新人教版七年级数学上册第一章《有理数(第1课时)》教案

合集下载

七年级数学上册 第一章 有理数 1.2 有理数 1.2.4 绝对值(第1课时)教案 新人教版

七年级数学上册 第一章 有理数 1.2 有理数 1.2.4 绝对值(第1课时)教案 新人教版

1.2.4 绝对值课题:1.2.4 绝对值课时第1课时教学设计课标要求借助数轴理解绝对值的意义,掌握求有理数的绝对值的方法教材及学情分析本节内容是人教版七年级上册第一章第二节第四小节第一课时的内容,主要讲述和绝对值有关的知识。

借助数轴,可以用数轴上的点直观地表示有理数,从而也为学生提供了理解绝对值的直观工具,帮助学生学习绝对值这是绝对值得几何意义;通过计算观察归纳等方法发现有理数绝对值的规律,从而知道绝对值的代数意义。

七年级的学生思维正处于从以具体形象思维成分为主,向以逻辑思维为主的转折期,授课时要注意具体性、形象性,同时还要有适当的抽象、概括要求课时教学目标1、掌握绝对值的概念,会求出一个数的绝对值,能利用数轴及绝对值的知识2、经历绝对值概念的形成,初步体会数形结合的思想方法,丰富解决问题的策略3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想重点绝对值的概念难点绝对值的概念提炼课题利用数轴理解绝对值得意义教法学法指导归纳总结、探究教具准备多媒体课件教学过程提要环节学生要解决的问题或完成的任务师生活动设计意图引入新课回顾知识回顾知识:什么叫数轴?什么叫相反数?怎样表示数a的相反数?回顾知识教学过程分析情景,思考问题知道绝对值的几何意义完成练习,思考问题情景分析:(1)甲、乙两辆出租车在一条东西走向的街道上行驶,记向东行驶的里程数为正。

两辆出租车都从O地出发,甲车向东行驶10km到达A处,记作km,乙车向西行驶10km到达B处,记做km。

以O为原点,取适当的单位长度画数轴,并在数轴上标出A、B的位置,则A、B两点与原点距离分别是多少?它们的实际意义是什么?(2)数轴上表示-4和4的点到原点的距离分别是多少?表示的0.5和-0.5点呢?绝对值的概念:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值,用“| |”表示。

例如:探究新知:先求下列各数的绝对值,再思考后面的问题:|5|= |-10|=|3.5|= |-4.5|=|50|= |-3|=|100|= |-5000|=0|=0创设情景,引入新知。

人教版数学七年级上册1.1《有理数的乘法》(第1课时)教学设计

人教版数学七年级上册1.1《有理数的乘法》(第1课时)教学设计

人教版数学七年级上册1.1《有理数的乘法》(第1课时)教学设计一. 教材分析《有理数的乘法》是人教版数学七年级上册第一章的第一节内容,这部分内容是在学生已经掌握了有理数的概念和加减法的基础上进行学习的。

有理数的乘法是数学中基本的运算之一,它在日常生活和工农业生产中有着广泛的应用。

本节课的主要内容是让学生掌握有理数乘法的基本法则,即两个有理数相乘,同号得正,异号得负,并能够熟练地进行计算。

同时,通过学习有理数的乘法,培养学生观察、思考、归纳的能力。

二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的概念和加减法有一定的了解。

但学生在学习过程中,可能对有理数乘法的规则理解不够深入,容易混淆。

因此,在教学过程中,需要教师耐心引导,让学生充分理解有理数乘法的本质。

三. 教学目标1.知识与技能目标:让学生掌握有理数乘法的基本法则,能够进行简单的有理数乘法计算。

2.过程与方法目标:通过观察、思考、归纳,培养学生解决问题的能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,树立自信心。

四. 教学重难点1.教学重点:有理数乘法的基本法则。

2.教学难点:对有理数乘法法则的理解和应用。

五. 教学方法采用问题驱动法、案例分析法、小组讨论法等,引导学生主动探究,合作学习。

六. 教学准备1.教学课件:制作有关有理数乘法的课件,以便于引导学生观察、思考。

2.教学素材:准备一些有关有理数乘法的案例,用于分析和讨论。

3.学生活动用品:笔记本、笔等。

七. 教学过程1.导入(5分钟)教师通过提问方式复习旧知识,引导学生回顾有理数的概念和加减法。

然后,提出本节课的主题——有理数的乘法,激发学生的学习兴趣。

2.呈现(10分钟)教师通过课件展示有理数乘法的基本法则,让学生初步了解有理数乘法的基本规律。

同时,教师通过讲解,让学生理解有理数乘法的本质。

3.操练(10分钟)教师提出一些简单的有理数乘法题目,让学生独立完成。

然后,教师选取一些学生的答案,进行分析讲解,让学生在实践中掌握有理数乘法的基本法则。

新人教版七年级上册数学第1章有理数全章教案

新人教版七年级上册数学第1章有理数全章教案

第一章有理数§1.1正数和负数(一)教学目标:知识与技能:掌握正数和负数的概念,能区分两种不同意义的量,会用符号表示正数和负数;培养学生观察、比较和概括的思维能力。

过程与方法:教法主要采用启发式教学学法引导学生自主探索去观察、交流、归纳.情感、态度、价值观:在传授知识、培养能力的同时,注意培养学生勇于探索的精神,通过本节课的教学,渗透对立统一的辩证思想。

教学重点:实际需要产生正数与负数.教学难点:正确了解负数,能准确地举出具有相反意义的量的典型例.教学过程:(一)、提出问题在生产和生活中经常会遇见用数来表示问题,例如①天气预报2003年11月某天北京的温度为-3—30C,它的确切含义是什么?②有三个队参加足球比赛,红队胜黄队(4∶1),蓝队胜红队(1∶0),黄队胜蓝队(1∶0),如何按净胜球排名?③某机器零件的长度设计为100mm,加工图纸标注的尺寸为100±0.5(mm),这里的±0.5代表什么意思?(二)、试一试章前图中表示温度、净胜球、加工允许误差时,用到了-3,3,2,-2,0,+0.5,-0.5等等.请同学们那些数是以前没有学过的数,有–3,-2,-0.5.实际意义是零下3度,净输2球,小于尺寸0.5mm.(三)、探索新数–3,-2,-0.5有什么特征?(学生回答)正数:以前学过的大于0的数(像1、2.5、133、48等的数叫正数)七年级(上)数学教案负数:在正数前面加上负号“-”的数.(像-1、-2.5,-13,-48的数叫负数,读作负1、负2.5、负13、负48.)有时正数前面也可以加上正号“+”,正号“+”可以省略,但负号“-”一定不可以省略.一个数前面的“+”“-”叫它的符号(性质符号).强调0既不是正数,也不是负数,它是中性数.师:(以温度计为例)温度计中的0不是表示没有温度,它通常表示水结成冰时的温度,是零上温度与零下温度的分界点,因此得出:零既不是正数也不是负数。

人教版七年级数学上册同步备课 《第一单元》1.3.2 有理数的减法(第一课时)(教学设计)

人教版七年级数学上册同步备课 《第一单元》1.3.2 有理数的减法(第一课时)(教学设计)

1.3.2《有理数的减法(第一课时)》教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.3.3有理数的减法(第一课时),内容包括:有理数的减法法则、利用法则进行有理数的减法运算.2.内容解析《有理数的减法》是人教版数学义务教育教科书七年级上册第三节的内容.在此之前,学生已学习了《有理数的加法》这为过渡到本节的学习起着铺垫作用.“数的运算”是“数与代数”学习领域的重要内容,减法是其中的一种基本运算.本课的学习远接小学阶段关于整数、分数(包括小数)的减法运算,近承前面所学的有理数的加法运算.通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,为后继诸如实数的减法运算的学习奠定了坚实的基础.基于以上分析,确定本节课的教学重点为:理解、掌握有理数的减法法则,会将有理数的减法运算转化为加法运算.二、目标和目标解析1.目标(1)理解、掌握有理数的减法法则,会将有理数的减法运算转化为加法运算.(转化思想、几何直观)(2)通过把有理数的减法运算转化为加法运算,渗透转化思想,培养运算能力.(运算能力)2.目标解析通过对温度计的观察,理解有理数减法的意义;通过探究有理数减法的过程,理解并掌握有理数的减法法则,并能利用有理数的减法法则进行计算.经历探索有理数减法法则的过程,进一步发展符号感,体会转化思想,并运用有理数的加减法则解决简单的实际问题.通过创设熟悉的生活情境,体会数学知识在实际生活中的应用.通过交流、探索,逐步培养学生的抽象概括能力及口头表达能力.三、教学问题诊断分析在生活中学生经常会进行同类量之间的比较,因此学生对减法运算并不陌生,但这种认识常常流于经验的层面;在小学阶段学生进一步学习了作为“数的运算”的减法运算,但这种减法运算的学习很大程度上的是一种技能性的强化训练,学生对此缺乏理性的认识,很多时候减法仅作为加法的逆运算而存在.因此在教学中一方面要利用这些既有的知识储备作为知识生长的“最近发展区”来促进新课的学习,另一方面要通过具体情境中减法运算的学习,让学生体会减法的意义.此外,七年级学生的数学思维和运算能力还不是很强,对数学概念的理解比较肤浅,对法则的应用还存在生搬硬套的问题.数学活动的经验较少,探索效率较低,合作交流能力有待加强,因此在教学过程中要做好调控.基于以上学情分析,确定本节课的教学难点为:在实际情境中体会减法运算的意义并利用有理数的减法法则解决实际问题四、教学过程设计(一)情境引入下面是北京冬季某天的气温(-3~3℃). 根据你的生活经验,你能说出这天的温差吗?____℃.温差是指最高气温减最低气温.你还能从温度计上看出3℃比-3℃高多少℃吗?你会列式求这一天北京的温差吗?__________.这里用到正数与负数的减法.(二)自学导航减法是加法的逆运算,计算3-(-3),就是求出一个数x,使得x+(-3)=3,因为____+(-3)=3,所以x=_____,即3-(-3)=____ ①另一方面,我们知道3+(+3)=6 ②由①、②两式,有3-_____=3+_____ ③(三)合作探究探究:从3-(-3)=3+(+3)能看出减-3相当加哪个数吗?把3换成0,-1,-5,用上面的方法考虑0-(-3),(-1)-(-3),(-5)-(-3).这些数减-3的结果与它们加+3的结果相同吗?0-(-3) = 0+3 = 3,(-1)-(-3) = (-1)+3 = 2,(-5)-(-3) = (-5)+3 = -2计算9-8,9+(-8);15-7,15+(-7).从中又能有什么发现吗?9-8 = 9+(-8) = 1,15-7 = 15+(-7) = 8【归纳】有理数减法法则:减去一个数,等于加这个数的相反数. a - b = a + (-b)(四)考点解析 例1.计算:(1)8-15; (2)7-(-5); (3)(-5)-7; (4)(-1.8)-(-3.5); (5)(-12)-(-13);(6)0-3; (7)0-(-9).解:(1)原式=8+(-15)=-7; (2)原式=7+5=12; (3)原式=(-5)+(-7)=-12; (4)原式=(-1.8)+3.5=1.7; (5)原式=(-12)+13=-16; (6)原式=0+(-3)=-3; (7)原式=0+9=9. 【迁移应用】1.在(-4)-( )=-9中的括号里应填_______.2.绝对值是23的数减去13所得的差是__________.易错点:已知一个数的绝对值,则这个数的取值一般有两种情况,注意不要漏解. 3.计算:(1)9-13; (2)0-11; (3)0-(-6); (4)4.6-(-3.4); (5)(-23)-16; (6)|-3-(-7)|. 解:(1)原式=9+(-13)=-4; (2)原式=0+(-11)=-11; (3)原式=0+6=6; (4)原式=4.6+3.4=8; (5)原式=(-23)+(-16)=-56; (6)原式=|-3+7|=4.(五)自学导航思考:在小学,只有当a 大于或等于b 时,我们才会做a-b(例如2-1,1-1).现在,当a 小于b 时,你会做a-b(例如1-2,(-1)-1)吗?一般地,较小的数减较大的数,所得的差是_____数. 当a 大于或等于b 时,a-b_____0;当a 小于b 时,a-b_____0 (六)考点解析 例2.计算:(1)(-34)-(-318); (2)(-856)-(-516)-(+123).解:(1)原式=(-34)+318=238;(2)原式=(-856)+516+(-123)=[-8+5+(-1)]+[(-56)+16+(-23)] =(-4)+(-43) =-513.【迁移应用】 计算:(1)(-314)-134; (2)(-238)-(-558)-(+114). 解:(1)原式=(-314)+(-134) =-5;(2)原式=(-238)+558+(-114) =[-8+5+(-1)]+[(-38)+58+(-14)] =2+0=2.例3.某地一周前四天每天的最高气温与最低气温如表所示,则这四天中温差最大的是( )A.星期一B.星期二C.星期三D.星期四【迁移应用】1.小怡家的冰箱冷藏室温度是5℃,冷冻室温度是-12℃,则她家冰箱冷藏室温度比冷冻室温度高( ) A.13℃ B.-13℃ C.17℃ D.-17℃2.某市冬季中的一天,中午12时的气温是-3℃,经过6h 气温下降了7℃,那么当天18时的气温是______.3.矿井下A,B,C 三处的标高分别是A(-37.5m),B(-129.7m) ,C(-73.2m),最高处比最低处高_______m. 例4.如图,表示数a ,b ,c 的点在数轴上,且a ,b 互为相反数.用“>”“<”或“=”号填空:(1)a+b____0; (2)a+c____0; (3)b+c____0; (4)a-c____0; (5)b-a____0; (6)c-b____0. 【迁移应用】1.已知a,b,c 三个数在数轴上对应点的位置如图所示,下列各式错误的是( )A.b<a<cB.a+c<0C.a+b<0D.c-a>02.有理数a,b,c,d 在数轴上的对应点的位置如图所示,则下列运算结果中是正确的有( )①a-b; ②b-c; ③d-a; ④c-a. A.1个 B.2个 C.3个 D.4个 例5.阅读材料: 比较-56和-67的大小.解:(-56)-(-67)=-56+67=-3542+3642=142>0,则-56>-67. 试用这种方法比较和-78和-67的大小.解:-78-(-67)=-78+67=-4956+4856=-156<0,则-78<-67.【迁移应用】 比较大小:(1)-23____ -34; (2)-79____ -58; (3)-911____ -78.解:(1)-23-(-34)=-23+34=-812+912=112>0,则-23>-34; (2)-79-(-58)=-79+58=-5672+4572=-1172<0,则-79<-58; (3)-911-(-78)=-911+78=-7288+7788=588>0,则-911>-78.例6.根据图中数轴提供的信息,回答下列问题:(1)A,B 两点之间的距离是多少? (2)B,C 两点之间的距离是多少? 解:点A 表示的数是2,点B 表示的数是-43,点C 表示的数是-3. (1)A,B 两点之间的距离是|2−(−43)|=|2+43|=103; (2)B,C 两点之间的距离是|(−43)−(−3)|=|−43+3|=53.【迁移应用】1.数轴上表示-8的点与表示2的点之间的距离为______.2.数轴上表示-3.7的点与表示-1.9的点之间的距离为_______.3.如图,数轴上M,N两点所对应的数分别为m,n,则m-n的结果可能是( )A.-1B.1C.2D.3(六)小结梳理五、教学反思。

