大学基因工程论文
生物类论文:基因工程的利与弊
基因工程的利与弊刘建20101103805内蒙古师范大学生命科学与技术学院生物科学(汉班)呼和浩特010022摘要基因工程对于人类的利弊一直是个争议的问题,主要是这项技术创造出原本自然界不存在的重组基因。
但它为医药界带来新希望,在农业上提高产量改良作物,也可对环境污染、能源危机提供解决之道,甚至可用在犯罪案件的侦查。
但它亦引起很大的忧虑与关切。
当此科技由严谨的实验室转移至大规模医药应用或商业生产时,我们如何评估它的安全性?此项技术是否可能因为人为失控,反而危害人类健康并破坏大自然生态平衡?关键词:基因工程转基因道德伦理正文生物学家早在一百多年前就知道,生物的表征遗传自其亲代。
生物细胞的细胞核,含有染色体,其组成分为DNA。
DNA含有四种碱基--腺嘌呤(adenine,),胸腺嘧啶(thymine,),胞嘧啶(cytosine,)和鸟嘌呤(guanine,(它们分别简称A、T、C、G)。
这些碱基在DNA 中看似杂乱无章,但它们的排列顺序,正代表遗传讯息。
每三个碱基代表一种胺基酸的密码。
基因就是这些遗传密码的组合,亦即代表蛋白质的胺基酸序列。
每个基因含有启动控制区,以调控基因的表达。
基因工程技术(基因工程是一项很精密的尖端生物技术。
可以把某一生物的基因转殖送入另一种细胞中,甚至可把细菌、动植物的基因互换。
当某一基因进入另一种细胞,就会改变这个细胞的某种功能。
)在医药及农业上应用广泛。
这项尖端科技加上最近突破性的生殖科技,却引发人们极大的隐忧及争论。
观点:辨证地看待基因工程的利与弊基因工程对当今社会的发展功不可没。
一、基因工程是在对促进生物学的发展具有重要意义基因工程是在分子生物学、分子遗传学、微生物学、细胞工程等学科发展和研究成果的基础上诞生的,反过来也可促进现代生物学的发展。
生物界是通过长期的进化发展而来的,因而通过基因工程手段,不仅可以阐明生命发生的现象和规律,揭示重要基因功能以及重要性状形成的分子机制,还能模拟自然界生物进化历程,更进一步丰富和完善生物进化的理论,促进生物学研究的全面发展。
基因工程论文
基因工程论文基因工程的概述和应用进展摘要:基因工程是一种利用转基因技术对生物体的基因进行改造和编辑的科学领域。
本论文旨在阐述基因工程的原理、方法和工具,并重点探讨其在农业、医学和环境领域的应用。
基因工程为人类提供了改良农作物、研发新药和解决环境问题的新途径,同时也引发了一系列伦理和安全问题。
本文将综述基因工程的优势和挑战,并对其未来发展进行展望。
一、引言基因工程作为一项新兴的科学技术,已经在农业、医学和环境领域取得了显著的进展。
通过改良生物体的基因,基因工程可以实现对生物体性状的控制和调整,为人类社会带来了巨大的潜力和机遇。
二、基因工程的原理和方法基因工程的核心在于对生物体的基因进行编辑和改造。
其中,基因克隆、基因转染和基因编辑是主要的基因工程技术。
基因克隆通过将感兴趣的基因序列插入到载体中,如质粒,然后将其导入宿主细胞中,实现对外源基因的操控。
基因转染则是将外源基因转入目标细胞或生物体中,以达到改变其性状的目的。
基因编辑则通过使用诸如CRISPR-Cas9等技术,直接改变生物体的基因序列,以实现对特定基因的编辑、删除或替换。
三、基因工程在农业领域的应用基因工程在农业领域的应用主要集中在农作物的改良上。
通过转基因技术,科学家们能够改良作物的抗病性、耐逆性和产量等性状,实现对农作物整体性状的优化和提升。
此外,基因工程还可以解决传统农业面临的问题,如除草剂抗性、杂草控制和育种加速等。
四、基因工程在医学领域的应用基因工程在医学领域的应用主要涉及基因治疗和新药开发。
通过改变人体细胞的基因序列,基因治疗可以治疗一些难治性疾病,如癌症和遗传性疾病。
同时,基因工程也为新药的开发提供了新的途径,通过对疾病相关基因的研究和操控,研发出针对特定疾病的靶向药物。
五、基因工程在环境领域的应用基因工程在环境领域的应用主要涉及生物修复和生物能源开发。
基因工程可以改造微生物,使其具备降解有害污染物的能力,从而用于生物修复。
此外,基因工程还可以改造植物和微生物,使其能够高效生产生物燃料,为可再生能源的开发做出贡献。
基因工程疫苗论文2100字_基因工程疫苗毕业论文范文模板
基因工程疫苗论文2100字_基因工程疫苗毕业论文范文模板基因工程疫苗论文2100字(一):鹦鹉热衣原体基因工程疫苗研究进展论文摘要:鹦鹉热衣原体(Chlamydiapsittaci,Cps)是专性细胞内寄生、革兰氏阴性病原体,能在鸟类、人类和其它哺乳动物中广泛传播。
Cps能够导致禽类的呼吸道和消化道疾病,引起家禽高热、腹泻、异常分泌物以及产蛋下降。
常规衣原体疾病防控主要依赖于抗生素,但随着对食品安全的重视、养殖端减抗替抗的推行,需要开展生物安全和疫苗免疫等防控技术研究以预防衣原体感染。
本文综述了Cps亚单位疫苗、DNA疫苗和活载体疫苗等基因工程疫苗的研究进展。
关键词:鹦鹉热衣原体;亚单位疫苗;DNA疫苗;活载体疫苗鹦鹉热衣原体(Chlamydiapsittaci,Cps)具有广泛的宿主谱,它可以感染465种鸟类和包括人在内的46种哺乳动物,导致结膜炎、肺炎、支气管炎、流产和关节炎等疾病,对家禽和公共卫生安全造成了巨大的威胁[1]。
Cps主要通过空气气溶胶飞沫快速传播,也可以通过直接接触分泌物和排泄物途径而引起感染。
鸡对Cps具有一定的抗性,火鸡、鸭和鸽则相对易感,雏禽感染可引起体温升高、肿眼、厌食和腹泻等临床症状,种禽感染可引起严重的输卵管炎,导致产蛋率下降到10%以下或停止产蛋[2]。
目前对Cps的早期感染可用四环素、金霉素和土霉素等多种抗生素治疗,但由于其细胞内寄生性引起的持续性感染以及长期使用抗生素造成的耐药性增加等因素,使得使用抗生素不能从根本上控制该病[3]。
因此,衣原体疫苗的研制就具有重要的意义。
从20世纪50年代开始,衣原体疫苗研制开始兴起,经历了减毒活疫苗、灭活疫苗到基因工程疫苗等发展阶段。
由于Cps减毒活疫苗存在毒力返强的风险,灭活疫苗只激发体液免疫应答,且存在内毒素引起不良反应的问题,因此,这两种疫苗在生产上应用较少。
