第6章结构件及连接的疲劳强度计算原理分析

合集下载

第六章螺纹连接

第六章螺纹连接

一、 螺纹连接是利用螺纹零件构成的可拆连接,结构简单,拆装方便,适用范围广。

二、 螺纹的种类及主要参数:根据螺纹线绕行方向的不同,螺纹分为右旋和左旋,一般用右旋;根据螺纹在螺杆轴向剖面上的形状的不同,分为三角螺纹、矩形螺纹、梯形螺纹、锯齿形螺纹和管螺纹;螺纹又分为内螺纹和外螺纹,二者旋合组成螺纹副或称螺旋副;根据母体的形状分为圆柱螺纹和圆锥螺纹。

圆柱螺纹的主要参数d (D )螺纹大径,是螺纹的公称直径如M8表示d=8mm ;d 1(D 1)螺纹小径,常用于计算螺纹强度;d 2(D 2)螺纹中径,用于计算效率、升角、自锁的基准。

(外螺纹各直径用小写字母表示,内螺纹各直径用大写字母表示);p 螺距,螺纹上相邻两牙对应点轴向距离;n 线数,沿一条螺纹线形成的螺纹,成为单线螺纹,沿两条、三条或多条螺纹线形成的螺纹,成文双线、三线或多线螺纹;s 导程,任一点沿同一条螺纹线转一周的轴向位移,s=np ;ψ螺纹的螺旋升角,在中径圆柱面上螺旋线的切线与垂直于螺纹轴线的平面间的夹角,即22tan s np d d ψππ==;α牙形角,β牙形斜角,在对称牙形中2αβ=;h 工作高度,三、1. 三角螺纹的牙形角260αβ==o ,因牙形斜角β大,所以当量摩擦因素大,自锁性好,主要用于连接,这种螺纹分为粗牙和细牙,一般多用粗牙螺纹。

公称直径相同时细牙螺纹的螺距较小、牙细,内经和中径较大,升角较小,因为自锁性好,对螺纹零件的强度削弱小,但磨损后易滑扣。

细牙螺纹常用于薄壁和细小零件上或承受变载、冲击振动的连接及微调装置中。

2.举行螺纹牙形为正方形,牙形斜角0β=o。

所以当量摩擦角小,效率高,用于传动;但由于制造困难,螺母和螺杆同心度差,牙根强度弱,常被梯形螺纹代替。

3.梯形螺纹的牙形角230αβ==o,与矩形螺纹相比,效率略低,但牙根强度较高,易于制造,在螺旋传动中应用较为普遍。

4.锯齿形螺纹工作边的牙形斜角3β=o,传动效率高,便于加工,非工作边的牙形斜角30β=o。

(完整word版)现代机械设计手册总目录

(完整word版)现代机械设计手册总目录

现代机械设计手册总目录(共6卷)化学工业出版社第1卷第1篇机械设计基础资料第1章常用资料和数据第2章法定计量单位和常用单位换算第3章优先数和优先数系第4章常用数学公式第5章常用力学公式第2篇零件结构设计第1章零件结构设计的基本要求和内容第2章铸件结构设计工艺性第3章锻压件结构设计工艺性第4章冲压件结构设计工艺性第5章切削件结构设计工艺性第6章热处理零件设计的工艺性要求第7章其他材料零件及焊接件的结构设计工艺性第8章零部件设计的装配及维修工艺性要求第3篇机械制图和几何精度设计第1章机械制图第2章尺寸精度第3章几何公差第4章表面结构第5章孔间距偏差第4篇机械工程材料第1章钢铁材料第2章有色金属材料第3章粉末冶金材料第4章复合材料第5章非金属材料第5篇连接件与紧固件第1章连接设计基础第2章螺纹连接第3章键、花键和销的连接第4章过盈连接第5章胀套及型面连接第6章焊、铆、粘连接第7章锚固连接第2卷第6篇轴和联轴器第1章轴第2章软轴第3章联轴器第7篇滚动轴承第1章滚动轴承的分类、结构型式及代号第2章滚动轴承的特点与选用第3章滚动轴承的计算第4章滚动轴承的应用设计第5章常用滚动轴承的基本尺寸及性能参数第8篇滑动轴承第1章滑动轴承的分类、特点与应用及选择第2章滚动轴承材料第3章不完全流体润滑轴承第4章液体动压润滑轴承第5章液体静压轴承第6章气体润滑轴承第7章箔片气体轴承第8章流体动静压润滑轴承第9章电磁轴承第9篇机架、箱体及导轨第1章机架结构设计基础第2章机架的设计与计算第3章齿轮传动箱体的设计与计算第4章机架与箱体的现代设计方法第5章导轨第10篇弹簧第1章弹簧的基本性能、类型及应用第2章圆柱螺旋弹簧第3章非线性特性线螺旋弹簧第4章多股螺旋弹簧第5章蝶形弹簧第6章环形弹簧第7章片弹簧及线弹簧第8章板弹簧第9章发条弹簧第10章扭杆弹簧第11章弹簧的热处理、强化处理和表面处理第12章橡胶弹簧第13章空气弹簧第14章膜片及膜盒第15章压力弹簧管第16章弹簧的疲劳强度第17章弹簧的失效及预防第11篇机构第1章结构的基本知识和结构分析第2章基于杆组解析法平面结构的运动分析和受力分析第3章连杆机构的设计及运动分析第4章平面高副结构设计第5章凸轮机构设计第6章其他常用机构第7章组合机构的设计第8章机构选型范例第12篇机械零部件设计禁忌第1章连接零部件设计禁忌第2章传动零部件设计禁忌第3章轴系零部件设计禁忌第3卷第13篇带、链传动第1章带传动第2章链传动第14篇齿轮传动(完整word版)现代机械设计手册总目录第1章渐开线圆柱齿轮传动第2章圆弧圆柱齿轮传动第3章锥齿轮传动第4章蜗杆传动第5章渐开线圆柱齿轮行星传动第6章渐开线少齿差行星齿轮传动第7章摆线针轮行星传动第8章谐波齿轮传动第9章活齿传动第10章塑料齿轮第15篇减速器、变速器第1章减速器设计一般资料第2章标准减速器及产品第3章机械无级变速器及产品第16篇离合器、制动器第1章离合器第2章制动器第17篇润滑第1章润滑基础第2章润滑剂第3章轴承的润滑第4章齿轮传动的润滑第5章其他元器件的润滑第6章润滑方法及润滑装置第7章典型设备的润滑第18篇密封第1章密封的分类及应用第2章垫片密封第3章密封胶及胶黏剂第4章填料密封第5章成形填料密封第6章油封第7章机械密封第8章真空密封第9章迷宫密封第10章浮环密封第11章螺旋密封第12章磁流体密封第13章离心密封第4卷第19篇液力传动第1章液力传动设计基础第2章液力变矩器第3章液力机械变矩器第4章液力耦合器第5章液黏传动第20篇液压传动与控制第1章常用基础标准、图形符号和常用术语第2章液压流体力学常用计算公式及资料第3章液压系统设计第4章液压基本回路第5章液压工作介质第6章液压缸第7章液压控制阀第8章液压泵第9章液压马达第10章液压辅件与液压泵站第11章液压控制系统概述第12章液压伺服控制系统第13章电液比例控制系统第21篇气压传动与控制第1章气压传动技术基础第2章气动系统第3章气动元件的造型及计算第4章气动系统的维护及故障处理第5章气动元件产品第6章相关技术标准及资料第5卷第22篇光机电一体化系统设计第1章光机电一体化系统设计基础第2章传感检测系统设计第3章伺服系统设计第4章机械系统设计第5章微机控制系统设计第6章接口设计第7章设计实例第23篇传感器第1章传感器的名词术语和评价指标第2章力参数测量传感器第3章位移和位置传感器第4章速度传感器第5章振动与冲击测量传感器第6章流量和压力测量传感器第7章温度传感器第8章声传感器第9章厚度、距离、物位和倾角传感器第10章孔径、圆度和对中仪第11章硬度、密度、粉尘度和黏度传感器第12章新型传感器第24篇控制元器件和控制单元第1章低压电器第2章单片机第3章可编程控制器(PLC)第4章变频器第5章工控机第6章数控系统第25篇电动机第1章常用驱动电动机第2章控制电动机第3章信号电动机和微型电动机第6卷第26篇机械振动与噪声第1章概述第2章机械振动基础第3章机械振动的一般资料第4章非线性振动与随机振动第5章机械振动控制第6章典型设备振动设计实例第7章轴系的临界转速第8章机械振动的作用第9章机械振动测量第10章机械振动信号处理与故障诊断第11章机械噪声基础第12章机械噪声测量第13章机械噪声控制第27篇疲劳强度设计第1章机械零部件疲劳强度与寿命第2章疲劳失效影响因素与提高疲劳强度的措施第3章高周疲劳强度设计方法第4章低周疲劳强度设计方法第5章裂纹扩展寿命估算方法第6章疲劳实验与数据处理第28篇可靠性设计第1章机械失效与可靠性第2章可靠性设计流程第3章可靠性数据及其统计分布第4章故障模式、效应及危害度分析第5章故障树分析第6章机械系统可靠性设计第7章机械可靠性设计第8章零件静强度可靠性设计第9章零部件动强度可靠性设计第10章可靠性评价第11章可靠性试验与数据处理第29篇优化设计第1章概述第2章一维优化搜索方法第3章无约束优化算法第4章有约束优化算法第5章多目标优化设计方法第6章离散问题优化设计方法第7章随机问题优化设计方法第8章机械模糊优化设计方法第9章机械优化设计应用实例第30篇反求设计第1章概述第2章反求数字化数据测量设备第3章反求设计中的数据预处理第4章三维模型重构技术第5章常用反求设计软件与反求设计模第6章反求设计实例第31篇数字化设计第1章概述第2章数字化设计系统的组成第3章计算机图形学基础第4章产品的数字化造型第5章计算机辅助设计技术第6章有限元分析技术第7章虚拟样机技术第32篇人机工程与产品造型设计第1章概述第2章人机工程第3章产品造型设计第33篇创新设计第1章创新的理论和方法第2章创新设计理论和方法第3章发明创造的情景分析与描述第4章技术系统进化理论分析第5章技术冲突及其解决原理第6章技术系统物-场分析模型第7章发明问题解决程序—-ARIZ法。