人教版七年级数学上册第一章《有理数的加法》第一课时教案

人教版七年级数学上册第一章《有理数的加法》第一课时教案

课题第一章有理数1.3.1有理数的加法(一)备课时间序号授课时间主备人授课班级七年级课标要求掌握有理数加法的运算,能进行简单计算。

教学目标知识与技能:在现实背景中理解有理数加法的意义.能较为熟练地进行有理数的加法运算,并能解决简单的实际间题.过程与方法:经历探索有理数加法法则的过程,理解有理数的加法法则.能积极地参与探究有理数加法法则的活动情感态度价值观:在教学中适当渗透分类讨论思想,并学会与他人交流合作教学重点和的符号的确定教学难点异号两数相加教学方法引导发现教学过程设计师生活动设计意图一、回顾用正负数表示数量的实际例子在足球比赛中,如果把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.若红队进4个球,失2个球,则红队的胜球数,可以怎样表示?蓝队的胜球数呢?师:如何进行类似的有理数的加法运算呢?这就是我们这节课一起与大家探讨的问题.如果是球队在某场比赛中上半场失了两个球,下半场失了3个球,那么它的得胜球是几个呢?算式应该怎么列?若这支球队上半场进了2个球,下半场失了3个球,又如何列出算式,求它的得胜球呢?思考:请同学们想想,这支球队在这场比赛中还可能出现其他的什么情况?你能列出算式吗?与同伴交流。

二、借助数轴来讨论有理数的加法.一个物体向左右方向运动,我们规定向左运动为负,向右为正,向右运动5m,学生相互交流后,教师进一步引导学生可以把两个有理数相加归纳为同号两数相加、异号两数相加、一个数同零相加这三种情况让学生感受到在实际问题中做加法运算的数可能超出正数的范围,体会学习有理数加法的必要性,激发学生探究新知的兴趣.再次创设足球比赛情境,一方面与引题相呼应,联系密切,另一方面让学生在此情境中感受到有理数相加的几种不同情形,并能将记作5m,向左运动5m,记作-5 m.(1)(小组合作)把我们已经得出的几种有理数相加的情况在数轴上用运动的方向表示出来,并求出结果,解释它的意义.(2)交流汇报.(对学习小组的汇报结果,数轴用实物投影仪展示,算式由教师写在黑板上)(3)说一说有理数相加应注意什么?(符号,绝对值)能用自己的语言归纳如何相加吗?(4)在学生归纳的基础上,教师出示有理数加法法则.三、有理数加法法则1.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.3.一个数同0相加,仍得这个数.例1:计算(1)(-3)+(-9);(2)(2)(-5)+13;(3)0十(-7);(4)(-4.7)+3.9.请同学们比较,有理数的加法运算与小学时候学的加法有什么异同?(如:有理数加法计算中要注意符号,和不一定大于加数等等)例2a;足球循环赛中,红队4:1胜黄队,黄队1:0胜蓝队蓝队1:0胜红队,计算各队的净胜球数.学生活动:请学生说一说在生活中用到有理数加法的例子教师板演,让学生说出每一步运算所依据的法则.让学生读数,理解题意,思考解决方案,然后由学生口述,教师板书它分类,渗透分类讨论思想.体现教师的引导者作用.让学生感受“数学模型”的思想.体现化归思想.这里增加了两道题目,要是让学生能较为熟练地运用法则进行计算.拓宽学生视野,让学生体会到数学与生活的密切联系。

人教版七年级数学上册第一章《有理数》(大单元教学设计)

人教版七年级数学上册第一章《有理数》(大单元教学设计)
4.理解绝对值的概念,掌握求一个数的绝对值的方法,并能够应用于解决实际问题。
5.掌握有理数的乘方运算规则,能够求解简单的乘方问题。
(二)过程与方法
1.通过小组讨论、互动问答等方式,培养学生合作学习的能力,提高解决问题的效率。
2.通过实际例题的分析与解答,培养学生运用数学知识解决实际问题的能力,让学生体会数学与生活的紧密联系。
为了巩固学生对有理数知识的掌握,培养他们运用所学解决问题的能力,特布置以下作业:
1.基础知识巩固:
-完成课本第1-2页的练习题,涉及有理数的概念、分类及简单的加减运算。
-结合实际生活,举例说明有理数在生活中的应用。
2.运算能力提升:
-完成课本第3-4页的练习题,涵盖有理数的混合运算,包括加减乘除及括号的运用。
1.回顾本节课所学内容:引导学生回顾有理数的概念、运算规则、相反数和绝对值等知识点。
2.归纳总结:教师总结本节课的重点和难点,强调有理数运算的注意事项。
3.布置作业:布置适量的课后作业,要求学生在课后巩固所学知识。
4.激发兴趣:鼓励学生在课后继续探索有理数的奥秘,提高他们的自主学习能力。
五、作业布置
1.教学方法:
-采用启发式教学,引导学生通过观察、思考、总结,发现有理数的运算规律。
-利用数轴、符号等工具,形象地展示有理数的特点,帮助学生理解和记忆。
-设计丰富的教学活动,如小组讨论、互动问答、实际例题分析等,激发学生的学习兴趣和参与度。
2.教学策略:
-针对学生的认知水平,逐步引导他们从整数运算向有理数运算过渡,降低学习难度。
-对运算过程中容易出错的地方进行重点讲解和示范,帮助学生掌握正确的运算方法。
-注重培养学生的数学思维,引导他们在解决实际问题时,能够灵活运用所学知识。

最新】人教版七年级数学上册第一章《有理数单元备课》教案

最新】人教版七年级数学上册第一章《有理数单元备课》教案

最新】人教版七年级数学上册第一章《有理数单元备课》教案新人教版七年级数学上册第一章《有理数单元备课》教案课标要求】1、通过观察、试验、类比、推断等活动,体验数、符号和图形能有效地描述现实世界的数量关系,发展数感和符号感。

