2014年山东省烟台市中考数学试卷(word解析版)

合集下载

2014年山东省烟台市中考数学模拟题讲解

2014年山东省烟台市中考数学模拟题讲解

2014年山东省烟台市中考数学模拟题一卷 选择题(共36分) 一、选择题(本题共12个小题,每小题3分,满分36分) 1.(4分)(2013•烟台模拟)的平方根是( )2.代数式与x ﹣2的差是负数,那么x 的取值范围是( )3.下列图形不是轴对称图形的是( ) .C4.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为( )BCD .5.下列说法正确的是( )分,方差分别是=5,6.在△ABC 中,∠A 、∠B 均为锐角,且,则△ABC 是( )7.二次函数y=ax 2+bx 的图象如图,若一元二次方程ax 2+bx+m=0有实数根,则m 的最大值为( ) A.-3 B.3 C. -6 D.98.如图,在直角梯形ABCD 中,AD∥BC,∠C=90°,AD=5,BC=9,以A 为中心将腰AB 顺时针旋转90°至9.已知梯形ABCD 的四个顶点的坐标分別为A (﹣1,0),B (5,0),C (2,2),D (0,2),直线y=kx+2将梯形分成面积相等的两部分,则k 的值为( )BD .7题图 8题图 9题图10.如图是某公园的一角,∠AOB=90°,弧AB 的半径OA 长是6米,C 是OA 的中点,点D 在弧AB 上,CD∥OB,则图中休闲区(阴影部分)的面积是( ) )米﹣)米11.为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF 交BE 于D ,C 在BD 上.有四位同学分别测量出以下四组数据:①BC,∠ACB; ②CD,∠ACB,∠ADB;③EF,DE ,BD ;④DE,DC ,BC .能根据所测数据,求出A ,B 间距离的有( ) 12.在平面直角坐标系中,第1个正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作第2个正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作第3个正方形A 2B 2C 2C 1…按这样的规律进行下去,第2011个正方形的面积为( )C10题图 11题图 12题图二卷非选择题(共84分)二、填空题(本题共6个小题,每小题3分共18分)13.如果单项式﹣3x2a y3与是同类项,则这两个单项式的积为.14.如图母亲节那天很多同学给妈妈准备了鲜花和礼物,从图中信息可知则买5束鲜花和5个礼盒的总价为元.15.如图一小虫从P点出发绕边长为10cm的等边三角形ABC爬行一圈回到点P,在小虫爬行过程中,始终保持与三角形ABC的边的距离是2cm,求小虫爬过的路径的长是.16.如图,已知矩形ABCD,P、R分别是BC和DC上的点,E、F分别是PA,PR的中点.如果DR=3,AD=4,则EF的长为.17.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为.18.如图,在平面直角坐标系中,矩形OEFG的顶点F的坐标为(4,2),将矩形OEFG绕点O逆时针旋转,使点F落在y轴上,得到矩形OMNP,OM与GF相交于点A.若经过点A的反比例函数的图象交EF于点B,则点B的坐标为.15题图16题图17题图18题图三、解答题(本大题共8个小题,满分66分.)19.(6分)化简分式(﹣)÷,并从﹣1≤ x ≤3中选一个你认为合适的整数x代入求值.20.(8分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共件,其中B班征集到作品件,请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求写出用树状图或列表分析过程)21. (9分)2012年,某地开始实施农村义务教育学校营养计划“蛋奶工程”.该地农村小学每份营养餐的标准是质量为300克,蛋白质含量为8%,包括一盒牛奶、一包饼干和一个鸡蛋.已知牛奶的蛋白质含量为5%,饼干的蛋白质含量为12.5%,鸡蛋的蛋白质含量为15%,一个鸡蛋的质量为60克.(1)一个鸡蛋中含蛋白质的质量为多少克?(2)每份营养餐中牛奶和饼干的质量分别为多少克?22.(9分)已知一次函数y1=x+m的图象与反比例函数的图象交于A、B两点.已知当x>1时,y1>y2;当0<x<1时,y1<y2.(1)求一次函数的解析式;(2)已知双曲线在第一象限上有一点C到y轴的距离为3,求△ABC的面积。

山东省济南市2014年中考数学真题试题(含解析)

山东省济南市2014年中考数学真题试题(含解析)

山东省济南市2014年中考数学真题试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为45分;第Ⅱ卷共6页,满分为75分.本试卷共8页,满分为120分.考试时间为120分钟.答题前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第Ⅰ卷(选择题 共45分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮檫干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.4的算术平方根是A .2B .-2C .±2D .16 【解析】4算术平方根为非负数,且平方后等于4,故选A .2.如图,点O在直线AB 上,若401=∠,则2∠的度数是 A . 50 B . 60 C . 140 D .150 【解析】因为 18021=∠+∠,所以1402=∠,故选C . 3.下列运算中,结果是5a 的是A .23a a ⋅B .210a a ÷ C .32)(a D .5)(a -【解析】由同底的幂的运算性质,可知A 正确.4.我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家.嫦娥三号探测器的发射总质量约3700千克,3700用科学计数法表示为A .2107.3⨯B .3107.3⨯C .21037⨯D .41037.0⨯ 【解析】3700用科学计数法表示为3107.3⨯,可知B 正确. 5.下列图案既是轴对称图形又是中心对称图形的是AB O 2 1第2题图A .B .C .D .【解析】图A 为轴对称图但不是中心对称图形;图B 为中心对称图但不是轴对称图形; 图C 既不是轴对称图也不是中心对称图形; 图D 既是轴对称图形又是中心对称图形.6.如图,一个几何体由5个大小相同、棱长为1的正方体搭成, 下列关于这个几何体的说法正确的是A .主视图的面积为5B .左视图的面积为3C .俯视图的面积为3D .三种视图的面积都是4【解析】主题图、俯视图均为4个正方形,其面积为4,左视图为3个正方形,其面积为3,故选B . 7.化简211mm m m -÷- 的结果是 A .m B .m 1 C .1-m D .11-m【解析】m m m m m m m m m =-⨯-=-÷-111122,故选 A . 8.下列命题中,真命题是A .两对角线相等的四边形是矩形B .两对角线互相平分的四边形是平行四边形C .两对角线互相垂直的四边形是菱形D .两对角线相等的四边形是等腰梯形【解析】两对角线相等的四边形不一定是矩形,也不一定是等腰梯形,所以A ,D 都不是真命题.又两对角线互相垂直如果不平分,此时的四边形不是菱形,故选B . 9.若一次函数5)3(+-=x m y 的函数值y 随x 的增大而增大,则A .0>mB .0<mC .3>mD .3<m【解析】由函数值y 随x 的增大而增大,可知一次函数的斜率03>-m ,所以3>m ,故选C . 10.在□ABCD 中,延长AB 到E ,使BE =AB ,连接DE 交BC 于F ,则下列结论不一定成立的是A .CDF E ∠=∠B .DF EF =C .BF AD 2= D .CF BE 2=【解析】由题意可得FBE FCD ∆≅∆,于是A ,B 都一定成立;又由BE =AB ,可知BF AD 2=,所以C 所给结论一定成立,于是不一定成立的应选D . 11.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率为正面 第6题ABCDEF第10题图A .32 B .21 C .31 D .41 【解析】用H ,C ,N 分别表示航模、彩绘、泥塑三个社团,用数组(X ,Y )中的X 表示征征选择的社团,Y 表示舟舟选择的社团. 于是可得到(H ,H ),(H ,C ),(H ,N ), (C ,H ),(C ,C ),(C ,N ),(N ,H ),(N ,C ),(N ,N ),共9中不同的选择结果, 而征征和舟舟选到同一社团的只有(H ,H ),(C ,C ),(N ,N )三种, 所以,所求概率为3193=,故选C . 12.如图,直线233+-=x y 与x 轴,y 轴分别交于B A ,两点, 把AOB ∆沿着直线AB 翻折后得到B O A '∆,则点O '的坐标是A .)3,3(B .)3,3(C .)32,2(D .)4,32(【解析】连接OO ',由直线233+-=x y 可知223OB=,OA=,故30BAO ∠=︒,点O '为点O 关于直线AB 的对称点,故60O AO '∠=︒,AOO ∆'是等边三角形,O '点的横坐标是OA 长度的一半3,纵坐标则是AOO ∆'的高3,故选A .13.如图,O ⊙的半径为1,ABC ∆是O ⊙的内接等边三角形, 点D ,E 在圆上,四边形BCDE 为矩形,这个矩形的面积是A .2B .3C .23D .23【解析】1=OA ,知3,1==BC CD ,所以矩形的面积是3.14.现定义一种变换:对于一个由有限个数组成的序列0S ,将其中的每个数换成该数在0S 中出现的次数,可得到一个新序列.例如序列0S :(4,2,3,4,2),通过变换可得到新序列1S :(2,2,1,2,2).若0S 可以为任意序列,则下面的序列可以作为1S 的是A .(1,2,1,2,2)B .(2,2,2,3,3)ABOO'xyABCDE.O第13题图C .(1,1,2,2,3)D .(1,2,1,1,2)【解析】由于序列0S 含5个数,于是新序列中不能有3个2,所以A ,B 中所给序列不能作为1S ; 又如果1S 中有3,则1S 中应有3个3,所以C 中所给序列也不能作为1S ,故选D . 15.二次函数的图象如图,对称轴为1=x . 若关于x 的一元二次方程02=-+t bx x (t 为实数) 在41<<-x 的范围内有解,则t 的取值范围是A .1-≥tB .31<≤-tC .81<≤-tD .83<<t 【解析】由对称轴为1=x ,得2-=b ,再由一元二次方程022=--t x x 在41<<-x 的范围内有解,得)4()1(y t y <≤, 即81<≤-t ,故选C .第Ⅱ卷(非选择题 共75分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上) 16.=--37________.【解析】101037=-=--,应填10. 17.分解因式:=++122x x ________. 【解析】22)1(12+=++x x x ,应填2)1(+x .18.在一个不透明的口袋中,装有若干个出颜色不同其余都相同的球.如果口袋中装有3个红球且摸到红球的概率为51,那么口袋中球的总个数为____________. 【解析】设口袋中球的总个数为N ,则摸到红球的概率为513=N ,所以15=N ,应填15. 19.若代数式21-x 和123+x 的值相等,则=x .【解析】解方程12321+=-x x ,的7=x ,应填7.20.如图,将边长为12的正方形ABCD 是沿其对角线AC 剪开,再把ABC ∆沿着AD 方向平移,得到C B A '''∆,当两个三角形重叠的面积为32时,它移动的距离A A '等于________. 【解析】设m A A =',则222121264m (m )+-=-,解之m =4或8,应填4或8.1 BOxy4A DADA ’DAyB21.如图,OAC ∆和BAD ∆都是等腰直角三角形,90=∠=∠ADB ACO ,反比例函数xk y =在第一象限的图象经过点B ,若1222=-AB OA ,则k 的值为________.【解析】设点B 的坐标为),(00y x B ,则DB OC AD AC y DB OC x -=-=+=00,, 于是62121222200=-=-=-⋅+=⋅=AB OA DB OC DB OC DB OC y x k )()(,所以应填6.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤) 22. (本小题满分7分) (1)化简:)4()3)(3(a a a a -+-+.【解析】9449)4()3)(3(22-=-+-=-+-+a a a a a a a a(2)解不等式组:⎩⎨⎧+≥-<-24413x x x .【解析】由13<-x 得4<x ;由244+≥-x x 得2≥x . 所以原不等式组的解为42<≤x .23.(本小题满分7分)(1)如图,在四边形ABCD 是矩形,点E 是AD 的中点,求证:EC EB =.【解析】在ABE ∆和DCE ∆中,EDC EAB DE AE DC AB ∠=∠==,,,于是有 DCE ABE ∆≅∆,所以EC EB =.A BCDE第23题(1)图(2)如图,AB 与O ⊙相切于C ,B A ∠=∠,O ⊙的半径为6,AB =16,求OA 的长.【解析】在OAB ∆中,OB OA B A =∴∠=∠, ,连接OC ,则有8,6,===⊥BC AC OC AB OC , 所以10862222=+=+=AC OC OA .24.(本小题满分8分)2014年世界杯足球赛在巴西举行,小李在网上预订了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元.其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?【解析】设小李预定了小组赛球票x 张,淘汰赛球票y 张,由题意有 ⎩⎨⎧=+=+580070055010y x y x ,解之⎩⎨⎧==28y x .所以,小李预定了小组赛球票8张,淘汰赛球票2张.25.(本小题满分8分)在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如下图所示:劳动时间(时) 频数 (人数) 频率 0.5 12 0.121 30 0.3 1.5 x 0.42 18y 合计 m 1(1)统计表中的=m ,=x ,=y ; (2)被调查同学劳动时间的中位数是 时;ABCO第23题(2)图0 时间(时) 人数102030 40 123018 0.5 1 2(3)请将频数分布直方图补充完整; (4)求所有被调查同学的平均劳动时间.【解析】(1)由于频率为0.12时,频数为12,所以频率为0.4时,频数为40,即40=x ; 频数为18,频率应为0.18时,即18.0=y ;10018403012=+++=m . (2)被调查同学劳动时间的中位数为1.5时; (3)略(4)所有被调查同学的平均劳动时间为32.118.024.05.13.0112.05.0=⨯+⨯+⨯+⨯时.26.(本小题满分9分)如图1,反比例函数)0(>=x xky 的图象经过点A (32,1),射线AB 与反比例函数图象交与另一点B (1,a ),射线AC 与y 轴交于点C ,y AD BAC ⊥=∠,75轴,垂足为D . (1)求k 的值;(2)求DAC ∠tan 的值及直线AC 的解析式;(3)如图2,M 是线段AC 上方反比例函数图象上一动点,过M 作直线x l ⊥轴,与AC 相交于N ,连接CM ,求CMN ∆面积的最大值. 【解析】(1)由反比例函数)0(>=x xky 的 图象经过点A (32,1),得32132=⨯=k ;(2)由反比例函数)0(32>=x xy 得 第26题图1ABCDO xy点B 的坐标为(1,32),于是有30,45=∠∴=∠DAC BAD ,33tan =∠DAC , AD =32,则由33tan =∠DAC 可得CD =2,C 点纵坐标是-1,直线AC 的截距是-1,而且过点A (32,1)则直线解析式为133-=x y . (3)设点M 的坐标为)1)(,32(>m m m, 则点N 的坐标为)12,32(-mm ,于是CMN ∆面积为 )12(3221+-⨯⨯=∆mm m S CMN ])422(89[3)112(322--=++-⨯=m m m , 所以,当4=m 时,CMN ∆面积取得最大值839.27.(本小题满分9分)如图1,有一组平行线4321l l l l ∥∥∥,正方形ABCD 的四个顶点分别在4321,,,l l l l 上,EG 过点D且垂直于1l 于点E,分别交42,l l 于点F,G,2,1===DF DG EF .(1)=AE ,正方形ABCD 的边长= ;(2)如图2,将AEG ∠绕点A 顺时针旋转得到D E A ''∠,旋转角为)900(<<αα,点D '在直线3l 上,以D A '为边在的D E ''左侧作菱形B C D A ''',使点C B '',分别在直线42,l l 上. ①写出D A B ''∠与α的函数关系并给出证明; ②若30=α,求菱形B C D A '''的边长.第26题图2AB CDOxyMNl 1l 2l 3lABDEF 1l 2l 3lAE ’D ’B ’【解析】(1)在R T R T A E D G D C∆∆,中,AD=DC,又有ADE ∠和DAE ∠互余,ADE ∠和CDG∠互余,故DAE ∠和CDG ∠相等,GDC AED ∆≅∆,知1==GD AE , 又321=+=AD ,所以正方形ABCD 的边长为103122=+.(2)①过点B '作B M '垂直于1l 于点M ,在R TR T ’A E D AB M ∆∆'',中, =’B M AE ',=AD AB '',故RT RT ’AE D AB M ∆∆''≅,所以A ,’D E B AM ''∠∠互余,D A B ''∠与α之和为90︒,故D A B ''∠=90︒-α.②过E 点作ON 垂直于1l 分别交12l ,l 于点O ,N ,若30=α,60E D N ''∠=︒,=1AE ',故1=2E O ', 5=2E N ', 533E D ''=,由勾股定理可知菱形边长为2584133+=.28.(本小题满分9分)如图1,抛物线2163x y -=平移后过点A (8,,0)和原点,顶点为B ,对称轴与x 轴相交于点C ,与原抛物线相交于点D . (1)求平移后抛物线的解析式并直接写出阴影部分的面积阴影S ;(2)如图2,直线AB 与y 轴相交于点P ,点M 为线段OA 上一动点,PMN ∠为直角,边MN 与AP 相交于点N ,设t OM =,试探求:①t 为何值时MAN ∆为等腰三角形;②t 为何值时线段PN 的长度最小,最小长度是多少. 【解析】(1)设平移后抛物线的解析式2316y x bx =-+, 将点A (8,,0)代入,得233162y x x =-+.顶点B (4,3), 阴影S =OC ×CB =12.ABCDxyO第28题图1PAB CM Nxy O第28题图2(2)直线AB 的解析式为364y x =-+,作NQ 垂直于x 轴于点Q , ①当MN =AN 时, N 点的横坐标为82t +,纵坐标为2438t-,由三角形NQM 和三角形MOP 相似可知NQ MQ OM OP =,得2438826t tt --=,解得982t ,=(舍去). 当AM =AN 时,AN =8t -,由三角形ANQ 和三角形APO 相似可知()385NQ t =-()485AQ t =-,MQ =85t -,由三角形NQM 和三角形MOP 相似可知NQ MQOM OP =得:()388556t t t --=,解得:t =12(舍去).当MN =MA 时,45MNA MAN ∠=∠<︒故AMN ∠是钝角,显然不成立.故92t =.②方法一:作PN 的中点C ,连接CM ,则CM =PC =21P N,当CM 垂直于x 轴且M 为OQ 中点时PN 最小, 此时t =3,证明如下:假设t =3时M 记为0M ,C 记为0C 若M 不在0M 处,即M 在0M 左侧或右侧,若C 在0C 左侧或者C 在0C 处,则CM 一定大于00C M ,而PC 却小于0PC ,这与CM =PC 矛盾, 故C 在0C 右侧,则PC 大于0PC ,相应PN 也会增大, 故若M 不在0M 处时 PN 大于0M 处的PN 的值,故当t =3时,MQ =3, 3=2NQ ,根据勾股定理可求出PM =35与MN =352,15=2PN . 故当t =3时,PN 取最小值为152.方法二:由MN 所在直线方程为662t x t y -=,与直线AB 的解析式364y x =-+联立,得点N 的横坐标为t t x N 292722++=,即029362=-+-N N x t x t ,由判别式0)2936(42≥--=∆N N x x ,得6≥N x 或14-≤N x ,又80<<N x , 所以N x 的最小值为6,此时t =3, 当t =3时,N 的坐标为(6,23),此时PN 取最小值为152.。