近年来,基因工程疫苗成为Cps疫苗研究的重点。
1Cps亚单位疫苗1.1重组蛋白疫苗随着DNA重组技术的发展,安全性好、易大规模生产的基因工程亚单位疫苗越来越多地受到关注。
基因工程在观赏植物花色育种中的应用(专家论文)
基因工程在观赏植物花色育种中的应用(专家论文)随着科技的发展,基因工程技术在植物育种中发挥着越来越重要的作用。
其中,基因工程技术在观赏植物花色育种中的应用,不仅可以为花卉产业带来新的技术突破,同时也能够满足人们对于观赏植物颜色的需求。
本文将从什么是基因工程、基因工程在植物育种中的应用、基因工程在观赏植物花色育种中的应用等方面进行探讨。
一、基因工程的概念和技术基因工程是通过对生物体基因的重组或改造来达到预期目的的一种技术。
该技术诞生于1970年代,是现代生物技术的重要组成部分。
基因工程技术有许多基本方法,例如在宿主细胞中利用质粒或病毒等载体将目的基因导入宿主细胞中,以达到修改宿主细胞基因或系统。
通过基因工程技术,可以改造生物体的性状,强化耐荫能力,改进品种增加产量等,对于农业、医疗健康等领域带来了重大的贡献。
二、基因工程在植物育种中的应用随着对植物生物学的深入研究,基因工程技术在植物育种中的应用也愈加广泛。
基因工程技术对植物育种所产生的积极影响主要体现在以下几个方面:1. 保护作物免遭病虫害的侵害。
基因工程技术可以通过将病虫害相关的基因改造成抵抗基因,从而改变作物本身的抗病抗虫性能;2. 优化果实品质。
基因工程技术可以促进果实发育和颜色变化,提高果实品质和口感;3. 改进目标植物的适应性。
基因工程技术可以为目标植物增加抵御环境压力的能力,提高适应严酷环境的能力;4. 通过改变花卉的色彩,改变其观赏价值。
基因工程技术可以改变花卉颜色,从而使花卉更加美观,并提高其观赏价值。
三、基因工程在观赏植物花色育种中的应用对于观赏植物来说,花色是一个非常重要的品质指标。
传统的育种方法主要依赖于人工授粉、选择等方式,而基因工程技术可以帮助人们更加精准地改变花卉的颜色,从而满足人们对于花卉色泽的不同需求。
具体来说,基因工程技术在观赏植物花色育种中的应用主要有以下几个方面:1. 改变花青素合成途径。
花青素是指一类能够产生蓝、紫色花朵的化合物。
基因与人类生活论文:转基因的利与弊
基因与人类生活论文:转基因的利与弊基因与人类生活课程论文姓名:陈杰学号: 1103070601 学院:计算机老师:周跃钢日期: ____/4/18题目:论转基因技术的利与弊前言:随着科技的飞速发展,基因世纪渐渐地走进了我们的生活,为此,大量的转基因食品、花卉奔向了市场。
例如____年,中国载人航天飞船顺利升空,不仅带去了荣耀,也附带的带去了一些植物种子。
例如带去的青椒的种子,强大的宇宙辐射让种子发生了变异,内部的基因发生了翻天覆地的变化。
结果,种出来的请教,形状与原来纯种的青椒有明显不同,我们把这种新型的转基因变异青椒叫做“太空椒”。
这种青椒,个头大,颜色浅,营养含量高。
备受大多数消费者喜爱。
转基因技术在某些方面的优势:一、转基因技术可以制药随着生活水平的提高,人们的生活质量越来越高,饮食种类日益丰富,糖尿病患者也随之日益增加,如果但是从动物胰脏中提取胰岛素,一个病人一年的用量相当于从40头牛的胰脏中提取的胰岛素量,造成胰岛素价格昂贵且供不应求。
后来,科学家尝试利用细菌合成人胰岛素,将胰岛素基因插入到细菌的质粒中,通过细菌繁殖开始生产人胰岛素,由于短时间内细菌繁殖速度快,所以能生产出大量的人胰岛素,解决胰岛素供不应求、价格昂贵的问题。
不仅仅是胰岛素,人们后来根据类似的方法,成功生产了人生长激素、干扰素、凝血因子及血清白蛋白,目前,转基因技术在生物制药领域取得了巨大的成就,拥有广阔的发展前景。
二、转基因技术在医学上派上用场众所周知,目前医学领域中人体器官移植尚需要活体捐献来完成医学诊治,但是每年可以捐献器官用以他人治病的活体十分稀少,使大部分患者在等待中难圆生命之梦,抱憾而终。
那么,为什么不能应用转基因技术从其它动物身上寻求可捐献的器官呢?通过上网查找相关资料,我发现一则这样的报道:“美国每年等待心脏移植的人有近五万,可一年至多只有两千两百多人可以享受到换心的造化,因为没有心脏来源,每年至少有多达二万人在等待中抱憾终生。
基因工程论文
浅析基因工程技术的应用现状动物医学专业任课教师指导教师姓名摘要:基因工程作为一门理论性与实践性较强的学科,其方法与技术已经渗透到现代生命科学的各个分支领域,成为生命科学的一门核心技术。
基因工程包含许多独特的实验方法和技术,不仅内容丰富,涉及面广,实用性也强。
基因工程是通过DNA 重组技术, 获得具有特殊生物遗传性状和功能的遗传工具生物体, 基因工程技术广泛应用于农业、医学、食品工业等。
本文就基因工程的应用现状综合阐述。
关键词 : 基因工程; 应用现状0.前言基因工程技术是一项极为复杂的高新生物技术, 它利用现代遗传学与分子生物学的理论和方法, 按照人类所需, 用DNA 重组技术对生物基因组的结构和组成进行人为修饰或改造, 从而改变生物的结构和功能, 使之有效表达出人类所需要的蛋白质或人类有益的生物性状[1]。
基因工程从诞生至今, 仅有30 年的历史, 然而, 无论是在基础理论研究领域, 还是在生产实际应用方面, 都已取得了惊人的成绩。
首先,基因工程给生命科学自身的研究带来了深刻的变化。
目前科学家已完成了多种细胞器的基因组全序列测定工作。
其次, 基因工程具有广泛的应用价值, 能为工农业生产、医药卫生、环境保护开辟新途径。
1.基因工程1.1 概念基因工程( 又称DNA 重组技术、基因重组技术) , 是20 世纪70 年代初兴起的技术科学, 是用人工的方法将目的基因与载体进行DNA重组, 将DNA 重组体送入受体细胞, 使它在受体细胞内复制、转录、翻译, 获得目的基因的表达产物。
这种跨越天然物种屏障, 把来自任何生物的基因置于毫无亲缘关系的新的寄主生物细胞之中的能力, 是基因工程技术区别于其他技术的根本特征。
1.2 基因工程研究内容(1) 从复杂的生物有机体基因组中, 经过酶切消化或PCR 扩增等步骤, 分离出带有目的基因的DNA 片段。
