度,在旋转过程中,S△DBF是否存在最大值,最小值?如果存在,试求出最大值、最小值;如果不存在,请说明理由。
初中数学最值问题典型例题(含答案解析分析)
中考数学最值问题总结考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。
(2、代数计算最值问题 3、二次函数中最值问题)问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。
解题总思路:找点关于线的对称点实现“折”转“直”几何基本模型:条件:如下左图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA PB+的值最小.方法:作点A关于直线l的对称点A',连结A B'交l于点P,则PA PB A B'+=的值最小例1、如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2)①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;(3)当AM+BM+CM的最小值为时,求正方形的边长。
ABA'′Pl例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)(1)求抛物线的解析式(2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H 四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.(3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线MN ∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.例3、如图1,四边形AEFG与ABCD都是正方形,它们的边长分别为a,b(b≥2a),且点F在AD上(以下问题的结果可用a,b表示)(1)求S△DBF;(2) 把正方形AEFG绕点A逆时针方向旋转450得图2,求图2中的S△DBF;(3) 把正方形AEFG绕点A旋转任意角度,在旋转过程中,S△DBF是否存在最大值,最小值?如果存在,试求出最大值、最小值;如果不存在,请说明理由。
初三数学最值问题模型
初三数学最值问题模型数学中的最值问题是非常经典的数学问题之一,初三学生也需要掌握这一基本知识。
下面,我将为大家介绍初三数学中的最值问题模型。
一、最大值问题最大值问题是指,在所有条件下使某一问题要求的数值最大的数,即为该问题的最大值。
初三数学中最大值问题多表现为以下几种:1.1 一次函数最大值问题一次函数可以表示为y = kx + b的形式,其中k为斜率,b为截距。
最大值问题就是要让y最大。
解题步骤:(1)求出y的表达式,设最大值点为(x0,y0)(2)化简y的表达式,得出x0的值(3)将x0的值带入y的表达式,得出y0的值(4)最大值为(y0, x0)1.2 二次函数最大值问题二次函数一般可以写成 y = ax^2 + bx + c 的形式。
指数为 2 的函数图像是一个抛物线,有一个最值点。
求二次函数的最大值就是求最值点。
解题步骤:(1)求出函数的导函数(2)将函数的导函数等于 0,求得所有的极值点(3)求出函数在每个极值点的函数值(4)最大值就是所有函数值中最大的一个1.3 正比例函数最大值问题正比例函数可以表示为 y = kx ,其中k为比例常数。
最大值问题就是要让y最大。
解题步骤:(1)求出y的表达式,设最大值点为(x0,y0)(2)化简y的表达式,得出x0的值(3)将x0的值带入y的表达式,得出y0的值(4)最大值为(y0, x0)1.4 平方差最大值问题平方差最大值问题是指,已知两个实数a和b,在满足a+b=k(k为常数)的条件下,使(a-b)的平方最大。
该问题也可以通过求导的方法解决。
二、最小值问题最小值问题与最大值问题非常相似,只是将最大值的条件改为最小值。
2.1 一次函数最小值问题解题步骤与一次函数最大值问题类似。
2.2 二次函数最小值问题解题步骤与二次函数最大值问题类似。
2.3 反比例函数最小值问题反比例函数可以表示为 y = k/x ,其中k为比例常数。
最小值问题就是要让y最小。
中考数学经典几何模型:最值.doc
中考数学经典几何模型:最值类型一“将军饮马”模型通过对称进行等量代换,转化成两点之间的距离或点到直线的距离,或利用三角形两边之和大于第三边,两边之差小于第三边求得最值。
1、同侧、异侧两线段之和最短2、同侧、异侧两线段之差最大、最小例1:已知A. B. C. D四点如图所示,请画出一点P,使P到点A. B. C. D的距离之和最小,并说明理由。
简答:连接AD、BC,令其交点为P,在线段BC上任取一点Q(不同于点P),连接AQ、DQ,如图所示。
∵点P,点Q均在线段BC上,∴PB+PC=QB+QC,∵点P在线段AD上,∴PA+PD=AD,在△QAD中,QA+QDAD(两边之和大于第三边),即QA+QB+QC+QDPA+PB+PC+PD.∴线段AD、BC的交点P为所要找的点。
例2:如图:A,B两点在直线的两侧,点A到直线的距离AM=4,点B到直线的距离BN=2,且MN=4,P为直线上的动点,PA+PB的最小值为,|PA−PB|的最大值为,|PA−PB|的最小值为。