曲轴轴系的结构强度分析与疲劳寿命估算_朱永梅

曲轴轴系的结构强度分析与疲劳寿命估算_朱永梅

Journal o f Mechanical Strength2010, 32( 6) : 1018- 1021p 研究简报 p曲轴轴系的结构强度分析与疲劳寿命估算XANALYSIS OF STRUCTURAL STRENGTH AND PRED ICTION OF FATIGUE LIFEFOR CRANKSHAFT AND LINK MEC HANISM朱永梅X X 王明强 刘艳梨( 江苏科技大学 机械工程学院, 江苏 镇江 212003)ZHU YongMei WANG MingQiang LIU YanLi( School o f Mechanical Enginee ring , Jiangsu Unive rsity o f Scie nce and Tec hnology , Zhenjiang Jiangsu 212003, China )摘要 将多柔体动力学方法引入到曲轴计算中, 建立发动机曲轴轴系的动力学仿真模型, 对曲轴轴 系进行刚柔耦 合 多体运动学和动力学仿真, 为下一步疲劳寿命计 算提供可靠的载荷条 件; 然 后, 从曲 轴所受的 载荷中找 出三个 载荷比 较 大的 时刻, 计算得到其相应时刻的应力和应变分布规律, 找出曲轴受力的危险部位, 为曲轴的动态强度分析提 供数据; 最 后, 结合 Ansys 有限元分析软件和柯顿- 多兰( Certon - Dolan) 理论, 估算 连杆疲 劳寿命, 同 时分析多 级载荷 加载次 序对疲 劳 寿命的影响, 为零部件的主动寿命设计提供参考 数据和理论判据。

关键词 强度 疲劳寿命 动力学 曲轴轴系 中图分类号 TH123. 3 AbstractIntroducing mult-i flexib1e body dynamics to crankshaft computing, a dynamics simulation model of crank and linkmechanism of an engine is built. Based on the rigid and flex coupled model, ADAMS( automatic dynamic analysis of mechanical sys - tems) is used to do a kinematics and dynamic simulation to get dynamic loads. It also provides a reliable characteristic for the body v-i bration noise of next step. Then the bigger loads of three moments are identified from all loads. The distribution law of the stress and strain of correspondi n g moment are achieved and its dangerous parts are found to offer date of dynamic strength analysis. At las t, com - bining the Ansys and the theory of Certon -Dolan, the fatigue life of the link is calculated and the affection of loading order of multilevel loads to fatigue life is analyzed in detail, which have provided the referenced data and the theory of criterion for reliability desi g n.Key words Strength; Fatigue life; Dynamics; Crankshaft and link mechanismCor res pon ding autho r : Z H U Yong Mei , E -mail : zymtt @ 163. com , Tel : + 86- 511- 84401198, Fa x : + 86-511- 84402269 The project supported by the Shipbuilding Industry Defense Technology Pre - research Foundation of China ( No . 07J2. 3. 2) . Manuscript received 20090722, in revi s ed form 20090908.引言曲轴轴系是发动机的主要组件之一, 其动力学特 性对发动机的工作可靠性、振动、噪声等有较大影响。

第6章结构件及连接的疲劳强度计算原理

第6章结构件及连接的疲劳强度计算原理

148第6章 结构件及连接的疲劳强度随着社会生产力的发展,起重机械的应用越来越频繁,对起重机械的工作级别要求越来越高。

《起重机设计规范》GB/T 3811-2008规定,应计算构件及连接的抗疲劳强度。

对于结构疲劳强度计算,常采用应力比法和应力幅法,本章仅介绍起重机械常用的应力比法。

6.1 循环作用的载荷和应力起重机的作业是循环往复的,其钢结构或连接必然承受循环交变作用的载荷,在结构或连接中产生的应力是变幅循环应力,如图6-1所示。

起重机的一个工作循环中,结构或连接中某点的循环应力也是变幅循环应力。

起重机工作过程中每个工作循环中应力的变化都是随机的,难以用实验的方法确定其构件或连接的抗疲劳强度。

然而,其结构或连接在等应力比的变幅循环或等幅应力循环作用下的疲劳强度是可以用实验的方法确定的,对于起重机构件或连接的疲劳强度可以用循环记数法计算出整个循环应力中的各应力循环参数,将其转化为等应力比的变幅循环应力或转化为等平均应力的等幅循环应力。