(2) 在体外, 将带有目的基因的外源DNA 片段连接到能够自我复制并具有选择记号的载体分子上, 形成重组DNA分子。
基因工程技术的发展历史-现状及前景
学号基因工程课程论文( 2013 届本科)题目:基因工程技术发展历史、现状及前景学院:农业与生物技术学院班级:生物科学 091 班作者姓名: X X X指导教师: XXX 职称:教授完成日期: 2013 年 3 月 16 日二○一三年三月基因工程技术发展历史、现状及前景摘要:生物学已是现代最重要学科之一,而从20世纪70年代初发展起来的基因工程技术,经过30多年来的发展与进步,已成为生物技术的核心。
基因工程技术现应用范围涉及农业、工业、医药、能源、环保等诸多领域。
许多科学家预言,生物学将成为21世纪最重要的学科,基因工程技术及相关领域将成为21世纪的主导产业之一。
关键词:基因工程技术、发展历史、现状、前景引言基因工程是在分子生物学和分子遗传学综合发展基础上于本世纪70年代诞生的一门崭新的生物技术科学。
一般来说,基因工程是指在基因水平上的遗传工程,它是用人为方法将所需要的某一供体生物的遗传物质--DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中"安家落户",进行正常复制和表达,从而获得新物种的一种崭新的育种技术。
基因工程具有以下几个重要特征:首先,外源核酸分子在不同的寄主生物中进行繁殖,能够跨越天然物种屏障,把来自任何一种生物的基因放置到新的生物中,而这种生物可以与原来生物毫无亲缘关系,这种能力是基因工程的第一个重要特征。
第二个特征是,一种确定的DNA小片段在新的寄主细胞中进行扩增,这样实现很少量DNA样品"拷贝"出大量的DNA,而且是大量没有污染任何其它DNA序列的、绝对纯净的DNA分子群体。
科学家将改变人类生殖细胞-DNA 的技术称为“基因系治疗”,通常所说的“基因工程”则是针对改变动植物生殖细胞的。
无论称谓如何,改变个体生殖细胞的DNA都将可能使其后代发生同样的改变。
基因的科技论文范文3000字数
基因的科技论文范文3000字数基因科技又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,下面是店铺为大家整理的基因的科技论文范文3000字数,希望你们喜欢。
基因的科技论文范文3000字数篇一基因治疗研究进展【摘要】基因治疗一种很有发展前途的高新技术。
基因治疗有望成为治疗遗传病、肿瘤、心血管病、病毒感染及其它难治性疾病的有效手段,本文通过国内外相关文献的分析,从基因治疗(基因治疗的现状、肿瘤的基因治疗)、基因预防、基因治疗技术、基因治疗存在的问题和未来发展等进行综述。
【关键词】基因治疗;基因预防;基因治疗技术;现状;问题和未来发展人类的疾病是由于其本身的基因的核苷酸发生变化有关。
近年来,基因治疗作为一种安全的、新的疾病治疗手段,在一定程度上取得了重大进展。
1 基因治疗基因治疗(Genethrapy)是向靶细胞引入正常有功能的基因,以纠正或补偿致病基因所产生的缺陷,从而达到治疗疾病的目的,通常包括基因置换、基因修正、基因修饰、基因失活等。
简而言之,基因治疗是指通过基因水平的操纵而达到治疗或预防疾病的疗法。
1.1 基因治疗的现状生物医学的深入研究表明,人类的各种疾病都直接或间接与基因有关[1]。
因此,可认为人类的一切疾病都是“基因病”。
故人类疾病可分为三大类。
一类是单基因病。
这类疾病只需一个基因缺陷即可发生,如腺苷脱氨基酶(ADA)缺陷症。
二是多基因病。
此类疾病的病因大多比较复杂,不但涉及各个基因,往往还与环境因素(包括自然环境、社会环境、生活方式等)有关。
基因缺陷和疾病表型都具有明显的多样性。
Ⅰ型糖尿病、肿瘤、心血管疾病等皆属此类。
三是获得性基因病。
此乃病原微生物入侵所致,如艾滋病、乙型肝炎等。
因此,理论上,人类所有的疾病都可采用基因治疗。
1.2 肿瘤的基因治疗目前治疗癌症的基因疗法种类颇多,主要集中在免疫基因治疗、药物敏感性基因治疗、肿瘤抑制基因治疗治疗三个方面。
基因工程论文
一、基因工程应用于动植物方面农业领域是目前转基因技术应用最为广泛的领域之一。
农作物生物技术的目的是提高作物产量,改善品质,增强作物抗逆性、抗病虫害的能力。
基因工程在这些领域已取得了令人瞩目的成就。
目前全世界正重视发展永续性农业(sustainable agriculture),希望农业除了具有经济效益,还要生生不息,不破坏生态环境。
基因工程正可帮忙解决这类问题。
基因工程可以改良农粮作物的营养成分或增强抗病抗虫特性。
可以增加畜禽类的生长速率、牛羊的泌乳量、改良肉质及脂肪含量等。
英国爱丁堡科学家已经可以使绵羊分泌含有人类抗胰蛋白(α-1-antitryspin)的羊奶。
抗胰蛋白可以治疗遗传性肺气肿,价格很昂贵。
若以后能由羊奶大量制造,将变得很便宜。
但是目前以基因工程开发培育基因转殖绵羊的过程,仍是很费时费钱的。
基因转殖的细菌用处也很大,如改造细菌可以消化垃圾废纸,而这些细菌又可成为一种蛋白质的营养来源。
基因转殖的细菌可带有人类基因,以生产医疗用的胰岛素及生长激素等。
其实基因工程在农业上的应用,在某些方面而言并不稀奇。
自古以来,人们即努力而有计划地进行育种,譬如一个新种小麦,乃是经过上千代重复杂交育成的。
目前的小麦含有许多源自野生黑麦的基因。
农人早在基因工程技术发明以前,就知道将基因由一种生物转移至另一生物。
传统的育种也可大量提高产量。
但是传统的育种过程缓慢,结果常常难以预料。
基因工程可选择特定基因送入生物体内,大大提高育种效率,更可把基因送入分类上相差很远的生物,这是传统的育种做不到的。
不久,在美国即将有基因工程培育出来的西红柿要上市了。
这种西红柿含有反意基因(antisense gene),能使西红柿成熟时不会变软易烂。
基因工程也生产抗病抗虫作物,使作物本身制造出“杀虫剂”。
如此农夫就不需费力喷洒农药,使我们有健康的生活环境。
也可培育出抗旱耐盐作物以适合生长在恶劣的环境下,如此可克服第三世界的粮食短缺问题。
本科基因工程实验论文开题报告.
