山东聊城市2018年4月九年级一模考试数学试题(word版,含答案)

合集下载

2024年山东省聊城市中考数学模拟考试试题(含答案)

2024年山东省聊城市中考数学模拟考试试题(含答案)

2024年山东省初中学业水平模拟考试数学试题(总分120分考试时间120分钟)2024.05注意事项:1.答卷前务必将你的姓名、座号和准考证号按要求填写在试卷和答题卡上的相应位置。

2.本试题不分I、II卷,所有答案都写在答题卡上,不要直接在本试卷上答题。

3.必须用0.5毫米黑色签字笔书写在对应的答题卡区域,不得超出规定范围。

一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求.1.的相反数是()A.B.C.D.2.以下山东省各场馆的Logo中属于轴对称图形的是()A.山东博物馆B.山东省图书馆C.山东省科技馆D.山东美术馆3.在《九章算术》中,将底面为直角三角形的直三棱柱叫堑堵.如图是一堑堵,其俯视图为()A.B.C.D.4.下列等式一定成立的是()A.B.C.D.5.“五一”假期,山东省文旅市场火爆,全省接待国内游客约4871.2万人次.数据“4871.2万”用科学记数法表示为()A.B.C.D.6.山东博物馆在2024年5月份举办“走近考古”展览,为公众揭开考古学神秘面纱.现小张同学参观博物馆,343434-4343-11a ab b+=+2a abb b=33a ab b=a a cb b c+=+80.4871210⨯84.871210⨯74.871210⨯44871.210⨯由于参观人数较多,准备从3楼展厅的“走进考古”展览、“山东龙——穿越白垩纪”展览、“考古成果”展览、“非洲野生动物大迁徙”展览4个中随机选择2个进行参观,则正好选择“走进考古”展览和“山东龙——穿越白垩纪”展览的概率是()A. B . C . D .7.请根据学习函数的经验,自主尝试探究表达式为的函数图像与性质,下列说法正确的是()A .图像与y 轴的交点是(0,) B .图像与x 轴有一个交点C .当时, D .y 随x 的增大而减小8.如图,在中,点C 为上的点,.若,且AC 是的内接正n 边形的一边,则n 的值为()A .8B .9C .10D .129.如图,在中,,CD 是中线,过点A 作CD 的垂线,分别交BC 、CD 于点E 、F .若,,则CD 的长为()A .39 B . C .D .19.510.如图,在底面积为,高为20cm 的长方体水槽内放入一个底面积为的圆柱形烧杯,以恒定不变的速度先向烧杯中注水,注满烧杯后,继续注水,直至注满水槽为止,此过程中,烧杯本身的质量、体积忽略不计,烧杯在大水槽中的位置始终不变,则水槽中水面上升的高度h 与注水时间t 之间的函数图像可能为()16122391623y x =-230x <0y <O AB 2BC AC =120ACB ∠=︒O Rt ABC △90ACB ∠=︒2tan 3CAE ∠=26AE =280cm 216cmA .B .C .D .二、填空题:本题共6小题,每小题3分,共18分.11在实数范围内有意义,则x 的取值范围为________.12.因式分解:________.13.分式方程的解为________.14.如图,在菱形ABCD 中,,,垂足为E .若,则菱形ABCD 的周长为________.15.在测量某物体的重量时,得到如下数据:,,…,.当关于x 的函数取得最小值时,相应的x 值表示该物体重量的估计值.若,,…,的和为24,则该物体重量的估计值为________.16.如图是从原点开始的通道宽度为1的回形图,,反比例函数与该回形图的交点依次记为、、、……,则的坐标为________.24ab a -=213242x x+=--4sin 5B =AE BC ⊥2CE =1a 2a 8a 222128()()()y x a x a x a =-+-++- 1a 2a 8a 1OA =1y x=1B 2B 3B 2024B三、解答题:本题共8小题,共72分.解答应写出文字说明、证明过程演算步骤.17.(本小题满分8分)(1)计算:2)解不等式组:18.(本小题满分8分)山东大樱桃以“北方春果第一枝”而闻名,品种丰富.某水果店计划购进其中的“美早”与“黄水晶”两个品种的樱桃,已知2箱“美早”樱桃的进价与3箱“黄水晶”樱桃的进价之和为280元,且每箱“美早”樱桃的进价比每箱“黄水晶”樱桃的进价贵10元.(1)求每箱“美早”樱桃的进价与每箱“黄水晶”樱桃的进价分别是多少元?(2)水果店欲购进“美早”与“黄水晶”樱桃共50箱,在进货总价不超过3000元的情况下,最多可购进“美早”樱桃多少箱?19.(本小题满分8分)为增进学生对数学文化的了解,某校开展了两次数学文化知识问答活动,从中随机抽取了20名学生两次活动的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下图是将这20名学生的第一次活动成绩作为横坐标,第二次活动成绩作为纵坐标绘制而成.(1)学生甲第一次活动成绩是70分,则该生第二次活动成绩是________分,两次活动的平均成绩为________分;两次活动成绩均达到或高于90分的学生有________个;这20名学生的第一次活动成绩的中位数为________分;(2)请在下图中画一条直线,使得该直线上方的点表示两次活动的平均成绩高于80分.(3)假设全校有1200名学生参加活动,估计两次活动平均成绩不低于80分的学生人数.21()2sin 602-+︒+764,23.x x x x +>⎧⎨-≤⎩20.(本小题满分8分)如图,在中,D 是BC 延长线上一点,且,过点C 作且,连接DE .(1)利用直尺、圆规作出满足条件的点E ,并连接DE (不写作法,保留作图痕迹)(2)证明:.21.(本小题满分9分)如图,为了测量河对岸A 、B 两点间的距离,数学兴趣小组在河岸南侧选定观测点C ,测得点A ,B 均在点C 的北偏东方向上,沿正东方向行走105米至观测点D ,测得点A 在点D 的正北方向,点B 在点D 的北偏西方向上.求A 、B 两点间的距离.同学甲:在纸上利用“比例尺”画出相应的图,并测得纸上CD 长度约为21cm ,AB 长度约为20cm ,再求出实际A 、B 两点间的距离.同学乙:通过计算器得到数据:,,,再结合三角函数知识求出A 、B 两点间的距离.请按照同学甲、乙的方法分别计算出A 、B 两点间的距离.22.(本小题满分9分)在平面直角坐标系xOy 中,二次函数()的图像上有两点A (,)、B (,),它的对称轴为直线.ABC △CD AB =CE AB ∥CE BC =A D ∠=∠37︒45︒sin 370.60︒≈cos370.80︒≈tan 370.75︒≈2y ax bx =+0a <1x 1y 2x 2y x t =(1)当该二次函数图像过点(6,0)时.①求t 的值;②当,轴,且到x 轴距离为2,求a 的值;(2)当时,若对于任意,都有成立,直接写出t 的取值范围.23.(本小题满分10分)【实践探究】如图1,在矩形ABCD 中,,,交AB 于点E,则的值是________;【变式探究】如图2,在平行四边形ABCD 中,,,,交AB 于点E ,求的值;【灵活应用】如图3,在矩形ABCD 中,,点E ,F 分别在AD ,BC 上,以EF 为折痕,将四边形ABFE 翻折,使得AB 的对应边恰好经过点D ,交CD 于点I ,过点D 作交AB 于点P .若,且与的面积比为,求的值.24.(本小题满分12分)定义:平面直角坐标系xOy 中,点P (a ,b ),点Q (c ,d ),若,,其中k 为常数,且,则称点Q 是点P 的“k 级变换点”.例如,点(,7)是点(2,3)的“级变换点”.(1)点(1,1)的“3级变换点”是点________;(2)设点Q (p ,q )是点P (1,1)的“k 级变换点”.①M (p ,m )为反比例函数的图像上,当时,判断m ,q 的大小关系:________;②点A 的坐标为(,2),若,求点Q 的坐标;(3)若以(n ,0)为圆心,1为半径的圆上恰有两个点,这两个点的“1级变换点”都在直线上,求n 的取值范围.2024年山东省初中学业水平模拟考试212x x -=AB x ∥101x <<122x x +=120y y >8AB =6BC =DE AC ⊥DE AC90DBC ∠=︒8BD =6BC =DE AC ⊥DE AC8AD =A B ''B F 'DP EF ⊥4A D '=ADP △BPF △16:24DP EF1c ka =+1d kb =-+0k ≠3-2-4y x=0p >3-45QAO ∠=︒5y x =-+数学试题参考答案一、选择题:本题共10小题,每小题3分,共30分.1.B 2.A 3.C 4.B 5.C 6.A 7.C 8.B 9.D 10.B二、填空题:本题共6小题,每小题3分,共18分.11. 12. 13.14.20 15.3 16.(,507)三、解答题:本题共8小题,共72分.17.(1)解:原式(2)解:由①得,;由②得,;∴.18.解:(1)设每箱“美早”樱桃的进价是x 元,每箱“黄水晶”樱桃的进价是y 元,解得答:每箱“美早”樱桃的进价是62元,每箱“黄水晶”樱桃的进价是52元.(2)设购进a 箱“美早”樱桃,则,解得.答:最多可购进“美早”樱桃40箱.19.(1)75,72.5;5;80;(2)如图所示;2x ≤(2)(2)a b b +-52x =150742=++4=+76423x x x x +>⎧⎨-≤⎩①②2x >-3x ≤23x -<≤10,23280,x y x y -=⎧⎨+=⎩62,52.x y =⎧⎨=⎩62(50)523000a a +-⨯≤40a ≤(3)(人),答:估计两次活动平均成绩不低于80分的学生人数有660人.20.(1)如图即为所求.(方法不唯一)(2)证明:∵,∴.在和中,∴,∴.21.同学甲:,则.答:实际A 、B 两点间的距离为100m .同学乙:作,垂足为M .由题意,,,∴,.∴设,,∴,.∴.∴.11120066020⨯=AB CE ∥ABC ECD ∠=∠ABC △DCE △,,,AB DC B ECDBC CE =⎧⎪∠=∠⎨⎪=⎩ABC DCE ≌△△A D ∠=∠2120105AB=100AB =BM CD ⊥37CBM ∠=︒45BDM ∠=︒37CAD ∠=︒tan 0.75CM CBM BM ∠=≈tan 1DM DBM BM∠==3CM k =4BM k =5CB k ==4DM BM k ==347105CD k k k =+==15k =∴.在中,,∴.∴.答:A 、B 两点间的距离为100m .22.(1)①;②时,∵,轴,且到x 轴距离为2,∴A (2,2),B (4,2).∴,解得答:a 的值为.(2)或.23.【实践探究】;【变式探究】作于M ,交AB 的延长线于N ,∴.∵,∴.∴.∴.∴.即.由题意得,,,.∴,.75CB =Rt ACD △sin 0.6CD CAD AC∠=≈1750.6CD AC ==17575100AB =-=0632t +==3t =212x x -=AB x ∥32422b a a b ⎧-=⎪⎨⎪+=⎩1,43.2a b ⎧=-⎪⎪⎨⎪=⎪⎩14-0t ≤1t ≥34DM AB ⊥CN AB ⊥90EDM DEM ∠+∠=︒AC DE ⊥90CAN DEM ∠+∠=︒EDM CAN ∠=∠cos cos EDM CAN ∠=∠DM AN DE AC =DE DM AC AN=10CD AB ===63cos cos 105CBN BCD ∠=∠==84sin sin 105CBN BCD ∠=∠==424655CN =⨯=36810655AN AB BN =+=+⨯=∴.【灵活应用】过点E 作,垂足为Q ,∵翻折,∴,,,,,∴,解得.∴的面积为.的面积为24.易得,.∴设,,.∴.∴.∴.∴,解得,(舍).∴.由,得.(另解)延长FE 、BA 交于点M ,,则,即.246568175DE AC ==EQ BC ⊥4A D AP '==A E AE '=DE DP =BP B D '=B F BF '=222(4)8AE AE +=-3AE =ADP △148162⨯⨯=PBF △AEP B DI '△∽△AEP CFI △∽△3B D k BP '==4B I k '=5DI k =43542CI k k k =+-=-33(42)342CF k k =-⨯=-3852BF CF k =-=+133(5)2422k k ⨯+=12k =2163k =-4310EQ AB k ==+=ADP QEF ∽△△84105DP AD EF EQ ===ADP EMP ∠=∠tan tan ADP EMP ∠=∠AP AE BF AD AM BM ==∵翻折,∴,,,,,∴,解得.∴的面积为.的面积为24.∵,∴.∴,.设,则.∴.解得,(舍).∴.由,得.24.(1)(4,)(2)①②由题意得,所以点Q 在直线上.设点A 绕坐标原点O 按顺时针方向旋转至点M ,连结AM ,交直线于点Q ,作轴于H ,轴于K .在和中,∴,∴M (2,3).∴:.4A D AP '==A E AE '=DE DP =BP B D '=B F BF '=222(4)8AE AE +=-3AE =ADP △148162⨯⨯=PBF △AP AE BF AD AM BM==438BF AM BM==6AM =2BM BF =BP x =641022x x BF +++==1102422x x +⨯=16x =216x =-4610EQ AB ==+=ADP QEF △∽△84105DP AD EF EQ ===2-m q>1,1p k q k =+⎧⎨=-+⎩2y x =-+90︒2y x =-+AH x ⊥MK x ⊥AHO △OKM △,,,AO OM AOH OMK AHO OKM =⎧⎪∠=∠⎨⎪∠=∠⎩AHO OKM ≌△△AM l 11355y x =+联立,得Q (,).(3)若A (,),B (,),则它们的一级变换点(,),(,),∵该两点在上,∴,,即A ,B 两点在上,由直线与圆的位置关系可得,当时,圆与直线相切,∴当时,圆与直线有2个公共点,∴2y x =-+12-521x 1y 2x 2y A '11x +11y -+B '21x +21y -+5y x =-+11115y x -+=--+22115y x -+=--+3y x =-3n =3y x =-33n <<+3y x =-33n -<<。