2021年山东省烟台市中考数学试卷及答案(word解析版)

2021年山东省烟台市中考数学试卷及答案(word解析版)

2021年山东省烟台市中考数学试卷一、选择题(本题共12小题,每小题3分,满分36分)1.(2014年山东烟台)﹣3的绝对值等于()A.﹣3 B. 3 C.±3 D.﹣分析:根据绝对值的性质解答即可.解:|﹣3|=3.故选B.点评:此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(2014年山东烟台)下列手机软件图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.(2014年山东烟台)烟台市通过扩消费、促投资、稳外需的协同发力,激发了区域发展活力,实现了经济平稳较快发展.2013年全市生产总值(GDP)达5613亿元.该数据用科学记数法表示为()分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将5613亿元用科学记数法表示为:5.613×1011元.故选;A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(2014年山东烟台)如图是一个正方体截去一角后得到的几何体,它的主视图是()。

【数学】2014-2015年山东省烟台市七年级上学期期中数学试卷与解析PDF

【数学】2014-2015年山东省烟台市七年级上学期期中数学试卷与解析PDF

2014-2015学年山东省烟台市七年级(上)期中数学试卷(五四学制)一、选择题(本题共10个小题,每小题3分)1.(3分)以下列各组长度的线段为边,能构成三角形的是()A.6cm、8cm、15cm B.7cm、5cm、12cm C.4cm、6cm、5cm D.8cm、4cm、3cm2.(3分)下列图形中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个3.(3分)锐角三角形中,任意两个内角之和必大于()A.120°B.100°C.90°D.60°4.(3分)如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C.DB=DC D.AB=AC5.(3分)下列语句:①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相同的图形一定能互相重合.其中错误的说法有()A.4个 B.3个 C.2个 D.1个6.(3分)如果一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形7.(3分)等腰三角形的一个内角为100°,则它的底角为()A.100°B.40°C.100°或40°D.不能确定8.(3分)如图,在Rt△ABC中,∠C=90°,它的周长为24,且AB:BC=5:3,则AC的长为()A.6 B.8 C.10 D.129.(3分)如图,在△ABC中,D、E分别是AC、BC边上的一点,AD=2DC,BE=EC,若△DBE的面积为1,则△ABC的面积等于()A.4 B.6 C.8 D.1010.(3分)如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于()A.2πB.4πC.8πD.16π二、填空题(本题共10个小题)11.(3分)三角形的三条交于一点,这点叫做三角形的重心.12.(3分)正九边形有条对称轴.13.(3分)如图是边长为1的正方形网格,点A、B、C、D都在格点上,图中阴影部分的面积等于.14.(3分)如图,∠α=.15.(3分)如图,在△ABC中,∠C=90°,AD是角平分线,点D到AB的距离为7cm,则CD=.16.(3分)如果一个三角形有两个角等于60°,那么这个三角形是三角形.17.(3分)在△ABC中,若∠C=∠B=∠A,则△ABC是三角形(按角分类)18.(3分)如图,AD与BC交于点O,△AOB≌△COD,A和C,B和D是对应顶点,若BO=5,AO=3,AB=4,则BD2=.19.(3分)如图,在△ABC中,∠A=36°,∠B=72°,CD是∠ACD的平分线,则图中共有个等腰三角形.20.(3分)如图,在△ABC中,AB=AC,AD平分∠BAC,点E、F在AD上,若△ABC的面积为16cm2,则图中阴影部分的面积是cm2.三、解答题21.(8分)尺规作图:如图,已知线段a、b和∠α用尺规作一个三角形,使其两边分别等于a、b,这两边的夹角等于2∠α.要求:不写已知、求作、作法,只画图,保留作图痕迹.22.(6分)利用一个点、一条线段、一个正三角形(或等腰三角形)、一个正方形(或长方形)设计一个轴对称图案,并说明你希望表达的含义.23.(9分)如图,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=10,试求△PMN的周长.24.(11分)已知:如图△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4cm.求BC 的长.25.(11分)如图,小芳和她的同学汤秋千,秋千AB在静止时,下端B离地面0.6m,秋千荡到AB′的位置时,下端B′距静止位置的水平距离B′D等于2m,距地面1.4m,求秋千AB的长.26.(12分)如图:已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:①AC=AD;②CF=DF.2014-2015学年山东省烟台市七年级(上)期中数学试卷(五四学制)参考答案与试题解析一、选择题(本题共10个小题,每小题3分)1.(3分)以下列各组长度的线段为边,能构成三角形的是()A.6cm、8cm、15cm B.7cm、5cm、12cm C.4cm、6cm、5cm D.8cm、4cm、3cm【解答】解:根据三角形的三边关系,得:A、6+8=14<15,不能组成三角形;B、7+5=12,不能组成三角形;C、4+5=9>6,能够组成三角形;D、4+3=7<8,不能组成三角形.故选:C.2.(3分)下列图形中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个【解答】解:第一个图形是轴对称图形,第二个图形不是轴对称图形,第三个图形不是轴对称图形,第四个图形是轴对称图形,综上所述,是轴对称图形的有2个.故选:B.3.(3分)锐角三角形中,任意两个内角之和必大于()A.120°B.100°C.90°D.60°【解答】解:如果两个锐角和不大于90°,那么第三个角将大于等于90°,就不再是锐角三角形.故选:C.4.(3分)如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C.DB=DC D.AB=AC【解答】解:A、加∠ADB=∠ADC,∵∠1=∠2,AD=AD,∠ADB=∠ADC,∴△ABD ≌△ACD(ASA),是正确选法;B、加∠B=∠C∵∠1=∠2,AD=AD,∠B=∠C,∴△ABD≌△ACD(AAS),是正确选法;C、加DB=DC,满足SSA,不能得出△ABD≌△ACD,是错误选法;D、加AB=AC,∵∠1=∠2,AD=AD,AB=AC,∴△ABD≌△ACD(SAS),是正确选法.故选:C.5.(3分)下列语句:①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相同的图形一定能互相重合.其中错误的说法有()A.4个 B.3个 C.2个 D.1个【解答】解:①面积相等的两个三角形不一定全等,故本选项错误;②两个等边三角形一定是相似图形,但不一定全等,故本选项错误;③如果两个三角形全等,它们的形状和大小一定都相同,符合全等形的定义,正确;④边数相同的图形不一定能互相重合,故本选项错误;综上可得错误的说法有①②④共3个.故选:B.6.(3分)如果一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形【解答】解:一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是钝角三角形.故选:C.7.(3分)等腰三角形的一个内角为100°,则它的底角为()A.100°B.40°C.100°或40°D.不能确定【解答】解:根据等腰三角形的性质得,底角度数为:(180°﹣100°)÷2=40°;故选:B.8.(3分)如图,在Rt△ABC中,∠C=90°,它的周长为24,且AB:BC=5:3,则AC的长为()A.6 B.8 C.10 D.12【解答】解:设AB=5x,BC=3x,则AC==4x,于是5x+3x+4x=24,解得x=2,故AC=4×2=8,故选:B.9.(3分)如图,在△ABC中,D、E分别是AC、BC边上的一点,AD=2DC,BE=EC,若△DBE的面积为1,则△ABC的面积等于()A.4 B.6 C.8 D.10【解答】解:如图,过点A作AM⊥BC,过点D作DN⊥BC;则AM∥DN;∴△AMC∽△DNC,∴,而AD=2DC,∴AM=3DN(设DN为λ);设BE=EC=μ,∴=6,而S=1,△BED=6,∴S△ABC故选:B.10.(3分)如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于()A.2πB.4πC.8πD.16π【解答】解:S1=πAC2,S2=πBC2,所以S1+S2=π(AC2+BC2)=πAB2=2π.故选:A.二、填空题(本题共10个小题)11.(3分)三角形的三条中线交于一点,这点叫做三角形的重心.【解答】解:三角形的三条中线交于一点,这点叫做三角形的重心.故答案为:中线.12.(3分)正九边形有9条对称轴.【解答】解:正九边形有9条对称轴.故答案为:9.13.(3分)如图是边长为1的正方形网格,点A、B、C、D都在格点上,图中阴影部分的面积等于15.【解答】解:如图,S ABCD=S MNPQ﹣S△ABM﹣S△BCQ﹣S△CDP﹣S△ADN=6×5﹣=30﹣15=15.故答案为15.14.(3分)如图,∠α=17°.【解答】解:∵三角形内角和是180°,∴40°+32°=55°+α,解得α=17°.故答案为:17°.15.(3分)如图,在△ABC中,∠C=90°,AD是角平分线,点D到AB的距离为7cm,则CD=7cm.【解答】解:∵AD是∠BAC的平分线,BC⊥AC,点D到AB的距离为7cm,∴CD=7cm.故答案为:7cm.16.(3分)如果一个三角形有两个角等于60°,那么这个三角形是等边三角形.【解答】解:∵一个三角形有两个角等于60°,且三角之和为180°,∴第三个角的度数=180°﹣60°﹣60°=60°,∴这个三角形是等边三角形.故答案为:等边.17.(3分)在△ABC中,若∠C=∠B=∠A,则△ABC是直角三角形(按角分类)【解答】解:∠C=x°,∵∠C=∠B=∠A,∴∠B=2∠C=2x,∠A=3∠C=3x,∵∠A+∠B+∠C=180°,即:3x+2x+x=180°,解得:x=30°,∴∠C=30°,∠A=3∠C=90°,∠B=2∠C=60°,∴此三角形是直角三角形.故答案为:直角.18.(3分)如图,AD与BC交于点O,△AOB≌△COD,A和C,B和D是对应顶点,若BO=5,AO=3,AB=4,则BD2=80.【解答】解:∵AB2+AO2=42+32=25,BO2=52=25,∴AB2+AO2=BO2,∴∠A=90°,∵△AOB≌△COD,∴BO=DO=5,∵BO=5,AO=3,∴AD=AO+DO=3+5=8,在Rt△ABD中,BD2=AB2+AD2=42+82=80.故答案为:80.19.(3分)如图,在△ABC中,∠A=36°,∠B=72°,CD是∠ACD的平分线,则图中共有3个等腰三角形.【解答】解:有3个等腰三角形,理由是:∵在△ABC中,∠A=36°,∠B=72°,∴∠ACB=180°﹣∠A﹣∠B=72°,∴∠ACB=∠B,∴△ABC是等腰三角形,∵CD是∠ACD的平分线,∴∠ACD=∠BCD=∠ACB=36°,∴∠A=∠ACD=36°,∴△ACD是等腰三角形,∵∠BCD=36°,∠B=72°,∴∠CDB=180°﹣36°﹣72°=72°,∴∠B=∠CDB,∴△BCD是等腰三角形,故答案为:3.20.(3分)如图,在△ABC中,AB=AC,AD平分∠BAC,点E、F在AD上,若△ABC的面积为16cm2,则图中阴影部分的面积是8cm2.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥DC,∴S△BEF =S△CEF,∴S阴影部分=S△ABD=S△ABC=×16=8(cm2).故答案为8.三、解答题21.(8分)尺规作图:如图,已知线段a、b和∠α用尺规作一个三角形,使其两边分别等于a、b,这两边的夹角等于2∠α.要求:不写已知、求作、作法,只画图,保留作图痕迹.【解答】解:如图所示:△ABC即为所求.22.(6分)利用一个点、一条线段、一个正三角形(或等腰三角形)、一个正方形(或长方形)设计一个轴对称图案,并说明你希望表达的含义.【解答】解:如图所示.表示一个垃圾箱.23.(9分)如图,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=10,试求△PMN的周长.【解答】解:∵P点关于OA、OB的对称点P1,P2,∴PM=P1M,PN=P2N,∴△PMN的周长=PM+MN+PN,=P1M+MN+P2N,=P1P2,∵P1P2=10,∴△PMN的周长=10.24.(11分)已知:如图△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4cm.求BC 的长.【解答】解:∵AB=AC∴∠B=∠C=30°∵AB⊥AD∴BD=2AD=2×4=8(cm)∠B+∠ADB=90°,∴∠ADB=60°∵∠ADB=∠DAC+∠C=60°∴∠DAC=30°∴∠DAC=∠C∴DC=AD=4cm∴BC=BD+DC=8+4=12(cm).25.(11分)如图,小芳和她的同学汤秋千,秋千AB在静止时,下端B离地面0.6m,秋千荡到AB′的位置时,下端B′距静止位置的水平距离B′D等于2m,距地面1.4m,求秋千AB的长.【解答】解:设AB=xm,则AB′=xm,由题意可得出:DB=1.4﹣0.6=0.8(m),则AD=AB﹣DB=x﹣0.8,在Rt△AB′D中,AD2+B′D2=AB′2,则(x﹣0.8)2+22=x2解得:x=2.9.答:秋千AB的长为2.9m.26.(12分)如图:已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:①AC=AD;②CF=DF.【解答】证明:①∵AB=AE,BC=ED,∠B=∠E,∴△ABC≌△AED(SAS),∴AC=AD,②∵AF⊥CD,AC=AD,∴CF=FD(三线合一性质).。

2014年数学中考试题及答案word版

2014年数学中考试题及答案word版
15.已知y=x-1,则(x-y)2+(y-x)+1的值为__________.
16.在1×2的正方形网格格点上放三枚棋子,按图8所示的位置已放置了两枚棋子,
若第三枚棋子随机放在其他格点上,则以这三枚棋子所在的格点为顶点的三角形是直
角三角形的概率为_______.
17.某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报(+1),第2位同学报(+1),第1位同学报(+1)……这样得到的20个数的积为___________.
C.必有5次正面向上D.不可能有10次正面向上
7.如图3,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,FG是()
A.以点C为圆心,OD为半径的弧
B.以点C为圆心,DM为半径的弧
C.以点E为圆心,OD为半径的弧
D.以点E为圆心,DM为半径的弧
8.用配方法解方程x2+4x+1=0,配方后的方程是()
2014数学中考复习资料
数学试卷
卷Ⅰ(选择题,共30分)
一、选择题(本大题共12个小题;1~6小题,每小题2分,7~12小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.下列各数中,为负数的是()
A.0B.-2C.1D.
2.计算(ab)3的结果是()A.ab3B.a3bC.a3b3D.3ab
19.(本小题满分8分)
计算:|-5|-(-3)0+6×(-)+(-1)2.
20.(本小题满分8分)
如图10,某市A,B两地之间有两条公路,一条是市区公路AB,另一条是外环公路AD-DC-CB这两条公路围成等腰梯形ABCD,其中CD∥AB,AB︰AD︰DC=10︰5︰2.

