2018届人教A版 变量间的相关关系与统计案例 检测卷

合集下载

2018年高考数学人教A版 文科真题演练集训:10-3变量间

2018年高考数学人教A版 文科真题演练集训:10-3变量间

真题演练集训1.[2015·新课标全国卷Ⅱ]根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关答案:D解析:依据给出的柱形图,逐项验证.对于A选项,由图知从2007年到2008年二氧化硫排放量下降得最多,故A正确.对于B选项,由图知,由2006年到2007年矩形高度明显下降,因此B正确.对于C选项,由图知从2006年以后除2011年稍有上升外,其余年份都是逐年下降的,所以C正确.由图知2006年以来我国二氧化硫年排放量与年份负相关,故选D.2.[2015·福建卷]为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y =b x +a ,其中b =0.76,a ^=y --b ^x .据此估计,该社区一户年收入为15万元家庭的年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元 答案:B解析:先求a ^,再利用回归直线方程预测. 由题意知,x =8.2+8.6+10.0+11.3+11.95=10, y =6.2+7.5+8.0+8.5+9.85=8, ∴ a ^=8-0.76×10=0.4,∴ 当x =15时,y ^=0.76×15+0.4=11.8(万元).3.[2016·新课标全国卷Ⅲ]下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1-7分别对应年份2008-2014.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明;(2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.参考数据:∑i =17y i =9.32,∑i =17t i y i =40.17,i =17(y i -y )2=0.55,7≈2.646.参考公式:相关系数r =∑i =1n(t i -t )(y i -y )∑i =1n(t i -t )2∑i =1n(y i -y )2,回归方程y^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为b ^=∑i =1n(t i -t )(y i -y )∑i =1n(t i -t )2,a ^=y -b ^t .解:(1)由折线图中数据和附注中参考数据得 t =4,∑i =17(t i -t )2=28,∑i =17(y i -y )2=0.55,∑i =17 (t i -t )(y i -y )=∑i =17t i y i -t ∑i =17y i =40.17-4×9.32=2.89,r ≈ 2.890.55×2×2.646≈0.99. 因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由y =9.327≈1.331及(1)得b ^=∑i =17(t i -t )(y i -y )∑i =17(t i -t )2=2.8928≈0.103,a ^=y -b ^t ≈1.331-0.103×4≈0.92. 所以,y 关于t 的回归方程为y ^=0.92+0.10t .将2016年对应的t =9代入回归方程得y ^=0.92+0.10×9=1.82. 所以预测2016年我国生活垃圾无害化处理量约为1.82亿吨. 4.[2015·新课标全国卷Ⅰ]某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i =x i ,w =18∑i =18w i .(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程. (3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题:①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为β^=∑i =1n(u i -u )(v i -v )∑i =1n(u i -u )2,α^=v -β^u .解:(1)由散点图可以判断,y =c +d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2)令w =x ,先建立y 关于w 的线性回归方程.由于d ^=∑i =18(w i -w )(y i -y )∑i =18(w i -w )2=108.81.6=68,c ^=y -d ^w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w , 因此y 关于x 的回归方程为y ^=100.6+68x . (3)①由(2)知,当x =49时,年销售量y 的预报值y ^=100.6+6849=576.6,年利润z 的预报值z ^=576.6×0.2-49=66.32. ②根据(2)的结果知,年利润z 的预报值 z ^=0.2(100.6+68x )-x =-x +13.6x +20.12. 所以当x =13.62=6.8,即x =46.24时,z ^取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大.5.[2014·新课标全国卷Ⅱ]某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表:(1)求y 关于t 的线性回归方程;(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:b ^=∑i =1n(t i -t )(y i -y )∑i =1n(t i -t )2,a ^=y -b ^t .解:(1)由所给数据计算得t =17×(1+2+3+4+5+6+7)=4,y =17×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∑i =17(t i -t )2=9+4+1+0+1+4+9=28,∑i =17(t i -t )(y i -y )=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,b ^=∑i =17(t i -t )(y i -y )∑i =17(t i -t )2=1428=0.5,a ^=y -b ^t =4.3-0.5×4=2.3.所求回归方程为y ^=0.5t +2.3.(2)由(1)知,b ^=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t =9代入(1)中的回归方程,得y ^=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.。

2018届高中数学人教A版 (文)15统计与统计案例单元测试 Word版 含答案

2018届高中数学人教A版 (文)15统计与统计案例单元测试 Word版 含答案

专题15 统计与统计案例1.已知样本789x y 、、、、的平均数是8,则xy 值为A . 8B . 32C . 60D . 80【答案】C 【解析】由78982x y ++++==得=60xy ,故选C.2.某校高一(1)班共有54人,如图是该班期中考试数学成绩的频率分布直方图,则成绩在[]100,120内的学生人数为A . 36B . 27C . 22 D.11【答案】B3.如图是2014年在某电视节目中七位评委为某民族舞蹈打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为A . 84,4.84B . 84,1.6C . 85,1.6D . 85,4【答案】C【解析】由茎叶图知,去掉一个最高分93和一个最低分79后,所剩数据84,84,86,84,87的平均数为=85,方差为 [(84-85)2+(84-85)2+(86-85)2+(84-85)2+(87-85)2]==1.6.故选C.4.某企业有职工450人,其中高级职工45人,中级职工135人,一般职工270人,现抽30人进行分层抽样,则各职称人数分别为()A.5,10,15 B. 5,9,16 C. 3,10,17 D. 3,9,18【答案】D点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1)nN样本容量该层抽取的个体数总体个数该层的个体数;(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.5.具有线性相关关系的两变量满足的一组数据如下表,若与的回归直线方程为,则的值为()A. 4 B. C. 5 D. 6【答案】A【解析】由表中数据得:,根据最小二乘法,将代入回归方程,得,故选A.6.某商场在国庆黄金周的促销活动中,对10月2日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时到12时的销售额为()A. 6万元 B. 8万元 C. 10万元 D. 12万元【答案】C【解析】设11时到12时的销售额为万元,依题意有,,故选C.点睛:利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.7.下面对相关系数r描述正确的是()r>表明两个变量负相关 B.r>1表明两个变量正相关A.0C.r只能大于零 D.r越接近于0,两个变量相关关系越弱【答案】D。

变量间的相关关系、统计案例高中数学分类题复习练习含答案解析北京海淀

变量间的相关关系、统计案例高中数学分类题复习练习含答案解析北京海淀

变量间的相关关系、统计案例一、解答题1.(2018·全国卷II高考理科·T18)同 (2018·全国卷II高考文科·T18) (12分)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①:=-30.4+13.5t;根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立模型②:=99+17.5t.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值.(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【命题意图】本题考查线性回归方程的运用和函数模型的拟合选用,重点考查学生的识图、读图能力和数据分析能力.【解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为=-30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:方法一:从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=-30.4+13.5t上下.这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.方法二:从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理.说明利用模型②得到的预测值更可靠.2.(2018·全国Ⅲ高考理科·T18) 同(2018·全国Ⅲ高考文科·T18) (12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由.(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:超过m不超过m第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:K2=,P0.050 0.010 0.001k03.841 6.635 10.828【命题意图】本题以茎叶图为载体,考查样本数据的数字特征以及独立性检验的相关知识,考查数据分析整理能力、运算求解能力,体现了数学运算的核心素养.试题难度:中.【解析】(1)第二种生产方式的效率更高.理由如下:方法一:由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80min,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79min.因此第二种生产方式的效率更高.方法二:由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5min,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5min.因此第二种生产方式的效率更高.方法三:由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80min;用第二种生产方式的工人完成生产任务平均所需时间低于80min,因此第二种生产方式的效率更高.方法四:由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.(2)由茎叶图知m==80.列联表如下:超过m不超过m第一种生产方式15 5第二种生产方式 5 15(3)由于K2的观测值k==10>6.635,所以有99%的把握认为两种生产方式的效率有差异.。

2018年高考数学(人教A版)一轮复习课时分层提升练五十六9-4变量间的相关关系与统计案例Word版含解析

2018年高考数学(人教A版)一轮复习课时分层提升练五十六9-4变量间的相关关系与统计案例Word版含解析

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

课时分层提升练五十六变量间的相关关系与统计案例(25分钟45分)一、选择题(每小题5分,共20分)1.有下列关于回归分析的说法:①线性回归分析就是由样本点去寻找一条直线,使之贴近这些样本点的方法;②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系去表示;③通过回归方程=x+可以估计变量的取值和观测变量的变化趋势;④因为由任何一组观测值都可以求得一个线性回归方程,所以没有必要进行相关性检验.其中正确的个数是( )A.1B.2C.3D.4【解析】选C.①反映的是最小二乘法的思想,故正确;②反映的是散点图的作用,也正确;③解释的是回归方程=x+的作用,也正确;④是不正确的,在求回归方程之前必须进行相关性检验,以体现两变量的关系.2.(2017·宜昌模拟)某市2015年前n个月空气质量优良的总天数S n与n之间的关系如图所示,若前m月的月平均空气质量优良天数最大,则m值为( )A.7B.9C.10D.12【解题提示】根据题意,结合图形,分析出平均值的几何意义为原点与该点连线的斜率,由此得出答案.【解析】选C.前n个月的总天数S n与n在图中对应P(n,S n)点,则前n 个月的月平均值即为直线OP的斜率,由图易得当n=10时,直线OP的斜率最大,即前10个月的月平均值最高,故m的值为10.3.(2017·孝义模拟)已知x,y取值如表:画散点图分析可知:y与x线性相关,且求得回归方程为=x+1,则m的值(精确到0.1)为( )A.1.5B.1.6C.1.7D.1.8【解析】选C.将=3.2代入回归方程=x+1可得=4.2,则4m=6.7,解得m=1.675,即精确到0.1后m的值为1.7.4.(2017·德州模拟)为了增强环保意识,某校从男生中随机抽取了60人,从女生中随机抽取了50人参加环保知识测试,统计数据如表所示,经计算K2≈7.822,则在犯错误的概率不超过的前提下认为环保知识是否优秀与性别有关( )附:K2=.A.0.100B.0.050C.0.010D.0.001【解题提示】根据K2的值,对照数表即可得出结论.【解析】选C.由题意,K2≈7.822>6.635,所以,在犯错误的概率不超过0.010的情况下认为环保知识是否优秀与性别有关.【加固训练】(2017·安庆模拟)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )表1表2表3表4A.成绩B.视力C.智商D.阅读量【解析】选D.因为k1==,k2==,k3==,k4==,则有k4>k2>k3>k1,所以阅读量与性别关联的可能性最大.二、填空题(每小题5分,共15分)5.(2017·唐山模拟)某市居民2011~2015年家庭年平均收入x(单位:万元)与年平均支出y(单位:万元)的统计资料如表所示:根据统计资料,居民家庭年平均收入的中位数是,家庭年平均收入与年平均支出有线性相关关系.【解析】由中位数的定义知,总体个数为奇数个时按大小顺序排列后中间一个是中位数,而偶数个时需取中间两数的平均数.由统计资料可以看出,当年平均收入增多时,年平均支出也增多,因此两者之间具有正线性相关关系.答案:13正6.为了考察是否喜欢运动与性别之间的关系,得到一个2×2列联表,经计算K2的观测值k=6.679,则在犯错误的概率不超过的前提下认为是否喜欢运动与性别有关系. 本题可以参考独立性检验临界值表【解析】由于K 2=6.679>6.635,所以在犯错误的概率不超过0.01的前提下认为是否喜欢运动与性别有关系. 答案:0.01 【加固训练】(2017·深圳模拟)某中学将100名高一新生分成水平相同的甲,乙两个“平行班”,每班50人.陈老师采用A,B 两种不同的教学方式分别在甲,乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下,记成绩不低于90分者为“成绩优秀”.由以上统计数据填写下面2×2列联表,并判断是否有90%的把握认为“成绩优秀”与教学方式有关.【解析】由已知数据得:根据2×2列联表中数据,K2=≈3.137>2.706,所以有90%的把握认为“成绩优秀”与教学方式有关.7.(2017·岳阳模拟)车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归方程=0.67x+54.9.现发现表中有一个数据看不清,请你推断出该数据的值为.【解析】由已知可计算求出=30,而回归直线方程必过点(,),则=0.67×30+54.9=75,设模糊数据为a,则=75,计算得a=68.答案:68三、解答题8.(10分)(2017·成都模拟)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:(1)求y关于t的回归方程=t+.(2)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.附:回归方程=t+中,=,=-.【解题提示】(1)直接利用回归系数公式求解即可.(2)利用回归方程代入直接进行计算即可.【解析】(1)列表计算如下:这里n=5,=t i==3,=y i==7.2.又-n=55-5×32=10,t i y i-n=120-5×3×7.2=12,从而==1.2,=-=7.2-1.2×3=3.6,故所求回归方程为=1.2t+3.6.(2)将t=6代入回归方程可预测该地区2015年的人民币储蓄存款为=1.2×6+3.6=10.8(千亿元).【加固训练】(2017·湖南模拟)某城市100户居民的月平均用电量(单位:度)以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x的值.(2)求月平均用电量的众数和中位数.(3)在月平均用电量[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?【解题提示】(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得.(2)直方图中众数为最高矩形上端的中点,中位数在[220,240)内,设中位数为a,解方程(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5可得.(3)可得各段的用户分别为25,15,10,5,可得抽取比例,可得要抽取的户数.【解析】(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005 +0.0025)×20=1,解方程可得x=0.0075,所以直方图中x的值为0.0075.(2)月平均用电量的众数是=230,因为(0.002+0.0095+0.011)×20=0.45<0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5可得a=224,所以月平均用电量的中位数为224.(3)月平均用电量为[220,240)的用户有0.0125×20×100=25,月平均用电量为[240,260)的用户有0.0075×20×100=15,月平均用电量为[260,280)的用户有0.005×20×100=10,月平均用电量为[280,300]的用户有0.0025×20×100=5,所以抽取比例为=,所以月平均用电量在[220,240)的用户中应抽取25×=5户.(20分钟40分)1.(5分)(2017·咸阳模拟)某产品的广告费用x与销售额y的统计数据如下表:根据下表可得回归方程=x+中的=10.6,据此模型预报广告费用为10万元时销售额为( )A.112.1万元B.113.1万元C.113.9万元D.111.9万元【解析】选D.因为==3.5,==43,将(3.5,43)代入=10.6x+中得=5.9,=10.6x+5.9,当x=10时,y=111.9.2.(5分)(2017·鹰潭模拟)以下四个命题:①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量相关性越强,则相关系数的绝对值越接近1;③在回归方程=0.2x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.2个单位;④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越小,“X 与Y有关系”的把握程度越大.其中正确的是( )A.①④B.②③C.①③D.②④【解题提示】第一个命题应是一个系统抽样,这个说法不正确;两个随机变量相关性越强,则相关系数的绝对值越接近1;在回归方程中,代入一个x的值,得到的是预报值;对分类变量X与Y,它们的随机变量K2的观测值k来说,k越大,“X与Y有关系”的把握程度越大.【解析】选B.从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是系统抽样,故①不正确;两个随机变量相关性越强,则相关系数的绝对值越接近1,②正确;在回归方程=0.2x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.2个单位,③正确;对分类变量X与Y,它们的随机变量K2的观测值k来说,k越大,“X与Y有关系”的把握程度越大,④不正确.3.(5分)已知x,y之间的一组数据如下表:对于表中数据,现给出如下拟合直线:①y=x+2;②y=3x-1;③y=x-;④y=x.则根据最小二乘法的思想求得拟合程度最好的直线是(填序号).【解析】由题意知=4,=6,所以==,所以=-=-,所以=x-,所以填③.答案:③4.(12分)(2017·柳州模拟)某城市城镇化改革过程中最近五年居民生活用水量逐年上升,下表是2011至2015年的统计数据:(1)利用所给数据求年居民生活用水量与年份之间的回归方程=x+.(2)根据改革方案,预计在2020年底城镇化改革结束,到时候居民的生活用水量将趋于稳定,预计该城市2023年的居民生活用水量.参考公式:==,=-.【解题提示】(1)根据回归系数公式计算回归系数,得出回归方程. (2)由于到2020年用水量趋于稳定,故2023年的用水量约等于2020年的用水量,把x=2020代入回归方程求出用水量的估计值.【解析】(1)=2013,==260.2,(x i-)(y i-)=(-2)×(-24.2)+(-1)×(-14.2)+0+1×15.8+2×25.8=130.(x i-)2=4+1+0+1+4=10.所以==13,所以回归方程为-260.2=13(x-2013),即=13(x-2013)+260.2.(2)当x=2020时,y=13(2020-2013)+260.2=351.2(万吨).答:该城市2023年的居民生活用水量预计为351.2万吨.5.(13分)(2017·唐山模拟)二手车经销商小王对其所经营的某一型号二手汽车的使用年数x(0<x≤10)与销售价格y(单位:万元/辆)进行整理,得到如表的对应数据:(1)试求y关于x的回归方程.(2)已知每辆该型号汽车的收购价格为w=0.05x2-1.75x+17.2万元,根据(1)中所求的回归方程,预测x为何值时,小王销售一辆该型号汽车所获得的利润z最大?【解题提示】(1)由表中数据计算,,求出,,即可写出回归方程. (2)写出利润函数z=y-w,利用二次函数的图象与性质求出x,使z取得最大值.【解析】(1)由表中数据得,=×(2+4+6+8+10)=6,=×(16+13+9.5+7+4.5)=10,由公式求得==-1.45,=10-(-1.45)×6=18.7,所以y关于x的回归方程为y=-1.45x+18.7.(2)根据题意,利润函数为z=y-w=(-1.45x+18.7)-(0.05x2-1.75x+17.2)=-0.05x2+0.3x+1.5,所以,当x=-=3时,二次函数z取得最大值;即预测x=3时,小王销售一辆该型号汽车所获得的利润z最大.关闭Word文档返回原板块。

