中考数学复习同步检测(35)
2024年深圳市中考数学复习与检测试卷(原卷版+答案解析)
2024年深圳市中考数学复习与检测试卷一、选择题(本大题共有10个小题,每小题3分,共30分)1. 2024的倒数是()A.12024B.2024 C.2024−D.12024−2. 下列图形中,既是轴对称又是中心对称图形的是()A.B.C.D.3.随着2024年2月第十四届全国冬季运动会临近,吉祥物成为焦点,某日通过搜索得出相关结果约为16000000个.将“16000000”用科学记数法表示为()A.61610×B.71.610×C.81.610×D.80.1610×4 . 某校10名篮球队员进行投篮命中率测试,每人投篮10次,实际测得成绩记录如下表:命中次数(次) 5 6 7 8 9人数(人) 1 4 3 1 1由上表知,这次投篮测试成绩的中位数与众数分别是()A.6,6 B.6.5,6 C.6,6.5 D.7,65 . 实数,a b在数轴上的对应点的位置如图所示,下列关系式不成立的是()A .55a b −>−B .66a b >C .a b −>−D .0a b −>6 . 某学校将国家非物质文化遗产——“抖空竹”引入阳光特色大课间,某同学“抖空竹”的一个瞬间如图所示,若将左图抽象成右图的数学问题:在平面内,AB CD ,DC 的延长线交AE 于点F ;若7535BAE AEC ∠=°∠=°,,则DCE ∠的度数为( )A .120°B .115°C .110°D .75°7 . 《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是: 用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( )A . 4.521y x x y −= −=B . 4.521x y x y −= −=C . 4.512x y y x −= −= D . 4.512y x y x −= −= 8. 赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为( )A. 20mB. 28mC. 35mD. 40m9 . 如图,DE 是ABC 的中位线,点F 在DB 上,2DF BF =.连接EF 并延长,与CB 的延长线相交于点M .若6BC =,则线段CM 的长为( )A. 132B. 7C. 152D. 810. 如图,已知开口向上的抛物线2y ax bx c ++与x 轴交于点()1,0−,对称轴为直线1x =.下列结论:①0abc >;②20a b +=;③若关于x 的方程210ax bx c +++=一定有两个不相等的实数根;④13a >. 其中正确的个数有( )A .1个B .2个C .3个D .4个二、填空题(本大题共有5个小题,每小题4分,共20分)11. 分解因式:2441a a −+= .12. 一只不透明的袋中装有2个白球和n 个黑球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到白球的概率为14,那么黑球的个数是 . 13. 已知关于x 的一元二次方程()2230x m x −++=的一个根为1,则m = .14. 如图,正六边形ABCDEF 的边长为2,以顶点A 为圆心,AB 的长为半径画圆,则图中阴影部分的面积为 .15 . 如图,图1是一盏台灯,图2是其侧面示意图(台灯底座高度忽略不计),其中灯臂40cm AC =,灯罩30cm CD =,灯臂与底座构成的60CAB ∠=°. CD 可以绕点C 上下调节一定的角度.使用发现:当CD 与水平线所成的角为30°时,台灯光线最佳, 则此时点D 与桌面的距离是________.(结果精确到1cm1.732)三、解答题(本大题共有6个小题,共50分)16. 计算:101()2cos 451)4π−°−+−−−. 17. 先化简,再求值:(1﹣31x +)÷2441x x x −++,其中x =3. 18. “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D 粽的人数;(4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.19. 某厂家生产一批遮阳伞,每个遮阳伞的成本价是20元,试销售时发现:遮阳伞每天的销售量y x (元)之间是一次函数关系,当销售单价为28元时,每天的销售量为260个;当销售单价为30元时,每天的销售量为240个.(1) 求遮阳伞每天的销出量y (个)与销售单价x (元)之间的函数关系式;(2) 设遮阳伞每天的销售利润为w (元),当销售单价定为多少元时,才能使每天的销售利润最大?最大利润是多少元?20. 已知:如图,在ABC 中,AB BC =,D 是AC 中点,BE 平分ABD ∠交AC 于点E ,点O 是AB 上一点,O 过B 、E 两点,交BD 于点G ,交AB 于点F .(1)试说明直线AC 与O 的位置关系,并说明理由;(2)当2BD =,1sin 2C =时,求⊙O 的半径. 21. 如图,抛物线2y x bx c =−++交x 轴于A ,B 两点,交y 轴于点C ,直线BC 的表达式为3y x =−+.(1) 求抛物线的表达式;(2) 动点D 在直线BC 上方的二次函数图像上,连接DC ,DB ,设四边形ABDC 的面积为S ,求S 的最大值;(3) 当点E 为抛物线的顶点时,在x 轴上是否存在一点Q ,使得以A ,C ,Q 为顶点的三角形与BCE 相似?若存在,请求出点Q 的坐标.22. 综合与探究在矩形ABCD 的CD 边上取一点E ,将BCE 沿BE 翻折,使点C 恰好落在AD 边上的点F 处.(1) 如图①,若2BC BA =,求CBE ∠的度数;(2) 如图②,当5AB =,且10AF FD ⋅=时,求EF 的长; (3) 如图③,延长EF ,与ABF ∠的角平分线交于点M ,BM 交AD 于点N ,当NF AN FD =+时,请直接写出AB BC的值.2024年深圳市中考数学复习与检测试卷(解析版)一、选择题(本大题共有10个小题,每小题3分,共30分)1. 2024的倒数是()A.12024B.2024 C.2024−D.12024−【答案】A【分析】本题主要考查了倒数,解题的关键是熟练掌握倒数的定义,“乘积为1的两个数互为倒数”.【详解】解:2024的倒数1 2024.故选:A.2. 下列图形中,既是轴对称又是中心对称图形的是()A.B.C.D.【答案】A【分析】根据轴对称图形与中心对称图形的概念结合各图形的特点求解.【详解】A、是轴对称图形,也是中心对称图形,故本选项符合题意,B、是轴对称图形,不是中心对称图形,故本选项不合题意,C、不是轴对称图形,是中心对称图形,故本选项不合题意,D、是轴对称图形,不是中心对称图形,故本选项不合题意,故选:A.3.随着2024年2月第十四届全国冬季运动会临近,吉祥物成为焦点,某日通过搜索得出相关结果约为16000000个.将“16000000”用科学记数法表示为()A .61610×B .71.610×C .81.610×D .80.1610×【答案】B 【分析】本题考查了科学记数法;根据科学记数法计算方法计算即可;解题的关键是掌握科学记数法的计算方法.【详解】解:716000000 1.610=×4 . 某校10名篮球队员进行投篮命中率测试,每人投篮10次,实际测得成绩记录如下表: 命中次数(次)5678 9人数(人) 1 4 3 1 1由上表知,这次投篮测试成绩的中位数与众数分别是( )A .6,6B .6.5,6C .6,6.5D .7,6【答案】B【分析】根据中位数及众数可直接进行求解.【详解】解:由题意得:中位数为67 6.52+=,众数为6; 故选B .5.实数,a b 在数轴上的对应点的位置如图所示,下列关系式不成立的是( )A .55a b −>−B .66a b >C .a b −>−D .0a b −>【答案】C【分析】根据数轴判断出,a b 的正负情况以及绝对值的大小,然后解答即可.【详解】由图可知,0b a <<,且b a <,∴55a b −>−,66a b >,a b −<−,0a b −>,∴关系式不成立的是选项C .故选C .6 . 某学校将国家非物质文化遗产——“抖空竹”引入阳光特色大课间,某同学“抖空竹”的一个瞬间如图所示,若将左图抽象成右图的数学问题:在平面内,AB CD ,DC 的延长线交AE 于点F ;若7535BAE AEC ∠=°∠=°,,则DCE ∠的度数为( )A .120°B .115°C .110°D .75°【答案】C 【分析】根据平行线的性质得到75EFC BAE ∠=∠=°,根据三角形外角性质求解即可. 【详解】解:∵AB CD ,75BAE ∠=°, ∴75EFC BAE ∠=∠=°, ∵35DCE AEC EFC AEC ∠=∠+∠∠=°,,∴110DCE ∠=°, 故选:C .7 . 《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( )A . 4.521y x x y −= −=B . 4.521x y x y −= −=C . 4.512x y y x −= −= D . 4.512y x y x −= −= 【答案】D【分析】设木头长为x 尺,绳子长为y 尺,根据“用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】解:设木头长为x 尺,绳子长为y 尺, 由题意可得 4.512y x y x −= −=. 故选:D .8. 赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为( )A. 20mB. 28mC. 35mD. 40m【答案】B【解析】 【分析】由题意可知,37m AB =,7m =CD ,主桥拱半径R ,根据垂径定理,得到37m 2AD =,再利用勾股定理列方程求解,即可得到答案.【详解】解:如图,由题意可知,37m AB =,7m =CD ,主桥拱半径R ,()7m OD OC CD R ∴=−=−,OC 是半径,且OC AB ⊥,137m 22AD BD AB ∴===, 在Rt △ADO 中,222AD OD OA +=,()2223772R R ∴+−= , 解得:156528m 56R =≈, 故选B9 . 如图,DE 是ABC 的中位线,点F 在DB 上,2DF BF =.连接EF 并延长,与CB 的延长线相交于点M .若6BC =,则线段CM 的长为( )A. 132B. 7C. 152D. 8【答案】C【解析】【分析】根据三角形中中位线定理证得DE BC ∥,求出DE ,进而证得DEF BMF ∽,根据相似三角形的性质求出BM ,即可求出结论.【详解】解:DE 是ABC 的中位线,DE BC ∴∥,116322DE BC ==×=, DEF BMF ∴ ∽, ∴22DEDF BF BM BF BF===, 32BM ∴=, ∴152CM BC BM =+=. 故选:C .10.如图,已知开口向上的抛物线2y ax bx c ++与x 轴交于点()1,0−,对称轴为直线1x =.下列结论: ①0abc >;②20a b +=;③若关于x 的方程210ax bx c +++=一定有两个不相等的实数根;④13a >. 其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】D 【分析】利用二次函数图象与性质逐项判断即可.【详解】解:∵抛物线开口向上,∴0a >,∵抛物线与y 轴交点在负半轴,∴0c <,∵对称轴为12b x a=−=, ∴20b a −=<,∴0abc >,故①正确;∵抛物线的对称轴为=1x , ∴12b a−=, ∴2=0a b +,故②正确;∵函数2y ax bx c ++与直线1y =−有两个交点.∴关于x 的方程210ax bx c +++=一定有两个不相等的实数根,故③正确;∵=1x −时,0y =即0a b c −+=, ∵=2b a ,∴20a a c ++=,即3a c −=, ∵1c <−,∴31a −<−, ∴13a >, 故④正确,故选:D二、填空题(本大题共有5个小题,每小题4分,共20分)11.分解因式:2441a a −+= .【答案】()221a −【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的两倍,本题可以用完全平方公式.【详解】原式()()2222221121a a a =−××+=−. 故答案为:()221a −.12. 一只不透明的袋中装有2个白球和n 个黑球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到白球的概率为14,那么黑球的个数是 . 【答案】6【分析】根据概率公式建立分式方程求解即可【详解】∵袋子中装有2个白球和n 个黑球,摸出白球的概率为14, ∴22n +=14, 解得n =6,经检验n =6是原方程的根,故答案为:613. 