化学动力学1
化学反应动力学--第一、二章
i
i
Δni是反应体系中某种组分的物质的量的
产物。 特点:欲测的物理量不随空间位置而变化, 但却随时间而变化。
开放体系流动体系:反应过程中有物质的交 换,即不断补充作用物和取走产物。
特点:体系中某物理量随空间位置而变化, 但流动中某位置的物理量却不随时间而变 化。
流动体系示例图
2. 按参加反应的物质状态分类: 均相反应体系单相反应体系:只有一个相。
上述历程反应的组合为:
H2 + Br2→2HBr
还要注意:有些总反应也是基元反应。
如已知反应:2NO+O2→2NO2是基元反 应。也即该反应从历程上说:是一步完成 的,符合基元反应的定义,是基元反应。
因历程反应的组合构成总包反应。所以 该反应也是总反应。
因此,为了区分,人们引进了简单反应 和复杂反应的概念。
我们说:上述反应满足了热力学条件, 但未满足动力学条件。
如果点火或加催化剂(如铂黑),加热到 800℃以上,则上述反应能在瞬时完成,以 至于发生爆炸。
可见,改变反应条件,可改变了动力学 上的不利情况。
所以从控制化学反应过程而言,化学动 力学的研究是非常重要的。
另外,化学动力学须考虑过程和途径。 化学反应方程式只表示:
(2) 简单反应和复杂反应 描述的对象:总(包)反应。 如果总反应是一步完成的,即是基元反 应的话,则该反应称为简单反应。 如: 2NO+O2→2NO2 如果总反应是分步完成的,即是由若干 个基元反应构成,则该反应为复杂反应。 如:H2 + Br2→2HBr
几个注意点: ✓ 从反应方程式是无法判定一个总包反应
即反应的机理或历程是如何的? 目的:能使我们较好的控制反应的进行。
二、动力学和热力学的关系 研究化学反应,必须考虑二方面的因素: 一是热力学方面的因素;(方向与程度) 二是动力学因素。(反应速率)
第九章-化学动力学基本原理第1期
§9.3 简单级数反应的动力学规律凡是反应速率只与反应物浓度有关,而且反应级数,无论是、、…或n都只是零或正整数的反应,统称为“简单级数反应”。
简单反应都是简单级数反应,但简单级数反应不一定就是简单反应,前已述及的HI气相合成反应就是一例。
具有相同级数的简单级数反应的速率遵循某些简单规律,本节将分析这类反应速率公式的微分形式、积分形式及其特征。
(1)一级反应反应速率与反应物浓度的一次方成正比的反应称为一级反应。
其速率公式可表示为(9.7)式中c为t时刻的反应物浓度。
将上式改写成的形式,积分可得(9.8)B为积分常数,其值可由t = 0时反应物起始浓度c0确定:B = ln c0。
故一级反应速率公式积分形式可表示为(9.9)或(9.10)或(9.11)使用这些公式可求算速率常数k1的数值,只要知道了k1和c0的值,即可求算任意t时刻反应物的浓度。
从(9.8)式可看出,以lnc对t作图应得一直线,其斜率即为k1。
如图9.2所示。
反应物浓度由c0消耗到c=c0/2所需的反应时间,称为反应的半衰期,以t1/2表示。
由(9.9)式可知,一级反应的t1/2表示式为(9.12)可以看出,一级反应的半衰期与反应物起始浓度c0无关。
许多分子的重排反应和热分解反应属一级反应。
还有些反应例如蔗糖水解实际上是二级反应,但由于水溶液中反应物之一H2O大大过量,其浓度在整个反应过程中可视为常数,故表观上表现为一级反应,这类反应称为“准一级反应”。
例题1 30℃时N2O5在CCl4中的分解反应为一级反应,由于N2O4和NO2均溶于CCl4中,只有O2能逸出,用量气管测定不同时刻逸出O2的体积有下列数据:t / s 0 2400 4800 7200 9600 12000 14400 16800 19200V(O2) / cm3 0 15.65 27.65 37.70 45.85 52.67 58.30 63.00 66.8584.85求算此反应的速率常数k1和半衰期t1/2。
化学反应动力学1
反应速率与消耗速率和生成速率
v 1 dcA = 1 dcB = 1 dcG = 1 dcH a dt b dt g dt h dt
各不同物质的消耗速率或生成速率,与各自的 化学计量数的绝对值成正比,即
v A =B =G =H
a b g h
2.基元反应和非基元反应
在化学反应过程中,反应物分子一般总是经过若干 个简单的反应步骤,才最后转化为产物分子的。每一个 简单的反应步骤就是基元反应(elementary reaction)或由 反应物分子一步直接转化为产物分子的反应。
N2 3H2 2NH3 就是化学计量方程。
3、化学反应的机理 化学反应实际进行的过程中,反应物分子并不是直接就变成
产物分子,通常总要经过若干个简单的反应步骤,才能转化为 产物分子。这个过程中的每一个简单的反应步骤就称为是一个 基元反应(或基元过程),例如氢气与碘的气相反应
H2(g)+ I2(g)= 2HI(g) 经实验和理论证明,生成HI的反应经历了以下几个反应步骤
反应完毕
ln c0 kt c
c c0 exp(kt)
ln c kt ln c0 ln c0 ln n0 kt