【高三数学试题精选】2018届高考文科总复习变量间的相关关系课时检测试卷(含答案)

【高三数学试题精选】2018届高考文科总复习变量间的相关关系课时检测试卷(含答案)

2018届高考文科总复习变量间的相关关系课时检测试卷
(含答案)
5
时跟踪检测 (五十七) 变量间的相关关系统计案例
一抓基础,多练小题做到眼疾手快
1.(2018 重庆适应性测试)为了判定两个分类变量X和是否有关系,应用独立性检验法算得2的观测值为5,又已知P(2≥3.841)=0.05,P(2≥6.635)=0.01,则下列说法正确的是( ) A.有95%的把握认为“X和有关系”
B.有95%的把握认为“X和没有关系”
c.有99%的把握认为“X和有关系”
D.有99%的把握认为“X和没有关系”
解析选A 依题意,2=5,且P(2≥3.841)=0.05,因此有95%的把握认为“X和有关系”,选A.
2.某司在2018年上半年的收入x(单位万元)与月支出(单位万元)的统计如表所示
月份123456
收入x12.314.515.017.019.820.6
支出5.635.755.825.896.116.18
根据统计,则( )
A.月收入的中位数是15,x与有正线性相关关系
B.月收入的中位数是17,x与有负线性相关关系
c.月收入的中位数是16,x与有正线=4.
二保高考,全练题型做到高考达标
1.在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据,并制作成如图所示的人体脂肪含量与年龄关系的散点图.根据该图,下列结论中正确的是( )。

2018届人教A版(文) 变量间的相关关系与统计案例 检测卷

2018届人教A版(文)       变量间的相关关系与统计案例   检测卷

第2讲变量间的相关关系与统计案例一、选择题1.有五组变量:①汽车的重量和汽车每消耗1升汽油所行驶的平均路程;②平均日学习时间和平均学习成绩;③某人每日吸烟量和身体健康情况;④圆的半径与面积;⑤汽车的重量和每千米耗油量.其中两个变量成正相关的是( )A.①③B.②④C.②⑤D.④⑤解析由变量的相关关系的概念知,②⑤是正相关,①③是负相关,④为函数关系,故选C.答案C2.已知x,y取值如下表:从所得的散点图分析可知:y与x线性相关,且y=0.95x+a,则a=().A.1.30 B.1.45 C.1.65 D.1.80解析依题意得,x=16×(0+1+4+5+6+8)=4,y=16×(1.3+1.8+5.6+6.1+7.4+9.3)=5.25.又直线y^=0.95x+a必过样本中心点(x,y),即点(4,5.25),于是有5.25=0.95×4+a,由此解得a=1.45,选B.答案 B3.在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且有99%以上的把握认为这个结论是成立的,则下列说法中正确的是( ).A.100个吸烟者中至少有99人患有肺癌B.1个人吸烟,那么这人有99%的概率患有肺癌C.在100个吸烟者中一定有患肺癌的人D.在100个吸烟者中可能一个患肺癌的人也没有解析统计的结果只是说明事件发生可能性的大小,具体到一个个体不一定发生.答案 D4.某产品的广告费用x与销售额y的统计数据如下表:根据上表可得回归方程y=b x+a中的b为9.4,据此模型预报广告费用为6万元时销售额为().A.63.6万元B.65.5万元C.67.7万元D.72.0万元解析x=4+2+3+54=3.5(万元),y=49+26+39+544=42(万元),∴a^=y-b^x=42-9.4×3.5=9.1,∴回归方程为y^=9.4x+9.1,∴当x=6(万元)时,y^=9.4×6+9.1=65.5(万元).答案 B5.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y对xA.y=x-1 B.y=x+1C.y=88+12x D.y=176解析由题意得x=174+176+176+176+1785=176(cm),y=175+175+176+177+1775=176(cm),由于(x,y)一定满足线性回归方程,经验证知选C.答案 C6.已知数组(x1,y1),(x2,y2),…,(x10,y10)满足线性回归方程y^=bx+a,则“(x0,y0)满足线性回归方程y^=bx+a”是“x0=x1+x2+…+x1010,y0=y1+y2+…+y1010”的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析x0,y0为这10组数据的平均值,又因为线性回归方程y^=bx+a必过样本中心(x,y),因此(x,y)一定满足线性回归方程,但满足线性回归方程的除了(x,y)外,可能还有其他样本点.答案 B二、填空题7.已知施化肥量x与水稻产量y的试验数据如下表,则变量x与变量y是________相关(填“正”或“负”).解析图如图所示:通过观察图象可知变量x与变量y是正相关.答案 正8.考古学家通过始祖鸟化石标本发现:其股骨长度x (cm)与肱骨长度y (cm)的线性回归方程为y ^=1.197x -3.660,由此估计,当股骨长度为50 cm 时,肱骨长度的估计值为________ cm.解析 根据线性回归方程y ^=1.197x -3.660,将x =50代入得y =56.19,则肱骨长度的估计值为56.19 cm. 答案 56.199.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未使用血清的人一年中的感冒记录作比较,提出假设H 0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K 2≈3.918,经查临界值表知P (K 2≥3.841)≈0.05.则下列结论中,正确结论的序号是________.①有95%的把握认为“这种血清能起到预防感冒的作用”; ②若某人未使用该血清,那么他在一年中有95%的可能性得感冒; ③这种血清预防感冒的有效率为95%; ④这种血清预防感冒的有效率为5%.解析K 2≈3.918>3.841,而P (K 2≥3.841)≈0.05,所以有95%的把握认为“这种血清能起到预防感冒的作用”;但检验的是假设是否成立和该血清预防感冒的有效率是没有关系的,不是同一个问题,不要混淆,正确序号为①. 答案①10.某数学老师身高176 cm ,他爷爷、父亲和儿子的身高分别是173 cm 、170 cm 和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________ cm.解析 由题意父亲身高x cm 与儿子身高y cm 对应关系如下表:则x =173+170+1763=173,y =170+176+1823=176,i =13(x i -x )(y i -y )=(173-173)×(170-176)+(170-173)×(176-176)+(176-173)(182-176)=18,i =13(x i -x )2=(173-173)2+(170-173)2+(176-173)2=18.∴b^=1818=1.∴a ^=y -b^x =176-173=3. ∴线性回归直线方程y ^=b ^x +a ^=x +3.∴可估计孙子身高为182+3=185(cm). 答案 185 三、解答题7.某班主任对全班50名学生进行了作业量多少的调查.数据如下表:(1)(2)试通过计算说明在犯错误的概率不超过多少的前提下认为喜欢玩游戏与作业量的多少有关系? 附:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d )解 (1)(2)将表中的数据代入公式K 2=(a +b )(c +d )(a +c )(b +d )得到K 2的观测值k =50×(18×15-8×9)226×24×27×23≈5.059>5.024,查表知P (K 2≥5.024)=0.025,即说明在犯错误的概率不超过0.025的前提下认为喜欢玩游戏与作业量的多少有关系.8.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据.(1)(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y ^=b ^x+a^; (3)已知该厂技改前生产100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5) 解 (1)由题设所给数据,可得散点图如图所示.(2)由对照数据,计算得:∑i =14x 2i =86,x =3+4+5+64=4.5(吨),y =2.5+3+4+4.54=3.5(吨). 已知∑i =14x i y i =66.5, 所以,由最小二乘法确定的回归方程的系数为:b^=∑i =14x i y i -4x ·y∑i =14x 2i -4x2=66.5-4×4.5×3.586-4×4.52=0.7,a^=y -b ^x =3.5-0.7×4.5=0.35. 因此,所求的线性回归方程为y ^=0.7x +0.35.(3)由(2)的回归方程及技改前生产100吨甲产品的生产能耗,得降低的生产能耗为:90-(0.7×100+0.35)=19.65(吨标准煤).5.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:求线性回归方程,再对被选取的2组数据进行检验. (1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y 关于x 的线性回归方程y ^=b^x +a ^. 解 (1)设抽到不相邻两组数据为事件A ,因为从5组数据中选取2组数据共有10种情况,每种情况都是等可能出现的,其中抽到相邻两组数据的情况有4种,所以P (A )=1-410=35. (2)由数据,求得x =12,y =27.11×25+13×30+12×26=977,112+132+122=434, 由公式,求得b ^=52,a ^=y -b ^x =-3.所以y 关于x 的线性回归方程为y ^=52x -3.6.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.已知从全部105人中随机抽取1人为优秀的概率为27. (1)请完成上面的列联表;(2)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”;(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到6号或10号的概率.附 K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),解 (1)(2)k =105×(10×30-20×45)255×50×30×75≈6.109>3.841,因此有95%的把握认为“成绩与班级有关系”.(3)设“抽到6号或10号”为事件A ,先后两次抛掷一枚均匀的骰子,出现的点数为(x ,y ),则所有的基本事件有(1,1)、(1,2)、(1,3)、…、(6,6),共36个.事件A包含的基本事件有(1,5),(2,4),(3,3),(4,2),(5,1),(4,6),(5,5),(6,4),共8个,∴P(A)=836=29.第10 页共10 页。