最后,采用累积损伤理论来计算构件或连接的抗疲劳强度。

6.1.1 循环应力的特征参数 (1) 最大应力一个循环中峰值和谷值两极值应力中绝对值最大的应力,用max σ表示。

(2) 最小应力一个循环中峰值和谷值两极值应力中绝对值最小的应力,用min σ表示。

(3) 整个工作循环中最大应力值构件或连接整个工作循环中最大应力的数值,用max ˆσ表示。

(4) 应力循环特性值一个循环中最小应力与最大应力的比值,用minmaxr σσ=表示。

(5) 循环应力的应力幅一个循环中最大的应力与最小的应力的差的绝对值,用σ∆表示。

149,r i i N σ-曲线max min max (1)r σσσσ∆=-=-(6) 应力半幅一个循环中最大的应力与最小的应力的差的绝对值的一半,用a σ来表示。

max min /2a σσσ=-(7) 应力循环的平均值一个循环中最大的应力与最小的应力的和的平均值,用m σ表示。

第六章-机械可靠性设计原理

第六章-机械可靠性设计原理

S
同样分析方法:
按应力始终小于强度这一条件计算。干涉区内任取
一点δ1,则:
P[(1
d
2
)
(1
d
2
)]
g(1)d
P(S 1)
1 f (S )dS
R P(S ) g( )[ f (S)dS]d
■理论要点:
可靠性设计
• 应力:导致失效的任何因素; 强度:阻止失效发生的任何因素。
• 应力f(s),强度g(δ), 量纲相同,可放在同一坐标系中。
解: 当零件强度标准差为81MPa时
z S 850 380 470 5.1512

2
2 S
422 812 91.2414
R 1(z) 1(5.1512) (5.1512) 0.9999999
当零件强度标准差为120MPa时
可靠性设计
z S 850 380 470 3.6968
2
1
z2
e 2 dz
2
例6-1 已知某零件的工作应力及材料强度均为正态分
布,且应力的均值μS=380MPa,标准差σS=42MPa,材料 强度的均值为850MPa,标准差为81MPa。
可靠性设计
试确定零件的可靠度。另一批零件由于热处理不佳及 环境温度的较大变化,使零件强度的标准差增大至 120MPa。问其可靠度如何?
R
exp
1 2
2s
2 s 2
5
指数
es
正态
N , 2
R 1 exp
1 2
2 s
s2 2
6
指数
es
,
R
1
s
可靠性设计
第三节 机械静强度的可靠性设计

疲劳强度资料

疲劳强度资料

疲劳强度
疲劳强度是指材料在受到交变应力作用下所能承受的最大应力水平,是材料抗
疲劳性能的一个重要指标。

在工程实践中,疲劳强度的评定对于保证结构的可靠性和安全性至关重要。

疲劳的危害
疲劳是一种特殊的损伤形式,其分裂起点往往位于材料的内部缺陷或表面微小
裂纹的周围。

当材料受到交变应力作用时,这些缺陷和裂纹会逐渐扩展,导致材料的逐渐衰减和最终破坏。

这种疲劳损伤通常是隐蔽的、逐渐的,却又具有极其危险的特点。

影响疲劳强度的因素
疲劳强度受多种因素影响,其中最主要的包括材料的性能、应力水平、循环次数、环境条件等。

不同材料的疲劳强度差异很大,通常需要通过实验和试验来确定具体数值。

另外,应力水平和循环次数也是影响疲劳强度的重要因素,较高的应力水平和更多的循环次数会显著降低材料的疲劳寿命。

提高疲劳强度的方法
为了提高材料的疲劳强度,可以采取一系列措施。

首先是改善材料的内在质量,减少表面缺陷和微裂纹的存在,以增加材料的抗疲劳性能。

其次是通过热处理、表面强化等工艺手段来改善材料的性能,提高疲劳强度。

此外,设计合理的结构和避免应力集中也是提高疲劳强度的有效途径。

结语
疲劳强度作为材料性能的重要指标之一,对于保证结构的安全性具有重要意义。

正确评定疲劳强度,合理设计结构,提高材料性能,可以有效延长材料的使用寿命,保证结构的可靠性和安全性。

第六章 压力容器

第六章 压力容器

第六章 压力容器
第六章 压力容器
§6.4.5蠕变破裂 ⒈原因:在高温下工作的压力容器,当操作温度 超过一定极限,材料在应力的作用下发生缓慢的塑 性变形,这种塑性变形经过长期的累积后,最终会 导致材料破裂。 ⒉特征:有明显的塑性变形和蠕变小裂纹,断口 无金属光泽,呈粗糙颗粒状,表面有高温氧化层或 腐蚀物。
核泄漏
第六章 压力容器
《压力容器安全技术
§6.2压力容器分类
监察规程》简称“容 规”
根据工作压力、容积、介质状态,界定了压力容器:
★ ①最高工作压力≥0.1Mp;
②内直径≥0.15m,容积≥0.025m3;
③ 盛装介质为气体、液化气体或最高工作温度高于或 等于标准沸点的液体。
⒈按存在形式 ①固定式压力容器; ②移动式容器。 “容规”不适用 ⒉按设计压力 ①低压容器: 0.1≤P<1.6MPa ②中压容器: 1.6≤P<10MPa ③高压容器: 10≤P<100MPa ④超高压容器: P≥100MPa
⒊按工艺功能 ①反应容器: ②换热容器: ③分离容器: 用于完成介质的流体压力平衡和气体净化分离等的 容器,如分离器、过滤器、洗涤器、吸收塔、干燥 塔等;
第六章 压力容器
⒊按工艺功能 ①反应容器: ②换热容器: ③分离容器: ④储存容器: 用于盛装生产或生活用的原料气体、液体、液化 气体等,如各种型式的贮罐、槽车等。
第六章 压力容器
§6.4.4应力腐蚀破裂 ⒉应力腐蚀破裂的特征
①无宏观的塑性变形,断口可见到腐蚀产物; ②发生在结构的应力集中部位或腐蚀介质富集区 ③断口存在两个区域,一是腐蚀裂纹扩展区;二 是快速断裂区。
§6.4.4应力腐蚀破裂 ⒊预防应力腐蚀破裂的措施
①选择对介质不敏感的材料 ②设计时避免应力集中 ③加缓蚀剂

焊接接头和结构的疲劳强度

焊接接头和结构的疲劳强度

第6章焊接接头和结构的疲劳强度§6-1 概述一、定义结构在变动载荷下工作,虽然应力低于材料的但在较长时间工作后仍发生断裂的现象叫金属的疲劳。

疲劳断裂金属结构失效的一种主要形式,大量统计资料表明,因为疲劳而失效的金属结构约占结构的90%项目实际中的疲劳有多种表现形式:机械疲劳:完全由变动外载荷引起接触疲劳:表面间滚动接触与交变应力共同作用蠕变疲劳:高温和交变应力作用热疲劳:温度变化引起本章讨论的是具有典型意义和普遍意义的材料、焊接接头和结构的机械疲劳情况。

例如:直升飞机起落架,疲劳断裂,裂纹从应力集中很高的角接板尖端开始,断裂时飞机已起落2118次。

再如:载重汽车的纵梁的疲劳裂纹,该梁承受反复的弯曲应力,在角钢和纵梁的焊接处,因应力集中很高而产生裂纹,开裂时该车运行3万公里。

可见,疲劳断裂是在正常的工作应力作用下经较长时间后产生的,也就是说疲劳断裂的结构是在应力低于许用应力的情况下产生的,这使我们联想到结构的低应力脆断,疲劳和脆断都是在低应力作用下产生的,那么它们之间有什么相同点和不同点呢?二、疲劳和脆断的比较疲劳和脆断都是低应力情况下的破坏,那么它们之间有什么异同三、疲劳的类型根据构件所受应力的大小、应力交变频率的高低,通常可以把金属的疲劳分为2类:一类为高速疲劳它是在应力低,应力交变频率高的情况下产生的,也叫应力疲劳,即通常所说的疲劳;另一类为低周疲劳,它是在应力高,工作应力近于或高于材料的屈服强度,应力交变频率低断裂时应力交变周次少(少于102—105次)的情况下产生的疲劳,也叫应变疲劳。