第十一章化学动力学基础(一)练习题及答案
第十一章化学动力学基础(一)练习题一、选择题1. 某化学反应的方程式为2A →P,则在动力学研究表明该反应为:( )(A) 二级反应(B) 基元反应(C) 双分子反应(D) 以上都无法确定2. 对下面反应来说,当用-(d[N2]/dt)表示其反应速率时,与此速率相当的表示是:( )3H2(g)+ N2(g)= 2NH3(g)(A) 2(d[NH3]/dt)(B) 1/3(d[H2]/dt(C) -1/2(d[NH3]/dt)(D) 1/2(d[NH3]/dt)3. 某化学反应为2A + B →P,实验测定其速率常数为k = 0.25 (mol • dm-3)-1• s-1, 则该反应的级数为:( )(A) 零级反应(B) 一级反应(C) 二级反应(D) 三级反应4. 某一基元反应为mA →P,动力学方程为r = k[A]m,[A]的单位是mol • dm-3,时间的单位是s,则k的单位是:( )(A) mol(1 - m)• dm3(m - 1)• s-1(B) mol- m• dm3m• s-1(C) mol(m - 1)• dm3(1 - m)• s-1(D) mol m• dm-3m• s-15. 某气相反应在400 K时的k p = 10-3 kPa-1• s-1,若用k c表示应等于:( )(A) 3326 (mol • dm-3)-1• s-1(B) 3.326 (mol • dm-3)-1• s-1(C) 3.01 × 10-4(mol • dm-3)-1• s-1(D) 3.01 × 10-7(mol • dm-3)-1• s-16. 某反应,当反应物反应掉5/9所需时间是它反应掉1/3所需时间的2倍,则该反应时:( )(A) 3/2级反应(B) 二级反应(C) 一级反应(D) 零级反应7. 有两个都是一级反应的平行反应:下列说法错误的是:( ) (A) k总= k1 +k2(B) E总= E1 +E2(C) k1/k2 = [B]/[C] (D) t1/2 = ln2/(k1 + k2)8. 某一分解反应,当反应物浓度为0.2 mol•L-1,反应速率为0.3 mol•L-1•s-1。
化学动力学基础一111化学动力学的任务和目的ΔmΔm
量纲:压力·时间-1
(2)对多相催化反应
r=
1 dξ Q dt
Q 为催化剂的量,如 m, V, A
1 dξ ⎧ ⎪rm = m dt ⎪ 1 dξ ⎪ ⎨rV = V dt ⎪ 1 dξ ⎪ ⎪rA = A dt ⎩
催化剂的比活性 单位体积催化剂上的反应速率 单位面积催化剂上的反应速率
二、反应速率的测定 c~t 1、化学方法:骤冷、冲稀、加阻化剂或除去催化剂 2、物理方法:利用与物质浓度有关的物理量(如旋光度、电导、折射率、电动势、V、P、光谱等)进行连 续监测,获得一些原位反应的数据。即:物理量~ci 优点: (1)可进行原位分析(2)连续跟踪
2 4 8
二级反应(例题) 1. 某二级反应,反应物消耗 1/3 需时间 10min,若再消耗 1/3 还需时间为: ( (A)10min(B)20min(C)30min( 5 个与 NO 有关的三级反应,类型有:
A + B+C → P 2A + B → P 3A → P
当 x → a 时,t → ∞,反应不能进行到底。 2.k1 量纲:时间-1 3.半衰期: t 1 =
2
1 a ln k1 a − a
= 2
ln 2 k1
与初始浓度 a 无关
4.一级反应的特征 (1)以 ln(a-x)对 t 作图为一直线,斜率为-k1
(2)k1 量纲:时间-1
11-3
(3)对于一给定反应, t 1 是一个常数,与初始浓度 a 无关
2
H + HBr → H2 + Br
Br + Br + M → Br2 + M
k[H 2 ][Br2 ] 2 r3 = [HBr] 1 + k' [Br2 ]
大学化学基础 第8章 化学动力学1
由实验确定反应速率方程的 简单方法—初始速率法
k 例如:2NOg 2H2 g 1073 N2 g 2H2Og 反应的有关实验数据如下:
1 1 1 -1 /( mol L s ) c H /( mol L ) cNO /(mol L ) Ê Ô é Ñ ± à Å º 2
反应的可能性足够大, 只是反应速率不够快, 不能在尾气管 中完成, 以致散到大气中, 造成污染. 若能寻找催化剂, 使上 述反应达足够快的速率, 是不小的成就. 有些反应, 如橡胶 的老化, 人们又常常希望它慢一些. 所以研究速率理论是完全必要的。
反应机理:化学反应过程中经历的真 实反应步骤的集合。 基元反应:由反应物一步生成生成物 的反应,没有可用宏观实验方法检测到的 中间产物。 意义:通过实验一旦证实某一有确定 反应物和生成物的反应为基元反应,就可以 根据化学反应计量方程式直接写出其速率 方程式。 500K NOg O3 g T NO 2 g O 2 g 为元反应