2014山东省济宁市中考数学试题及答案(Word解析版)

2014山东省济宁市中考数学试题及答案(Word解析版)

第10题2014山东省济宁市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.) 1. 实数1,-1,-21,0,四个数中,最小的数是 A.0 B.1 C .- 1 D.-21 2. 化简ab ab 45+-的结果是A. -1B. aC. bD. ab -3.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是 A .两点确定一条直线 B .垂线段最短C .两点之间线段最短D .三角形两边之和大于第三边 4.函数y =x 的取值范围是 A .x ≥0 B .1x ≠- C .0x > D .x ≥0且1x ≠- 5.如果圆锥的母线长为5cm ,底面半径为2cm ,那么这个圆锥的侧面积是A. 102cmB. 102πcmC. 202cm D.202πcm6.从总体中抽取一部分数据作为样本去估计总体的某种属性.下面叙述正确的是A.样本容量越大,样本平均数就越大B.样本容量越大,样本的方差就越大C.样本容量越大,样本的极差就越大D.样本容量越大,对总体的估计就越准确. 7.如果0,0 b a ab +,那么下面各式:①bab a =,②1=⋅a b b a ,③b b a ab -=÷,其中正确的是A. ①②B.②③C.①③D.①②③8.“如果二次函数y =ax 2+bx +c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx +c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m 、n (m<n )是关于x 的方程1()()0x a x b ---=的两根,且a < b , 则a 、b 、m 、n 的大小关系是A. m < a < b< nB. a < m < n < bC. a < m < b< nD. m < a < n < b 9. 如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点A '的坐标为A.(,)a b --B.(,1)a b ---C.(,1)a b --+D.(,2)a b --+10. 如图,两个直径分别为36cm 和16cm 的球,靠在一起放在同一水平面上,组成如图所示的几何体,则该几何体的俯视图的圆心距是 A.10cm. B.24cm C.26cm. D.52cm. 二、填空题:本大题共5小题,每小题3分,共15分.11. 如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a 克,再称得剩余电线的质量为b第9题克,那么原来这卷电线的总长度是 米.12. 如图,在△ABC 中,∠A=30°,∠B=45°,AB 的长为 . 13. 若一元二次方程ax 2=b (ab >0)的两个根分别是m +1与2m -4,则ba= . 14.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的 正半轴上,点F 在AB 上,点B 、E 在反比例函数xky =的图像上,OA=1,OC=6,则正方形 ADEF 的边长为 .15. 如图(1),有两个全等的正三角形ABC 和ODE ,点O 、C 分别为△ABC 、△DEO 的重心;固定点O ,将 △ODE 顺时针旋转,使得OD 经过点C ,如图(2) 所示,则图(2)中四边形OGCF 与△OCH 面积的比 为 .三、解答题:本大题共7小题,共55分. 16.(6分)已知x y xy +=,求代数式11(1)(1)x y x y+---的值. 17.(6分)如图,正方形AEFG 的顶点E 、G 在正方形ABCD 的边AB 、AD 上,连接BF 、DF .(1)求证:BF =DF ;(2)连接CF ,请直接写出BE ∶CF 的值(不必写出计算过程).18.(7分)山东省第二十三届运动会将于2014年在济宁举行.下图是某大学未制作完整的三个年级省运会志愿者的统计图,请你根据图中所给信息解答下列问题: (1)请你求出三年级有多少名省运会志愿者,并将 两幅统计图补充完整;(2)要求从一年级、三年级志愿者中各推荐一名队长 候选人,二年级志愿者中推荐两名队长候选人,四名 候选人中选出两人任队长,用列表法或树形图,求出 两名队长都是二年级志愿者的概率是多少?19.(8分)济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成. (1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x 天完成,乙做另一部分用了y天完成,其中x 、y 均为正整数,且x <46,y <52,求甲、乙两队各做了多少天?20.(8分) 在数学活动课上,王老师发给每位同学一张半径为6个单位长度的圆形纸板,要求同学们:(1)从带刻度的三角板、量角器和圆规三种作图工具中任意选取作图工具,把圆形纸板分成面积相等的四部分;(2)设计的整个图案是某种对称图形.王老师给出了方案一,请你用所学的知识再设计两种方案,并完成下面的设计报告.第12题第14题(2)画出作⊙O两条互相垂直的直径AB、CD,将⊙O的面积分成相等的四份.既是轴对称图形又是中心对称图形21.(9分)阅读材料:已知,如图(1),在面积为S的△ABC中,BC=a,AC=b, AB=c,内切圆O的半径为r.连接OA、OB、OC,△ABC被划分为三个小三角形.∵1111()2222OBC OAC OABS S S S BC r AC r AB r a b c r=++=⋅+⋅+⋅=++.∴2Sra b c=++.(1)类比推理:若面积为S2),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r;(2)理解应用:如图(3),在等腰梯形ABCD中,AB∥DC,AB=21,CD=11,AD=13,⊙O1与⊙O2分别为△ABD与△BCD的内切圆,设它们的半径分别为r1和r2,求21rr的值.22.(11分)如图,抛物线y=14x2+bx+c与x轴交于A(5,0)、B(-1,0)两点,过点A作直线AC⊥x 轴,交直线y=2x于点C;(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;(2)点P是抛物线上一动点,过点P作y轴的平行线,交线段AC'于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.2014山东省济宁市中考数学试题参考答案及评分标准一、选择题:CDCAB DBADB 二、填空题11.1+ab(或a b a +); 12.33+; 13.4; 14.2; 15. 4∶3. 三、解答题16.解:∵x y xy +=, ∴原式=(1)y xx y xy xy+---+···········3分 =1x yx y xy xy+-++-=1-1+0=0···········································6分 17.证明:(1)∵四边形ABCD 和AEFG 都是正方形, ∴AB=AD ,AE=AG=EF=FG ,∠BEF=∠DGF=90°,·················1分 ∵BE=AB -AE ,DG=AD -AG ,∴BE= DG ,··························2分 ∴△BEF ≌△DGF. ∴BF=DF.·········································4分 (2)BE ∶CF=2.···············································6分 18.解:(1)设三年级有x 名志愿者,由题意得 x=(18+30+x)×20% . 解得x=12. 答:三年级有12名志愿者.····························1分如图所示:···········································3分(2)用A 表示一年级队长候选人,B 、C 表示二年级队长候选人,D 表示三年级队长候选人,树形图为··············5分从树形图可以看出,有12种等可能的结果,其中两人都是二年级志愿者的情况有两种, 所以P (两名队长都是二年级志愿者)=61122=.···········································7分 19.解:(1)设乙工程队单独完成这项工作需要x 天,由题意得301136()1120120x++=,解之得x=80.···················································3分 经检验x=80是原方程的解. 新-课 -标-第 -一- 答:乙工程队单独做需要80天完成.·······················································4分 (2)因为甲队做其中一部分用了x 天,乙队做另一部分用了y 天, 所以112080x y +=,即2803y x =-,又x<46,y<52,·····························5分 所以28052,346.x x ⎧-⎪⎨⎪⎩,解之得42<x<46, 因为x 、y 均为正整数,所以x=45,y=50.·················································7分答:甲队做了45天,乙队做了50天.···························································8分 20 画出作⊙O 两条互相垂直的直AB 、CD ,将⊙O 的面积分成相等的四份.⑴以点O 为圆心,以)作⊙O 的一条直AB;)分别以OA 、21.解:(1)连接OA 、OB 、OC 、OD.···················································1分 ∵,)(2121212121r d c b a dr cr br ar S S S S S AOD COD BOC AOB +++=+++=+++=∆∆∆∆·3分 ∴.2dc b a Sr +++=························································································4分(2)过点D 作DE ⊥AB 于点E ,则.5)1121(21)(21=-=-=DC AB AE.125132222=-=-=AE AD DE .16521=-=-=AE AB BE.2016122222=+=+=BE DE BD ·························································6分∵AB ∥DC ,∴1121==∆∆DC AB S S BCD ABD . 又∵21212122274454)201311(21)202113(21r r r r r r S S BCDABD ==++++=∆∆, ∴1121222721=r r .即91421=r r .······································9分23.解:(1)∵c bx x y ++=241与x 轴交于A (5,0)、B (-1,0)两点, ∴⎪⎩⎪⎨⎧=+-=++.041,05425c b c b , 解得⎪⎩⎪⎨⎧-=-=.45,1c b ∴抛物线的解析式为45412--=x x y .······················3分(2)过点A '作E A '⊥x 轴于E ,AA /与OC 交于点D ,∵点C 在直线y=2x 上, ∴C (5,10) ∵点A 和A '关于直线y=2x 对称, ∴OC ⊥A A ',D A '=AD. ∵OA=5,AC=10,∴OC ==∵1122OAC S OC AD OA AC∆==,∴AD =.∴AA '=············5分 在EA A Rt '∆和Rt OAC Rt ∆中, ∵∠AE A '+∠AC A '=90°,∠ACD+∠AC A '=90°, ∴∠AE A '=∠ACD. 又∵∠EA A '=∠OAC=90°, ∴EA A Rt '∆∽OAC Rt ∆.∴.A E AE AA OA AC OC ''==即510A E AE '==∴E A '=4,AE=8. ∴OE=AE -OA=3. ∴点A /的坐标为(﹣3,4).·······························7分 当x=﹣3时,215(3)3444y =⨯-+-=. 所以,点A /在该抛物线上.································8分(3)存在.理由:设直线A C '的解析式为y=kx+b, 则⎩⎨⎧=+=+.4b k 3-,10b k 5,解得⎪⎩⎪⎨⎧==.425,43b k ∴直线A C '的解析式为42543+=x y .··················9分设点P 的坐标为)4541,2--x x x (,则点M 为)42543,+x x (. ∵PM ∥AC ,∴要使四边形PACM 是平行四边形,只需PM=AC.又点M 在点P 的上方,∴10)4541()425432=---+x x x (. 解得5,221==x x (不合题意,舍去)当x=2时,49-=y . ∴当点P 运动到),(492-时,四边形PACM 是平行四边形.····················11分2014山东省济宁市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)(2014•济宁)实数1,﹣1,﹣,0,四个数中,最小的数是()>﹣,﹣4.(3分)(2014•济宁)函数y=中的自变量x的取值范围是()7.(3分)(2014•济宁)如果ab>0,a+b<0,那么下面各式:①=,②•=1,③÷=﹣b,①,被开方数应②=1•=③÷=,÷=÷×8.(3分)(2014•济宁)“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关9.(3分)(2014•济宁)如图,将△ABC绕点C(0,1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为()=0=110.(3分)(2014•济宁)如图,两个直径分别为36cm和16cm的球,靠在一起放在同一水平面上,组成如图所示的几何体,则该几何体的俯视图的圆心距是()俯视图的圆心距是11.(3分)(2014•济宁)如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是米.+112.(3分)(2014•济宁)如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB的长为3+.,,AD=.13.(3分)(2014•济宁)若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m﹣4,则=4.±,则有,然后两边平方得到=±,∴∴14.(3分)(2014•济宁)如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF 的边长为2.,设,y=(15.(3分)(2014•济宁)如图(1),有两个全等的正三角形ABC和ODE,点O、C分别为△ABC、△DEO 的重心;固定点O,将△ODE顺时针旋转,使得OD经过点C,如图(2),则图(2)中四边形OGCF与△OCH 面积的比为4:3.,则高长是×x=×××x x×x x=×x==××x=面积的比为:16.(6分)(2014•济宁)已知x+y=xy,求代数式+﹣(1﹣x)(1﹣y)的值.∴+﹣(﹣17.(6分)(2014•济宁)如图,正方形AEFG的顶点E、G在正方形ABCD的边AB、AD上,连接BF、DF.(1)求证:BF=DF;(2)连接CF,请直接写出BE:CF的值(不必写出计算过程).AE=18.(7分)(2014•济宁)山东省第二十三届运动会将于2014年在济宁举行.下图是某大学未制作完整的三个年级省运会志愿者的统计图,请你根据图中所给信息解答下列问题:(1)请你求出三年级有多少名省运会志愿者,并将两幅统计图补充完整;(2)要求从一年级、三年级志愿者中各推荐一名队长候选人,二年级志愿者中推荐两名队长候选人,四名候选人中选出两人任队长,用列表法或树形图,求出两名队长都是二年级志愿者的概率是多少?树形图为:=19.(8分)(2014•济宁)济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?x20.(8分)(2014•济宁)在数学活动课上,王老师发给每位同学一张半径为6个单位长度的圆形纸板,要求同学们:(1)从带刻度的三角板、量角器和圆规三种作图工具中任意选取作图工具,把圆形纸板分成面积相等的四部分;(2)设计的整个图案是某种对称图形.21.(9分)(2014•济宁)阅读材料:已知,如图(1),在面积为S的△ABC中,BC=a,AC=b,AB=c,内切圆O的半径为r.连接OA、OB、OC,△ABC被划分为三个小三角形.∵S=S△OBC+S△OAC+S△OAB=BC•r+AC•r+AB•r=(a+b+c)r.∴r=.(1)类比推理:若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r;(2)理解应用:如图(3),在等腰梯形ABCD中,AB∥DC,AB=21,CD=11,AD=13,⊙O1与⊙O2分别为△ABD与△BCD的内切圆,设它们的半径分别为r1和r2,求的值.、++,r==5=20=126==66∴==.22.(11分)(2014•济宁)如图,抛物线y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C;(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.x∴x﹣== OAC=OC OA∴,即×﹣,解得y=x+…x﹣x+)x+)﹣(x﹣.)时,四边形。

2014年山东省济南市中考数学试题及参考答案(word解析版)

2014年山东省济南市中考数学试题及参考答案(word解析版)

2014年山东省济南市中考数学试题及参考答案一、选择题(本大题共15小题,每小题3分,共45分) 1.4的算术平方根是( ) A .2 B .﹣2 C .±2 D .16 2.如图,点O 在直线AB 上,若∠1=40°,则∠2的度数是( )A .50°B .60°C .140°D .150° 3.下列运算中,结果是a 5的是( ) A .a 2•a 3 B .a 10÷a 2 C .(a 2)3 D .(﹣a )54.我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家,嫦娥三号探测器的发射总质量约为3700千克,3700用科学记数法表示为( ) A .3.7×102 B .3.7×103 C .37×102 D .0.37×104 5.下列图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .6.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是( )A .主视图的面积为5B .左视图的面积为3C .俯视图的面积为3D .三种视图的面积都是47.化简211m m m m--÷的结果是( ) A .m B .1m C .m ﹣1 D .11m -8.下列命题中,真命题是( )A .两对角线相等的四边形是矩形B .两对角线互相平分的四边形是平行四边形C .两对角线互相垂直的四边形是菱形D .两对角线相等的四边形是等腰梯形 9.若一次函数y=(m ﹣3)x+5的函数值y 随x 的增大而增大,则( ) A .m >0 B .m <0 C .m >3 D .m <310.如图,在▱ABCD 中,延长AB 到点E ,使BE=AB ,连接DE 交BC 于点F ,则下列结论不一定成立的是( )A .∠E=∠CDFB .EF=DFC .AD=2BFD .BE=2CF11.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是( )A .23 B .12 C .13D .1412.如图,直线2y x =+与x 轴、y 轴分别交于A 、B 两点,把△AOB 沿直线AB 翻折后得到△AO′B ,则点O′的坐标是( )A .3)B .C .(2,)D .(,4)13.如图,⊙O 的半径为1,△ABC 是⊙O 的内接等边三角形,点D 、E 在圆上,四边形BCDE 为矩形,这个矩形的面积是( )A .2B C .32D 14.现定义一种变换:对于一个由有限个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2),若S 0可以为任意序列,则下面的序列可作为S 1的是( ) A .(1,2,1,2,2) B .(2,2,2,3,3) C .(1,1,2,2,3) D .(1,2,1,1,2)15.二次函数y=x 2+bx 的图象如图,对称轴为直线x=1,若关于x 的一元二次方程x 2+bx ﹣t=0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( )A .t≥﹣1B .﹣1≤t <3C .﹣1≤t <8D .3<t <8 二、填空题(本大题共6小题,每小题3分,共18分) 16.|﹣7﹣3|= .17.分解因式:x 2+2x+1= .18.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为15,那么口袋中球的总个数为.19.若代数式12x-和321x+的值相等,则x=.20.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于.21.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数kyx=在第一象限的图象经过点B.若OA2﹣AB2=12,则k的值为.三、解答题(本大题共7小题,共57分)22.(7分)(1)化简:(a+3)(a﹣3)+a(4﹣a);(2)解不等式组:31442xx x-⎧⎨-+⎩<≥.23.(7分)(1)如图1,四边形ABCD是矩形,点E是边AD的中点,求证:EB=EC.(2)如图2,AB与⊙O相切于点C,∠A=∠B,⊙O的半径为6,AB=16,求OA的长.24.(8分)2014年世界杯足球赛在巴西举行,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元,其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?25.(8分)在济南开展“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据m= ,x= ,y= .(2)被调查同学劳动时间的中位数是 时; (3)请将频数分布直方图补充完整; (4)求所有被调查同学的平均劳动时间.26.(9分)如图1,反比例函数ky x(x >0)的图象经过点A (,1),射线AB 与反比例函数图象交于另一点B (1,a ),射线AC 与y 轴交于点C ,∠BAC=75°,AD ⊥y 轴,垂足为D . (1)求k 的值;(2)求tan ∠DAC 的值及直线AC 的解析式; (3)如图2,M 是线段AC 上方反比例函数图象上一动点,过M 作直线l ⊥x 轴,与AC 相交于点N ,连接CM ,求△CMN 面积的最大值.27.(9分)如图1,有一组平行线l 1∥l 2∥l 3∥l 4,正方形ABCD 的四个顶点分别在l 1,l 2,l 3,l 4上,EG 过点D 且垂直l 1于点E ,分别交l 2,l 4于点F ,G ,EF=DG=1,DF=2. (1)AE= ,正方形ABCD 的边长= ;(2)如图2,将∠AEG 绕点A 顺时针旋转得到∠AE′D′,旋转角为α(0°<α<90°),点D′在直线l 3上,以AD′为边在E′D′左侧作菱形AB′C′D′,使B′,C′分别在直线l 2,l 4上. ①写出∠B′AD′与α的数量关系并给出证明; ②若α=30°,求菱形AB′C′D′的边长.28.(9分)如图1,抛物线y=﹣x2平移后过点A(8,0)和原点,顶点为B,对称轴与x轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积S阴影;(2)如图2,直线AB与y轴相交于点P,点M为线段OA上一动点,∠PMN为直角,边MN与AP相交于点N,设OM=t,试探究:①t为何值时△MAN为等腰三角形;②t为何值时线段PN的长度最小,最小长度是多少.参考答案与解析一、选择题(本大题共15小题,每小题3分,共45分)1.4的算术平方根是()A.2 B.﹣2 C.±2 D.16【知识考点】算术平方根.【思路分析】根据乘方运算,可得一个数的算术平方根.【解答过程】解:∵22=4,,故选:A.【总结归纳】本题考查了算术平方根,乘方运算是解题关键.2.如图,点O在直线AB上,若∠1=40°,则∠2的度数是()A.50°B.60°C.140°D.150°。