2、结合具体情境和生活经验中数学信息,发现并提出问题,积极参与对数学问题的讨论,积累解决问题的方法和经验,体验在解决问题的过程中如何与他人合作交流。

教学内容分析】本章主要包括以下内容:1、理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。

2、借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值。

3、掌握有理数的加、减、乘、除、乘方及简单的混合运算。

4、理解有理数的运算律,并能运用运算律简化运算。

5、能运用有理数的运算解决简单的问题。

6、能对含有较大数字的信息做出合理的解释和推断。

教学目标】1、理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。

2、掌握有理数的相反数和绝对值的概念,会求有理数的相反数与绝对值。

3、掌握有理数的加、减、乘、除、乘方及简单的混合运算。

4、理解有理数的运算律,并能运用运算律简化运算。

5、能运用有理数的运算解决简单的问题。

教学重点与难点】教学重点:有理数的加、减、乘、除、乘方及简单的混合运算。

教学难点:有理数的加、减、乘、除、乘方及简单的混合运算。

教学过程与方法】本节课程可以采用让学生自主研究的方式,鼓励学生讨论交流,教师作适当引导。

情感态度价值观】体验数学发展的一个重要原因是生活实际的需要,激发学生研究数学的兴趣。

媒体教具】小黑板课时安排】一课时教学内容分析】本章主要包括以下内容:1、掌握正数和负数的概念;2、能区分两种不同意义的量,会用符号表示正数和负数。

教学目标】1、掌握正数和负数的概念;2、能区分两种不同意义的量,会用符号表示正数和负数。

教学重点与难点】教学重点:区分两种不同意义的量,会用符号表示正数和负数。

教学难点:正确区分两种不同意义的量。

新人教版七年级数学上册第一章《有理数的加减法(第1课时)》教案

新人教版七年级数学上册第一章《有理数的加减法(第1课时)》教案

新人教版七年级数学上册第一章《有理数的加减法(第1课时)》教案一、内容和内容解析1.内容有理数的加法法则.2.内容解析有理数的运算是运算的基础,而有理数的加法是学习有理数运算的第一步,是进一步学习有理数减法、乘法的基础,其中蕴涵的内容和思想方法在后续学习中有示范作用.有理数加法法则是一种规定.为了让学生理解规定的合理性,教材利用了学生的生活经验,并借助数轴进行说明.虽然加法法则分为三种情况,但探究法则的方法是一致的,即需要将“原点”与“最初运动的起点”对应,将第一次运动的终点作为第二次运动的起点,并将“第二次运动的终点与原点的相对位置”与“两数的和”对应.其中将向左规定为负,向右规定为正,与用正数、负数表示具有相反意义的量的经验一致.在本学段,理解规定的合理性的基础上,能利用加法法则正确地进行运算是重点.基于以上分析,确定本节课的教学重点:有理数加法的意义,根据有理数的加法法则进行有理数的加法运算.二、教材解析教科书从小学学过的加法运算出发,提出引入负数后的加法问题,再通过实例明确有理数加法的意义,引入有理数加法的法则.在引入加法时,教科书不仅用引言中的实例说明学习正数与负数的加法的意义,而且特别强调了在小学学过的加法运算基础上,引入负数后会出现的加法新情况.这是为了强调在已有学习基础上开展新的学习,同时也是为了渗透引入新数后,如何研究新数与原有数之间的运算.教科书借助数轴,用日常生活经验构建了两个“思考”、两个“探究”,对有理数加法中涉及的所有情况进行详细讨论,以帮助学生理解有理数加法法则的合理性,然后再归纳出法则.本节中,“思考”“探究”的问题是循序渐进的.在约定向左、右运动分别对应负、正后,先让学生解决熟悉的“两次都向右运动”的问题,这是基础.由此表明了两层含义:一是什么时候使用加法,也就是加法的意义(不必单独从理论上去讲加法的意义);二是怎样进行两个正数的加法运算.接着求两次向左的结果,也就是进行两个负数的加法运算,并用数轴表示两个负数相加.然后再概括出同号相加的法则,完成有理数加法中较简单情况的讨论.接着,通过两个“探究”提出讨论异号相加情况的任务.学生可以模仿同号相加的讨论,从算式和数轴两个角度进行探究,得出结论.最后,教科书通过物体在两个时间段后的运动结果,引出与0相加的情况.在完成了上述所有情况的讨论后,教科书通过“思考”栏目提出归纳加法法则的任务,引导学生从所给两个加数的符号与绝对值考虑,得出确定和的符号与绝对值的方法.需要注意的是,从实例中引出运算法则,其目的是为了说明运算法则的合理性,便于学生在心理上接受.运算法则本身是一种规定.对于学生来说,最终是要记住规定,运用规定,培养根据规则行事的习惯.但了解规定的合理性,对理解这个规定,进而在理解的基础上记忆,是有益的.另外,在这个过程中,实际上渗透了归纳、类比等合情推理的方法,以及抽象概括能力的培养.三、教学目标和目标解析1.教学目标(1)理解有理数加法法则;(2)能利用加法法则正确地完成简单的有理数加法运算.2.目标解析(1)在问题情境中,学生能将不同现象对应于两个有理数相加的不同情况,如“先向右运动,再先左运动”对应于“正数+负数”,进而解释有理数加法法则;(2)学生会根据有理数的加法法则计算两个有理数的和.四、教学问题诊断分析有理数加法是小学学过的加法运算的拓展,学生已经具有了正数、负数、数轴和绝对值等知识.加法法则实际上给出了确定两个有理数的和的“符号”与“绝对值”的规则,它是通过分析两个有理数相加时可能出现的各种不同情况,再归纳出同号相加、异号相加、一个有理数与0相加三种情况而得到的.由于学生的思维发展水平和知识准备的限制,在分情况讨论、归纳不同情况等方面都需要教师的引导甚至是直接讲解.同号两数的加法法则比较易于理解,而异号两数相加时情况比较复杂,学习难度较大,需要教师加强引导.另外,根据法则作加法,需要注意“按部就班”地计算,这是培养良好运算习惯的过程.本节课的教学难点:分情况讨论有理数的加法法则的思路;异号两数相加的法则.五、教学过程设计1.创设情境,引出课题问题1前面我们学习了有理数,有理数有几种分类方法呢?学生回答:有理数可以分为正有理数、0和负有理数;有理数还可以分为整数和分数.【设计意图】复习从不同角度对有理数进行分类,为分情况讨论有理数加法法则埋下伏笔.导入:在小学,我们学过正数及0的加法运算.引入负数后,也要研究有理数的加法运算.日常生活中也会遇到有理数相加的问题,例如在本章引言中,我们曾看到一张“收支情况表”,把收入记作正数,支出记作负数,在求“结余”时,需要计算8.5+(-4.5),4+(-5.2)等.【设计意图】从数学和生活实际两个方面说明学习有理数加法的必要性.问题2小学学过正数与正数相加、正数与0相加.引入负数后,会出现哪些新的情况?学生思考、交流、补充,由老师总结:还会出现负数+负数,负数+正数,正数+负数,负数+0,0+负数.【设计意图】让学生感受引入负数后,相应地就要研究新的运算,并根据已有经验,列出有理数加法的所有可能情况.在这个过程中,可以渗透分类讨论、归纳等思想,还可以培养学生思维的逻辑性、条理性.2.观察探究,总结法则教师:我们借助大家熟悉的生活经验来讨论有理数的加法.看下面的问题:一个物体作左右方向的运动,我们规定向右为正,向左为负.向右运动5 m记作5 m,向左运动5 m记作-5 m.问题3如果物体先向右运动5 m,再向右运动3 m,那么两次运动的最后结果是什么?可以用怎样的算式表示?教师引导学生画出数轴,借助数轴表示运动过程和结果,再列出算式表示.在解决问题的过程中,教师要强调,用数轴表示运动情况时要注意如下几点:(1)原点O是第一次运动的起点;(2)第二次运动的起点是第一次运动的终点;(3)由第二次运动的终点与原点的相对位置得出两次运动的结果.【设计意图】借助学生熟悉的日常生活问题解释有理数加法,让学生感受加法法则的合理性.追问1:上面我们实际上得到的是“正数+正数”的情况.你能模仿上述过程,解决下面的问题吗?如果物体先向左运动5 m,再向左运动3 m,那么两次运动后总的结果是什么?用怎样的算式表示?先让学生独立解决,然后全班交流.要求学生讲清楚:在数轴上,以谁为起点,两次运动的相互关系,如何表示结果.【设计意图】“负数+负数”的情况与“正数+正数”完全类似,由学生模仿解决,既巩固刚学习的方法,又加深他们对法则的理解.追问2:你能从“符号”和“绝对值”两个方面,用一句话概括出上述两种情况吗?学生尝试总结,教师给予帮助(如提示:等号左边两数的符号与等号右边的数的符号有什么关系?),得出同号两数相加的法则.【设计意图】给学生独立思考、自主探究的机会,并在研究思路上加以引导.另外,渗透了从特殊到一般的思想方法.问题4前面得到了同号两数相加的法则,下面可以研究什么问题?(待学生回答“异号两数相加的法则”后)类比前面的研究过程,我们来探究下列问题:(1)如果物体先向左运动3 m,再向右运动5 m,那么两次运动的最后结果怎样?如何用算式表示?(2)如果物体先向右运动了3 m,再向左运动了5 m,那么两次运动的最后结果怎样?如何用算式表示?学生独立思考后,再相互交流.教师应再次提醒学生注意用数轴表示运动情况时要注意的三点,引导学生发现:对于(1),两次运动的最后结果是落在原点的右侧距离原点2 m处,对应的算式是5+(-3)=2;对于(2),两次运动的最后结果是落在原点的左侧距离原点2 m 处,对应的算式是3+(-5)=-2.追问:类比前面的做法,你能从“符号”和“绝对值”两个方面,概括一下上述两种情况吗?学生尝试总结,教师给予帮助(如提示:结果的符号与等号左边哪个数的符号相同?结果的绝对值是怎样利用两个加数而得到的?),得出异号两数相加的法则.【设计意图】让学生思考“已经解决什么问题,还有哪些问题没有解决”,可以培养思维的条理性.再次引导学生结合数轴表示异号两数相加的结果,提供自主探究的机会,但在探究过程中要加强指导,以帮助学生克服难点.问题5 如果物体先向左运动5 m,再向右运动5 m,那么两次运动的最后结果怎样?如何用算式表示?如何用一句话表示?由学生独立完成.请一位学生(可以是学习程度中等偏下的)回答结果.【设计意图】有了前面的准备,这个问题学生应该都能解决了.问题6如果物体第1秒向右(或左)运动5 m,第2秒原地不动,很显然,两秒后物体从起点向右(或左)运动了5 m.你能用算式表示吗?由学生独立完成.请一位学生(可以是学习程度中等偏下的)回答结果.【设计意图】利用物体在一个时间段不运动,引出与0相加的情况.问题7 你能归纳一下前面所有的结论,自己尝试给出有理数加法法则吗?学生归纳、交流,教师在适当的时候给予帮助.由教师进行总结,要指出有理数加法法则包括三种不同情况:同号两数相加、异号两数相加、一个数与0相加;异号两数相加中,又以互为相反数的两个数相加为特例.要边总结边板书.教师提醒学生,做有理数加法时,既要考虑符号,又要考虑绝对值.【设计意图】锻炼学生的思维严谨性,培养归纳和概括的能力、语言表达能力.估计学生独立完成有困难,所以在学生总结的基础上由教师给出完整的加法法则.3.举例示范,巩固新知计算:(1)(-3)+(-9);(2)(-4.7)+3.9;(3)0+(-7);(4)(-9)+(+9).教师提醒学生计算时要先观察两个加数的符号与绝对值,首先确定和的符号,再确定绝对值.让学生独立完成后,展示结果并讲解理由.【设计意图】四个小题对应于四种不同情况,学生在叙述理由时要做到“步步说理”,即①确定类型;②确定符号;③确定绝对值,从而突破难点.4.加强练习,熟练计算练习教科书第18页练习1,2,3.学生口答,教师评判.【设计意图】第1题让学生体会在实际生活中何时使用加法,并会用加法解决问题,从而进一步感受学习有理数加法的必要性.第2,3题所给加数较为简单.5.课堂小结,自我完善师生共同回顾本节课所学的主要内容,并请学生回答以下问题:(1)有理数的加法法则是什么?你是怎么理解这一法则的?(2)我们通过生活实例,借助数轴讨论了有理数加法法则,其中使用了哪些思考方法?(3)进行有理数的加法运算时需要注意哪几个步骤?【设计意图】(1)让学生梳理本节课的知识框架,并说出自己的理解;(2)使学生关注分类讨论、从特殊到一般等研究问题的方法;(3)观察算式,确定符号,计算绝对值.布置作业:教科书习题1.3第1,8,9题.六、目标检测设计计算:(1)(+4)+(+3);(2)(-8)+(-11); (3)52+⎪⎭⎫ ⎝⎛37-; (4)⎪⎭⎫ ⎝⎛65-+316; (5)0+(-325); (6)⎪⎭⎫ ⎝⎛012 2011 2-+012 2011 2. 【设计意图】检测学生是否基本掌握有理数的加法法则,并准确进行计算.。

七年级数学上册第一章有理数单元备课教案(新版)新人教版

七年级数学上册第一章有理数单元备课教案(新版)新人教版

第一章有理数一、课标要求1.知识与技能(1)了解正数、负数的实际意义,会判断一个数是正数还是负数.(2)掌握数轴的画法,能将已知数在数轴上表示出来,•能说出数轴上已知点所表示的解.(3)理解相反数、绝对值的几何意义和代数意义,•会求一个数的相反数和绝对值.(4)会利用数轴和绝对值比较有理数的大小.2.过程与方法经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.3.情感、态度与价值观使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言.二、本章教材分析1.主要内容:1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,•从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念.2.通过怎样用数简明地表示一条东西走向的马路旁的树、•电线杆与汽车站的相对位置关系引入数轴.数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:(1)数轴能反映出数形之间的对应关系;(2)数轴能反映数的性质;(3)数轴能解释数的某些概念,如相反数、绝对值、近似数;(4)数轴可使有理数大小的比较形象化.3.对于相反数的概念,•从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分.4.正确理解绝对值的概念是难点.理解绝对值的两种意义,•一种是几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离;另一种是代数意义:绝对值的几何意义是以线段长度来表示一个数的绝对值的;而绝对值的代数意义则是给出了求绝对值的法则,由绝对值的两种意义可知,有理数a•的绝对值可表示为:│a│=(0) 0(0)(0)a aaa a>⎧⎪=⎨⎪-<⎩根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值.(2)有理数的绝对值是一个非负数,即最小的绝对值是零.(3)两个互为相反数的绝对值相等,即│a│=│-a│.(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.(5)若│a│=│b│,则a=b,或a=-b或a=b=0.2.本单元在教材中的地位与作用:本章是数从自然数扩展到有理数,初步形成有理数的概念后,进一步学习有理数的运算,是小学算术的延续和发展。