山东省聊城市莘县2018届中考数学一模试卷(含解析)

山东省聊城市莘县2018届中考数学一模试卷(含解析)

山东省聊城市莘县2018届数学中考一模试卷一、单选题1.﹣2的倒数是()A. ﹣B.C. ﹣2D. 2【答案】A【考点】有理数的倒数【解析】【解答】解:﹣2的倒数是﹣.故答案为:A.【分析】根据乘积为1的两个数叫做互为倒数,即可得出答案。

2.如图,直线l1∥l2,等腰直角△ABC的两个顶点A,B 分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A. 35°B. 30°C. 25°D. 20°【答案】B【考点】平行线的性质【解析】【解答】如图,∵△ABC是等腰直角三角形,∴∠CAB=45°,∵l1∥l2,∴∠2=∠3,∵∠1=15°,∴∠2=45°-15°=30°,故答案为:B.【分析】根据二直线平行,内错角相等得出∠2=∠3,再根据角的和差即可得出答案。

3.将数据0.0000025用科学记数法表示为()A. 25×10﹣7B. 0.25×10﹣8C. 2.5×10﹣7D. 2.5×10﹣6【答案】D【考点】科学记数法—表示绝对值较小的数【解析】【解答】解:0.0000025=2.5×10﹣6.故答案为:D.【分析】用科学记数法表示一个绝对值较小的数,一般表示为a×10-n的形式,其中1≤|a|<10, n是原数从左边起第一个非零数字前面的所有0的个数,包括小数点前面的0.4.下面的几何体中,主视图为三角形的是()A. B.C. D.【答案】C【考点】简单几何体的三视图【解析】【解答】解:A、主视图是长方形,故A选项错误;B、主视图是长方形,故B选项错误;C、主视图是三角形,故C选项正确;D、主视图是正方形,中间还有一条线,故D选项错误;故选:C.【分析】主视图是从几何体的正面看所得到的图形,根据主视图所看的方向,写出每个图形的主视图及可选出答案.5.在平面直角坐标系中,经过点(4sin45°,2cos30°)的直线,与以原点为圆心,2为半径的圆的位置关系是()A. 相交B. 相切C. 相离D. 以上三者都有可能【答案】D【考点】直线与圆的位置关系【解析】【解答】解:设直线经过的点为A.∵点A的坐标为(4sin45°,2cos30°),∴OA=.∵圆的半径为2,∴OA>2,∴点A在圆外,∴直线和圆相交,相切、相离都有可能.故答案为:D.【分析】过点A的直线有无数条,故圆心到这条直线的距离就不可能固定,根据直线与圆的位置关系,必须知道圆心到这条直线的距离,再与该圆的半径比大小,才能做出判断,故直线和圆相交,相切、相离都有可能.6.下列函数中,对于任意实数x1,x2,当x1>x2时,满足y1<y2的是()A. y=-3x+2B. y=2x+1C. y=2x2+1D. y=【答案】A【考点】反比例函数的性质,二次函数的性质,一次函数的性质【解析】【解答】根据一次函数、二次函数和反比例函数的性质可得:只有A选项为减函数,故答案为:A.【分析】根据题意可知:这个函数必须是y随x的增大而减小,根据一次函数、二次函数和反比例函数的性质可得。

山东省聊城市2020年初中学业水平考试数学试题(word有答案)

山东省聊城市2020年初中学业水平考试数学试题(word有答案)

山东省聊城市2020年初中学生学业水平考试数 学 试 题选择题(共36分)一、选择题(本题共12个小题,每小题3分在每小题给出的四个选项中,只有一项符合题目要求)1.在实数11204--,,,中最小的实数是 1A. 1B.C. 0D. 24--2.如图所示的几何体的俯视图是3.如图.在△ABC 中,AB =AC ,65C ︒∠=,点D 作DF ∥AB 交AC 于点E ,则∠FEC 的度数是A . 120°B .130°C .145°D . 150°4.下列计算正确的是2366232336222 A. R C. (2)8 D. (2)4a a a a a a ab a b a b a b--⋅=÷=-=-+=+ 5.为了增强学生预防新冠肺炎的安全意识,某校开展疫情防控知识竞赛,来自不同年级的301名参赛同学的得分情况如下表所示,这些成绩的中位数和众数分别是A .92分,96分B .94分,96分C .96分,96分D .96分,100分6.计算345335÷⨯的结果正确的是 95 A. 1 B. C. 53.D 7.如图.在4⨯5的正方形网格中,每个小正方形的边长都是1,△ABC 的顶点都在这些小正方形的顶点上,那么sin ∠ACB 的值为3517 A. B5534 C. D. 55 8.用配方法解一元二次方程22310x x --=,配方正确的是222231731 A. () B ()41642313311 C. () D. ()2424x x x x -=-=-=-= 9.如图.AB 是⊙O 的直径.弦CD ⊥A B .垂足为点M .连接OC ,D B .如果OC ∥DB ,23OC =,那么图中阴影部分的面积是A .πB . 2πC . 3πD .4π10.如图,有一块半径为1m .圆心角为90°的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为13 A. B. 44153 C. D. 42m m m m 11.人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖,如果按图 ①②③…的次序铺设地砖,把第n 个图形用图○n 表示,那么图○50中的白色小正方形地砖的块数是A . 150B . 20C .355D .50512.如图,在Rt △ABC 中,AB =2.∠C =30°,将Rt △ABC 绕点A 转得到Rt AB C ''∆,使点B 的对应点B '落在AC '上,在B C ''上取点D ,使2B D '=,那么,点D 到BC 的距离等于3 A. 2(1)33 B. 13 C. 31D. 31++-+非选择题(共84分)二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.因式分解:(2)2x x x --+=________14.如图,在⊙O 中,四边形OABC 为菱形点D 在AmC上.则∠ADC的度数是________15.计算.21(1)1a a a a+÷=-- 16.某校开展读书日活动,小亮和小莹升别从校图书馆的“科技”、“文学"、"艺术"三类书籍中随机地抽取一本,抽到同一类书籍的概率是________17,如图,在直角坐标系中,点A(1,1)、B(3,3)是第一象限角平分钱上的两点,点C的纵坐标为1,且CA=CB,在y轴上取一点D.连接AC,BC,AD,BD,使得四边形ACBD的周长最小,这个最小周长的值为________三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.(本题满分7分)解不等式131722324334x xx x x⎧+<-⎪⎪⎨--⎪≥+⎪⎩并写出它的所有整数解.19.(本题满分8分)为了提高学生的综合素养,某校开设了五门手工活动课按照类别分为,A“剪纸",B”沙画".,C“葫芦雕刻".D"泥塑".E“插花",为了了解学生对每种活动课的喜爱情况、随机抽取了部分同学进行调查,将调查结果绘制成如下两幅不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量为________,统计图中的a=________,b=________;(2)通过计算补全条形统计图:(3)该校共有2500名学生,请你估计全校喜爱“葫芦雕刻"的学生人数.20.(本题满分8分)今年植树节期间,某景观园林公司购进一批成拥的A、B两种树蕾,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.21. (本题满分8分)如图,在□ABCD 中,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F ,连接BF ,A C .若AD =AF ,求证:四边形ABFC 是矩形.22. (本题满分8分)如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB 的高度进行测量,先测得居民楼AB 与CD 之间的距离AC 为35m ,后站在M 点处测得居民楼CD 的顶端D 的仰角为45°.居民楼AB 的顶端B 的仰角为55°.已知居民楼CD 的高度为16.6m ,小莹的观测点N 距地面1.6m .求居民楼AB 的高度(精确到1m ).(参考数据:sin 550.82,cos550.57,tan 55 1.43︒︒︒≈≈≈)23. (本题满分8分)如图,已知反比例函数k y x=的图象与直线y ax b =+相交于点A (-2,3),B (1,m ).(1)求出直线y ax b =+的表达式;(2)在x 轴上有一点P 使得△PAB 的面积为18.求出点P 的坐标.21. 本题满分10分)如图,在△ABC 中.AB =B C .以△ABC 的边AB 为直径作⊙O ,交AC 于点D ,过点D 作DE ⊥B C .重足为点E .(1)试证明DE 是⊙O 的切线;(2)若⊙O 的半径为5,610AC =.求此时DE 的长.25. (本题满分12分)如图,二次函数24y ax bx =++的图象与x 轴交于点A (-1.0),B (4.0),与y 轴交于点C .抛物线的顶点为D .其对称轴与线段BC 交于点E .垂直于x 轴的动直线l 分别交抛物线和线段BC 于点P 和点F ,动直线l 在抛物线的对称轴的右侧(不含对称轴)沿x 轴正方向移动到B 点.(1)求出二次函数24y ax bx =++和BC 所在直线的表达式;(2)在动直线l 移动的过程中,试求使四边形DEFP 为平行四边形的点P 的坐标;(3)连接CP ,CD ,在移动直线l 移动的过程中,抛物线上是否存在点P ,使得以点P .C .F 为顶点的三角形与△DCE 相似,如果存在,求出点P 的坐标,如果不存在,请说明理由.。