例题:一氧化氮被还原为氮气和水: 2NO(g) 2H2 (g) N2 (g) 2H2O(g) 根据光谱学研究提出的反应机理是: k1 ① 2 NO k N 2 O 2 (快, 平衡) -1 k2 ②N2O2 H2 N2O H2O (慢) k1 ③N2O H2 2N2 H2O (快)
3.5910 3.60104 3.6210 3.61104
4
3.68104
N2O5的分解速率与N2O5浓度的比值是 恒定的,即反应速率υ与c(N2O5)成正比。 可见: r kc(N 2O5 )
对于一般的化学反应:
aA bB yY zZ
r = k[A]α[B]β
α,β—反应级数:若α=1,A为一级反应; β=2, B为二级反应,则α+β=3,总反应级数为3。α,β必 须通过实验确定其值。通常α≠a,β≠b。 k —反应速率系数:k是有单位的量,k 不随浓度 而变,但受温度的影响,通常温度升高, k 增大。
第十一章 化学动力学(一)自测题
第十一章 化学动力学基础(一)自测题I .选择题1. 某化学反应的方程式为2A P −−→,则在动力学研究中表明该反应为(d )。
(a )二级反应 (b )基元反应(c )双分子反应 (d )以上都无法确定2.某化学反应为 2A+B P k−−→,实验测定其速率常数k =0.25(mol· dm -3)-1 s -1,则该反应的级数为(c )。
(a )零级反应 (b )一级反应 (c )二级反应 (d )三级反应 3. 某一基元反应为A P m −−→,动力学方程为r =k[A]m , [A]的单位是mol· dm -3 ,时间的单位是s ,则k 的单位是(a )。
(a ) 1m 3m 11mol dm s ---⋅⋅()() (b) m 3m 1mol dm s --⋅⋅ (b ) (m 1)3(1m)mol dm s ---1⋅⋅ (d )m 3m 1mol dm s --⋅⋅4. 某气相反应在400 K 时的31110kPa s p k ---=⋅,若用k e 表示应等于(b )。
(a ) 3113326(mol dm s ---⋅⋅) (b )3113.326(mol dm s ---⋅⋅) (c ) 43113.0110(mol dm s ----⨯⋅⋅) (d )73113.0110(mol dm s ----⨯⋅⋅)5.某反应,当反应物反应掉59所需时间是它反应掉13所需时间的2倍,则该反应是(c )(a )32级反应 (b)二级反应 (c )一级反应 (d )零级反应6. 半衰期为10天的某放射性元素净重 8 g ,40天后其净重为(d )。
(a )4 g (b )2 g (c )1 g (d )0.5 g7. 有两个都是一级反应的平行反应:下列说法错误的是(b )。
(a ) k 总=k 1+k 2 (b ) E 总=E 1+E 2(c )k 1/k 2=[B]/[C] (d ) 12122t k k =+/ln8.两个活化能不相同的反应,如E 1<E 2,且都在相同的升温区内升温,则(a )。
化学反应动力学1
第一章 化学反应动力学 Chemical Reaction Kinetics§1.1 化学反应速率的表示方式 expression of Chemical reaction rate化学反应动力学是定量描述化学反应随时间变化即化学反应速率的基础理论。
它表达了反应速率及其影响参数之间的函数关系。
在均相(气体或液体)中进行化学反应时,一般有以下这些影响因素:反应物浓度、绝对压力、温度以及发生催化反应时的催化剂的种类合浓度。
有些情况如高粘性液体中另外,反应速率受扩散过程影响。
化学反映速率指单位时间内单位反应混合物体积中发应物的反应量或产物的生成量。
因反应系统的不同,其表达方式也有不同。
如间歇系统和连续系统就有不同。
下面分别介绍:1.1.1 间歇系统 batches systerm 基本概念:○1反应体积V ,指的是反应器中反应物质所占据的体积。
注意:区别反应体积V 与反应器体积V R 。
○2间歇式反应:反应物等一次性加入复辟容器中,反应物在规定的反应条件下经历一定的反应时间达到所需要的反应率或转化率后,将反应混合物一次卸出,反应混合物浓度随反应时间而变化,但由于良好的搅拌,反应器内没有浓度和温度梯度。
间歇反应器化学反应速率的表示方式:dtdn V AA 1-=γ对恒容过程:dtdC iA ±=γ 有时用单位固体(催化剂)表面积S 代替反应体积V ,即dt dn S ii 1±=γ 或单位固体(催化剂)质量W 代替反应体积V ,即dtdn W ii 1±=γ1.1.2 连续系统 一、基本概念:1连续系统:在连续操作的反应器中,反应原料以固定的流量进入反应器,反应混合物也同样连续地从反应器中取出。
所以反应参数,包括温度、压力、进料量及反应物的浓度都不随时间而变化。
注意:连续系统中反应参数不随时间而变化,但可能随空间而变化。
2空速V SP :空间速率度是单位反应体积所能处理的反应混合物的体积流率。
第十一章 化学动力学基础(一)
第十一章 化学动力学基础(一)一 选择题1.某反应进行完全所需时间是有限的,且等于C 。