编号内蒙古大学生命科学学院生物系基因工程实验室本科基因工程实验论文开题报告论文题目:碱性磷酸酶基因表达载体的构建及在大肠杆菌中的表达学生姓名:年级:专业:指导教师:年月日学生姓名民族族性别出生年月论文题目碱性磷酸酶基因表达载体的构建及在大肠杆菌中的表达开题时间年月日结题时间年月日项目来源本科生基因工程大实验课一、立论依据项目的研究意义,国内外研究现状及发展趋势分析,主要参考文献及出处:碱性磷酸酶(alkaline phosphatase,AP)是一种非特异性磷酸单酯酶,能催化磷酸单酯的水解反应,产生无机磷酸和相应的醇、酚或糖,也能催化磷酸基团的转移反应。
AP广泛存在于微生物和动物体内,在磷生物地球化学循环过程中有重要作用,并广泛应用于诊断学、生物化学及分子生物学等领域。
1 大肠杆菌碱性磷酸酶20世纪80年代相继完成了大肠杆菌AP、人胎盘型AP、人肝/骨/肾型AP、人小肠型AP和酿酒酵母AP氨基酸序列的测定,通过序列比较发现相似性为25%~30%,活性部位高度保守,都保留了Ser102残基、Arg166及金属离子配体,这些保守的与催化活性相关的基团暗示了不同来源的AP具有相似的作用机制。
另外,功能相似的磷酸二酯酶,如蜡状芽孢杆菌中的磷脂酶C、桔青霉中核酸酶P1,它们的活性部位和金属离子结合位点与大肠杆菌AP相似。
所以,大肠杆菌AP还可作为其它磷酸酯酶和以金属离子作辅助因子的磷酸酯酶的研究模型。
AP确切的生理功能还不十分清楚,但认为它对有机体内磷代谢的调节有重要作用。
大肠杆菌AP的结构基因是phoA,它是pho调节子的一部分,pho调节子主要调节磷的转运和代谢。
Phobox是pho调节子所有基因启动子区域的共有序列,受PhoB蛋白的调控。
phoB基因产物直接激活pho调节子的转录,而PhoB蛋白又被PhoR蛋白磷酸化激活。
细胞外磷的水平是调控PhoR的信号,信号传递通过大肠杆菌Pst系统实现。
当接收到环境信号后,PhoR再去调节PhoB,而PhoB就是大肠杆菌AP结构基因phoA的直接转录调节者。
2021有关基因工程的论文优秀范文参考范文2
2021有关基因工程的论文优秀范文参考范文 基因工程是以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。
本文提供几篇有关基因工程的论文优秀范文,供大家学习。
有关基因工程的论文一: [摘要]目的构建含有人纤维蛋白原基因的毕赤酵母表达系统,实现胞外高效分泌表达。
方法全基因合成人纤维蛋白原3个基因FGA、FGB、FGG,构建表达载体pGAPZαA-FGB-FGG-FGA-AOX1,线性化后电转化导入毕赤酵母菌株SMD1168H,抗性筛选获得阳性克隆。
发酵液经SDS-PAGE确定蛋白表达部位,ELISA检测目的蛋白表达量。
表达产物超滤浓缩后利用AKTA蛋白纯化系统进行分离纯化,Westernblot检测蛋白表达情况并对纯化产物进行生物学活性测定。
结果基因工程菌株摇瓶培养上清液表达量约15mg/L,生物学活性分析重组蛋白具有凝集活性。
结论成功获得了高效分泌表达重组人纤维蛋白原的毕赤酵母菌株,且分离纯化的蛋白具有生物凝集活性。
[关键词]重组人纤维蛋白原;毕赤酵母;分泌表达;分离纯化 目前世界卫生组织确认的凝血因子共13个,大多由肝脏产生,正常情况下,所有凝血因子都处于无活性状态,以无活性酶原形式存在,当某一凝血因子被激活后,可使许多凝血因子按一定的次序先后被激活,逐级放大,直到纤维蛋白形成,血液发生凝固。
纤维蛋白原(fibrinogen,Fg),即凝血因子Ι,是参与血液凝固的重要凝血因子,血浆中含量高达2000~4000mg/L[1],其分子量340kDa,由完全相同的2个亚基组成共价二聚体,每个亚基含有α(63.5kDa)、β(56kDa)、γ(47kDa)3条肽链[2],分别由4号染号体(4q28-30)上的3个独立的基因FGA、FGB、FGG编码形成,在肝脏中由独立的核糖体合成其前体蛋白,再经过内质网和高尔基体完成蛋白的组装,各肽链彼此通过二硫键相互连接形成Fg单体。
基因工程教学改革实践论文
基因工程教学改革的探索与实践摘要:基因工程是生物技术专业的主干课程,也是一门理论和实践并重的专业基础课,为适应当今教育要求,必须以培养学生综合素质和能力为首要任务。
为此,本文在精选教学内容、改进教学方法、改进考核方式等方面进行了一些探索,旨在提高基因工程教学质量和效果,为培养适应新时代要求的高素质人才提供科学保证。
关键词:基因工程;教学改革;探索中图分类号:g42 文献标识码:a文章编号:1009-0118(2012)04-0108-0221世纪是生命科学的世纪,分子生物学作为最前沿的生命科学,主要从分子水平研究生命活动的现象与本质,如dna的复制、基因的表达与调控、遗传与变异等。
随着分子生物学研究的深入与发展,除了在分子水平上了解生命的特征外,在分子水平进行更有效的生物学研究以及在分子水平进行物种改造是生物学界共同关心并十分重视的问题,在这种情况下,基因工程应运而生。
基因工程是生命科学的前沿,它的发展带动了以其为核心的生物技术体系的发展[1],并且已成为当今生命科学研究领域中最具生命力最引人注目的前沿学科之一[2]。
基因工程技术作为生物学的前沿技术,在社会生产生活中发挥着越来越重要的作用,随之而来的是此方面人才的短缺,迫切需要在相关高校加大生物技术人才尤其是基因工程技术人才的培养力度。
作者所在学院(浙江海洋学院海洋科学学院)于2007年新增了生物技术专业,希望能为国家培养这方面的人才。
基因工程技术的发展日新月异,基因工程课程内容繁杂、抽象,如何能在有限的课时里让学生既能学习到基因工程必备的理论知识和技术手段,又能把基因工程技术最新的研究成果给学生加以介绍成为当前基因工程教学亟待解决的问题。