已知关于x 的一元二次方程()2230x m x −++=的一个根为1,则m = . 【答案】2【分析】把1x =代入方程计算即可求出m 的值.【详解】解:把1x =代入方程得:1(2)30m −++=, 去括号得:1230m −−+=, 解得:2m =,故答案为:214. 如图,正六边形ABCDEF 的边长为2,以顶点A 为圆心,AB 的长为半径画圆,则图中阴影部分的面积为 .【答案】43π 【分析】延长FA 交⊙A 于G ,如图所示:根据六边形ABCDEF 是正六边形,AB =2,利用外角和求得∠GAB =360606°=°,再求出正六边形内角∠FAB =180°-∠GAB =180°-60°=120°, 利用扇形面积公式代入数值计算即可.【详解】解:延长FA 交⊙A 于G ,如图所示:∵六边形ABCDEF 是正六边形,AB =2,∴∠GAB =360606°=°, ∠FAB =180°-∠GAB =180°-60°=120°, ∴2120443603603FAB n r S πππ××===扇形, 故答案为43π. 15 . 如图,图1是一盏台灯,图2是其侧面示意图(台灯底座高度忽略不计),其中灯臂40cm AC =,灯罩30cm CD =,灯臂与底座构成的60CAB ∠=°. CD 可以绕点C 上下调节一定的角度.使用发现:当CD 与水平线所成的角为30°时,台灯光线最佳,则此时点D 与桌面的距离是________.(结果精确到1cm 1.732)【答案】50cm【分析】过点D 作DH AB ⊥,交AB 延长线于点H ,过点C 作CF AH ⊥于F ,过点C 作CE DH ⊥于E , 分别在Rt ACF 和Rt CDE △中,利用锐角三角函数的知识求出CF 和DE 的长,再由矩形的判定和性质得到CF EH =,最后根据线段的和差计算出DH 的长,问题得解.【详解】过点D 作DH AB ⊥,交AB 延长线于点H ,过点C 作CF AH ⊥于F ,过点C 作CE DH ⊥于E ,在Rt ACF 中,60A ∠=°,40cm AC =, ∵sin CF A AC=∴sin 60CF AC =°=,在Rt CDE △中,30DCE ∠=°,30cm CD =, ∵sin DE DCE CD∠=, ∴sin 3015DE CD=°=(cm), ∵DH AB ⊥,CF AH ⊥,CE DH ⊥,∴四边形CFHE 是矩形,∴CF EH =,∵DH DE EH =+,∴1550DH DE EH +≈(cm).答:点D 与桌面的距离约为50cm .三、解答题(本大题共有6个小题,共50分)16. 计算:101()2cos 451)4π−°−+−−−. 【答案】2【详解】分析:代入45°角的余弦函数值,结合“负整数指数幂和零指数幂的意义及绝对值的意义”进行计算即可.详解:原式=)4211−++=411−+,=2−.17. 先化简,再求值:(1﹣31x +)÷2441x x x −++,其中x =3. 【答案】1,12x −. 【分析】先将括号里的分式通分,然后按照分式减法法则计算,再根据分式除法法则进行运算即可将分式化简,最后代入字母取值进行计算即可求解. 【详解】解:原式=()2213111x x x x x −+ −÷ +++, =()22112x x x x −+⋅+−, =12x −, 当x =3时,原式=11 32=−.18.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.【答案】(1)600;(2)见解析;(3)3200;(4)1 4【详解】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2)如图,(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人.(4)如图;共有12种等可能的情况,其中他第二个吃到的恰好是C粽的有3种,∴P(C粽)=312=14.答:他第二个吃到的恰好是C粽的概率是14.19.某厂家生产一批遮阳伞,每个遮阳伞的成本价是20元,试销售时发现:遮阳伞每天的销售量y(个)与销售单价x(元)之间是一次函数关系,当销售单价为28元时,每天的销售量为260个;当销售单价为30元时,每天的销售量为240个.(1)求遮阳伞每天的销出量y(个)与销售单价x(元)之间的函数关系式;(2)设遮阳伞每天的销售利润为w(元),当销售单价定为多少元时,才能使每天的销售利润最大?最大利润是多少元?【答案】(1)y=﹣10x+540;(2)当销售单价定为37元时,才能使每天的销售利润最大,最大利润是2890元【分析】(1)设函数关系式为y =kx +b ,由销售单价为28元时,每天的销售量为260个; 销售单价为30元时,每天的销量为240个;列方程组求解即可;(2)由每天销售利润=每个遮阳伞的利润×销售量,列出函数关系式,再由二次函数的性质求解即可;【详解】(1)解:设一次函数关系式为y =kx +b ,由题意可得:2602824030k b k b =+ =+, 解得:10540k b =− =, ∴函数关系式为y =﹣10x +540;(2)解:由题意可得:w =(x ﹣20)y =(x ﹣20)(﹣10x +540)=﹣10(x ﹣37)2+2890,∵﹣10<0,二次函数开口向下,∴当x =37时,w 有最大值为2890,答:当销售单价定为37元时,才能使每天的销售利润最大,最大利润是2890元.20. 已知:如图,在ABC 中,AB BC =,D 是AC 中点,BE 平分ABD ∠交AC 于点E ,点O 是AB 上一点,O 过B 、E 两点,交BD 于点G ,交AB 于点F .(1)试说明直线AC 与O 的位置关系,并说明理由;(2)当2BD=,1sin2C=时,求⊙O的半径.解:(1)证明:如图,连接OE,∵AB=BC且D是BC中点,∴BD⊥AC,∵BE平分∠ABD,∴∠ABE=∠DBE,∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠DBE,∴OE∥BD,∴OE⊥AC,∴AC与⊙O相切.(2)∵BD=2,sinC=12,BD⊥AC,∴BC=4,∴AB=4,设⊙O的半径为r,则AO=4-r,∵AB =BC ,∴∠C =∠A ,∴sinA =sinC =12,∵AC 与⊙O 相切于点E ,∴OE ⊥AC∴sinA =142r r =−, ∴r =43, 经检验:r =43是原方程的解. 21. 如图,抛物线2y x bx c =−++交x 轴于A ,B 两点,交y 轴于点C ,直线BC 的表达式为3y x =−+.(1) 求抛物线的表达式;(2) 动点D 在直线BC 上方的二次函数图像上,连接DC ,DB ,设四边形ABDC 的面积为S ,求S 的最大值;(3) 当点E 为抛物线的顶点时,在x 轴上是否存在一点Q ,使得以A ,C ,Q 为顶点的三角形与BCE 相似?若存在,请求出点Q 的坐标.【答案】(1)223y x x =−++ (2)758(3)存在,Q 的坐标为()0,0或()9,0 【分析】(1)用待定系数法即可求解;(2)由DFB AOC COFD SS S S =++△△梯形,即可求解;(3)分AQC ECB ∽、QAC ECB △∽△、ACQ ECB △∽△三种情况,分别求解即可.【详解】(1)解:∵直线BC 的表达式为3y x =−+, 当0x =时,得:3y =,∴()0,3C ,3OC =,当0y =时,得:03x =−+,解得:3x =, ∴()3,0B ,3OB =,∵抛物线2y x bx c =−++交x 轴于A ,B 两点,交y 轴于点C , ∴9303b c c −++= =, 解得:23b c = = , ∴抛物线的表达式为223y x x =−++; (2)过点D 作DF x ⊥轴于点F ,设()2,23D x x x −++,∴(),0F x ,OF x =,3BF x ,∴223DF x x =−++,∵抛物线223y x x =−++交x 轴于A ,B 两点, 当0y =时,得:2230x x −++=,解得:11x =−,23x =,∴()1,0A −,1OA =,∵DFB AOC COFD SS S S =++△△梯形()()()2211132332313222x x x x x x =−+++−−+++×× 23375228x =−−+ , 又∵302−<,即抛物线的图像开口向下, ∴当32x =时,S 有最大值,最大值为758.(3)存在,理由:∵()222314y x x x =−++=−−+, ∴()1,4E ,又∵()0,3C ,()3,0B ,∴CEBC =BE =∴((22222220CE BC BE ++===,∴90ECB ∠=°, 如图所示,连接AC ,①()1,0A −,()0,3C ,∴1OA =,3OC =,AC === ∴13AO EC CO BC ==, 又∵90AOC ECB ∠=∠=°, ∴AOC ECB ∽,∴当点Q 的坐标为()0,0时,AQC ECB ∽; ②过点C 作CQ AC ′⊥,交x 轴与点'Q , ∵Q AC ′ 为直角三角形,CO AQ ⊥′,∴90ACQ AOC ′∠=∠=°,90AQ C CAQ ACO ′′∠=°−∠=∠, ∴ACQ AOC ′ ∽,又∵AOC ECB ∽,∴ACQ ECB ′ ∽,∴AQ EB AC EC ′== 解得:10AQ ′=,∴()9,0Q ′;③过点A 作AQ AC ⊥,交y 轴与点Q ,∵ACQ 为直角三角形,CA AQ ⊥,∴90QAC AOC ∠=∠=°,90ACQ CQA OAQ ∠=°−∠=∠, ∴QAC AOC △∽△,又∵AOC ECB ∽,∴QAC ECB △∽△,∴QC AC EB CB ==, 解得:103QC =, ∴103Q −,, 此时点Q 在y 轴上,不符合题意,舍去. 综上所述:当在x 轴上的点Q 的坐标为()0,0或()9,0时,以A ,C ,Q 为顶点的三角形与BCE 相似.22. 综合与探究在矩形ABCD 的CD 边上取一点E ,将BCE 沿BE 翻折,使点C 恰好落在AD 边上的点F 处.(1) 如图①,若2BC BA =,求CBE ∠的度数;(2) 如图②,当5AB =,且10AF FD ⋅=时,求EF 的长; (3) 如图③,延长EF ,与ABF ∠的角平分线交于点M ,BM 交AD 于点N ,当NFAN FD =+时,请直接写出AB BC的值. 【答案】(1)15° (2)3 (3)35 【分析】(1)由折叠的性质得出BC BF =,FBE CBE ∠=∠,根据直角三角形的性质得出30AFB ∠=°,可求出答案;(2)证明FAB EDF △∽△,由相似三角形的性质得出AF AB DE DF=,可求出2DE =,得出3EF =,由勾股定理求出DF =AF ,即可求出BC 的长; (3)过点N 作NG BF ⊥于点G ,证明NFG BFA △∽△,12NG FG NF BA FA BF ===,设AN x =,FG y =,则2AF y =,由勾股定理得出()()()222222x y x y +=+,解出43y x =,则可求出答案. 【详解】(1)解:∵四边形ABCD 是矩形, ∴90C ∠=°,∵将BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处,∴BC BF =,FBE CBE ∠=∠,90C BFE ∠=∠=°, ∵2BC AB =,∴2BF AB =,∴30AFB ∠=°, ∵四边形ABCD 是矩形,∴AD BC ∥,∴30CBF AFB ∠=∠=°, ∴1152CBE FBC ∠=∠=°,∴CBE ∠的度数为15°;(2)∵将BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处,∴90BFE C ∠=∠=°,FE CE =, 又∵矩形ABCD 中,90A D ∠=∠=°, ∴90AFB DFE∠+∠=°,90DEF DFE ∠+∠=°, ∴AFB DEF ∠=∠, ∴FAB EDF △∽△, ∴AF AB DE DF=, ∴AF DF AB DE ⋅=⋅,∵10AF DF ⋅=,5AB =, ∴2DE =,∴523CE DC DE =−=−=,∴3EFEC ==, ∴EF 的长为3;(3)过点N 作NG BF ⊥于点G ,∵NFAN FD =+, ∴1122NF AD BC ==, ∵BC BF =,∴12NF BF =, ∵NFG BFA ∠=∠,90NGF BAF ∠=∠=°, ∴NFG BFA △∽△, ∴12NG FG NF BA FA BF ===, 设AN x =,∵BN 平分ABF ∠,AN AB ⊥,NG BF ⊥,∴NGAN x ==,2AB x =, 在Rt BNG △和Rt BNA 中, NG NA BN BN= = , ∴()Rt Rt HL BNG BNA △≌△∴2BGAB x ==, 设FG y =,则2AF y =, 在Rt BAF △中,222AB AF BF +=, ∴()()()222222x y x y +=+, 解得:43y x =, ∴410233BF BG GF x x x =+=+=, ∴231053AB AB x BC BF x ===, ∴AB BC 的值为35.。
