数学建模期末作业
《数学建模》期末考试试卷三与参考答案
《数学建模》期末考试试卷 班级 姓名 学号一、某工厂生产A 、B 、C 三种产品,三种产品对于材料费用、劳动力和电力的单位消耗系数,资源限量和单位产品价格如下表。
模型。
并准确写出用LINGO 软件求解的程序。
(15分)二、用单纯形方法求如下线性规划问题的最优解。
(15分) S x x x x x x s t x x x x x x 123123123123max 32463590..345600,0,0=++++≤⎧⎪++≤⎨⎪≥≥≥⎩三、(20分)某工厂要安排A 、B 、C 三种产品生产,生产这些产品均需要三种主要资源:技术服务、劳动力和行政管理。
每件产品所需资源数、资源限量以及每单位产品利润如下表。
试确定这三种产品的产量使总利润最大,建立线性规划问题的数学模型。
现设置上述问题的决策变量如下:321,,x x x 分别表示A 、B 、C 、D 型产品的产量,则可建立线性规划模型如下:⎪⎪⎩⎪⎪⎨⎧≥≥≥≤++≤++≤++++=0,0,03006226005410120.4610max 321321321321321x x x x x x x x x x x x t s x x x S 利用LINGO10.0软件进行求解,得求解结果如下:Objective value: 800.0000 Total solver iterations: 2 Variable Value Reduced Cost X1 20.00000 0.000000 X2 100.0000 0.000000 X3 0.000000 2.666667 Row Slack or Surplus Dual Price 1 800.0000 1.000000 2 0.000000 3.333333 3 0.000000 0.6666667 4 60.00000 0.000000(1)指出问题的最优解并给出原应用问题的答案;(2)写出线性规划问题的对偶线性规划问题,并指出对偶问题的最优解;(3)灵敏度分析结果如下:Ranges in which the basis is unchanged: Objective Coefficient RangesCurrent Allowable AllowableVariable Coefficient Increase Decrease X1 10.00000 5.000000 4.000000 X2 6.000000 4.000000 2.000000 X3 4.000000 2.666667 INFINITY Righthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 120.0000 30.00000 60.000003 600.0000 600.0000 120.00004 300.0000 INFINITY 60.00000对灵敏度分析结果进行分析四、给定四个因素判别的正互反矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=12/12/14/1212/13/12212/14321A 用和法求出其最大特征值和对应的特征向量,给出按照A 所得到的排序向量。
数学建模期末考查作业
数学建模期末考查作业一、某化工厂生产A,B,C,D 四种化工产品,每种产品生产1吨消耗的工时,能该厂明年的总利润最高的数学模型,并利用MATLAB 写出简单的求解程序。
解:设该厂明年生产1A ,2A ,3A ,四种产品的数量分别为1x ,2x ,3x ,4x (单位:t ),总利润为z 。