2018届高考数学二轮复习 变量间的相关关系与统计案例专题

2018届高考数学二轮复习 变量间的相关关系与统计案例专题

变量间的相关关系与统计案例专题[基础达标] (30分钟 45分) 一、选择题(每小题5分,共30分)1y (件)与销售价格x (元/件)存在线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为y ^=-10x+200,则下列结论正确的是 ( )A .y 与x 具有正的线性相关关系B .若r 表示变量y 与x 之间的线性相关系数,则r=-10C .当销售价格为10元时,销售量为100件D .当销售价格为10元时,销售量为100件左右D 【解析】x 的系数为-10,y 与x 具有负相关关系,相关系数不等于回归方程x 的系数;当销售价格为10元时,y ^=-10×10+200=100,此时得到的y 值不是准确值,而是一个估计值,即销售量为100件左右.2.对变量x ,y 有观测数据(x i ,y i )(i=1,2,…,10),得散点图1;对变量u ,v 有观测数据(u i ,v i )(i=1,2,…,10),得散点图2.由这两个散点图可以判断 ( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关C 【解析】由散点图可知,y 随着x 的增大而减小,v 随着u 的增大而增大,所以变量x 与y 负相关,u 与v 正相关.3得到的回归直线方程为y ^=bx+a.若样本点的中心为(5,0.9),则当x 每增加1个单位时,y 就 ( )A .增加1.4个单位B .减少1.4个单位C .增加7.9个单位D .减少7.9个单位 B 【解析】依题意,得a +b -25=0.9,故a+b=6.5 ①,又样本点的中心为(5,0.9),故0.9=5b+a ②,联立①②,解得b=-1.4,a=7.9,则y ^=-1.4x+7.9,可知当x 每增加1个单位时,y 就减少1.4个单位.4“学生的性别”和“对待某一活动的支持态度”是否有关,运用2×2列联表进行独立性检验,经计算K 2=7.069,则认为“学生性别与支持活动有关系”的犯错误的概率不超过 ( )A .0.1%B .1%C .99%D .99.9%附:B 【解析】因为7.069>6.635,所以至少有99%的把握认为“学生性别与支持活动有关系”,即认为“学生性别与支持活动有关系”出错的概率不超过1%.5x ,y 的取值如表所示:如果y 与x 线性相关,且线性回归方程为y ^=b ^x+132,则b ^的值为( )A .-12B .12C .-110D .110A 【解析】将x=3,y=5代入y ^=b ^x+132中,得b ^=-12.6.有人发现,多看电视容易使人变冷漠,下表是一个调查机构对此现象的调查结果:附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ) 附表:P (K 2≥k 0) 0.050 0.010 k 03.841 6.635则认为多看电视与人冷漠有关系的把握大约为 ( )A .99%B .97.5%C .95%D .90%A 【解析】可计算得K 2=168×(68×38-20×42)2110×58×88×80≈11.377>6.635,因此有99%的把握认为多看电视与人冷漠有关. 二、填空题(每小题5分,共5分)7.下表是某厂1~4月份用水量(单位:百吨)的一组数据,由其散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归方程是 .参考公式:b ^=∑i=1nx i y i -n xy∑i=1nx i2-nx 2,a ^=y −b ^x .y ^=-0.7x+5.25 【解析】由表中数据求得x =2.5,y =3.5,代入回归系数计算公式得b ^=∑i =14x i y i -n xy∑i=14x i 2-nx 2=4.5+8+9+10-4×2.5×3.51+4+9+16-4×2.5=-0.7,a ^=y −b ^x =3.5+0.7×2.5=5.25,所以其线性回归方程为y ^=-0.7x+5.25. 三、解答题(共10分)8.(10分(满分50分)的形式对本企业900名员工的工作满意度进行调查,并随机抽取了其中30名员工(16名女员工,14名男员工)的得分,如下表:(1)根据以上数据,估计该企业得分大于45分的员工人数;(2)现用计算器求得这30名员工的平均得分为40.5分,若规定大于平均得分为“满意”,否则为“不满意”,请完成下列表格:(3)根据上述表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为该企业员工“性别”与“工作是否满意”有关? 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ) 参考数据:【解析】(1)从表中可知,30名员工中有8名得分大于45分,所以任选一名员工,他(她)的得分大于45分的概率是830=415,所以估计此次调查中,该单位约有900×415=240名员工的得分大于45分. (2)由题意可得下列表格:(3)假设H 0:“性别”与“工作是否满意”无关, 根据表中数据,求得K 2的观测值为30×(12×11-3×4)215×15×16×14≈8.571>6.635,查表得P (K 2≥6.635)=0.010.所以能在犯错误的概率不超过1%的前提下,认为该企业员工“性别”与“工作是否满意”有关.[高考冲关] (20分钟 45分)1.(5分x ,y 有一组观测数据(x i ,y i )(i=1,2,…,8),其回归直线方程是y ^=13x+a ^,且x 1+x 2+x 3+…+x 8=2(y 1+y 2+y 3+…+y 8)=6,则实数a ^的值是 ( )A .116B .18C .14D .12B 【解析】依题意可知样本中心点为 34,38 ,则38=13×34+a ^,解得a ^=18. 2.(5分)为了普及环保知识,增强环保意识,某大学从理工类专业的A 班和文史类专业的B 班各抽取20名同学参加环保知识测试.两个班同学的成绩(百分制)的茎叶图如图所示:按照大于或等于80分为优秀,80分以下为非优秀统计成绩.以下判断正确的是( )附:A .A 班环保知识的测试成绩优于B 班的可能性为99% B .可以认为环保知识测试成绩的95%由所学专业决定C .有把握认为A 班学生环保知识测试成绩优秀的概率为95%D .有95%以上的把握认为环保知识测试成绩与所学专业有关 D 【解析】由茎叶图建立2×2列联表,代入公式得40×(14×13-42)221×19×20×20=28057≈4.912>3.841,则有95%以上的把握认为环保知识测试成绩与所学专业有关.3.(5分)大学生小赵计划利用假期进行一次短期打工体验,已知小赵想去某工厂打工,老板告知每天上班的时间(单位:小时)和工资(单位:元),如下表所示:根据计算,小赵得知这段时间每天打工工资与每天工作时间满足的线性回归方程为y ^=11.4x+5.9,若小赵在假期内打5天工,工作时间(单位:小时)分别为8,8,9,9,12,则这5天小赵获得工资的方差为 ( )A .112B .240C .376D .484C 【解析】x 的平均值为x =396=6.5,而回归直线一定过点(x ,y ),故y =11.4×6.5+5.9=80,所以y =30+40+60+90+120+m6=80,故m=140,则小赵工作5天的工资的平均值为90×2+120×2+1405=112,方差为s 2=15[(90-112)2×2+(120-112)2×2+(140-112)2]=376.4.(5分)下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程y ^=3-5x ,变量x 增加一个单位,y 平均增加5个单位;③回归直线y ^=b ^x+a ^必过(x ,y );④在一个2×2列联表中,由计算得K 2=13.079,则有99.9%的把握确认这两个变量有关系.其中错误说法的个数是 .本题可以参考独立性检验临界值表1 【解析】将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变,①正确;设有一个回归方程y ^=3-5x ,变量x 增加一个单位,y 平均减少5个单位,②错误;回归直线y ^=b ^x+a ^必过(x ,y ),③正确;在一个2×2列联表中,由计算得K 2=13.079,则有99.9%的把握确认这两个变量有关系,④正确.5.(12分)2016年9月20日是第28个全国爱牙日.某区卫生部门成立了调查小组,调查“常吃零食与患龋齿的关系”,对该区六年级800名学生进行检查,按患龋齿和不患龋齿分类,得汇总数据:不常吃零食且不患龋齿的学生有60名,常吃零食但不患龋齿的学生有100名,不常吃零食但患龋齿的学生有140名.(1)能否在犯错概率不超过0.001的前提下,认为该区学生的常吃零食与患龋齿有关系?(2)4名区卫生部门的工作人员随机分成两组,每组2人,一组负责数据收集,另一组负责数据处理.求工作人员甲分到负责数据收集组,工作人员乙分到负责数据处理组的概率. 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )【解析】(1)由题意可得列联表:总计200 600 800因为K 2=800(60×500-100×140)2160×640×200×600≈16.667>10.828,所以能在犯错概率不超过0.001的前提下,认为该区学生常吃零食与患龋齿有关系.(2)设其他工作人员为丙和丁,4人分组的所有情况如表:分组的情况总共有6种,工作人员甲负责收集数据且工作人员乙负责处理数据的情况有两种,所以工作人员甲负责收集数据且工作人员乙负责处理数据的概率是P=26=13. 6.(13分产品过程中记录的产量x (吨)与相应的生产能耗y (吨)标准煤的几组对照数据:(1)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y ^=b ^x+a ^. (2)已知该厂技改前,100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5)【解析】(1)由对照数据,计算得∑i =14x i y i =66.5,∑i =14x i 2=32+42+52+62=86,x =4.5,y =3.5,故b ^=66.5-4×4.5×3.586-4×4.52=66.5-6386-81=0.7,a ^=y −b ^x =3.5-0.7×4.5=0.35,故y ^=0.7x+0.35.(2)将x=100代入方程,得y=100×0.7+0.35=70.35吨,预测生产100吨甲产品的生产能耗比技改前降低90-70.35=19.65(吨).。

2017-2018学年高中数学人教A版3:课时跟踪检测(十三)变量间的相关关系含解析

2017-2018学年高中数学人教A版3:课时跟踪检测(十三)变量间的相关关系含解析

课时跟踪检测(十三)变量间的相关关系[层级一学业水平达标]1.下列变量具有相关关系的是( )A.人的体重与视力B.圆心角的大小与所对的圆弧长C.收入水平与购买能力D.人的年龄与体重解析:选C B为确定性关系;A,D不具有相关关系,故选C. 2.已知变量x,y之间具有线性相关关系,其散点图如图所示,则其回归方程可能为A。

错误!=1。

5x+2B。

错误!=-1.5x+2C.错误!=1.5x-2D。

错误!=-1。

5x-2解析:选B 设回归方程为错误!=错误!x+错误!,由散点图可知变量x,y之间负相关,回归直线在y轴上的截距为正数,所以错误!<0,错误!>0,因此方程可能为错误!=-1。

5x+2.3.设(x1,y1),(x2,y2),…,(x n,y n)是变量x和y的n个样本点,直线l是由这些样本点通过最小二乘法得到的线性回归直线如图所示,则以下结论正确的是( )A.直线l过点(x,错误!)B.回归直线必通过散点图中的多个点C.直线l的斜率必在(0,1)D.当n为偶数时,分布在l两侧的样本点的个数一定相同解析:选A A是正确的;回归直线可以不经过散点图中的任何点,故B错误;回归直线的斜率不确定,故C错误;分布在l两侧的样本点的个数不一定相同,故D错误.4.对有线性相关关系的两个变量建立的回归直线方程错误!=错误!+错误!x中,回归系数错误!( )A.不能小于0 B.不能大于0C.不能等于0 D.只能小于0解析:选C 当错误!=0时,r=0,这时不具有线性相关关系,但错误!能大于0,也能小于0。

5.2016年元旦前夕,某市统计局统计了该市2015年10户家庭的年收入和年饮食支出的统计资料如下表:(2)若某家庭年收入为9万元,预测其年饮食支出.(参考数据:i =110x i y i =117。

7,错误!错误!=406)解:依题意可计算得:x =6,错误!=1。

83,错误!2=36,错误! 错误!=10.98,又∵错误!i y i =117.7,错误!错误!=406, ∴错误!=错误!≈0.17,错误!=错误!-错误!错误!=0.81,∴错误!=0。

2018届高考数学(文)总复习跟踪检测(五十七)变量间的相关关系统计案例含解析

2018届高考数学(文)总复习跟踪检测(五十七)变量间的相关关系统计案例含解析

课时跟踪检测 (五十七) 变量间的相关关系 统计案例一抓基础,多练小题做到眼疾手快1.(2017·重庆适应性测试)为了判定两个分类变量X 和Y 是否有关系,应用独立性检验法算得K 2的观测值为5,又已知P (K 2≥3.841)=0.05,P (K 2≥6.635)=0.01,则下列说法正确的是( )A .有95%的把握认为“X 和Y 有关系”B .有95%的把握认为“X 和Y 没有关系”C .有99%的把握认为“X 和Y 有关系”D .有99%的把握认为“X 和Y 没有关系”解析:选A 依题意,K 2=5,且P (K 2≥3.841)=0.05,因此有95%的把握认为“X 和Y 有关系”,选A .2.某公司在2016年上半年的收入x (单位:万元)与月支出y (单位:万元)的统计资料如表所示:根据统计资料,则( )A .月收入的中位数是15,x 与y 有正线性相关关系B .月收入的中位数是17,x 与y 有负线性相关关系C .月收入的中位数是16,x 与y 有正线性相关关系D .月收入的中位数是16,x 与y 有负线性相关关系 解析:选C 月收入的中位数是15+172=16,由表可知收入增加,支出增加,故x 与y 有正线性相关关系,故选C .3.已知变量x 与y 之间的回归直线方程为y ^=-3+2x ,若∑i =110x i =17,则∑i =110y i 的值等于( )A .3B .4C .0.4D .40解析:选B 依题意x =1710=1.7,而直线y ^=-3+2x 一定经过样本点的中心(x ,y ),所以y =-3+2x =-3+2×1.7=0.4,所以 i =110y i =0.4×10=4.二保高考,全练题型做到高考达标1.在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据,并制作成如图所示的人体脂肪含量与年龄关系的散点图.根据该图,下列结论中正确的是()A .人体脂肪含量与年龄正相关,且脂肪含量的中位数等于20%B .人体脂肪含量与年龄正相关,且脂肪含量的中位数小于20%C .人体脂肪含量与年龄负相关,且脂肪含量的中位数等于20%D .人体脂肪含量与年龄负相关,且脂肪含量的中位数小于20%解析:选B 因为散点图呈现上升趋势,故人体脂肪含量与年龄正相关;因为中间两个数据大约介于15%到20%之间,故脂肪含量的中位数小于20%.2.(2016·河南省八市重点高中质量检测)为了研究某大型超市开业天数与销售额的情况,随机抽取了5天,其开业天数与每天的销售额的情况如下表所示:根据上表提供的数据,求得y 关于x 的线性回归方程为y ^=0.67x +54.9,由于表中有一个数据模糊看不清,请你推断出该数据的值为( )A .67B .68C .68.3D .71解析:选B 设表中模糊看不清的数据为m .因为x =10+20+30+40+505=30,又样本中心(x ,y )在回归直线y ^=0.67x +54.9上,所以y =m +3075=0.67×30+54.9,得m =68,故选B .3.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( )A .-1B .0C .12D .1解析:选D 因为所有样本点都在直线y =12x +1上,所以这组样本数据完全正相关,故其相关系数为1.4.某考察团对10个城市的职工人均工资x (千元)与居民人均消费y (千元)进行调查统计,得出y 与x 具有线性相关关系,且回归方程为y ^=0.6x +1.2.若某城市职工人均工资为5千元,估计该城市人均消费额占人均工资收入的百分比为( )A .66%B .67%C .79%D .84%解析:选D ∵y 与x 具有线性相关关系,满足回归方程y ^=0.6x +1.2,该城市居民人均工资为x =5,∴可以估计该城市的职工人均消费水平y =0.6×5+1.2=4.2,∴可以估计该城市人均消费额占人均工资收入的百分比为4.25=84%. 5.(2017·黄冈模拟)下列说法错误的是( )A .自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B .在线性回归分析中,相关系数r 的值越大,变量间的相关性越强C .在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D .在回归分析中,R 2为0.98的模型比R 2为0.80的模型拟合的效果好解析:选B 根据相关关系的概念知A 正确;当r >0时,r 越大,相关性越强,当r <0时,r 越大,相关性越弱,故B 不正确;对于一组数据的拟合程度的好坏的评价,一是残差点分布的带状区域越窄,拟合效果越好.二是R 2越大,拟合效果越好,所以R 2为0.98的模型比R 2为0.80的模型拟合的效果好,C 、D 正确,故选B .6.经调查某地若干户家庭的年收入x (万元)和年饮食支出y (万元)具有线性相关关系,并得到y 关于x 的回归直线方程:y ^=0.245x +0.321,由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.解析:x 变为x +1,y ^=0.245(x +1)+0.321=0.245x +0.321+0.245,因此家庭年收入每增加1万元,年饮食支出平均增加0.245万元.答案:0.2457.在2017年1月15日那天,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x 元和销售量y 件之间的一组数据如下表所示:由散点图可知,销售量y 与价格x 之间有较强的线性相关关系,其线性回归方程是y ^=-3.2x +40,且m +n =20,则其中的n =________.解析:x =9+9.5+m +10.5+115=8+m 5,y =11+n +8+6+55=6+n5,回归直线一定经过样本点中心(x ,y ),即6+n5=-3.2⎝ ⎛⎭⎪⎫8+m 5+40,即3.2m +n =42.又因为m +n =20,即⎩⎪⎨⎪⎧3.2m +n =42,m +n =20,解得⎩⎪⎨⎪⎧m =10,n =10,故n =10.答案:108.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未使用血清的人一年中的感冒记录作比较,提出假设H 0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K 2≈3.918,经查临界值表知P (K 2≥3.841)≈0.05.则下列结论中,正确结论的序号是________.①有95%的把握认为“这种血清能起到预防感冒的作用”; ②若某人未使用该血清,那么他在一年中有95%的可能性得感冒; ③这种血清预防感冒的有效率为95%; ④这种血清预防感冒的有效率为5%.解析:K 2≈3.918≥3.841,而P (K 2≥3.814)≈0.05,所以有95%的把握认为“这种血清能起到预防感冒的作用”.要注意我们检验的是假设是否成立和该血清预防感冒的有效率是没有关系的,不是同一个问题,不要混淆.答案:①9.(2017·沈阳市教学质量监测)为考查某种疫苗预防疾病的效果,进行动物实验,得到统计数据如下:现从所有试验动物中任取一只,取到“注射疫苗”动物的概率为25.(1)求2×2列联表中的数据x ,y ,A ,B 的值; (2)绘制发病率的条形统计图,并判断疫苗是否有效?(3)能够有多大把握认为疫苗有效? 附:K 2=n ad -bc 2a +ba +c c +db +d,n =a +b +c +d解:(1)设“从所有试验动物中任取一只,取到‘注射疫苗’动物”为事件E ,由已知得P (E )=y +30100=25,所以y =10,B =40,x =40,A =60. (2)未注射疫苗发病率为4060=23,注射疫苗发病率为1040=14.发病率的条形统计图如图所示,由图可以看出疫苗影响到发病率,且注射疫苗的发病率小,故判断疫苗有效.(3)K 2=-250×50×40×60=503≈16.667>10.828. 所以至少有99.9%的把握认为疫苗有效.10.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求家庭的月储蓄y ^对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 解:(1)由题意知n =10,x =1n ∑i =1nx i =8010=8,y =1n ∑i =1n y i =2010=2,又∑i =1nx 2i -n x 2=720-10×82=80,∑i =1nx i y i -n x y =184-10×8×2=24,由此得b ^=2480=0.3,a ^=y -b ^x =2-0.3×8=-0.4,故所求线性回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b ^=0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y ^=0.3×7-0.4=1.7(千元). 三上台阶,自主选做志在冲刺名校(2016·成都质检)某火锅店为了解气温对营业额的影响,随机记录了该店1月份中5天的日营业额y (单位:千元)与该地当日最低气温x (单位:℃)的数据,如下表:(1)求y 关于x 的回归方程y ^=b ^x +a ^;(2)判定y 与x 之间是正相关还是负相关;若该地1月份某天的最低气温为6 ℃,用所求回归方程预测该店当日的营业额;(3)设该地1月份的日最低气温X ~N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2,求P (3.8<X <13.4).附:①回归方程y ^=b ^x +a ^中,b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2,a ^=y ^-b ^x .②10≈3.2, 3.2≈1.8.若X ~N (μ,σ2),则P (μ-σ<X <μ+σ)=0.682 6,P (μ-2σ<X <μ+2σ)=0.954 4.解:(1)列表计算如下:这里n =5,x =1n ∑i =1n x i =355=7,y =1n ∑i =1n y i =455=9.又∑i =1nx 2i -n x 2=295-5×72=50,∑i =1nx i y i -n x y =287-5×7×9=-28,从而b ^=-2850=-0.56,a ^=y -b ^x =9-(-0.56)×7=12.92,故所求回归方程为y ^=-0.56x +12.92. (2)由b ^=-0.56<0知y 与x 之间是负相关;将x =6代入回归方程可预测该店当日的营业额y ^=-0.56×6+12.92=9.56(千元).(3)由(1)知μ=x =7,又由σ2=s 2=15×[(2-7)2+(5-7)2+(8-7)2+(9-7)2+(11-7)2]=10,知σ=3.2,从而P (3.8<X <13.4)=P (μ-σ<X <μ+2σ) =P (μ-σ<X <μ)+P (μ<X <μ+2σ)=12P (μ-σ<X <μ+σ)+12P (μ-2σ<X <μ+2σ) =0.818 5.。