山东省聊城市2018年中考数学试卷及答案(Word版)汇编

山东省聊城市2018年中考数学试卷及答案(Word版)汇编

山东省聊城市2018年中考数学试卷一、选择题(本大题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项是符合题目要求)1.下列实数中的无理数是( )A B D .2272.如图所示的几何体,它的左视图是( )A .B .C .D .3.在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学计数法可以表示为( ) A .81.2510⨯亿次/秒 B .91.2510⨯亿次/秒 C .101.2510⨯亿次/秒 D. 812.510⨯亿次/秒4.如图,直线//AB EF ,点C 是直线AB 上一点,点D 是直线AB 外一点,若95BCD ∠=,25CDE ∠=,则DEF ∠的度数是( )A .110B .115C .120D .125 5.下列计算错误的是( )A .2024a a a a ÷⋅= B .22()1a a a ÷⋅=C .87( 1.5)( 1.5) 1.5-÷-=-D .871.5( 1.5) 1.5-÷-=- 6.已知不等式2241232x x x ---≤<,其解集在数轴上表示正确的是( )A .B .C .D . 7.如图,O 中,弦BC 与半径OA 相交于点D ,连接AB ,OC .若60A ∠=,85ADC ∠=,则C ∠的度数是( )A .25B .27.5C .30D .35 8.下列计算正确的是( )A .=B =C .==9.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是( ) A .12 B .13 C .23 D .1610.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=-- 11.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且5OA =,3OC =.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的1A 处,则点C 的对应点1C 的坐标为( )A .912(,)55- B .129(,)55- C .1612(,)55- D .1216(,)55- 12.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min 的集中药物喷洒,再封闭宿舍10min ,然后打开门窗进行通风,室内每立方米空气中含药量3(/)y mg m 与药物在空气中的持续时间(min)x 之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )A .经过5min 集中喷洒药物,室内空气中的含药量最高达到310/mg m B .室内空气中的含药量不低于38/mg m 的持续时间达到了11minC .当室内空气中的含药量不低于35/mg m 且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D .当室内空气中的含药量低于32/mg m 时,对人体才是安全的,所以从室内空气中的含药量达到32/mg m 开始,需经过59min 后,学生才能进入室内非选择题(共84分)二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.已知关于x 的方程2(1)230k x kx k --+-=有两个相等的实根,则k 的值是 .14.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是 .15.用一块圆心角为216的扇形铁皮,做一个高为40cm 的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是 cm .16.如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是 .17.若x 为实数,则[]x 表示不大于x 的最大整数,例如[1.6]1=,[]3π=,[ 2.82]3-=-等. []1x +是大于x 的最小整数,对任意的实数x 都满足不等式[][]1x x x ≤<+. ①,利用这个不等式①,求出满足[]21x x =-的所有解,其所有解为 .三、解答题(本题共8个小题,共69分.解答应写出文字说明、证明过程或演算步骤)18.先化简,再求值:211()122a a a a a a a a --÷-+++,其中12a =-. 19.时代中学从学生兴趣出发,实施体育活动课走班制.为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1200名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种).调查结果统计如下:解答下列问题:(1)这次抽样调查中的样本是________;(2)统计表中,a =________,b =________;(3)试估计上述1200名学生中最喜欢乒乓球运动的人数.20.如图,正方形ABCD 中,E 是BC 上的一点,连接AE ,过B 点作BH AE ⊥,垂足为点H ,延长BH 交CD 于点F ,连接AF .(1)求证:AE BF =.(2)若正方形边长是5,2BE =,求AF 的长.21.建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?22.随着我市农产品整体品牌形象“聊·胜一筹!”的推出,现代农业得到了更快发展.某农场为扩大生产建设了一批新型钢管装配式大棚,如图1.线段AB ,BD 分别表示大棚的墙高和跨度,AC 表示保温板的长.已知墙高AB 为2米,墙面与保温板所成的角150BAC ∠=,在点D 处测得A 点、C 点的仰角分别为9,15.6,如图2.求保温板AC的长是多少米?(精确到0.1米)0.86≈,sin 90.16≈,cos90.99≈,tan 90.16≈,sin15.60.27≈,cos15.60.96≈,tan15.60.28≈.)23.如图,已知反比例函数1(0)k y x x =>的图象与反比例函数2(0)ky x x=<的图象关于y 轴对称,(1,4)A ,(4,)B m 是函数1(0)ky x x=>图象上的两点,连接AB ,点(2,)C n -是函数2(0)ky x x=<图象上的一点,连接AC ,BC .(1)求m ,n 的值;(2)求AB 所在直线的表达式;(3)求ABC ∆的面积.24.如图,在Rt ABC ∆中,90C ∠=,BE 平分ABC ∠交AC 于点E ,作E D E B ⊥交AB 于点D ,O 是BED ∆的外接圆.(1)求证:AC 是O 的切线;(2)已知O 的半径为2.5,4BE =,求BC ,AD 的长.25.如图,已知抛物线2y ax bx =+与x 轴分别交于原点O 和点(10,0)F ,与对称轴l 交于点(5,5)E .矩形ABCD 的边AB 在x 轴正半轴上,且1AB =,边AD ,BC 与抛物线分别交于点M ,N .当矩形ABCD 沿x 轴正方向平移,点M ,N 位于对称轴l 的同侧时,连接MN ,此时,四边形ABNM 的面积记为S ;点M ,N 位于对称轴l 的两侧时,连接EM ,EN ,此时五边形ABNEM 的面积记为S .将点A 与点O 重合的位置作为矩形ABCD 平移的起点,设矩形ABCD 平移的长度为(05)t t ≤≤.(1)求出这条抛物线的表达式; (2)当0t =时,求OBN S ∆的值;(3)当矩形ABCD 沿着x 轴的正方向平移时,求S 关于(05)t t ≤≤的函数表达式,并求出t 为何值时,S 有最大值,最大值是多少?学习-----好资料更多精品文档。

山东省聊城市2018届中考数学全真模拟试卷(有答案)

山东省聊城市2018届中考数学全真模拟试卷(有答案)

山东省聊城市2018届九年级中考数学全真模拟试卷一、单选题1.﹣2017的倒数是()A.B.﹣C.2017D.﹣2017【答案】B【考点】有理数的倒数【解析】【解答】根据乘积为1的两数互为倒数,可知-2017的倒数为﹣.故答案为:B.【分析】根据乘积为1的两数互为倒数,即可得出判断。

2.如图,直线l1∥l2,等腰Rt△ABC的直角顶点C在l1上,顶点A在l2上,若∠β=14°,则∠α=()A. 31°B. 45°C. 30°D. 59°【答案】A【考点】平行线的判定与性质【解析】【解答】解:过点B作BE∥l1.如图,∵l1∥l2,∴BE∥l1∥l2,∴∠CBE=∠α,∠EBA=∠β=14°.∵△ABC是等腰直角三角形,∴∠ABC=45°,∴∠α=∠CBE=∠ABC﹣∠EBA=31°.故答案为:A.【分析】过点B作BE∥l1,根据平行于同一直线的两条直线互相平行得出BE∥l1∥l2,根据二直线平行,内错角相等得出∠CBE=∠α,∠EBA=∠β=14°.根据等腰直角三角形的性质及角的和差即可得出答案。

3.将0.000 102用科学记数法表示为()A. 1.02×10﹣4B. 1.02×I0﹣5C. 1.02×10﹣6D. 102×10﹣3【答案】A【考点】科学记数法—表示绝对值较小的数【解析】【解答】解:0.000 102=1.02×10﹣4.故答案为:A.【分析】用科学记数法表示一个绝对值较小的数,一般表示为a×10-n的形式,其中1≤|a|<10, n是原数从左边起第一个非零数字前面的所有0的个数,包括小数点前面的0.4.点P(x﹣1,x+1)不可能在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【考点】解一元一次不等式组,点的坐标与象限的关系【解析】【解答】①x-1>0, x+1>0 ,解得x>1,故x-1>0,x+1>0,点在第一象限;②x-1<0 ,x+1<0 ,解得x<-1,故x-1<0,x+1<0,点在第三象限;③x-1>0 ,x+1<0 ,无解;④x-1<0 ,x+1>0 ,解得-1<x<1,故x-1<0,x+1>0,点在第二象限.故点P不能在第四象限,故答案为:D.【分析】根据点在坐标平面的象限内的坐标特点,本题可以转化为解4个不等式组的问题,看那个不等式组无解,即可得出答案。

【全国市级联考】山东省聊城市2018届九年级一模考试数学试题(解析版)

【全国市级联考】山东省聊城市2018届九年级一模考试数学试题(解析版)