新人教版七年级上册数学第一章有理数全章教案

新人教版七年级上册数学第一章有理数全章教案

新人教版七年级上册数学第一章有理数全章教案第一章“有理数”教材分析本章是第三期教科书的第一章,不仅对前两个时期的内容进行了阐述,而且为进一步研究奠定了基础。

本章的主要内容是有理数的相关概念和运算。

首先从实例中引入负数,然后介绍有理数的一些概念。

在此基础上,介绍了有理数的加减运算。

引入负数是实际的需要,也是学习第三学段数学内容,特别是数与代数内容的需要。

引入数轴可以直观地用数轴上的一个点来表示有理数,从而直观地引入对数值和绝对值,为用数轴引入有理数的加法定律和乘法定律做准备。

引入相反数的概念,一方面,可以加深对相反意义的量的认识,另一方面,可以为学习绝对值、有理数减法等作准备。

引入绝对值的概念可以加深对有理数的理解:有理数是由符号和绝对值决定的。

当比较两个负数时,在有理数的运算中也应该使用绝对值的概念。

本章的重点是有理数的运算。

加法与乘法都是在介绍运算法则――着重是符号法则的基础上,进行基本运算,然后结合具体例子引入运算律,并运用运算律简化运算。

减法和除法的重点是如何转化为加法和乘法,从而使用加法和乘法的运算规则和法则。

乘方是几个相同因数的乘积,也就可以利用乘法运算。

科学记数法与乘方有关,因而可进一步加以介绍。

近似数在实际问题中有广泛的应用,有必要在本章作进一步的认识。

近似数的内容与乘方也有一定的联系,例如,大数的近似数用科学记数法表示,可以清楚地看出保留的有效数字的个数。

为了加强与相关操作的联系,计算机计算分散在相关内容中。

例如,教科书使用计算器计算一些负数的幂,然后探索负数幂的符号规律。

通过学习使用计算器进行有理数运算,可以用计算器完成更复杂的计算。

简单的有理数运算仍需要学生熟练地用笔算完成。

本章的教学要求如下:1.通过实际例子,感受引入负数的必要性。

会用正负数表示实际问题中的数量。

2.理解有理数的含义,能够用数轴上的点来表示有理数。

借助数轴理解对数值和绝对值的含义,能够找到有理数的对数值和绝对值(绝对值符号不含字母),能够比较有理数的大小。

【人教版 七年级数学 上册 第一章】1.3.1 第1课时《 有理数的加法法则》教学设计1

【人教版 七年级数学 上册 第一章】1.3.1 第1课时《 有理数的加法法则》教学设计1

【人教版七年级数学上册第一章】1.3.1 第1课时《有理数的加法法则》教学设计1一. 教材分析人教版七年级数学上册第一章1.3.1节主要介绍了有理数的加法法则。

这部分内容是有理数运算的基础,对于学生理解和掌握有理数的概念、性质以及运算规律具有重要意义。

本节课的内容将为后续的乘法、除法、减法运算打下基础。

二. 学情分析七年级的学生已经初步掌握了有理数的概念和性质,对加法运算有一定的了解。

但学生在运算过程中,可能对符号的判断和运算顺序的掌握还不够熟练。

因此,在教学过程中,需要帮助学生巩固有理数的概念,提高运算速度和准确性。

三. 教学目标1.理解有理数的加法法则,能够熟练地进行有理数的加法运算。

2.培养学生的运算能力,提高学生解决实际问题的能力。

3.培养学生的合作交流意识,提高学生的逻辑思维能力。

四. 教学重难点1.教学重点:掌握有理数的加法法则,能熟练进行有理数的加法运算。

2.教学难点:符号的判断和运算顺序的掌握。

五. 教学方法采用情境教学法、合作学习法和激励评价法进行教学。

通过设置生活情境,激发学生的学习兴趣;学生进行小组讨论,培养学生的合作交流意识;运用激励评价,提高学生的自信心和积极性。

六. 教学准备1.准备教学课件,包括例题、练习题等。

2.准备黑板、粉笔等教学工具。

3.准备相关的生活情境案例。

七. 教学过程1.导入(5分钟)利用生活情境案例,引入本节课的主题。

例如,小红购买了3个苹果,小蓝购买了2个苹果,他们一共购买了多少个苹果?让学生思考并回答,引出有理数的加法运算。

2.呈现(10分钟)通过课件呈现有理数的加法法则,引导学生观察和思考。

讲解加法法则的内涵,让学生理解并掌握加法运算的规律。

3.操练(10分钟)让学生进行有理数的加法运算练习,教师及时给予指导和反馈。

可设置一些具有挑战性的题目,激发学生的学习兴趣。

4.巩固(10分钟)学生进行小组讨论,分享各自的解题心得。

教师引导学生总结加法运算的注意事项,巩固所学知识。

人教版七年级数学上册第一章《有理数》全章教学设计

人教版七年级数学上册第一章《有理数》全章教学设计

第一章有理数镇中教课设计1.1.1 正数和负数( 1)[学习目标 ]1、理解正数和负数的观点,会判断一个数是正数仍是负数2、会用正数和负数来表示拥有相反意义的量3、理解数 0 的意义[学习过程 ]一、板书课题:(一)叙述:同学们,今日我们来学习第一章有理数.1.1.1 正数和负数(教师板书)二、出示目标(一)过渡语:要达到什么教课目的呢?请看投影(二)屏幕显示学习目标1、理解正数和负数的观点,会判断一个数是正数仍是负数2、会用正数和负数来表示拥有相反意义的量3、理解数 0 的意义三、自学指导(一)过渡语:如何才能当堂达到学习目标呢?请同学们依据指导认真自学。

(二)出示自学指导认真看课本( P1-3练习前方)① 理解正数的观点,会模仿正数的观点,解说负数的含义;②理解正数、负数和0 表示的实质含义,注意黄色书签的内容;③回答 P3“思虑”中的问题。

若有疑部问,能够小声讨教同桌或举手问老师。

6分钟后,比谁能正确做出检测题。

四、先学(一)学生看书,教师巡视,师敦促每一位学生认真、紧张的自学,鼓舞学生怀疑问难。

(二)检测1、过渡语:同学们,看完的请举手。

懂了的请举手。

好下边就比一比,看谁能正确做出检测题。

2、检测题 P3:1、2、3、43、学生练习,教师巡视。

(改集错误会进行二次备课)五、后教(一)改正:请同学们认真看一看这四名同学的板演,发现错解的请举手(指名改正)(二)议论:评第 1 题:(教师要重申停题格式)①正数找的对吗?为何对?师指引生回答:比0 大的数是正数(师板书)(如对,教师打√)②你还举一些正数的例子吗?③负数找的对吗?为何?师指引生回答:在正数前加“一”的数是负数④你能模仿正数的定义来谈谈负数的吗?师指引生回答:比0 小的数是负数。

(师板书)(如对,教师打√)评 2、3、4 题答案正确吗?为何?师指引生回答:数0 既不是正数也不是负数,是正、负数的分界限。

(师板书)重申“0”的意义不单是表示“没有”,还能够表示温度读报00C(表示标准),山脚的高度 0 米等(表示起点)。

新人教版七年级数学第1章有理数教案(全章)

新人教版七年级数学第1章有理数教案(全章)

第1课时正数和负数(1)第2课时正数和负数(2)第3课时 有理数教 学目 标1、掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;2、了解分类的标准与分类结果的相关性,初步了解“集合”的含义;3、体验分类是数学上的常用处理问题的方法。

教学重点 正确理解分类的标准和按照一定的标准进行分类 教学难点 正确理解有理数的概念教 学 互 动 设 计设计意图一、创设情境 导入新课在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个不同类型数(同时请3个同学在黑板上写出). 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与二、合作交流 解读探究【问题1】观察黑板上的9个数,并给它们进行分类. 学生思考讨论和交流分类的情况.学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.例如,对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.··…(由于小数可化为分数,以后把小数和分数都称为分数)通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数”.正整数:如1,2,3 …; 零:0;负整数:如-1,-2,-3 …正分数:如21,32,715,0.1,5.3… 负分数:如-0.5,25-,32-,-715,-0.1,-150.25…; 所有的正整数组成正整数集合,所有的负整数组成负整数集合。

正整数、0、负整数统称为整数。

把一些数放在一起,就组成了一个集合,简称数集,在表示数集时要注意:⑴数集可以用大括号表示,也可用圆圈表示。

2022年人教版七年级数学上册第一章有理数教案 乘方(第1课时)

2022年人教版七年级数学上册第一章有理数教案  乘方(第1课时)

第一章有理数1.5 有理数的乘方1.5.1 乘方第1课时一、教学目标【知识与技能】1.正确理解乘方、幂、指数、底数等概念.2.会进行有理数乘方的运算.【过程与方法】通过对乘方意义的理解,培养学生观察比较、分析、归纳概括的能力,渗透转化思想.【情感态度与价值观】培养探索精神,体验小组交流、合作学习的重要性.二、课型新授课三、课时第1课时,共2课时。