2018高考一轮通用人教A版数学文练习第9章 第4节 变量

2018高考一轮通用人教A版数学文练习第9章 第4节 变量

第四节 变量间的相关关系与统计案例———————————————————————————————— [考纲传真] 1.会做两个有关联变量的数据的散点图,并利用散点图认识变量间的相关关系.2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归系数公式不要求记忆).3.了解回归分析的基本思想、方法及其简单应用.4.了解独立性检验(只要求2×2列联表)的思想、方法及其初步应用.1.回归分析回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法;判断相关性的常用统计图是散点图;统计量有相关系数与相关指数.(1)在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关.(2)在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负相关.(3)如果散点图中点的分布从整体上看大致在一条直线附近,称两个变量具有线性相关关系.2.线性回归方程(1)最小二乘法:使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.(2)回归方程:两个具有线性相关关系的变量的一组数据:(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归方程为y ^=b ^x +a ^,则b ^=∑ni =1 (x i -x )(y i -y )∑ni =1 (x i -x )2=∑ni =1x i y i -n x y ∑n i =1x 2i -n x 2,a ^=y -b ^x .其中,b ^是回归方程的斜率,a ^是在y 轴上的截距.3.残差分析(1)残差:对于样本点(x 1,y 1),(x 2,y 2),…,(x n ,y n ),它们的随机误差为e i=y i -bx i -a ,i =1,2,…,n ,其估计值为e ^i =y i -y ^i =y i -b ^x i -a ^,i =1,2,…,n ,e ^i 称为相应于点(x i ,y i )的残差.(2)相关指数:R 2=1-∑ni =1 (y i -y ^i )2∑ni =1 (y i -y )2.4.独立性检验(1)利用随机变量K 2来判断“两个分类变量有关系”的方法称为独立性检验.(2)列联表:列出的两个分类变量的频数表,称为列联表.假设有两个分类变量X 和Y ,它们的可能取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(2×2列联表)为则随机变量K 2=(a +b )(a +c )(b +d )(c +d )(其中n =a +b +c +d 为样本容量).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)“名师出高徒”可以解释为教师的教学水平与学生的水平成正相关关系.( )(2)某同学研究卖出的热饮杯数y 与气温x (℃)之间的关系,得回归方程y ^=-2.352x +147.767,则气温为2℃时,一定可卖出143杯热饮.( )(3)因为由任何一组观测值都可以求得一个线性回归方程,所以没有必要进行相关性检验.( )(4)若事件X ,Y 关系越密切,则由观测数据计算得到的K 2的观测值越小.( )[答案] (1)√ (2)× (3)× (4)×2.(教材改编)已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( )A.y ^=0.4x +2.3 B.y ^=2x -2.4 C.y ^=-2x +9.5D.y ^=-0.3x +4.4A [因为变量x 和y 正相关,排除选项C ,D.又样本中心(3,3.5)在回归直线上,排除B ,选项A 满足.]3.(2015·全国卷Ⅱ)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )图9-4-1A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关D [对于A 选项,由图知从2007年到2008年二氧化硫排放量下降得最多,故A 正确.对于B 选项,由图知,由2006年到2007年矩形高度明显下降,因此B 正确.对于C 选项,由图知从2006年以后除2011年稍有上升外,其余年份都是逐年下降的,所以C 正确.由图知2006年以来我国二氧化硫年排放量与年份负相关,故选D.]4.为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算K 2≈0.99,根据这一数据分析,下列说法正确的是( )A .有99%的人认为该电视栏目优秀B .有99%的人认为该电视栏目是否优秀与改革有关系C .有99%的把握认为该电视栏目是否优秀与改革有关系D .没有理由认为该电视栏目是否优秀与改革有关系D [只有K 2≥6.635才能有99%的把握认为“该电视栏目是否优秀与改革有关系”,而即使K 2≥6.635也只是对“该电视栏目是否优秀与改革有关系”这个论断成立的可能性大小的结论,与是否有99%的人等无关,故只有D 正确.]5.(2017·贵阳检测)若8名学生的身高和体重数据如下表:第3名学生的体重漏填,但线性回归方程是y =0.849x -85.712,则第3名学生的体重估计为________kg.50 [设第3名学生的体重为a ,则18(48+57+a +54+64+61+43+59)=0.849×18(165+165+157+170+175+165+155+170)-85.712.解得a ≈50.]0.1x +1,变量y与z 正相关.下列结论中正确的是( )A .x 与y 正相关,x 与z 负相关B .x 与y 正相关,x 与z 正相关C .x 与y 负相关,x 与z 负相关D .x 与y 负相关,x 与z 正相关(2)x 和y 的散点图如图9-4-2所示,则下列说法中所有正确命题的序号为________.图9-4-2①x ,y 是负相关关系;②在该相关关系中,若用y =c 1e c 2x 拟合时的相关指数为R 21,用y ^=b ^x +a ^拟合时的相关指数为R 22,则R 21>R 22;③x ,y 之间不能建立线性回归方程.(1)C (2)①② [(1)因为y =-0.1x +1的斜率小于0,故x 与y 负相关.因为y 与z 正相关,可设z =b ^y +a ^,b ^>0,则z =b ^y +a ^=-0.1b ^x +b ^+a ^,故x 与z 负相关.(2)在散点图中,点散布在从左上角到右下角的区域,因此x ,y 是负相关关系,故①正确;由散点图知用y =c 1e c 2x 拟合比用y ^=b ^x +a ^拟合效果要好,则R 21>R 22,故②正确;x ,y 之间可以建立线性回归方程,但拟合效果不好,故③错误.] [规律方法] 1.利用散点图判断两个变量是否有相关关系是比较直观简便的方法.如果所有的样本点都落在某一函数的曲线附近,变量之间就有相关关系.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系.若点散布在从左下角到右上角的区域,则正相关,若点散布在左上角到右下角的区域,则负相关.2.利用相关系数判定,当|r |越趋近于1,相关性越强. 当残差平方和越小,相关指数R 2越大,相关性越强.[变式训练1] 甲、乙、丙、丁四位同学各自对A ,B 两变量的线性相关性做试验,并用回归分析方法分别求得相关系数r 与残差平方和m 如下表:A .甲B .乙C .丙D .丁D [在验证两个变量之间的线性相关关系时,相关系数的绝对值越接近于1,相关性越强,在四个选项中只有丁的相关系数最大;残差平方和越小,相关性越强,只有丁的残差平方和最小,综上可知丁的试验结果体现了A ,B 两变量有更强的线性相关性.]处理量(单位:亿吨)的折线图.图9-4-3注:年份代码1~7分别对应年份2008~2014.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明;(2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.参考数据:∑ 7 i =1y i =9.32,∑ 7 i =1t i y i =40.17,∑ 7i =1(y i -y )2=0.55,7≈2.646.参考公式:相关系数r =∑ ni =1 (t i -t )(y i -y )∑ ni =1(t i -t )2∑ n i =1(y i -y )2,回归方程y ^=a ^+b ^t中斜率和截距的最小二乘估计公式分别为b ^=∑ n i =1(t i -t )(y i -y )∑ n i =1(t i -t )2,a ^=y --b ^t .[解] (1)由折线图中的数据和附注中的参考数据得 t =4,∑ 7i =1(t i -t )2=28,∑ 7i =1(y i -y )2=0.55,2分∑7i =1 (t i -t )(y i -y )=∑ 7 i =1t i y i -t ∑ 7i =1y i =40.17-4×9.32=2.89,所以r ≈2.890.55×2×2.646≈0.99.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当大,从而可以用线性回归模型拟合y 与t 的关系.5分(2)由y =9.327≈1.331及(1)得b ^=∑ 7 i =1 (t i -t )(y i -y )∑ 7 i =1(t i -t )2=2.8928≈0.103.8分a ^=y -b ^t ≈1.331-0.103×4≈0.92.所以y 关于t 的回归方程为y ^=0.92+0.10t .10分将2016年对应的t =9代入回归方程得y ^=0.92+0.10×9=1.82. 所以预测2016年我国生活垃圾无害化处理量约为1.82亿吨.12分[规律方法] 1.在分析实际中两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,也可计算相关系数r 进行判断.若具有线性相关关系,则可通过线性回归方程估计和预测变量的值.2.(1)正确运用计算b ^,a ^的公式和准确的计算,是求线性回归方程的关键.(2)回归直线y ^=b ^x +a ^必过样本点的中心(x ,y ).[变式训练2] (2014·全国卷Ⅱ)某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表:(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:b ^=∑ni =1 (t i -t -)(y i -y -)∑n i =1 (t i -t -)2,a ^=y --b ^t -.[解] (1)由所给数据计算得t -=17(1+2+3+4+5+6+7)=4, y -=17(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3, ∑7i =1 (t i -t -)2=9+4+1+0+1+4+9=28,3分∑7i =1(t i -t -)(y i -y -)=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,b ^=∑7i =1 (t i -t -)(y i -y -)∑7i =1 (t i -t -)2=1428=0,5,a ^=y --b ^t -=4.3-0.5×4=2.3, 所求回归方程为y ^=0.5t +2.3.6分(2)由(1)知,b ^=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.9分将2015年的年份代号t =9代入(1)中的回归方程,得 y ^=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.12分(2017·10 500人,女生4 500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图9-4-4所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;【导学号:31222369】图9-4-4(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:K2=(a+b)(c+d)(a+c)(b+d).[解](1)利用分层抽样,300×4 50015 000=90,所以应收集90位女生的样本数据.4分(2)由频率分布直方图得1-2×(0.025+0.100)=0.75.所以该校学生每周平均体育运动时间超过4小时的概率的估计值为0.75.8分(3)由(2)知,300位学生中有300×0.75=225人的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时.10分又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别列联表如下:每周平均体育运动时间与性别列联表k=300×(45×60-165×30)275×225×210×90=10021≈4.762>3.841.所以,有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.12分[规律方法] 1.在2×2列联表中,如果两个变量没有关系,则应满足ad-bc≈0.|ad-bc|越小,说明两个变量之间关系越弱;|ad-bc|越大,说明两个变量之间关系越强.2.解决独立性检验的应用问题,一定要按照独立性检验的步骤得出结论.独立性检验的一般步骤:(1)根据样本数据制成2×2列联表;(2)根据公式K2=n(ad-bc)2(a+b)(a+c)(b+d)(c+d)计算K2的观测值k;(3)比较k与临界值的大小关系,作统计推断.[变式训练3](2017·济南联考)某市地铁即将于2017年6月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下;成定价者”与“认为价格偏高者”的月平均收入的差距是多少(结果保留2位小数);(2)由以上统计数据填下面2×2列联表,分析是否有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.附:K2=(a+b)(c+d)(a+c)(a+d).[解]x1=20×1+30×2+40×3+50×5+60×3+70×41+2+3+5+3+4≈50.56.“认为价格偏高者”的月平均收入为x2=20×4+30×8+40×12+50×5+60×2+70×14+8+12+5+2+1=38.75,∴“赞成定价者”与“认为价格偏高者”的月平均收入的差距是x1-x2=50.56-38.75=11.81(百元).5分(2)根据条件可得2×2列联表如下:K2=10×40×18×32≈6.27<6.635,∴没有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.12分[思想与方法]1.回归分析是处理变量相关关系的一种数学方法.主要解决:(1)确定特定量之间是否有相关关系,如果有就找出它们之间贴近的数学表达式;(2)根据一组观察值,预测变量的取值及判断变量取值的变化趋势;(3)求出线性回归方程.2.根据K2的值可以判断两个分类变量有关的可信程度.[易错与防范]1.回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.2.独立性检验中统计量K2的观测值k的计算公式很复杂,在解题中易混淆一些数据的意义,代入公式时出错,而导致整个计算结果出错.课时分层训练(五十七)变量间的相关关系与统计案例A组基础达标(建议用时:30分钟)一、选择题1.四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且y ^=2.347x -6.423;②y 与x 负相关且y ^=-3.476x +5.648;③y 与x 正相关且y ^=5.437x +8.493;④y 与x 正相关且y ^=-4.326x -4.578.其中一定不正确...的结论的序号是 ( ) A .①② B .②③ C .③④D .①④D [由正负相关性的定义知①④一定不正确.]2.两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数R 2如下,其中拟合效果最好的模型是 ( )A .模型1的相关指数R 2为0.98B .模型2的相关指数R 2为0.80C .模型3的相关指数R 2为0.50D .模型4的相关指数R 2为0.25A [相关指数R 2越大,拟合效果越好,因此模型1拟合效果最好.] 3.第31届夏季奥林匹克运动会,中国获26金,18银,26铜共70枚奖牌居奖牌榜第二,并打破3次世界记录.由此许多人认为中国进入了世界体育强国之列,也有许多人持反对意见.有网友为此进行了调查,在参加调查的2 548名男性公民中有1 560名持反对意见,2 452名女性公民中有1 200人持反对意见,在运用这些数据说明中国的奖牌数是否与中国进入体育强国有无关系时,用什么方法最有说服力( )A .平均数与方差B .回归直线方程C .独立性检验D .概率C [由于参加讨论的公民按性别被分成了两组,而且每一组又被分成了两种情况:认为有关与无关,故该资料取自完全随机统计,符合2×2列联表的要求.故用独立性检验最有说服力.]4.(2015·福建高考)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y =b x +a ,其中b =0.76,a =y -b x .据此估计,该社区一户年收入为15万元家庭的年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元B [由题意知,x =8.2+8.6+10.0+11.3+11.95=10,y =6.2+7.5+8.0+8.5+9.85=8,∴a ^=8-0.76×10=0.4,∴当x =15时,y ^=0.76×15+0.4=11.8(万元).]5.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),算得K 2=110×(40×30-20×20)260×50×60×50≈7.8.附表:A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关”C [根据独立性检验的定义,由K 2≈7.8>6.635,可知我们在犯错误的概率不超过0.01的前提下,即有99%以上的把握认为“爱好该项运动与性别有关”.]二、填空题6.(2017·西安质检)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归方程y ^=0.67x +54.9.【导学号:31222370】68 [由x =30,得y =0.67×30+54.9=75. 设表中的“模糊数字”为a ,则62+a +75+81+89=75×5,即a =68.]7.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:已知P (K 2≥3.841)根据表中数据,得到K 2=50×(13×20-10×7)223×27×20×30≈4.844.则认为选修文科与性别有关系出错的可能性为________.5% [∵K 2≈4.844,根据假设检验的基本原理,应该断定“是否选修文科与性别之间有关系”成立,并且这种判断出错的可能性约为5%.]8.(2017·长沙雅礼中学质检)某单位为了了解用电量y (度)与气温x (℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据得回归直线方程y =b x +a 中的b =-2,预测当气温为-4 ℃时,用电量为________℃.【导学号:31222371】68 [根据题意知x =18+13+10+(-1)4=10,y =24+34+38+644=40,因为回归直线过样本点的中心,所以a ^=40-(-2)×10=60,所以当x =-4时,y =(-2)×(-4)+60=68,所以用电量为68度.]三、解答题9.(2017·石家庄质检)微信是现代生活进行信息交流的重要工具,据统计,某公司200名员工中90%的人使用微信,其中每天使用微信时间在一小时以内的有60人,其余的员工每天使用微信的时间在一小时以上,若将员工分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,那么使用微信的人中75%是青年人.若规定:每天使用微信时间在一小时以上为经常使用微信,那么经常使用微信的员工中23是青年人.(1)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出2×2列联表:(2)龄有关”?附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).[解] (1)×90%=180(人), 经常使用微信的有180-60=120(人),其中青年人有120×23=80(人),使用微信的人中青年人有180×75%=135(人), 所以2×2列联表:5分(2)将列联表中数据代入公式可得: K 2=180×(80×5-55×40)2120×60×135×45≈13.333,由于13.333>10.828,所以有99.9%的把握认为“经常使用微信与年龄有关” .12分10.为了研究某种细菌在特定环境下随时间变化的繁殖情况,得如下试验数据:(1)求y (2)利用(1)中的回归方程,预测t =8时的细菌繁殖个数. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:b ^=∑ni =1 (t i -t )(y i -y )∑ni =1(t i -t )2,a ^=y -b ^t . [解] (1)由表中数据计算得,t =5,y =4,∑ni =1(t i -t )(y i -y )=8.5,∑ni =1(t i -t )2=10,2分b ^=∑ni =1 (t i -t )(y i -y )∑ni =1(t i -t )2=0.85,a ^=y -b ^t =4-0.85×5=-0.25. 所以回归方程为y ^=0.85t -0.25.5分 (2)将t =8代入(1)的回归方程中得 y ^=0.85×8-0.25=6.55.10分故预测t =8时,细菌繁殖个数为6.55千个.12分B 组 能力提升 (建议用时:15分钟)1.根据如下样本数据:得到的回归方程为y =bx +a ,则( ) A .a >0,b >0 B .a >0,b <0 C .a <0,b >0 D .a <0,b <0B [作出散点图如下:观察图象可知,回归直线y ^=bx +a 的斜率b <0,当x =0时,y ^=a >0.故a >0,b <0.]2.(2017·赣中南五校联考)心理学家分析发现视觉和空间想象能力与性别有关,某数学兴趣小组为了验证这个结论,从所在学校中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)则这种推断犯错误的概率不超过________.附表:k =50×(22×12-8×8)230×20×20×30≈5.556>5.024,∴推断犯错误的概率不超过0.025.]3.(2015·全国卷Ⅰ)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.图9-4-5表中w i =x i ,w ]=18∑ i =1w i .(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题:①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu的斜率和截距的最小二乘估计分别为β^=∑ni =1 (u i -u )(v i -v )∑ni =1(u i -u )2,α^=v -β^u . [解] (1)由散点图可以判断,y =c +d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.4分(2)令w =x ,先建立y 关于w 的线性回归方程.由于d ^=∑i =18(w i -w )(y i -y )∑i =18(w i -w )2=108.81.6=68,c ^=y -d ^w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w , 因此y 关于x 的回归方程为y ^=100.6+68x .8分 (3)①由(2)知,当x =49时,年销售量y 的预报值y ^=100.6+6849=576.6, 年利润z 的预报值z ^=576.6×0.2-49=66.32. ②根据(2)的结果知,年利润z 的预报值z ^=0.2(100.6+68x )-x =-x +13.6x +20.12.10分 所以当x =13.62=6.8,即x =46.24时,z ^取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大.12分。