在当前教育体制下,深化教学内容、改变教学方法以提高教学效率成为解决此问题的唯一途径。
鉴于此,我们参考其他高校的经验,同时结合本校教学实际对基因工程教学内容、手段、方法及考核方式进行了探索式改革,希望能在有限的课时里让学生对基因工程技术有一个全面的认识和深入的理解,为以后的深造打下良好的基础。
基因工程学术论文
基因工程学术论文基因工程是在分子生物学和分子遗传学综合发展基础上于 20 世纪70 年代诞生的一门崭新的生物技术科学。
下面是由店铺整理的基因工程学术论文,谢谢你的阅读。
基因工程学术论文篇一摘要:基因工程是在分子生物学和分子遗传学综合发展基础上于20 世纪70 年代诞生的一门崭新的生物技术科学。
基因工程是一项很精密的尖端生物技术。
可以把某一生物的基因转殖送入另一种细胞中,甚至可把细菌、动植物的基因互换。
当某一基因进入另一种细胞,就会改变这个细胞的某种功能。
这项工程创造出原本自然界不存在的重组基因。
它不仅为医药界带来新希望,在农业上提高产量改良作物,并且对环境污染、能源危机提供解决之道,甚至可用在犯罪案件的侦查。
基因工程的发展现状和前景是怎么样呢,而又有哪些利弊?关键词:基因工程;发展现状;发展前景;基因工程利弊一、基因工程(一)基因工程的概念及发展1.概念基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。
2.发展生物学家于20 世纪50 年代发现了DNA 的双螺旋结构,从微观层面更进一步认识了人类及其他生物遗传的物质载体,这是人类在生物研究方面的一次重大突破。
60 年代以后,科学家开始破译生物遗传基因的遗传密码,简单地说,就是将控制生物遗传特征的每一种基因的核苷酸排列顺序弄清楚。
在搞清楚某些单个基因的核苷酸排列顺序基础上,进而进行有计划、大规模地对人类、水稻等重要生物体的全部基因图谱进行测序和诠释。
(二)基因工程的发展现状及前景1.发展现状(1)基因工程应用于农业方面。
运用基因工程方法,把负责特定的基因转入农作物中去,构建转基因植物,有抗病虫害,抗逆,保鲜,高产,高质的优点。
下面列举几个代表性方法。
①增加农作物产品营养价值如:增加种子、块茎蛋白质含量,改变植物蛋白必需氨基酸比例等。
《基因工程利与弊》论文
基因工程的利与弊全球转基因作物发展回顾展望和对策(下) 因此,世界各国在发展农业生物技术过程中,必须慎重权衡发展转基因作物的利与弊。
...根据这一基本框架,农业部于1996年颁布f《农业生物基因工程安全管理实施办法》,1997年又发布了《关于贯彻执行(农业生物基因工程安全管理实施办法)的通知》,...专家呼吁:建立研究高科技负面影响专项基金“与此同时,基因工程已成功地在多个国家克隆出多种动物,克隆人的尝试正隐秘地在一些实验室开展,其后果尚难以预料。
...这些对高科技利与弊的探讨是日前在中国科协第5期“新观点新学说”学术沙龙上进行的。
这次学术沙龙的主题是“高科技的未来——正面与负面影响”。
...生物安全科技发展利与弊此外,基因工程药物、疫苗,转基因食品,基因治疗等都可能存在类似问题。
生物技术的误用以及生物技术的非道德应用也可能带来很大的安全隐患。
...目前随着生物技术的迅猛发展,生物安全问题已经成为影响整个国家、整个世界政治、经济、安全与和平的大命题。
近年来,特别是美国“炭疽感染事件”后,...基因治疗发展之路跌宕起伏 ...但4天后就死亡了,因此美国食品药物管理局认为,基因治疗应该与药物治疗一样有一定的条件限制,故而停止了基因治疗的试验。
这次,法国也作出如此决定,从某种意义上说,将减缓这门学科的发展。
法国国家科研中心基因工程研究专家奥利维达诺认为,科学界还需要10年至20年的时间,来评估基因疗法的利与弊。
中小企业板市场机会到底多大哪些板块值得关注冷静看待利与弊风回三峡,愈伸其号眺;水遏瞿塘,愈显其奔猛。
中小企业板带来的影响与冲击无须多说,媒体上的议论已经沸沸扬扬。
...但鉴于该板块进入门槛过高,国内真正有实力进行研发生产化的公司并不多,因此对于涉足基因工程并有能力产业化的公司可以重点投资中小企业板:市场机会到底多大? 冷静看待利与弊风回三峡,愈伸其号眺;水遏瞿塘,愈显其奔猛。
中小企业板带来的影响与冲击无须多说,媒体上的议论已经沸沸扬扬。
基因工程论文
基因工程论文以下是三篇经典的基因工程论文:1. "Recombinant DNA technology"(重组DNA技术)这篇论文由斯坦利·科恩(Stanley Cohen)和赛维尔·博伊尔(Herbert Boyer)于1973年发表,是基因工程的开创性研究之一。
他们成功地将大肠杆菌的抗生素抵抗基因插入到了质粒上,并将其转移到了其他细菌中。
这一突破性的研究为将具有特定性状的基因插入到目标生物中奠定了基础,开启了基因工程的新纪元。
2. "Expression of a human gene coding for antihemophilic factor in transgenic mice"(在转基因小鼠中表达编码抗凝血因子的人类基因)这篇论文由理查德·帕尔默(Richard Palmiter)和拉尔夫·布鲁斯塔因(Ralph Brinster)于1982年发表。
他们通过将人类基因插入到小鼠胚胎细胞中,成功地在小鼠体内表达了抗凝血因子这一人类蛋白质。
这一研究展示了如何利用基因工程技术在非人类物种中表达人类特定的基因,为后续药物研发和基因治疗研究提供了重要的参考。
3. "Complete genome sequence of Saccharomyces cerevisiae"(酿酒酵母全基因组序列)这篇论文由美国科学家进行的国际合作研究于1996年发表。
他们成功地完成了酿酒酵母(Saccharomyces cerevisiae)的全基因组测序工作,这是第一次对真核生物的全基因组进行测序。