2014年山东烟台高级中等学校招生考试数学试卷

2014年山东烟台高级中等学校招生考试数学试卷

2014年烟台市初中学生学业考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共36分)一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.1.-3的绝对值等于()A.-3B.3C.±3D.-2.下列手机软件图标中,既是轴对称图形又是中心对称图形的是()3.烟台市通过扩消费、促投资、稳外需的协同发力,激发了区域发展活力,实现了经济平稳较快发展.2013年全市生产总值(GDP)达5613亿元.该数据用科学记数法表示为()A.5.613×1011元B.5.613×1012元C.56.13×1010元D.0.5613×1012元4.如图是一个正方体截去一角后得到的几何体,它的主视图是()5.按如图所示的运算程序,能使输出结果为3的x,y的值是()A.x=5,y=-2B.x=3,y=-3C.x=-4,y=2D.x=-3,y=-96.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连结BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°7.如图,已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,梯形中位线EF与对角线BD相交于点M,且BD⊥CD,则MF的长为()A.1.5B.3C.3.5D.4.58.关于x的方程x2-ax+2a=0的两根的平方和是5,则a的值是()A.-1或5B.1C.5D.-19.将一组数,,3,2,,…,3,按下面的方法进行排列:,,3,2,;3,,2,3,;…若2的位置记为(1,4),2的位置记为(2,3),则这组数中最大的有理数的位置记为()A.(5,2)B.(5,3)C.(6,2)D.(6,5)10.如图,将△ABC绕点P顺时针旋转90°得到△A'B'C',则点P的坐标是()A.(1,1)B.(1,2)C.(1,3)D.(1,4)11.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2.下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>-1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个12.如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是()第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6个小题,每小题3分,满分18分)13.(-1)0+-=.14.函数y=-中,自变量x的取值范围是.15.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球个.16.如图,已知函数y=2x+b与函数y=kx-3的图象交于点P,则不等式kx-3>2x+b的解集是.17.如图所示,正六边形ABCDEF内接于☉O,若☉O的半径为4,则阴影部分的面积等于.18.如图,∠AOB=45°,点O1在OA上,OO1=7,☉O1的半径为2.点O2在射线OB上运动,且☉O2始终与OA相切,当☉O2和☉O1相切时,☉O2的半径等于.三、解答题(本大题共8个小题,满分66分)19.(本题满分6分)先化简,再求值:-÷---,其中x为数据0,-1,-3,1,2的极差.2014年世界杯足球赛6月12日—7月13日在巴西举行.某初中学校为了了解本校2400名学生对此次世界杯的关注程度,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和关注程度,分别绘成了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“特别关注”“一般关注”“偶尔关注”都统计成关注,那么全校关注本届世界杯的学生大约有多少名?(3)在这次调查中,初四年级共有甲、乙、丙、丁四人“特别关注”本届世界杯,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.小明坐于堤边垂钓.如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米.若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.22.(本题满分8分)如图,点A(m,6),B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.(1)求m,n的值并写出反比例函数的表达式;(2)连结AB,在线段DC上是否存在一点E,使△ABE的面积等于5.若存在,求出E点坐标;若不存在,请说明理由.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A,B两种型号车的进货和销售价格如下表:如图,AB是☉O的直径,延长AB至P,使BP=OB.BD垂直于弦BC,垂足为点B,点D在PC上.设∠PCB=α,∠POC=β.求证:tanα·tan=.25.(本题满分10分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连结AE和DF交于点P,请你写出AE与DF的关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连结AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不须证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连结AE和DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连结AE和DF交于点P.由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.26.(本题满分12分)如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA=.抛物线y=ax2-ax-a经过点B,与y轴交于点D.(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;(3)延长BA交抛物线于点E,连结ED.试说明ED∥AC的理由.答案全解全析:一、选择题1.B因为一个负数的绝对值是它的相反数,所以|-3|=3.2.D A选项是轴对称图形但不是中心对称图形,B选项是中心对称图形但不是轴对称图形,C选项是轴对称图形但不是中心对称图形,D选项既是轴对称图形又是中心对称图形.3.A5613亿元=5.613×103亿元=5.613×103×108元=5.613×1011元.4.C由主视图的定义可知C正确.5.D该运算程序写成等式为2x-y=3,把各选项代入验证,只有D符合.6.C∵∠AOM=∠CON,∠MAO=∠NCO,AM=CN,∴△AOM≌△CON,∴AO=CO,∴点O是菱形ABCD对角线的交点,∴BO⊥AC,∴∠OBC=90°-∠BCO=90°-∠DAC=90°-28°=62°.7.B∵AB=AD,∴∠ABD=∠ADB.∵四边形ABCD是等腰梯形,∴∠ABC=∠C,∠ADB=∠DBC,∴∠ABD=∠DBC=∠C,∵BD⊥CD,∴∠DBC+∠C=90°,∴∠C=60°,∠DBC=30°,∴BC=6,∵EF是梯形的中位线,∴MF是△DBC的中位线,∴FM=3.评析此题考查等腰梯形的性质、中位线的性质及角度的计算,渗透着边角之间的转化.关键就是30度角的计算,从而确定下底边的长.8.D设方程x2-ax+2a=0的两根分别为x1,x2,则+=(x1+x2)2-2x1x2=a2-2×2a=5,解得a=5或-1,经检验,只有-1符合题意.评析本题考查一元二次方程根与系数的关系.易错点是不易发现隐含条件Δ≥0.9.C最大的有理数是9,即=.由数的排列规律可以发现第n个数表示为,且每一行都是5个数,所以9是第27个数,在第6行、第2列的位置.故选C.评析此题考查数的排列规律及二次根式的化简.10.B分别连结AA'、CC',并分别作它们的垂直平分线,交点即为点P.评析此题考查旋转的性质,即对应点所连线段的垂直平分线的交点是旋转中心.11.B因为对称轴为直线x=2,所以-=2,所以4a+b=0,所以①正确;因为当x=-3时,9a-3b+c<0,所以9a+c<3b,所以②错误;因为a<0,b>0,c>0,4a+b=0,所以8a+7b+2c=-2b+7b+2c=5b+2c>0,所以③正确;因为当x>2时,y的值随x值的增大而减小,所以④错误.所以正确的有2个.故选B.12.A如图(1),当点P在AD边上时,作BE⊥AD于点E,y=BE·x,是正比例函数;图(1)图(2)如图(2),当点P在CD边上时,作DF⊥BA于点F,y=AB·DF,是一个定值;如图(3),当点P在BC边上时,作AG⊥BC于点G,y=AG·(2AD+CD-x),是一次函数,且y随x 的增大而减小.故选A.图(3)二、填空题13.答案2015解析原式=1+2014=2015.14.答案x≤1且x≠-2解析∵1-x≥0,x+2≠0,∴x≤1且x≠-2.15.答案12解析P(摸到白球)=球的总个数=,∴球的总个数=3÷=12.16.答案x<4解析根据题图可知,在交点P(4,-6)的左侧,y=kx-3的函数值大于y=2x+b的函数值,即kx-3>2x+b.17.答案π解析连结OD,由题意易知阴影部分的面积等于扇形OBCD的面积,所以阴影部分面积S==π.18.答案3或15解析根据题意知两圆只能外切,设两圆相切时,☉O2的半径为r,则r2+(7-r)2=(r+2)2,解得r=3或15,经检验都符合题意.评析考查圆与圆、圆与直线相切的性质,关键是运用位置关系构造方程.三、解答题19.解析原式=-÷----(1分)=-·--(2分)=-=-.(4分)∵x=2-(-3)=5,(5分)∴原式=-==.(6分)20.解析(1)四个年级被调查的人数由小到大排列为30,40,50,80.∴中位数是=45(人).(2分)(2)2400×(1-45%)=1320(人).∴该校关注本届世界杯的学生大约有1320人.(3分)(3)画树状图如下:(6分)由图可知,共有12种等可能结果,其中恰好是甲和乙的有2种结果.∴P(恰好是甲和乙)==.(7分)评析此题考查条形统计图和扇形统计图及概率计算,易错点是第(1)问中中位数的计算,需要先把数据从小到大排序.21.解析如图,延长OA交直线BC于点D.∵AO的倾斜角为60°,∴∠ODB=60°,∵∠ACD=30°,∴∠CAD=180°-∠ODB-∠ACD=90°.(1分)在Rt△ACD中,AD=AC·tan∠ACD=×=(米).(3分)∴CD=2AD=3米.(4分)又∵∠O=60°,∴△BOD为等边三角形.(5分)∴BD=OD=OA+AD=3+=4.5(米).(6分)∴BC=BD-CD=4.5-3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.(7分)22.解析(1)由题意得解得∴m,n的值分别为1,6.(3分)∴A(1,6),B(6,1).设反比例函数的表达式为y=,将A(1,6)代入y=,得k=xy=1×6=6.∴y=.(4分)(2)存在.(5分)设E(x,0)(1≤x≤6),则DE=x-1,CE=6-x.∵AD⊥x轴,BC⊥x轴,∴∠ADE=∠BCE=90°.连结AE,BE.S△ABE=S梯形ABCD-S△ADE-S△BCE=(BC+AD)·DC-DE·AD-CE·BC=(1+6)×5-(x-1)×6-(6-x)×1=-x=5.(7分)∴x=5.∴E(5,0).(8分)评析第(1)问考查待定系数法求反比例函数解析式,第(2)问考查坐标系中三角形面积的计算方法,用梯形面积减去两个直角三角形的面积,从而找到思路.面积的计算是中考中的常见题型,大家要在复习中及时总结方法,积累解题经验.23.解析(1)设今年A型车每辆售价x元,则去年每辆售价(x+400)元.由题意得=-.(2分)解得x=1600.(3分)经检验,x=1600是所列方程的根.答:今年A型车每辆售价为1600元.(4分)(2)设车行新进A型车x辆,则B型车为(60-x)辆,获利y元.由题意,得y=(1600-1100)x+(2000-1400)(60-x),(5分)即y=-100x+36000.(6分)∵B型车的进货数量不超过A型车数量的2倍,∴60-x≤2x.∴x≥20.(7分)由y与x的关系式可知-100<0,∴y的值随x值的增大而减小.∴当x=20时,y的值最大.∴60-x=60-20=40(辆).答:当车行新进A型车20辆,B型车40辆时,这批车获利最大.(8分)24.证明连结AC.(1分)则∠A=∠POC=.(2分)∵AB是☉O的直径,∴∠ACB=90°,∴tan=.(3分)∵BD⊥BC,∴tanα=,(4分)又易知BD∥AC,∴△PBD∽△PAC.∴=.(6分)∵PB=OB=OA,∴==.(7分)∴tanα·tan=·==.(8分)评析此题涉及直径所对的圆周角是直角、三角形相似及锐角三角函数的知识,综合性较强.解题的关键是tan=的确定.25.解析(1)AE=DF,AE⊥DF.(1分)理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.又易知DE=CF,∴△ADE≌△DCF,∴AE=DF,∠DAE=∠CDF.(2分)由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°,∴AE⊥DF.(3分)(2)是.(4分)(3)成立.(5分)理由:由(1)同理可证,AE=DF,∠DAE=∠CDF.延长FD交AE于点G,则∠CDF+∠ADG=90°.∴∠ADG+∠DAE=90°,∴AE⊥DF.(6分)(4)画出草图如图.(7分)由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧.(8分)设AD的中点为O,连结OC交弧于点P,此时CP的长度最小.在Rt△ODC中,OC===.(9分)∴线段CP的最小值为OC-OP=-1.(10分)评析这是一道探究性问题,前三问比较容易入手,考查正方形、三角形全等等知识,第(4)问利用90度圆周角所对的弦是直径构造圆,从而画出点P的运动轨迹是四分之一的圆,这一步是解决此问的关键.26.解析(1)把点B的坐标代入抛物线的表达式,得=a×22-2a-a.解得a=.(1分)∴抛物线的表达式为y=x2-x-.(2分)(2)连结CD.过点B作BF⊥x轴于点F,则∠BCF+∠CBF=90°.(3分)∵∠ACB=90°,∴∠ACO+∠BCF=90°,∴∠ACO=∠CBF.∵∠AOC=∠CFB=90°,∴△AOC∽△CFB.∴=.=.设OC=m,则CF=2-m,则有-解得m1=m2=1.∴OC=CF=1.(5分)对于y=x2-x-,当x=0时,y=-,∴OD=.∴BF=OD.∵∠DOC=∠BFC=90°,∴△OCD≌△FCB.∴DC=CB,∠OCD=∠FCB.(6分)∴点B,C,D在同一条直线上.(7分)∴点B与点D关于直线AC对称,∴点B关于直线AC的对称点的抛物线上.(8分)(3)过点E作EG⊥y轴于点G.设直线AB的表达式为y=kx+b(k≠0),则解得k=-,b=.∴y=-x+.(9分)代入抛物线表达式后解得x=±2.当x=-2时,y=-x+=-×(-2)+=.∴点E的坐标为-.(10分)∵tan∠EDG===,∴∠EDG=30°.∵tan∠OAC===,∴∠OAC=30°.∴∠OAC=∠EDG,∴ED∥AC.(12分)评析此题第(1)问考查了待定系数法求二次函数解析式;第(2)问考查了点关于直线对称知识;第(3)问通过运用三角函数确定角度大小从而判定两直线平行.。

2014年山东省烟台市中考数学试卷(word解析版)

2014年山东省烟台市中考数学试卷(word解析版)