约束条件 :工时限额:18480753802501004321≤+++x x x x能耗限额:1001.05.03.02.04321≤+++x x x x确定目标函数:4321852x x x x Z +++=4321852m ax x x x x Z +++=()⎪⎩⎪⎨⎧=∈≥≤+++≤+++4,3,2,1,01001.05.03.02.01848075380250100..43214321i N x x x x x x x x x x t s i i 且 求解:model:max=2*x1+5*x2+8*x3+x4;100*x1+250*x2+380*x3+75*x4<=18480; 0.2*x1+0.3*x2+0.5*x3+0.1*x4<=100; @gin(x1); @gin(x2); @gin(x3); @gin(x4); endGlobal optimal solution found.Objective value: 388.0000 Objective bound: 388.0000 Infeasibilities: 0.000000 Extended solver steps: 0 Total solver iterations: 0Variable Value Reduced Cost X1 2.000000 -2.000000 X2 0.000000 -5.000000 X3 48.00000 -8.000000 X4 0.000000 -1.000000Row Slack or Surplus Dual Price 1 388.0000 1.000000 2 40.00000 0.000000 3 75.60000 0.000000分析:由程序及结果可知,当四种化工产品生产数量分别为1x =2,2x =0,3x =48,4x =0时,该厂利润取最大值,最大值为388万元。
数学建模期末作业(嘉兴)
数学建模期末作业题一 河水污染问题如图是一个容量为32000m 的小湖,小河A 以310.1/m s -的速率向小湖注入河水,而小湖又以同样的速率通过小河B 流出,在上午9:20, 该地区发生交通事故,一个装有有毒化学物质的容器倾翻,在图中点X 处注入湖中,采取紧急措施后,于9:50分得到控制。
但数量不祥的有毒化学物质Z 流入湖中。
据估计Z 的量在35m 与320m 之间。
建立相应的模型来估计湖水受污染的程度随时间的变化函数关系并估计⑴湖水何时达到污染高峰;⑵何时污染可降至安全水平?(≤题二 选址问题考虑A,B,C 三地,每地都生产一定数量的原料,也消耗一定数量的产品(见下表),已知制成每吨产品需3吨原料,各地之间的距离为A —B :150,km B —C :200,km A —B :100.km 又每万吨原料运输1km 的运价是5000元,每万吨产品运输1km 的运价是6000元,由于地区条件的差异,在不同地点设厂的生产费用也不同,问怎样在何处设厂,规模多大,才能使总费用最小,由于其它条件限制,在B 处建厂的规模不能超过5万吨。
题三 雇员的聘用问题某服务部门一周中每天需要不同数目的雇员:周一到周四每天至少50人,周五和周日每天至少需要80人,周六至少需要90人,现规定应聘者每周需连续工作5天,试确定聘用方案,即周一到周日每天需要聘用多少人,使在满足需要的条件下,所聘用的总人数最少。
如果周日的需要量由80增至90人,方案应该怎样改变?若全时雇员(一天工作8小时)可以通过临时聘用的半时雇员(一天工作4小时,且无需连续工作)来代替,但规定半时雇员的工作量不得超过工作总量的四分之一,又设全时雇员和半时雇员每小时的酬金分别为5元和3元,试确定聘用方案,使在满足需要的前提下,所付的酬金为最小。
题四 肿瘤问题肿瘤大小V 生长的速率与V 的a 次方成正比,其中a 为形状参数,01;a ≤≤而其比例系数K 随时间减小,减小速率又与当时的K 值成正比,比例系数为环境系数.b 设某肿瘤参数1,0.1,a b ==K 的初始值为2,V 的初始值为1,问⑴此肿瘤生长不会超过多大?⑵过多长时间肿瘤大小翻一倍?⑶何时肿瘤生长速率由递增转为递减?⑷若参数2/3a =呢?题五 油气田的开发问题油气田开发试验表明:准确预测油气产量和可开采储量,对石油工作者来说,始终是一项既重要又困难的工作. 1995年,有人通过对国内外一些油气田的开发资料,得出结论:油气田的产量与累积产量之比()r t 与其开发时间存在着半指数关系:()lg .r t A Bt =-根据某气田1957~1976年总共20个年度的产气量数据(如下表),建立该气田的产量预测模型,并将预测与实际值进行比较.10m.注:产量单位83要求:每位学生在上面五题中可以任选一题,最迟于17周的周二前上交作业.。