这一研究除了为酿酒酵母的研究提供了重要的基因组信息外,也为真核生物基因组研究奠定了基础,并对后续的基因工程技术发展产生了深远的影响。
基因工程论文
基因工程论文
基因工程是指利用先进的技术手段对生物体基因进行修饰和改造,从而增强或改变其某些性状或特征。
基因工程技术包括基因克隆、基因敲除、基因敲入、基因点突变等。
这些技术使基因组被操纵和操作,使得我们能够通过转基因来产生更好的农产品、药物、化学品等。
在农业方面,基因工程技术被广泛使用,旨在开发出具有抗病性、耐干旱、抗虫害和提高产量的转基因作物。
同时,利用基因工程技术,可以提高农业产品的质量和安全性,例如通过转基因技术生产含有高浓度的维生素或其他有益的成分的作物。
在医学研究方面,基因工程技术被广泛使用,例如在分子遗传学、病毒学、癌症生物学等领域的研究中。
同时,基因工程技术也可用于生产更安全、更有效的药物,这些药物通常被称为基因工程药物。
但是,基因工程领域也面临着许多争议和难题。
一些人担心转基因食品的安全性和长期影响,而另一些人则对基因工程技术的伦理和法律方面的问题表示担忧。
因此,基因工程领域需要不断探索实验数据,研究其安全性,并制定相关法律和伦理规则。
有关基因工程的论文_基因工程
有关基因工程的论文_基因工程有关基因工程的论文_基因工程本文简介:有关基因工程的论文_基因工程摘要:综述转基因技能在进步农作物抗生物/非生物钳制中的才能,以及在改善农作物遗传质量等方面的效果,并提出了做好安全监管作业的建议,使转基因技能为人类带来更多福祉。
关键词:农作物;转基因技能;农业开展农业转基因技能就是打破不同物种间天然杂交的屏障,将高产、抗钳制、高有关基因工程的论文_基因工程本文内容:有关基因工程的论文_基因工程摘要:综述转基因技能在进步农作物抗生物/非生物钳制中的才能,以及在改善农作物遗传质量等方面的效果,并提出了做好安全监管作业的建议,使转基因技能为人类带来更多福祉。
关键词:农作物;转基因技能;农业开展农业转基因技能就是打破不同物种间天然杂交的屏障,将高产、抗钳制、高养分质量等已知功用的基因使用分子生物学技能搬运到意图农作物体内,使其在原有遗传基础上取得新的功用特性,来进步农作物的抗钳制才能或某种养分成分的含量,然后取得新的农作物品种,进一步能满意人类的需要。
自从首例转基因作物于1983年面世以来,近年来农作物转基因已取得了蓬勃的开展,截止202X年转基因农作物在全球栽培面积已达1.81亿hm2。
现在转基因技能已渗透到农业生产的方方面面,如使用转基因技能进步植物的抗逆性、抗病虫灾等才能,关于农业转基因技能而言能够说已经进入以抢占技能制高点与经济增长点为目标的战略机遇期,已渗透到农业生产的方方面面。
1转基因技能促进作物抗病虫灾效果经过分子生物学技能取得抗病虫灾基因再使用转基因技能导入到农作物的体内,使意图作物表现出相应的抗病虫灾的特性。
早在1901年就从染病的家蚕体液中别离出一种对部分鳞翅目(Lepidoptera)昆虫幼虫具有毒杀效果的苏云金芽孢杆菌,即现在所说的Bt。
Bt在芽胞构成过程中,可产生具有杀虫效果的晶体蛋白(即δ-内毒素,δ-endotoxins),将编码这种蛋白的基因转入农作物将对鳞翅目、双翅目、鞘翅目等多种昆虫的幼虫以及无脊椎动物有特异的毒杀效果,这是关于使用转基因技能来进步农作物抗病虫灾的最早来源。
【毕业论文】质粒DNA的提取鉴定
实验三质粒DNA的提取鉴定一、原理质粒是细胞质中独立于染色体之外的能自主复制的遗传单位。
基因工程中的质粒一般是指细菌质粒,它可以随着细菌的细胞分裂将自己的遗传特性稳定的遗传给后代细胞。
广义的质粒还包括霉菌、蓝藻和酵母质粒以及动植物细胞中的线粒体和质体等。
细菌质粒是环状双链DNA分子,其他少数质粒是线性DNA分子,而酵母的杀伤质粒则是RNA。
环状质粒的DNA分子具有超螺旋性质,长度可以从1kb到200kb左右不等。
质粒中除了复制、转录等相关的必需序列外,有一些DNA区段对于细菌来说并非必需序列,通过体外操作以目的基因取代这些非必需区段,这种改造的质粒就成为外源基因载体。
按照质粒载体的用途和其外源DNA的遗传信息能否表达可分为中间克隆载体(如pMD18-T)和表达载体(如pET-X、pBI121等)。
克隆载体所连接的的DNA片段一般没有启动子,因而不能转录,主要用于目的片段的大量制备。
表达载体按照宿主的不同有各种各样的原核表达载体(如大肠杆菌)和真核表达载体(如酵母、动物和植物),目的基因在载体上有完整的启动子和终止子调控,可以在宿主细胞中转录并翻译成蛋白。
根据质粒在宿主细胞中复制调控机制的不同,可分为两类:一类是“松驰型”质粒,如pMB1/colE1复制子,其复制受到一种称为RNAII的分子正向调控,不需要任何质粒编码的蛋白质,完全依赖于宿主提供的寿命较长的酶和蛋白质,因此即使在氨基酸饥饿或添加氯霉素等抗生素抑制蛋白质合成的条件下,其复制仍不停止,即所谓的“松驰”方式复制,其在宿主细胞中拷贝数较多,一般如常用的pUC系列可达500~700个;二是“严紧型”质粒,如pSC101,其复制伴随着RepA蛋白的合成,因此一旦蛋白质合成受阻,其拷贝数就不能增加,即在宿主的“严紧”控制下复制,其在宿主细胞中拷贝数通常仅有1~5个。
在分子生物学研究中,为了迅速扩增和提取大量的质粒DNA,通常使用的是“松驰型”质粒;但在某些特殊原因(如表达产物对细胞有毒性)下要求用严紧型质粒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅析基因工程技术的应用现状动物医学专业任课教师指导教师姓名摘要:基因工程作为一门理论性与实践性较强的学科,其方法与技术已经渗透到现代生命科学的各个分支领域,成为生命科学的一门核心技术。