2014年山东省烟台市中考数学试卷一、选择题(本题共12小题,每小题3分,满分36分)1.﹣3的绝对值等于()A.﹣3 B.3 C.±3 D.﹣2.下列手机软件图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.烟台市通过扩消费、促投资、稳外需的协同发力,激发了区域发展活力,实现了经济平稳较快发展.2013年全市生产总值(GDP)达5613亿元.该数据用科学记数法表示为()A.5.613×1011元B.5.613×1012元C.56.13×1010元D.0.5613×1012元4.如图是一个正方体截去一角后得到的几何体,它的主视图是()A.B.C.D.5.按如图的运算程序,能使输出结果为3的x,y的值是()A.x=5,y=﹣2 B.x=3,y=﹣3 C.x=﹣4,y=2 D.x=﹣3,y=﹣96.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°7.如图,已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,梯形中位线EF与对角线BD相交于点M,且BD⊥CD,则MF的长为()A.1.5 B.3 C.3.5 D.4.58.关于x的方程x2﹣ax+2a=0的两根的平方和是5,则a的值是()A.﹣1或5 B.1 C.5 D.﹣19.将一组数,,3,2,,…,3,按下面的方式进行排列:,,3,2,;3,,2,3,;…若2的位置记为(1,4),2的位置记为(2,3),则这组数中最大的有理数的位置记为()A.(5,2)B.(5,3)C.(6,2)D.(6,5)10.如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是()A.(1,1)B.(1,2)C.(1,3)D.(1,4)11.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个12.如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,满分18分)13.(﹣1)0+()﹣1=_________.14.在函数中,自变量x的取值范围是_________.15.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球_________个.16.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是_________.17.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,则阴影部分的面积等于_________.18.如图,∠AOB=45°,点O1在OA上,OO1=7,⊙O1的半径为2,点O2在射线OB上运动,且⊙O2始终与OA相切,当⊙O2和⊙O1相切时,⊙O2的半径等于_________.三、解答题(本大题共8个小题,满分66分)19.(6分)先化简,再求值:÷(x﹣),其中x为数据0,﹣1,﹣3,1,2的极差.20.(7分)2014年世界杯足球赛6月12日﹣7月13日在巴西举行,某初中学校为了了解本校2400名学生对本次世界杯的关注程度,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和关注程度,分别绘制了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“特别关注”、“一般关注”、“偶尔关注”都统计成关注,那么全校关注本届世界杯的学生大约有多少名?(3)在这次调查中,初四年级共有甲、乙、丙、丁四人“特别关注”本届世界杯,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.21.(7分)小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.22.(8分)如图,点A(m,6),B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.(1)求m,n的值并写出反比例函数的表达式;(2)连接AB,在线段DC上是否存在一点E,使△ABE的面积等于5?若存在,求出点E的坐标;若不存在,请说明理由.23.(8分)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A,B两种型号车的进货和销售价格如下表:A型车B型车进货价格(元)1100 1400销售价格(元)今年的销售价格200024.(8分)如图,AB是⊙O的直径,延长AB至P,使BP=OB,BD垂直于弦BC,垂足为点B,点D在PC 上.设∠PCB=α,∠POC=β.求证:tanα•tan=.25.(10分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P 也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.26.(12分)如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA=,抛物线y=ax2﹣ax﹣a经过点B(2,),与y轴交于点D.(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;(3)延长BA交抛物线于点E,连接ED,试说明ED∥AC的理由.2014年山东省烟台市中考数学试卷试题解析一、选择题(本题共12小题,每小题3分,满分36分)【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.3.烟台市通过扩消费、促投资、稳外需的协同发力,激发了区域发展活力,实现了经济平稳较快发展.2013年全市生产总值(GDP)达5613亿元.该数据用科学记数法表示为()A.5.613×1011元B.5.613×1012元C.56.13×1010元D.0.5613×1012元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将5613亿元用科学记数法表示为:5.613×1011元.故选;A.4.如图是一个正方体截去一角后得到的几何体,它的主视图是()A.B.C.D.【考点】简单组合体的三视图;截一个几何体.【分析】根据主视图是从正面看到的图形判定则可.【详解】解:从正面看,主视图为.故选:C.5.按如图的运算程序,能使输出结果为3的x,y的值是()A.x=5,y=﹣2 B.x=3,y=﹣3 C.x=﹣4,y=2 D.x=﹣3,y=﹣9【考点】代数式求值.【分析】根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.【详解】解:由题意得,2x﹣y=3,A、x=5时,y=7,故本选项错误;B、x=3时,y=3,故本选项错误;C、x=﹣4时,y=﹣11,故本选项错误;D、x=﹣3时,y=﹣9,故本选项正确.故选D.6.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°【考点】菱形的性质;全等三角形的判定与性质.【分析】根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.【详解】解:∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,∵,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=28°,∴∠BCA=∠DAC=28°,∴∠OBC=90°﹣28°=62°.故选C.7.如图,已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,梯形中位线EF与对角线BD相交于点M,且BD⊥CD,则MF的长为()A.1.5 B.3 C.3.5 D.4.5【考点】等腰梯形的性质;梯形中位线定理.【分析】根据等腰梯形的性质,可得∠ABC与∠C的关系,∠ABD与∠ADB的关系,根据等腰三角形的性质,可得∠ABD与∠ADB的关系,根据直角三角形的性质,可得BC的长,再根据三角形的中位线,可得答案.【详解】解:已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,∴∠ABC=∠C,∠ABD=∠ADB,∠ADB=∠BDC.∴∠ABD=∠CBD,∠C=2∠DBC.∵BD⊥CD,∴∠BDC=90°,∴∠DBC=∠C=30°,BC=2DC=2×3=6.∵EF是梯形中位线,∴MF是三角形BCD的中位线,∴MF=BC=6=3,故选:B.8.关于x的方程x2﹣ax+2a=0的两根的平方和是5,则a的值是()A.﹣1或5 B.1 C.5 D.﹣1【考点】根与系数的关系.【分析】设方程的两根为x1,x2,根据根与系数的关系得到x1+x2=a,x1•x2=2a,由于x12+x22=5,变形得到(x1+x2)2﹣2x1•x2=5,则a2﹣4a﹣5=0,然后解方程,满足△≥0的a的值为所求.【详解】解:设方程的两根为x1,x2,则x1+x2=a,x1•x2=2a,∵x12+x22=5,∴(x1+x2)2﹣2x1•x2=5,∴a2﹣4a﹣5=0,∴a1=5,a2=﹣1,∵△=a2﹣8a≥0,∴a=﹣1.故选:D.9.将一组数,,3,2,,…,3,按下面的方式进行排列:,,3,2,;3,,2,3,;…若2的位置记为(1,4),2的位置记为(2,3),则这组数中最大的有理数的位置记为()A.(5,2)B.(5,3)C.(6,2)D.(6,5)【考点】实数;规律型:数字的变化类.【分析】根据观察,可得,根据排列方式,可得每行5个,根据有序数对的表示方法,可得答案.【详解】解:3=,3得被开方数是得被开方数的30倍,3在第六行的第五个,即(6,5),故选:D.10.如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是()A.(1,1)B.(1,2)C.(1,3)D.(1,4)【考点】坐标与图形变化-旋转.【分析】先根据旋转的性质得到点A的对应点为点A′,点B的对应点为点B′,再根据旋转的性质得到旋转中心在线段AA′的垂直平分线,也在线段BB′的垂直平分线,即两垂直平分线的交点为旋转中心.【详解】解:∵将△ABC以某点为旋转中心,顺时针旋转90°得到△A′B′C′,∴点A的对应点为点A′,点B的对应点为点B′,作线段AA′和BB′的垂直平分线,它们的交点为P(1,2),∴旋转中心的坐标为(1,2).故选B.11.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.专题:数形结合.【分析】根据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小.【详解】解:∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,所以①正确;∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,所以②错误;∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,而b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵抛物线开口向下,∴a<0,∴8a+7b+2c>0,所以③正确;∵对称轴为直线x=2,∴当﹣1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,所以④错误.故选B.12.如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】分三段来考虑点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C移动,△BAP的面积不变;点P沿C→B的路径移动,△BAP的面积逐渐减小,据此选择即可.【详解】解:点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C移动,△BAP的面积不变;点P沿C→B的路径移动,△BAP的面积逐渐减小.故选:A.二、填空题(本大题共6小题,每小题3分,满分18分)13.(﹣1)0+()﹣1=2015.【考点】实数的运算;零指数幂;负整数指数幂.【分析】分别根据0指数幂及负整数指数幂的计算法则计算出各数,再根据实数混合运算的法则进行计算即可.【详解】解:原式=1+2014=2015.故答案为:2015.14.在函数中,自变量x的取值范围是x≤1且x≠﹣2.【考点】函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【详解】解:根据二次根式有意义,分式有意义得:1﹣x≥0且x+2≠0,解得:x≤1且x≠﹣2.15.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球12个.【考点】概率公式.【分析】设袋中共有球x个,根据概率公式列出等式解答.【详解】解:设袋中共有球x个,∵有3个白球,且摸出白球的概率是,∴=,解得x=12(个).故答案为:12.16.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是x<4.【考点】一次函数与一元一次不等式.【分析】把P分别代入函数y=2x+b与函数y=kx﹣3求出k,b的值,再求不等式kx﹣3>2x+b的解集.【详解】解:把P(4,﹣6)代入y=2x+b得,﹣6=2×4+b解得,b=﹣14把P(4,﹣6)代入y=kx﹣3解得,k=﹣把b=﹣14,k=﹣代入kx﹣3>2x+b得﹣x﹣3>2x﹣14解得x<4.故答案为:x<4.17.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,则阴影部分的面积等于π.【考点】正多边形和圆;扇形面积的计算.【分析】先正确作辅助线,构造扇形和等边三角形、直角三角形,分别求出两个弓形的面积和两个三角形面积,即可求出阴影部分的面积.【详解】解:连接OC、OD、OE,OC交BD于M,OE交DF于N,过O作OZ⊥CD于Z,∵六边形ABCDEF是正六边形,∴BC=CD=DE=EF,∠BOC=∠COD=∠DOE=∠EOF=60°,由垂径定理得:OC⊥BD,OE⊥DF,BM=DM,FN=DN,∵在Rt△BMO中,OB=4,∠BOM=60°,∴BM=OB×sin60°=2,OM=OB•cos60°=2,∴BD=2BM=4,∴△BDO的面积是×BD×OM=×4×2=4,同理△FDO的面积是4;∵∠COD=60°,OC=OD=4,∴△COD是等边三角形,∴∠OCD=∠ODC=60°,在Rt△CZO中,OC=4,OZ=OC×sin60°=2,∴S扇形OCD﹣S△COD=﹣×4×2=π﹣4,∴阴影部分的面积是:4+4+π﹣4+π﹣4=π,故答案为:π.18.如图,∠AOB=45°,点O1在OA上,OO1=7,⊙O1的半径为2,点O2在射线OB上运动,且⊙O2始终与OA相切,当⊙O2和⊙O1相切时,⊙O2的半径等于3或15.【考点】圆与圆的位置关系.【分析】作O2C⊥OA于点C,连接O1O2,设O2C=r,根据⊙O1的半径为2,OO1=7,表示出O1O2=r+2,O1C=7﹣r,利用勾股定理列出有关r的方程求解即可.【详解】解:如图,作O2C⊥OA于点C,连接O1O2,设O2C=r,∵∠AOB=45°,∴OC=O2C=r,∵⊙O1的半径为2,OO1=7,∴O1O2=r+2,O1C=7﹣r,∴(7﹣r)2+r2=(r+2)2,解得:r=3或15,故答案为:3或15.三、解答题(本大题共8个小题,满分66分)19.(6分)先化简,再求值:÷(x﹣),其中x为数据0,﹣1,﹣3,1,2的极差.【考点】分式的化简求值;极差.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出数据的极差确定出x,代入计算即可求出值.【详解】解:原式=÷=•=,当x=2﹣(﹣3)=5时,原式==.20.(7分)2014年世界杯足球赛6月12日﹣7月13日在巴西举行,某初中学校为了了解本校2400名学生对本次世界杯的关注程度,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和关注程度,分别绘制了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“特别关注”、“一般关注”、“偶尔关注”都统计成关注,那么全校关注本届世界杯的学生大约有多少名?(3)在这次调查中,初四年级共有甲、乙、丙、丁四人“特别关注”本届世界杯,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.【分析】(1)根据条形统计图中的数据,找出中位数即可;(2)根据扇形统计图找出关注本届世界杯的百分比,乘以2400即可得到结果;(3)画树状图得出所有等可能的情况数,找出恰好是甲与乙的情况,即可确定出所求概率.【详解】解:(1)四个年级被抽出的人数由小到大排列为30,40,50,80,∴中位数为=45(人);(2)根据题意得:2400×(1﹣45%)=1320(人),则该校关注本届世界杯的学生大约有1320人;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是甲与乙的情况有2种,则P==.21.(7分)小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.【考点】解直角三角形的应用-坡度坡角问题.【分析】延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出∠CAD=180°﹣∠ODB﹣∠ACD=90°,解Rt△ACD,得出AD=AC•tan∠ACD=米,CD=2AD=3米,再证明△BOD是等边三角形,得到BD=OD=OA+AD=4.5米,然后根据BC=BD﹣CD即可求出浮漂B与河堤下端C之间的距离.【详解】解:延长OA交BC于点D.∵AO的倾斜角是60°,∴∠ODB=60°.∵∠ACD=30°,∴∠CAD=180°﹣∠ODB﹣∠ACD=90°.在Rt△ACD中,AD=AC•tan∠ACD=•=(米),∴CD=2AD=3米,又∵∠O=60°,∴△BOD是等边三角形,∴BD=OD=OA+AD=3+=4.5(米),∴BC=BD﹣CD=4.5﹣3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.22.(8分)如图,点A(m,6),B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.(1)求m,n的值并写出反比例函数的表达式;(2)连接AB,在线段DC上是否存在一点E,使△ABE的面积等于5?若存在,求出点E的坐标;若不存在,请说明理由.【考点】待定系数法求反比例函数解析式;反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【分析】(1)根据题意列出关于m与n的方程组,求出方程组的解得到m与n的值,确定出A与B坐标,设出反比例函数解析式,将A坐标代入即可确定出解析式;(2)存在,设E(x,0),表示出DE与CE,连接AE,BE,三角形ABE面积=四边形ABCD面积﹣三角形ADE 面积﹣三角形BCE面积,求出即可.【详解】解:(1)由题意得:,解得:,∴A(1,6),B(6,1),设反比例函数解析式为y=,将A(1,6)代入得:k=6,则反比例解析式为y=;(2)存在,设E(x,0),则DE=x﹣1,CE=6﹣x,∵AD⊥x轴,BC⊥x轴,∴∠ADE=∠BCE=90°,连接AE,BE,则S△ABE=S四边形ABCD﹣S△ADE﹣S△BCE=(BC+AD)•DC﹣DE•AD﹣CE•BC=×(1+6)×5﹣(x﹣1)×6﹣(6﹣x)×1=﹣x=5,解得:x=5,则E(5,0).23.(8分)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A,B两种型号车的进货和销售价格如下表:A型车B型车进货价格(元)1100 1400销售价格(元)今年的销售价格2000【考点】一次函数的应用;分式方程的应用;一元一次不等式的应用.【分析】(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A行车a辆,则B型车(60﹣x)辆,获利y元,由条件表示出y与a之间的关系式,由a的取值范围就可以求出y的最大值.【详解】解:(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由题意,得,解得:x=1600.经检验,x=1600是元方程的根.答:今年A型车每辆售价1600元;(2)设今年新进A行车a辆,则B型车(60﹣x)辆,获利y元,由题意,得y=(1600﹣1100)a+(2000﹣1400)(60﹣a),y=﹣100a+36000.∵B型车的进货数量不超过A型车数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣100a+36000.∴k=﹣100<0,∴y随a的增大而减小.∴a=20时,y最大=34000元.∴B型车的数量为:60﹣20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.24.(8分)如图,AB是⊙O的直径,延长AB至P,使BP=OB,BD垂直于弦BC,垂足为点B,点D在PC 上.设∠PCB=α,∠POC=β.求证:tanα•tan=.25.(10分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P 也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.【考点】四边形综合题.【分析】(1)AE=DF,AE⊥DF.先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)是.四边形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90°,DE=CF,所以△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因为∠CDF+∠ADF=90°,∠DAE+∠ADF=90°,所以AE⊥DF;(3)成立.由(1)同理可证AE=DF,∠DAE=∠CDF,延长FD交AE于点G,再由等角的余角相等可得AE⊥DF;(4)由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,再由勾股定理可得OC的长,再求CP即可.【详解】解:(1)AE=DF,AE⊥DF.理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.∵DE=CF,∴△ADE≌△DCF.∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是;(3)成立.理由:由(1)同理可证AE=DF,∠DAE=∠CDF延长FD交AE于点G,则∠CDF+∠ADG=90°,∴∠ADG+∠DAE=90°.∴AE⊥DF;(4)如图:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,在Rt△ODC中,OC=,∴CP=OC﹣OP=.26.(12分)如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA=,抛物线y=ax2﹣ax﹣a经过点B(2,),与y轴交于点D.(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;(3)延长BA交抛物线于点E,连接ED,试说明ED∥AC的理由.【考点】二次函数综合题.【分析】(1)把点B的坐标代入抛物线的表达式即可求得.(2)通过△AOC∽△CFB求得OC的值,通过△OCD∽△FCB得出DC=CB,∠OCD=∠FCB,然后得出结论.(3)设直线AB的表达式为y=kx+b,求得与抛物线的交点E的坐标,然后通过解三角函数求得结果.【详解】解:(1)把点B的坐标代入抛物线的表达式,得=a×22﹣2a﹣a,解得a=,∴抛物线的表达式为y=x2﹣x﹣.(2)连接CD,过点B作BF⊥x轴于点F,则∠BCF+∠CBF=90°∵∠ACB=90°,∴∠ACO+∠BCF=90°,∴∠ACO=∠CBF,∵∠AOC=∠CFB=90°,∴△AOC∽△CFB,∴=,设OC=m,则CF=2﹣m,则有=,解得m=m=1,∴OC=OF=1,当x=0时y=﹣,∴OD=,∴BF=OD,∵∠DOC=∠BFC=90°,∴△OCD∽△FCB,∴DC=CB,∠OCD=∠FCB,∴点B、C、D在同一直线上,∴点B与点D关于直线AC对称,∴点B关于直线AC的对称点在抛物线上.(3)过点E作EG⊥y轴于点G,设直线AB的表达式为y=kx+b,则,解得k=﹣,∴y=﹣x+,代入抛物线的表达式﹣x+=x2﹣x﹣.解得x=2或x=﹣2,。

真题2014年烟台市中考数学试卷(解析版)

真题2014年烟台市中考数学试卷(解析版)

A . 5.613 XI011 元B . 5.613 >1012元C . 56.13 >1010元D . 0.5613 X 012元真题2014年山东省烟台市中考数学试卷、选择题(本题共 12小题,每小题3分,满分36 分) 1.( 2014年山东烟台)-3的绝对值等于() A . - 3B . 3C . ±3分析: 根据绝对值的性质解答即可. 解:-3|=3.故选B .点评: 此题考查了绝对值的性质: 一个正数的绝对值是它本身; 一个负数的绝对值是它的相反数;0的绝对值是0.分析:根据中心对称图形的定义旋转 以及轴对称图形的定义即可判断出. 解:A、T 此图形旋转180°后不能与原图形重合,.••此图形不是中心对称图形,是轴对称图形,故此选项错误; B、 T 此图形旋转180后不能与原图形重合,.••此图形不是中心对称图形,也不是轴对称图形,故此选项错误;C 、 此图形旋转180。