山东聊城市2018年4月九年级一模考试数学试题一、选择题1. -2017的倒数是()A. 2017B. -2017C.D.【答案】D【解析】﹣2017的倒数是-,故选:C.2. 如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=52°,则∠2的度数为()A. 52°B. 38°C. 48°D. 45°【答案】B【解析】分析:由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.详解:如图,∵∠1=52°,∴∠3=∠1=52°,∴∠2=90°﹣52°=38°.故选B.点睛:本题考查了平行线的性质.两直线平行,同位角相等的应用是解答此题的关键.3. 已知1纳米=0.000 000 001米,则36纳米用科学记数法表示为()A. B. C. D.【答案】B详解:36纳米=0.000000001×36米=3.6×10﹣8米;故选B.点睛:本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4. 下面计算正确的是()A. B. -3÷3×3= -3 C. -3-3= 0 D.【答案】B【解析】分析:各项计算得到结果,即可作出判断.详解:A.原式=4,错误;B.原式=﹣3,正确;C.原式=﹣6,错误;D.原式=,错误.故选B.点睛:本题考查了实数的运算,熟练掌握运算法则是解答本题的关键.5. 由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是()A. B. C. D.【答案】A【解析】试题分析:如图所示:故选A.考点:由三视图判断几何体;简单组合体的三视图.6. 在Rt△ABC中,∠C=90°,如果,那么的值是()A. B. C. D. 3【答案】A【解析】分析:一个角的正弦值等于它的余角的余弦值,故只需要求出cos A即可.详解:∵Rt△ABC中,∠C=90°,sin A=,∴cos A===,∴∠A+∠B=90°,∴sin B=cos A=.故选A.点睛:本题考查的是互余两角三角函数的关系,属基础题,掌握正余弦的这一转换关系:一个角的正弦值等于它的余角的余弦值.7. 下列说法正确的是()A. “清明时节雨纷纷”是必然事件B. 了解路边行人边步行边低头看手机的情况可以采取对在路边行走的学生随机发放问卷的方式进行调查C. 射击运动员甲、乙分别射击10次且击中环数的方差分别是0.5和1.2,则甲队员的成绩好D. 分别写有三个数字-1,-2,4的三张卡片(卡片的大小形状都相同),从中任意抽取两张,则卡片上的两数之积为正数的概率为【答案】D【解析】分析:根据随机事件的概念、抽样调查的特点、方差的意义及概率公式分别判断可得.详解:A.“清明时节雨纷纷”是随机事件,此选项错误;B.了解路边行人边步行边低头看手机的情况可以采取对在路边行走的学生随机发放问卷的方式进行调查,此调查不具备代表性,此选项错误;C.射击运动员甲、乙分别射击10次且击中环数的方差分别是0.5和1.2,则甲队员的成绩稳定,但不一定就好,此选项错误;D.分别写有三个数字﹣1,﹣2,4的三张卡片(卡片的大小形状都相同),从中任意抽取两张有﹣1、﹣2和﹣1、4及﹣2、4这3种等可能结果,其中卡片上的两数之积为正数的只有1种结果,则卡片上的两数之积为正数的概率为,此选项正确.故选D.点睛:本题主要考查随机事件、抽样调查、方差及概率公式,解题的关键是掌握随机事件的概念、抽样调查的特点、方差的意义及概率公式.8. 把代数式分解因式,结果正确的是()A. B. C. D.【答案】D【解析】分析:原式提取公因式,再利用完全平方公式分解即可.详解:原式=3x(x2﹣4x+4)=3x(x﹣2)2.故选D.点睛:本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键.9. 如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A. 65°B. 60°C. 55°D. 45°【答案】A【解析】分析:根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.详解:由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC.∵∠C=30°,∴∠DAC=30°.∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠CAD=65°.故选A.点睛:本题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题的关键.10. 不等式组的解集是x>2,则a的取值范围是()A. a≤2B. a≥2C. a≤lD. a>l【答案】C...........................不等式的解集即可.详解:,解不等式①得:x>2,解不等式②得:x>a+1,又∵不等式组的解集是x>2,∴a+1≤2,∴a≤1.故选C.点睛:本题考查了不等式的性质,解一元一次不等式(组)的应用,关键是根据不等式组的解集得出关于a的不等式,题目具有一定的代表性,是一道比较好的题目.11. 如图,在平行四边形ABCD中,E是边CD上一点,将△ADE沿AE折叠至处,与CE交于点F,若∠B=52°,∠DAE=20°,则的度数为()A. 40°B. 36°C. 50°D. 45°【答案】B【解析】分析:由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,与三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.详解:∵四边形ABCD是平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°.故选B.点睛:本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED′是解决问题的关键.12. 小亮家与姥姥家相距24km. 小亮8:00从家出发,骑自行车去姥姥家,妈妈8:30从家出发,乘车沿相同路线去姥姥家. 在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示. 根据图象得到下列结论,其中错误的是()A. 小亮骑自行车的平均速度是12km/hB. 妈妈比小亮提前0.5小时到达姥姥家C. 妈妈在距家12km处追上小亮D. 9:30妈妈追上小亮【答案】D【解析】分析:根据函数图象可知根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.详解:A.根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B.由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C.由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,∴小亮走的路程为:1×12=12km,∴妈妈在距家12km出追上小亮,故正确;D.由图象可知,当t=9时,妈妈追上小亮,故错误.故选D.点睛:本题考查了一次函数的应用,解决本题的关键是读懂函数图象,获取相关信息.二、填空题13. 若圆锥的底面半径为3,侧面积为,则母线长为__________.【答案】5【解析】分析:圆锥的侧面积=底面周长×母线长÷2.详解:底面半径为3,则底面周长=6π,设圆锥的母线长为x,圆锥的侧面积=×6πx=15π.解得:x=5.故答案为:5.点睛:本题考查了圆锥的计算,利用了圆的周长公式和扇形面积公式求解.14. 已知关于x的一元二次方程有两个实数根,则k的取值范围是__________.【答案】,且【解析】分析:根据方程有两个实数根,得出△≥0且k﹣1≠0,求出k的取值范围,即可得出答案.详解:由题意知,k≠1,△=b2﹣4ac=16﹣4(k﹣1)=20﹣4k≥0,解得:k≤5,则k的取值范围是k≤5且k≠1;故答案为:k≤5且k≠1.点睛:本题考查了根的判别式,(1)一元二次方程根的情况与判别式△的关系:①△>0⇔方程有两个不相等的实数根;②△=0⇔方程有两个相等的实数根;③△<0⇔方程没有实数根.(2)一元二次方程的二次项系数不为0.15. 若从-3,-1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是_________.【答案】【解析】分析:根据题意可以写出所有的可能性,然后将所有的可能性代入方程组和双曲线,找出符号要求的可能性,从而可以解答本题.详解:从﹣3,﹣1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,则(a,b)的所有可能性是:(﹣3,﹣1)、(﹣3,0)、(﹣3,1)、(﹣3,3)、(﹣1,﹣3)、(﹣1,0)、(﹣1,1)、(﹣1,3)、(0,﹣3)、(0,﹣1)、(0,1)、(0,3)、(1,﹣3)、(1,﹣1)、(1,0)、(1,3)、(3,﹣3)、(3,﹣1)、(3,0)、(3,1),将上面所有的可能性分别代入关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的是:(﹣3,1),(﹣1,3),(3,﹣1),故恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是:.故答案为:.点睛:本题考查了列表法与树状图法,解题的关键是明确题意,写出所有的可能性.16. 小华将一条直角边长为1的一个等腰直角三角形纸片(如图1),沿它的对称轴折叠1次后得到一个等腰直角三角形(如图2),再将图2的等腰直角三角形沿它的对称轴折叠后得到一个等腰直角三角形(如图3),则图3中的等腰直角三角形的一条腰长为_________;同上操作,若小华连续将图1的等腰直角三角形折叠n次后所得到的等腰直角三角形(如图n+1)的一腰长为_________.图1图2图3图n+1【答案】(1). (2).【解析】分析:应得到每次折叠后得到的等腰直角三角形的边长与第一个等腰直角三角形的边长的关系,进而利用规律求解即可.详解:每次折叠后,腰长为原来的;故第2次折叠后得到的等腰直角三角形的一条腰长为()2=;小华连续将图1的等腰直角三角形折叠n次后所得到的等腰直角三角形的一条腰长为()n.故答案为:;()n.点睛:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.17. 拋物线的顶点为D(-1,2),与x轴的一个交点A在点(-3,0)和(-2,0)之间,其部分图象如图,则以下结论:①;②当x>-l时,y随x增大而减小;③a+b+c<0;④若方程没有实数根,则m>2. 其中正确的结论有________________.【答案】②③④【解析】分析:利用图象信息,以及二次函数的性质即可一一判断.详解:∵二次函数与x轴有两个交点,∴b2﹣4ac>0,故①错误;观察图象可知:当x>﹣1时,y随x增大而减小,故②正确;∵抛物线与x轴的另一个交点为在(0,0)和(1,0)之间,∴x=1时,y=a+b+c<0,故③正确;∵当m>2时,抛物线与直线y=m没有交点,∴方程ax2+bx+c﹣m=0没有实数根,故④正确;∵对称轴x=﹣1=﹣,∴b=2a.∵a+b+c<0,∴3a+c<0,故⑤正确.故答案为:②③④.点睛:本题考查了二次函数图象与系数的关系,根的判别式、抛物线与x轴的交点等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题18. 计算:解方程: .【答案】原方程无解【解析】分析:最简公分母为3(x﹣3),方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.详解:去分母得2x+9=3(4x﹣7)+6(x﹣3),整理得:﹣16x=﹣48,解得:x=3.检验:当x=3时,3(x﹣3)=0,则x=3是原方程的增根.故原方程无解.点睛:本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19. “食品安全”受到全社会的广泛关注,我市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有_________人,扇形统计图中“基本了解”部分所对应扇形的圆心角为_________度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数;扇形统计图条形统计图【答案】(1). 60(2). 90 (2) 300人【解析】分析:(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.详解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;故答案为:60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.点睛:本题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.关键是根据列表法或树状图法求概率以及条形统计图与扇形统计图.20. 已知,如图,AD是△ABC的角平分线,DE//AC,ED=AF. 求证:四边形AEDF是菱形.【答案】见解析【解析】分析:由已知易得四边形AEDF是平行四边形,由角平分线和平行线的定义可得∠F AD=∠FDA,则可求得AF=DF,故可证明四边形AEDF是菱形.详解:∵AD是△ABC的角平分线,∴∠EAD=∠F AD.∵DE∥AC,ED=AF,∴四边形AEDF是平行四边形,∴∠EAD=∠ADF,∴∠F AD=∠FDA,∴AF=DF,∴四边形AEDF是菱形.点睛:本题主要考查菱形的判定、角平分线的定义和平行线的性质.此题运用了菱形的判定方法“一组邻边相等的平行四边形是菱形”.21. 如图,在△ABC中,AB=AC,以AC为直径作交BC于点D,过点D作FE⊥AB于点E,交AC的延长线于点F.(1)求证: EF与相切;(2)若AE=6,,求EB的长.【答案】(1)见解析(2)【解析】分析:(1)如图,欲证明EF与⊙O相切,只需证得OD⊥EF.(2)通过解直角△AEF可以求得AF=10.设⊙O的半径为r,由平行线分线段成比例得到,即,则易求AB=AC=2r=,所以EB=AB﹣AE=﹣6=.详解:(1)证明:如图,连接OD.∵OC=OD,∴∠OCD=∠ODC.∵AB=AC,∴∠ACB=∠B,∴∠ODC=∠B,∴OD∥AB,∴∠ODF=∠AEF.∵EF⊥AB,∴∠ODF=∠AEF=90°,∴OD⊥EF.∵OD是⊙O的半径,∴EF与⊙O相切;(2)由(1)知,OD∥AB,OD⊥EF.在Rt△AEF中,sin∠CFD=,AE=6,则AF=10.∵OD∥AB,∴.设⊙O的半径为r,∴,解得:r=,∴AB=AC=2r=,∴EB=AB﹣AE=﹣6=.点睛:本题考查了切线的判定与性质.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.22. 如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上). 已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果精确到0.1m)(参考数据: ,)【答案】52.7m【解析】分析:过点D作DF⊥AB于点F,过点C作CH⊥DF于点H,则DE=BF=CH=10m,根据直角三角形的性质得出DF的长.在Rt△CDE中,利用锐角三角函数的定义得出CE的长,根据BC=BE﹣CE即可得出结论.详解:过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m.在Rt△ADF中,AF=AB﹣BF=70m,∠ADF=45°,∴DF=AF=70m.在Rt△CDE中,DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=(70﹣10)m.答:障碍物B,C两点间的距离为(70﹣10)m.点睛:本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23. 如图,直线与双曲线相交于点A(m,3),与x轴交于点C.(1)求双曲线的解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.【答案】(1)(2)(-6,0)或(-2,0).【解析】分析:(1)把A点坐标代入直线解析式可求得m的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(t,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于t的方程,则可求得P点坐标.详解:(1)把A点坐标代入y=x+2,可得:3=m+2,解得:m=2,∴A(2,3).∵A点也在双曲线上,∴k=2×3=6,∴双曲线解析式为y=;(2)在y=x+2中,令y=0可求得:x=﹣4,∴C(﹣4,0).∵点P在x轴上,∴可设P点坐标为(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=×3|t+4|.∵△ACP的面积为3,∴×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P点坐标为(﹣6,0)或(﹣2,0).点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.24. 2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区. 已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?【答案】(1)甲900元,乙600元(2)2万件【解析】分析:(1)可设甲种商品的销售单价x元,乙种商品的销售单价y元,根据等量关系:①2件甲种商品与3件乙种商品的销售收入相同,②3件甲种商品比2件乙种商品的销售收入多1500元,列出方程组求解即可;(2)可设销售甲种商品a万件,根据甲、乙两种商品的销售总收入不低于5400万元,列出不等式求解即可.详解:(1)设甲种商品的销售单价x元,乙种商品的销售单价y元,依题意有:,解得.答:甲种商品的销售单价900元,乙种商品的销售单价600元;(2)设销售甲种商品a万件,依题意有:900a+600(8﹣a)≥5400,解得:a≥2.答:至少销售甲种商品2万件.点睛:本题考查了一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.25. 如图,已知拋物线(k为常数,且k>0)与x轴的交点为A、B,与y轴的交点为C,经过点B的直线与抛物线的另一个交点为D.(1)若点D的横坐标为x= -4,求这个一次函数与抛物线的解析式;(2)若直线m平行于该抛物线的对称轴,并且可以在线段AB间左右移动,它与直线BD和抛物线分别交于点E、F,求当m移动到什么位置时,EF的值最大,最大值是多少?(3)问原抛物线在第一象限是否存在点P,使得△APB∽△ABC?若存在,请求出这时k的值;若不存在,请说明理由.【答案】(1)(2) 最大值是4(3)存在【解析】分析:(1)先解方程k(x+2)(x﹣4)=0可得A(﹣2,0),B(4,0),再把B点坐标代入y=﹣x+b中求出得b=2,则可得到一次函数解析式为y=﹣x+2,接着利用一次函数解析式确定D点坐标,然后把D点坐标代入代入y=k(x+2)(x﹣4)中求出k的值即可得到得抛物线解析式;(2)利用二次函数和一次函数图象上点的坐标特征,可设F(t,t2﹣t﹣2),则E(t,﹣t+2),﹣2≤t≤4,于是得到EF=﹣t+2﹣(t2﹣t﹣2)=﹣t2+4,然后根据二次函数的性质求解;(3)作PH⊥x轴于H,如图,先表示出C点坐标为(0,﹣8k),设P[n,k(n+2)(n﹣4)],根据相似三角形的判定方法,当∠P AB=∠CAB,AP:AB=AB:AC时,△APB∽△ABC;再根据正切定义.在Rt△APH中有tan∠P AH=.在Rt△OAC中有tan∠OAC==4k,则=4k,解得n=8,于是得到P(8,40k),接着利用勾股定理计算出AP=10,AC=2,然后利用AP:AB=AB:AC得到10•2=62,解得k1=,k2=﹣(舍去),于是可确定P点坐标.详解:(1)当y=0时,k(x+2)(x﹣4)=0,解得:x1=﹣2,x2=4,则A(﹣2,0),B(4,0),把B(4,0)代入y=﹣x+b得:﹣2+b=0,解得:b=2,所以一次函数解析式为y=﹣x+2,当x=﹣4时,y=﹣x+2=4,则D点坐标为(4,4),把D(﹣4,4)代入y=k(x+2)(x﹣4)得:k•(﹣2)•(﹣8)=4,解得:k=,所以抛物线解析式为y=(x+2)(x﹣4),即y=x2﹣x﹣2;(2)设F(t,t2﹣t﹣2),则E(t,﹣t+2),﹣2≤t≤4,所以EF=﹣t+2﹣(t2﹣t﹣2)=﹣t2+4,所以当t=0时,EF最大,最大值为4,即当直线m移动到与y轴重合的位置时,EF的值最大,最大值是4;(3)存在.作PH⊥x轴于H,如图,当x=0时,y=k(x+2)(x﹣4)=﹣8k,则C(0,﹣8k),设P[n,k(n+2)(n﹣4)],当∠P AB=∠CAB,AP:AB=AB:AC时,△APB∽△ABC;在Rt△APH中,tan∠P AH=.在Rt△OAC中,tan∠OAC==4k,∴=4k,解得:n=8,则P(8,40k),∴AP===10,而AC===2.∵AP:AB=AB:AC,∴AP•AC=AB2,即10•2=62,∴5(16k2+1)=9,解得:k1=,k2=﹣(舍去),∴k=4,P点坐标为(8,4).点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;灵活应用相似比和勾股定理计算相应线段的长;理解坐标与图形性质.。