基因工程包含许多独特的实验方法和技术,不仅内容丰富,涉及面广,实用性也强。
基因工程是通过DNA 重组技术, 获得具有特殊生物遗传性状和功能的遗传工具生物体, 基因工程技术广泛应用于农业、医学、食品工业等。
本文就基因工程的应用现状综合阐述。
关键词 : 基因工程; 应用现状0.前言基因工程技术是一项极为复杂的高新生物技术, 它利用现代遗传学与分子生物学的理论和方法, 按照人类所需, 用DNA 重组技术对生物基因组的结构和组成进行人为修饰或改造, 从而改变生物的结构和功能, 使之有效表达出人类所需要的蛋白质或人类有益的生物性状[1]。
基因工程从诞生至今, 仅有30 年的历史, 然而, 无论是在基础理论研究领域, 还是在生产实际应用方面, 都已取得了惊人的成绩。
首先,基因工程给生命科学自身的研究带来了深刻的变化。
目前科学家已完成了多种细胞器的基因组全序列测定工作。
其次, 基因工程具有广泛的应用价值, 能为工农业生产、医药卫生、环境保护开辟新途径。
1.基因工程1.1 概念基因工程( 又称DNA 重组技术、基因重组技术) , 是20 世纪70 年代初兴起的技术科学, 是用人工的方法将目的基因与载体进行DNA重组, 将DNA 重组体送入受体细胞, 使它在受体细胞内复制、转录、翻译, 获得目的基因的表达产物。
这种跨越天然物种屏障, 把来自任何生物的基因置于毫无亲缘关系的新的寄主生物细胞之中的能力, 是基因工程技术区别于其他技术的根本特征。
1.2 基因工程研究内容(1) 从复杂的生物有机体基因组中, 经过酶切消化或PCR 扩增等步骤, 分离出带有目的基因的DNA 片段。
(2) 在体外, 将带有目的基因的外源DNA 片段连接到能够自我复制并具有选择记号的载体分子上, 形成重组DNA分子。
(3)重组DNA 分子转移到适当的受体细胞, 并与之一起增殖。
(4) 从大量的细胞繁殖群体中, 筛选出获得了重组DNA 分子的受体细胞克隆。
(5) 从这些筛选出来受体细胞克隆, 提取出已经得到扩增的目的基因, 供进一步分析研究使用。
(6) 将目的基因克隆到表达载体上, 导入寄主细胞, 使之在新的遗传背景下实现功能表达, 产生出人类所需要的物质。
2.基因工程的广泛应用2.1 在农业上的应用2.1.1 抗除草剂的植物基因工程资料表明, 每年杂草造成的经济损失占农作物总产值的10%-20%左右尽管除草剂的使用, 对大规模机械化耕作, 减少劳力开支和提高量有极为重要的作用, 但一般除草剂的选择性较差, 即除了杀草以外, 还会将作物杀死。
现在利用生物技术, 将能抵抗除草剂的基因转移到植物中, 获得抗除草剂的植物, 如美国的孟山都公司将除草剂草甘磷的靶酶( EPSPS) 的cDNA 克隆转入油菜[2] , 目前, 已获得的抗除草剂作物有大豆、棉花、玉米、水稻和甜菜等20 多种。
2.1.2 抗虫的植物基因工程生物防治害虫的工作已经开展多年, 主要是利用苏云金杆菌中的毒蛋白( 结晶蛋白) 对害虫有毒害作用, 使用这些杆菌来控制害虫。
现在, 人们可以通过克隆这些毒蛋白的基因(Bt 基因) 并把这些基因转移到植物细胞中, 从而获得能抗虫的转基因植物。
目前, Bt 基因已被转入烟草、番茄、马铃薯、水稻、玉米及棉花等多种植物中。
1996 年转Bt 基因棉花在美国种植66 万hm2 经中国农科院棉花所引进在华北试种两年, 在多点表现突出, 在完全不喷杀虫剂的情况下, 单产仍然高于喷撒2- 3 次杀虫剂的中国推广棉花[3] , 显示出了控制棉铃虫的极好前景。
2.1.3 动物转基因育种动物基因工程研究主要集中在改良家畜、家禽的经济性状和通过转基因动物进行药物或蛋白质的生产等方面, 目前已取得了显著的成就, 先后培育出转基因猪、羊、牛和鱼等, 另一种转基因猪是带有人体基因的猪, 这种转基因猪客望能解决人体移植动物器官的遗体排斥问题。
随着动物基因工程技术的逐渐成熟和转人体血红蛋白的基因猪、转人体血清蛋白的基因山羊等的问世, 不仅能生产出大量人类所需的血红蛋白、白蛋白等药物而且为动物育种开辟了一条全新的途径。
2.2 在医学上的应用2.2.1 基因工程药物利用基因工程技术开发新型治疗药物是当前最活跃和发展最快的领域。
自1982 年世界第一个基因工程药物- - - 重组胰岛素投放市场以来, 基因工程药物就成为制药行业的一支奇兵, 每年平均有3- 4 个新药或疫苗问世, 开发成功的约50 个药品, 诸如人胰岛素、忍尿激酶、人生长激素、干扰素、激活剂、乙肝疫苗等广泛应用于治疗癌症、肝炎、发育不良、糖尿病和一些遗传病上, 在很多领域特别是疑难病症上, 起到了传统化学药物难以达到的作用[4, 5, 6]。
为治愈癌症正在研制的用单克隆抗体制成的“生物导弹”, 就是按照人类的设计, 把“生物导弹”发射出去, 精确的命中癌细胞, 并炸死癌细胞, 而不伤害健康的细胞, 比如专门用于肿瘤的“肿瘤基因导弹”等。
可见, 生物工程药物将成为21世纪药业的支柱。
而脱氧核糖核酸或者基因疫苗的问世, 变革了机体的免疫方式。
如今, 人们翘首关注困扰人类的艾滋病病毒疫苗的早日问世。
尽管目前诱变育种技术仍是改良微生物工业生产菌种的主要手段,但是基因工程技术在改良工业生产菌种方面已有成功的报道。
最常见的是将控制药物合成关键步骤的酶基因克隆,通过适当的载体转移到原生产菌中,以使控制限速步骤的酶水平,从而提高产量。
Malmberg等[7]构建了一种带有编码赖氨酸ε-氨基转移酶基因( lysine-ε-aminotranster-ase,LAT)这种控制Streptomyces clavuligerus生物合成头霉素C的限速步骤的关键酶的基因(lat)的高拷贝质粒,并转入这种头霉素产生菌,使LAT提高活力提高了4倍,在2 L发酵罐中产生头霉素的能力是原来的2倍,重组菌胞外LAT产物α-氨基己二酸的积累量也比原受体菌高。