/k ,则该反应是( )(1)一级反应 (2)二级反应 (3)零级反应 (4)三级反应2.基元反应A+B-C →A-B+C 的摩尔反应焓∆rHm <0,B-C 键的键能为εBC,A 为自由基,则反应活化能等于( )(1)0.30εBC (218)0.05εBC (3)0.05εBC +∆rHm (4)0.05εBC -∆rHm3.如果反应2A+B=2D 的速率可表示为 r=-1/2d [A ]/dt=- d [B ]/dt=1/2 d [D ]/dt 则其反应分子数为( )(1)单分子 (2)双分子 (3)三分子 (4)不能确定4.400K 时某气相反应的速率常数Kp=10-3(kpa)-1s -1 若速率常数用k c 表示,则k c 应为( )(1)3.326(mol dm -3)-1 s -1 (2)3.0∗10-4(mol dm -3)-1 s -1(3) 3326(mol dm -3)-1 s -1 (4) 3.0∗10-7(mol dm -3)-1 s -15.关于H 2和O 2 等混合气体存在爆炸高限和低限,下列哪种说法是正确的(1) 高界限主要是热来不及散出所引起的.(2) 高界限主要是由器壁销毁决定.(3) 高界限主要是由器相销毁所决定(4) 高界限与温度基本无关6.如果某反应的∆rHm=100kJ mol -1,那么活化能Ea ( )(1) Ea ≠100kJ mol -1, (2) Ea ≥100kJ mol -1,(3) Ea ≤100kJ mol -1, (4)都可以.7.一级反应,反应物反应掉1/n 所需时间是 ( )(1)-0.6932/k (2) (2.303/k)lg [n/(n-1)](3)(2.303k)lgn (4) (2.303/k)lg(1/n)8.对于基元反应 NO 2+NO 3→NO+O 2+NO 2 ,可作断论 ( )(1)一定是二级反应 (2)一定不是二级反应(3)一定是双分子反应 (4)一定不是双分子反应9.某反应.当反应物反应掉5/9所需时间是它反应掉1/3所需时间 的2倍,则该反应是( )(1)一级反应 (2)零级反应 (3)二级反应 (4)3/2级反应10.当一反应物的初始浓度为0.04 mol dm -3时,反应的半衰期为360S. 初始浓度为0.024 mol dm -3时,反应的半衰期为600S.此反应为 ( )(1) 零级反应 (2)1.5级反应 (3)二级反应 (4)一级反应 11.连串反应A B C,其中k 1=0.1min -1,k 2=0.2min -1.,假定反应开始时只有A,且浓度为1 mol dm -3,则B 浓度达最大的时间为 ( )K 2K (1)0.3 min (2)5.0 min (3)6.93 min (4) ∞12.某放射性同位素的半衰期为5天,则经过15天后所剩的同位素的量是原来的( )(1)1/3 (2)1/4 (3)1/8 (4)1/1613.气固相催化反应 2CO(g)+O 2(g) 2CO 2(g) 的速率方程为r=kP(o 2)/p(co).其反应级数应为 ( )Pt <700k (1) 一级反应 (2)二级反应 (3)对O 2一级,对CO 是负一级(4)级数不能确定.14.某反应进行时,反应物浓度与时间成线性关系,则此反应的半衰期与反应物初始浓度 ( )(1)成正比(2)成反比(3)平方成反比(4)无关15.反应A→2B在温度T 时的速率方程为d[B]/dt=k B[A] ,则反应的半衰期为 ( )(1)ln2/ k B(2)2ln2/ k B (3) k B ln2 (4)2 k B ln216.两个活化能不相同的反应,如E2>E1,且都在相同的升温区间内升温,则( )(1)dlnk2/dT> dlnk1/dT (2) dlnk2/dT<dlnk1/Dt(3) dlnk2/dT=dlnk1/dT (4)dk2/dT>dk1Dt17.饱和分子间反应活化能一般都是 ( )(1)比较小 (2)167kJ mol-1以上(3)不需要活化能 (4)400 kJ mol-1以上K1K2K318.在反应A B C, A D 中,活化能E1>E2>E3,C是所需要的产物.从动力学的角度考虑,为了提高C的产量,选择反应温度时,应选择( )(1)较高反应温度(2)较低反应温度(3)适中反应温度(4)任意二填空题1.反应A+B→C的速率方程为: -dC A/dt=k A C A C B/C C,则该反应的总级数是级.若浓度为mol dm-3.时间以S为单位,则速率常数k A的单位是2.反应分子数只能是,一般不会大于3.水溶液中过氧化氢催化分解反应历程为:H2O2(aq)+I-(aq)→H2O(l)+IO-(aq) k1H2O(l)+IO-(aq) →H2O(l)+O2+I-k2当k2>>k1时,该反应的速率方程为4.有一反应mA nB是简单反应,其动力学方程-dC A/dt=kC A m ,C A单位为mol dm-3.时间以S为单位,则(1)k的单位为(2)以dC B/dt表达的反应速率方程和题中给的速率方程关系为5.