2018届高三数学理一轮复习课后作业第10章 第4节 变量

2018届高三数学理一轮复习课后作业第10章 第4节 变量

课时作业 A 组 基础对点练1.(2017·长沙模拟)表中提供了某厂节能降耗技术改造后生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对应数据.根据下表提供的数据,求出y 关于x 的线性回归方程为y ^=0.7x +0.35,那么表中t 的值为( )A.3 C .3.5D .4.5解析:因为线性回归方程过样本中心点,所以由回归方程y ^=0.7x +0.35,可知y =0.7x +0.35, 又y =2.5+t +4+4.54=11+t4,x =3+4+5+64=92, 所以11+t 4=0.7×92+0.35,解得t =3,故选A. 答案:A2.(2017·泰安模拟)登山族为了了解某山高y (km)与气温x (℃)之间的关系,随机统计了4次山高与相应的气温,并制作了对照表:由表中数据,得到线性回归方程y =-2x +a (a ∈R ).由此估计山高为72(km)处气温的度数为( ) A .-10 B .-8 C .-6D .-4解析:因为x =10,y =40,所以样本中心点为(10,40),因为回归直线过样本中心点,所以40=-20+a ^,即a ^=60,所以线性回归方程为y ^=-2x +60,所以山高为72(km)处气温的度数为-6,故选C. 答案:C3.(2017·南昌模拟)某商品的销售量y (件)与销售价格x (元/件)存在线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=-10x +200,则下列结论正确的是( ) A .y 与x 具有正的线性相关关系B .若r 表示变量y 与x 之间的线性相关系数,则r =-10C .当销售价格为10元时,销售量为100件D .当销售价格为10元时,销售量为100件左右解析:y 与x 具有负的线性相关关系,所以A 项错误;当销售价格为10元时,销售量在100件左右,因此C 错误,D 正确;B 项中-10是回归直线方程的斜率. 答案:D4.为了研究某大型超市当天销售额与开业天数的关系,随机抽取了5天,其当天销售额与开业天数的数据如下表所示:根据上表提供的数据,求得y 关于x 的线性回归方程为y =0.67x +54.9,由于表中有一个数据模糊看不清,请你推断出该数据的值为( ) A .67 B .68 C .68.3D .71解析:设表中模糊看不清的数据为m .因为x =10+20+30+40+505=30,又样本中心点(x ,y )在回归直线y ^=0.67x +54.9上,所以y =m +3075=0.67×30+54.9,得m =68,故选B. 答案:B5.(2017·唐山模拟)为了研究某种细菌在特定环境下随时间变化的繁殖规律,得如下实验数据,计算得回归直线方程为y ^=0.85x -0.25.由以上信息,得到下表中c 的值为________.解析:x =3+4+5+6+75=5,y =2.5+3+4+4.5+c 5=14+c5,代入回归直线方程中得14+c5=0.85×5-0.25,解得c =6. 答案:66.某班主任对全班30名男生进行了作业量多少的调查,数据如下表:的概率不超过________.解析:计算得K 2的观测值为k =30×(12×8-2×8)214×16×20×10≈4.286>3.841,则推断犯错误的概率不超过0.05. 答案:0.057.(2017·商丘联考)某学生对其亲属30人的饮食习惯进行了一次调查,并用如图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主)(1)根据以上数据完成下列2×2列联表:(2)能否有99%附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).解析:(1)2×2(2)因为K2=3012×18×20×10=10>6.635,所以有99%的把握认为其亲属的饮食习惯与年龄有关.8.(2017·唐山模拟)为了研究某种细菌在特定环境下随时间变化的繁殖情况,得如下实验数据:(1)求y 关于t (2)利用(1)中的回归方程,预测t =8时,细菌繁殖个数. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:b ^=∑i =1n(t i -t )(y i -y )∑i =1n(t i -t )2,a ^=y -b ^t .解析:(1)由表中数据计算得t =5,y =4,∑i =1n (t i -t )(y i -y )=8.5,∑i =1n(t i -t )2=10,b ^=∑i =1n(t i -t )(y i -y )∑i =1n(t i -t )2=0.85,a ^=y -b ^t =-0.25.所以回归方程为y ^=0.85t -0.25.(2)将t =8代入(1)的回归方程中得y ^=0.85×8-0.25=6.55. 故预测t =8时,细菌繁殖个数为6.55千个.B 组 能力提速练1.(2017·河北三市联考)下表是高三某位文科生连续5次月考的历史、政治的成绩,结果统计如下:(1)求该生5(2)一般来说,学生的历史成绩与政治成绩有较强的线性相关关系,根据上表提供的数据,求两个变量x 、y 的线性回归方程y ^=b ^x +a ^.(附:b ^=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2=∑i =1nx i y i -n x y∑i =1nx 2i -n x 2,a ^=y -b ^x )解析:(1)x =15×(79+81+83+85+87)=83, ∵y =15×(77+79+79+82+83)=80,∴s 2y =15×[(77-80)2+(79-80)2+(79-80)2+(82-80)2+(83-80)2]=4.8. (2) ∵∑i =15(x i -x )(y i -y )=30,∑i =15(x i -x )2=40,∴b ^=0.75,a ^=y -b ^x =17.75.则所求的线性回归方程为y ^=0.75x +17.75.2.(2017·郑州一中检测)为了解某地区观众对某大型综艺节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众观看该节目的场数与所对应的人数的表格:10名女性.(1)根据已知条件完成如下2×2列联表,并判断我们能否有95%的把握认为是否为“歌迷”与性别有关?(2)已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率. 注:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d .解析:(1)由统计表可知,在抽取的100人中,“歌迷”有25人,从而完成2×2列联表如下:将2×2K 2=100×(30×10-45×15)275×25×45×55=10033≈3.030<3.841,所以我们没有95%的把握认为是否为“歌迷”与性别有关.(2)由统计表可知,“超级歌迷”有5人,其中2名女性,3名男性,设2名女性分别为a 1,a 2,3名男性分别为b 1,b 2,b 3,从中任取2人所包含的基本事件有:(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 2,b 1),(a 2,b 2),(a 2,b 3),(b 1,b 2),(b 1,b 3),(b 2,b 3),共10个,用A 表示“任意选取的2人中,至少有1名女性观众”这一事件,A 包含的基本事件有:(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 2,b 1),(a 2,b 2),(a 2,b 3),共7个, 所以P (A )=710.。

2017-2018学年高中数学人教A版3练习:2.3变量间的相关关系课下检测含解析

2017-2018学年高中数学人教A版3练习:2.3变量间的相关关系课下检测含解析

一、选择题1.下面哪些变量是相关关系()A.出租车费与行驶的里程B.房屋面积与房屋价格C.人的身高与体重D.铁块的大小与质量解析:A、B、D均为确定的函数关系.答案:C2.对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图1:对变量u,v有观测数据(u i,v i)(i=1,2,…,10),得散点图2.由这两个散点图可以判断( )A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关答案:C3.某数学老师月工资y(元)随课时数x(h)变化的回归直线方程为错误!=30x+700,下列判断错误的是( )A.课时为60 h,工资约为2 500元B.课时增加60 h,则工资平均提高1 800元C.课时增加70 h,则工资平均提高2 800元D.当月工资为2 800元时,课时约为70 h解析:当x=60时,错误!=30×60+700=2 500,故A正确;课时增加60时,即Δx=60时,Δ错误!=30×Δx=1 800,B正确;课时增加70时,Δ错误!=30×70=2 100,C错误;当错误!=2 800时,由2 800=30x+700得x=70,D正确.综上可知选C.答案:C4.某商品销售量y(件)与销售价格x(元/件)负相关,则其回归方程可能是()A。

错误!=-10x+200 B。

错误!=10x+200C.错误!=-10x-200 D。

错误!=10x-200解析:由于销售量y与销售价格x负相关,则回归直线方程中的系数错误!〈0.由此排除选项B,D。

选项C中,当x=0时,错误!=-200,与实际问题不符合,故排除.答案:A二、填空题5.有下列说法:①两个变量之间若没有确定的函数关系,则这两个变量不相关;②正相关是两个变量相关关系的一种;③“庄稼一枝花,全靠肥当家”说明农作物产量与施肥之间有相关关系;④根据散点图可以判断两个变量之间有无相关关系.其中正确的是________.(填序号)答案:②③④6.(2011·江苏常州模拟)某工厂生产某种产品的产量x(吨)与相应的生产能耗y(吨标准煤)有如下几组样本数据:据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得其回归直线的斜率为0.7,则这组样本数据的回归直线方程是________.解析:∵x=错误!=4。

人教A版高中数学必修三试卷变量的相关关系练习题

人教A版高中数学必修三试卷变量的相关关系练习题

人教A版高中数学必修三试卷变量的相关关系练习题变量的相关关系练习题一、多项选择题(本大题共有6个子题,每个子题得3分,共18分)1。

下面的说法是正确的a.任何两个变量都具有相关关系b.球的体积与该球的半径具有相关关系c.农作物的产量与施化肥量之间是一种确定性的关系d、商品的生产和销售价格之间存在不确定的关系。