伊维菌素( ivermectins)是一个市场很大的抗虫抗生素,其前体阿弗米丁(avermectins)的产生菌种的发酵液中有8个以上的组分,其中只有B1a组分才是制备伊维菌素的原料。
Ikeda等[8]经过近十年的努力,已将阿弗米丁的生物合成基因簇全部搞清,并经过诱变与DNA重组,获得了仅产阿弗米丁B2a单一组分和B1a、B2a组份的重组工程菌,这不仅大大提高了阿弗米丁有效组分的发酵效价,且给提取、精制、半合成等后处理工序带来了很大的便利。
可以预见,随着对各种工业生产的微生物药物生物合成途径的深入了解以及基因重组技术的不断进展,应用基因工程方法定向构建高产菌株的成功实例将越来越多。
在抗生素发酵过程中供氧往往是一个限制因素,充足的氧气供给是药物工业发酵稳定和提高产量,降低成本的关键。
传统的解决方法如增加通气量等对设备要求高,能量消耗大。
20世70年代末在专性好氧菌透明颤(Vitreoscilla)中发现了血红蛋白(VHb),它能促进氧气扩散到细胞末端氧化酶上。
于是人们想到了将其基因Vgb克隆到其它微生物中,以促进微生物在低氧条件下生长。
1988年Khosla等[9]从Vitreoscilla中分离出Vgb基因并将之转入大肠杆菌(E·coli),提高了大肠杆菌在溶氧量低于5%时对氧的利用率。
目前已用克隆表达VHb的方法提高了放线紫红素、头孢霉素C、红霉素等产生菌及青霉素酰化酶基因工程菌的产量[10]。
血红蛋白基因工程的研究和应用,必将对抗生素工业和其它重组药物发酵工业的节能等带来美好的前景。
作为半合成头孢菌素类抗生素重要原料的7-氨基头孢烷酸(7-ACA),目前国内外仍以化学裂解头孢菌素C的工艺路线为主。
国内外已报道可用经由GL-7-ACA的二步法(化学/酶法或二步酶法)来生产7-ACA,与化学裂解法相比不仅收率提高,且能大大减少环境污染,简化生产工艺。
但二步法中关键的GL-7-ACA酰化酶在假单胞菌中表达量低而且分离纯化困难,限制了这种方法的应用。
通过将GL-7-ACA酰化酶基因转入大肠杆菌中表达恰好可以解决这一问题[11]。
最近又报道可将编码2个酶的基因直接转入头孢菌素C的生产菌种中,使其在发酵时直接产生7-ACA。
调节基因在药物的生物合成中也起着重要作用,增加调节基因的基因量能够大幅提高药物产量。
Hopwood等将放线紫红素生物合成的一个调节基因actⅡ导入原产生菌,尽管基因的拷贝数仅增加了2倍,放线紫红素的产量却增加了30~40倍。
某些抗生素生产菌的产量不高,是由于其自身对该抗生素的抗性不高。
因此,利用高拷贝质粒的基因量效应,增加菌种对自身产生的抗生素的抗性,可能增加抗生素的产量。
例如,将氨基糖苷-6-乙酰转移酶基因导入卡那霉素和新霉素产生菌,由于提高了对氨糖类抗生素的抗性,产量提高了2~6倍2.2.2 基因治疗基因治疗是指由于某种基因缺陷引起的遗传病通过转基因技术而得到纠正。
临床实践已经表明: 基因治病已经变革了整个医学的预防和治疗领域。
比如白痴病, 用健康的基因更换或者矫正患者的有缺损的基因, 就有可能根治这种疾病。
现在已知的人类遗传病约有4000种, 包括单基因缺陷和多基因的综合症。
运用基因工程技术或基因打靶的手段, 将病毒的基因杀灭, 插入矫正基因, 得以治疗、校正和预防遗传疾病的目的。
目前, 基因治疗已扩大到肿瘤、心血管系统疾病、神经系统疾病等的治疗[12]。
人类也已成功实现了肾、心、肝、胰、肺等器官的移植, 也有双器官和多器官的联合移植。
基因治疗有两种途径: 一是体细胞的基因治疗, 一是生殖细胞的基因治疗。
由于生殖细胞的基因治疗操作技术异常复杂, 又涉及伦理缓行之理充足, 故尚无人涉足[13]。
基因工程是20 世纪生命科学中最伟大的成绩, 开辟了生命科学的新纪元。
经过几十年的发展, 基因工程技术已成为一个巨大的朝阳产业, 它可以超越动物、植物、微生物之间的界限, 创造出新的生物类型。
基因工程不仅在医学上应用广泛, 而且也广泛应用在工业、农业、冶金、环保、资源、能源、畜牧渔业等领域, 为人类的丰衣足食和健康长寿提供了持续的实用价值很高的产品, 发展前景极为广阔。
参考文献:[1] 陈渝军, 林晶. 基因工程技术在医药卫生领域的应用及发展. 药品评价,2005, 2( 2) : 144- 145.[2] 童克中.基因及其表达.北京: 科学出版社, 2001.[3] 李尉民, 乐宁, 夏红民.转基因生物及其产品的风险与管理.生物技术通报.2000(4)41- 44.[4] 朱宝泉. 基因工程技术在医学工业中的应用及进展[ J] . 中国医药工业志.1997.28(2): 56- 58.[5] 方鹏.基因工程应用简述[ J] .辽宁师专学报.2004.6(2): 29- 30.[6] 周黎, 柯传奎.基因工程药物研究现状与对策[ J] .生命科学仪器2004.1: 22.[7]Malmberg LH, Hu WS, Sherman DH·Journal of Bacteriology,1993, 175(11): 6916~6924·[8]Haruo Ikeda, SatoshiOmura·Journal ofAntibiotics, 1995, 48(7):549~562·[9]Chaitan Khosla, JamesEB·Nature, 1988, 331: 633~635·[10] 郭宏秋,杨胜利·微生物学通报, 1996, 23(4): 227~230·[11] 周煜,刘涤,胡之璧·药物生物技术, 2000, 7(4): 251~253·[12] 路正兵, 夏颖.基因工程在疾病防治及药物研制上的应用[ J] .安徽预防医学杂志.2000.6(5): 398- 400.[13] 王俊杰21 世纪基因工程在肿瘤防治中的应用[ J] 2000.6(6):62- 67.。