(word完整版)九年级数学总复习试卷及参考答案

(word完整版)九年级数学总复习试卷及参考答案

九年级数学总复习练习卷一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,cosA=,则tanB等于()A.B.C.D.2.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,如果3a=4b,则cosB的值是()A.B.C.D.3.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cosB B.b=a•tanB C.b=c•sinB D.a=b•tanA 4.一斜坡的坡度是1:,则此斜坡的坡角是()A.15°B.30°C.45°D.60°5.∠A为锐角,若cosA=,则∠A的度数为()A.75°B.60°C.45°D.30°6.如图,在△ABC中,∠C=90°,AB=10,BC=8,则sin∠A=()A.B.C.D.7.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA 的值为()A.B.C.D.38.已知Rt△ABC中,∠C=90°,tanA=,BC=8,则AB等于()A.6B.C.10D.129.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25°B.5tan65°C.5cos25°D.5tan25°10.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向10(1+)海里的C处,为了防止某国海巡警干扰,请求我A处的渔监船前往C处护航.如图,已知C位于A处的东北方向上,A位于B的北偏西30°方向上,则A 和C之间的距离为()A.10海里B.20海里C.20海里D.10海里二.填空题(共6小题)11.已知α为锐角,且sinα=cosα,则α=.12.如果α是锐角,且cotα=tan25°,那么α=度.13.小明同学沿坡度为i=1:的山路向上行走了100米,则小明上升的高度是米.14.若tanα=5,则=.15.如图是某幼儿园的滑滑梯的简易图,已知滑坡AB的坡度是1:3,滑坡的水平宽度是6m,则高BC为m.16.小明沿着坡度为1:的坡面向上走了300米,此时小明上升的垂直高度为米.三.解答题(共11小题)17.如图,某渔船向正东方向航行,在B处测得A岛在北偏东的45°方向,岛C在B处的正东方向且相距30海里,从岛C测得A岛在北偏西的60°方向,已知A岛周围8海里内有暗礁.如果渔船继续向东航行,有无触礁危险?(≈1.4,≈1.7)18.计算:在一次数学社团活动课上,同学们测量一座古塔CD的高度,他们首先在A处安置测量器,测得塔顶C的仰角∠CFE=30°,然后往塔的方向前进100米到达B处,此时测得塔顶C的仰角∠CGE=60°,已知测量器高1.5米,请你根据以上数据计算出古塔CD的高度.(保留根号)19.如图,在Rt△ABC中,∠C=90°,BC=6,tan∠A=.求AB的长和sin∠B 的值.20.计算:﹣sin30°(cos45°﹣sin60°)21.计算:(1)sin260°﹣tan30°•cos30°+tan45°(2)cos245°+sin245°+sin254°+cos25422.如图,学校的实验楼对面是一幢教工宿舍楼,小敏在实验楼的窗口C测得教工宿台楼顶部D仰角为15°,教学楼底部B的俯角为22°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教工宿舍楼的高BD.(结果精确到0.1m,参考数据:tanl5°≈0.268,tan22°=0.404)23.如图,在Rt△ABC中,∠C=90°,D为AC上的一点,CD=3,AD=BD=5.求∠A的三个三角函数值.25.阅读理解:我们已经学习的直角三角形知识包括:勾股定理,30°、45°特殊角的直角三角形的边之间的关系等,在解决初中数学问题上起到重要作用,锐角三角函数是另一个研究直角三角形中边角间关系的知识,通过锐角三角函数也可以帮助解决数学问题.阅读下列材料,完成习题:如图1,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sine),记作sinA,即sinA==例如:a=3,c=7,则sinA=问题:在Rt△ABC中,∠C=90°(1)如图2,BC=5,AB=8,求sinA的值.(2)如图3,当∠A=45°时,求sinB的值.(3)AC=2,sinB=,求BC的长度.26.济南市纬十二路的一座过街天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方7米处(PB的长)有一文化墙PM,若新坡面下A 处与文化墙之间需留下至少3米宽的人行道,问文化墙是否需要拆除?请说明理由.(约为1.732)27.阅读下列材料,并完成相应的任务.初中阶段,我们所学的锐角三角函数反映了直角三角形中的边角关系:sinα=cosα=tanα=一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinαcosβ+cosαsinβsin(α﹣β)=sinαcosβ﹣cosαsinβ例如sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=根据上述材料内容,解决下列问题:(1)计算:sin75°=;(2)在Rt△ABC中,∠A=75°,∠C=90°,AB=4,请你求出AC和BC的长.九年级数学总复习练习卷一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,cosA=,则tanB等于()A.B.C.D.【分析】根据题意画出图形,进而表示出AC,BC,AB的长,进而求出答案.【解答】解:如图所示:∵cosA=,∴设AC=7x,AB=25x,则BC=24x,则tanB=.故选:C.【点评】此题主要考查了互余两角三角函数关系,正确表示出三角形各边长是解题关键.2.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,如果3a=4b,则cosB的值是()A.B.C.D.【分析】根据锐角三角函数的定义可得cosB=,然后根据题目所给3a=4b 可求解.【解答】解:因为在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C 对边,如果3a=4b,令b=3x,则a=4x,所以c=5x,所以cosB=故选:D.【点评】本题考查了锐角三角函数的定义,解答本题的关键是掌握cosB=,3.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cos B B.b=a•tanB C.b=c•sinB D.a=b•tanA 【分析】本题可以利用锐角三角函数的定义求解即可.【解答】解:在Rt△ABC中,∠C=90°,则tanA=,tanB=,cosB=,stnB=;因而b=c•sinB=a•tanB,a=b•tanA,错误的是b=c•cosB.故选:A.【点评】利用锐角三角函数的定义,正确理解直角三角形边角之间的关系.在直角三角形中,如果已知一边及其中的一个锐角,就可以表示出另外的边.4.一斜坡的坡度是1:,则此斜坡的坡角是()A.15°B.30°C.45°D.60°【分析】坡度=坡角的正切值,依此求出坡角的度数.【解答】解:设坡角为α,由题意知:tanα==,∴∠α=30°.即斜坡的坡角为30°.故选:B.【点评】此题考查的是解直角三角形的应用﹣坡度坡角问题,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.5.∠A为锐角,若cosA=,则∠A的度数为()A.75°B.60°C.45°D.30°【分析】根据特殊角的三角函数值求解.【解答】解:∵∠A为锐角,cosA=,∴∠A=60°.故选:B.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.6.如图,在△ABC中,∠C=90°,AB=10,BC=8,则sin∠A=()A.B.C.D.【分析】根据锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:∵∠C=90°,AB=10,BC=8,∴在Rt△ABC中,sinA===,故选:A.【点评】本题考查的是锐角三角函数的定义,掌握锐角A的对边a与斜边c 的比叫做∠A的正弦是解题的关键.7.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA 的值为()A.B.C.D.3【分析】根据锐角三角函数的定义即可求出答案.【解答】解:由题意可知:sinA===,∴tanA==,故选:B.【点评】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.8.已知Rt△ABC中,∠C=90°,tanA=,BC=8,则AB等于()A.6B.C.10D.12【分析】根据锐角三角函数的定义即可求出答案.【解答】解:∵tanA=,∴sinA=,∴=,∴AB=10,故选:C.【点评】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.9.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25°B.5tan65°C.5cos25°D.5tan25°【分析】在Rt△ABC中,由AB及∠B的值,可求出BC的长.【解答】解:在Rt△ABC中,∠C=90°,∠B=25°,AB=5,∴BC=AB•cos∠B=5cos25°.故选:C.【点评】本题考查了解直角三角形,牢记直角三角形中边角之间的关系是解题的关键.10.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向10(1+)海里的C处,为了防止某国海巡警干扰,请求我A处的渔监船前往C处护航.如图,已知C位于A处的东北方向上,A位于B的北偏西30°方向上,则A 和C之间的距离为()A.10海里B.20海里C.20海里D.10海里【分析】过点A作AD⊥BC于点D,设AD=x,则CD=x,AC=x,BD=x,结合BC=10(1+)即可求出x的值,进而即可得出A和C之间的距离.【解答】解:过点A作AD⊥BC于点D,如图所示.设AD=x,则CD=x,AC=x,BD=x.∵BC=BD+CD=(+1)x=10(1+),∴x=10,∴AC=10.故选:A.【点评】本题考查了解直角三角形的应用﹣方向角问题,通过解一元一次方程求出AD的长度是解题的关键.二.填空题(共6小题)11.已知α为锐角,且sinα=cosα,则α=45°.【分析】根据一个角的正弦等于这个角的余角的余弦解答.【解答】解:∵sinα=cos(90°﹣α),∴α=90°﹣α,解得,α=45°,故答案为:45°.【点评】本题考查的是同角三角函数的关系,掌握一个角的正弦等于这个角的余角的余弦是解题的关键,12.如果α是锐角,且cotα=tan25°,那么α=65度.【分析】依据α是锐角,且cotα=tan25°,即可得出α=65°.【解答】解:∵α是锐角,且cotα=tan25°,∴α=65°,故答案为:65.【点评】本题主要考查了互余两角三角函数的关系,若∠A+∠B=90°,那么sinA=cosB或sinB=cosA.13.小明同学沿坡度为i=1:的山路向上行走了100米,则小明上升的高度是50米.【分析】由斜坡的坡度i=1:=,可得坡角α的度数,再求得斜坡的正弦值sinα,那么它垂直上升的高度可利用正弦函数求得.【解答】解:∵斜坡的坡度i=1:=,∴坡角α=60°,∴斜坡的正弦值sinα=,∴小明上升的高度是100×sinα=50(米).故答案为50.【点评】本题考查了解直角三角形的应用﹣﹣﹣坡度坡角问题,根据坡度求出坡角是解题的关键.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.14.若tanα=5,则=.【分析】根据同角的三角函数的关系即可求出答案.【解答】解:原式=∵tanα=5,∴原式=故答案为:【点评】本题考查同角三角函数的关系,解题的关键熟练运用同角三角函数的关系,本题属于基础题型.15.如图是某幼儿园的滑滑梯的简易图,已知滑坡AB的坡度是1:3,滑坡的水平宽度是6m,则高BC为2m.【分析】根据滑坡的坡度及水平宽,可求出坡面的铅直高度,此题得解.【解答】解:∵滑坡AB的坡度是1:3,滑坡的水平宽度是6m,∴AC=6m,∴BC=×6=2m.故答案为:2.【点评】本题考查了解直角三角形的应用中的坡度坡角问题,牢记坡度的定义是解题的关键.16.小明沿着坡度为1:的坡面向上走了300米,此时小明上升的垂直高度为150米.【分析】根据坡度算出坡角的度数,利用坡角的正弦值即可求解.【解答】解:∵坡度tanα==1:=,∴α=30°.∴上升的垂直高度=坡长×sin30°=300×=150(米).故答案为150.【点评】此题考查了解直角三角形的应用﹣坡度坡角问题,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.掌握坡度、坡角的定义是解答本题的关键.三.解答题(共11小题)17.如图,某渔船向正东方向航行,在B处测得A岛在北偏东的45°方向,岛C在B处的正东方向且相距30海里,从岛C测得A岛在北偏西的60°方向,已知A岛周围8海里内有暗礁.如果渔船继续向东航行,有无触礁危险?(≈1.4,≈1.7)【分析】判断渔船有无危险只要求出点A到BC的距离,与8海里比较大小就可以.【解答】解:若渔船继续向东航行,无触礁的危险.理由如下:如图,过点A作AD⊥BC于点D.由题意得:∠ABD=45°,∠ACD=30°.设AD=x海里.在Rt△ABD中,∵∠ABD=45°,∴BD=AD=x海里.在Rt△ACD中,∵∠ACD=30°,∴CD=AD=x海里.∵BD+DC=30,∴x+x=30,解得x=15(﹣1),17(﹣1)≈10.5>8,即:若渔船继续向东航行,无触礁危险.【点评】本题考查了解直角三角形的应用﹣方向角问题,特殊角的三角函数等知识,解题的关键是添加辅助线构造直角三角形,把实际问题转化为解直角三角形问题,属于中考常考题型.18.计算:在一次数学社团活动课上,同学们测量一座古塔CD的高度,他们首先在A处安置测量器,测得塔顶C的仰角∠CFE=30°,然后往塔的方向前进100米到达B处,此时测得塔顶C的仰角∠CGE=60°,已知测量器高1.5米,请你根据以上数据计算出古塔CD的高度.(保留根号)【分析】先分析图形,根据题意构造直角三角形.本题涉及到两个直角三角形△CEF、△CGE,利用其公共边CE构造等量关系,借助FG=EF﹣GE=100,构造关系式求解.【解答】解:由题意知CD⊥AD,EF∥AD.∴∠CEF=90°.设CE=x米,∵在Rt△CEF中,tan∠CFE=,∴EF===x,∵在Rt△CEG中,tan∠CGE=,∴GE===x.∵FG=EF﹣GE=100,∴x﹣x=100,解得x=50.∴CD=CE+ED=50+1.5(米).答:古塔CD的高度是(50+1.5)米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,此类题目要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.19.如图,在Rt△ABC中,∠C=90°,BC=6,tan∠A=.求AB的长和sin∠B 的值.【分析】根据∠A的正切值用BC表示出AC,再利用勾股定理列式求解即可得到BC的长,然后求出AB的长,再根据锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:∵在Rt△ABC中,∠C=90°,BC=6,tan∠A==,∴AC=12,∴AB===6,∴sin∠B===.【点评】本题考查了锐角三角函数的定义,勾股定理,用BC表示出AC是解题的关键.20.计算:﹣sin30°(cos45°﹣sin60°)【分析】依据30°、45°、60°角的各种三角函数值,即可得到计算结果.【解答】解:原式=﹣(﹣)=﹣==【点评】本题主要考查了特殊角的三角函数值,其应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.21.计算:(1)sin260°﹣tan30°•cos30°+tan45°(2)cos245°+sin245°+sin254°+cos254°【分析】根据特殊角的锐角三角函数的值即可求出答案.【解答】解:(1)原式=()2﹣×+1=﹣+1=,(2)原式=(cos245°+sin245°)+(sin254°+cos254°)=1+1=2【点评】本题考查锐角三角函数的定义,解题的关键是熟练运用特殊角的锐角三角函数的定义,本题属于基础题型.22.如图,学校的实验楼对面是一幢教工宿舍楼,小敏在实验楼的窗口C测得教工宿台楼顶部D仰角为15°,教学楼底部B的俯角为22°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教工宿舍楼的高BD.(结果精确到0.1m,参考数据:tanl5°≈0.268,tan22°=0.404)【分析】(1)作CH⊥BD于H,如图,利用仰角和俯角定义得到∠DCH=15°,∠BCH=22°,然后计算它们的和即可得到∠BCD的度数;(2)利用正切定义,在Rt△DCH中计算出DH=30tan15°=8.04,在Rt△BCH 中计算出BH=30tan22°=12.12,然后计算BH+DH即可得到教工宿舍楼的高BD.【解答】解:(1)作CH⊥BD于H,如图,根据题意得∠DCH=15°,∠BCH=22°,∴∠BCD=∠DCH+∠BCH=15°+22°=37°;(2)易得四边形ABHC为矩形,则CH=AB=30,在Rt△DCH中,tan∠DCH=,∴DH=30tan15°=30×0.268=8.04,在Rt△BCH中,tan∠BCH=,∴BH=30tan22°=30×0.404=12.12,∴BD=12.12+8.04=20.16≈20.1(m).答:教工宿舍楼的高BD为20.1m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.23.计算:sin45°+cos45°.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:原式=+=.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.24.如图,在Rt△ABC中,∠C=90°,D为AC上的一点,CD=3,AD=BD=5.求∠A的三个三角函数值.【分析】在Rt△BCD中由勾股定理求得BC=4,在Rt△ABC中求得AB=4,再根据三角函数的定义求解可得.【解答】解:在Rt△BCD中,∵CD=3、BD=5,∴BC===4,又AC=AD+CD=8,∴AB===4,则sinA===,cosA===,tanA===.【点评】本题主要考查锐角的三角函数的定义,解题的关键是掌握勾股定理及三角函数的定义.25.阅读理解:我们已经学习的直角三角形知识包括:勾股定理,30°、45°特殊角的直角三角形的边之间的关系等,在解决初中数学问题上起到重要作用,锐角三角函数是另一个研究直角三角形中边角间关系的知识,通过锐角三角函数也可以帮助解决数学问题.阅读下列材料,完成习题:如图1,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sine),记作sinA,即sinA==例如:a=3,c=7,则sinA=问题:在Rt△ABC中,∠C=90°(1)如图2,BC=5,AB=8,求sinA的值.(2)如图3,当∠A=45°时,求sinB的值.(3)AC=2,sinB=,求BC的长度.【分析】(1)根据正弦函数的定义解答;(2)设AC=x,则BC=x,利用方程解答;(3)由锐角三角函数定义求得AB=4,然后由勾股定理解答.【解答】解:(1)sinA=;(2)在Rt△ABC中,∠A=45°,设AC=x,则BC=x,AB=,则sinB=;(3)sinB=,则AB=4,由勾股定理得:BC2=AB2﹣AC2=16﹣12=4,∴BC=2.【点评】考查了锐角三角函数定义,勾股定理,直角三角形的性质以及特殊角的三角函数值.注意:勾股定理应用的前提条件是在直角三角形中.26.济南市纬十二路的一座过街天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方7米处(PB的长)有一文化墙PM,若新坡面下A 处与文化墙之间需留下至少3米宽的人行道,问文化墙是否需要拆除?请说明理由.(约为1.732)【分析】(1)作CH⊥AB于H,如图,利用坡度的定义得到tan∠CAH===,然后根据特殊角的三角函数值求出∠CAH即;(2)另一条坡度定义得到tan∠CBH==,所以BH=CH=6,再利用=得到AH=6,接着计算出AB≈4.392,然后根据3+4.392>7可判断文化墙需要拆除.【解答】解:(1)作CH⊥AB于H,如图,在Rt△ACH中,∵tan∠CAH===,∴∠CAH=30°,即新坡面的坡角a为30°;(2)文化墙需要拆除.理由如下:∵tan∠CBH==,∴BH=CH=6,∵=,∴AH=CH=6≈10.392,∴AB=AH﹣BH=6﹣6=4.392,∵3+4.392>7,∴文化墙需要拆除.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.27.阅读下列材料,并完成相应的任务.初中阶段,我们所学的锐角三角函数反映了直角三角形中的边角关系:sinα=cosα=tanα=一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinαcosβ+cosαsinβsin(α﹣β)=sinαcosβ﹣cosαsinβ例如sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=根据上述材料内容,解决下列问题:(1)计算:sin75°=;(2)在Rt△ABC中,∠A=75°,∠C=90°,AB=4,请你求出AC和BC的长.【分析】(1)根据公式可求.(2)根据锐角的三角函数值,求AC和BC的值.【解答】解:(1)sin75°=sin(30°+45°)=sin30°cos45°+cos30°sin45°=×+×=,故答案为:.(2)Rt△ABC中,∵sin∠A=sin75°==∴BC=AB×=4×=∵∠B=90﹣∠A∴∠B=15°∵sin∠B=sin15°==∴AC=AB×=【点评】本题考查了同角三角函数关系,利用特殊的三角函数值求线段的长度是本题的关键.。