四、教学重难点【教学重点】正确理解乘方的意义,掌握乘方运算法则.【教学难点】正确理解乘方、底数、指数的概念,并合理运算.五、课前准备教师:课件、直尺、计算器等。

学生:三角尺、练习本、铅笔、圆珠笔或钢笔。

六、教学过程(一)导入新课珠穆朗玛峰是世界最高的山峰,它的海拔高度约是8844米.把一张足够大的厚度为0.1毫米的纸,连续对折30次的厚度能超过珠穆朗玛峰,这是真的吗?(出示课件2)(二)探索新知1.师生互动,探究乘方的意义教师问1:我们知道,边长为2 cm的正方形的面积为2×2=4(cm2);棱长为2 cm的正方体的面积为2×2×2=8(cm2).观察式子2×2,2×2×2有何共同特点?学生回答:都是相同因数的乘法.教师问2:为了简便,我们可以将它们记作什么,读作什么?学生回答:2×2记作22,读作2的平方;2×2×2记作23,读作2的立方.教师问3:某种细胞每30分钟便由一个分裂成两个,经过3小时这种细胞由1个能分裂成多少个?(出示课件4)分裂方式如下所示:(出示课件5)学生讨论后回答:2×6=12.教师问4:这个细胞分裂一次可得多少个细胞?分裂两次呢?分裂三次呢?四次呢?那么,3小时共分裂了多少次?有多少个细胞?(出示课件6)师生共同解答如下:一次:2个两次:2×2个三次:2×2×2个四次:2×2×2×2个六次:2×2×2×2×2×2个教师问5:请比较细胞分裂四次后的个数式子:2×2×2×2和细胞分裂六次后的个数式子: 2×2×2×2×2×2. 这两个式子有什么相同点?(出示课件7)学生回答:它们都是乘法,并且它们各自的因数都相同.教师问6:这样的运算能像平方、立方那样简写吗?学生回答:2×2×2×2记作24,2×2×2×2×2×2记作26.教师问7:24读作2的4次方(幂),26读作2的6次方(幂).同样:(-2)×(-2)×(-2)×(-2)记作什么?读作什么?(-25)×(-25)×(-25)×(-25)×(-25)记作什么?读作什么?学生回答:(-2)×(-2)×(-2)×(-2)记作(-2)2,读作负2的四次方(幂).(-25)×(-25)×(-25)×(-25)×(-25)记作(-25)5,读作负五分之二的五次方(幂).教师问8:a·a·a·a·a·a可以记作什么?读作什么?学生回答:a·a·a·a·a·a可以记作a6,读作a的六次方(幂)教师问9:进一步提出:a·a·…·a,(n个a相乘)(n为正整数)呢?学生回答:可以记作a n,读作a的n次方.教师讲解:对于a n中的a,不仅可以取正数,还可以取0和负数,也就是说a可以取任意有理数.总结点拨:(出示课件8)一般地,n个相同的因数a相乘,记作a n,读作“a的n次幂(或a的n次方)”,即教师讲解:求n个相同因数的积的运算,叫做乘方.乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在a n中,a取任意有理数,n取正整数.注意:乘方是一种运算,幂是乘方运算的结果.a n看做是a的n次方的结果时,也可读作a的n次幂,一个数可以看做是它本身的1次方.总结点拨:(出示课件9)这种求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂.一个数可以看作这个数本身的一次方,例如,8就是81,指数1通常省略不写.因为a n就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算.例1:计算:(出示课件11)2)3.(1)(–4)3;(2)(–2)4;(3)(-3师生共同解答如下:解:(1)(–4)3=(–4)×(–4)×(–4)=–64;(2)(–2)4 =(–2)×(–2)×(–2)×(–2)=16;(3).322228333327⎛⎫⎛⎫⎛⎫⎛⎫-=-⨯-⨯-=-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭教师问10:进一步提出问题:观察以上运算的结果,你发现负数的幂的正负有什么规律?师生共同解答如下:(出示课件12)负数的奇次幂是负数,负数的偶次幂是正数.正数的任何正整数次幂都是正数,0的任何正整数次幂都是0.例2:用计算器计算(–8)5和(–3)6.(出示课件14)师生共同解答如下:开启计算器后按照下列步骤进行:8 5显示:(-8)^ 5-32768 即(-8)5=-327683 6显示:(-3)^ 6729 即(-3)6=7298 5 =显示:-327683 6显示:729所以(-8)5=-32768 (-3)6=729 例3:计算:(出示课件16)(1)22 -3-3⨯()()(2)–23×(–32)(3)64÷(–2)5(4)(–4)3÷(–1)200+2×(–3)4师生共同解答如下:解:(1)22(-3)(-)329(-)6;3=⨯=-⨯(2)–23×(–32)= –8×(–9)=72;(3)64÷(–2)5=64÷(–32)= –2;(4)(–4)3÷(–1)200+2×(–3)4= –64÷1+2×81=98教师问11:通过以上计算,对于乘除和乘方的混合运算,你觉得有怎样的运算顺序?(出示课件17)学生回答:先算乘方,后算乘除;如果遇到括号,就先进行括号里的运算.(三)课堂练习(出示课件19-23)1.计算(–3)2等于()A.5 B.–5C.9 D.–92.计算(–1)2017的结果是()A. –1B. 1C. 2017D. –20173.下列说法中正确的是( )A. 23表示2×3的积B. 任何一个有理数的偶次幂是正数C. -32与(-3)2互为相反数D.一个数的平方是94 ,这个数一定是 32 4.在 – |–3|3,– (–3)3, (–3)3 , –33中,最大的数是( )A.– |–3|3B.– (–3)3C. (–3)3D. –335.对任意实数a,下列各式不一定成立的是( )A. a 2= (–a)2B. a 3= (–a)3C. |a| = |–a|D. a 2 ≥06.填空:(1)–(–3)2= ______ ; (2)–32= ___________ ;(3)(–5)3= _______ ; (4)0.13= ___________ ;(5)(–1)9= ________ ; (6)(–1)12= _________;(7)(–1)2n =_________ ; (8)(–1)2n+1=________;(9)(–1)n =____________. .7.计算:(-6)2×(31-21) . 8.厚度是0.1毫米的纸,将它对折1次后,厚度为0.2毫米.(1)对折3次后,厚度为多少毫米?(2)对折7次后,厚度为多少毫米?(3)用计算器计算对折30次后纸的厚度.参考答案:1.C2.A3.C4.B5.B6.(1)-9;(2)-9;(3)-125;(4)0.001;(5)-1;(6)1;(7)1;(8)-1;(9)-1(当n 为奇数时),1(当n 为偶数时)7.解:(-6)2×(31-21)=36×21-36×31=18-12=6 8.(1)0.8毫米;(2)12.8毫米;(3)0.1×230=0.1×1073741824=107374182.4(毫米)107374182.4毫米=107374.1824米.教师补充:107374.1824米>8848.86米(珠穆朗玛峰高度)(四)课堂小结今天我们学了哪些内容:1.有理数乘方的意义2.有理数乘方运算的符号法则:负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,0的任何正整数次幂都是0.3.与乘方有关的探求规律问题.(五)课前预习预习下节课(1.5.1)43页到44页的相关内容。