后不能与原图形重合,此图形不是中心对称图形,是轴对称图形, 故此选项错误;D 、•••此图形旋转180 后能与原图形重合,•••此图形是中心对称图形, 也是轴对称图形,故此选项正确.故选:D .点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问 题的关键.2. (2014年山东烟台)下列手机软件图标中, 既是轴对称图形又是中心对称图形的是C .D .180°后能够与原图形完全重合即是中心对称图形,3. (2014年山东烟台)烟台市通过扩消费、促投资、稳外需的协同发力,激发了区域发展活力,实现了经济平稳较快发展. 2013年全市生产总值(GDP)达5613亿元.该数据用科学记数法表示为()A . 5.613 XI011元B. 5.613 >1012元C. 56.13 >1010元 D . 0.5613 X012元分析:科学记数法的表示形式为 a X10n 的形式,其中1<a|v 10, n 为整数.确定n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同•当原数绝对值〉1时,n 是正数;当原数的绝对值v 1时,n 是负数.解:将5613亿元用科学记数法表示为:5.613 X1011元.故选;A .点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为 a X10n 的形式,其中1<a|v 10, n 为整数,表示时关键要正确确定a 的值以及n 的值.4. (2014年山东烟台)如图是一个正方体截去一角后得到的几何体,它的主视图是( )点评: 本题考查了三视图的知识, 根据主视图是从物体的正面看得到的视图得出是解题关键.5. (2014年山东烟台)按如图的运算程序,能使输出结果为幵蛤A . x=5 , y= - 2B . x=3, y= - 3C . x= - 4, y=2D . x= - 3, y= - 9分析:根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用 排除法求解.解:由题意得,2x - y=3, A 、x=5时,y= 7,故本选项错误;B 、x=3时,y=3,故本选项错误;C 、x= - 4时,y= - 11,故本选项错误;D 、x= - 3时,y= - 9,故本选项正确.故选 D .点评:本题考查了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程 是解题的关键.3的x , y 的值是( )分析: 根据主视图是从正面看到的图形判定则可.6. ( 2014年山东烟台)如图,在菱形 ABCD 中,M , N 分别在 AB , CD 上,且 AM=CN ,MN 与AC 交于点O ,连接BO .若/ DAC =28 °则/ OBC 的度数为( )分析:根据菱形的性质以及 AM = CN ,利用ASA 可得△ AMOCNO ,可得AO = CO , 然后可得BO 丄AC ,继而可求得/ OBC 的度数.解:•••四边形 ABCD 为菱形,••• AB // CD , AB=BC ,•••/ MAO= / NCO ,Z AMO= / CNO ,rZMAO=ZNCO在厶 AMO 和厶 CNO 中,•「酬宅N, •△ AMO ◎△ CNO ( ASA ),.Z AMO ^Z CNO• AO = CO ,T AB=BC ,「. BO 丄 AC ,:/ BOC=90° ,DAC =28° ,•••/ BCA=/ DAC =28°, •/ OBC=90° - 28° =62° .故选 C .点评: 本题考查了菱形的性质和全等三角形的判定和性质, 注意掌握菱形对边平行以及对角线相互垂直的性质.位线EF 与对角线BD 相交于点 M ,且BD 丄CD ,贝U MF 的长为(ABD 与/ ADB 的关系,根据直角三角形的性质,可得BC 的长,再根据三角形的中位线,可得答案.解:已知等腰梯形 ABCD 中,AD // BC , AB=CD=AD=3,•••/ ABC=/ C ,/ ABD=/ ADB , / ADB = / BDC . •/ ABD= / CBD , / C=2/ DBC . •/ BD 丄 CD ,•/ BDC=90° , •/ DBC 』/ C=30° , BC=2DC=2X 3=6 .A . 28°B . 52 D . 727. ( 2014年山东烟台)如图,已知等腰梯形 ABCD 中,AD // BC , AB=CD=AD=3,梯形中A . 1.5 分析:C . 3.5 根据等腰梯形的性质,可得/ ABC 与/ C 的关系,D . 4.5ABD 与/ ADB 的关系,根据等腰三角形的性质,可得/A _______ P•/ EF是梯形中位线,••• MF是三角形BCD的中位线,••• M F J B C」X6=3 ,2 2故选:B.点评:本题考查了等腰梯形的性质,利用了等腰梯形的性质,直角三角形的性质,三角形的中位线的性质.& (2014年山东烟台)关于x的方程x2- ax+2a=0的两根的平方和是5,则a的值是()A . - 1 或5 B. 1 C. 5 D. - 1分析:设方程的两根为x1,x2,根据根与系数的关系得到x什X2=a,X1?Q=2a,由于X12+X22=5, 变形得到(X1+X2)2-2x12x2=5,则a2- 4a - 5=0,然后解方程,满足△ >0的a的值为所求.解:设方程的两根为X1, X2,贝y x1+x2=a, x1?<2=2a,T X12+X22=5,•(X什X2)2- 2X1?X2=5 , • a2- 4a- 5=0, • a j=5 , a2=- 1,■/ △=a2- 8a>0 • a= - 1 .故选:D.点评:本题考查了一元二次方程ax2+bx+c=0 (a工0的根与系数的关系:若方程的两根为X1 , X2,则X什X2=-丄,X1?X2==.也考查了一元二次方程的根的判别式.a a9. (2014年山东烟台)将一组数二一 '-,3, 2 ';, 1几,…,3 E 口,按下面的方式进行排列:.「;,」,3, 2 乙.■;3:-J^-.'l, 2. :, 3 J;, 「比若2(亏的位置记为(1, 4), 師的位置记为(2, 3),则这组数中最大的有理数的位置记为()A. (5, 2)B . (5, 3)C. (6, 2)D. (6, 5)分析:根据观察,可得.「i,根据排列方式,可得每行5个,根据有序数对的表示方法,可得答案.解:3 .•匸.「「;•_「,3 | II得被开方数是二得被开方数的30倍,3厉币在第六行的第五个,即(6, 5),故选:D.点评:本题考查了实数,利用了有序数对表示数的位置,发现被开方数之间的关系是解题关键.10. (2014年山东烟台)如图,将△ ABC 绕点P 顺时针旋转90。

2014年山东泰安市中考数学试卷及答案(Word解析版)

2014年山东泰安市中考数学试卷及答案(Word解析版)

2014年山东省泰安市中考数学试卷一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.(2014年山东泰安)在,0,﹣1,﹣这四个数中,最小的数是()A.B.0C.﹣D.﹣1分析:根据正数大于0,0大于负数,可得答案.解:﹣1<﹣<0<,故选:D.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(2014年山东泰安)下列运算,正确的是()A.4a﹣2a=2 B.a6÷a3=a2C.(﹣a3b)2=a6b2D.(a﹣b)2=a2﹣b2分析:合并同类项时不要丢掉字母a,应是2a,B指数应该是3,D左右两边不相等.解:A、是合并同类项结果是2a,不正确;B、是同底数幂的除法,底数不变指数相减,结果是a3;C、是考查积的乘方正确;D、等号左边是完全平方式右边是平方差,所以不相等.故选C.点评:这道题主要考查同底数幂相除底数不变指数相减以及完全平方式和平方差的形式,熟记定义是解题的关键.3.(2014年山东泰安)下列几何体,主视图和俯视图都为矩形的是()A.B.C.D.解:A、圆柱主视图是矩形,俯视图是圆,故此选项错误;B、圆锥主视图是等腰三角形,俯视图是圆,故此选项错误;C、三棱柱主视图是矩形,俯视图是三角形,故此选项错误;D、长方体主视图和俯视图都为矩形,故此选项正确;故选:D.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.(2014年山东泰安)PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×10﹣7B.2.5×10﹣6C.25×10﹣7D.0.25×10﹣5分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000025=2.5×10﹣6,故选:B.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.(2014年山东泰安)如图,把一直尺放置在一个三角形纸片上,则下列结论正确的是()A.∠1+∠6>180°B.∠2+∠5<180°C.∠3+∠4<180°D.∠3+∠7>180°分析:根据平行线的性质推出∠3+∠4=180°,∠2=∠7,根据三角形的内角和定理得出∠2+∠3=180°+∠A,推出结果后判断各个选项即可.解:A、∵DG∥EF,∴∠3+∠4=180°,∵∠6=∠4,∠3>∠1,∴∠6+∠1<180°,故本选项错误;B、∵DG∥EF,∴∠5=∠3,∴∠2+∠5=∠2+∠3=(180°﹣∠1)+(180°﹣∠ALH)=360°﹣(∠1+∠ALH)=360°﹣(180°﹣∠A)=180°+∠A>180°,故本选项错误;C、∵DG∥EF,∴∠3+∠4=180°,故本选项错误;D、∵DG∥EF,∴∠2=∠7,∵∠3+∠2=180°+∠A>180°,∴∠3+∠7>180°,故本选项正确;故选D.点评:本题考查了平行线的性质,三角形的内角和定理的应用,主要考查学生运用定理进行推理的能力,题目比较好,难度适中.6.(2014年山东泰安)下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A. 1 B. 2 C. 3 D. 4分析:根据轴对称图形及对称轴的定义求解.解:第一个是轴对称图形,有2条对称轴;第二个是轴对称图形,有2条对称轴;第三个是轴对称图形,有2条对称轴;第四个是轴对称图形,有3条对称轴;故选C.点评:本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;7.(2014年山东泰安)方程5x+2y=﹣9与下列方程构成的方程组的解为的是()A.x+2y=1 B.3x+2y=﹣8 C.5x+4y=﹣3 D.3x﹣4y=﹣8分析:将x与y的值代入各项检验即可得到结果.解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣8.故选D点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.8.(2014年山东泰安)如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为()A.6 B.7C.8D.10分析:根据直角三角形斜边上的中线等于斜边的一半得到CD=AB=3,则结合已知条件CE=CD可以求得ED=4.然后由三角形中位线定理可以求得BF=2ED=8.解:如图,∵∠ACB=90°,D为AB的中点,AB=6,∴CD=AB=3.又CE=CD,∴CE=1,∴ED=CE+CD=4.又∵BF∥DE,点D是AB的中点,∴ED是△AFD的中位线,∴BF=2ED=8.故选:C.点评:本题考查了三角形中位线定理和直角三角形斜边上的中线.根据已知条件求得ED 的长度是解题的关键与难点.9.(2014年山东泰安)以下是某校九年级10名同学参加学校演讲比赛的统计表:成绩/分80 85 90 95人数/人 1 2 5 2则这组数据的中位数和平均数分别为()A.90,90 B.90,89 C.85,89 D.85,90分析:根据中位数的定义先把这些数从小到大排列,求出最中间的两个数的平均数,再根据平均数的计算公式进行计算即可.解:∵共有10名同学,中位数是第5和6的平均数,∴这组数据的中位数是(90+90)÷2=90;这组数据的平均数是:(80+85×2+90×5+95×2)÷10=89;故选B.点评:此题考查了中位数和平均数,掌握中位数和平均数的计算公式和定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.10.(2014年山东泰安)在△ABC和△A1B1C1中,下列四个命题:(1)若AB=A1B1,AC=A1C1,∠A=∠A1,则△ABC≌△A1B1C1;(2)若AB=A1B1,AC=A1C1,∠B=∠B1,则△ABC≌△A1B1C1;(3)若∠A=∠A1,∠C=∠C1,则△ABC∽△A1B1C1;(4)若AC:A1C1=CB:C1B1,∠C=∠C1,则△ABC∽△A1B1C1.其中真命题的个数为()A.4个B.3个C.2个D.1个分析:分别利用相似三角形的判定和全等三角形的判定定理进行判断即可得到正确的选项.解:(1)若AB=A1B1,AC=A1C1,∠A=∠A1,能用SAS定理判定△ABC≌△A1B1C1,正确;(2)若AB=A1B1,AC=A1C1,∠B=∠B1,不能判定△ABC≌△A1B1C1,错误;(3)若∠A=∠A1,∠C=∠C1,能判定△ABC∽△A1B1C1,正确;(4)若AC:A1C1=CB:C1B1,∠C=∠C1,能利用两组对应边的比相等且夹角相等的两三角形相似判定△ABC∽△A1B1C1,正确.故选B.点评:本题考查了命题与定理的知识,解题的关键是掌握三角形全等和相似的判定方法.11.(2014年山东泰安)在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是()A.B.C.D.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和大于4的情况,再利用概率公式即可求得答案.解:画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号之和大于4的有10种情况,∴两次摸出的小球的标号之和大于4的概率是:=.故选C.点评:本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.12.(2014年山东泰安)如图①是一个直角三角形纸片,∠A=30°,BC=4cm,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,再将②沿DE折叠,使点A落在DC′的延长线上的点A′处,如图③,则折痕DE的长为()A.cm B.2cm C.2cm D.3cm分析:根据直角三角形两锐角互余求出∠ABC=60°,翻折前后两个图形能够互相重合可得∠BDC=∠BDC′,∠CBD=∠ABD=30°,∠ADE=∠A′DE,然后求出∠BDE=90°,再解直角三角形求出BD,然后求出DE即可.解:∵△ABC是直角三角形,∠A=30°,∴∠ABC=90°﹣30°=60°,∵沿折痕BD折叠点C落在斜边上的点C′处,∴∠BDC=∠BDC′,∠CBD=∠ABD=∠ABC=30°,∵沿DE折叠点A落在DC′的延长线上的点A′处,∴∠ADE=∠A′DE,∴∠BDE=∠ABD+∠A′DE=×180°=90°,在Rt△BCD中,BD=BC÷cos30°=4÷=cm,在Rt△ADE中,DE=BD•tan30°=×=cm.故选A.点评:本题考查了翻折变换的性质,解直角三角形,熟记性质并分别求出有一个角是30°角的直角三角形是解题的关键.13.(2014年山东泰安)某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=15分析:根据已知假设每盆花苗增加x株,则每盆花苗有(x+3)株,得出平均单株盈利为(4﹣0.5x)元,由题意得(x+3)(4﹣0.5x)=15即可.解:设每盆应该多植x株,由题意得(3+x)(4﹣0.5x)=15,故选A.点评:此题考查了一元二次方程的应用,根据每盆花苗株数×平均单株盈利=总盈利得出方程是解题关键.14.(2014年山东泰安)如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ 的面积为y,则y与x之间的函数图象大致为()A B C. D分析:分点Q在AC上和BC上两种情况进行讨论即可.解:当点Q在AC上时,∵∠A=30°,AP=x,∴PQ=xtan30°=∴y=×AP×PQ=×x×=x2;当点Q在BC上时,如图所示:∵AP=x,AB=16,∠A=30°,∴BP=16﹣x,∠B=60°,∴PQ=BP•tan60°=(16﹣x).∴==.∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.故选:B.点评:本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在BC上这种情况.15.(2014年山东泰安)若不等式组有解,则实数a的取值范围是()A.a<﹣36 B.a≤﹣36 C.a>﹣36 D.a≥﹣36分析:先求出不等式组中每一个不等式的解集,不等式组有解,即两个不等式的解集有公共部分,据此即可列不等式求得a的范围.解:,解①得:x<a﹣1,解②得:x≥﹣37,则a﹣1>﹣37,解得:a>﹣36.故选C.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.16.(2014年山东泰安)将两个斜边长相等的三角形纸片如图①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B的度数为()A.10°B.20°C.7.5°D.15°分析:根据直角三角形两锐角互余求出∠DCE=60°,旋转的性质可得∠BCE1=15°,然后求出∠BCD1=45°,从而得到∠BCD1=∠A,利用“边角边”证明△ABC和△D1CB全等,根据全等三角形对应角相等可得∠BD1C=∠ABC=45°,再根据∠E1D1B=∠BD1C﹣∠CD1E1计算即可得解.解:∵∠CED=90°,∠D=30°,∴∠DCE=60°,∵△DCE绕点C顺时针旋转15°,∴∠BCE1=15°,∴∠BCD1=60°﹣15°=45°,∴∠BCD1=∠A,在△ABC和△D1CB中,,∴△ABC≌△D1CB(SAS),∴∠BD1C=∠ABC=45°,∴∠E1D1B=∠BD1C﹣∠CD1E1=45°﹣30°=15°.故选D.点评:本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定与性质,熟记性质并求出△ABC和△D1CB全等是解题的关键.17.(2014年山东泰安)已知函数y=(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A.B C D.分析:根据二次函数图象判断出m<﹣1,n=1,然后求出m+n<0,再根据一次函数与反比例函数图象的性质判断即可.解:由图可知,m<﹣1,n=1,所以,m+n<0,所以,一次函数y=mx+n经过第二四象限,且与y轴相交于点(0,1),反比例函数y=的图象位于第二四象限,纵观各选项,只有C选项图形符合.故选C.点评:本题考查了二次函数图象,一次函数图象,反比例函数图象,观察二次函数图象判断出m、n的取值是解题的关键.18.(2014年山东泰安)如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为()A.4个B.3个C.2个D. 1个分析:(1)利用切线的性质得出∠PCO=90°,进而得出△PCO≌△PDO(SSS),即可得出∠PCO=∠PDO=90°,得出答案即可;(2)利用(1)所求得出:∠CPB=∠BPD,进而求出△CPB≌△DPB(SAS),即可得出答案;(3)利用全等三角形的判定得出△PCO≌△BCA(ASA),进而得出CO=PO=AB;(4)利用四边形PCBD是菱形,∠CPO=30°,则DP=DB,则∠DPB=∠DBP=30°,求出即可.解:(1)连接CO,DO,∵PC与⊙O相切,切点为C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD与⊙O相切,故此选项正确;(2)由(1)得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四边形PCBD是菱形,故此选项正确;(3)连接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直径,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴AC=CO,∴AC=CO=AO,∴∠COA=60°,∴∠CPO=30°,∴CO=PO=AB,∴PO=AB,故此选项正确;(4)∵四边形PCBD是菱形,∠CPO=30°,∴DP=DB,则∠DPB=∠DBP=30°,∴∠PDB=120°,故此选项正确;故选:A.点评:此题主要考查了切线的判定与性质和全等三角形的判定与性质以及菱形的判定与性质等知识,熟练利用全等三角形的判定与性质是解题关键.19.(2014年山东泰安)如图,半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB 为直径作半圆,则图中阴影部分的面积为()A.(﹣1)cm2B.(+1)cm2C.1cm2D.cm2分析:假设出扇形半径,再表示出半圆面积,以及扇形面积,进而即可表示出两部分P,Q 面积相等.连接AB,OD,根据两半圆的直径相等可知∠AOD=∠BOD=45°,故可得出绿色部分的面积=S△AOD,利用阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色,故可得出结论.解:∵扇形OAB的圆心角为90°,假设扇形半径为2,∴扇形面积为:=π(cm2),半圆面积为:×π×12=(cm2),∴S Q+S M =S M+S P=(cm2),∴S Q=S P,连接AB,OD,∵两半圆的直径相等,∴∠AOD=∠BOD=45°,∴S绿色=S△AOD=×2×1=1(cm2),∴阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色=π﹣﹣1=﹣1(cm2).故选:A.点评:此题主要考查了扇形面积求法,根据题意作出辅助线,构造出等腰直角三角形是解答此题的关键.20.(2014年山东泰安)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X ﹣1 0 1 3y ﹣1 3 5 3下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个B.3个C.2个D.1个分析:根据表格数据求出二次函数的对称轴为直线x=1.5,然后根据二次函数的性质对各小题分析判断即可得解.解:由图表中数据可得出:x=1时,y=5值最大,所以二次函数y=ax2+bx+c开口向下,a<0;又x=0时,y=3,所以c=3>0,所以ac<0,故(1)正确;∵二次函数y=ax2+bx+c开口向下,且对称轴为x==1.5,∴当x>1.5时,y的值随x值的增大而减小,故(2)错误;∵x=3时,y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+(b﹣1)x+c=0的一个根,故(3)正确;∵x=﹣1时,ax2+bx+c=﹣1,∴x=﹣1时,ax2+(b﹣1)x+c=0,∵x=3时,ax2+(b﹣1)x+c=0,且函数有最大值,∴当﹣1<x<3时,ax2=(b﹣1)x+c>0,故(4)正确.故选B.点评:本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.二、填空题(本大题共4小题,满分12分。