1、高速疲劳(应力疲劳):载荷小(应力小),频率高,裂纹扩展速率小。

2、低周疲劳(应变疲劳):应力高,频率低,裂纹扩展速率大。

焊接结构的疲劳破坏大部分属于第二类:低周疲劳。

§6-2 疲劳限的常用表示方法一、变动载荷(掌握σmax、σmin、σm、σa、r概念)金属的疲劳是在变动载荷下经过一定的循环周次后出现的,所以要首先了解变动载荷的性质。

钢结构的疲劳破坏事故讲解

钢结构的疲劳破坏事故讲解

(3)材料缺陷 钢材中总是存在各种各样的缺陷,它们对
疲劳强度有很大髟响。其影响的程度取决于 缺陷的大小、形状、数量、位置、方向。
2 构造及加工
构造细节对高强螺栓疲劳性能的影响十分显著,它主要反 映了应力集中的严重程度。如螺栓的螺纹形式、键槽、螺帽 过渡圆角以及制作工艺和热处理加工等。
通常,高强螺栓的疲劳危险区有三处:①与螺栓球节点连 接处第一螺纹牙根部,经理论分析,各螺纹牙上的应力分配 是不均匀的,一般第一螺纹牙传递的应力为最大;②螺栓头 与螺杆的过渡圆角处;③螺纹与光滑部分的过渡处。试验表 明:疲劳破坏大都发生存第①最险区。
3. 破损-安全设计
破损--安全设计准则首先是在航空工程中发展起 来的。它认为裂纹可以出现,但在整个裂纹被检测 和进行修理前,所出现的裂纹不会导致整个结构的 破坏。这就要求定期检查和维修,以便及时发现裂 纹,同时要求裂纹扩张速度较慢。此外,希望所设 计的结构能够进行载荷多路径传递转移,即将结构 某一环节破坏后,载荷能够被转移并重新分布。
制作安装缺陷;螺栓的预紧力 4. 工作应力
应力幅;平均应力
1材料性能 (1)钢材种类 目前,螺栓球节点网架中高强螺栓的钢材种
类有:40Cr、20MnTiB、35VB、35CrMo钢材 种类对于疲劳强度的影响可以通过极限强度值 反映出来。凡具有相同屈服强度或极限强度的 各种钢材,其疲劳强度一般没有太大的差别。
总之,依靠精心的选材、设计、制作、安装和使用,再加上焊接之后的 一些特殊工艺措施,可以达到提高和改善疲劳性能的作用。
6.4 疲劳设计准则
• 无限寿命设计 • 有限寿命设计 • 破损-安全设计 • 损伤-容限设计
1. 无限寿命设计
这是一种最保险的方法。采用此准则 设计的许用应力必须低于疲劳极限,因 应力很低,造价过高,往往不现实。

钢桥疲劳计算理论

钢桥疲劳计算理论
9. 4.3 无限寿命设计 1.基本要求:构件在设计应力下能够长期安全使用 2.设计方法:采用S-N曲线的常幅水平部分.对于等 幅循环应力,构件的工作应力小于或等于等幅疲劳 极限;对于变幅循环应力,构件的最大应力幅小于 其等效等幅疲劳极限.
9. 4.4 安全寿命设计
1.基本要求:保证结构在一定使用期内不发生疲劳破坏.允许构件的工 作应力超过疲劳极限. 2.设计方法:采用线性损伤累积理论,估算总的疲劳损伤,从而计算出安 全寿命Ts最后和设计寿命TL相比较.
的定义为:
LSS LNN
式中:
LSS
l
(lgs j )2
j 1
1l
l
2
lg s j
j 1
LNN
l
(lg N j )2
j 1
1l
l j 1
lg
N
j
2
LSN
l
lg s j lg N j
j 1
1l
l
lg s j
j 1
l
lg N j
j 1
γ的绝对值越接近1,说明lgσ和lgN的线性相关性越好. 8.BS5400规范举例
中的Sni为预期使用寿命。疲劳强度条件为
Ds e [Ds ]
(6-8)
9.2.4 S-N 曲 线 1.疲劳寿命:疲劳失效前所经历的应力或应变循环次数,一般用N表示. 2.S -N曲线:以应力幅Ds (或s max )为纵坐标,以循环次数N为横坐标.将 试验结果连接而成的曲线. 3.S -N曲线的左支常用下式表达:
将Ds 划分为Ds1 …Dsi …Dsk 。 Ds
根据应力谱统计在服役期内每个应力
Dsk Dsi
幅水平的实际循环次数,记为 n1… Ds1

机械设计

机械设计

第三章1、零件表面的强化处理方法有表面化学热处理、高频表面淬火、表面硬化加工等。

2、机械零件受载时,在截面形状突变处产生应力集中,应力集中的程度通常随材料强度的增大而增大。

第五章1、普通螺纹的公称直径是指螺纹的大径,计算螺纹的摩擦力矩时使用的是螺纹中径,计算螺纹危险截面时使用的是螺纹的小径。

2、在螺栓连接的破坏形式中,约有90%的螺栓属于疲劳破坏,疲劳断裂常发生在螺纹根部。

第六章键、花键、无键连接和销连接1、普通平键连接的主要失效形式是接合面的挤压破坏,导向平键连接的主要失效形式是接合面的过度磨损。

2、与平键连接相比,楔连接的主要缺点是轴和轴上零件对中性差。

3、矩形花键连接采用小径定心,渐开线花键连接采用齿形定心。

第七章1、电弧焊缝大体可分为对接焊缝与角焊缝两类,前者用于连接同一平面内的被焊件,后者用于连接不同平面内的被焊件。

2、设计胶结接头时,应尽可能使胶缝承受剪切或拉伸载荷。

第八章1、V带传动在工作过程中,带内应力有拉应力、离心拉应力、弯曲应力,最大应力σmax=σ1+σb1+σc,发生在带的紧边开始绕上小带轮处。

2、在平带或V带传动中,影响临界有效拉力Fec的因素是预紧力F0、包角α和摩擦系数f。

第九章1、滚子链由滚子、套筒、销轴、内链板和外链板组成,其内链板与套筒之间、外链板与销轴之间分别为过盈配合,而滚子与套筒之间、套筒与销轴之间分别为间隙配合。

2、链条的磨损主要发生在销轴与套筒的接触面上。

3、在链传动中,链轮的转速越高,节距越大,齿数越少,则传动的动载荷越大。

4、链传动的主要失效形式有链条疲劳破坏、链条铰链的磨损、链条铰链的胶合、链条静力破坏四种。

在润滑良好,中等速度的链传动中,其承载能力主要取决于链条的疲劳强度。

第十章1、在齿轮传动中,将齿轮进行齿顶修圆的目的是为了减小动载荷,将齿轮加工成鼓形齿的目的是为了改善在和沿齿向的分布不均。

2、影响齿轮传动动载系数Κv大小的两个主要因素是齿轮的圆周速度大小和精度高低。

结构试验原理

结构试验原理

建筑结构试验第一章一、结构试验的任务结构试验是一门试验科学土木工程结构试验是一项科学实践性很强的活动,是研究和发展结构新材料、新体系、新工艺以及探索结构设计新理论的重要手段。

同时,也可通过试验对具体结构作出正确的技术结论。

实践性: 结构设计过程中,工程技术人员必须掌握在各种作用下结构的实际工作状态,了解结构构件的承载力、刚度、受力性能以及实际所具有的安全储备。

1)传统的理论计算方法;2)结构试验应力分析方法。

电子计算机技术的应用1)数学模型方法计算分析技术;2)计算机控制的结构试验技术。

结构试验主要内容1)工程结构静力试验和动力试验的加载模拟技术;2)工程结构变形参数的量测技术;3)试验数据的采集、信号分析及处理技术;4)对试验对象作出科学的技术评价或理论分析。