新人教版七年级数学第一章《有理数》全章教案

新人教版七年级数学第一章《有理数》全章教案

1.1正数和负数第一课时教学目标:一.知识与技能能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量.二.过程与方法借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性.三.情感态度与价值观培养学生积极思考,合作交流的意识和能力.教学重、难点与关键:1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法.2.难点:正确理解负数的概念.3.关键:创设情境,充分利用学生身边熟悉的事物,•加深对负数意义的理解.教学过程:一、课堂引入我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的.人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,•测量和分配有时不能得到整数的结果,为此产生了分数和小数.在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第1页提到的问题,这里出现的新数:-3, -2.7%在前面的实际问题中它们分别表示:零下3摄氏度,减少2.7%.二、讲授新课1、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,•它们与负数具有相反的意义,我们把这样的数(即以前学过的0•以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+13,…就是3,2,0.5,13,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号.2、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数.3、数0既不是正数,也不是负数,但0是正数与负数的分界数.4、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度.用正负数表示具有相反意义的量:5、把0以外的数分为正数和负数,起源于表示两种相反意义的量.•正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额.6、请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义.7、你能再举一些用正负数表示数量的实际例子吗?8、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量.三、巩固练习课本第3页,练习1、2题.四、课堂小结为了表示现实生活中的具有相反意义的量,我们引进了负数.正数就是我们过去学过的数(除0外),在正数前放上“-”号,就是负数,•但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数.如果原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数.1.1正数和负数第二课时教学目标:一.知识与技能进一步巩固正数、负数的概念;理解在同一个问题中,用正数与负数表示的量具有相同的意义.二.过程与方法经历举一反三用正、负数表示身边具有相反意义的量,进而发现它们的共同特征.三.情感态度与价值观鼓励学生积极思考,激发学生学习的兴趣.教学重、难点与关键:1.重点:正确理解正、负数的概念,能应用正数、•负数表示生活中具有相反意义的量.2.难点:正数、负数概念的综合运用.3.关键:通过对实例的进一步分析,•使学生认识到正负数可以用来表示现实生活中具有相反意义的量.教学过程:一、复习提问,课堂引入1.什么叫正数?什么叫负数?举例说明,•有没有既不是正数也不是负数的数?2.如果用正数表示盈利5万元,那么-8千元表示什么?二、新授例1.一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值.例2.2001年下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,•中国增长7.5%.写出这些国家2001年商品进出口总额的增长率.分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数.•“负”与“正”是相对的,增长-1,就是减少1;增长-6.4%就是减少6.4%,那么什么情况下增长率是0?当与上年持平,既不增又不减时增长率是0.解:1.这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg. 2.六个国家2001年商品进出口总额的增长率分别为:美国-6.4%,德国1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.归纳:在同一个问题中,分别用正数与负数表示的量具有相反的意义,如盈利-•2千元,就是亏本2千元;前进-3米,就是后退3米;浪费-14元,就是节约14元;向南走-•7米,就是向北走7米,因此盈利2千元与盈利-2千元具有相反的意义.三、巩固练习1.课本第5页的第8题.点拨:增长-3.4%,就是减少3.4%,所以这一年里这六国中中国、•意大利的服务出口额增长了,美国、德国、英国、日本的服务出口额都减少了,意大利增长最多,日本减少最多.四、课堂小结通过本节课的学习,你对正数、负数的概念是否有了进一步理解?请你用正负数表示身边具有相反数的量.五、作业布置1.课本第5页习题1.1第4、5、6、7题.1.2 有理数第一课时教学目标:一、知识与能力理解有理数的概念,懂得有理数的两种分类方法:会判别一个有理数是整数还是分数,是正数、负数还是零.二、过程与方法经历对有理数进行分类的探索过程,初步感受分类讨论的思想.三、情感态度与价值观通过对有理数的学习,体会到数学与现实世界的紧密联系.教学重难点及突破:在引入了负数后,本课对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习,使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不宜过多展开.教学过程:一、课堂引入1、我们把小学里学过的数归纳为整数与分数,引进了负数以后,我们学过的数有哪些?将如何归类?2.举例说明现实中具有相反意义的量.3.如果由A地向南走3千米用3千米表示,那么-5千米表示什么意义?4.举两个例子说明+5与-5的区别.5.数0表示的意义是什么?二、自主探究1、在学生讨论的基础上,引导学生自己进行有理数的分类,我们学过的数就可以分为以下几类:正整数,如1,2,3,…;零:0;负整数,如-1,-2,-3,…;正分数,如13,227,4.5(即412);负分数,如-12,-227,-0.3(即-310),-35……正整数、零和负整数统称整数,正分数、负分数统称分数,整数和分数统称有理数.2、回答下列各题:(1)0是不是整数?0是不是有理数?(2)-5是不是整数?-5是不是有理数?(3)-0.3是不是负分数?-0.3是不是有理数?3.你能对以上各种数作出一张分类表吗(要求不重复不遗漏)?让学生把自己作出的分类表进行分类,可以根据不同需要,用不同的分类标准,•但必须对讨论对象不重不漏地分类.把一些数放在一起,就组成一个数的集合,•简称数集.所有的有理数组成的数集叫做有理数集.类似的,•所有整数组成的数集叫做整数集,所有正数组成的数集叫做正数集,所有负数组成的数集叫做负数集,如此等等.三、随堂练习判断1.自然数是整数.() 2.有理数包括正数和负数.() 3.有理数只有正数和负数.() 4.零是自然数.() 5.正整数包括零和自然数.() 6.正整数是自然数.() 7.任何分数都是有理数.() 8.没有最大的有理数.() 9.有最小的有理数.()四、课堂小结:(提问式)1.有理数按正、负数,应怎样分类?2.有理数按整数、分数,应怎样分类?3.分类的原则是什么?五、课后作业:课本第14页习题1.2第1题.1.2.2 数轴教学目标:一.知识与技能(1)掌握数轴三要素,能正确地画出数轴.(2)能准备地将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.二、过程与方法经历从实际问题中抽象出数学问题的过程,初步学会数学的类比方法和数形结合的思想方法.三、情感态度与价值观体会知识源于生活,并应用于生活.教学重、难点与关键:1.重点:理解数形结合的数学方法,•掌握数轴画法和用数轴上的点表示有理数.2.难点:正确理解有理数和数轴上的点的对应关系.3.关键:掌握数形结合的数学方法.教学过程:一、复习提问、新课引入1.有理数包括哪些数?有理数是怎样分类的?2.回顾小学数学是如何利用数轴表示正数和零的?二、新授引入负数后,又如何利用数轴表示有理数呢?让我们先看一个问题.在一条东西走向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.1.画一条直线表示马路,从左到右表示从西到东的方向.2.因为柳树、杨树都在汽车站的东面,即在汽车站的右边.槐树、•电线杆在汽车站的西面,即在汽车站的左边,它们都相对汽车站而言,所以在直线上任取一个点O表示汽车站的位置,规定1个单位规定.(线段OA的长代表1m长)(如下图)3.分别标出柳树、杨树、槐树、电线杆的位置.在点O右边,与O距离3个单位长度的点B表示柳树的位置:点O右边,与O•点距离7.5个单位长度的点C表示杨树的位置;点O左边,与点O距离3个单位长度的点D•表示槐树位置;点O的左边,与点O距离4.8个单位长度的点E表示电线杆的位置.问:怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系?(方向、•距离)为了使表达更清楚、更简洁,我们把点O•左右两边的数分别用正数和正数表示.符号表示方向,点O的左边表示负数,点O的右边表示正数.这样就可以简明地表示这些树、电线杆与汽车站的相对位置关系了.这里,-4.8中的负号“-”表示汽车站(点O)的左边,4.8表示与点O•的距离为4.8个单位长度.说明:以上分析,教师应边讲边画,分步进行.观察后回答:(课本第8页)温度计可以看作表示正数、0和负数的直线吗?•它和课本图1.2-1有什么共同点,有什么不同点?答:可以,课本图1.2-2也是把正数、o和负数用一条直线上的点表示出来,它是向上方向为正(即0的上方表示正数,0的下方表示负数),只要把温度计水平放下就与课本图1.2-1相同了.一般地,在数学中人们用画图的方式把数“直观化”,通常用一条直线上的点表示数,这条直线叫做数轴,它满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点,记为0;(2)通常规定直线上从原点向右(或上)为正方向,•从原点向左(或下)为负方向;(3)选取适当的长度为单位长度,直线上从原点向右,•每隔一个单位长度取一个点,依次表示1,2,3,…;从原点向左,用类似方法依次表示-1,-2,-3,….像这样规定了原点、正方向和单位长度的直线叫做数轴.原点、正方向和单位长度称为数轴的三要素,缺一不可.单位长度的大小可以根据不同的需要选择.任何一个有理数都可以用数轴上的点表示,例如3.5,数轴上从原点向右3.5个单位长度的点表示3.5,又如要表示-2,从原点向左2个单位长度的点就表示-2,如下图.归纳:先由学生填空,然后教师加以讲评.三、巩固练习1.请同学们在练习本上画一条数轴.2.下面的各图是不是数轴?为什么?3.在数轴上与表示-1的点的距离为2个单位长度的点有几个?请你在数轴上把它们画出来,它们分别表示什么数?学生独立完成后,老师讲解,给出正确的答案.四、课堂小结数轴是非常重点的数学工具,它的出现对数学的发展起了重要作用,它揭示了数和形之间的内在联系,很多数学问题都可以以它为基础,借助图直观地表示,为研究问题提供了新方法.五、作业布置1.课本第9页练习1、2、3题,第14页习题1.2的第2题.1.2.3 相反数教学目标:一.知识与技能(1)借助数轴了解相反数的概念,知道两个互为相反数的位置关系.(2)给出一个数,能求出它的相反数.二、过程与方法借助数轴,通过观察特例,总结出相反数的概念.从数和形两个侧面理解相反数.三、情感态度与价值观鼓励学生积极进行归纳、比较交流等活动.教学重、难点与关键:1.重点:理解相反数的意义,会求一个数的相反数.2.难点:理解和掌握双重符合的简化.3.关键:通过观察特例,以及互为相反数的两个数在数轴上的位置,•理解相反数.教学过程:一、复习提问,课堂引入在数轴上,画出表示6,-6,2,-2,4,-4各数的点.二、新授请同学们观察后回答:1.上述中6和-6;2和-2,4和-4每对数有什么特点?2.每对数在数轴上所表示的点有什么特点?3.再观察课本第7页的图1.2-1中点D和点B,它们的位置关系如何?•它们各表示的数有什么特点?概括:(1)每一对数,只有符号不同.(2)在数轴上表示每一对数的两个点分别在原点的两边,•并且离开原点的距离相等.(3)点D和点B分别位于原点的两边,且与原点的距离相等,它们分别表示-3•和3.思考:数轴上与原点的距离是2的点有几个?这些点表示的数是什么?•与原点的距离是5的点呢?归纳:一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,它们分别在原点左右,表示-a和a,那么称这两个点关于原点对称,如下图:-a a像这样只有符号不同的两个数叫做互为相反数,例如6和-6,2和-2,都是互为相反数,也就是说6的相反数是-6,-2的相反数是2.一般地,a和-a互为相反数,特别地,0的相反数仍是0.问:数轴上表示相反数的两个点和原点有什么关系?答:数轴上表示相反数的两个点是关于原点对称,是在原点的两旁(除0•外),并且与原点的距离相等.注意相反数与倒数的区别,若两个数只有符号不同,那么这两个数叫做互为相反数;若两个数的乘积等于1,则这两个数叫互为倒数.任何有理数都有相反数,•零的相反数是零,而零没有倒数.例1:分别写出下列各数的相反数.5,-7,-3,+11.2,0.解:5的相反数是-5;-7的相反数是7;-3的相反数是3;+11.2的相反数是-11.2;0的相反数是0.强调书写格式,防止出现如“5=-5”的错误.容易看出,在正数前面添上“-”号,就得到这个正数的相反数.在任意一个数的前面添上“-”号,新的数就表示原数的相反数.例如:-(+5)=-5,-(-7)=7,-(-3)=3,-(+11.2)=-11.2,-0=0.我们知道一个正数,前面的“+”号可以写也可以不写,所以在一个数的前面添上“+”号,表示这个数没有变化,还是它本身.例如:+(-4)=-4,+(+12)=12,+0=0三、课堂练习1.写出下列各数的相反数.+2,-2.5,0,2.化简下列各数.-(-30),-(+3),-(-38.2),+(-5),+(+2 7).3.指出下列各对数,哪些是相等的数?哪些是互为相反数?+(-3)与-3,-(+3)与3,-(-7)与-7.4.如果a=-a,那么表示a的点在数轴上的什么位置?5.你会化简下列各数吗?试试看.(本题可根据学生实际情况选用)-[+(-2)],-[-(-6)].提示:因为任意数a是-a的相反数,所以表示a的点在数轴上与表示-a•的点关系原点对称,这两个点分别在原点左、右两边且与原点距离相等.四、课堂小结本节课我们学习了相反数的概念、相反数的求法和双重符号的简化.理解相反数的意义,相反数总是一正一反成对出现(零除外),从数轴上看,表示互为相反数的两个点,分别在原点的两边,且到原点距离相等.要表示一个数的相反数,只要在这个数前面添“-”号,-a表示a的相反数,当a是正数时,-a表示一个负数;当a是负数时,则-a表示正数.此外我们还应该注意相反数和倒数的区别.五、作业布置1.课本第11页练习1、2、3题,第15页习题1.2第3题.1.2.4 绝对值教学目标:一、知识与技能(1)借助数轴初步理解绝对值的概念,能求一个数的绝对值.(2)通过应用绝对值解决实际问题,体会绝对值的意义和作用.二、过程与方法通过观察实例及绝对值的几何意义,探索一个数的绝对值与这个数之间的关系,培养学生语言描述能力.三、情感态度与价值观培养学生积极参与探索活动,体会数形结合的方法.教学重、难点与关键:1.重点:正确理解绝对值的概念,能求一个数的绝对值.2.难点:正确理解绝对值的几何意义和代数意义.3.关键:借助数轴理解绝对值的几何意义,•根据绝对值定义和相反数的概念,理解绝对值的代数意义.教学过程:一、复习提问,新课引入1.什么叫互为相反数?2.在数轴上表示互为相反数的两个点和原点的位置关系怎样?二、新授在一些量的计算中,有时并不注意其方向,例如,为了计算汽车行驶所耗的油量,起作用的是汽车行驶的路程而不是行驶的方向.1.观察课本第11页图1.2-6,回答:(1)两辆汽车行驶的路线相同吗?(2)它们行驶路程的远近相同吗?• •这两辆车行驶的路线不同(方向相反),•但行驶的路程的远近相同,•都是10km.课本图1.2-6中表示-10的点B和表示10的点A离开原点的距离都是10,•我们就把这个距离10叫做数-10、10的绝对值.一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作│a│.这里的数a可以是正数、负数和0.例如上述的10和-10的绝对值记作│10│=10,│-10│=10,•同样在数轴上表示+6和-6的两个点,离开原点的距离都是6,即6和-6的绝对值都是6,记作│6│=6,•│-6│=6.数轴上表示数0的点与原点的距离是0,所以│0│=0.2.试一试:(1)│+2│=______,│15│=_____,│+10.6│=________.(2)│0│=_______.(3)│-12│=_______,│-20.8│=_______,│-3217│=_______.3.你能从上面解答中发现什么规律吗?学生若有困难,教师可提示:所得的结果与绝对值符号内的数有什么关系?从而得出绝对值的代数意义:(1)一个正数的绝对值是它本身;(2)零的绝对值是零;(3)一个负数的绝对值是它的相反数.我们用a表示任意一个有理数,上述式子可以表示为:①当a是正数时,│a│=_______;②当a是负数时,│a│=_______;③当a=0时,│a│=_______.以上先让学生填空,然后让学生给a•取一些具体数值检验所填写的结果是否正确.教师问:(1)任何一个有理数都有绝对值吗?一个数的绝对值有几个?(2)有没有一个数的绝对值等于-2?任何一个数的绝对值一定是怎样的数?(3)绝对值等于2的数有几个?它们是什么?归纳:①任何有理数都有唯一的绝对值,任意一个数的绝对值总是正数或0,•不可能是负数,即对任意有理数a,总有│a│≥0.②两个互为相反数的绝对值相等,即│a│=│-a│.③因为0的绝对值是0,而0的相反数是它本身0,因此可知绝对值等于它本身的数是正数或者零,绝对值等于它的相反数的数是负数或零.三、巩固练习1.课本第11页练习1、2、3题.第1题强调书写格式,防止出现“-8=8”的错误.第2题(1)错,如3与-2的符号相反,但它们不是互为相反数,•应改为“只有大小相等符号相反的数是互为相反数”.(2)正确.(3)错,因为这个点也可能越靠左,应改为:“一个数的绝对值越大,表示它的点离原点越远.”(4)正确.四、课堂小结理解绝对值的几何意义和代数意义.从几何意义可知,一个数的绝对值是表示该数的点与原点的距离,因为距离总是正数和零,所以有理数的绝对值不可能是负数,从绝对值的代数定义也可进一步理解这一点.引入绝对值概念后,有理数可以理解为由性质符号和绝对值两部分组成的,如-5就是由“-”号和它的绝对值5两部分组成.五、作业布置1.课本第14页习题1.2第4、7、10题.1.2.4 绝对值教学目标:一、知识与技能掌握有理数的大小比较的两种方法──利用数轴和绝对值.二、过程与方法经历利用绝对值以及利用数轴比较有理数的大小,进一步体会“数形结合”的数学方法,培养学生分析、归纳的能力.三、情感态度与价值观会把所学知识运用于解决实际问题,体会数学知识的应用价值.教学重、难点与关键:1.重点:会利用绝对值比较有理数的大小.2.难点:两个负数的大小比较.3.关键:正确理解绝对值的概念.教学过程:一、复习提问,引入新课用“>”、“<”号填空.1.5.7______6.3; 2.27_____38; 3.0.03_______0;4.│-3│_______│2│; 5.│-23│_______│-32│.二、新授引入负数后,如何比较两个有理数的大小呢?让我们从熟悉的温度来比较,大家观察课本第12页中“未来一周天气预报”.1.课本图1.2-7中共有14个温度,其中最低的是多少?最高的是多少?2.请你将这14个温度按从低到高的顺序排列.课本图1.2-6中的14个温度按从低到高排列为:-4℃,-3℃,-2℃,-1℃,0℃,1℃,2℃,3℃,4℃,5℃,6℃,7℃,8℃,9℃.按照这个顺序排列的温度,在温度计上所对应的点是从下到上的,按照这个顺序把这些数表示在数轴上,表示它们的各点的顺序是从左到右的,如课本图1.2-•7,这就是说在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数,因此,我们可以利用数轴比较有理数的大小.例如在数轴上表示-6的点在表示-5的点的左边,所以-6<-5.同样-5<-4,-3<-3,-2<0,-1<1,…从数轴上可知:表示正数的点都在原点的右边;表示负数的点都在原点左边.因此有正数大小0,0大于负数,正数大于负数.两个正数的大小比较小学已学过,不画数轴你会比较两个负数的大小吗?探索:我们知道,在数轴上越靠左边的点所表示的数越小,而这个点与原点的距离越大,即这个点所表示的数的绝对值越大,因此,我们还可以利用绝对值比较两个负数的大小.即两个负数,绝对值大的反而小.例如:│-2│=2,│-5│=5,即│-2│<│-5│,因此-2>-5.同样│-1│<│-3│,所以-1>-3.例1:比较下列各对数的大小:(1)-(-1)和-(+2);(2)-821和-37;(3)-(-0.3)和│-13│.解:(1)先化简,-(-1)=1,-(+2)=-2,正数大于负数,1>-2.即 -(-1)>-(+2).(2)这是两个负数比较大小,要比较它们的绝对值,绝对值大的反而小.│-821│=821,│-37│=37=921.因为821<921,即│-821│<│-37│,所以-821>-37.(3)先化简,-(-0.3)=0.3,│-13│=13=.0.3,0.3<0.3,即-(-0.3)<│-13│.初学时,要求学生按以上步骤进行,能化简的要先化简,•然后按照有理数的大小比较法则:异号两数比较大小,要考虑它们的正负,根据“正数大于负数”,•同号两数比较大小,要考虑它们的绝对值,特别是两个负数大小比较,先各自求出它们的绝对值,然后依法则:两个负数,绝对值大的反而小,比较绝对值大小后,即可得出结论.例2:已知a>0,b<0且│b│>│a│,比较a,-a,b,-b的大小.解:方法一,可通过数轴来比较大小,先在数轴上找出a,-a,b,-b•的大致位置,再比较.由a>0,b<0可知表示a的点在原点的右边,表示b的点在原点的左边;由│b│>•│a│,可知表示b的点离开原点的距离更远,即它应在表示a的点的左边,•然后再根据两个互为相反数在数轴上所表示的点在原点两边,且与原点距离相等即可得到下图.-a ab根据数轴上,较左边的点所表示的数较小,可得:b<-a<a<-b.三、课堂练习1.课本第13页练习.2.补充练习:(1)比较大小,并用“<”连结.①-34,-712,-56;②-(-10),-│-10│,9,-│+18│,0.。