2014-2015学年山东省烟台市初二第一学期期中数学试卷(Word答案)

2014-2015学年山东省烟台市初二第一学期期中数学试卷(Word答案)

2014-2015学年山东省烟台市初二第一学期期中数学试卷(五四学制)一、选择题(每小题3分,共30分)1.(3分)下列各式:,其中分式共有()A.1个 B.2个 C.3个 D.4个2.(3分)若分式的值为0,则x的取值是()A.x=1 B.x=﹣1 C.x=±1 D.x=03.(3分)下列约分正确的是()A.B.C.D.4.(3分)若多项式4x2﹣12xy+ky2是完全平方式,则k的值是()A.3 B.6 C.9 D.365.(3分)20142﹣4028能被两个连续偶数整除,这两个连续偶数可以是()A.2010,2012 B.2012,2014 C.2014,2016 D.4026,40286.(3分)一个射手连续射靶10次,成绩(环)如图,则该射手射中环数的中位数和众数分别为()A.8,9 B.8,8 C.8.5,8 D.8.5,97.(3分)下列说法中错误的是()A.一组数据的平均数、中位数可能相同B.一组数据的中位数可能不唯一确定C.一组数据中平均数、中位数、众数是从不同角度描述了一组数据的集中趋势D.一组数据中众数可能有多个8.(3分)多项式x2+6x+9取得最小值时,其x的值为()A.0 B.3 C.﹣3 D.99.(3分)解关于x的分式方程时不会产生增根,则m的取值是()A.m≠1 B.m≠﹣1 C.m≠0 D.m≠±110.(3分)在一段坡路,小明骑自行车上坡的速度为每小时v1千米,下坡时的速度为每小时v2千米,则他在这段路上、下坡的平均速度是每小时()A.千米 B.千米C.千米 D.无法确定二、填空题(每小题3分,共30分)11.(3分)写出一个最简分式.12.(3分)分式的最简公分母为.13.(3分)把多项式a3﹣2a2+a分解因式的结果是.14.(3分)计算:=.15.(3分)某公司欲招聘工人,对候选人进行三项测试:语言、创新、综合知识,并按测试得分1:4:3的比例确定测试总分.已知某候选人三项得分分别为90,72,50,则这位候选人的招聘得分为.16.(3分)甲、乙、丙、丁四位同学本学期都参加了5次测试,每人的平均成绩都是93分,方差如下表:则这四人中成绩发挥最稳定的是.17.(3分)将一组数据中的每一个减去40后,所得新数据的平均数是2,则原来那组数据的平均数是.18.(3分)某班在一次测试中,一道计算题(满分5分)的得分情况如图.则这题得分的平均数是分.19.(3分)一组数据a,b,c的方差是9,则数据a+1,b+1,c+1的标准差为.20.(3分)观察下列各式:,,,…,根据观察计算:=(n为正整数).三、解答题(本题共6小题,共分)21.(6分)化简:+.22.(6分)已知x﹣3y=0,求•(x﹣y)的值.23.(8分)解分式方程:24.(10分)某地修筑水渠,某工程队出色地完成了任务.这是记者与工程队总指挥的一段对话:求工程队原来每天修筑水渠多少米?25.(17分)甲乙两支篮球队进行了5场比赛,比赛成绩绘制成了统计图(如图)(1)分别计算甲乙两队5场比赛成绩的平均分.(2)就这5场比赛,分别计算两队成绩的极差;(3)就这5场比赛,分别计算两队成绩的方差;(4)如果从两队中选派一支球队参加篮球锦标赛,根据上述统计,从平均分、极差、方差以及获胜场数这四个方面分别进行简要分析,你认为选派哪支球队参赛更能取得好成绩?26.(10分)描述证明:海宝在研究数学问题时发现了一个有趣的现象:(1)请你用数学表达式补充完整海宝发现的这个有趣的现象;(2)请你证明海宝发现的这个有趣现象.2014-2015学年山东省烟台市初二第一学期期中数学试卷(五四学制)参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列各式:,其中分式共有()A.1个 B.2个 C.3个 D.4个【解答】解:(1﹣x),,的分母中均不含有字母,因此它们是整式,而不是分式.的分母中含有字母,因此是分式.故选:A.2.(3分)若分式的值为0,则x的取值是()A.x=1 B.x=﹣1 C.x=±1 D.x=0【解答】解:由分式的值为零的条件得:|x|﹣1=0,x﹣1≠0,解得:x=﹣1,故选:B.3.(3分)下列约分正确的是()A.B.C.D.【解答】解:A、≠1+,错误;B、≠1﹣,错误;C、=,正确;D、=﹣,错误.故选:C.4.(3分)若多项式4x2﹣12xy+ky2是完全平方式,则k的值是()A.3 B.6 C.9 D.36【解答】解:∵多项式4x2﹣12xy+ky2是完全平方式,∴k=9,故选:C.5.(3分)20142﹣4028能被两个连续偶数整除,这两个连续偶数可以是()A.2010,2012 B.2012,2014 C.2014,2016 D.4026,4028【解答】解:∵20142﹣4028=20142﹣2014×2=2014×(2014﹣2)=2014×2012.∴20142﹣4028能被两个连续偶数2012、2014整除.故选:B.6.(3分)一个射手连续射靶10次,成绩(环)如图,则该射手射中环数的中位数和众数分别为()A.8,9 B.8,8 C.8.5,8 D.8.5,9【解答】解:该射手射中环数分别为:6,8,7,10,9,7,8,10,8,9,按从小到大的顺序排列为:6,7,7,8,8,8,9,9,10,10,则众数为8,中位数为:8.故选:B.7.(3分)下列说法中错误的是()A.一组数据的平均数、中位数可能相同B.一组数据的中位数可能不唯一确定C.一组数据中平均数、中位数、众数是从不同角度描述了一组数据的集中趋势D.一组数据中众数可能有多个【解答】解:A、一组数据的平均数、中位数可能相同,该说法正确,故本选项错误;B、一组数据的中位数只能有一个,该说法错误,故本选项正确;C、一组数据中平均数、中位数、众数是从不同角度描述了一组数据的集中趋势,该说法正确,故本选项错误;D、一组数据中众数可能有多个,该说法正确,故本选项错误.故选:B.8.(3分)多项式x2+6x+9取得最小值时,其x的值为()A.0 B.3 C.﹣3 D.9【解答】解:x2+6x+9=(x+3)2∵(x+3)2≥0=0.∴当x=﹣3时,y最小值故选:C.9.(3分)解关于x的分式方程时不会产生增根,则m的取值是()A.m≠1 B.m≠﹣1 C.m≠0 D.m≠±1【解答】解:分式方程去分母,得:1+x﹣1=﹣m,当x﹣1=0时,方程有增根,此时x=1,代入整式方程得:1+1﹣1=﹣m,解得:m=﹣1,则分式方程不会产生增根时,m≠﹣1,故选:B.10.(3分)在一段坡路,小明骑自行车上坡的速度为每小时v1千米,下坡时的速度为每小时v2千米,则他在这段路上、下坡的平均速度是每小时()A.千米 B.千米C.千米 D.无法确定【解答】解:依题意得:2÷(+)=2÷=千米.故选:C.二、填空题(每小题3分,共30分)11.(3分)写出一个最简分式.【解答】解:根据最简分式的定义如:.故答案为:.12.(3分)分式的最简公分母为10xy2.【解答】解:因为系数的最小公倍数为10,x最高次幂为1,y的最高次幂为2,所以最简公分母为10xy2.13.(3分)把多项式a3﹣2a2+a分解因式的结果是a(a﹣1)2.【解答】解:a3﹣2a2+a=a(a2﹣2a+1)=a(a﹣1)2.。