2018年4月山东省聊城市东昌府区中考数学模拟试卷(含答案)

2018年4月山东省聊城市东昌府区中考数学模拟试卷(含答案)

2018年山东省聊城市东昌府区中考数学模拟试卷(4月份)一.选择题(共12小题,满分36分)1.﹣1的相反数是()A.1B.C.D.2.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=50°,那么∠2的度数是()A.20°B.30°C.40°D.50°3.下列运算错误的是()A.(m2)3=m6B.a10÷a9=a C.x3•x5=x8D.a4+a3=a7 4.中国的陆地面积和领水面积共约9970000km2,9970000这个数用科学记数法可表示为()A.9.97×105B.99.7×105C.9.97×106D.0.997×107 5.在圆锥、圆柱、球当中,主视图、左视图、俯视图完全相同的有()A.0个B.1个C.2个D.3个6.下列说法正确的是()A.x2+4=0,则x=±2B.x2=x的根为x=1C.x2﹣2x=3没有实数根D.4x2+9=12x有两个相等的实数根7.计算﹣•的结果是()A.B.C.D.8.下列说法正确的是()A.为了审核书稿中的错别字,选择抽样调查B.为了了解春节联欢晚会的收视率,选择普查C.“经过由交通信号灯的路口,遇到红灯”是必然事件D.“射击运动员射击一次,命中靶心”是随机事件9.不等式组的解集在数轴上表示正确的是()A.B.C.D.10.如图,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是()A.3cm B.4cm C.5cm D.6cm11.某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是()A.中位数是4,平均数是3.75B.众数是4,平均数是3.75C.中位数是4,平均数是3.8D.众数是2,平均数是3.812.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则以下结论同时成立的是()A.B.C.D.二.填空题(共5小题,满分15分,每小题3分)13.分解因式:a3﹣a=.14.函数中自变量x的取值范围是.15.如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC的长度是.16.如图电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光.已知四个开关都处于断开状态,任意闭合其中一个开关,则小灯泡发光的概率等于.17.如图,已知等边三角形OAB的顶点O(0,0),A(0,3),将该三角形绕点O顺时针旋转,每次旋转60°,则旋转2018次后,顶点B的坐标为.三.解答题(共8小题)18.化简:(x﹣).19.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.20.随着人民生活水平的提高,购买老年代步车的人越来越多.这些老年代步车却成为交通安全的一大隐患.针对这种现象,某校数学兴趣小组在《老年代步车现象的调查报告》中就“你认为对老年代步车最有效的管理措施”随机对某社区部分居民进行了问卷调查,其中调查问卷设置以下选项(只选一项):A:加强交通法规学习;B:实行牌照管理;C:加大交通违法处罚力度;D:纳入机动车管理;E:分时间分路段限行调查数据的部分统计结果如下表:D(1)根据上述统计表中的数据可得m=,n=,a=;(2)在答题卡中,补全条形统计图;(3)该社区有居民2600人,根据上述调查结果,请你估计选择“D:纳入机动车管理”的居民约有多少人?21.如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x 是多少?22.某空调厂的装配车间,原计划用若干天组装150台空调,厂家为了使空调提前上市,决定每天多组装3台,这样提前3天超额完成了任务,总共比原计划多组装6台,问原计划每天组装多少台?23.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线y=﹣x+3交AB,BC分别于点M,N,反比例函数y=的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.24.已知,如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.25.抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.参考答案一.选择题1.A.2.C.3.D.4.C.5.B.6.D.7.C.8.D.9.A.10.A.11.C.12.C.二.填空题13.a(a+1)(a﹣1).14.x>5.15.4.16..17.(0,﹣3).三.解答题18.解:(x﹣)===1.19.证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是矩形,∴OC=OD,∴四边形OCED是菱形.20.解:(1)调查问卷的总人数为:a=25÷5%=500(人),∴m=×100%=20%,n=500×35%=175,故答案为:20%,175,500;(2)如图所示:;(3)选择“D:纳入机动车管理”的居民约有:2600×35%=910(人).21.解:如图:延长AB.∵CD∥AB,∴∠CAB=30°,∠CBF=60°;∴∠BCA=60°﹣30°=30°,即∠BAC=∠BCA;∴BC=AB=3米;Rt△BCF中,BC=3米,∠CBF=60°;∴BF=BC=1.5米;故x=BF﹣EF=1.5﹣0.8=0.7米.答:这时汽车车头与斑马线的距离x是0.7米.22.解:设原计划每天组装x台,依题意得,,两边都乘以x(x+3)得150(x+3)﹣156x=3x(x+3)化简得x2+5x﹣150=0,解得x1=﹣15,x2=10,经检验x1=﹣15,x2=10是原方程的解,x1=﹣15不合题意,只取x2=10答:原计划每天组装10台.23.解:(1)∵B(4,2),四边形OABC是矩形,∴OA=BC=2,将y=2代入y=﹣x+3得:x=2,∴M(2,2),将x=4代入y=﹣x+3得:y=1,∴N(4,1),把M的坐标代入y=得:k=4,∴反比例函数的解析式是y=;(2)由题意可得:S四边形BMON=S矩形OABC﹣S△AOM﹣S△CON=4×2﹣×2×2﹣×4×1=4;∵△OPM的面积与四边形BMO N的面积相等,∴OP×AM=4,∵AM=2,∴OP=4,∴点P的坐标是(0,4)或(0,﹣4).24.(1)证明:连接CE,如图1所示:∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.(2)证明:连接OE,如图2所示:∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3,∵OE∥AC,∴△FCG∽△FOE,∴,即,解得:CG=.25解:(1)由题意知,解得:b=2、c=1,∴抛物线L的解析式为y=﹣x2+2x+1;(2)如图1,∵y=kx﹣k+4=k(x﹣1)+4,∴当x=1时,y=4,即该直线所过定点G坐标为(1,4),∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴点B(1,2),则BG=2,=1,即S△BNG﹣S△BMG=BG•x N﹣BG•x M=1,∵S△BMN∴x N﹣x M=1,由得x2+(k﹣2)x﹣k+3=0,解得:x==,则x N=、x M=,由x N﹣x M=1得=1,∴k=±3,∵k<0,∴k=﹣3;(3)如图2,设抛物线L1的解析式为y=﹣x2+2x+1+m,∴C(0,1+m)、D(2,1+m)、F(1,0),设P(0,t),①当△PCD∽△FOP时,=,∴=,∴t2﹣(1+m)t+2=0;②当△PCD∽△POF时,=,∴=,∴t=(m+1);(Ⅰ)当方程①有两个相等实数根时,△=(1+m)2﹣8=0,解得:m=2﹣1(负值舍去),此时方程①有两个相等实数根t1=t2=,方程②有一个实数根t=,∴m=2﹣1,此时点P的坐标为(0,)和(0,);(Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:(m+1)2﹣(m+1)2+2=0,解得:m=2(负值舍去),此时,方程①有两个不相等的实数根t1=1、t2=2,方程②有一个实数根t=1,∴m=2,此时点P的坐标为(0,1)和(0,2);综上,当m=2﹣1时,点P的坐标为(0,)和(0,);当m=2时,点P的坐标为(0,1)和(0,2).。