《数学建模》期末试卷A
《数学建模》期末试卷A一、填空题(每题2分,共20分)1、在数学建模中,我们将所要研究的问题________化。
2、在解决实际问题时,我们常常需要收集大量的数据,这些数据通常是不________的。
3、在建立数学模型时,我们通常需要对变量进行假设,这些假设通常是对________的描述。
4、在解决实际问题时,我们通常需要对多个因素进行________,以确定哪些因素对所要研究的问题有显著影响。
5、在建立数学模型时,我们通常需要对数据进行________,以发现数据之间的规律和关系。
6、在解决实际问题时,我们通常需要将复杂的问题________化,以方便我们更好地理解和解决它们。
7、在建立数学模型时,我们通常需要将实际问题________化,以将其转化为数学问题。
8、在解决实际问题时,我们通常需要考虑实际情况的________性,以避免我们的解决方案过于理想化。
9、在建立数学模型时,我们通常需要使用数学语言来________模型,以方便我们更好地描述和解决它。
10、在解决实际问题时,我们通常需要使用计算机来帮助我们进行________和计算。
二、选择题(每题3分,共30分)11、在下列选项中,不属于数学建模步骤的是()。
A.确定变量和参数B.建立模型C.进行实验D.验证模型12、在下列选项中,不属于数学建模方法的是()。
A.归纳法B.演绎法C.类比法D.反证法13、在下列选项中,不属于数学建模应用领域的是()。
A.物理学B.工程学C.经济学D.政治学14、在下列选项中,不属于数学建模语言的是()。
A.文字语言B.符号语言C.图形语言D.自然语言15、在下列选项中,不属于数学建模原则的是()。
A.简洁性原则B.一致性原则C.可行性原则D.可重复性原则16、在下列选项中,不属于数学建模步骤的是()。
A.对数据进行分析和处理B.对模型进行假设和定义C.对模型进行检验和修正D.对结果进行解释和应用17、在下列选项中,不属于数学建模应用领域的是()。
数学建模期末大作业
数学建模承诺书
我们仔细阅读了数学建模作业的对应规则。
我们完全明白,在开始做题后不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反规则的。
如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守规则,以保证公正、公平性。
如有违反规则的行为,我们将受到严肃处理。
我们选择的题号是(A/B/C/D题): D
参赛队员:
1. 专业年级软件工程姓名段永春学号201410413112 成绩
2. 专业年级软件工程姓名殷福贵学号201410413113 成绩
3. 专业年级软件工程姓名高培富学号201410413107 成绩
日期: 2015 年 6 月 15 日。
数学建模期末大作业
数学建模期末大作业论文题目:A题美好的一天组长:何曦(2014112739)组员:李颖(2014112747)张楚良(2014112740)班级:交通工程三班指导老师:陈崇双美好的一天摘要关键字:Dijkstra算法多目标规划有向赋权图 MATLAB SPSS1 问题的重述Hello!大家好,我是没头脑,住在西南宇宙大学巨偏远的新校区(节点22)。
明天我一个外地同学来找我玩,TA叫不高兴,是个镁铝\帅锅,期待ing。
我想陪TA在城里转转,当然是去些不怎么花钱的地方啦~~。
目前想到的有林湾步行街(节点76)、郫郫公园(节点91),大川博物院(节点72)。
交通嘛,只坐公交车好了,反正公交比较发达,你能想出来的路线都有车啊。
另外,进城顺便办两件事,去老校区财务处一趟(节点50),还要去新东方(节点34)找我们宿舍老三,他抽奖中了两张电影票,我要霸占过来明晚吃了饭跟TA一起看。
电影院嘛,TASHIWODE电影院(节点54)不错,比较便宜哈。
我攒了很久的钱,订了明晚开心面馆(节点63)的烛光晚餐,额哈哈,为了TA,破费一下也是可以的哈。