结构试验的任务工程结构试验的任务就是在结构物或试验对象(实物或模型)上,利用设备仪器为工具,采用各种实验技术为手段,在荷载(重力、机械扰动力、地震作用、风力……)或其他因素(温度、变形)作用下,通过量测与结构工作性能有关的各种参数(变形、挠度、应变、振幅、频率……),从强度(稳定性)、刚度和抗裂性以及结构实际破坏形态来判断结构的实际工作性能,估计结构的承载能力,确定结构对使用要求的符合程度,并用以检验和发展结构的计算理论。

二、工程结构试验的目的科学研究性试验目的:验证结构设计的某一理论,或验证各种科学的判断、推理、假设及概念的正确性,或者是为了创造某种新型结构体系及其计算理论。

对象:对象即试件,具体结构或抽象模型。

研究问题:1)验证结构计算理论的假定。

2)为制订设计规范提供依据。

3)为发展和推广新结构、新材料与新工艺提供实践经验。

生产鉴定性试验目的:检验结构构件是否符合结构设计规范及施工验收规范的要求,并对检验结果作出技术结论。

对象:一般是真实的结构或构件。

应用:1)检验结构的质量,说明工程的可靠性。

2)检验构件或部件的结构性能,判定构件的设计及制作质量。

名词解释混凝土的疲劳强度

名词解释混凝土的疲劳强度

名词解释混凝土的疲劳强度
混凝土的疲劳强度是指混凝土在受到交变载荷作用下所能承受
的循环应力次数以及每个循环应力幅值的能力。

在实际工程中,混
凝土结构可能会受到频繁的交变荷载,例如交通载荷、风载、机械
振动等,这些荷载会导致混凝土结构发生疲劳损伤。

疲劳强度的概
念源自金属材料的疲劳性能研究,但对于混凝土材料同样具有重要
意义。

疲劳强度的评定通常需要进行疲劳试验,通过施加不同幅值和
频率的交变载荷,观察混凝土试件的疲劳寿命和损伤情况,从而得
到混凝土的疲劳强度参数。

疲劳强度的评定对于设计和评估混凝土
结构的安全性和耐久性至关重要。

混凝土的疲劳强度受到多种因素的影响,包括混凝土本身的材
料性能、试件几何形状、应力水平、频率等。

此外,混凝土的配筋
方式、裂缝宽度、环境条件等因素也会对疲劳强度产生影响。

因此,在工程实践中,需要综合考虑这些因素,通过合理的设计和施工措
施来提高混凝土结构的疲劳强度,确保其在使用过程中具有良好的
耐久性和安全性。

总之,混凝土的疲劳强度是指在交变荷载作用下,混凝土材料所能承受的循环应力次数和幅值的能力,评定疲劳强度需要进行相应的试验研究,考虑多种因素的综合影响,对于混凝土结构的设计和评估具有重要意义。

机械设计简答和计算题

机械设计简答和计算题

《机械设计》精品课程习题第一篇总论第一章绪论●分析与思考题●第二章机械设计总论●分析与思考题2-1试述机器和机构的特征。

2-2说明构件、零件及部件的特点。

2-3简述现代机器的定义及特征.2-4试述机械产品设计中对机器的主要要求。

2-5叙述机械设计的基本类型及设计的一般程序。

2-6简述方案设计的主要内容及要求。

第三章机械零件的强度●分析与思考题3-1 图示各零件均受静载荷作用,试判断零件上A点的应力是静应力还是变应力;并确定应力比r的大小或范围。

题3-1图3—2 弯曲疲劳极限的综合影响系数Kσ的含义是什么?它与哪些因素有关?它对零件的疲劳强度和静强度各有何影响?3—3 零件的等寿命疲劳曲线与材料试件的等寿命疲劳曲线有何区别?在相同的应力变化规律下,零件和材料试件的失效形式是否总是相同的?为什么?3—4 试说明承受循环变应力的机械零件,在什么情况下可按静强度条件计算?什么情况下需按疲劳强度条件计算?3-5 在单向稳定变应力下工作的零件,如何确定其极限应力?3—6 疲劳损伤线性累积假说的含义是什么?写出其数学表达式.3-7 在双向稳定变应力下工作的零件,怎样进行疲劳强度计算?3—8 影响机械零件疲劳强度的主要因素有哪些?提高机械零件疲劳强度的措施有哪些?3-9 导致机械结构发生低应力断裂的原因有哪些?3-10机械结构的裂纹是否会失稳扩展是如何判定的?第四章摩擦、磨损及润滑概述●分析与思考题4-1 按照摩擦面间的润滑状态不同,滑动摩擦可分为哪几种?4—2 膜厚比的物理意义是什么?边界摩擦、混合摩擦和液体摩擦所对应的膜厚比范围各是多少?4—3 在工程中,常用金属材料副的摩擦系数是如何得来的?4-4 什么是边界膜?边界膜的形成机理是什么?如何提高边界膜的强度?4—5 零件的磨损过程大致可分为哪几个阶段?每个阶段的特征是什么?4-6 根据磨损机理的不同,磨损通常分为哪几种类型?它们各有什么主要特点?4—7 润滑油的粘度是如何定义的?什么是润滑油的粘性定律?什么样的液体称为牛顿液体?4-8 粘度的表示方法通常有哪几种?各种粘度的单位和换算关系是什么?4-9 润滑油的主要性能指标有哪些?润滑脂的主要性能指标有哪些?4—10 在润滑油和润滑脂中加入添加剂的作用是什么?4-11 流体动力润滑和流体静力润滑的油膜形成原理有何不同?流体静力润滑的主要优缺点是什么?4-12 流体动力润滑和弹性流体动力润滑两者间有何本质区别?所研究的对象有何不同?第二篇连接第五章螺纹连接和螺旋传动分析与思考题5-1常用螺纹有哪几种类型?各用于什么场合?对联接螺纹和传动螺纹的要求有何不同?5-2 在螺栓联接中,不同的载荷类型要求不同的螺纹余留长度,这是为什么?5—3 联接螺纹都具有良好的自锁性,为什么有时还需要防松装置?试各举出两个机械防松和摩擦防松的例子。

钢结构设计专业计算书详解

钢结构设计专业计算书详解

第一章总则第1.0.1条为在钢结构设计中贯彻执行国家的技术经济政策,做到技术先进、经济合理、安全适用、确保质量,特制定本规范。

第1.0.2条本规范适用于工业与民用房屋和一般构筑物的钢结构设计。

第1.0.3条本规范的设计原则是根据《建筑结构设计统一标准》(CBJ68-84))制订的。

第1.0.4条设计钢结构时,应从工程实际情况出发,合理选用材料、结构方案和构造措施,满足结构在运输、安装和使用过程中的强度、稳定性和刚度要求,宜优先采用定型的和标准化的结构和构件,减少制作、安装工作量,符合防火要求,注意结构的抗腐蚀性能。

第1.0.5条在钢结构设计图纸和钢材订货文件中,应注明所采用的钢号(对普通碳素钢尚应包括钢类、炉种、脱氧程度等)、连接材料的型号(或钢号)和对钢材所要求的机械性能和化学成分的附加保证项目。