中考数学复习同步检测(40)(模拟题4及答案)-中考数学试题、初中数学中考试卷、模拟题、复习资料-初
中考数学复习同步检测(40)(模拟题4及答案)-中考数学试题、初中数学中考试卷、模拟题、复习资料-初中数学试卷-试卷下载---------------------------------------2005年中考数学复习同步检测(40)(模拟题4)姓名2005届初中升学数学样卷(四)一.填空题:(每小题3分,共30分)1.的倒数是= ;2.今年我市参加中考的考生预计约将达到人,这个数字用科学记数法并保留两位有效数字表示为人;3.分解因式:;4.如果梯形的中位线长为9cm,下底的长为12cm,那么这个梯形的上底长等于cm;5.如图,AB是⊙O的直径,弦,垂足为E,如果AB=10,CD=8,那么AE的长为;6.一个面积为144的正方形中,阴影部分中的小直角三角形的斜边长是;7.抛物线的顶点坐标是;对称轴是;8.以三角形的三个顶点为顶点的平行四边形可以作个;9.甲、乙两班举行电脑汉字输入速度比赛,参加学生每分钟输入汉字的个数经统计计算后填入下表:班级参加人数中位数方差平均字数甲55149191135乙55151110135某同学根据上表分析得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀);③甲班成绩的波动情况比乙班的波动大。
上述结论正确的是;10.国家对电信资费进行了调整,区内(主城区或县内)的收费标准是月租费25元,首次3分钟0.2元(不足3分钟按3分钟计),以后每分钟0.1元(不足1分钟计为1分钟),若本月该用户区内电话累计通话100分钟,共通话30次,问他本月至少要缴纳区内话费元;二. 选择题(每小题4分,共24分)题号111213141516答案11. 计算:的结果是(A)(B)(C)(D)以上答案都不对12.河水的平均深度为2.5米,一个身高1.5米但不会游泳的人下水后肯定会(A)肯定会淹死(B)不一定会淹死(C)淹不死(D)以上答案都不对13. 下列各图经过折叠不能围成一个正方体的是(A)(B)(C)(D)14. 为了解我市初三女生的体能状况,从某校初三的甲、乙两班中各抽取27名女生进行一分钟跳绳次数测试,测试数据统计结果如右表。
2年中考1年模拟备战2020年中考数学精品专题35 方案设计问题(原卷版)
第七篇专题复习篇专题35方案设计问题知识点名师点晴方程组与不等式二元一次方程的整数解能利用二元一次方程的整数解确定具体的方案设计一元一次不等式(组)的正整数解利用不等式或不等式组的特殊解求实际问题一次函数的应用一次函数的增减性利用一次函数的增减性和最值问题,确定最优化设计方案归纳1:方程(组)与不等式的综合问题基础知识归纳:二元一次方程(组)的应用、一元一次不等式(组)的应用基本方法归纳:方程组与不等式组的应用关键是理解题意,找出等量关系和不等关系列出对应的二元一次方程组或一元一次不等式(组)即可.注意问题归纳:解二元一次方程组的基本方法是代入消元法和加减消元法,注意二元一次方程有无数个解,但其正整数解有有限个.【例1】(2019湖北省天门市,第8题,3分)把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有()A.3种B.4种C.5种D.9种【例2】(2019四川省巴中市,第20题,8分)在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.(1)请问甲、乙两种物品的单价各为多少?(2)如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?归纳2:一次函数的方案设计基础知识归纳:一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.基本方法归纳:一次函数的增减性只与k有关系,与b的取值无关.注意问题归纳:一次函数的方案设计经常与方程组或不等式(组)在一起考查,解决一次函数的最值的关键是确定自变量的取值范围以及函数的增减性.【例3】(2019湖南省常德市,第21题,7分)某生态体验园推出了甲、乙两种消费卡,设入园次数为x 时所需费用为y元,选择这两种卡消费时,y与x的函数关系如图所示,解答下列问题(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)请根据入园次数确定选择哪种卡消费比较合算.【2019年题组】一、选择题1.(2019四川省绵阳市,第9题,3分)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种2.(2019湖南省永州市,第9题,4分)某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4:5:4:2,各基地之间的距离之比a:b:c:d:e=2:3:4:3:3(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为()A.甲B.乙C.丙D.丁3.(2019黑龙江省绥化市,第8题,3分)小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种4.(2019黑龙江省鸡西市,第19题,3分)某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有()A.4种B.3种C.2种D.1种5.(2019黑龙江省齐齐哈尔市,第8题,3分)学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有()A.3种B.4种C.5种D.6种二、填空题三、解答题6.(2019四川省内江市,第26题,12分)某商店准备购进A、B两种商品,A种商品毎件的进价比B种商品每件的进价多20元,用3000元购进A种商品和用1800元购进B种商品的数量相同.商店将A种商品每件的售价定为80元,B种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A、B两种商品共40件,其中A种商品的数量不低于B种商品数量的一半,该商店有几种进货方案?(3)端午节期间,商店开展优惠促销活动,决定对每件A种商品售价优惠m(10<m<20)元,B种商品售价不变,在(2)条件下,请设计出销售这40件商品获得总利润最大的进货方案.7.(2019四川省广元市,第20题,8分)某水果商计划购进甲、乙两种水果进行销售,经了解,甲种水果的进价比乙种水果的进价每千克少4元,且用800元购进甲种水果的数量与用1000元购进乙种水果的数量相同.(1)求甲、乙两种水果的单价分别是多少元?(2)该水果商根据该水果店平常的销售情况确定,购进两种水果共200千克,其中甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过3420元,购回后,水果商决定甲种水果的销售价定为每千克20元,乙种水果的销售价定为每千克25元,则水果商应如何进货,才能获得最大利润,最大利润是多少?8.(2019广安,第22题,8分)为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A型节能灯和5只B型节能灯共需50元,2只A型节能灯和3只B型节能灯共需31元.(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A型节能灯的数量不超过B型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.9.(2019四川省泸州市,第21题,7分)某出租汽车公司计划购买A型和B型两种节能汽车,若购买A型汽车4辆,B型汽车7辆,共需310万元;若购买A型汽车10辆,B型汽车15辆,共需700万元.(1)A型和B型汽车每辆的价格分别是多少万元?(2)该公司计划购买A型和B型两种汽车共10辆,费用不超过285万元,且A型汽车的数量少于B型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.10.(2019莱芜区,第22题,10分)某蔬菜种植基地为提高蔬菜产量,计划对甲、乙两种型号蔬菜大棚进行改造,根据预算,改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元.(1)改造1个甲种型号和1个乙种型号大棚所需资金分别是多少万元?(2)已知改造1个甲种型号大棚的时间是5天,改造1个乙种型号大概的时间是3天,该基地计划改造甲、乙两种蔬菜大棚共8个,改造资金最多能投入128万元,要求改造时间不超过35天,请问有几种改造方案?哪种方案基地投入资金最少,最少是多少?11.(2019滨州,第22题,12分)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.12.(2019山东省烟台市,第21题,9分)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?13.(2019浙江省温州市,第23题,12分)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.14.(2019湖北省荆州市,第23题,10分)为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为辆;(3)学校共有几种租车方案?最少租车费用是多少?15.(2019湖南省张家界市,第18题,6分)某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵?(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案?16.(2019湖南省衡阳市,第24题,8分)某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?17.(2019湖南省郴州市,第22题,8分)某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?18.(2019贵州省遵义市,第21题,12分)某校计划组织240名师生到红色教育基地开展革命传统教育活动.旅游公司有A,B两种客车可供租用,A型客车每辆载客量45人,B型客车每辆载客量30人.若租用4辆A型客车和3辆B型客车共需费用10700元;若租用3辆A型客车和4辆B型客车共需费用10300元.(1)求租用A,B两型客车,每辆费用分别是多少元;(2)为使240名师生有车坐,且租车总费用不超过1万元,你有哪几种租车方案?哪种方案最省钱?19.(2019黑龙江省鸡西市,第27题,10分)为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.(1)求购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,设购买甲种文具x 个,求有多少种购买方案?(3)设学校投入资金W元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?【2018年题组】一、选择题1.(2018黑龙江省齐齐哈尔市,第8题,3分)某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有()A.1种B.2种C.3种D.4种2.(2018黑龙江省,第19题,3分)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种二、填空题3.(2018黑龙江省绥化市,第19题,3分)为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有种购买方案.三、解答题4.(2018湖北省咸宁市,第22题,10分)为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.5.(2018湖北省武汉市,第20题,8分)用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B 型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x为整数).(1)求A、B型钢板的购买方案共有多少种?