简答:(1)连接AB,交MN于点P,此时PA+PB最小=2√13(2)作B点关于MN的对称点B′,连接AB′并延长,与直线MN交于点P,此时|PA−PB|的值最大=PA-PB′=AB′=2√5理由:在直线MN上任找异于点P的一点P′,连接P′A,P′B′由三角形两边之差小于第三边可知,P′A-P′B≤AB′,当A、B′、P′三点共线时,取得最值(3)易知:在直线MN上存在一点P,使得PA=PB,此时|PA−PB|的值最小为03、三角形、四边形周长最小例1:如图,在四边形ABCD中,∠BAD=110∘,∠B=∠D=90∘.在BC,CD上分别找一点M,N,使△AMN周长最小,则∠AMN+∠ANM的度数为.解答:如图,作点A关于BC的对称点A′,关于CD的对称点A″,连接A′A″与BC、CD的交点即为所求的点M、N,∵∠BAD=110∘,∠B=∠D=90°,∴∠A′+∠A″=180°−110°=70°,由轴对称的性质得:∠A′=∠A′AM,∠A″=∠A″AN,∴∠AMN+∠ANM=2(∠A′+∠A″)=2×70°=140°.例2:如图,∠MON=20°,A、B分别为射线OM、ON上两定点,且OA=2,OB=4,点P、Q分别为射线OM、ON两动点,当P、Q运动时,线段AQ+PQ+PB的最小值是解答:作A关于ON的对称点A′,点B关于OM的对称点B′,连接A′B′,交于OM,ON分别为P,Q,连接OA′,OB′,则PB′=PB,AQ=A′Q,OA′=OA=2,OB′=OB=4,∠MOB′=∠NOA′=∠MON=20°,∴AQ+PQ+PB=A′Q+PQ+PB′=A′B′,∠A′OB′=60°,∵cos60°=1/2,OA′/OB′=1/2,∴∠OA′B′=90°,∴A′B′=2√3,∴线段AQ+PQ+PB的最小值是:2√3.4、需要平移的“将军饮马”例题:如图,已知四边形ABCD四个顶点的坐标为A(1,3),B(m,0),C(m+2,0),D(5,1),当四边形ABCD的周长最小时,m的值为______.解答:将C点向左平移2单位与B重合,点D向左平移2单位到D′(3,1),作D′关于x轴的对称点D″,则点D″(3,−1),设直线AD″的解析式为y=kx+b,带入A、D″两点坐标,解得k=−2,b=5.∴直线AD″的解析式为y=−2x+5.当y=0时,x=5/2,即B(5/2,0),∴m=5/2.5、点到直线垂线段最短例1:如图,在菱形ABCD中,AB=6,∠B=60∘,点G是边CD边的中点,点E. F分别是AG、AD上的两个动点,则EF+ED的最小值是.解答:如图作DH⊥AC垂足为H与AG交于点E,∵四边形ABCD是菱形,∵AB=AD=CD=BC=6,∵∠B=60°,∴∠ADC=∠B=60°,∴△ADC是等边三角形,∵AG是中线,∴∠GAD=∠GAC∴点H关于AG的对称点F在AD上,此时EF+ED最小=DH.∴EF+DE的最小值=DH=3√3例2:如图,矩形ABCD中,AD=5,AB=12,点M在AC上,点N在AB上,则BM+MN的最小值为( )简答:作B点关于AC的对称点E点,过E作EF垂直AB交AB于F点,AC=13,AC边上的高为60/13,所以BE=120/13.∵△ABC∽△BEF,∴AB/EF=AC/BE,求得EF=1440/169.类型二由已知定长线段求最值找到与所求最值相关成三角形的两个定长线段,定长线段的和为最大值,定长线段的差为最小值。
2020中考 最值19大模型
16、三动点的垂直三角形
17、旋转最值
18、隐圆最值-定角动弦
关 注 初 中 数 学 ( chuzhong -shuxue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详 解以 及 数 姐 贴 心 答 疑 解 惑 。
19、隐圆最值-动角定弦
关 注 初 中 数 学 ( chuzhong -shuxue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详 解以 及 数 姐 贴 心 答 疑 解 惑 。
6、两点对称勺子型连接两端求最小
关 注 初 中 数 学 ( chuzhong -shuxue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详 解以 及 数 姐 贴 心 答 疑 解 惑 。
7、两点对称折线连两端求最小
8、时钟模型,中点两定边求最小值
关 注 初 中 数 学 ( chuzhong -shuxue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详 解以 及 数 姐 贴 心 答 疑 解 惑 。
4、手拉手相似取最值
关 注 初 中 数 学 ( chuzhong -shuxue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详 解以 及 数 姐 贴 心 答 疑 解 惑 。
5、平移构造平行四边形求最小
关 注 初 中 数 学 ( chuzhong -shuxue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详 解以 及 数 姐 贴 心 答 疑 解 惑 。
12、相似转化法求最值
关 注 初 中 数 学 ( chuzhong -shuxue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详 解以 及 数 姐 贴 心 答 疑 解 惑 。