此外,在钢结构设计图纸中还应注明所要求的焊缝质量级别(焊缝质量级别的检验标准应符合国家现行《钢结构工程施工及验收规范》)。

第1.0.6条对有特殊设计要求和在特殊情况下的钢结构设计,尚应符合国家现行有关规范的要求。

第二章材料第2.0.1条承重结构的钢材,应根据结构的重要性、荷载特征、连接方法、工作温度等不同情况选择其钢号和材质。

承重结构的钢材宜采用平炉或氧气转炉3号钢(沸腾钢或镇静钢)、16Mn钢、16Mnq钢、15MnV钢或15MnVq钢,其质量应分别符合现行标准《普通碳素结构钢技术条件》、《低合金结构钢技术条件》和《桥梁用碳素钢及普通低合金钢钢板技术条件》的规定。

第2.0.2条下列情况的承重结构不宜采用3号沸腾钢:一、焊接结构:重级工作制吊车梁、吊车桁架或类似结构,冬季计算温度等于或低于-20℃时的轻、中级工作制吊车梁、吊车桁架或类似结构,以及冬季计算温度等于或低于-30℃时的其它承重结构。

二、非焊接结构:冬季计算温度等于或低于-20℃时的重级工作制吊车梁、吊车桁架或类似结构。

注:冬季计算温度应按国家现行《采暖通风和空气调节设计规范》中规定的冬季空气调节室外计算温度确定,对采暖房屋内的结构可按该规定值提高10℃采用。

机械设计作业集(答案)

机械设计作业集(答案)

机械设计作业集(答案)第五章螺纹一、简答题1.相同公称直径的细牙螺纹和粗牙螺纹有何区别?答普通三角螺纹的牙型角为60 º,又分为粗牙螺纹和细牙螺纹,粗牙螺纹用于—般连接,细牙螺纹在相同公称直径时,螺距小、螺纹深度浅、导程和升角也小,自锁性能好,适合用于薄壁零件和微调装置。

细牙螺纹的自锁性能好,抗振动防松的能力强,但由于螺纹牙深度浅,承受较大拉力的能力比粗牙螺纹差。

2.螺栓、双头螺柱、紧定螺钉连接在应用上有何不同?答(1)普通螺栓连接:被连接件不太厚,螺杆带钉头,通孔不带螺纹,螺杆穿过通孔与螺母配合使用。

装配后孔与杆间有间隙,并在工作中不许消失,结构简单,装拆方便,可多个装拆,应用较广。

(2)精密螺栓(铰制孔螺栓)连接:装配间无间隙,主要承受横向载荷,也可作定位用,采用基孔制配合铰制扎螺栓连接。

(3)双头螺柱连接:螺杆两端无钉头,但均有螺纹,装配时一端旋入被连接件,另一端配以螺母,适于常拆卸而被连接件之一较厚时。

装拆时只需拆螺母,而不将双头螺栓从被连接件中拧出。

(4)螺钉连接:适于被连接件之一较厚(上带螺纹孔)、不需经常装拆、受载较小的情况。

一端有螺钉头、不需螺母。

(5)紧定螺钉连接:拧入后,利用杆末端顶住另一零件表面或旋入零件相应的缺口中以固定零件的相对位置。

可传递不大的轴向力或扭矩。

3.为什么多数螺纹连接都要求拧紧?预紧的目的是什么?答绝大多数螺纹连接在装配前都必须拧紧,使连接在承受工作载荷之前,预先受到力的作用。

这个预先加的作蝴用力称为顶紧JJ力。

预紧的目的在于增强连接的紧密性和可靠性,以防止被连接件在受力后出现松动、缝隙或发生滑移。

4.连接用螺纹已经满足自锁条件,为什么在很多连接中还要采取防松措施?答; 对于一般单线螺纹,螺旋升角小于螺旋副的当量摩擦角,本身能满足自锁条件,但是在冲击、振动或变载荷作用下,螺旋副摩擦力可能减小或瞬时消失,多次反复作用后,就可能松脱。

另外,在温度大幅度变化的情况下,反复的热胀冷缩,也会造成松脱。

浅谈钢结构的疲劳计算

浅谈钢结构的疲劳计算

35科技创新导报 Science and Technology Innovation Herald 建 筑 科 学钢结构的疲劳是微观裂纹在连续重复载荷作用下不断扩展直至最后达到临界尺寸时出现的突发性断裂破坏,破坏时塑性变形很小,因此,疲劳破坏属于没有明显变形的脆性破坏,有着较大的危险性。

钢结构的疲劳按照其断裂前的应变大小和应力循环次数可分为高周疲劳和低周疲劳。

车辆的断裂、压力容器破裂(压力的波动)、弹簧、传动轴等多属于高周疲劳。

其特征是应变小,应变循环次数多。

承受剧烈反复的载荷作用的杆件,例如:压力容器、燃气轮机零件等,也能使其产生疲劳,其应变大,循环次数少,故属于低周疲劳。

钢结构只考虑应变循环次数n ≥5×104次的高周疲劳,计算范围仅限于直接承受动力载荷重复作用的构件(如:吊车梁、吊车桁架、工作平台梁等)及其连接。

另外,由于高温和腐蚀环境的疲劳破坏机理及表达式与常温、无严重腐蚀的情况不一样,故在此要求结构环境应为常温,且无严重腐蚀作用。

在以往较长的时期,对钢结构的疲劳计算一直采用最大应力σm ax 或应变比σm i n /σm a x 准则,近年来,随着工程实践和实验技术的提高,逐渐认识到对焊接结构疲劳强度计算,应考虑残余应力的影响,其计算应采用应力幅准则。

即影响焊接结构疲劳强度的因素除应力集中和应力循环次数外,再就是应力幅Δσ=σm a x -σm i n ,而ρ和σm a x 对其并无明显影响。

1 疲劳计算《钢结构设计规范》(GB 50017-2003)规定n ≥5×104为疲劳寿命底限,因此,对承受动力载荷重复作用的钢结构构件(如:吊车梁)及其连接,当应力变化的循环次数n ≥5×104次时,应进行高周疲劳计算。

由于现阶段对不同类型构件和连接的疲劳裂缝的形成、扩展以至于断裂这一全过程的极限状态研究不足,掌握的疲劳强度数据只是结构抗力表达式中的材料强度部分,故《规范》规定疲劳计算应采用容许应力幅法。

疲劳强度分析

疲劳强度分析

疲劳强度疲劳的定义:材料在循环应力或循环应变作用下,由于某点或某些点产生了局部的永久结构变化,从而在一定的循环次数以后形成裂纹或发生断裂的过程称为疲劳。

疲劳的分类:(1)按研究对象:材料疲劳和结构疲劳(2)按失效周次:高周疲劳和低周疲劳(3)按应力状态:单轴疲劳和多轴疲劳(4)按载荷变化情况:恒幅疲劳、变幅疲劳、随机疲劳(5)按载荷工况和工作环境:常规疲劳、高低温疲劳、热疲劳、热—机械疲劳、腐蚀疲劳、接触疲劳、微动磨损疲劳和冲击疲劳。

第一章疲劳破坏的特征和断口分析§1-1 疲劳破坏的特征疲劳破坏的特征和静力破坏有着本质的不同,主要有五大特征:(1)在交变裁荷作用下,构件中的交变应力在远小于材料的强度极限(b)的情况下,破坏就可能发生。