(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若将C、D型钢板全部出售,请你设计获利最大的购买方案.6.(2018湖北省黄石市,第23题,8分)某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)请填写下表(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.7.(2018黑龙江省牡丹江市,第28题,9分)某书店现有资金7700元,计划全部用于购进甲、乙、丙三种图书共20套,其中甲种图书每套500元,乙种图书每套400元,丙种图书每套250元.书店将甲、乙、丙三种图书的售价分别定为每套550元,430元,310元.设书店购进甲种图书x套,乙种图书y套,请解答下列问题:(1)请求出y与x的函数关系式(不需要写出自变量的取值范围);(2)若书店购进甲、乙两种图书均不少于1套,则该书店有几种进货方案?(3)在(1)和(2)的条件下,根据市场调查,书店决定将三种图书的售价作如下调整:甲种图书的售价不变,乙种图书的售价上调a(a为正整数)元,丙种图书的售价下调a元,这样三种图书全部售出后,所获得的利润比(2)中某方案的利润多出20元,请直接写出书店是按哪种方案进的货及a的值.8.(2018黑龙江省,第27题,10分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?9.(2018黑龙江,第27题,10分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?10.(2018内蒙古通辽市,第24题,9分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?11.(2018四川省内江市,第21题,10分)某商场计划购进A,B两种型号的手机,已知每部A型号手机的进价比每部B型号手机进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是2100元.商场用50000元共购进A型号手机10部,B型号手机20部.(1)求A、B两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购A、B两种型号的手机共40部,且A型号手机的数量不少于B型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?12.(2018四川省凉山州,第27题,14分)结合西昌市创建文明城市要求,某小区业主委员会决定把一块长80m,宽60m的矩形空地建成花园小广场,设计方案如图所示,阴影区域为绿化区(四块绿化区为全等的直角三角形),空白区域为活动区,且四周出口宽度一样,其宽度不小于36m,不大于44m,预计活动区造价60元/m2,绿化区造价50元/m2,设绿化区域较长直角边为xm.(1)用含x的代数式表示出口的宽度;(2)求工程总造价y与x的函数关系式,并直接写出x的取值范围;(3)如果业主委员会投资28.4万元,能否完成全部工程?若能,请写出x为整数的所有工程方案;若不能,请说明理由.(4)业主委员会决定在(3)设计的方案中,按最省钱的一种方案,先对四个绿化区域进行绿化,在实际施工中,每天比原计划多绿化11m2,结果提前4天完成四个区域的绿化任务,问原计划每天绿化多少m2.13.(2018四川省巴中市,第28题,8分)学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.14.(2018天津市,第23题,10分)某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(1)根据题意,填写下表:(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(3)当x>20时,小明选择哪种付费方式更合算?并说明理由.15.(2018山东省济宁市,第19题,7分)“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?16.(2018山东省潍坊市,第23题,11分)为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有A,B两种型号的挖掘机,已知3台A 型和5台B型挖掘机同时施工一小时挖土165立方米;4台A型和7台B型挖掘机同时施工一小时挖土225立方米.每台A型挖掘机一小时的施工费用为300元,每台B型挖掘机一小时的施工费用为180元.(1)分别求每台A型,B型挖掘机一小时挖土多少立方米?(2)若不同数量的A型和B型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元,问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?17.(2018山东省莱芜市,第22题,10分)快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?18.(2018广州,第21题,12分)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A 型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.一、选择题1.(2019门头沟区二模)团体购买某公园门票,票价如表,某单位现要组织其市场部和生产部的员工游览该公园.如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元.那么该公司这两个部门的人数之差为()购票人数1~5051~100100以上门票价格13元/人11元/人9元/人A.20B.35C.30D.402.(2019克东县二模)某宾馆有单人间、双人间和三人间三种客房供游客租住,某旅行团有18人准备同时租用这三种客房共9间,且每个房间都住满,则租房方案共有()种.A.3B.4C.5D.63.(2019潜江一模)“六一”儿童节快到了,小芳的妈妈计划用1000元在唯品会购买价格分别为80元和。
中考数学复习《二次函数与平行四边形的综合》专项检测卷(附带答案)
中考数学复习《二次函数与平行四边形的综合》专项检测卷(附带答案)学校:___________班级:___________姓名:___________考号:___________1.如图1,已知抛物线2y x x =-++23与x 轴交于点A ,B ,与y 轴交于点C ,点D 是抛物线的顶点,点M 是直线BC 上方抛物线上的一动点.(1)求抛物线的顶点D 的坐标和直线BC 的解析式;(2)如图1,连接AM 交BC 于点P ,若12MP AP =,求此时点M 的坐标; (3)如图2,直线y x b =+与抛物线交于A ,E 两点,过顶点D 作DF y ∥轴,交直线AE 于点F .若点G 是抛物线上一动点,试探究在直线AE 上是否存在一点H ,使得以点D ,F ,G ,H 为顶点的四边形是平行四边形,若存在,请直接写出点H 的坐标,若不存在,请说明理由.2.如图,二次函数28y ax bx =++的图像与坐标轴分别交于点A 、B 、C ,5cos B 和:1:2AO BO =.(1)求二次函数表达式;(2)在第二象限内,线段AC 上有一点D ,作PD 平行于x 轴,交二次函数图像于点P 、H (点P 在y 轴左侧),作点Q 与点P 关于y 轴对称.①证明:四边形AQHO 为平行四边形;①若ACQ 是以AC 为斜边的直角三角形,求点P 的横坐标;①直角坐标系内存在点(,)E x y ,使得四边形CQEH 为平行四边形,请直接写出y 与x 的函数表达式,并求当线段PD 的长度最大时,点E 的坐标.3.如图,二次函数()20y x bx c b =-++>的图像与x 轴分别交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点()0,4C ,二次函数的最大值为254,P 为直线BC 上方抛物线上的一动点.(1)求抛物线和直线BC 的解析式;(2)如图1,过点P 作PD BC ⊥,垂足为D ,连接CP .是否存在点P ,使以点C ,D ,P 为顶点的三角形与AOC 相似?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)如图2,点Q 也是直线BC 上方抛物线上的一动点(点Q 在点P 的左侧),分别过点P ,Q 作y 轴的平行线,分别交直线BC 于点M ,N ,连接PQ .若四边形PQNM 是平行四边形,且周长l 最大时,求l 的最大值及相应的点P 的横坐标.4.已知,如图1,在平行四边形ABCD 中,对角线6cm AC =,8cm BC =和10cm AB =,如图2,点G 从点B 出发,沿BC 方向匀速运动,速度为1cm/s ,过点G 作GH BC ⊥交AB 于点H ;将平行四边形ABCD 沿对角线AC 剪开,DEF 从图1的位置与点G 同时出发,沿射线BC 方向匀速运动,速度为2cm /s ,当点G 停止运动时,DEF 也停止运动.设运动时间为()08t t <≤,解答下列问题:(1)当t 为何值时,点F 在线段GD 的垂直平分线上?(2)设四边形AHGD 的面积为()2cm S ,试确定S 与t 的函数关系式,并求S 的最大值; (3)连接EG ,试求当AG 平分BAC ∠时,四边形EGFD 与四边形AHGE 面积之比.5.如图,已知抛物线与x 轴相交于A ,B 两点,与y 轴交于点C ,且()3,0A -,()1,0B 和()0,3C ,顶点为P .(1)求抛物线的解析式;(2)若以A ,C ,P ,M 为顶点的四边形是平行四边形,求点M 的坐标.6.已知抛物线23y ax bx =++与x 轴交于点()1,0A -,点()3,0B ,与y 轴交于点C ,顶点为点D ,点P 为抛物线上的一个动点(1)求抛物线的解析式;(2)若过点C 的直线交线段AB 于点E ,且:3:5ACE CEB S S =,求线段CE 的长是多少?(3)当点P 在第一象限时,连接PC 和PB ,求PBC 面积的最大值时多少?(4)若点Q 在x 轴上,当以点D ,C ,P ,Q 为顶点的四边形是平行四边形时,请求出点P 的坐标.7.如图,抛物线21262y x x =--与x 轴相交于点A 、点B ,与y 轴相交于点C .(1)请直接写出点A ,B ,C 的坐标;(2)点()(),06P m n m <<在抛物线上,当m 取何值时,PBC 的面积最大?并求出PBC 面积的最大值.(3)点F 是抛物线上的动点,作FE AC ∥交x 轴于点E ,是否存在点F ,使得以A 、C 、E 、F 为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F 的坐标;若不存在,请说明理由.8.综合与探究:如图1,已知抛物线2142y x x =-++与x 轴相交于A ,B 两点(点A 在点B 的左侧),与y 轴相交于点C ,直线BD 与y 轴相交于点D ,交线段AC 于点E ,且27BD DE =.(1)求A ,B ,C 三点的坐标;(2)求直线BD 的函数表达式;(3)如图2,若抛物线的对称轴l 与直线BD 交于点P ,试探究,在平面内是否存在一点Q ,使以点A ,C ,P ,Q 为顶点的四边形为平行四边形.若存在,求出点Q 的坐标,若不存在,请说明理由.9.综合与探究如图,抛物线214433y x x =--+与x 轴交于A ,B 两点(点B 在点A 的左侧),与y 轴交于点C ,P 是直线BC 上方抛物线上一动点.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式.(2)连接PB,PC,求PBC面积的最大值及此时点P的坐标.(3)在(2)的条件下,若F是抛物线对称轴上一点,在抛物线上是否存在点Q,使以B,F,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.10.如图1,在平面直角坐标系xOy中,抛物线223=-++与x轴分别交于点A和点B,与y轴交于点C,y x x连接BC.(1)求ABC的面积;(2)如图2,点P是该抛物线上一个动点,并沿抛物线从点B运动至点A,连接PO、PB,并以PO、PB为边作平行四边形POQB.①当平行四边形POQB的面积为9时,求点P的坐标;①直接写出在整个运动过程中,点Q与线段BC的最大距离是.11.如图,在平面直角坐标系中,抛物线24y ax bx =++交y 轴于点A ,交x 轴于点()6,0B -和点()2,0C ,连接AB 、AQ 、BQ ,BQ 与y 轴交于点N .(1)求抛物线表达式;(2)点713Q ⎛⎫ ⎪⎝⎭,,点M 在x 轴上,点E 在平面内,且四边形ANEM 是平行四边形. ①求点E 的坐标;①设射线AM 与BN 相交于点P ,交BE 于点H ,将BPH 绕点B 旋转一周,旋转后的三角形记为11BP H △,求11BP 的最小值.12.