2.变量y和X之间的回归方程a.表示y与x之间的函数关系b.表示y和x之间的不确定关系c、反映Y和X之间真实关系的形式。

反映Y和X之间的真实关系,以实现最大的一致性3.设有一个回归方程为y=2+3x,则变量x增加一个单位时,则a.y平均增加2个单位b.y平均减少3个单位c.y平均减少2个单位d.y平均增加3个单位4.线性回归方程y=bx+a必过a、(0,0)B点(x,0)C点(0,y)D点(x,y)点5.为了考察两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1和l2,已知两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,那么下列说法正确的是a、 L1和L2有交点(s,t)。

B.L1和L2相交,但交点不一定是(s,t)。

C.L1和L2必须平行。

D.L1和L2必须重合。

6.“回归”一词是高尔顿在研究儿童身高与父母身高之间的遗传关系时提出的。

他的研究结果是,儿童的平均身高回到了中心。

根据他的结论,在儿子的身高y和父亲的身高x之间的回归方程y=a+BX中,B的值a.在(-1,0)内b.等于0c.在(0,1)内d.在[1,+∞]内二、有以下关系:(1)一个人的年龄和他或她拥有的财富之间的关系;(2)曲线上的点与点坐标之间的关系;(3)苹果产量与气候的关系;(4)森林中同一棵树的截面直径与高度的关系;(5)学生和他/她的学生号之间的关系。

其中,相关关系是_____8.若施化肥量x与水稻产量y的回归直线方程为y=5x+250,当施化肥量为80kg时,预计的水稻产量为____________.9.散点图中n个点的重心为_____^^^^110.有一组数据(x1,y1),(x2,y2),…,(xn,yn)记x=n1=n?席西i?1^n?yi,li?1nxx??(xi?x),,lxy??(xi?x)(yi?y),则线性回归方程则y=a+bx中的 2i?1i?1nn。

福建专用2018年高考数学总复习课时规范练50变量间的相关关系统计案例文新人教A版201803154

福建专用2018年高考数学总复习课时规范练50变量间的相关关系统计案例文新人教A版201803154

课时规范练50变量间的相关关系、统计案例基础巩固组1.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为y=0.85x-85.71,则下列结论不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(푥,푦)C.若该大学某女生身高增加1 cm,则其体重约增加0.85 kgD.若该大学某女生身高为170 cm,则可断定其体重必为58.79 kg2.根据如下样本数据:x 3 4 5 6 7 8y4.0 2.5 -0.5 0.5 -2.0 -3.0^ ^ ^ 得到的回归方程为푦=b x+푎,则()^ ^ ^ ^A.푎>0,푏>0B.푎>0,푏<0^ ^ ^ ^C.푎<0,푏>0D.푎<0,푏<03.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()A.若K2的观测值为6.635,则在犯错误的概率不超过0.01的前提下认为吸烟与患肺病有关系, 因此在100个吸烟的人中必有99个患有肺病B.由独立性检验知,在犯错误的概率不超过0.01的前提下认为吸烟与患肺病有关系时,我们说某人吸烟,则他有99%的可能患肺病C.若在统计量中求出在犯错误的概率不超过0.05的前提下认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误D.以上三种说法都不正确4.两个随机变量x,y的取值如下表:x0 1 3 42. y 2 4.4.6.3 8 7^ ^若x,y具有线性相关关系,且푦=b x+2.6,则下列结论错误的是()A.x与y是正相关B.当x=6时,y的估计值为8.31C.x每增加一个单位,y大约增加0.95个单位D.样本点(3,4.8)的残差为0.565.2016年春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:做不到“光能做到“光盘”盘”男45 10女30 15则下面的结论正确的是()A.在犯错误的概率不超过0.1的前提下,认为“该市居民能否做到‘光盘’与性别有关”B.在犯错误的概率不超过0.01的前提下,认为“该市居民能否做到‘光盘’与性别无关”C.在犯错误的概率不超过0.01的前提下,认为“该市居民能否做到‘光盘’与性别有关”D.在犯错误的概率不超过0.1的前提下,认为“该市居民能否做到‘光盘’与性别无关”6.(2017山东潍坊二模,文12)某公司未来对一种新产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价4 5 6 7 8 9x/元销量9 8 8 8 7 6y/件0 4 3 0 5 8^ ^由表中数据,求得线性回归方程为푦=-4x+a,当产品销量为76件时,产品定价大致为元.7.从某居民区随机抽取10个家庭,获得第i个家庭的月收入x i(单位:千元)与月储蓄y i(单位:10101010 千元)的数据资料,算得∑x i=80, y i=20, x i y i=184, 푥2푖=720.∑∑∑푖=1푖=1푖=1푖=1^ ^ ^ ^ (1)求家庭的月储蓄푦对月收入x的线性回归方程푦=푏x+푎;(2)判断变量x与y之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.2〚导学号24190950〛综合提升组8.通过随机询问110名性别不同的学生是否爱好某项运动,得到如下的列联表:总男女计爱好4260不爱好2350总计65110附表:P(K2≥k0.0 0.0 0.00) 50 10 1k03.8416.63510.828参照附表,得到的正确结论是()A.在犯错误的概率不超过0.01的前提下,认为“爱好该项运动与性别有关”B.在犯错误的概率不超过0.01的前提下,认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.001的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.001的前提下,认为“爱好该项运动与性别无关”9.已知x与y之间的几组数据如下表:x123456y0213343^ ^ ^ 假设根据上表数据所得线性回归直线方程푦=b x+푎,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y=b'x+a',则以下结论正确的是()^ ^ ^ ^A.푏>b',푎>a'B.푏>b',푎<a'^ ^ ^ ^C.푏<b',푎>a'D.푏<b',푎<a'10.某数学老师身高176 cm,他爷爷、父亲和儿子的身高分别是173 cm,170 cm和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为cm.11.(2017宁夏石嘴山第三中学模拟,文18)为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班进行教学实验,为了解教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出的茎叶图如下图, 记成绩不低于70分者为“成绩优良”.(1)分别计算甲、乙两班20个样本中,化学成绩前十的平均分,并据此判断哪种教学方式的教学效果更佳;(2)由以上统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?甲乙总班班计成绩优良成绩不优良总计푛(푎푑-푏푐)2附:K2= (n=a+b+c+d).(푎+푏)(푐+푑)(푎+푐)(푏+푑)独立性检验临界值表:P(K2≥k0.1 0.0 0.0 0.0) 0 5 25 10k02.7063.8415.0246.635412.某贫困地区2011年至2017年农村居民家庭人均纯收入y(单位:千元)的数据如下表:年份年份2011201220132014201520162017代号1 2 3 4 5 6 7t人均纯收入y2.93.3 3.64.4 4.85.2 5.9(1)求y关于t的线性回归方程;(2)利用(1)中的回归方程,分析2011年至2017年该地区农村居民家庭人均纯收入的变化情况, 并预测该地区2019年农村居民家庭人均纯收入.n^ ^ ^∑(푡푖- 푡)(푦푖-푦) i=1附:回归直线的斜率和截距的最小二乘估计公式分别为:푏=,푎=푦―푏푡.푛2∑(푡푖- 푡)푖=15。

高三数学第73练变量间的相关关系及统计案例练习(2021学年)

高三数学第73练变量间的相关关系及统计案例练习(2021学年)

2018届高三数学第73练变量间的相关关系及统计案例练习编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018届高三数学第73练变量间的相关关系及统计案例练习)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018届高三数学第73练变量间的相关关系及统计案例练习的全部内容。

第73练变量间的相关关系及统计案例1.(2016·山西四校联考)已知x、y的取值如下表所示,从散点图分析,y与x线性相关,且错误!=0。

8x+错误!,则错误!等于( )A。

0。

8C.1。

2 ﻩD.1。

52.通过随机询问110名大学生是否爱好某项运动,得到列联表:由K2=错误!,得K2=错误!≈7.8附表:A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关"D.在犯错误的概率不超过0。

1%的前提下,认为“爱好该项运动与性别无关"3.已知数组(x1,y1),(x1,y2),…,(x10,y10)满足线性回归方程错误!=错误!x+错误!,则“(x0,y0)满足线性回归方程错误!=错误!x+错误!”是“x0=错误!,y0=错误!"的()A.充分不必要条件ﻩ B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(2016·辽宁五校联考)某车间加工零件的数量x与加工时间y的统计数据如表:错误!错误!错误!错误!0。

9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为( )A.84分钟ﻩB.94分钟C.102分钟ﻩ D.112分钟5.以下四个命题中:①在回归分析中,可用相关指数R2的值判断拟合的效果,R2越大,模型的拟合效果越好;②两个随机变量的线性相关性越强,相关系数的绝对值越接近1;③若数据x1,x2,x3,…,xn的方差为1,则2x1,2x2,2x3,…,2x n的方差为2;④对分类变量x与y的随机变量K2的观测值k来说,k越小,判断“x与y有关系”的把握程度越大.其中真命题的个数为( )A.1 ﻩB.2C.3 D.46.已知x与y之间的几组数据如下表:错误!错误!错误!数据(1,0)和(2,2)求得的直线方程为y=b′x+a′,则以下结论正确的是( )A。

高考数学一轮复习 第十章 统计与统计案例 10.3 变量间的相关关系、统计案例真题演练集训 理 新人教A版

高考数学一轮复习 第十章 统计与统计案例 10.3 变量间的相关关系、统计案例真题演练集训 理 新人教A版

2018版高考数学一轮复习 第十章 统计与统计案例 10.3 变量间的相关关系、统计案例真题演练集训 理 新人教A 版1.[2015·福建卷]为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y =b x +a ,其中b =0.76,a =y -b x .据此估计,该社区一户年收入为15万元家庭的年支出为( )A .11.4万元B .11.8万元C .12.0万元 D.12.2万元 答案:B解析:由题意知,x =8.2+8.6+10.0+11.3+11.95=10,y =6.2+7.5+8.0+8.5+9.85=8,∴ a ^=8-0.76×10=0.4,∴ 当x =15时,y ^=0.76×15+0.4=11.8(万元).2.[2016·新课标全国卷Ⅲ]下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1-7分别对应年份2008-2014.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:∑i =17y i =9.32,∑i =17t i y i =40.17,i =17y i -y2=0.55,7≈2.646.参考公式:相关系数r=∑i =1nt i -ty i -y∑i =1nt i -t2∑i =1n y i -y2,回归方程y ^=b ^t +a ^中斜率和截距的最小二乘估计公式分别为b ^=∑i =1nt i -ty i -y∑i =1nt i -t2,a ^=y -b ^t .解:(1)由折线图中数据和附注中参考数据,得t =4,∑i =17(t i -t )2=28,∑i =17y i -y2=0.55,∑i =17 (t i -t )(y i -y )=∑i =17t i y i -t∑i =17y i =40.17-4×9.32=2.89,r ≈2.890.55×2×2.646≈0.99.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由y =9.327≈1.331及(1),得b ^=∑i =17t i -ty i -y∑i =17t i -t2=2.8928≈0.103, a ^=y -b ^t ≈1.331-0.103×4≈0.92.所以,y 关于t 的回归方程为y ^=0.92+0.10t . 将2016年对应的t =9代入回归方程,得 y ^=0.92+0.10×9=1.82.所以预测2016年我国生活垃圾无害化处理量约为1.82亿吨.3.[2015·新课标全国卷Ⅰ]某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i =x i ,w =18∑i =18x i .(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程.(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题: ①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+β u 的斜率和截距的最小二乘估计分别为β^=∑i =1nu i -uv i -v∑i =1nu i -u2,α^=v -β^u .解:(1)由散点图可以判断,y =c +d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2)令w =x ,先建立y 关于w 的线性回归方程.由于d ^=∑i =18w i -wy i -y∑i =18w i -w2=108.81.6=68,c ^=y -d ^w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w , 因此y 关于x 的回归方程为y ^=100.6+68x . (3)①由(2)知,当x =49时,年销售量y 的预报值y ^=100.6+6849=576.6,年利润z 的预报值z ^=576.6×0.2-49=66.32.②根据(2)的结果知,年利润z 的预报值 z ^=0.2(100.6+68x )-x =-x +13.6x +20.12.所以当x =13.62=6.8,即x =46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.4.[2014·新课标全国卷Ⅱ]某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表:(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:b ^=∑i =1nt i -ty i -y∑i =1nt i -t2,a ^=y -b ^t .解:(1)由所给数据计算得t =17×(1+2+3+4+5+6+7)=4,y =17×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∑i =17(t i -t )2=9+4+1+0+1+4+9=28,∑i =17(t i -t)(y i -y )=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,b ^=∑i =17t i -ty i -y∑i =17t i -t2=1428=0.5, a ^=y -b ^t =4.3-0.5×4=2.3.所求回归方程为y ^=0.5t +2.3.(2)由(1)知,b ^=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t =9代入(1)中的回归方程,得 y ^=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.课外拓展阅读统计案例问题的规范答题[典例] [2013·福建卷]某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附:K 2=a +bc +d a +cb +d.[审题视角] 由频率分布直方图列举基本事件,结合古典概型,求概率.利用独立性检验公式计算K 2.[解] (1)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名.所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60×0.05=3(人),记为A 1,A 2,A 3;25周岁以下组工人有40×0.05=2(人),记为B 1,B 2.从中随机抽取2名工人,所有的可能结果共有10种,它们是(A 1,A 2),(A 1,A 3),(A 2,A 3),(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).其中,至少有1名“25周岁以下组”工人的可能结果共有7种,它们是(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).故所求的概率P =710.(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手有60×0.25=15(人),“25周岁以下组”中的生产能手有40×0.375=15(人),据此可得2×2列联表如下:所以K 2=a +bc +d a +cb +d=-260×40×30×70=2514≈1.79. 因为1.79<2.706,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”. [答题模板] 第1步:由分层抽样计算两组工人的数目;第2步:由频率分布直方图计算两组不足60件的人数; 第3步:列举5人抽取2人的基本事件数; 第4步,由古典概型计算概率;第5步:统计生产能手与非生产能手,列2×2列联表; 第6步:由公式计算K 2,确定答案. 归纳总结(1)分层抽样比为100500=15,故25周岁以上有300×15=60(人),25周岁以下的200×15=40(人),然后再根据频率计算“不足60件”的人数,并设定符号.(2)列2×2列联表时,其中的数字应先由频率分布直方图算出后再列表.。