2024年山东省烟台市中考数学试卷及答案解析

2024年山东省烟台市中考数学试卷及答案解析

2024年山东省烟台市中考数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的。

1.(3分)下列实数中的无理数是()A.B.3.14C.D.2.(3分)下列计算结果为a6的是()A.a2•a3B.a12÷a2C.a3+a3D.(a2)33.(3分)如图是由8个大小相同的小正方体组成的几何体,若从标号为①②③④的小正方体中取走一个,使新几何体的左视图既是轴对称图形又是中心对称图形,则应取走()A.①B.②C.③D.④4.(3分)实数a,b,c在数轴上的位置如图所示,下列结论正确的是()A.b+c>3B.a﹣c<0C.|a|>|c|D.﹣2a<﹣2b5.(3分)目前全球最薄的手撕钢产自中国,厚度只有0.015毫米,约是A4纸厚度的六分之一.已知1毫米=1百万纳米,0.015毫米等于多少纳米?将结果用科学记数法表示为()A.0.15×103纳米B.1.5×104纳米C.15×10﹣5纳米D.1.5×10﹣6纳米6.(3分)射击运动队进行射击测试,甲、乙两名选手的测试成绩如图,其成绩的方差分别记为S甲2和S乙2,则S甲2和S乙2的大小关系是()A.S甲2>S乙2B.S甲2<S乙2C.S甲2=S乙2D.无法确定7.(3分)某班开展“用直尺和圆规作角平分线”的探究活动,各组展示作图痕迹如下,其中射线OP为∠AOB的平分线的有()A.1个B.2个C.3个D.4个8.(3分)如图,在正方形ABCD中,点E,F分别为对角线BD,AC的三等分点,连接AE并延长交CD 于点G,连接EF,FG.若∠AGF=α,则∠FAG用含α的代数式表示为()A.B.C.D.9.(3分)《周髀算经》是中国现存最早的数理天文著作.书中记载这样一道题:“今有女子不善织,日减功迟.初日织五尺,末日织一尺,今三十日织讫.问织几何?”意思是:现有一个不擅长织布的女子,织布的速度越来越慢,并且每天减少的数量相同,第一天织了五尺布,最后一天仅织了一尺布,30天完工,问一共织了多少布?()A.45尺B.88尺C.90尺D.98尺10.(3分)如图,水平放置的矩形ABCD中,AB=6cm,BC=8cm,菱形EFGH的顶点E,G在同一水平线上,点G与AB的中点重合,EF=2cm,∠E=60°,现将菱形EFGH以1cm/s的速度沿BC方向匀速运动,当点E运动到CD上时停止.在这个运动过程中,菱形EFGH与矩形ABCD重叠部分的面积S(cm2)与运动时间t(s)之间的函数关系图象大致是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,满分18分)11.(3分)若代数式在实数范围内有意义,则x的取值范围为.12.(3分)关于x的不等式m﹣≤1﹣x有正数解,m的值可以是(写出一个即可).13.(3分)若一元二次方程2x2﹣4x﹣1=0的两根为m,n,则3m2﹣4m+n2的值为.14.(3分)如图,在边长为6的正六边形ABCDEF中,以点F为圆心,以FB的长为半径作,剪如图中阴影部分做一个圆锥的侧面,则这个圆锥的底面半径为.15.(3分)如图,在▱ABCD中,∠C=120°,AB=8,BC=10,E为边CD的中点,F为边AD上的一动点,将△DEF沿EF翻折得△D′EF,连接AD',BD',则△ABD′面积的最小值为.16.(3分)已知二次函数y=ax2+bx+c的y与x的部分对应值如表:x﹣4﹣3﹣115y0595﹣27下列结论:①abc>0;②关于x的一元二次方程ax2+bx+c=9有两个相等的实数根;③当﹣4<x<1时,y的取值范围为0<y<5;④若点(m,y1),(﹣m﹣2,y2)均在二次函数图象上,则y1=y2;⑤满足ax2+(b+1)x+c<2的x的取值范围是x<﹣2或x>3.其中正确结论的序号为.三、解答题(本大题共8个小题,满分72分)17.(6分)利用课本上的计算器进行计算,按键顺序如下:,若m是其显示结果的平方根,先化简:(+)÷,再求值.18.(7分)“山海同行,舰回烟台”.2024年4月23日,烟台舰与家乡人民共庆人民海军成立75周年.值此,某学校开展了“奋进万亿新征程,共筑强国强军梦”的主题研学活动.为了解学生参与情况,随机抽取部分学生对研学活动时长(用t表示,单位:h)进行调查.经过整理,将数据分成四组(A组:0≤t<2;B组:2≤t<4;C组:4≤t<6;D组:6≤t<8),并绘制了如下不完整的条形统计图和扇形统计图.(1)请补全条形统计图;(2)扇形统计图中,a的值为,D组对应的扇形圆心角的度数为;(3)D组中有男、女生各两人,现从这四人中随机抽取两人进行研学宣讲,请用树状图或表格求所抽取的两人恰好是一名男生和一名女生的概率.19.(8分)根据收集的素材,探索完成任务.探究太阳能热水器的安装素材一太阳能热水器是利用绿色能源造福人类的一项发明.某品牌热水器主要部件太阳能板需要安装在每天都可以有太阳光照射到的地方,才能保证使用效果,否则不予安装.素材二某市位于北半球,太阳光线与水平线的夹角为α,冬至日时,14°≤α≤29°;夏至日时,43°≤α≤76°.sin14°≈0.24,cos14°≈0.97,tan14°≈0.25sin29°≈0.48,cos29°≈0.87,tan29°≈0.55sin43°≈0.68,cos43°≈0.73,tan43°=0.94sin76°≈0.97,cos76°≈0.24,tan76°≈4.01素材三如图,该市甲楼位于乙楼正南方向,两楼东西两侧都无法获得太阳光照射.现准备在乙楼南面墙上安装该品牌太阳能板.已知两楼间距为54米,甲楼AB 共11层,乙楼CD 共15层,一层从地面起,每层楼高皆为3.3米.AE 为某时刻的太阳光线.问题解决任务一确定使用数据要判断乙楼哪些楼层不能安装该品牌太阳能板,应选择日(填冬至或夏至)时,α为(填14°,29°,43°,76°中的一个)进行计算.任务二探究安装范围利用任务一中选择的数据进行计算,确定乙楼中哪些楼层不能安装该品牌太阳能热水器.20.(8分)每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”.康宁公司新研发了一批便携式轮椅,计划在该月销售.根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元.设每辆轮椅降价x元,每天的销售利润为y元.(1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?21.(9分)如图,正比例函数y=x与反比例函数y=的图象交于点A(,a).将正比例函数图象向下平移n(n>0)个单位后,与反比例函数图象在第一、三象限交于点B,C,与x轴,y轴交于点D,E,且满足BE:CE=3:2,过点B作BF⊥x轴,垂足为点F,G为x轴上一点,直线BC与BG关于直线BF成轴对称,连接CG.(1)求反比例函数的表达式;(2)求n的值及△BCG的面积.22.(10分)在等腰直角△ABC中,∠ACB=90°,AC=BC,D为直线BC上任意一点,连接AD.将线段AD绕点D按顺时针方向旋转90°得线段ED,连接BE.【尝试发现】(1)如图1,当点D在线段BC上时,线段BE与CD的数量关系为;【类比探究】(2)当点D在线段BC的延长线上时,先在图2中补全图形,再探究线段BE与CD的数量关系并证明;【联系拓广】(3)若AC=BC=1,CD=2,请直接写出sin∠ECD的值.23.(11分)如图,AB是⊙O的直径,△ABC内接于⊙O,点I为△ABC的内心,连接CI并延长交⊙O 于点D,E是上任意一点,连接AD,BD,BE,CE.(1)若∠ABC=25°,求∠CEB的度数;(2)找出图中所有与DI相等的线段,并证明;(3)若CI=2,DI=,求△ABC的周长.24.(13分)如图,抛物线与x轴交于A,B两点,与y轴交于点C,OC=OA,AB=4,对称轴为直线l1:x=﹣1.将抛物线y1绕点O旋转180°后得到新抛物线y2,抛物线y2与y轴交于点D,顶点为E,对称轴为直线l2.(1)分别求抛物线y1和y2的表达式;(2)如图1,点F的坐标为(﹣6,0),动点M在直线l1上,过点M作MN∥x轴与直线l2交于点N,连接FM,DN,求FM+MN+DN的最小值;(3)如图2,点H的坐标为(0,﹣2),动点P在抛物线y2上,试探究是否存在点P,使∠PEH=2∠DHE?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.2024年山东省烟台市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,满分30分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年山东省烟台市中考数学试卷一、选择题(本题共12小题,每小题3分,满分36分)1.﹣3的绝对值等于()A.﹣3 B.3 C.±3 D.﹣2.下列手机软件图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.烟台市通过扩消费、促投资、稳外需的协同发力,激发了区域发展活力,实现了经济平稳较快发展.2013年全市生产总值(GDP)达5613亿元.该数据用科学记数法表示为()A.5.613×1011元B.5.613×1012元C.56.13×1010元D.0.5613×1012元4.如图是一个正方体截去一角后得到的几何体,它的主视图是()A.B.C.D.5.按如图的运算程序,能使输出结果为3的x,y的值是()A.x=5,y=﹣2 B.x=3,y=﹣3 C.x=﹣4,y=2 D.x=﹣3,y=﹣9 6.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°7.如图,已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,梯形中位线EF与对角线BD相交于点M,且BD⊥CD,则MF的长为()A.1.5 B.3 C.3.5 D.4.58.关于x的方程x2﹣ax+2a=0的两根的平方和是5,则a的值是()A.﹣1或5 B.1 C.5 D.﹣19.将一组数,,3,2,,…,3,按下面的方式进行排列:,,3,2,;3,,2,3,;…若2的位置记为(1,4),2的位置记为(2,3),则这组数中最大的有理数的位置记为()A.(5,2)B.(5,3)C.(6,2)D.(6,5)10.如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是()A.(1,1)B.(1,2)C.(1,3)D.(1,4)11.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个12.如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP 的面积是y,则下列能大致反映y与x的函数关系的图象是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,满分18分)13.(﹣1)0+()﹣1=_________.14.在函数中,自变量x的取值范围是_________.15.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球_________个.16.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是_________.17.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,则阴影部分的面积等于_________.18.如图,∠AOB=45°,点O1在OA上,OO1=7,⊙O1的半径为2,点O2在射线OB上运动,且⊙O2始终与OA相切,当⊙O2和⊙O1相切时,⊙O2的半径等于_________.三、解答题(本大题共8个小题,满分66分)19.(6分)先化简,再求值:÷(x﹣),其中x为数据0,﹣1,﹣3,1,2的极差.20.(7分)2014年世界杯足球赛6月12日﹣7月13日在巴西举行,某初中学校为了了解本校2400名学生对本次世界杯的关注程度,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和关注程度,分别绘制了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“特别关注”、“一般关注”、“偶尔关注”都统计成关注,那么全校关注本届世界杯的学生大约有多少名?(3)在这次调查中,初四年级共有甲、乙、丙、丁四人“特别关注”本届世界杯,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.21.(7分)小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.22.(8分)如图,点A(m,6),B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.(1)求m,n的值并写出反比例函数的表达式;(2)连接AB,在线段DC上是否存在一点E,使△ABE的面积等于5?若存在,求出点E的坐标;若不存在,请说明理由.23.(8分)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A,B两种型号车的进货和销售价格如下表:A型车B型车进货价格(元)1100 1400销售价格(元)今年的销售价格200024.(8分)如图,AB是⊙O的直径,延长AB至P,使BP=OB,BD垂直于弦BC,垂足为点B,点D 在PC上.设∠PCB=α,∠POC=β.求证:tanα•tan=.25.(10分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB 上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF 的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.26.(12分)如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA=,抛物线y=ax2﹣ax﹣a经过点B(2,),与y轴交于点D.(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;(3)延长BA交抛物线于点E,连接ED,试说明ED∥AC的理由.2014年山东省烟台市中考数学试卷试题解析一、选择题(本题共12小题,每小题3分,满分36分)【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.3.烟台市通过扩消费、促投资、稳外需的协同发力,激发了区域发展活力,实现了经济平稳较快发展.2013年全市生产总值(GDP)达5613亿元.该数据用科学记数法表示为()A.5.613×1011元B.5.613×1012元C.56.13×1010元D.0.5613×1012元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将5613亿元用科学记数法表示为:5.613×1011元.故选;A.4.如图是一个正方体截去一角后得到的几何体,它的主视图是()A.B.C.D.【考点】简单组合体的三视图;截一个几何体.【分析】根据主视图是从正面看到的图形判定则可.【详解】解:从正面看,主视图为.故选:C.5.按如图的运算程序,能使输出结果为3的x,y的值是()A.x=5,y=﹣2 B.x=3,y=﹣3 C.x=﹣4,y=2 D.x=﹣3,y=﹣9【考点】代数式求值.【分析】根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.【详解】解:由题意得,2x﹣y=3,A、x=5时,y=7,故本选项错误;B、x=3时,y=3,故本选项错误;C、x=﹣4时,y=﹣11,故本选项错误;D、x=﹣3时,y=﹣9,故本选项正确.故选D.6.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°【考点】菱形的性质;全等三角形的判定与性质.【分析】根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.【详解】解:∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,∵,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=28°,∴∠BCA=∠DAC=28°,∴∠OBC=90°﹣28°=62°.故选C.7.如图,已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,梯形中位线EF与对角线BD相交于点M,且BD⊥CD,则MF的长为()A.1.5 B.3 C.3.5 D.4.5【考点】等腰梯形的性质;梯形中位线定理.【分析】根据等腰梯形的性质,可得∠ABC与∠C的关系,∠ABD与∠ADB的关系,根据等腰三角形的性质,可得∠ABD与∠ADB的关系,根据直角三角形的性质,可得BC的长,再根据三角形的中位线,可得答案.【详解】解:已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,∴∠ABC=∠C,∠ABD=∠ADB,∠ADB=∠BDC.∴∠ABD=∠CBD,∠C=2∠DBC.∵BD⊥CD,∴∠BDC=90°,∴∠DBC=∠C=30°,BC=2DC=2×3=6.∵EF是梯形中位线,∴MF是三角形BCD的中位线,∴MF=BC=6=3,故选:B.8.关于x的方程x2﹣ax+2a=0的两根的平方和是5,则a的值是()A.﹣1或5 B.1 C.5 D.﹣1【考点】根与系数的关系.【分析】设方程的两根为x1,x2,根据根与系数的关系得到x1+x2=a,x1•x2=2a,由于x12+x22=5,变形得到(x1+x2)2﹣2x1•x2=5,则a2﹣4a﹣5=0,然后解方程,满足△≥0的a的值为所求.【详解】解:设方程的两根为x1,x2,则x1+x2=a,x1•x2=2a,∵x12+x22=5,∴(x1+x2)2﹣2x1•x2=5,∴a2﹣4a﹣5=0,∴a1=5,a2=﹣1,∵△=a2﹣8a≥0,∴a=﹣1.故选:D.9.将一组数,,3,2,,…,3,按下面的方式进行排列:,,3,2,;3,,2,3,;…若2的位置记为(1,4),2的位置记为(2,3),则这组数中最大的有理数的位置记为()A.(5,2)B.(5,3)C.(6,2)D.(6,5)【考点】实数;规律型:数字的变化类.【分析】根据观察,可得,根据排列方式,可得每行5个,根据有序数对的表示方法,可得答案.【详解】解:3=,3得被开方数是得被开方数的30倍,3在第六行的第五个,即(6,5),故选:D.10.如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是()A.(1,1)B.(1,2)C.(1,3)D.(1,4)【考点】坐标与图形变化-旋转.【分析】先根据旋转的性质得到点A的对应点为点A′,点B的对应点为点B′,再根据旋转的性质得到旋转中心在线段AA′的垂直平分线,也在线段BB′的垂直平分线,即两垂直平分线的交点为旋转中心.【详解】解:∵将△ABC以某点为旋转中心,顺时针旋转90°得到△A′B′C′,∴点A的对应点为点A′,点B的对应点为点B′,作线段AA′和BB′的垂直平分线,它们的交点为P(1,2),∴旋转中心的坐标为(1,2).故选B.11.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.专题:数形结合.【分析】根据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a ﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小.【详解】解:∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,所以①正确;∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,所以②错误;∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,而b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵抛物线开口向下,∴a<0,∴8a+7b+2c>0,所以③正确;∵对称轴为直线x=2,∴当﹣1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,所以④错误.故选B.12.如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP 的面积是y,则下列能大致反映y与x的函数关系的图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】分三段来考虑点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C移动,△BAP的面积不变;点P沿C→B的路径移动,△BAP的面积逐渐减小,据此选择即可.【详解】解:点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C移动,△BAP的面积不变;点P沿C→B的路径移动,△BAP的面积逐渐减小.故选:A.二、填空题(本大题共6小题,每小题3分,满分18分)13.(﹣1)0+()﹣1=2015.【考点】实数的运算;零指数幂;负整数指数幂.【分析】分别根据0指数幂及负整数指数幂的计算法则计算出各数,再根据实数混合运算的法则进行计算即可.【详解】解:原式=1+2014=2015.故答案为:2015.14.在函数中,自变量x的取值范围是x≤1且x≠﹣2.【考点】函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【详解】解:根据二次根式有意义,分式有意义得:1﹣x≥0且x+2≠0,解得:x≤1且x≠﹣2.15.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球12个.【考点】概率公式.【分析】设袋中共有球x个,根据概率公式列出等式解答.【详解】解:设袋中共有球x个,∵有3个白球,且摸出白球的概率是,∴=,解得x=12(个).故答案为:12.16.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是x<4.【考点】一次函数与一元一次不等式.【分析】把P分别代入函数y=2x+b与函数y=kx﹣3求出k,b的值,再求不等式kx﹣3>2x+b的解集.【详解】解:把P(4,﹣6)代入y=2x+b得,﹣6=2×4+b解得,b=﹣14把P(4,﹣6)代入y=kx﹣3解得,k=﹣把b=﹣14,k=﹣代入kx﹣3>2x+b得﹣x﹣3>2x﹣14解得x<4.故答案为:x<4.17.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,则阴影部分的面积等于π.【考点】正多边形和圆;扇形面积的计算.【分析】先正确作辅助线,构造扇形和等边三角形、直角三角形,分别求出两个弓形的面积和两个三角形面积,即可求出阴影部分的面积.【详解】解:连接OC、OD、OE,OC交BD于M,OE交DF于N,过O作OZ⊥CD于Z,∵六边形ABCDEF是正六边形,∴BC=CD=DE=EF,∠BOC=∠COD=∠DOE=∠EOF=60°,由垂径定理得:OC⊥BD,OE⊥DF,BM=DM,FN=DN,∵在Rt△BMO中,OB=4,∠BOM=60°,∴BM=OB×sin60°=2,OM=OB•cos60°=2,∴BD=2BM=4,∴△BDO的面积是×BD×OM=×4×2=4,同理△FDO的面积是4;∵∠COD=60°,OC=OD=4,∴△COD是等边三角形,∴∠OCD=∠ODC=60°,在Rt△CZO中,OC=4,OZ=OC×sin60°=2,∴S扇形OCD﹣S△COD=﹣×4×2=π﹣4,∴阴影部分的面积是:4+4+π﹣4+π﹣4=π,故答案为:π.18.如图,∠AOB=45°,点O1在OA上,OO1=7,⊙O1的半径为2,点O2在射线OB上运动,且⊙O2始终与OA相切,当⊙O2和⊙O1相切时,⊙O2的半径等于3或15.【考点】圆与圆的位置关系.【分析】作O2C⊥OA于点C,连接O1O2,设O2C=r,根据⊙O1的半径为2,OO1=7,表示出O1O2=r+2,O1C=7﹣r,利用勾股定理列出有关r的方程求解即可.【详解】解:如图,作O2C⊥OA于点C,连接O1O2,设O2C=r,∵∠AOB=45°,∴OC=O2C=r,∵⊙O1的半径为2,OO1=7,∴O1O2=r+2,O1C=7﹣r,∴(7﹣r)2+r2=(r+2)2,解得:r=3或15,故答案为:3或15.三、解答题(本大题共8个小题,满分66分)19.(6分)先化简,再求值:÷(x﹣),其中x为数据0,﹣1,﹣3,1,2的极差.【考点】分式的化简求值;极差.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出数据的极差确定出x,代入计算即可求出值.【详解】解:原式=÷=•=,当x=2﹣(﹣3)=5时,原式==.20.(7分)2014年世界杯足球赛6月12日﹣7月13日在巴西举行,某初中学校为了了解本校2400名学生对本次世界杯的关注程度,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和关注程度,分别绘制了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“特别关注”、“一般关注”、“偶尔关注”都统计成关注,那么全校关注本届世界杯的学生大约有多少名?(3)在这次调查中,初四年级共有甲、乙、丙、丁四人“特别关注”本届世界杯,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.【分析】(1)根据条形统计图中的数据,找出中位数即可;(2)根据扇形统计图找出关注本届世界杯的百分比,乘以2400即可得到结果;(3)画树状图得出所有等可能的情况数,找出恰好是甲与乙的情况,即可确定出所求概率.【详解】解:(1)四个年级被抽出的人数由小到大排列为30,40,50,80,∴中位数为=45(人);(2)根据题意得:2400×(1﹣45%)=1320(人),则该校关注本届世界杯的学生大约有1320人;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是甲与乙的情况有2种,则P==.21.(7分)小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.【考点】解直角三角形的应用-坡度坡角问题.【分析】延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出∠CAD=180°﹣∠ODB﹣∠ACD=90°,解Rt△ACD,得出AD=AC•tan∠ACD=米,CD=2AD=3米,再证明△BOD是等边三角形,得到BD=OD=OA+AD=4.5米,然后根据BC=BD﹣CD即可求出浮漂B与河堤下端C之间的距离.【详解】解:延长OA交BC于点D.∵AO的倾斜角是60°,∴∠ODB=60°.∵∠ACD=30°,∴∠CAD=180°﹣∠ODB﹣∠ACD=90°.在Rt△ACD中,AD=AC•tan∠ACD=•=(米),∴CD=2AD=3米,又∵∠O=60°,∴△BOD是等边三角形,∴BD=OD=OA+AD=3+=4.5(米),∴BC=BD﹣CD=4.5﹣3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.22.(8分)如图,点A(m,6),B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.(1)求m,n的值并写出反比例函数的表达式;(2)连接AB,在线段DC上是否存在一点E,使△ABE的面积等于5?若存在,求出点E的坐标;若不存在,请说明理由.【考点】待定系数法求反比例函数解析式;反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【分析】(1)根据题意列出关于m与n的方程组,求出方程组的解得到m与n的值,确定出A与B 坐标,设出反比例函数解析式,将A坐标代入即可确定出解析式;(2)存在,设E(x,0),表示出DE与CE,连接AE,BE,三角形ABE面积=四边形ABCD面积﹣三角形ADE面积﹣三角形BCE面积,求出即可.【详解】解:(1)由题意得:,解得:,∴A(1,6),B(6,1),设反比例函数解析式为y=,将A(1,6)代入得:k=6,则反比例解析式为y=;(2)存在,设E(x,0),则DE=x﹣1,CE=6﹣x,∵AD⊥x轴,BC⊥x轴,∴∠ADE=∠BCE=90°,连接AE,BE,则S△ABE=S四边形ABCD﹣S△ADE﹣S△BCE=(BC+AD)•DC﹣DE•AD﹣CE•BC=×(1+6)×5﹣(x﹣1)×6﹣(6﹣x)×1=﹣x=5,解得:x=5,则E(5,0).23.(8分)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A,B两种型号车的进货和销售价格如下表:A型车B型车进货价格(元)1100 1400销售价格(元)今年的销售价格2000【考点】一次函数的应用;分式方程的应用;一元一次不等式的应用.【分析】(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A行车a辆,则B型车(60﹣x)辆,获利y元,由条件表示出y与a之间的关系式,由a的取值范围就可以求出y的最大值.【详解】解:(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由题意,得,解得:x=1600.经检验,x=1600是元方程的根.答:今年A型车每辆售价1600元;(2)设今年新进A行车a辆,则B型车(60﹣x)辆,获利y元,由题意,得y=(1600﹣1100)a+(2000﹣1400)(60﹣a),y=﹣100a+36000.∵B型车的进货数量不超过A型车数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣100a+36000.∴k=﹣100<0,∴y随a的增大而减小.∴a=20时,y最大=34000元.∴B型车的数量为:60﹣20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.24.(8分)如图,AB是⊙O的直径,延长AB至P,使BP=OB,BD垂直于弦BC,垂足为点B,点D 在PC上.设∠PCB=α,∠POC=β.求证:tanα•tan=.25.(10分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB 上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF 的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.【考点】四边形综合题.【分析】(1)AE=DF,AE⊥DF.先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)是.四边形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90°,DE=CF,所以△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因为∠CDF+∠ADF=90°,∠DAE+∠ADF=90°,所以AE⊥DF;(3)成立.由(1)同理可证AE=DF,∠DAE=∠CDF,延长FD交AE于点G,再由等角的余角相等可得AE⊥DF;(4)由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,再由勾股定理可得OC的长,再求CP即可.【详解】解:(1)AE=DF,AE⊥DF.理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.∵DE=CF,∴△ADE≌△DCF.∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是;(3)成立.理由:由(1)同理可证AE=DF,∠DAE=∠CDF延长FD交AE于点G,则∠CDF+∠ADG=90°,∴∠ADG+∠DAE=90°.∴AE⊥DF;(4)如图:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,在Rt△ODC中,OC=,∴CP=OC﹣OP=.26.(12分)如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA=,抛物线y=ax2﹣ax﹣a经过点B(2,),与y轴交于点D.(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;(3)延长BA交抛物线于点E,连接ED,试说明ED∥AC的理由.【考点】二次函数综合题.【分析】(1)把点B的坐标代入抛物线的表达式即可求得.(2)通过△AOC∽△CFB求得OC的值,通过△OCD∽△FCB得出DC=CB,∠OCD=∠FCB,然后得出结论.(3)设直线AB的表达式为y=kx+b,求得与抛物线的交点E的坐标,然后通过解三角函数求得结果.【详解】解:(1)把点B的坐标代入抛物线的表达式,得=a×22﹣2a﹣a,解得a=,∴抛物线的表达式为y=x2﹣x﹣.(2)连接CD,过点B作BF⊥x轴于点F,则∠BCF+∠CBF=90°∵∠ACB=90°,∴∠ACO+∠BCF=90°,∴∠ACO=∠CBF,∵∠AOC=∠CFB=90°,∴△AOC∽△CFB,∴=,设OC=m,则CF=2﹣m,则有=,解得m=m=1,∴OC=OF=1,当x=0时y=﹣,∴OD=,∴BF=OD,∵∠DOC=∠BFC=90°,∴△OCD∽△FCB,∴DC=CB,∠OCD=∠FCB,∴点B、C、D在同一直线上,∴点B与点D关于直线AC对称,∴点B关于直线AC的对称点在抛物线上.(3)过点E作EG⊥y轴于点G,设直线AB的表达式为y=kx+b,则,解得k=﹣,∴y=﹣x+,代入抛物线的表达式﹣x+=x2﹣x﹣.解得x=2或x=﹣2,。

相关文档
最新文档