在恒温下,加入催化剂能加快反应速率的原因是由于,而升高温度能增加反应速率的原因是由于6.分别用反应物和生成物表示反应A+3B=2C的反应速率.并写出它们间关系为.7.某反应的表观活化能为50kJ/mol.在300K下测其速率常数.若要求k的测定误差在1.5%以内,则恒温槽的控温精度为因为.8.N2和H2合成NH3.在4000C下,动力学实验测定结果表明没有催化剂时,其活化能为334.9 kJ/mol.用Fe催化时,活化能降至167.4 kJ/mol.假定催化和非催化反应的指前因子相等. ,则两种情况下反应速率常数之比为9.反应2N2O5→4NO2+O2在328K时O2(g)的生成速率为0.75*10-4mol·dm-3·s-1.(如其间任一中间物浓度极低,难以测得)则该反应的总包反应速率为mol·dm-3·s-1,N2O5的消耗速率为moldm-3s-1 NO2的生成速率为mol·dm-3·s-110.某反应物的转化率分别达到50%,75%,87.5%所需时间分别为t1/2,2t1/2,3t1/2.则反应对此物质的级数为.11.实验测得反应 2A+B→2C+D的速率方程为r=k[A][B],反应历程为A+B→C+F k1(慢)A+F→C+D k2(快)则k1与k的关系为.12.一般情况下,连续反应的决速步是 13.综合反应A B C,稳态近似处理的条件是 ,稳态浓度C B = .K -1K 1K 2 14.在恒温下,加入催化剂能加快反应.速率的原因是由于而升高温度能增加反应速率的原因是由于 15反应A+B AB AB+C D(决速步) 其表观活化能与基元活化能的关系 为 K 2 ,因为 . K -1K 1 16.气相基元反应2A B 在一恒容的容器中进行,P 0为A 的初始压力,P t 为时间t 时反应体系的总压.此反应的速率方程dP t /dt= .K 1 三.计算题1.(1)某溶液含有NaOH 和CH 3COOC 2H 5浓度均为0.01 moldm -3,设为二级反应,在298K.10min 内有39%CH 3COOC 2H 5分解,而在308K 时10min 分解55%.粗略估计288K 在10min 内能分解多少?(2)用对数公式计算293K 时若有50%的CH 3COOC 2H 5分解需时间若干? 2.硝基异丙烷在水溶液中与碱的反应是二级反应.其速率常数可用下式表示: lnk=-7284.4/T+27.383.时间以min,浓度以moldm -3表示(1) 计算反应的活化能.(2) 在283K 时, 硝基异丙烷与碱的浓度均为0.008 moldm -3,求反应的半衰期3.N 2O(g)的热分解反应2N 2O(g) 2N 2(g)+O 2(g).从实验测出不同温度时各个起始浓度与半衰期如下k 反应温度T/K 初始压力P 0/kpa 半衰期t 1/2 /s967 156.787 380967 39.197 15201030 7.066 14401030 47.996 212求(1)反应级数和不同温度下的速率常数(2)实验活化能(3)若1030K 时N 2O(g)的初始压力为54.00kpa.,当压力达到64.02kpa 时所需时间.。
10-化学动力学基础-1
第十章、化学动力学基础(一)(521题)一、选择题( 共71 题)1. 1 分(5202)反应2O3→3O2的速率方程为- d[O3]/d t = k[O3]2[O2]-1 ,或者d[O2]/d t = k'[O3]2[O2]-1,则速率常数k和k' 的关系是:( )(A) 2k = 3k' (B) k = k' (C) 3k = 2k' (D) -k/2 = k'/32. 2 分(5203)气相反应A + 2B ─→2C,A 和B 的初始压力分别为p A和p B,反应开始时并无C,若p为体系的总压力,当时间为t时,A 的分压为:( )(A) p A- p B(B) p - 2p A(C) p - p B(D) 2(p - p A) - p B3. 2 分(5204)对于反应2NO2= 2NO + O2,当选用不同的反应物和产物来表示反应速率时,其相互关系为:( )(A) -2d[NO2]/d t = 2d[NO]/d t = d[O2]/d t(B) - d[NO2]/2d t = d[NO]/2d t = d[O2]/d t = dξ/d t(C) - d[NO2]/d t = d[NO]/d t = d[O2]/d t(D) - d[NO2]/2d t = d[NO]/2d t = d[O2]/d t = 1/V dξ/d t4. 1 分(5222)有关基元反应的描述在下列诸说法中哪一个是不正确的:( )(A) 基元反应的级数一定是整数(B) 基元反应是“态-态”反应的统计平均结果(C) 基元反应进行时无中间产物,一步完成(D) 基元反应不一定符合质量作用定律5. 