如图,已知二次函数2y x bx c =++的图象与x 轴交于点(1,0)A ,(3,0)B 与y 轴交于点C .(1)求二次函数的解析式;(2)点E 是二次函数第四象限图象上一点,过点E 作x 轴的垂线,交直线BC 于点D ,求四边形AEBD 面积的最大值及此时点E 的坐标;(3)若点P 为抛物线上的一点,点F 为对称轴上的一点,且以点A ,B ,P ,F 为顶点的四边形为平行四边形,直接写出点P 的坐标.13.如图,抛物线22y x x c =-++与x 轴交于A ,B 两点,与y 轴交于点C ,直线3y x =-+经过B ,C 两点.(1)求抛物线的函数表达式.(2)已知P 为抛物线22y x x c =-++上一点(不与点B 重合),若点P 关于x 轴对称的点P '恰好在直线BC 上,求点P 的坐标;(3)在(2)的条件下,以AB 为对角线画平行四边形AMBP ',将抛物线22y x x c =-++的顶点沿直线y x b=-+平移得到的抛物线恰好经过点M ,求平移后的抛物线的函数表达式.14.如图,抛物线22(0)y x x m m =-++>与y 轴交于A 点,其顶点为D .直线122y x m =--分别与x 轴、y 轴交于B 、C 两点,与直线AD 相交于E 点.(1)求A 、D 的坐标(用m 的代数式表示);(2)将ACE 沿着y 轴翻折,若点E 的对称点P 恰好落在抛物线上,求m 的值;(3)抛物线22(0)y x x m m =-++>上是否存在一点P ,使得以P 、A 、C 、E 为顶点的四边形是平行四边形?若存在,求此抛物线的解析式;若不存在,请说明理由.15.若直线5y x =-与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C -.(1)求二次函数的解析式;(2)若点P 为直线AB 下方抛物线上一点,过点P 作直线AB 的垂线,垂足为E ,作PF y ∥轴交直线AB 于点F ,求线段PF 最大值及此时点P 的坐标;(3)将抛物线沿x 轴的正方向平移2个单位长度得到新抛物线y ',Q 是新抛物线y '与x 轴的交点(靠近y 轴),N 是原抛物线对称轴上一动点,在新抛物线上存在一点M ,使得以M 、N 、B 、Q 为顶点的四边形是平行四边形,请直接写出符合条件的点M 的坐标.参考答案:1.(1)()1,4D 3y x =-+(2)点M 的坐标的()1,4或()2,3(3)存在,点H 的坐标为()0,1或()2,3或117317++⎝⎭,或117317--⎝⎭,2.(1)228y x x =-++ (2)①12-①21102y x =-+ (4,2)E3.(1)抛物线的解析式为234y x x =-++,直线BC 的解析式为4y x =-+(2)点P 的坐标为1846,525⎛⎫ ⎪⎝⎭或12136,525⎛⎫ ⎪⎝⎭(3)l 的最大值为12,相应的点P 的横坐标224.(1)2 (2)23924(08)8S t t t =-++<≤ (3)168955.(1)223y x x =--+(2)()2,1-- ()4,1- ()2,76.(1)223y x x =-++;(3)278;(4)点P 的坐标为()11-或()11-或()1或()1.7.(1)()2,0A - ()6,0B ()0,6C -;(2)3m =,PBC 面积的最大值272;(3)存在,()2+或()2-或()4,6-.8.(1)()2,0A - ()4,0B ()0,4C (2)1433y x =-+ (3)()3,3-或()1,3--或()3,59.(1)()()2060A B -,,, ()04C , 243y x =+ (2)PBC 的面积最大值为9,此时点P 的坐标为()35-,(3)713⎛⎫ ⎪⎝⎭,或753⎛⎫- ⎪⎝⎭,或()73--,10.(1)6(2)①(0,3)或(2,3);212 11.(1)214433y x x =--+ (2)①()2,2E --;①6212.(1)243y x x =-+; (2)94,33,24⎛⎫- ⎪⎝⎭; (3)点P 的坐标为2,1或()4,3或()0,3.13.(1)223y x x =-++(2)(2,5)P --.(3)2(6)1y x =---14.(1)()()0,,1,1A m D m + (2)32m = (3)2524y x x =-++或2124y x x =-++15.(1)245y x x =--(2)PF 有最大值254,点P 的坐标为53524,⎛⎫- ⎪⎝⎭ (3)满足条件的点M 的坐标有()4,9M -或()6,5-或()2,27-。
中考数学复习专题综合过关检测—分式方程及应用(含解析)
中考数学复习专题综合过关检测—分式方程及应用(含解析)(考试时间:90分钟,试卷满分:100分)一、选择题(本题共10小题,每小题3分,共30分)。
1.(2023•天涯区一模)把分式方程﹣=1化为整式方程正确的是()A.1﹣(1﹣x)=1B.1+(1﹣x)=1C.1﹣(1﹣x)=x﹣2D.1+(1﹣x)=x﹣2【答案】D【解答】解:方程变形得:+=1,去分母得:1+(1﹣x)=x﹣2,故选:D.2.(宝应县二模)初三(1)班在今年的植树节领有平均每人植树6棵的任务,如果只由女同学完成,每人应植树15棵,如果只由男同学完成,每人应植树的棵数为()A.9B.10C.12D.14【答案】B【解答】解:设单独由男生完成,每人应植树x棵.那么根据题意可得出方程:,解得:x=10.检验得x=10是方程的解.因此单独由男生完成,每人应植树10棵.故选:B.3.(2023•邵阳县一模)分式方程=的解是()A.x=3B.x=﹣1C.x=1D.x=﹣3【答案】D【解答】解:去分母得,3(x+1)=2x,去括号得,3x+3=2x,移项得,x=﹣3,检验:把x=﹣3代入x(x+1)=﹣3(﹣3+1)=6≠0,∴x=﹣3是原方程的解,故选:D.4.(2023•武威三模)在创建文明城市的进程中,某市为美化城市环境,计划种植树木50万棵,由于志愿者的加入,实际每天植树比原计划多30%,结果提前2天完成任务,设原计划每天植树x万棵,由题意得到的方程是()A.B.C.D.【答案】A【解答】解:由题意可得,=2,故选:A.5.(2023•龙江县校级三模)若关于x的分式方程无解,则a的值为()A.0B.1C.﹣1或0D.0或1【答案】D【解答】解:,方程两边同时乘以x﹣2,得1﹣a=2ax﹣4a,移项、合并同类项,得2ax =3a +1,∵方程无解,∴2a =0或=2,解得a =0或a =1.故选:D .6.(2023•环翠区一模)若关于x 的分式方程﹣1=有增根,则a 的值为()A .﹣3B .3C .2D .﹣【答案】A【解答】解:方程两边都乘以(x ﹣2)得:6﹣(x ﹣2)=﹣ax ,解得:x =,∵方程有增根,∴x ﹣2=0,∴x =2,∴=2,解得:a =﹣3.故选:A .7.(2023•东港区校级三模)某班级为做好疫情防控,班委会决定拿出班费中的a 元给同学们购买口罩,由于药店对学生购买口罩每包优惠2元,结果比原计划多买了5包口罩.设原计划购买口罩x 包,则依题意列方程为()A .B .C .D .【答案】B【解答】解:设原计划购买口罩x 包,则实际购买口罩(x +5)包,依题意得:=+2.故选:B.8.(2023•吴桥县校级模拟)“若关于x 的方程无解,求a的值.”尖尖和丹丹的做法如下:尖尖:去分母得:ax=12+3x﹣9,移项得:ax﹣3x=12﹣9,合并同类项得:(a﹣3)x=3,∵原方程无解,∴a﹣3=0,∴a=3.丹丹:去分母得:ax=12+3x﹣9,移项,合并同类项得:(a﹣3)x=3,解得:x=,∵原方程无解,∴x为增根,∴3x﹣9=0,解得x=3,∴=3,解得a=4.下列说法正确的是()A.尖尖对,丹丹错B.尖尖错,丹丹对C.两人都错D.两人的答案合起来才对【答案】D【解答】解:去分母得:ax=12+3x﹣9,移项,合并同类项得:(a﹣3)x=3,∵原方程无解,∴x为增根或a﹣3=0,当3x﹣9=0,解得x=3,此时=3,解得a=4;当a﹣3=0,解得a=3;综上所述:a的值为3或4,故选:D.9.(2023•义乌市模拟)若分式的值为1,则x的值是()A.5B.4C.3D.1【答案】A【解答】解:根据题意得:=1,去分母得:x﹣2=3,解得:x=5,检验:把x=5代入得:x﹣2≠0,∴分式方程的解为x=5.故选:A.10.(2023•黄埔区校级二模)在正数范围内定义一种运算“※”,其规定则为a※b=,如2※4=,根据这个规则,则方程3※(x+1)=1的解为()A.B.1C.﹣1D.﹣【答案】A【解答】解:由题意得:3※(x+1)=.∵3※(x+1)=1,∴.∴x+1+3=3(x+1).∴x+4=3x+3.∴﹣2x=﹣1.∴x=.当x=时,3(x+1)≠0.∴这个方程的解为x=.故选:A.二、填空题(本题共6题,每小题2分,共12分)11.(2023•柳州三模)分式方程的解是x=﹣2.【答案】x=﹣2.【解答】解:,方程两边都乘x(x﹣3),得2(x﹣3)=5x,解得:x=﹣2,检验:当x=﹣2时,x(x﹣3)≠0,所以x=﹣2是分式方程的解.故答案为:x=﹣2.12.(2023•梁山县模拟)“孔子周游列国”是流传很广的故事.有一次他和学生到离他们住的驿站30里的书院参观,学生步行出发1小时后,孔子坐牛车出发,牛车的速度是步行的1.5倍,孔子和学生们同时到达书院,设学生步行的速度为每小时x里,则可列方程为.【答案】.【解答】解:设学生步行的速度为每小时x里,则牛车的速度是每小时1.5x里,∵学生早出发1小时,孔子和学生们同时到达书院,∴,故答案为:.13.(2023•建湖县一模)关于x的分式方程=2的解为正数,则a的取值范围是a<4且a≠2.【答案】a<4且a≠2.【解答】解:去分母得:1﹣(a﹣1)=2(x﹣1),解得:x=2﹣a,由分式方程的解为正数,得到2﹣a>0,且2﹣a≠1,解得:a<4且a≠2,故答案为a<4且a≠2.14.(2023•盐田区二模)当x=﹣8时,分式的值为2.【答案】﹣8.【解答】解:根据题意得:=2,去分母得:x﹣2=2(x+3),解得:x=﹣8,检验:把x=﹣8代入得:x+3≠0,∴分式方程的解为x=﹣8,则当x=﹣8时,分式的值为2.故答案为:﹣8.15.(2023•市北区三模)甲、乙两人同时从学校出发,去距离学校15千米的农场参加劳动.甲的速度是乙的1.2倍,结果甲比乙早到10分钟,求甲和乙的速度各是多少?设乙的速度为x千米/小时,则根据题意可列方程为.【答案】.【解答】解:设乙的速度为x千米/小时,则甲的速度为1.2x千米/小时,根据题意得:.故答案为:.16.(2023•九龙坡区校级模拟)若关于x的不等式组有且仅有四个整数解,关于y的分式方程+=1有整数解,则符合条件的所有整数a的和是﹣10.【答案】﹣10,【解答】解:关于x的不等式组整理得,∵关于x的不等式组有且仅有四个整数解,∴1≤<2,∴﹣8<a≤﹣3,解分式方程得y=且≠2,∵关于y的分式方程有整数解,且a为整数,∴符合条件的所有整数a为﹣7,﹣3,∴符合条件的所有整数a的和为:﹣7﹣3=﹣10.故答案为:﹣10.三、解答题(本题共7题,共58分)。
2015届苏科版中考数学复习课件(第35课时_概率)
1 2 3
第35课时┃ 概率
方法点析
(1)此类问题中,需要通过列表或画树状图,逐一分析、 判断,列举出所有等可能的结果,再找出符合条件的结果, 即可求出相关条件下的概率;(2)判断游戏是否公平的依据是 比较双方在同一规则下获胜的概率是否相等.若概率相等, 则公平;若概率不相等,则不公平.
考点聚焦
归类探究
回归教材
第35课时┃ 概率
1 解:(1)P(抽到数字 3)= . 4 (2)解法一:画树状图:
由树状图可知,共有 12 种机会均等的情况,其中满足点(x,y) 2 2 在函数 y=x图像上的情况有 2 种, ∴P(点在函数 y=x的图像上) 2 1 = = . 12 6
考点聚焦
归类探究
命题角度: 概率与代数、几何、函数等学科内容的综合.
考点聚焦
归类探究
回归教材
第35课时┃ 概率
例 5 [2013· 泉州] 四张小卡片上分别写有数字 1,2,3,4, 它们除数字外没有任何区别,现将它们放在盒子里搅匀. (1)随机地从盒子里抽取一张,求抽到数字 3 的概率; (2)随机地从盒子里抽取一张,将数字记为 x,不放回再抽取 第二张,将数字记为 y.请你用画树状图或列表的方法表示所有等 2 可能的结果,并求出点(x,y)在函数 y=x图像上的概率.
例 3 [2014· 盐城] 如图 35-1 所示,可以自由转动的转盘被 3 等分,指针落在每个扇形内的机会均等. (1) 现随机转动转盘一次,停止后,指针指向 1 的概率为 __________; (2)小明和小华利用这个转盘做游戏,若采用下列游戏规则, 你认为对双方公平吗?请用列表或画树状图的方法说明理由.