(2)不管是脆性材料或塑性材料,疲劳断裂在宏观上均表现为无明显塑性变形的突然断裂,故疲劳断裂常表现为低应力类脆性断裂。

(3)疲劳破坏常具有局部性质,而并不牵涉到整个结构的所有材料,局部改变细节设计或工艺措施,即可较明显地增加疲劳寿命。

(4)疲劳破坏是一个累积损伤的过程,需经历一定的时间历程,甚至是很长的时间历程。

实践已经证明,疲劳断裂由三个过程组成,即(I)裂纹(成核)形成,(II)裂纹扩展,(III)裂纹扩展到临界尺寸时的快速(不稳定)断裂。

(5)疲劳破坏断口在宏观和微观上均有其特征,特别是其宏观特征在外场目视捡查即能进行观察,可以帮助我们分析判断是否属于疲劳破坏等。

图1-1及图l-2所示为磨床砂轮轴及一个航空发动机压气机叶片的典型断口。

图中表明了疲劳裂纹起源点(常称疲劳源),疲劳裂纹扩展区(常称光滑区)及快速断裂区(也称瞬时破断区,常呈粗粒状)。

§1-2 疲劳破坏的断口分析宏观分析:用肉眼或低倍(如二十五倍以下的)放大镜分析断口。

微观分析:用光学显微镜或电子显微镜(包括透射型及扫描型)研究断口。

图1-1 磨床砂轮轴的典型断口图1-2 航空发动机压气机叶片的典型断口1、断口宏观分析:(I) 疲劳源:是疲劳破坏的起点,常发生在表面,特别是应力集中严重的地方。

第六章 绞车钢丝绳及连接装置

第六章  绞车钢丝绳及连接装置

第六章绞车钢丝绳及连接装置第一节钢丝绳的结构和选用一、绞车钢丝绳的结构及常用规格钢丝绳是由一定形状和大小的多根钢丝捻制成股,然后再由若干股绕绳心捻制成螺旋形状的钢丝绳。

在由钢丝捻成绳时,一般有股芯,股芯可以由不同断面形状的钢丝组成;在由绳股捻制成绳时要有绳芯,绳芯分金属绳芯和纤维绳芯两种,金属绳芯由钢丝组成,纤维绳芯常采用黄麻制成,但也有使用剑麻的,因我国剑麻极少,所以一般未用,但剑麻制成的绳芯具有较大的抗挤压和抗损坏性能。

目前,我国已开始研究和采用合成纤维绳芯。

钢丝绳使用过程中,绳芯是极其重要的组成部分,它不仅支持绳股,保持钢丝绳的断面形状,减少钢丝的挤压和变形,而且还可降低绳股间钢丝的接触应力;在钢丝绳弯曲时,允许绳间和钢丝间有相对移动,以缓和弯曲应力,使钢丝绳富有弹性;由于可贮存润滑油,可预防钢丝绳内部钢丝锈蚀并减少钢丝间摩擦。

捻制钢丝绳的钢丝,为优质碳素结构圆钢冷拔而成的,直径一般为0.4~4mm,直径过细或过粗都不利于钢丝绳的使用,过细则易磨损,过粗则难以保证抗弯疲劳性能,钢丝绳的抗拉强度一般为1 400~2 000 MPa。

倾斜井巷提升绞车一般用1 470~1 870 MPa的几种钢丝绳,钢丝的抗拉强度越大,同样直径的钢丝绳可以承受的载荷越大,但其弯曲疲劳性能就有所降低。

为了增加钢丝绳的抗腐蚀能力,钢丝表面可以镀锌,用镀锌钢丝制造的钢丝绳称镀锌钢丝绳,未镀锌的钢丝制造的钢丝绳称为光面钢丝绳。

钢丝绳一般有以下几种分类方式:(一)按捻制方向分(1)按绳一股两者关系分右捻钢丝绳:绳中各股按右螺旋方向捻制成绳,记号Z。

左捻钢丝绳:绳中各股按左螺旋方向捻制成绳,记号S。

(2)按绳一股一丝三者关系分同向捻(顺捻)钢丝绳:钢丝在股中的捻向与股在绳中的捻向相同。

交互捻(逆捻)钢丝绳:钢丝在股中的捻向与股在绳中的捻向相反。

钢丝绳的捻向如图6—1所示。

(a)右交互捻;(b)左交互捻;(c)右同向捻;(d)左同向捻(二)按股内不同层钢丝与钢丝接触方式分(1)点接触钢丝绳:股内相邻层间的钢丝成点接触,一般是由直径相同的钢丝捻制制而成(常说的普通钢丝绳),如图6—2所示,因为钢丝间接触面积很小,所以接触应力很大,因此使用寿命短。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

148第6章 结构件及连接的疲劳强度随着社会生产力的发展,起重机械的应用越来越频繁,对起重机械的工作级别要求越来越高。

《起重机设计规范》GB/T 3811-2008规定,应计算构件及连接的抗疲劳强度。

对于结构疲劳强度计算,常采用应力比法和应力幅法,本章仅介绍起重机械常用的应力比法。

6.1 循环作用的载荷和应力起重机的作业是循环往复的,其钢结构或连接必然承受循环交变作用的载荷,在结构或连接中产生的应力是变幅循环应力,如图6-1所示。

起重机的一个工作循环中,结构或连接中某点的循环应力也是变幅循环应力。

起重机工作过程中每个工作循环中应力的变化都是随机的,难以用实验的方法确定其构件或连接的抗疲劳强度。

然而,其结构或连接在等应力比的变幅循环或等幅应力循环作用下的疲劳强度是可以用实验的方法确定的,对于起重机构件或连接的疲劳强度可以用循环记数法计算出整个循环应力中的各应力循环参数,将其转化为等应力比的变幅循环应力或转化为等平均应力的等幅循环应力。

最后,采用累积损伤理论来计算构件或连接的抗疲劳强度。

6.1.1 循环应力的特征参数 (1) 最大应力一个循环中峰值和谷值两极值应力中绝对值最大的应力,用max σ表示。

(2) 最小应力一个循环中峰值和谷值两极值应力中绝对值最小的应力,用min σ表示。

(3) 整个工作循环中最大应力值构件或连接整个工作循环中最大应力的数值,用max ˆσ表示。

(4) 应力循环特性值一个循环中最小应力与最大应力的比值,用minmaxr σσ=表示。

(5) 循环应力的应力幅一个循环中最大的应力与最小的应力的差的绝对值,用σ∆表示。

149,r i i N σ-曲线max min max (1)r σσσσ∆=-=-(6) 应力半幅一个循环中最大的应力与最小的应力的差的绝对值的一半,用a σ来表示。

max min /2a σσσ=-(7) 应力循环的平均值一个循环中最大的应力与最小的应力的和的平均值,用m σ表示。

max min max ()/2(1)/2m r σσσσ=+=+6.1.2 应力循环特性值的计算构件或连接单独或同时承受正应力(x σ、y σ)和剪应力(xy τ)作用,其最大应力与最小应力比值称为循环特性值,用x r 、y r 、xy r 表示,按式(6-1)计算。

max min x x x r σσ=max min y y y r σσ= (6-1) maxmin xy xy xy r ττ=式中: max max max xy y x τσσ、、—构件(或连接)在疲劳计算点上的绝对值最大正应力和绝对值最大剪应力值,2/N mm ;min min min xy y x τσσ、、—应力循环特性中与max max max xy y x τσσ、、相对应的同一疲劳计算点上的一组应力值,2/N mm ;计算应力循环特性值r (x r 、y r 、xy r )时,最小应力和最大应力应带各自正负号,拉应力为正号,压应力为负号。

剪应力按变化约定;移动小车轮压产生的脉动局部压应力,其r 值为0。

6.1.3 疲劳强度许用应力疲劳强度许用应力是通过标准试件的疲劳试验获取的。

试验时,对一批标准试件施加不同量值的等幅循环载荷,得到各试件破坏时的对应循环数N 。

以对称应力循环应力(疲劳应力循环特性1r =-)的最大拉应力max σ为纵坐标、破坏时循环数N 为横坐标,将试验结果绘成N -σ曲线如图所示,或称S N -曲线,此曲线表示了材料的疲劳强度与寿命的关系。