2 分(5223)400 K 时,某气相反应的速率常数k p= 10-3(kPa)-1·s-1,如速率常数用k C表示,则k C 应为:( )(A) 3.326 (mol·dm-3)-1·s-1(B) 3.0×10-4 (mol·dm-3)-1·s-1(C) 3326 (mol·dm-3)-1·s-1(D) 3.0×10-7 (mol·dm-3)-1·s-16. 2 分(5224)如果反应2A + B =2D 的速率可表示为:r = -12d c A/d t = - d c B/d t =12d c D/d t则其反应分子数为:( )(A) 单分子(B) 双分子(C) 三分子(D) 不能确定7. 1 分(5251)某反应,当反应物反应掉5/9 所需时间是它反应掉1/3 所需时间的2 倍,则该反应是:( )(A) 一级反应(B) 零级反应(C) 二级反应(D) 3/2 级反应8. 1 分(5252)某反应进行完全所需时间是有限的,且等于c0/k,则该反应是:( )(A) 一级反应(B) 二级反应(C) 零级反应(D) 三级反应9. 1 分(5253)反应2A →P 为二级反应,其半衰期:( )(A) 与[A]0无关(B) 与[A]0成正比(C) 与[A]0成反比(D) 与[A]成反比[A]0为反应物A 的起始浓度。
化学动力学基础1
14
§11.2 化学反应速率的表示方法
Ch11. 动力学基础1
---反应速率测定方法
物理法
利用一些物理性质与浓度成单值函数的关系,测定反
应体系物理量随时间的变化,然后折算成不同时刻反
应物的浓度值,通常可利用的物理量有P,V,α,G等。这
r def 1 d
V dt ----V:反应体系体积
因为:
d def dnB B
r 1 1 dnB 体积恒定 1 dcB 1 d[B]
B B 反应式中物质B的计量系数;r 的量纲: 浓度·时间-1
11
Ch11. 动力学基础1
Ch11 化学动力学基础1
作业:19、34
Ch11 化学动力学基础(一)
Elements of Chemical Kinetics
2
本章目录
§11.1 化学动力学的任务和目的 §11.2 化学反应速率表示法 §11.3 化学反应的速率方程 §11.4 具有简单级数的反应 §11.5 几种典型的复杂反应 §11.7 温度对反应速率的影响 §11.8 关于活化能 §11.9 链反应 §11.10 拟定反应历程的一般方法
---速率方程(rate equation)
动力学方程(Kinetics Equation):反应速率r 与各物质浓度
的函数关系式或各物质的浓度与时间t的函数关系式。
r f (ci )(微分式); ci f (t)(积分式)
反应速率方程只有通过实验才能确定。一般,知道一化学反应 计量方程并不能预言它的速率方程 。
化学热力学预测反应的可能性,
化学动力学(1)
(2) 20世纪初~20世纪40年代:从宏观动 力学到微观动力学的过渡 1918 W.C.Mc Lewis 提出气体反应速率的碰 撞理论 1930‘s Eyring-Polanyi 提出反应速率的过渡态 理论 1913 Boldenstein 提出链反应机理 (3) 20世纪50年代~ 现在: 快速反应和分子动态 学的建立
1 dc A kc A a dt
c A, 0 c A, 0 x
akt (y x c A,0 )
1 ln akt 1 y
Characteristics:
(1) lncA~ t
straight line slope: -ak intercept: lncA,0
t1/ 2 ln 2 ak t 1/2 与 c A,0 无关
(2) 平衡态与非平衡态并重
非平衡是有序之源
在一定的条件下,在封闭的平 衡体系中将是自发地从有序趋向无 序;在开放的非平衡体系中将是自 发地从无序趋向有序。
熵与经济社会
高熵 原料
低熵能源
知识技术
生产系统
高熵 废物 废热
低熵 产品
关于热寂论的批判 宇宙的大爆炸模型: 宇宙初期是处在高温高密度的“热粥”状态, 存在着极高温的辐射(光子)和某些种类的粒 子。随着宇宙的膨胀,密度减小、温度下降、 在微观上形成了原子核、原子、分子(从最简 单的无机分子到高级的生物大分子),在宏观 上在万有引力作用下演化出银河系、超星系团、 星系团、星系、恒星、太阳系和地球,在地球 上又演化出生物,直到出现人类及其社会。整 个宇宙的演化是从均匀到不均匀、从无序到有 序,从简单到复杂,从低级到高级进化式的发 展
化学动力学基础(一)习题