人教版七年级数学上册第一章有理数的概念(教案)

人教版七年级数学上册第一章有理数的概念(教案)
4.有理数的应用
-解决实际问题
-判断有理数的大小关系
-有理数的混合运算
5.练习题与例题
-各类有理数运算的练习题
-涉及实际应用的有理数问题
-提高学生对有理数概念的理解和应用能力例题解析
二、核心素养目标
1.培养学生数学抽象能力:通过有理数的概念学习,使学生能够抽象出数的本质属性,理解数的分类及其意义,形成数学的抽象思维。
-举例:应用有理数解决温度变化、方向位移等问题。
2.教学难点
(1)有理数概念的理解:学生容易混淆有理数与整数、分数的关系,难以把握有理数的本质。
-突破方法:通过具体例子,让学生感受到有理数包含整数和分数,理解有理数的无限性和可表示性。
(2)相反数和绝对值的概念:学生难以理解相反数的意义,以及绝对值表示的实际意义。
其次,在新课讲授环节,我注意到有些学生在理解有理数概念和性质时显得有些吃力。在讲解过程中,我尽量使用简洁明了的语言,并通过举例来阐述。然而,可能由于讲解速度过快,部分学生还没来得及消化吸收就进入了下一个环节。针对这个问题,我计划在今后的教学中适当放慢讲解速度,增加课堂互动,让学生有更多机会提问和思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.提升逻辑推理素养:引导学生掌握有理数的运算规律,学会运用逻辑推理解决问题,培养严谨的数学逻辑思维。
3.增强数学建模意识:通过实际问题的引入和解决,让学生学会运用有理数知识建立数学模型,提高解决实际问题的能力。

最新人教版七年级数学上册 第一章 有理数 优秀教案教学设计 含教学反思

最新人教版七年级数学上册 第一章 有理数 优秀教案教学设计 含教学反思

第一章有理数1.1正数和负数 (1)第1课时正数和负数的概念 (1)第2课时正数、负数以及0的意义 (3)1.2有理数 (4)1.2.1有理数 (4)1.2.2数轴 (6)1.2.3相反数 (8)1.2.4绝对值 (10)1.3有理数的加减法 (12)1.3.1有理数的加法 (12)第1课时有理数的加法 (12)第2课时相关运算律 (14)1.3.2有理数的减法 (15)第1课时有理数的减法法则 (15)第2课时有理数的加减混合运算 (17)1.4有理数的乘除法 (18)1.4.1有理数的乘法 (18)第1课时有理数的乘法 (18)第2课时相关运算律 (21)1.4.2有理数的除法 (23)第1课时有理数的除法 (23)第2课时有理数的混合运算 (24)1.5有理数的乘方 (26)1.5.1乘方 (26)第1课时有理数的乘方 (26)第2课时有理数的综合运算 (28)1.5.2科学记数法 (29)1.5.3近似数 (31)1.1正数和负数第1课时正数和负数的概念了解正数和负数的产生;知道什么是正数和负数;理解正负数表示的量的意义;知道0既不是正数,也不是负数.重点正、负数的意义.难点1.负数的意义.2.具有相反意义的量.一、新课导入活动1:创设情境,导入新课教师投影展示教材第2页图片,让学生体验自然数的产生,分数的产生离不开生产和生活的需要,可以让学生自由发表意见和感想.二、推进新课活动2:体验负数的引入的必要性教师出示温度计:安排三名同学进行如下活动:研究手中的温度计上刻度的确切含义,一名同学手持温度计,一名同学说出其中三个刻度,一名同学在黑板上速记.教师根据活动情况,如果学生不能引入符号表示,教师也可参与活动,逐步引入负数.强调:0既不是正数,也不是负数.活动3:分组活动,感受正负数的意义各组派一名同学进行如下活动:按老师的指令表演,看哪一组获胜.1.老师说出指令:向前2步,向后3步,向前-2步,向后-3步,学生按老师的指令表演.2.各小组互相监督,派一名同学汇报完成的情况.活动4:深入理解正负数的意义,提高分析解决问题的能力师投影展示问题,讲解课本例题.例:1.一个月内,小明体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重增长值.2.某年,下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家这一年商品进出口总额的增长率.学生讨论后解决.活动5:练习与小结练习:教材第3页练习.小结:这堂课我们学习了哪些知识?你能说一说吗?活动6:作业习题1.1第4,5,6,8题本课是有理数的第一课时,引入负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的.为了接受这个新的数,就必须对原有的数的结构进行整理。

七年级数学上册第一章《有理数》教案

七年级数学上册第一章《有理数》教案

第一课时正数和负数(一)教学目标1.熟练区分正数和负数。

2.能利用正负数正确表示相反意义的量。

教学重难点:熟练区分正数和负数教学方法:探究学习教学设计一、课前铺垫:我们小学已经学过哪些数,请举例说明。

二、探究新知知识点一:会判断一个数是正数还是负数1.自学课本1—2页,并回答以下问题:(1)在引言中表示温度、净胜球数和产品增长率时用到了哪些数?它们的具体含义是什么?(2)像2, 0.2, 17等数叫做数;像-4,1234-, -6.25这样在正数前面加号的数叫做,既不是正数也不是负数。

你认为:叫做非负数。

针对性练习1.已知下列各数:13-,5,0,-4,47,其中正数的个数是( )A.0个B.1个C.2个D.3个2. 有下列六个数:-5,0,132,-0.3,+13,14-,其中负数的个数是( )A.1B.2C.3D.43.下列说法正确的个数是( )①零是正数;②零是负数;③零是偶数;④零是奇数;A.0个B.1个C.2个4. 已知下列各数:-8,50.9,35-, 0.3,其中非负数的个数是( )A.0个B.1个C.2个D.3个知识点二:认识正数和负数具体表示的是相反意义的量1.自学课本第3页,并结合以上问题回答以下问题:(1)通过以上内容的学习,其实正数和负数是表示生活中具有意义的量。

(2)列举自己见到的生活中用正、负数表示的量2.尝试表示在日常生活中常会遇到下面的一些量。

(1)温度是零上10℃表示为,零下5℃表示为。

(2)收入500元表示为,支出237元表示为。

(3)水位升高1.2米表示为,下降0.7米表示为。

针对性练习1.规定正常水位为0m,高于正常水位0.2m时记做+0.2m,则下列说法错误的是( )A.高于正常水位1.5m记做+1.5mB.低于正常水位0.5m记做-0.5mC.-1m表示比正常水位低1mD.+2m表示水深2m2.规定电梯上升为“+”,那么电梯上升-10m表示( )A.电梯下降10mB.电梯上升10mC.电梯上升0mD.电梯没有动3.温度计液面在0℃以上第五个刻度处,表示的温度是零上5℃,记做+5℃; 温度计液面在0℃以下第五个刻度处,表示的温度是零下5℃,记做 ,它是数。

最新人教版七年级数学上册第一章有理数《有理数的减法》教案(第1课时)

最新人教版七年级数学上册第一章有理数《有理数的减法》教案(第1课时)