2018届高考数学第六章立体几何67变量间的相关关系与统计案例试题理

2018届高考数学第六章立体几何67变量间的相关关系与统计案例试题理

考点测试67 变量间的相关关系与统计案例一、基础小题1.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( ) A.y ^=-2x +100 B.y ^=2x +100 C.y ^=-2x -100 D.y ^=2x -100答案 A解析 B 、D 为正相关,C 中y ^值恒为负,不符合题意. 2.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元 答案 B解析 ∵a ^=y -b ^x =49+26+39+544-9.4×4+2+3+54=9.1,∴回归方程为y ^=9.4x +9.1.令x =6,得y ^=9.4×6+9.1=65.5(万元).3.设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y =0.85x -85.71,则下列结论中不正确的是( )A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x -,y -)C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg 答案 D解析 由于线性回归方程中x 的系数为0.85,因此y 与x 具有正的线性相关关系,故A 正确.又线性回归方程必过样本点中心(x ,y ),因此B 正确.由线性回归方程中系数的意义知,x 每增加1 cm ,其体重约增加0.85 kg ,故C 正确.当某女生的身高为170 cm 时,其体重估计值是58.79 kg ,而不是具体值,因此D 不正确.4.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( )A .-1B .0 C.12 D .1答案 D解析 样本点都在直线上时,其数据的估计值与真实值是相等的,即y i =y ^i ,代入相关系数公式r =1-∑i =1ny i -y ^i2∑i =1ny i -y2=1.5. 设(x 1,y 1),(x 2,y 2),…,(x n ,y n )是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是( )A .直线l 过点(x ,y )B .x 和y 的相关系数为直线l 的斜率C.x和y的相关系数在0到1之间D.当n为偶数时,分布在l两侧的样本点的个数一定相同答案 A解析因为相关系数是表示两个变量是否具有线性相关关系的一个值,它的绝对值越接近1,两个变量的线性相关程度越强,所以B、C错误;D中n为偶数时,分布在l两侧的样本点的个数可以不相同,所以D错误;根据线性回归直线一定经过样本点中心可知A正确.6.在一次对性别与说谎是否相关的调查中,得到如下数据:A.在此次调查中有95%的把握认为是否说谎与性别有关B.在此次调查中有99%的把握认为是否说谎与性别有关C.在此次调查中有99.5%的把握认为是否说谎与性别有关D.在此次调查中没有充分的证据显示说谎与性别有关答案 D解析由于K2=-213×17×14×16≈0.0024,由于K2很小,因此,在此次调查中没有充分的证据显示说谎与性别有关.故选D.7. 如图所示,有5组(x,y)数据,去掉________组数据后,剩下的4组数据具有较强的线性相关关系.答案D解析由散点图知呈带状区域时有较强的线性相关关系,故去掉D.8.对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行了3年的跟踪研究,调查他们是否又发作过心脏病,调查结果如下表所示:根据表中所给的数据,能否在犯错误的概率不超过0.15的前提下认为这两种手术对病人又发作过心脏病的影响有差别?________________________________________________________________________.答案 1.779 不能作出这两种手术对病人又发作心脏病的影响有差别的结论解析根据列联表中的数据,可以求得K2=-268×324×196×196≈1.779,而K2<2.072,所以我们不能在犯错误的概率不超过0.15的前提下,作出这两种手术对病人又发作心脏病的影响有差别的结论.二、高考小题9.[2015·全国卷Ⅱ]根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关答案 D解析由柱形图,知2006年以来我国二氧化硫年排放量呈减少趋势,故其排放量与年份负相关,故D错误.10.[2015·福建高考]为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y=b x+a,其中b=0.76,a=y-b x.据此估计,该社区一户年收入为15万元家庭的年支出为( )A.11.4万元 B.11.8万元C .12.0万元D .12.2万元 答案 B 解析 ∵x =8.2+8.6+10.0+11.3+11.95=10,y =6.2+7.5+8.0+8.5+9.85=8,∴a ^=y -0.76x =8-0.76×10=0.4, ∴y ^=0.76x +0.4.当x =15时,y ^=0.76×15+0.4=11.8.11.[2014·江西高考]某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )表1表2表3表4A .成绩B .视力C .智商D .阅读量 答案 D 解析 根据K 2=n ad -bc 2a +bc +d a +cb +d,代入题中数据计算得表1:K 2=-216×36×20×32≈0.009;表2:K 2=-216×36×20×32≈1.769; 表3:K 2=-216×36×20×32≈1.3;表4:K 2=-216×36×20×32≈23.48.∵D 选项K 2最大,∴阅读量与性别有关联的可能性最大,故选D. 12.[2014·湖北高考]根据如下样本数据得到的回归方程为y =bx +a ,则( ) A .a >0,b >0 B .a >0,b <0 C .a <0,b >0 D .a <0,b <0答案 B解析 把样本数据中的x ,y 分别当作点的横、纵坐标,在平面直角坐标系xOy 中作出散点图,由图可知b <0,a >0.故选B.13.[2014·重庆高考]已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( )A.y ^=0.4x +2.3B.y ^=2x -2.4C.y ^=-2x +9.5 D.y ^=-0.3x +4.4答案 A解析 由变量x 与y 正相关知C 、D 均错,又回归直线经过样本中心(3,3.5),代入验证得A 正确,B 错误.故选A.三、模拟小题14.[2017·大连双基测试]已知x ,y 的取值如表所示:如果y 与x 线性相关,且线性回归方程为y ^=b ^x +2,则b ^的值为( )A .-12 B.12 C .-110 D.110答案 A解析 将x =3,y =5代入到y ^=b ^x +132中,得b ^=-12.故选A.15.[2016·兰州、张掖联考]对具有线性相关关系的变量x ,y 有一组观测数据(x i ,y i )(i =1,2,…,8),其回归直线方程是y ^=13x +a ^,且x 1+x 2+x 3+…+x 8=2(y 1+y 2+y 3+…+y 8)=6,则实数a ^的值是( )A.116B.18C.14D.12 答案 B解析 依题意可知样本中心点为⎝ ⎛⎭⎪⎫34,38,则38=13×34+a ,解得a ^=18.16.[2016·漳州二模]下列说法错误的是( )A .在回归模型中,预报变量y 的值不能由解释变量x 唯一确定B .在线性回归分析中,相关系数r 的值越大,变量间的相关性越强C .在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D .在回归分析中,R 2为0.98的模型比R 2为0.80的模型拟合的效果好 答案 B解析 对于A ,在回归模型中,预报变量y 的值由解释变量x 和随机误差e 共同确定,即x 只能解释部分y 的变化,∴A 正确;对于B ,线性回归分析中,相关系数r 的绝对值越接近1,两个变量的线性相关性越强,反之,线性相关性越弱,∴B 错误;对于C ,在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高,C 正确;对于D ,在回归分析中,用相关指数R 2来刻画回归的效果时,R 2取值越大,说明模型拟合的效果越好,∴R 2为0.98的模型比R 2为0.80的模型拟合的效果好,D 正确.故选B.17.[2017·温州月考]为了检验某套眼保健操预防学生近视的作用,把500名做该套眼保健操的学生与另外500名未做该套眼保健操的学生的视力情况作记录并比较,提出假设H 0:“这套眼保健操不能起到预防近视的作用”,利用2×2列联表计算所得的K 2≈3.918.经查对临界值表知P (K 2≥3.841)≈0.05.对此,四名同学得出了以下结论:①有95%的把握认为“这套眼保健操能起到预防近视的作用”;②若某人未做该套眼保健操,那么他有95%的可能得近视;③这套眼保健操预防近视的有效率为95%;④这套眼保健操预防近视的有效率为5%.其中所有正确结论的序号是________. 答案 ①解析 根据查对临界值表知P (K 2≥3.841)≈0.05,故有95%的把握认为“这套眼保健操能起到预防近视的作用”,即①正确;95%仅是指“这套眼保健操能起到预防近视的作用”的可信程度,所以②③④错误.18.[2016·兰州一模]从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,计算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.已知家庭的月储蓄y 关于月收入x 的线性回归方程为y ^=b ^x +a ^,则变量x 与y ________(填“正相关”或“负相关”);若该居民区某家庭月收入为7千元,预测该家庭的月储蓄是________千元.答案 正相关 1.7解析 由题意,知n =10,x =110∑i =110x i =8,y =110∑i =110y i =2,∴b ^=184-10×8×2720-10×82=0.3,a ^=2-0.3×8=-0.4,∴y ^=0.3x -0.4,∵0.3>0,∴变量x 与y 正相关.当x =7时,y ^=0.3×7-0.4=1.7(千元).一、高考大题1.[2016·全国卷Ⅲ]下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:∑7i =1y i =9.32,∑7i =1t i y i =40.17, ∑7i =1y i -y2=0.55,7≈2.646.参考公式:相关系数r =∑ni =1 t i -ty i -y∑n i =1t i -t2∑ni =1y i -y2,回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为:b ^=∑ni =1t i -ty i -y∑ni =1t i -t2,a ^=y -b ^t .解 (1)由折线图中数据和附注中参考数据得t =4,∑7i =1(t i -t )2=28, ∑7i =1y i -y 2=0.55,∑7i =1(t i -t )(y i -y )=∑7i =1t i y i -t ∑7i =1y i =40.17-4×9.32=2.89,r ≈2.890.55×2×2.646≈0.99.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由y =9.327≈1.331及(1)得b ^=∑7i =1t i -ty i -y∑7i =1t i -t2=2.8928≈0.103, a ^=y -b ^t =1.331-0.103×4≈0.92.所以y 关于t 的回归方程为y ^=0.92+0.10t . 将2016年对应的t =9代入回归方程得y ^=0.92+0.10×9=1.82.所以预测2016年我国生活垃圾无害化处理量约为1.82亿吨.2.[2015·全国卷Ⅰ]某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i =x i ,w =18∑8i =1w i .(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题: ①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为β^=∑ni =1u i -uv i -v∑n i =1u i -u2,α^=v -β^u .解 (1)由散点图可以判断,y =c +d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2) 令w =x ,先建立y 关于w 的线性回归方程.由于d ^=∑8i =1w i -w y i -y ∑8i =1 w i -w 2=108.81.6=68, c ^=y -d ^w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w ,因此y 关于x 的回归方程为y ^=100.6+68x .(3)①由(2),知当x =49时,年销售量y 的预报值 y ^=100.6+6849=576.6,年利润z 的预报值 z ^=576.6×0.2-49=66.32.②根据(2)的结果,知年利润z 的预报值 z ^=0.2×(100.6+68x )-x =-x +13.6x +20.12,所以当x =13.62=6.8,即x =46.24时,z ^取得最大值,故年宣传费为46.24千元时,年利润的预报值最大. 二、模拟大题3.[2016·石家庄模拟]班主任对班级22名学生进行了作业量多少的调查,数据如下:在喜欢玩电脑游戏的12人中,有10人认为作业多,2人认为作业不多;在不喜欢玩电脑游戏的10人中,有3人认为作业多,7人认为作业不多.(1)根据以上数据建立一个2×2列联表;(2)试问喜欢玩电脑游戏与认为作业多少是否有关系. 参考公式:K 2=n ad -bc 2a +b c +d a +cb +d,其中n =a +b +c +d .参考数据:解(2)K 2=-212×10×13×9≈6.418,∵3.841<6.418,∴有95%的把握认为喜欢玩电脑游戏与认为作业多少有关.4.[2016·广东模拟]2016年1月1日起全国统一实施全面两孩政策,为了解适龄民众对放开生育二胎政策的态度,某市选取70后和80后作为调查对象,随机调查了100位,得到数据如下表:70后公民中随机抽取3位,记其中生二胎的人数为X ,求随机变量X 的分布列和数学期望;(2)根据调查的数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由. 参考公式:K 2=n ad -bc 2a +bc +d a +cb +d,其中n =a +b +c +d参考数据:解 (1)由已知得70后“生二胎”的概率为3,并且X ~B ⎝ ⎛⎭⎪⎫3,23, 所以P (X =k )=C k 3⎝ ⎛⎭⎪⎫23k ⎝ ⎛⎭⎪⎫133-k(k =0,1,2,3),其分布列如下:所以E (X )=3×3=2.(2)K 2=n ad -bc 2a +bc +d a +cb +d=-275×25×45×55=10033≈3.030>2.706, 所以有90%以上的把握认为“生二胎与年龄有关”.5.[2017·成都诊断]PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某时间段车流量与PM2.5浓度的数据如下表:(2)若周六同一时段车流量是200万辆,试根据(1)求出的线性回归方程,预测此时PM2.5的浓度为多少?参考公式:b ^=∑i =1nx i -xy i -y∑i =1nx i -x2,a ^=y -b ^·x .解 (1)由条件可知x =15∑i =15x i =5405=108,y =15∑i =15y i =4205=84,∑i =15(x i -x )(y i -y )=(-8)×(-6)+(-6)×(-4)+0×0+6×4+8×6=144,∑i =15(x i -x )2=(-8)2+(-6)2+02+62+82=200,b ^=∑i =15x i -xy i -y∑i =15x i -x2=144200=0.72, a ^=y -b ^x =84-0.72×108=6.24,故y 关于x 的线性回归方程为y ^=0.72x +6.24. (2)当x =200时,y ^=0.72×200+6.24=150.24.所以可以预测此时PM2.5的浓度约为150.24微克/立方米.6.[2017·厦门质检]某单位共有10名员工,他们某年的收入如下表:(2)从该单位中任取2人,此2人中年薪高于5万的人数记为ξ,求ξ的分布列和期望; (3)已知员工年薪与工作年限成正线性相关关系,若某员工工作第一年至第四年的年薪分别为3万元、4.2万元、5.6万元、7.2万元,预测该员工第五年的年薪为多少.附:线性回归方程y ^=b ^x +a ^中系数计算公式b ^=∑i =1nx i -xy i -y∑i =1nx i -x2,a ^=y -b^x ,其中x ,y 表示样本均值.解 (1)平均值为10万元,中位数为6万元.(2)年薪高于5万的有6人,低于或等于5万的有4人,所以从该单位中任取2人,此2人中年薪高于5万的人数记为ξ,ξ的可能取值为0,1,2.P (ξ=0)=C 24C 210=215,P (ξ=1)=C 14C 16C 210=815,P (ξ=2)=C 26C 210=13,所以ξ的分布列为:E (ξ)=0×15+1×15+2×3=5.(3)设x i ,y i (i =1,2,3,4)分别表示工作年限及相应年薪,则x =2.5,y =5,∑i =14(x i -x )2=2.25+0.25+0.25+ 2.25=5,∑i =14(x i -x )(y i -y )=-1.5×(-2)+(-0.5)×(-0.8)+0.5×0.6+1.5×2.2=7,b ^=∑i =14x i -xy i -y∑i =14x i -x2=75=1.4, a ^=y -b ^x =5-1.4×2.5=1.5,所以线性回归方程为y ^=1.4x +1.5. 当x =5时,y ^=8.5.故可预测该员工第五年的年薪为8.5万元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点测试67变量间的相关关系与统计案例一、基础小题1.某商品销售量y(件)与销售价格x(元/件)负相关,则其回归方程可能是()A.y^=-2x+100B.y^=2x+100C.y^=-2x-100D.y^=2x-100答案 A解析B、D为正相关,C中y^值恒为负,不符合题意.2.