化学动力学基础(一)一、简答题1.反应Pb(C 2H 5)4=Pb+4C 2H 5是否可能为基元反应为什么2.某反应物消耗掉50%和75%时所需要的时间分别为t 1/2和 t 1/4,若反应对该反应物分别是一级、二级和三级,则t 1/2: t 1/4的比值分别是多少3.请总结零级反应、一级反应和二级反应各有哪些特征平行反应、对峙反应和连续反应又有哪些特征4.从反应机理推导速率方程时通常有哪几种近似方法各有什么适用条件5.某一反应进行完全所需时间时有限的,且等于kc 0(C 0为反应物起始浓度),则该反应是几级反应6. 质量作用定律对于总反应式为什么不一定正确7. 根据质量作用定律写出下列基元反应速率表达式:(1)A+B→2P(2)2A+B→2P(3)A+2B→P+2s(4)2Cl 2+M→Cl 2+M8.典型复杂反应的动力学特征如何9.什么是链反应有哪几种 10.如何解释支链反应引起爆炸的高界限和低界限11.催化剂加速化学反应的原因是什么二、证明题1、某环氧烷受热分解,反应机理如下:稳定产物−→−⋅+⋅+⋅−→−⋅++⋅−→−⋅⋅+⋅−→−43213433k k k k CH R CH R CH RH CO CH R H R RH证明反应速率方程为()()RH kc dtCH dc =4 2、证明对理想气体系统的n 级简单反应,其速率常数()n c p RT k k -=1。
三、计算题1、反应2222SO Cl SO +Cl →为一级气相反应,320℃时512.210s k --=⨯。
问在320℃加热90min ,22SO Cl 的分解百分数为若干[答案:%]2、某二级反应A+B C →初速度为133105---⋅⋅⨯s dm mol ,两反应物的初浓度皆为32.0-⋅dm mol ,求k 。
[答案:11325.1---⋅⋅=s mol dm k ]3、781K 时22H +I 2HI →,反应的速率常数3-1-1HI 80.2dm mol s k =⋅⋅,求2H k 。
物理化学第十一章化学动力学基础练习题
物理化学第十一章化学动力学基础练习题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第十一章 化学动力学(1)练习题一、填空题1.某反应物的转化率分别达到 50%,75%,87.5% 所需时间分别为t 1/2,2t 1/2,3t 1/2,则反应对此物质的级数为 。
2.某二级反应,反应消耗1/3需时间10min ,若再消耗1/3还需时间为 分钟。
3.两个活化能不相同的反应,如果E 1<E 2,且都在相同的升温区内升温,则1ln d k dT2ln d k dT (填“>”或“<”或“=”) 4.只有一种反应物的二级反应的半衰期与反应的初始浓度的关系为 。
5.(浙江大学考研试题)反应A →Y+Z 中,反应物A 的初始浓度为1 mol·dm -3,初始速率为0.01 mol·dm -3·s -1,假定该反应为二级反应,则其速率系数k A 为 ,半衰期为 。
6.(西北工业大学考研试题)反应2A →3B ,则 之间的关系是 。
7.(西北工业大学考研试题)一级反应 以 对时间作图为一直线,速率系数等于直线的 。
8.(浙江大学考研试题)丁二烯的液相聚合反应,实验已确定对丁二烯为一级,并测得在323K 时的速率系数为3.3×10-2min -1,当丁二烯的转化率为80%时,反应时间为 。
9.某反应A+B Y+Z,加催化剂后正反应速率系数'1k 与不加催化剂时正反应速率系数1k 比值'41110k k =,则逆反应速率系数比值'11k k =____。
10.某复杂反应的表观速率常数k 与各基元反应速率常数之间的关系为11224()2k k k k =,则表观活化能a E 与各基元反应活化能之间的关系为____。
二、单选题:1.反应3O 2 2O 3,其速率方程-d[O 2]/d t = k [O 3]2[O 2] 或 d[O 3]/d t =k '[O 3]2[O 2],那么k 与k '的关系是:(A) 2k = 3k ' ; (B) k = k ' ; (C) 3k= 2k ' ; (D) ½k = ⅓k ' 。
4章 化学动力学(1-3)
k1
Hale Waihona Puke ②2I → I2r2 k c
2 2 I
k2
③ H2 + 2I → 2HI
r3 k c c
r2 ( dcI 2 dt )2 1 2 ( dcI dt
2 3 I H2
k3
1 dcI r1 ( )1 ( )1 dt 2 dt
)2
r3 (
dc H 2 dt
第四章
化 学 动 力 学
§1
化学动力学的任务与概况
一、化学动力学的任务
化学热力学研究(战略问题——可能性): 化学反应自动进行的方向、限度及平衡条件 化学动力学研究(战术问题——可行性) : 化学反应进行的速率、机理和影响速率的因素
H2(g) + 0.5O2(g) ==== H2O(l)
r G m ,1 ( 298 .15 K ) 237 .19 kJ mol 1
dcF dt
2 k 2 cF
若cA,0 ≠ cF,0,则为混 2 级,
r dc A dt k 2c A cF dx A dt dx F k 2 ( c A , 0 x F )( c F , 0 x F ) dt k 2 ( c A , 0 x A )( c F , 0 x A )
两个以上的元反应构成的总(包)反应称为非元反
应或复杂反应。
总(包)反应: H2+ I2 →2HI
①I2 → 2I ②2I → I2 ③ H2 + 2I → 2HI