最新人教版七年级数学上册第一章有理数《有理数的减法》教案(第1课时)1.3.2有理数的减法(第一课时)整体设计重点难点教学重点:有理数减法法则及应用.教学难点:运用有理数减法法则解决数学问题.教学目标1.经历探索有理数减法法则的过程,理解有理数的减法法则.2.能较熟练地进行有理数的减法运算.3.初步体验由减法法则把有理数的减法运算转化为有理数加法运算的数学转化思想.教材处理本节将从学生熟悉的问题入手探索有理数的减法运算及减法法则的学习过程.教学方法通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索.教学环节的设计与展开,都以问题的解决为中心,使教学过程成为在教师指导下的一种自主探索的学习过程.方案一教学过程一、创设情境,提出问题设计说明举出现实生活中的实际问题,让学生发现利用相关的数学知识来解决,从而激发学生自主学习的兴趣和积极性.问题1:如图1.3.21,(1)15℃比5℃高多少?(或5℃比15℃低多少?)(2)15℃比-5℃高多少?(或-5℃比15℃低多少?)图1.3.21问题2:如图1.3.22,世界最高峰是珠穆朗玛峰,陆上最低处是位于亚洲西部名为死海的湖,两处高度相差多少?图1.3.22教学说明教师提出问题,引导学生思考应利用有理数减法运算来解决以上问题,从而导入新课.二、探究新知,解决问题设计说明通过对问题的解决,让学生经历减法法则得出的过程,从而加深对知识的理解和掌握.问题1:你能列式解决上面的问题吗?(1)15℃-5℃=10℃.(2)15℃-(-5℃)=20℃.(3)8844.43-(-415)=9259.43.问题2:你能在横线上填上适当的数吗?(1)15+________=10.(2)15+________=20.(3)8844.43+________=9259.43.问题3:下列等式成立吗?(1)15-5=15+(-5).(2)15-(-5)=15+5.(3)8844.43-(-415)=8844.43+415.问题4:上面的关系式把有理数的减法转化成了有理数的加法,由此我们得到了有理数的减法法则,你能用文字语言来描述吗?减去一个数,等于加上这个数的相反数问题5:若用a、b表示两数,你能用数学式子描述有理数的减法法则吗?教学说明本环节设计的五个问题引导学生经历了有理数减法法则形成的过程.问题4、5的教学是本节课重难点的突破口,既有文字语言的描述又有符号语言的体现:①应利用关系式体现把减法转化为加法的数学转化思想;②让学生弄清楚在转化过程中发生的变化有两处,一处是运算符号的变化,另一处是性质符号的变化.三、变式训练,发散思维设计说明通过不同形式的练习,从不同的角度帮助学生进一步加深对有理数减法运算的理解和运用,形成初步的技能.1.例题解析:计算(-3)-(-5).解:(-3)-(-5)↓↓=(-3)+(+5)减法转化为加法=2依据加法法则运算教学说明通过例题给学生展示规范的解题步骤,并以箭头标注,体现运算法则,帮助学生理解掌握.2.课堂检测计算:①7.2-(-4.8);②0-7;③-5-(-8);1111④(-3)-5;⑤0-(-7);⑥5-3.2424教学说明让一部分学生板演,目的是发现学生存在的问题,组织学生自评、互评,最后师生纠正规范.3.帮帮小马虎解:①(-23)-(+8)③(-12)-(-21)=-23+8=12+21=-15;=33;②5.4-(-8.7)④-13-25=5.4-8.7=-13+25=-3.3;=12.教学说明让学生在发现问题、纠正错误中成熟自己.四、总结反思,情意发展1.本节课你学习了什么?2.本节课你有哪些收获?3.通过今天的学习,你想进一步探究的问题是什么?可以归纳为如下几点:(1)本节主要学习了有理数的减法法则及其应用.(2)主要用到的思想方法是化归思想.(3)注意的问题:进行有理数的减法运算的关键是先将有理数的减法转化为加法,然后运用有理数的加法法则进行运算.五、布置作业1.课本第25页习题1.3第3、4题.2.思考:在小学阶段我们做减法时,只有在a大于或等于b时,才会做减法a-b,现在a小于b时我们也会做减法a-b,小数减大数的差是什么数?六、拓展练习1.计算:(1)4.8-(+2.3);(2)(-1.24)-(+4.76);(3)(-3.28)-1;(4)2-(-3).22.计算:(1)[(-4)-(+7)]-(-5);(2)3-[(-3)-12];(3)8-(9-10);(4)(-3-5)-(6-10).3.求出下列每对数在数轴上的对应点之间的距离.(1)3与-2.2;(2)-4与(-4.5);(3)4.75与2.25.你能发现所得的距离与这两数的差有什么关系吗?评价与反思本节内容是七年级数学上册第一章的第三节,主要学习有理数的减法法则及其应用.在本节课中教师重点引导学生去探索,发现有理数的减法可以转化为加法来进行,并着重帮助学生把有理数的减法法则用字母简明地表示出来,这有助于学生理解和记忆.教师给学生提供充分的自主学习、合作交流的时间和空间,提高了学生发现问题、解决问题的能力.设计者:王红方案二教学过程一、创设情境,提出问题问题1:如图1.3.21,小文说:“我知道-5℃~15℃这一天的温差是多少,但我不知道15-(-5)该怎么算?”你能从温度计上看出15℃比-5℃高多少吗?(1)15℃比5℃高多少?(或5℃比15℃低多少?)(2)15℃比-5℃高多少?(或-5℃比15℃低多少?)教师引导学生观察:生:10℃比-5℃高15℃.师:能不能列出算式计算呢?生:10-(-5).师:如何计算呢?这就是我们今天要学的内容.(引入新课,板书课题)设计说明通过一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题既复习巩固有理数加法法则,同时为进行有理数减法运算打下基础,从而点明课题——有理数的减法.二、探究新知,解决问题问题1.归纳法则(1)让学生观察两式结果:(+10)-(+3)=________;(+10)+(-3)=________.由此得到(+10)-(+3)=(+10)+(-3).①通过上述举题,同学们观察减法是否可以转化为加法计算:减去一个正数(+3),等于加上它的相反数(-3).设计说明教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法运算可以转化为加法运算.(2)再看一题,计算(-10)-(-3).教师启发:要解决这个问题,根据有理数减法的意义,就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.教师给出另外一个问题:计算(-10)+(+3).生:(-10)+(+3)=-7.教师引导、学生观察上述两题结果,由此得到:(-10)-(-3)=(-10)+(+3).②总结:由①、②两式可以看出减法运算可以转化成加法运算.设计说明由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标.师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?学生活动:同学们思考,并要求学生与同桌相互叙述并纠正补充,然后举手回答,其他同学进行更正或补充.师:给出有理数减法法则:减去一个数,等于加上这个数的相反数上面的关系式把有理数的减法转化成了有理数的加法,由此我们得到了有理数的减法法则,你能用文字语言来描述吗?若用a、b表示两数,你能用数学式子描述有理数的减法法则吗?a-b=a+(-b).设计说明本环节设计的这些问题引导学生经历了有理数减法法则形成的过程,是本节课重难点的突破口,既有文字语言的描述又有符号语言的体现:①应利用关系式体现把减法转化为加法的数学转化思想;②让学生弄清楚在转化过程中发生的变化有两处,一处是运算符号的变化,另一处是性质符号的变化.问题2.例题讲解:例1计算:(1)(-3)-(-5);(2)0-7.11例2计算:(1)7.2-(-4.8);(2)(-3)-5.24例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化;(2)进行加法运算.例2由两个学生板演,其他学生做在练习本上,然后师生讲评.设计说明学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯.例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视.例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数(小数),即有理数.例3如图1.3.22,世界最高峰是珠穆朗玛峰,海拔高度是8844.43米,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-415米,两处高度相差多少?解:8844.43-(-415)=8844.43+415=9259.43.所以两地高度相差9259.43米.设计说明问题3.组织学生自己编题,学生回答.设计说明教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固所学知识.这样做,一方面可以活跃学生的思维,培养学生的表达能力;另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识.同时,教师可以获取学生掌握知识的反馈信息,对于出现的错误及时改正.三、巩固训练1.计算(口答):(1)6-9;(2)(+4)-(-7);(3)(-5)-(-8);(4)(-4)-9;(5)0-(-5);(6)0-5.2.计算:(1)(-2.5)-5.9;(2)1.9-(-0.6);3112(3)(-)-;(4)-(-).4243学生活动:找四个学生板演,其他同学做在练习本上.设计说明学生对有理数减法法则已经熟悉,学生在做练习时,要引导学生注意归纳有理数减法规律,而不只是简单机械地将减法化成加法.四、总结反思,情意发展1.通过本节课的学习,你掌握了哪些知识?2.通过学习你了解到了哪些数学思想?3.通过今天的学习,你想进一步探究的问题是什么?五、内容与方案一相同,省略.六、拓展训练1.填空题(1)3-(-3)=________;(2)(-11)-2=________;(3)0-(-6)=________;(4)(-7)-(+8)=________;(5)-12-(-5)=________;(6)3比5大________;(7)-8比-2小________;(8)-4-()=10;(9)如果a>0,b<0,则a-b的符号是________.2.判断题(1)两数相减,差一定小于被减数.()(2)(-2)-(+3)=2+(-3).()(3)零减去一个数等于这个数的相反数.()(4)方程某+8=5在有理数范围内无解.()(5)若a<0,b<0,|a|>|b|,a-b<0.()评价与反思内容与方案一相同,省略.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版七年级数学上册第一章《有理数(第1课时)》教案
一、内容及其解析
1.内容
有理数的概念,有理数的分类.
2.内容解析
有理数是初中数学中数的范围的第一次扩充,是在学习了正整数、0、负整数以及正分数、负分数的基础上,通过引入负数的概念而完成的.在此过程中,渗透着数的扩充以及数的运算的基本思想,是让学生感受在已有知识的基础上提出问题、研究问题的载体,也是增强学生的数感的有效载体.
本节内容的核心是通过归纳已学过的数的类型,给出有理数的概念.这里没有要求学生理解抽象的定义,而是强调了通过具体实例,在对已有的数的认识基础上完成拓展.在学生有较充分的基础后,再在本章小结中把有理数的概念严格化.
本课的教学重点:体会有理数的概念;体会有理数的两种不同分类方法,感受数的扩充的基本思想.
二、教材解析
本节课是在学习了正数、负数的概念之后,通过添加负数这一类“新数”,使数的范围扩充到有理数.教科书总结了从小学开始,通过逐步增加新的数而将数的范围逐步扩充的过程.这里渗透了数的扩充的基本思想,为以后从有理数扩充到实数的学习奠定了基础.教材在课后练习中用了“集合”这一名词,目的是渗透一些现代数学知识.这里,“集合”可暂不作为一个数学概念,只看作一个普通名词,知道所有的正整数在一起组成正整数集合,所有的负整数在一起组成负整数集合,不必再引申.
三、教学目标和目标解析
1.教学目标
(1)理解有理数的概念;
(2)掌握有理数的分类.
2.目标解析
(1)学生能够判断一个数是否为有理数,掌握判断依据;
(2)对于给出的一组数能够按要求进行分类.了解“0”在有理数分类中的作用.
四、教学问题诊断分析
有理数的概念是通过例举、归纳的方法给出的,因为学生在小学已接触过负数,对有理数已经有了一定的认识,所以接受概念没有太大的困难.在有理数的分类中,因为涉及到不同的分类标准,这是学生在以往学习中很少碰到的,他们对为什么要分类,怎样确定分类标准,如何进行分类等问题,都存在一定的困难,所以需要教师加强引导.另外,0在有理数分类中是一个特例,需要特别处理.
基于以上分析,确定本课的教学难点是:有理数分类中,分类标准的确定以及对0的作用的理解.
五、教学过程设计
问题1请大家回顾一下,从小学到现在,我们学习了哪些数?你能分别举几个例子吗? 师生活动:学生回答,老师把学生举出的数写在黑板上.
【设计意图】通过学生自己举例,梳理已经学过的数,为引入有理数的概念做好铺垫. 问题2观察黑板上的这些数,你能将它们填入下面相应的圈内吗?
师生活动:由学生代表板书填写.
【设计意图】让学生在解决问题的过程中,明确正整数、负整数、正分数、负分数的概念,感受0的作用.为给出有理数的概念做好准备.
教师讲解:正整数、0、负整数统称为整数;正分数、负分数统称为分数.整数与分数统称为有理数.
按上述定义,我们有:
正整数
整数 零 有理数 负整数 分数 正分数 负分数 问题3 对有理数进行分类,可以加深我们对有理数的认识.从有理数的定义出发,你 还能给出与上面不同的分类方法吗?
⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数⎪⎪⎩
⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数
师生活动:学生回答问题前,老师可提示分类线索,即在有理数的概念中,涉及到整数还是分数,正数还是负数,这就是不同分类标准的来源.
按性质符号分类:
正整数 正分数
有理数 零
负整数
负分数
【设计意图】让学生寻找不同的标准对有理数进行分类,以加深对有理数结构的感知,培养学生的数感.
问题4 试试看,你能解决下面的问题吗?
1.把下列各数填入相应的集合圈里:
―18,722,3.1 415,0,2 012,―5
3,―0.124 847,95%
教师解释:数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只给出了有限的几个数,所以应加上省略号.
【设计意图】初步向学生渗透集合思想,加深对有理数概念的理解,同时体会0的作用.
2.定义辨析练习
(1)同桌之间,一名同学说出几个有理数,另一名同学指出每个数属于哪一类?
【设计意图】增强趣味性和同学之间的合作意识.
(2)下列说法正确的有几个?
①零是整数;②零是有理数;③零是自然数;④零是正数;⑤零是负数.
【设计意图】让同学们加深对0的认识和理解.
(3)下列说法错误的有几个?
①负整数和负分数统称为负有理数;
正有理数 负有理数
②正整数,0和负整数统称为整数;
③正有理数与负有理数组成全体有理数.
【设计意图】加深对有理数概念和分类的理解.
3.练习、巩固概念
教科书第7页练习2.
问题5 请同学们回顾本节课所学知识,回答下列问题:
1.有理数是怎样定义的?
2.有理数有几种分类方法?具体是怎样分类的?
3.有理数的学习过程中,应注意什么?
师生活动:教师与学生一起回顾本节课所学主要内容,并请学生回答问题.
【设计意图】通过小结,使学生梳理本节课所学内容,掌握本节课的核心:有理数的概念和分类方法.
布置作业:教科书习题1.2第1题.
六、目标检测设计
1.把下列各数填入相应的集合的括号内:
27,-5.8,2 002,
76,-1,90%,3.14,0,-312,-2,1,-0.01. (1)整数集合:
{ …} (2)分数集合:
{ …} (3)负有理数集合:
{ …} (4)正有理数集合:
{ …} 【设计意图】检测学生对有理数分类方法的掌握情况.
2.下列语句:(1)所有整数都是正数;(2)所有正数都是整数;(3)分数是有理数;
(4)在有理数中除了负数就是正数.其中正确的语句的个数有( ).
A .0个
B .1个
C .3个
D .4个
【设计意图】此题较全面地考查了有理数的概念,题目的特点是阅读量大,只要一个语句判断错误,则可能导致答错题目,是一道单选形式的多选题.检测学生是否能够认真理解概念,对有理数中的特殊元素(如0)是否能够正确理解.。

相关文档
最新文档