由曲线可知,随着最大拉应力max σ减小,应力循环次数N 增加。

当减小到某一值时,N 可以无限增加。

对于试件取6102⨯=N 次时的应力作为材料疲劳极限。

以1r =-的对称应力循环试验得到的含有90%可靠度的疲劳极限除以安全系数,得到疲劳150 强度许用应力值。

6.2 结构及其连接的工作级别结构及其连接的工作级别是结构设计计算的重要依据,也作为一项技术参数提供给用户。

用户可以按实际使用条件正确的选择或预定机械产品。

一个好的设计应充分考虑使用条件,进行疲劳强度校核,在安全和寿命方面才有可能较为接近实际的要求。

结构的工作级别与结构的应力状态(名义应力谱系数)和使用等级(应力循环次数)有关。

结构件的应力状态和使用等级是依据起重机械的载荷状态和工作循环次数确定的,结构的工作级别与起重机械工作级别不一定相同,应视具体情况而定。

6.2.1 使用等级结构件的使用时间,用该结构件的应力循环次数来表示。

一个应力循环是指应力从通过应力循环的平均值m σ时起至该应力同方向再次通过应力循环的平均值m σ时为止的一个连续过程。

图6-1表示的是应力循环的时间应力变化过程。

结构件总使用时间是指在其设计预期寿命期内,即从开始使用起到该结构件报废为止的期间内,该结构件发生的总的应力循环次数。

结构中应力变化的频繁程度,以其在设计寿命期内达到的总应力循环次数n 表征。

结构件的使用等级按完成的总工作循环次数n 的不同,分为11个使用等级,分别以代号B0,B1……B10表示,见表6-1。

6.2.2 应力状态应力状态是用来表明结构件中应力或部分应力达到最大的情况。

当结构件中应力或部分应力达到最大的情况不明时,应与用户协商,根据用途按表6-2确定应力状态。

当载荷情况已知时,应按下式计算实际应力谱s K ,再按表6-2选取接近且较大的名义应力谱系数值来确定应力状态。

结构件的应力谱,是表明在总使用时间内在它上面发生的应力大小及这些应力循环次数的情况。

每一个应力谱对应有一个应力谱系数s K 。

max [()]ci i S T n K n σσ= (6-2)151式中:s K —结构件应力谱的计算值;i n —该结构件发生的不同应力相应的应力循环数,n i n n n n n 321,,=; T n —结构件总的应力循环数,n ni i T n n n n n +++==∑= 211;i σ—该结构件在工作时间内发生的不同应力,;,,n i σσσσσ 321=max σ—为应力n σσσσ 321,,中的最大应力;c — 指数。

与有关材料的性能、结构件的种类、形状和尺寸、表面粗糙度以及腐蚀程度等有关,由实验得出。

展开后,(6-2)式变为:331122max max maxmax ()()()()c c ccn n S T T T T n n n n K n n n n σσσσσσσσ=++ (6-3)然后按表6-2可以确定该结构件或机械零件的应力谱系数和相应的应力状态。

注:确定应力谱系数所采用的应力是该结构件在工作期间内发生的各个不同峰值应力。

6.2.3 结构件的工作级别划分根据结构件的使用等级和应力状态,结构件工作级别划分为E1~E8共8个级别,见表6-3。

152 图6-2 ,r i i N σ-曲线6.3 疲劳极限6.3.1 等幅循环应力作用下的疲劳极限对试件施加同一应力循环特性值r 、不同最大应力max,i σ的等幅循环应力,得出试件破坏时对应的应力循环数i N 。

这时的最大应力max,i σ称为疲劳强度,以,r i σ表示。

通过足够数量的试验,可得到“,r i i N σ-曲线”(见图 6-2 )。

曲线的函数式为:,m r i i N C σ⋅= (6-4)式中:m 一指数,焊接结构可取3或5,非焊接结构可取5或6;i N —应力作用的循环次数; C 一常数。

影响疲劳强度的因素很多:连接形式、尺寸大小、形状以及焊接过程、焊后处理等。

以60210i N N ==⨯为基本循环数,则对应的,r i r σσ=,称为疲劳极限。

任一循环次i N 下的疲劳强度为:Nr mNrmi ri r k K N N σσσσ===, (6-5)式中:N k —寿命系数;N K —循环次数比0N N K i N =。

当等幅循环应力为对称循环应力时,其应力比为r =-1,则,r i σ表示为i ,1-σ;当等幅循环应力为脉动循环应力时,应力比为r =0,则,r i σ表示为0,i σ。

当r =-1时,以60102⨯==N N i 为基本循环数,则对应的1,1i σσ--=,称为基本疲劳极限。

而任一循环次数N i 下的疲劳强度为:11,i Nk σσ--===(6-6)其实,试验通常就用r =-1和r =0这两种应力比的等幅循环应力做的,其他应力比的等幅循环应力作用下的结果,可通过换算求得。

在已知1σ-和0σ(试验求得)前提下,在r σ和m σ的坐标上同时作出b σ (抗拉强度)的点C(见图6-3)。

连接AB 线和BC 线,又知静强度极限为钢材屈服点s σ,则确定D 点,并连DE 线。

当在-1≤r ≤0的范围内,任一r σ值可用图6-3 r σ与1σ-的关系153插入法从AB 线段上求得(可不必做试验,当然是近似的)。

以拉力为主的疲劳强度极限:1051()()3212/3rt r r σσσ-==-- (此时15/3ot σσ-=) (6-7) 当0≤r ≤1时,在BD 线段上,用插入法可求得:01015/35/31(1)1(1)rt s sr r σσσσσσσ--==---- (6-8) 同理,可写出受压应力为主的疲劳极限:当-1≤r ≤0时01211rc r r σσσ-==-- (此时12oc σσ-=) (6-9) 当0≤r ≤1时(此时抗压强度 1.2sc s σσ=)010121[1/(1.2)]1[12/(1.2)]rc s s r r σσσσσσσ--==---- (6-10)核算疲劳强度时,用下式比较:)(,max γσσr ir n ≤,][,,i r r i r n σσ= (6-11) )(,max γττr i r n ≤,2][3][,,,i r r i r i r n σστ或= (6-12) 式中:max σ—用绝对值,因为它有正负之分,而疲劳强度一般不带符号;i r ,σ—由式(6-5)算出来的1,j σ-经式(6-6)转换算得的;r n —疲劳强度的安全系数1.34(许用应力法);γ—材料的疲劳抗力系数,1.25~1.35(极限状态法)。

6.3.2 不等幅循环应力作用下的疲劳极限 (1) 当量等幅循环应力的转换在实际工程中,作用在起重机构件或连接上的循环应力都是不等幅、随机的。

变化复杂的循环应力,还需采用一“样板”区段,经一些循环计数的统计方法的处理,来确定该循环应力的各特征数值及其频率数。

然后,采用Miner 线性累积损伤理论来判断是否出现疲劳破坏。

也可将此循环应力转换为一单参数循环应力,即为等幅、等应力比的当量循环应力(d σ)来验算。

例如某一构件或接头作用有n 组已经处理过的循环应力,其各组循环应力max σ以12,,...,,...i n σσσσ表示,并一律以绝对值代人以下公式,相应的应力比以r 1,r 2,…r i ,…,r n 表示,每组应力的作用次数以n 1,n 2,…n i ,…,n n 表示(不考虑作用次序)。

相关文档
最新文档