2018年山东省高考数学试卷(理科)word版试卷及解析

 2018年山东省高考数学试卷(理科)word版试卷及解析

2018年普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:(本题有12小题,每小题5分,共60分。

) 1、设z=,则∣z ∣=( )A.0B. 12 C.1 D. √2 2、已知集合A={x|x 2-x-2>0},则C R A =( ) A 、{x|-1<x<2} B 、{x|-1≤x ≤2}C 、{x|x<-1}∪{x|x>2}D 、{x|x ≤-1}∪{x|x ≥2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记S n 为等差数列{a n }的前n 项和,若3S 3 = S 2+ S 4,a 1 =2,则a 5 =( ) A 、-12 B 、-10 C 、10 D 、125、设函数f (x )=x ³+(a-1)x ²+ax .若f (x )为奇函数,则曲线y= f (x )在点(0,0)处的切线方程为( )A.y= -2xB.y= -xC.y=2xD.y=x6、在∆ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB→ =( ) A. 34 AB → - 14 AC → B. 14 AB → - 34 AC → C. 34 AB → + 14 AC → D. 14 AB → + 34 AC→建设前经济收入构成比例建设后经济收入构成比例7、某圆柱的高为2,底面周长为16,其三视图如右图。

圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A. 2√17B. 2√5C. 3D. 28.设抛物线C :y ²=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM → ·FN→ =( ) A.5 B.6 C.7 D.8 9.已知函数f (x )= g (x )=f (x )+x+a ,若g (x )存在2个零点,则a 的取值范围是( )A. [-1,0)B. [0,+∞)C. [-1,+∞)D. [1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形。

山东省聊城市2018届九年级中考数学全真模拟试卷及参考答案

山东省聊城市2018届九年级中考数学全真模拟试卷及参考答案
山东省聊城市2018届九年级中考数学全真模拟试卷
一、单选题
1. ﹣2017的倒数是( )
A.
B.﹣
C . 2017 D . ﹣2017
2. 下列图形中,既是轴对称图形又是中心对称图形的是( )
A.
B.
C.
D.
3. 如图,直线l1∥l2 , 等腰Rt△ABC的直角顶点C在l1上,顶点A在l2上,若∠β=14°,则∠α=( )
17. 如图,平面直角坐标系中,A(﹣3,0)B(0,4)把△AOB按如图标记的方式连续做旋转变换,这样得到的第20 17个三角形中,O点的对应点的坐标为________.
三、解答题
18. (y–z)2+(x–y)2+(z–x)2=(y+z–2x)2+(z+x–2y)2+(x+y–2z)2 . 求
的值.
C . y=x2+1 D . y>0时,
.则函数y=cx2﹣bx+a的图象可能是下图中的( )
A.
B.
C.
D.
10. 如图,是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若指针恰好停在分割线上,那么重转一次,
直到指针指向某一区域为止),两个指针所指区域的数字和为偶数的概率是( )
的图象交于A(2,m),B(n,﹣2)两点.过点B作BC⊥x轴,垂足
(1) 求一次函数与反比例函数的解析式; (2) 根据所给条件,请直接写出不等式k1x+b> 的解集; (3) 若P(p,y1),Q(﹣2,y2)是函数y= 图象上的两点,且y1≥y2,求实数p的取值范围. 24. 如图,在△ABC中,∠ABC=90°,⊙O是△ABC外接圆,点D是圆上一点,点D、B分别在AC两侧,且BD=BC, 连接AD、BD、OD、CD,延长CB到点P,使∠APB=∠DCB.

山东省聊城市实验中学2024-2025学年九年级上学期开学测试数学试题

山东省聊城市实验中学2024-2025学年九年级上学期开学测试数学试题

山东省聊城市实验中学2024-2025学年九年级上学期开学测试数学试题一、单选题1.在下列各根式中,最简二次根式有( )个.①②③ ④ A .1 B .2 C .3 D .42.下列运算错误的是( )A B =CD =3.“五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y (千米)与汽车行驶时间x (小时)之间的函数图像,当他们离目的地还有20千米时,汽车一共行驶的时间是( )A .2小时B .2.2小时C .2.25小时D .2.4小时 4.下列图形是中心对称图形的是( )A .B .C .D .5.若关于x 的一元一次不等式组0,213x a x -≥⎧⎨+>⎩的解集为1x >,则a 的取值范围是( ) A .1a < B .1a ≤ C .1a > D .1a ≥6)A B C D7.下列各组线段中是成比例线段的是( )A .2cm,4cm,6cm,6cmB .2cm,4cm,4cm,8cmC .4cm,8cm,12cm,16cmD .3cm,6cm,9cm,12cm8.若两个相似三角形对应边上的高线之比为3:1,则对应角的平分线之比为( ) A.9:1 B .6:1 C .3:1 D 19.如图,线段BD ,CE 相交于点A ,DE BC ∥,若8,4,3AB AD DE ===,则BC 的长为( ).A .3B .4C .5D .610.已知ABC V 与DEF V 相似,且相似比是1:3,那么它们的面积比:ABC DEF S S =V V ( )A .1:3B .1:6C .1:9D .3:1二、填空题11.已知函数||(1)2m y m x =-+是一次函数,则m =.12.已知x y +=3xy =,则22x y xy +的值为.13.如图,平行四边形ABCD 的对角线AC BD ,相交于点O ,BD CD ⊥,6AC =,4BD =,则AB 的长为.14.某天上午的大课间,小明和小刚站在操场上,同一时刻测得他们的影子长分别是2m 和2.2m ,已知小明的身高是1.6m ,则小刚的身高是m .15.如图,在平面直角坐标系的第一象限内,A B C '''V 与ABC V 关于原点O 位似,相似比为21∶,点A 的坐标为()1,2,则点A '的坐标为.三、解答题16.先化简,再求值:22(2)(2)(2)2a b a b a b b +-+--,其中1a =,1b . 17.解不等式:()()1124663x x --<+,并把解集表示在数轴上.18.某校社会实践小组为了测量花丛中路灯AB 的高度,在地面上D 处垂直于地面竖立了高度为1.7m 的标杆CD ,这时地面上的点E ,标杆的顶端点C ,路灯的顶端点A 正好在同一直线上,测得3m ED =,将标杆向后平移5m 到达点G 处,这时地面上的点H ,标杆的顶端点F ,路灯的顶端点A 正好在同一直线上,这时测得5m GH =,请你根据以上数据,计算花丛中路灯AB 的高度.19.如图,在ABC V 中,过A 点作AD BC ∥,交ABC ∠的平分线于点D ,点E 在BC 上,DE AB ∥.(1)求证:四边形ABED 是菱形;(2)当6BC =,4AB =时,求DF 的长.。