考点聚焦
归类探究
中考数学《一元二次方程》专题复习检测试卷
中考数学《一元二次方程》专题复习检测试卷一.单项选择题(共15小题,每小题3分,共45分)1.下列方程中,是一元二次方程的是( )A .3(1+x )2=3x 2+7B .3(1+x )2=x (3x +7)C .px 2+x ﹣4=x (px ﹣1)D .2x 2=02.若关于x 的方程mx m ﹣1+(m ﹣3)x +5=0是一元二次方程,那么m 的值为( )A .m =3B .m =2C .m =1D .m ≠03.一元二次方程2x 2﹣2x =1的一次项系数和常数项依次是( )A .﹣2和﹣1B .﹣2和1C .2和﹣1D .2和14.如果关于x 的一元二次方程(a ﹣2)x 2+3x +|a |﹣2=0的常数项为0,那么a 的值一定是( )A .2B .﹣2C .2或﹣2D .05.已知m 是方程x 2﹣x ﹣2=0的一个根,则代数式m 2﹣m +2022的值等于( )A .2024B .2022C .2023D .20216.已知x =﹣1是一元二次方程x 2+mx =3的一个解,则m 的值是( )A .0或2B .2C .0D .﹣27.方程x 2=4的解是( )A .±√2B .√2C .±2D .28.一元二次方程x 2﹣3=0的根是( )A .x =±√3B .x =√3C .x =3D .x =09.用配方法解方程x 2+7x ﹣5=0,变形后的结果正确的是( )A .(x +72)2=694 B .(x +72)2=294 C .(x −72)2=694 D .(x −72)2=29410.用配方法解方程x 2+4x ﹣1=0,配方后的方程是( )A .(x +2)2=5B .(x ﹣2)2=3C .(x ﹣2)2=5D .(x +2)2=311.对于实数a ,b ,定义运算“※”:a ※b =a 2﹣2b ,例如:5※1=52﹣2×1=23.若x ※x =﹣1,则x 的值为( )A .1B .0C .0或1D .1或﹣112.如果a是一元二次方程x2﹣3x﹣5=0的较小的根,那么下面对a的估值一定正确的是()A.﹣1.5<a<﹣1B.2<a<3C.﹣4<a<﹣3D.4<a<513.方程(x+2)(x﹣3)=0的解是()A.x=2B.x=﹣3C.x1=﹣2,x2=3D.x1=2,x2=﹣314.一元二次方程(x﹣1)(x﹣2)=0的一个解是x=2,则另一个解是()A.x=3B.x=2C.x=1D.无法判断15.如果y为实数,且满足等式(y2+m2)2﹣2(y2+m2)=24,那么5(y2+m2)的值一定是()A.6B.30C.36D.12二.填空题(共10小题,每小题3分,共30分)16.若关于x的方程(m+1)x m2+1−3x+2=0是一元二次方程,则m的值是________.17.将一元二次方程2x2=5x﹣3化成一般形式之后,若二次项的系数是2,则一次项系数为________.18.关于x的方程x2+kx+2=0的一个根是1,则k=________.19.方程x2﹣5=0的根是.20.下面是某同学解方程x2+6x﹣16=0的部分运算过程:解:移项,得x2+6x=16,…第一步配方,得x2+6x+9=16+9,…第二步即(x+3)2=25,…第三步两边开平方,得x+3=5,…第四步①该同学的解答从第________步开始出错.②请写出正确的解答过程.21.如果用公式法解关于x的一元二次方程,得到x=−9±√92−4×3×1,那么该一元二次方2×3程是________.22.方程x2=x的解是________.23.实数x、y满足(x2+y2)(x2+y2﹣1)=12,则x2+y2的值为________.24.一元二次方程x2+5x+1=0的根的判别式的值是________.25.写出一个一元二次方程的一般式,使它同时满足以下两个要求:①二次项系数为2,②两根分别为3和−1:________.2三.解答题(共4小题,共75分)26.已知关于x的一元二次方程(m﹣1)x2﹣5x+m2﹣3m+2=0的常数项为0,求m的值.27.已知m是方程2x2﹣7x+1=0的一个根,求代数式m(2m﹣7)+5的值.28.(1)用适当的方法解方程:81(1﹣x)2=64.(2)请你结合生活经验,设计一个问题,使它能利用建立方程模型“100(1﹣x)2=81”来解决.你设计的问题是:.29.阅读材料,并回答问题.小明在学习一元二次方程时,解方程2x2﹣8x+5=0的过程如下:解:2x2﹣8x+5=0.2x2﹣8x=﹣5.①.②x2−4x=−52+4.③x2−4x+4=−52.④(x−2)2=32.⑤x−2=√62.⑥x=2+√62问题:(1)上述过程中,从________步开始出现了错误(填序号).(2)发生错误的原因是:__________.(3)写出这个方程的解:__________.。
中考数学《有理数的大小比较》专题复习检测卷(含答案)
中考数学《有理数的大小比较》专题复习检测卷学校:___________ 姓名:___________ 班级:___________ 考号:___________一、选择题(本大题共8小题,每小题5分,共40分)1.下面是四个地市2020年12月份的日均最低温度:-10℃(a市),-14℃(b市),-5℃(c市),-8℃(d市).其中日均最低温度最高的是()A. a市B. b市C. c市D. d市2.下列式子中成立的是( )A. −|−5|>4B. −3<|−3|C. −|−4|=4D. |−5.5|<53.已知有理数a,b在数轴上的位置如图所示,则下列结论错误的是()A. |a|<1<|b|B. 1<−a<bC. 1<|a|<bD. −b<a<−14.若a为有理数,则下列判断不正确的是()A. 若|a|>0,则a>0B. 若a>0,则|a|>0C. 若a<0,则−a>0D. 若0<a<1,则|a|<15.有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是()A. a+b<0B. a—b<0C. ab>0D. ab>06.若0<x<1,则x,1x,-x的大小关系是()A. 1x <x<−x B. x<−x<1xC. 1x <−x<x D. −x<x<1x7.下列说法正确的是()①0是绝对值最小的有理数;②若|a|=a,则a是正数;③数轴上原点两侧的数互为相反数;④两个负数比较大小,绝对值大的负数反而小A. ①②B. ①④C. ①③D. ③④8.绝对值小于126而大于26的整数有()A. 100个B. 99个C. 198个D. 200个第2页,共3页二、填空题(本大题共5小题,每小题5分,共25分)9. 有理数a ,b ,c 在数轴上的位置如图所示,用“>”或“<”比较出下列式子与“0”的大小:(1)c +a ________0;(2)b +c ________0;(3)b +(-a )________0; (4)c +(-b )________0。
中考数学复习方案(35)数据的收集与整理(27页)
考点聚焦
图35-4 羽毛球 足球 篮球 36 18 b
乒乓球 a
归类探究
排球 12
回归教材
第35课时┃回归教材
解答下列问题: (1)本次调查中的样本容量是________; 120 (2)a=________,b=________; 30 24 (3)估计上述1000名学生中最喜欢羽毛球运动的人数为 ________. 300
能清楚地表示每个项目的具体数目
折线统计图
可以反映数据的变化趋势
考点聚焦
归类探究
回归教材
第35课时┃考点聚焦
特点
频数分布表和频数分布直方图,能直观、清楚地 反映数据在各个小范围内的分布情况 ①计算最大值与最小值的差; ②决定组距与组数(一般取5~12组); ③确定分点,常使分点比数据多一位小数,并且 把第一组的起点稍微减小一点; ④列频数分布表; ⑤用横轴表示各分段数据,纵轴反映各分段数据 的频数,小长方形的高表示频数,绘制频数分布 直方图
第35课时┃归类探究
(1)请你把表中的数据填写完整; (2)补全频数分布直方图; (3)如果汽车时速不低于60千米即为 违章,则违章车辆共有多少辆?
数据段 30-40 40-50 频数 10 36 频率 0.05 ______
50-60
60-70 70-80
______
______ 20
0.39
______ 0.10
考点聚焦
归类探究
回归教材
第35课时┃归类探究
(1)求这次抽样调查的样本容量,并补全图①; (2)如果测试成绩(等级)为A、B、C级的定为优秀,请估计该企 业参加本次安全生产知识测试成绩(等级)达到优秀的员工的总 人数.
2015中考数学冲刺复习课件 第35课时 一次函数与反比例函数综合题
∴反比例函数的解析式为
;
第35课时 一次函数与反比例函数综合题
【答案】 (2)如图,过点C作CE⊥y轴于点E, 设点C的坐标为 ,则CE=x,OE= ,
过点B作BG⊥x轴于G,作BF⊥y轴于F, 则OF=BG=2,BF=4, ∵直线y=x-2与x轴交于点A ∴点A的坐标为(0,-2),即OA=2 ∴
8.正比例函数y=6x的图象与反比例函数
9.将一次函数y=3x-1的图象沿y轴向上平移3个单位后,得到的图象对应的函
数关系式为 y=3x+2
.
第35课时
一次函数与反比例函数综合题课时作业
10.次越野跑中,当小明跑了1600米时,小刚跑了1400米 ,小明、小刚在此后所跑的路程y(米)与时间t(秒)之 间的函数关系如图,则这次越野跑的全程为 2200 米. 解:设小明的速度为a米/秒,小刚的速度为b米/秒,由题意,得 , 解得:a=2,b=4, ∴这次越野跑的全程为:1600+300×2=2200米.
3.在同一平面直角坐标系中,函数y=mx+m与
(m≠0)的图象可能是( A )
第35课时
像大致是( B )
一次函数与反比例函数综合题课时作业
的图像,则一次函数 的图
4.左下图是反比例函数
5.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以 100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t( 时)的函数关系的大致图象是( C )
,解得k=-2,b=-3,∴一次函数的解析式为y=-2x-3, 的图象过点A(-2,1),∴ ; 或 , ,解得m=-2,
∴反比例函数的解析式为 (2)解方程组 ∴点B的坐标为 ,得:
由图象可知,当-2<x<0或x> 时,一次函数的函数值小于反比例函 数的函数值.