某产品的广告费用x与销售额y的统计数据如下表:根据上表可得回归方程y=b x+a中的b为9.4,据此模型预报广告费用为6万元时销售额为()A .63.6万元B .65.5万元C .67.7万元D .72.0万元 答案 B解析 ∵a ^=y -b ^x =49+26+39+544-9.4×4+2+3+54=9.1,∴回归方程为y ^=9.4x +9.1.令x =6,得y ^=9.4×6+9.1=65.5(万元).3.设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y =0.85x -85.71,则下列结论中不正确的是( )A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x -,y -)C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg 答案 D解析 由于线性回归方程中x 的系数为0.85,因此y 与x 具有正的线性相关关系,故A 正确.又线性回归方程必过样本点中心(x ,y ),因此B 正确.由线性回归方程中系数的意义知,x 每增加1 cm ,其体重约增加0.85 kg ,故C 正确.当某女生的身高为170 cm 时,其体重估计值是58.79 kg ,而不是具体值,因此D 不正确.4.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( )A .-1B .0 C.12 D .1 答案 D解析 样本点都在直线上时,其数据的估计值与真实值是相等的,即y i =y ^i ,代入相关系数公式r =1-∑i =1n(y i -y ^i )2∑i =1n(y i -y )2=1.5. 设(x 1,y 1),(x 2,y 2),…,(x n ,y n )是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是( )A .直线l 过点(x ,y )B .x 和y 的相关系数为直线l 的斜率C .x 和y 的相关系数在0到1之间D .当n 为偶数时,分布在l 两侧的样本点的个数一定相同 答案 A解析 因为相关系数是表示两个变量是否具有线性相关关系的一个值,它的绝对值越接近1,两个变量的线性相关程度越强,所以B 、C 错误;D 中n 为偶数时,分布在l 两侧的样本点的个数可以不相同,所以D 错误;根据线性回归直线一定经过样本点中心可知A 正确.6.在一次对性别与说谎是否相关的调查中,得到如下数据:根据表中数据,得到如下结论中正确的一项是( ) A .在此次调查中有95%的把握认为是否说谎与性别有关 B .在此次调查中有99%的把握认为是否说谎与性别有关 C .在此次调查中有99.5%的把握认为是否说谎与性别有关 D .在此次调查中没有充分的证据显示说谎与性别有关 答案 D解析 由于K 2=30×(6×9-7×8)213×17×14×16≈0.0024,由于K 2很小,因此,在此次调查中没有充分的证据显示说谎与性别有关.故选D.7. 如图所示,有5组(x ,y )数据,去掉________组数据后,剩下的4组数据具有较强的线性相关关系.答案 D解析 由散点图知呈带状区域时有较强的线性相关关系,故去掉D .8.对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行了3年的跟踪研究,调查他们是否又发作过心脏病,调查结果如下表所示:试根据上述数据计算K2=________.根据表中所给的数据,能否在犯错误的概率不超过0.15的前提下认为这两种手术对病人又发作过心脏病的影响有差别?_______________________________________________________ _________________.答案 1.779不能作出这两种手术对病人又发作心脏病的影响有差别的结论解析根据列联表中的数据,可以求得K2=392×(39×167-29×157)268×324×196×196≈1.779,而K2<2.072,所以我们不能在犯错误的概率不超过0.15的前提下,作出这两种手术对病人又发作心脏病的影响有差别的结论.二、高考小题9.[2015·全国卷Ⅱ]根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关答案 D解析由柱形图,知2006年以来我国二氧化硫年排放量呈减少趋势,故其排放量与年份负相关,故D错误.10.[2015·福建高考]为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y =b x +a ,其中b =0.76,a =y -b ^x .据此估计,该社区一户年收入为15万元家庭的年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元 答案 B解析 ∵x =8.2+8.6+10.0+11.3+11.95=10, y =6.2+7.5+8.0+8.5+9.85=8, ∴a^=y -0.76x =8-0.76×10=0.4, ∴y ^=0.76x +0.4.当x =15时,y ^=0.76×15+0.4=11.8.11.[2014·江西高考]某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )表1表2表3表4A.成绩B.视力C.智商D.阅读量答案 D解析根据K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),代入题中数据计算得表1:K2=52×(6×22-10×14)216×36×20×32≈0.009;表2:K2=52×(4×20-12×16)216×36×20×32≈1.769;表3:K2=52×(8×24-8×12)216×36×20×32≈1.3;表4:K2=52×(14×30-6×2)216×36×20×32≈23.48.∵D选项K2最大,∴阅读量与性别有关联的可能性最大,故选D.12.[2014·湖北高考]根据如下样本数据得到的回归方程为y=bx+a,则()A.a>0,b>0 B.a>0,b<0C.a<0,b>0 D.a<0,b<0答案 B解析把样本数据中的x,y分别当作点的横、纵坐标,在平面直角坐标系xOy中作出散点图,由图可知b<0,a>0.故选B.13.[2014·重庆高考]已知变量x与y正相关,且由观测数据算得样本平均数x=3,y=3.5,则由该观测数据算得的线性回归方程可能是()A.y^=0.4x+2.3B.y^=2x-2.4C.y^=-2x+9.5D.y^=-0.3x+4.4答案 A解析由变量x与y正相关知C、D均错,又回归直线经过样本中心(3,3.5),代入验证得A正确,B错误.故选A.三、模拟小题14.[2017·大连双基测试]已知x,y的取值如表所示:如果y 与x 线性相关,且线性回归方程为y ^=b ^x +132,则b ^的值为( )A .-12 B.12 C .-110 D.110 答案 A解析 将x =3,y =5代入到y ^=b ^x +132中,得b ^=-12.故选A. 15.[2016·兰州、张掖联考]对具有线性相关关系的变量x ,y 有一组观测数据(x i ,y i )(i =1,2,…,8),其回归直线方程是y ^=13x +a ^,且x 1+x 2+x 3+…+x 8=2(y 1+y 2+y 3+…+y 8)=6,则实数a ^的值是( )A.116B.18C.14D.12 答案 B解析 依题意可知样本中心点为⎝ ⎛⎭⎪⎫34,38,则38=13×34+a ,解得a ^=18.16.[2016·漳州二模]下列说法错误的是( )A .在回归模型中,预报变量y 的值不能由解释变量x 唯一确定B .在线性回归分析中,相关系数r 的值越大,变量间的相关性越强C .在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D .在回归分析中,R 2为0.98的模型比R 2为0.80的模型拟合的效果好答案 B解析 对于A ,在回归模型中,预报变量y 的值由解释变量x 和随机误差e 共同确定,即x 只能解释部分y 的变化,∴A 正确;对于B ,线性回归分析中,相关系数r 的绝对值越接近1,两个变量的线性相关性越强,反之,线性相关性越弱,∴B 错误;对于C ,在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高,C 正确;对于D ,在回归分析中,用相关指数R 2来刻画回归的效果时,R 2取值越大,说明模型拟合的效果越好,∴R 2为0.98的模型比R 2为0.80的模型拟合的效果好,D 正确.故选B.17.[2017·温州月考]为了检验某套眼保健操预防学生近视的作用,把500名做该套眼保健操的学生与另外500名未做该套眼保健操的学生的视力情况作记录并比较,提出假设H 0:“这套眼保健操不能起到预防近视的作用”,利用2×2列联表计算所得的K 2≈3.918.经查对临界值表知P (K 2≥3.841)≈0.05.对此,四名同学得出了以下结论:①有95%的把握认为“这套眼保健操能起到预防近视的作用”;②若某人未做该套眼保健操,那么他有95%的可能得近视;③这套眼保健操预防近视的有效率为95%;④这套眼保健操预防近视的有效率为5%.其中所有正确结论的序号是________. 答案 ①解析 根据查对临界值表知P (K 2≥3.841)≈0.05,故有95%的把握认为“这套眼保健操能起到预防近视的作用”,即①正确;95%仅是指“这套眼保健操能起到预防近视的作用”的可信程度,所以②③④错误.18.[2016·兰州一模]从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,计算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.已知家庭的月储蓄y 关于月收入x 的线性回归方程为y ^=b ^x +a ^,则变量x 与y ________(填“正相关”或“负相关”);若该居民区某家庭月收入为7千元,预测该家庭的月储蓄是________千元.答案 正相关 1.7解析 由题意,知n =10,x =110∑i =110x i =8,y =110∑i =110y i =2,∴b ^=184-10×8×2720-10×82=0.3,a ^=2-0.3×8=-0.4, ∴y ^=0.3x -0.4,∵0.3>0,∴变量x 与y 正相关.当x =7时,y ^=0.3×7-0.4=1.7(千元).一、高考大题1.[2016·全国卷Ⅲ]下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明;(2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:∑7i =1y i =9.32,∑7i =1t i y i=40.17, ∑7i =1 (y i -y )2=0.55,7≈2.646.参考公式:相关系数r =∑ni =1(t i -t )(y i -y )∑ni =1 (t i -t )2∑ni =1(y i -y )2,回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为: b ^=∑ni =1 (t i -t )(y i -y )∑ni =1(t i -t )2,a ^=y -b ^ t . 解 (1)由折线图中数据和附注中参考数据得 t =4,∑7i =1(t i -t )2=28, ∑7i =1(y i -y )2=0.55, ∑7i =1(t i -t )(y i -y )=∑7i =1t i y i -t ∑7i =1y i =40.17-4×9.32=2.89, r ≈ 2.890.55×2×2.646≈0.99. 因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由y =9.327≈1.331及(1)得b ^=∑7i =1 (t i -t )(y i -y )∑7i =1(t i-t )2=2.8928≈0.103,a^=y -b ^t =1.331-0.103×4≈0.92. 所以y 关于t 的回归方程为y ^=0.92+0.10t . 将2016年对应的t =9代入回归方程得 y ^=0.92+0.10×9=1.82.所以预测2016年我国生活垃圾无害化处理量约为1.82亿吨. 2.[2015·全国卷Ⅰ]某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i=x i,w=18∑8i=1w i.(1)根据散点图判断,y=a+bx与y=c+d x哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;(3)已知这种产品的年利润z与x,y的关系为z=0.2y-x.根据(2)的结果回答下列问题:①年宣传费x=49时,年销售量及年利润的预报值是多少?②年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为β^=∑ni =1(u i -u )(v i -v )∑ni =1(u i -u )2,α^=v -β^u . 解 (1)由散点图可以判断,y =c +d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2) 令w =x ,先建立y 关于w 的线性回归方程. 由于d ^=∑8i =1 (w i -w )(y i -y )∑8i =1 (w i -w )2=108.81.6=68, c ^=y -d^w =563-68×6.8=100.6, 所以y 关于w 的线性回归方程为y ^=100.6+68w ,因此y 关于x 的回归方程为y ^=100.6+68x .(3)①由(2),知当x =49时,年销售量y 的预报值 y ^=100.6+6849=576.6, 年利润z 的预报值 z ^=576.6×0.2-49=66.32.②根据(2)的结果,知年利润z 的预报值z ^=0.2×(100.6+68x )-x =-x +13.6x +20.12, 所以当x =13.62=6.8,即x =46.24时,z ^取得最大值, 故年宣传费为46.24千元时,年利润的预报值最大. 二、模拟大题3.[2016·石家庄模拟]班主任对班级22名学生进行了作业量多少的调查,数据如下:在喜欢玩电脑游戏的12人中,有10人认为作业多,2人认为作业不多;在不喜欢玩电脑游戏的10人中,有3人认为作业多,7人认为作业不多.(1)根据以上数据建立一个2×2列联表;(2)试问喜欢玩电脑游戏与认为作业多少是否有关系.参考公式:K=(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d. 参考数据:解(2)K2=22×(10×7-3×2)212×10×13×9≈6.418,∵3.841<6.418,∴有95%的把握认为喜欢玩电脑游戏与认为作业多少有关.4.[2016·广东模拟]2016年1月1日起全国统一实施全面两孩政策,为了解适龄民众对放开生育二胎政策的态度,某市选取70后和80后作为调查对象,随机调查了100位,得到数据如下表:计概率,若从该市70后公民中随机抽取3位,记其中生二胎的人数为X,求随机变量X的分布列和数学期望;(2)根据调查的数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由.参考公式:K =(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d参考数据:解 (1)由已知得70后“生二胎”的概率为23, 并且X ~B ⎝ ⎛⎭⎪⎫3,23, 所以P (X =k )=C k 3⎝ ⎛⎭⎪⎫23k ⎝ ⎛⎭⎪⎫133-k(k =0,1,2,3),其分布列如下:所以E (X )=3×23=2.(2)K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=100×(30×10-45×15)275×25×45×55=10033≈3.030>2.706,所以有90%以上的把握认为“生二胎与年龄有关”.5.[2017·成都诊断]PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某时间段车流量与PM2.5浓度的数据如下表:(2)若周六同一时段车流量是200万辆,试根据(1)求出的线性回归方程,预测此时PM2.5的浓度为多少?参考公式:b^=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2,a^=y -b ^·x . 解 (1)由条件可知x =15∑i =15x i =5405=108,y =15∑i =15y i =4205=84,∑i =15(x i -x )(y i -y )=(-8)×(-6)+(-6)×(-4)+0×0+6×4+8×6=144,∑i =15(x i -x )2=(-8)2+(-6)2+02+62+82=200,b^=∑i =15(x i -x )(y i -y )∑i =15(x i -x )2=144200=0.72,a^=y -b ^x =84-0.72×108=6.24, 故y 关于x 的线性回归方程为y ^=0.72x +6.24. (2)当x =200时,y ^=0.72×200+6.24=150.24.所以可以预测此时PM2.5的浓度约为150.24微克/立方米. 6.[2017·厦门质检]某单位共有10名员工,他们某年的收入如下表:(2)从该单位中任取2人,此2人中年薪高于5万的人数记为ξ,求ξ的分布列和期望;(3)已知员工年薪与工作年限成正线性相关关系,若某员工工作第一年至第四年的年薪分别为3万元、4.2万元、5.6万元、7.2万元,预测该员工第五年的年薪为多少.附:线性回归方程y ^=b^x +a ^中系数计算公式b ^=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2,a^=y -b ^x ,其中x ,y 表示样本均值. 解 (1)平均值为10万元,中位数为6万元.(2)年薪高于5万的有6人,低于或等于5万的有4人,所以从该单位中任取2人,此2人中年薪高于5万的人数记为ξ,ξ的可能取值为0,1,2.P (ξ=0)=C 24C 210=215,P (ξ=1)=C 14C 16C 210=815,P (ξ=2)=C 26C 210=13,所以ξ的分布列为: E (ξ)=0×215+1×815+2×13=65.(3)设x i ,y i (i =1,2,3,4)分别表示工作年限及相应年薪,则x =2.5,y =5,∑i =14(x i -x )2=2.25+0.25+0.25+2.25=5,∑i =14(x i -x )(y i -y )=-1.5×(-2)+(-0.5)×(-0.8)+0.5×0.6+1.5×2.2=7,b^=∑i =14(x i -x )(y i -y )∑i =14(x i -x )2=75=1.4,a^=y -b ^x =5-1.4×2.5=1.5, 所以线性回归方程为y ^=1.4x +1.5. 当x =5时,y ^=8.5.故可预测该员工第五年的年薪为8.5万元.。

相关文档
最新文档