哦,对了,老三说了,他明天一整天都上课,只有中午休息的时候能接见我给我票。
我主要是想请教一下各位大神:1)明天我应该怎么安排路线才能够让花在坐车上的时间最少?2)考虑到可能堵车啊,TA比较没耐心啊,因为TA叫不高兴嘛。
尤其是堵车啊,等车啊,这种事,万一影响了气氛就悲剧了。
我感觉路口越密的地方越容易堵,如果考虑这个,又应该怎么安排路线呢?3)我们城比较挫啊,连地图也没有,Z老师搞地图测绘的,他有地图,跟他要他不给,只给了我一个破表格(见附件,一个文件有两页啊),说“你自己画吧”。
帮我画一张地图吧,最好能标明我们要去的那几个地方和比较省时的路线啊,拜托了~2 问题的分析2.1 对问题一的分析问题一要求安排路线使得坐车花费的时间最少。
对于问题一,假设公交车的速度维持不变,要使花费的时间最少,则将问题转化为对最短路径的求解。
数学建模期末试题及答案
数学建模期末试题及答案1. 题目描述这是一份数学建模期末试题,包含多个问题,旨在考察学生对数学建模的理解和应用能力。
以下是试题的具体描述及答案解析。
2. 问题一某城市的交通流量与时间呈周期性变化,根据历史数据,可以得到一个交通流量函数,如下所示:\[f(t) = 100 + 50\sin(\frac{2\pi}{24}t)\]其中,t表示时间(小时),f(t)表示交通流量。
请回答以下问题:a) 请解释一下该函数的含义。
b) 根据该函数,该城市的最大交通流量是多少?c) 在哪个时间段,该城市的交通流量较低?【解析】a) 该函数表示交通流量f(t)随时间t的变化规律。
通过观察函数,可以发现交通流量与时间的关系是周期性变化,每24小时一个周期。
函数中的sin函数表示交通流量在周期内的变化,振幅为50,即交通流量的最大值与最小值之差为50。
基准流量为100,表示在交通最不繁忙的时刻,流量为100辆。
b) 最大交通流量为基准流量100辆与振幅50辆之和,即150辆。
c) 交通流量较低的时间段为振幅为负值的时刻,即最小值出现的时间段。
3. 问题二某学校的图书馆借书规则如下:- 学生每次最多可以借5本书,每本书的借阅期限为30天。
- 学生可以在借阅期限结束后进行续借,每次续借可以延长借阅期限30天。
请回答以下问题:a) 一个学生在10天内连续借了3次书,分别是2本、3本和4本,请写出该学生在每次借书后的总借书数。
b) 如果一个学生借了5本书,每本都是在借阅期限后进行续借,借了10年,最后一次续借后,该学生一共续借了几次书?【解析】a) 总的借书数为每次借书的累加和。
学生第一次借2本,总共借书数为2本;第二次借3本,总共借书数为2 + 3 = 5本;第三次借4本,总共借书数为5 + 4 = 9本。
b) 学生每本书借阅期限为30天,10年为3650天,每次借书续借可以延长借阅期限30天。
因此,学生续借次数为10年÷30天= 121次。
华中农业大学《数学建模》2020-2021学年第一学期期末试卷
华中农业大学《数学建模》2020-2021学年第一学期期末试卷《数学建模》院/系——年纪——专业——姓名——学号—— 考试范围:《数学建模》;满分:100 分;考试时间:120 分钟一、选择题(每题3分,共30分)1. 下列哪种方法不属于数学建模的基本方法?( )A. 微分法B. 插值法C. 穷举法D. 线性规划2. 在建模过程中,当数据存在大量缺失或异常时,通常采用哪种方法进行预处理?( )A. 线性插值B. 均值替代C. 直接删除D. 忽略不计3. 线性规划问题中,如果约束条件均为等式,并且目标函数是凸函数,那么该问题( )。
A. 必有唯一最优解B. 可能有多个最优解C. 无解D. 以上均不正确4. 在预测股票价格时,常用的数学建模方法不包括( )。