中考数学总复习《线段问题》专项检测卷(附带答案)
中考数学总复习《线段问题》专项检测卷(附带答案)学校:___________班级:___________姓名:___________考号:___________构造2、3倍线段问题类型一利用等腰直角三角形构造含2倍关系的线段问题如图,在Rt△ABC中,∠BAC=90°,∠B=45°,过点A作AD⊥BC于点D.结论:BC=2AC=2AB;AB=AC=2AD=2BD=2D C.看到线段间含2倍关系或已知条件含45°角,等腰直角三角形判断线段数量关系时,考虑运用等腰直角三角形性质进行求解.练习1已知边长为4的正方形ABCD与边长为a(1<a<4)的正方形CFEG的顶点C重合.(1)如图①,若点E在对角线AC上,则AE与BF的数量关系为________;(2)如图②,若∠BCF=α(0<α<30°),请问此时上述结论是否还成立?如成立,写出推理过程,如不成立,说明理由.练习1题图类型二 利用30°角的直角三角形构造含3倍关系的线段问题如图,在Rt △ABC 中,∠ABC =90°,∠C =30°.结论:AB =12AC ;BC =32AC ;BC =3A B. 看到线段间含3、33或已知条件含30°,60°角,直角三角形判断线段数量关系时,考虑运用含30°角的直角三角形性质进行求解.练习2 如图,已知△ABC 和△DCE 中,AB =AC ,DC =DE ,BF =EF ,点B ,C ,E 都在同一直线上,且△ABC 和△DCE 在该直线同侧.若∠BAC =60°,∠CDE =120°.求证:AF =3DF .练习2题图参考答案练习1 解:(1)AE =2BF ;【解法提示】∵四边形ABCD 和四边形CFEG 都是正方形∴∠B =∠CFE =90°,∠FCE =∠BCA =45°,CE =2CF∴AB ∥EF ∴AE BF =CE CF=2 ∴AE =2BF ;(2)上述结论还成立,理由如下: 如解图,连接CE练习1题解图∵∠FCE =∠BCA =45°∴∠BCF =∠ACE =45°-∠ACF =α在Rt △CEF 和Rt △CBA 中CE =2CF ,CA =2CB∴CE CF =CA CB =2 ∴△ACE ∽△BCF∴AE BF =AC CB =2 ∴AE =2BF .练习2 证明:如解图,过点A 作AH ⊥BC 于点H ,过点D 作DJ ⊥EC 于点J .练习2题解图∵AB =AC ,∠BAC =60°∴△ABC 是等边三角形∴BH =CH ,AH =3BH∵DC =DE ,∠CDE =120°∴CJ =JE ,∠DEC =∠DCE =30°∴JE =3DJ∵BF =FE∴HJ =BF =EF∴BH =FJ ,HF =JE∴AH =3FJ ,FH =3DJ∴AH FJ =HF DJ =3 ∵∠AHF =∠FJD =90°∴△AHF∽△FJD∴AFDF=AHFJ=3∴AF=3DF.。
中考数学复习同步检测(35)
中考数学复习同步检测(35)中考数学复习同步检测(35) (新型题2) 姓名一.选择题:1.甲.乙两同学约定游泳比赛规则:甲先游自由泳到泳道中点后改为蛙泳,而乙则是先游蛙泳到泳道中点后改为自由泳.两人同时从泳道起点出发,最后两人同时游到泳道终点.又知甲游自由泳比乙游自由泳速度快,并且二人自由泳均比蛙泳速度快.若某人离开泳道起点的距离s与所用时间t的函数关系可用图象表示,则下列选项中正确的是( )A.甲是图①,乙是图②B.甲是图③,乙是图②C.甲是图①,乙是图④D.甲是图③,乙是图④2.图是正方体的表面展开图,折叠成正方体后,其中哪两个完全相同( )A (1)(2)B (2)(3)C (3)(4)D (2)(4)3._年6月3日中央新闻报道,为鼓励居民节约用水,北京市将出台新的居民用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米4.5元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民某月用水立方米,水费为元,则与的关系用图象表示正确的是4.如图,已知△ABC的六个元素,则下面甲.乙.丙三个三角形中和△AB C全等的图形是( )cA.甲和乙B.乙和丙C.只有乙D.只有丙5.图(1)是一个水平摆放的小正方体木块,图(2).(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是( )A 25B 66 C91D120二.填空题:1.如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它成为轴对称图形:2.如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是;3.用计算器探求 :满足不等式的最小正整数为;4.分析图6①,②,④中阴影部分的分布规律,按此规律在图6③中画出其中的阴影部分是5.用边长为的小正方形搭如下的塔状图形,则第次所搭图形的周长是cm(用含的代数式表示).6.7.8.9.10.求函数的最小值,较合适的数学方法应该是,最小值为;11.水平放置的正方体的六个面分别用〝前面.后面.上面. 下面.左面.右面〞表示.如右图,是一个正方体的平面展开图,若图中的〝似〞表示正方体的前面, 〝锦〞表示右面, 〝程〞表示下面.则〝祝〞. 〝你〞.〝前〞分别表示正方体的______________________.12.13.要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,;三.解答题:14.15.如图,由七个边长为1的正方形组成,过C点作直线交DE于A,交DF于B.⑴若DA =,求DB的长;⑵若DA.DB是方程的两根,求的值;⑶估计AB的长度的范围.16.如图,已知⊙O1经过⊙O2的圆心O2,且与⊙O2相交于A.B两点,点C为弧AO2B 上的一动点(不运动至A.B),连结AC,并延长交⊙O2于点P,连结BP.BC.⑴先按题意将图1补完整,然后操作,观察.图1供操作观察用,操作时可使用量角器与刻度尺,当点C在上运动时,图中有哪些角的大小没有变化.⑵请猜想△BCP的形状,并证明你的猜想(图2供证明用).⑶如图3,当PA经过点O2时,AB=4,BP交⊙O1于D,且PB.DB的长是方程_2+k_+10=0的两个根,求⊙O1的半径.17.。
中考数学复习同步检测(2)(整式)
年中考数学复习同步检测(2)(整式) 姓名一.填空题:1.计算:,______________,= ; 2.化简:= ,= ;3.若与是同类项,则= ;4..计算: ;5.已知,,且,则的值为__ __;6.已知,,则的结果是 ;7.已知,则的值为_____________;8.给出下列程序:且已知当输入的值为1时,输出值为1;输入的值为-1时.输出值为-3。
值为时,输出值为 ;9.则当输入的下面是用棋子摆成的“上”字:第一个“上”字 第二个“上”字 第三个“上”字 如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需用 和 枚棋子;(2)第个“上”字需用 枚棋子.10.已知:,,,…若(a 、b 为正整数),则______=+b a ; 二.选择题: ( )11.下列运算正确的是 ( ) A B C D 12.某工厂一月份产值为a 万元,二月份比一月份增长5%,则二月份产值为 ( ) A.)1(+a ·5%万元 B. 5%万元 C. (1+5%) a 万元 D. (1+5%) a 13.下列运算中,正确的是 ( )A. B. C. D.14.计算的结果是 ( )A .B .C .D .15.下列计算中,正确的是 ( )A 6332)(b a ab = B 3339)3(y x xy = C 2224)2(a a -=- D39±=15.买单价为a 元的体温计n 个,付出b 元,应找回的钱数是 ( ) A )(na b -元 B )(n b -元 C )(b na -元 D )(a b -元_____2=-a a ()-=1222ab a a 25+-35a b a ÷233y x xy ⋅-212y xm -n y x 2-()nm -=⎪⎭⎫ ⎝⎛-÷232214xy y x 2=x 3=y 0<xy y x +2-=a 1=b b a +012=--x x 2005223++-x xOO 6题图30频率x x x 21n 3223222⨯=+8338332⨯=+154415442⨯=+b a b a ⨯=+210106332x x x =+326x x x =÷()62333x x =-132--=⋅x x x 2x x x 236⋅=235222x x x +=()x x 238=()x y x y +=+2224()2432a a a +÷24a a +2a a +42a 22a16.设a 是大于1的实数,若a ,,在数轴上对应点分别记作A ,B ,C ,则A ,B ,C 三点在数轴上自左至右的顺序是 ( )A C ,B ,A B B ,C ,A C A ,B ,CD C ,A ,B 17.下列等式中,一定成立的是 ( )A 22)()(a b b a --=- B 22)(a a =- C 3x ·93x x = D 、5210x xx =A .若0=-b a ,则0==b aB .若0>-b a ,则b a >C .若0<-b a ,则b a <D .若0≠-b a ,则b a ≠ 19.计算))((x y y x ---的结果是 ( )A B C D20.若023=-y x ,则等于 ( )A B C D 或无意义21.当2-=x 时,代数式的值等于 ( )A 9B 1C -9D -1 22.用配方法将二次三项式542++a a 变形,结果是 ( ) A. 1)2(2+-a B. 1)2(2++a C 1)2(2--a D. 1)2(2-+a 23.若1=x 时,代数式13++bx ax 的值为5,则1-=x 时,代数式13++bx ax 的值等于 A 0 B -3 C -4 D -5 ( ) 24.如图,是一个正方体纸盒展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,则A 、B 、C 表示的数依次是 ( )A 、235、、π--B 、235、、π-C 、π、、235-D 235-、、π 三.解答题:25.计算:26.化简:27.化简:28.先化简下面的代数式,再求值: ,其中32+a 312+a 22y x --22y x +-22y x -22y x +yx322332-32122-+-x x ()()()b a b a b a 22622283-÷+)2(2)()2)(2(22xy x y x y x y x --++-+)(2)()()(222cd bc ab d c c b b a +-+-+---)(2)(2y x y y x -+-2,1==y x29.先化简,再求值。
中考数学复习同步检测(30).docx
为. ,内切圆半径为. 13.如图,PA 、PB 分别切OO 于 A 、B, PA = 6 cm, ZAPB = 60°, PO 交 AB 于 C,交。
O 于 D,则 AC= , OD= ; 14.如图11,直线AB 、BC 、CD 分别与OO 相切于E 、F 、G,且AB 〃CD, A 若 OB = 6 cm, OC = 8 ccm 则 ZBOC = , 0O 的半径0 )E BB是. ,BE + CG = 图11D~ 中考数学复习同步检测(30) 姓名(直线与圆的位置关系2)一.填空题:1. 一条弦分圆成2:3两部分,过这条弦的一个端点引远的切线,则所成的两弦切角 为;2. 如图⑴,AB 为。
O 的直径,PB 、PC 分别切。
于B 、C,若ZACE = 38°,则ZP=;3. AABC 内接于。
0, DE 切。
0于B,若ZCBE = 77° ,厢所地的圆心角为100° ,则Z ABC = ;4. 如图⑵,AB 切。
O 于 A, ZBAC = 37° ,则ZAOC-;5. 如图⑶,AABC 内接于。
0, PA 、PB 是切线,A 、B 是切点,AC//PB, ZAPB = 70° , 则ZACB= _________ , ZCAB = _________________ , ZABC= ;6. 如图⑷,BD 为。
O 的直径,AB 、AE 切。
O 于 B 、C, ZBDC = 65°,则ZBAC =;7. 如图⑸,四边形ABCD 内接于。
0, AB 为直径,EF 切。
0于D, ZADE = 43° ,则Z BCD =;8. 如图⑹,直径AB = 8cm, B 到过C 的切线距离为6ccm,则BC =;9. 如图⑺,弦AB 的长等于。
O 的半径,如果C 是AnS 上任意一点,则sinC =[0.c Al • \ 0 )B IL 图⑺图⑸ c 图⑹ D10.圆的外切四边形一定是 形;11. 圆外切梯形的周长为24cm,则它的中位线的长是;12. 直角三角形的两条直角边为5 cm 和12 cm,则此直角三角形的外接圆半径 图⑷PFOA 30°B 45°C 60° 23.四边形中,有内切圆的是D 90°A 24. 平行四边形B 如图,(DO 的半径为2 cm, 菱形C <30 切 AC 于 D, ZACB = 60°,则CE 的长为 2^/3----- cm 3 25.如图,PA 、PB 、DE 分别切圆于A 、B 、C,。
中考数学复习同步检测(31)