山东省聊城市临清市2023-2024学年九年级上学期期中考试数学试题

山东省聊城市临清市2023-2024学年九年级上学期期中考试数学试题

山东省聊城市临清市2023-2024学年九年级上学期期中考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .甲和乙B .甲和丙C .乙和丙2.已知()3tan 903α︒-=,则锐角α的度数是()A .60°B .45°C .30°3.如图,ABC 与DEF 位似,位似中心为O ,且CO DEF 的周长之比为()A .4∶3B .7∶3C .7∶44.式子()22cos30tan 451tan 60︒-︒--︒的值是()A.13B.8.如图,12∠=∠,则下列各式不能说明△A.AC AEAB AD=B.ADAB9.如图,AB,CD是O的弦,A.30︒B.40︒10.如图,在ABC中,点D在边G,则下列结论一定正确的是(A.AD DEDB BC=B.AEAC=11.如图,AB为半圆O的直径,连接OD,OC,下结论错误的是(A .AD BC CD+=C .ABCD S CD OA =⋅梯形12.如图,在梯形ABCD 中,21CE ED =::.如果BEC 的面积为A .2B .74二、填空题13.如图,在平面直角坐标系中,半轴的夹角为α.若4tan 3α=14.如图,在△ABC 中,点D CD=.15.如图,己知ACB CBD ∠=∠b 之间满足的关系式16.如图,在O 中,弦AB 所对的圆周角C ∠=17.如图,将ABC 纸片按如图所示的方式折叠,使点痕为EF ,已知3AB =,4AC =,5BC =,若以是.三、解答题18.在ABC 中,9AB AC ==,6BC =,求C ∠的正弦.四、证明题19.如图,在边长为1的小正方形组成的网格中,ABC 和DEF 的顶点都在格点上.求证:ABC DEF ∽△△.五、解答题21.如图,一艘海轮位于灯塔P的北偏东南方向航行一段时间后,到达位于灯塔离.(结果保留整数)【参考数据:22.一块直角三角形木板,它的一条直角边把它加工成一个正方形桌面,请说明哪个正方形面积大.23.如图,在斜坡CB上有一建成的为45︒,然后他沿坡面CB行走了处测得塔顶A的仰角53︒.(点A数据:sin534 5︒≈,cos533 5︒≈,(1)求坡面CB 的坡度;(2)求基站塔AB 的高.六、证明题24.如图,己知等腰ABC ,AB AC =,AD 平分BAC ∠,以AD 为直径作O ,交AB 于点E ,交AC 于点F .(1)求证:BC 是O 的切线;(2)连接OB 与EF 交于点P ,若3OG =,4EG =,①求AD 的长;②求PG 的长.七、作图题25.如图,在网格内,()1,3A -、()3,1B 、()0,4C 、()3,3D .(1)判断ABC 的形状;(2)画出ABC 的外接圆M ;(3)点P 是第一象限内的一个格点,45CPD ∠=︒.①写出一个点P 的坐标_____;②满足条件的点P 有_____个.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【答案版】山东聊城市2018年4月九年级一模考试数学试题(PDF 版)一、选择题1. -2017的倒数是( ) A. 2017B. -2017C.12017D. 12017-2. 如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=52°,则∠2的度数为( ) A. 52° B. 38°C. 48°D. 45°3. 已知1纳米=0.000 000 001米,则36纳米用科学记数法表示为( ) A. 93610-⨯B. 83.610-⨯C. 93.610-⨯D. 803.61-⨯4. 下面计算正确的是( )4=±B. -3÷3×3= -3C. -3-3= 0D. 1331-÷=5. 由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是( )A.B.C.D.6. 在Rt △ABC 中,∠C=90°,如果1sin 3A =,那么sin B 的值是( )A.3B.C.4D. 37. 下列说法正确的是( ) A.“清明时节雨纷纷”是必然事件B. 了解路边行人边步行边低头看手机的情况可以采取对在路边行走的学生随机发放问卷的方式进行调查C. 射击运动员甲、乙分别射击10次且击中环数的方差分别是0.5和1.2,则甲队员的成绩好D. 分别写有三个数字 -1,-2,4的三张卡片(卡片的大小形状都相同),从中任意抽取两张,则卡片上的两数之积为正数的概率为138. 把代数式3231212x x x -+分解因式,结果正确的是( )A. 23(44)x x x -+ B. 23(4)x x -C. 3(2)(2)x x x +-D. 23(2)x x -9. 如图,在△ABC 中,∠B=55°,∠C=30°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则∠BAD 的度数为( ) A.65° B. 60°C. 55°D. 45°10. 不等式组9511x x x a +<+⎧⎨>+⎩的解集是x >2,则a 的取值范围是( )A. a ≤2B. a ≥2C. a ≤lD. a >l11. 如图,在平行四边形ABCD 中,E 是边CD 上一点,将△ADE 沿AE 折叠至'AD E ∆处,'AD与CE 交于点F ,若∠B=52°,∠DAE=20°,则'FED ∠的度数为( ) A. 40°B. 36°C. 50°D. 45°12. 小亮家与姥姥家相距24km. 小亮8:00从家出发,骑自行车去姥姥家,妈妈8:30从家出发,乘车沿相同路线去姥姥家. 在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示. 根据图象得到下列结论,其中错误的是( )A. 小亮骑自行车的平均速度是12km/hB. 妈妈比小亮提前0.5小时到达姥姥家C. 妈妈在距家12km 处追上小亮D. 9:30妈妈追上小亮 二、填空题13. 若圆锥的底面半径为3,侧面积为15π,则母线长为__________.14. 已知关于x 的一元二次方程2(1)410k x x -++=有两个实数根,则k 的取值范围是__________.15. 若从 -3,-1,0,1,3这五个数中随机抽取一个数记为a ,再从剩下的四个数中任意抽取一个数记为b ,恰好使关于x ,y 的二元一次方程组21x y bax y -=⎧⎨+=⎩有整数解,且点(a ,b)落在双曲线3y x=-上的概率是_________. 16. 小华将一条直角边长为1的一个等腰直角三角形纸片(如图1),沿它的对称轴折叠1次后得到一个等腰直角三角形(如图2),再将图2的等腰直角三角形沿它的对称轴折叠后得到一个等腰直角三角形(如图3),则图3中的等腰直角三角形的一条腰长为_________;同上操作,若小华连续将图1的等腰直角三角形折叠n 次后所得到的等腰直角三角形(如图n+1)的一腰长为_________.图1图2 图3 图n+117. 拋物线2y ax bx c =++的顶点为D(-1,2),与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,其部分图象如图,则以下结论:①240b ac -<;②当x >-l 时,y 随x 增大而减小;③a+b+c <0;④若方程20ax bx c m ++-=没有实数根,则m >2. 其中正确的结论有________________. 三、解答题 18. 计算: 解方程: 29472393x x x x +-=+--.19.“食品安全”受到全社会的广泛关注,我市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有_________人,扇形统计图中“基本了解”部分所对应扇形的圆心角为_________度; (2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数;扇形统计图条形统计图20. 已知,如图,AD 是△ABC 的角平分线,DE//AC ,ED=AF. 求证:四边形AEDF 是菱形.21. 如图,在△ABC 中,AB=AC ,以AC 为直径作O e 交BC 于点D ,过点D 作FE ⊥AB 于点E ,交AC 的延长线于点F. (1)求证: EF 与O e 相切;(2)若AE=6,3sin 5CFD ∠=,求EB 的长.22. 如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE ,在小楼的顶端D 处测得障碍物边缘点C 的俯角为30°,测得大楼顶端A 的仰角为45°(点B ,C ,E 在同一水平直线上). 已知AB=80m ,DE=10m ,求障碍物B ,C 两点间的距离.(结果精确到0.1m )(参考数据 1.414≈ 1.732≈)23. 如图,直线122y x =-+与双曲线ky x=相交于点A(m ,3),与x 轴交于点C. (1)求双曲线的解析式;(2)点P 在x 轴上,如果△ACP 的面积为3,求点P 的坐标.24. 2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区. 已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元. (1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?25. 如图,已知拋物线(2)(4)y k x x =+-(k 为常数,且k >0)与x 轴的交点为A 、B ,与y 轴的交点为C ,经过点B 的直线12y x b =-+与抛物线的另一个交点为D. (1)若点D 的横坐标为x= -4,求这个一次函数与抛物线的解析式;(2)若直线m 平行于该抛物线的对称轴,并且可以在线段AB 间左右移动,它与直线BD 和抛物线分别交于点E 、F ,求当m 移动到什么位置时,EF 的值最大,最大值是多少? (3)问原抛物线在第一象限是否存在点P ,使得△APB ∽△ABC ?若存在,请求出这时k 的值;若不存在,请说明理由.二〇一八初中第一次质量检测数学试题参考答案一、选择题(本题共12小题,每小题3分,共36分) 1—5 DBBBA6—10 ADDAC11—12 BD二、填空题(本题共5个小题,每小题3分,共15分) 13.514.5k ≤,且1k ≠ 15.320 16.122n⎛⎫ ⎪ ⎪⎝⎭17.②③④ 三、解答题(本小题共8个小题,共69分)18.(本题7分)2x+9=3(4x-7)+2(3x-9),……………………………………………3分 2x+9=12x-21+6x-18,2x-12x-6x=-21-18-9,…………………………………………………………………4分 -16x=-48,………………………………………………………………………………5分 所以x=3,………………………………………………………………………………6分 检验:当时x=3时,x-3=0,则x=3是原方程的增根,所以原方程无解.………7分 19.(本题8分)解:(1)60;90;……………………………………………………………………2分 (2)了解的人数有:60-15-30-10=5(人),补图如下:条形统计图………………………………………………5分(3)15590030060+⨯=(人) 答:估计该校中中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数约为300人。

20.(本题8分)证明:∵AD 是△ABC 的角平分线∴∠EAD=∠FAD ……………………………………………………………………2分∵DE//AC,ED=AF∴四边形AEDF是平行四边形……………………………………………………4分∴∠EAD=∠ADF∴∠FAD=∠FDA∴AF=DF……………………………………………………………………………7分∴四边形AEDF是菱形.…………………………………………………………8分21.(本题10分)(1)证明:如图,连接OD.………………………………………………………1分∵OC=OD,∴∠OCD=∠ODC.∵AB=BC,∴∠ACB=∠B∴∠ODC=∠B∴OD//AB…………………………………………………………3分∴∠ODF=∠AEF∵EF⊥AB∴∠ODF=∠AEF=90°∴OD⊥EF∵OD是O的半径,∴EF与O相切;………………………………………………………………5分(2)解:由(1)知,OD//AB,OD⊥EF.在Rt中△AEF中,3sin5AECFDAF∠==,AE=6,则AF=10. ∵OD//AB,∴OF OD AF AE=.设O的半径为r,∴10106r r-=,…………………………………………………………7分解得,154r=.……………………………………………………………8分∴1522 AB AC r===,∴153622EB AB AE=-=-=.…………………………………………10分22.(本题8分)解:过点D作DF⊥AB于点F,过点C作于点CH⊥DF于点H.……………………1分则DE=BF=CH=10m,在Rt△ADF中,AF=AB-BF=70m,∠ADF=45°,∴DF=AF=70m.…………………………3分在Rt△CDE中,DE=10m,∠DCE=30°,∴tan30DECE===︒(m),……………………………………6分∴70)52.7BC BE CE m=-=-≈m答:障碍物B,C两点间的距离约为52.7m.23.(本题8分)解:(1)把A点坐标代入122y x=+,可得1322m=+,解得,m=2,…………1分∴A(2,3),∴A点也在双曲线上,∴k=2×3=6,∴双曲线解析式为6yx=;……………………………………………………3分(2)在122y x=+中,令y=0可求得x=-4,∴C(-4,0),……………………………………………………………………4分∵点P在x轴上,∴可设P点坐标为(t,0),∴CP=|t+4|=3,且A(2,3),1342ACPS t∆=⨯+∵△ACP的面积为3,∴13432t ⨯+=,解得t=-6或t=-2,……………………………………… 7分 ∴P 点坐标为(-6,0)或(-2,0).………………………………………………8分 24.(本题8分)解:(1)设甲种商品的销售单价x 元,乙种商品的销售单价y 元,依题意有23321500x yx y =⎧⎨-=⎩,…………………………………………………………2分 解得900600x y =⎧⎨=⎩.经检验方程组的解符合题意.答:甲种商品的销售单价900元,乙种商品的销售单价600元;…………4分 (2)设销售甲种商品a 万件,依题意有900600(8)5400a a +-≥,解得2a ≥.答:至少销售甲种商品2万件. 25.(本题12分)解:(1)当y=0时,k(x+2)(x-4)=0, 解得122,4x x =-=, 则A(-2,0),B(4,0), 把B(4,0)代入12y x b =-+ 得20b -+=,解得b=2, 所以一次函数解析式为122y x =-+, ……………………1分 当x=-4时,1242y x =-+=,则D 点坐标为(4,4), 把D(-4,4)代入y=k(x+2)(x-4)得k ·(-2)·(-8)=4,解得14k =, 所以抛物线解析为1(2)(4)4y x x =+-,即211242y x x =--;……3分 (2)设211(,2)42F t t t --,则1(,2),242E t t t -+-≤≤,所以2211112(2)42424EF t t t t =-+---=-+,………………5分 所以当t=0,EF 最大,最大值为4,即当直线m ,移动到与y 轴重合的位置时,EF 的值最大,最大值是4,……7分(3)存在.作PH ⊥x 轴于H ,如图,当x=0时,y=k(x+2)(x-4)=-8k ,则C(0,-8k),设P[N ,k(n+2)(n-4)],当∠PAB=∠CAB ,AP:AB=AB:AC 时,APB ABC ∆∆∽;在Rt △APH 中,(2)(4)tan 2k n n PAH n +-∠=+, 在Rt △OAC 中,8tan 42k OAC k ∠==, ∴(2)(4)42k n n k n +-=+,解得n=8,则P(8,40k),………………………………9分∴AP ===而AC ===∵AP:AB=AB:AC ,∴2AP AC AB ⋅=,即26=,……………………………………10分∴25(161)9k +=,解得121010k k ==-(舍去),……………………11分∴(2)(4)k n n +-=P点坐标为(8,.…………………………12分。

相关文档
最新文档