3. 反应机理(历程) 一个总包化学反应中所包含的元反应按序排 列就构成该总包化学反应的机理(历程)。 4. 反应速率方程 r = f(cA, cB,... …,cN,T) 一般指定温度,则 r = f(cA, cB,... …,cN)—— 反应速率方程
第五章 化学动力学1
基元反应
反应物微粒(分子、原子、离子、自由基等) 在碰撞直接作用并即刻转化为产物(一步完成) 的反应称为基元反应(elementary reaction)。否 则,就是非基元反应。
机理方程的每一步骤都是基元反应,所有这 些基元反应表明了从反应物到生成物所经历的整 个过程,所以反应机理又称为反应历程。
综合以上两种情况,有:
aA bB cC P
微分速率方程:
- dcA dt
kAcA2
定积分
cA - dcA
c cA,0
2 A
t
0 kAdt
积分速率方程:
1 cA
1 cA,0
kAt
二级反应的特征
1. 反应速率常数 k 的量纲 为[浓度]-1 [时间]-1;
2. 1/cA与 t 为线性关系,其斜率为 kA ,
A
t
0 kAdt
(其中kA ak)
得
ln cA,0 cA
kAt
or cA cA,0 exp(kAt)
或 ln cA ln cA,0 kAt
实例
某抗菌素在人体血液中消耗呈现简单 级数的反应,若给病人在某时刻注射后, 在不同时刻t测定抗菌素在血液中的浓度c, 得到数据如下:
t/h
由一级反应速率方程 ln cA,0 kt cA
当 cA,0 1 时,有 cA 0.67
易知:
t 1 ln cA,0 k cA
=
1 1.2110-4
ln
0.671
3300年
核心内容(二)
一级反应: 1. 定义及常见反应 2. 微分速率方程 3. 积分速率方程 4. 特征(量纲、线性关系、半衰期) 5. 实例解答
考研物化 第七章化学动力学答案
(B) rA = k1cA - k-1cB , (C) rA = k1cA2 + k-1cB , (D) rA = - k1cA2 + k-1cB,
rB = k-1cB + k2cC ; rB = k-1cB - k2cC ; rB = k1cA2 - k-1cB - k2cC 。
20.反应 A + B → C + D 的速率方程为 r = k[A][B] ,则反应:
(A) 是二分子反应 ; (C) 不是二分子反应 ;
(B) 是二级反应但不一定是二分子反应 ; (D) 是对 A、B 各为一级的二分子反应 。
21.基元反应 A + B 2D,A 与 B 的起始浓度分别为 a 和 2a,D 为 0,则体系各物 质浓度(c)随时间变化示意曲线为:
A k1 B,B+D ⎯⎯k2 → J
度有利于生成更多的产物。
12.若反应(1)的活化能为 E1,反应(2)的活化能为 E2,且 E1 > E2,则在同一温度下 k1 一 定小于 k2。
13.若某化学反应的 ΔrUm < 0,则该化学反应的活化能小于零。 14.对平衡反应 A Y,在一定温度下反应达平衡时,正逆反应速率常数相等。
15.平行反应
度有何关系?
(A) 无关 ; (B) 成正比 ;
(C) 成反比 ;
(D) 平方成反比 。
2A k1 B ⎯⎯k2 → C
19.恒容下某复杂反应(取单位体积)的反应机理为:
k−1
,分别以 A
和 B 反应物的浓度变化来计算反应速率,其中完全正确的一组是:
(A) rA = k1cA2
, rB = k2cB ;
25.某温度时,平行反应
化学反应中的一级动力学
化学反应中的一级动力学化学反应是我们生活中不可避免的一部分。
从日常的烹饪到汽车的燃烧,无不牵涉到化学反应。
对于化学反应的研究,我们必须了解化学反应动力学。
化学反应动力学是研究反应过程和速率的科学,它探究物质之间的相互作用和转化的速率与机制。
化学反应速率取决于反应物浓度、温度、催化剂和压力等因素。
化学反应的速率也随着时间的推移而变化。
一级动力学是指一种反应,其速率与反应物的浓度成正比。
在一级动力学中,反应速率等于一个常数与反应物浓度的乘积。
数学上,它可以表示为:Rate = k [A]。
在这个式子中,k是常数,称为速率常数。
速率常数的值决定了反应速率。
[A]是反应物A的浓度。
一级动力学中,反应速率仅与反应物A的浓度有关。
一级反应的图像表示是一个对数函数图像。
在一个一级反应中,反应速率随着时间的推移而减少。
当A浓度减少到1/2时,反应速率是起初速率的一半。
同样,当A浓度减少到1/5时,反应速率就是起初速率的1/5。
对于一级反应,我们可以使用半衰期来描述反应速率。
半衰期是指反应物A浓度降至起初浓度的1/2时,所用的时间。
在一级动力学中,半衰期与反应物A的浓度无关,而与速率常数k有关。
半衰期可用公式t1/2 = ln2/k 计算得出。
了解一级动力学的反应对很多实际应用有帮助。
例如,制药行业需要了解药物分解的速率和半衰期,以便定义剂量和治疗指南。
此外,一级反应也有助于工业生产,例如使用氯气水溶液制备金属铜的反应。
总的来说,一级动力学是一个非常重要的化学反应动力学学科。
通过研究一级动力学,我们可以更好地理解化学反应过程和速率,为实际应用提供更好的根据。