中考数学复习同步检测(31)中考数学复习同步检测(31)姓名(圆与圆的位置关系1)一.填空题:1.已知两圆半径R = 5 cm,= 3 cm,则当两圆的圆心距满足时,两圆相交;当满足时,两圆不外离;2.已知两圆外切时,圆心距为12 cm,则两圆的半径分别为.,;当这两圆内含时,圆心距的取值为;3.两圆圆心距,两圆半径的长分别是方程的两个根,则这两圆的位置关系是;4.已知两圆的半径()是方程的两个根,两圆的圆心距为,若,则两圆的位置关系是;5.若半径不相等的两个圆有唯一公共点,则此两圆的公切线有条.6.如果两个圆的半径分别是3cm和5cm,圆心距为7cm,那么这两个圆有条公切线.7.已知:⊙O1的半径为3,⊙O2的半径为4,若⊙O1与⊙O2相外切,则O1O2= .8.两圆相切,圆心距为5,其中一个圆的半径为4,则另一个圆的半径为.9.如图:这是某机械传动部分的示意图,已知两轮的外沿直径分别为2分米和8分米,轴心距为6分米,那么两轮上的外公切线长为分米.10.如果两圆没有公切线,那么这两圆的位置关系是___________;11.两圆半径分别是9和12,两圆的圆心距是26,则两圆的位置关系是_________;12.两圆的半径分别为3和2,当圆心距满足l<<5时,有________条公切线;13.两圆的半径比是5:3,外切时圆心距是32cm的,当两圆内切时,圆心距为________cm;14.若两圆的半径分别为2cm和7cm,圆心距为13cm,则两圆的一条外公切线的长是______cm;二.选择题:15.⊙O和⊙O的半径分别为R.,若 R = 9 cm,= 7 cm,圆心距= 11 cm,则⊙O和⊙O ( )A 外离B内含C相切 D 相交16.⊙O和⊙O半径之比为,当OO= 21 cm时,两圆外切,当两圆内切时,OO的长度应为( )A OO_lt; 3 cmB OO= 3 cmC 3 cm _lt; OO_lt; 21 cmD 以上都不对17.⊙O和⊙O的半径分别为8和5,两圆没有公共点,则圆心距OO的取值范围是( )A OO_gt; 13B OO_lt; 3C 3 _lt; OO_lt; 13D OO_gt;13或 OO_lt; 318.已知两圆的圆心距= 3 cm,两圆的半径分别为方程的两根,则两圆的位置关系是( )A 相交B 相离C 相切D 内含19..若两圆的半径分别为R.(),圆心距为,且,则两圆的位置关系为( )A 不内含B 不相切C 相交D 不相离20.若两圆半径分别为R.(),圆心距为,且,则两圆的位置关系为( )A 内切B 内切或外切C 外切D 相交21.若两圆相交,则这两圆的公切线( )A. 只有一条B. 有两条C. 有三条D. 有四条22.如果两圆的半径分别为3cm和5cm,圆心距为10cm,那么这两个圆的公切线共有( )A. 1条B. 2条C.3条 D. 4条23.如果两圆半径分别为3和7,圆心距为4,那么这两圆的位置关系是( )A. 内含B. 内切C. 相交D.外切24.如图,两个等圆⊙O和⊙O′外切,过O作⊙O′的两条切线OA.OB,A.B是切点,则∠AOB等于( )A. 30°B. 45°C. 60°D. 90°25.如图,⊙O1与⊙O2相交,P是⊙O1上的一点,过P点作两圆的切线,则切线的条数可能是( )A. 1,2B. 1,3C. 1,2,3D. 1,2,3,426.已知两圆外公切线的长为,两圆半径分别为.(≥),若,则两圆的位置关系为( )A. 外离B. 外切C. 相交D. 内切三.解答题:27..已知:如图47-2,⊙O1.⊙O2相交于A.B.PE切⊙O1于P,PA.PB交⊙O2于C.D;求证:CD∥PE;28.已知:如图47-3,⊙O1与⊙O2相交于A.B,若两圆半径分别为17和10,,求AB 的长;29.已知:如图47-4,⊙O1与⊙O2外切于P,AC是过P点的割线交⊙O1于A,交⊙O2于C,BC切⊙O2于C,过点O1作直线AB交BC于B;求证:AB⊥BC;;30.如图,⊙O和⊙O相交于A.B,直线AO交⊙O于C,交⊙O于D,CB的延长线交⊙O 于E,连结DE,若CD = 10,DE = 6,求OO的长;31.如图,⊙O和⊙O相交于A.B两点,过点A作⊙O的切线CF交⊙O于点C,直线CB交⊙O于点D,直线DA交⊙O点E,连结CE,求证:(1)⊿CA E是等腰三角形;(2)。
中考数学复习同步检测(38)(模拟题2及答案)(2)
中考数学复习同步检测(38) (模拟题2) 姓名届初中升学数学样卷(二)一.填空题:(每小题3分,共30分) 1.___________3=-π;2.5月19日,国家邮政局特别发行“万众一心 抗击‘非典’”邮票,收入全部捐赠给卫生部门,用以支持抗击“非典”斗争,其邮票发行量为12500000枚,用科学记数法表示正确的是 ;3.分解因式:=++a ax ax 22 ; 4.函数函数12-+=x x y 中自变量x 的取值范围是 ; 5.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件产品,对其中使用寿命跟踪调查.结果如下:(单位:年) 甲:3,4,5,6,8,8,8,10 乙:4,6,6,6,8,9,12,13 丙:3,3,4,7,9,10,11,12 三个厂家在广告中都称该产品的 使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、众数、中位数中的哪一种集中趋势的特征数: 图A 甲 ,乙 ,丙 ; 6.二次函数x x y 2212+-=,当x 时, 0<y ;且y 随x 的增大而减小; 图B7.两个长、宽各为a 米、b 米的矩形花圃,都修建了形状不同的一条宽为c 米的小路,问:这两条小路的面积是否相等? (填相等或不相等),若相等,面积是 ; 8.五个正整数从小到大排列,若这组数据的中位数是4,唯一众数是5,则这五个正整数的和为 ;9.已知:如图,CD 是⊙O 的直径,AE 切⊙O 于点B ,DC 的延长线交AB 于点A ,∠A =︒20,则∠DBE =_________;10.党的十六大提出全面建设小康社会,加快推进社会主义现代化, 力争国民生产总值到比翻两番。
在本世纪的头二十年 (~),要实现这一目标,以十年为单位计算,设每个十年的国民生产总值的增长率都是x ,那么x 满足的方程为 ; 二.选择题(每小题4分,共24分)在每个小题给出的四个备选答案中,只有一个是符合题目要求的,请把所选答案前的字母填11 12 13 14 15 1611(A ) 9312=⎪⎭⎫⎝⎛- (B ) 632a a a =⋅ (C ) ()63293a a -=-(D )835a a a =+12.将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是、A 矩形B 三角形C 梯形D 菱形13.某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为 =82分,=82分,=245,=190,那么成绩较为整齐的是(A ) 甲班 (B ) 乙班 (C ) 两班一样整齐 (D )无法确定14.某商场的营业额1999年比1998年上升10%,比1999年上升10%,而和连续两年平均每年比上一年降低10%,那么的营业额比1998年的营业额(A ) 降低了2% (B ) 没有变化 (C ) 上升了2% (D ) 降低了1.99%15.下列各图中,每个正方形网格都是由四个边长为1的小正方形组成,其中阴影部分面积为25的是16.某村办工厂今年前5个月生产某种产品的总量c (件)关于时间t (月)的函数图象如图所示,则该厂对这种产品来说(A ) 1月至3月每月生产总量逐月增加,4、5两月每 月生产总量逐月减少(B ) 1月至3月每月生产总量逐月增加,4、5两月每月生产总量与3月份持平(C )1月至3月每月生产总量逐月增加,4、5两月均停止生产 (D )1月至3月每月生产总量不变, 4、5两均停止生产 三.解答题:(96分) 17.(7分)计算 +--)31(3361)21(321--+甲x 乙x 甲2S 乙2S (A ) (B )(D ) 3t(月)c (件)O 512418.(10分)化简求值:12,22121222-=÷--++--x x x xx x x x 其中; .19.(8分)某电视机场生产一种彩色电视机,每台成本3000元,由于该厂不断进行技术改造,连续两年降低成本,到这种彩色电视机成本仅1920元,问平均每年降低成本百分之几?20.(10分)一条对角线平分一个平行四边形的内角,这个平行四边形会是菱形吗?为什么?21.(12分)如图,割线ABC 与⊙O 相交于B 、C 两点,D 为⊙O 上一点,E 为BC 的中点,OE 交BC 于F ,DE 交AC 于G ,∠ADG =∠AGD . ⑴ 求证:AD 是⊙O 的切线;⑵ 如果AB =2,AD =4,EG =2,求⊙O 的半径.22.(9分)如图所示:爬上小山有两条石阶路,(1)哪条路走起来更舒适?(2)运用所学统第21题图 D C E F GB O ·计知识,设计一条舒适的石阶路,简要说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学复习同步检测(35) (新型题2) 姓名
一.选择题:
1.甲、乙两同学约定游泳比赛规则:甲先游自由泳到泳道 中点后改为蛙泳,而乙则是先游蛙泳到泳道中点后改为自 由泳.两人同时从泳道起点出发,最后两人同时游到泳道 终点.又知甲游自由泳比乙游自由泳速度快,并且二人自 由泳均比蛙泳速度快.若某人离开泳道起点的距离s 与所 用时间t 的函数关系可用图象表示,则下列选项中正确 的是 ( )
A .甲是图①,乙是图②
B .甲是图③,乙是图②
C .甲是图①,乙是图④
D .甲是图③,乙是图④
2.图是正方体的表面展开图,折叠成正方体后,其中哪两个完全相同 ( )
A (1)(2)
B (2)(3)
C (3)(4)
D (2)(4)
3.2004年6月3日中央新闻报道,为鼓励居民节约用水,北京市将出台新的居民用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米4.5元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民某月用水x 立方米,水费为y 元,则y 与x 的关系用图象表示正确的是
4.如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的 图形是
( ) A . 甲和乙 B. 乙和丙 C. 只有乙 D. 只有丙 5.图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而
+ ※
◇ ○ × □
(1) (2) (3) (4) A
B
C
D
c
b B a 50º 72º
58º
成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是( )
A 25
B 66
C 91
D 120 二.填空题:
1.如图,由小正方形组成的L 形图中,请你用三种方法分别在下图中添画一个小正方形使它成为轴对称图形:
2.如图,菱形ABCD 中,AB=2,∠BAD=60°,E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值是 ; 3.用计算器探求 :满足不等式
01.011
<-+n
n 的最小正整数 n 为 ; 4.分析图6①,②,④中阴影部分的分布规律,按此规律在图6③中画出其中的阴影部分是
5.用边长为 cm 1 的小正方
形搭如下的塔状图形,则第n 次所搭图形的周长是 cm (用含n 的代数式表示). 6. 7. 8.
第1次 第2次 第3次 第4次 ···
···
(1)
(2)
(3)
9.
10.求函数2
2
1
x x y +
=的最小值,较合适的数学方法应该是 ,最小值为 ; 11. 水平放置的正方体的六个面分别用“前面、后面、上面、
下面、左面、右面”表示.如右图,是一个正方体的平面 展开图,若图中的“似”表示正方体的前面, “锦” 表示右面, “程”表示下面.则“祝”、 “你”、 “前”分别表示正方体的______________________.
12.
13. 要使图中平面展开图按虚线折叠成正方体后,相对面上 两个数之和为6,___________,==y x ;
三.解答题: 14.
15.如图,由七个边长为1的正方形组成,过C 点作直线交DE 于A ,交DF 于
B.
1 2 3
x y (13题) 程 前
你
祝
似
锦
⑴若DA =
2
5
,求DB 的长; ⑵若DA 、DB 是方程07)12(222=-++-k x k x 的两根,求k 的值;
⑶估计AB 的长度的范围.
16.如图,已知⊙O 1经过⊙O 2的圆心O 2,且与⊙O 2相交于A 、B 两点,点C 为弧AO 2B 上的一动点(不运动至A 、B),连结AC ,并延长交⊙O 2于点P ,连结BP 、BC.
⑴先按题意将图1补完整,然后操作,观察.图1供操作观察用,操作时可使用量角器与刻度尺,当点C 在 上运动时,图中有哪些角的大小没有变化.
⑵请猜想△BCP 的形状,并证明你的猜想(图2供证明用).
⑶如图3,当PA 经过点O 2时,AB =4,BP 交⊙O 1于D ,且PB 、DB 的长是方程x 2+kx +10=0的两个根,求⊙O 1的半径.
17.
AO 2B
图3图2图1
P。