A. 时间序列分析B. 神经网络C. 回归模型D. 卡普兰-米尔斯模型5. 当模型涉及多个变量并且这些变量之间存在某种关系时,通常使用哪种方法进行分析?( )A. 聚类分析B. 关联规则挖掘C. 回归分析D. 因子分析6. 下列哪项不是数学建模中常用的软件?( )A. MATLABB. ExcelC. SPSSD. Photoshop7. 对于一组非线性数据,如果想通过线性模型进行拟合,通常采用哪种方法?( )A. 最小二乘法B. 多项式拟合C. 对数变换D. 幂函数变换8. 在建模过程中,如何判断模型的优劣?( )A. 只看模型的精度B. 只看模型的复杂度C. 综合考虑模型的精度和复杂度D. 以上都不对9. 在进行敏感性分析时,以下哪个参数的变化对模型结果的影响最大?( )(假设模型为 \(f(x, y, z) = x + 2y + 3z\))A. \(x\)B. \(y\)C. \(z\)D. 无法确定10. 当数据呈现明显的周期性特征时,应采用哪种数学方法进行建模?( )A. 傅里叶分析B. 回归分析C. 聚类分析D. 神经网络二、简答题(每题10分,共30分)1. 简述数学建模的一般步骤。
数学建模期末试卷
《数学建模》期末考查卷一、简答题1. 谈谈你学习数学建模课程的一些感受。
2. Matlab 编写M 文件,计算:∑==+++++64643222...2221i i 。
3. 生成一个55⨯的均匀随机矩阵B ,并将其中大于0.5的赋值为1,小于0.5的赋值-1,再将其记为C 。
4. 什么是中国邮递员问题,简述及其算法。
5. 简述插值与拟合的联系和区别。
二、程序解读题与编程题1.设有线性规划模型的LINGO 程序如下:灵敏度分析输出如下:则 (1)该问题的最优解(自变量和因变量)是多少?(2)为使最优解存在(最优基保持不变),目标函数中的系数1x ,2x ,3x ,4x ,5x 允许的变化范围分别是多少?(3)影子价格有意义时约束条件(四个)中右端系数允许的变化范围分别是多少?(4)若目标函数中的约束条件(四个)代表4种资源,则这4种资源是否有剩余,分别剩余多少?(5)你还能从结果中得到其它哪些信息?2.在研究身高h (单位:cm )和腿长t (单位:cm )的关系时,收集了16个人的观测数据,然后在Matlab 中执行下列命令:h=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; H=[ones(16,1) h];t=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; [b,bint,r,rint,stats]=regress(t,H);已知b=[-16.0730,0.7194],stats=[0.9282,180.9531,0.0000,1.7437]. (1)请写出t 关于h 的回归方程。
并讨论若身高为170cm 时腿长的情况。
(2)请问t 和h 的回归关系是否显著,为什么? (3)stats 中0.9282,1.7437的含义分别是什么?(4)计算身高h 的均值、标准差、极差、偏度、峰度,画出直方图(只写命令)。
数学建模期末测试试题
数学建模期末测试试题
注意:选一道题即可。
A题生产安排
某工厂生产三种标准件A,B,C,它们每件可获利分别为3、1.5、2元,若该厂仅生产
一种标准件,每天可生产A,B,C分别为800,1200,1000个,但A种标准件还需某种特殊
处理,每天最多处理600个。
B种标准件每天至少生产200个。
(1)该厂应该如何安排生产计划,才能使得每天获利最大?试建立一般数学模型;
(2) 针对实例,求出此问题的解。
B题植树问题
某小组有男生6人,女生5人,星期日准备去植树。
根据以往经验,男生每人每天平均挖坑20个,或栽树30株,或给已栽树苗浇水25株;女生每人平均每天挖坑10个,或栽树20株,或给树苗浇水15棵。
(1)试建立一般数学模型,该模型能合理安排、组织人力,使植树树木最多(注:挖坑,栽树,浇水配套,才称为植好一棵树);
(2)针对实例,求出此问题的解。
C题职员时序安排
一项工作一周7天都需要有人(比如护士工作),每天(周一至周日)所需的最少职员
数为20、16、13、16、19、14和12,并要求每个职员一周连续工作5天。
(1)试给出一般数学模型及求解算法;
(2)针对实例,求每周所需最少职员数及安排方法。
D投产选择
某工厂准备在甲、乙、丙三种产品中选择两种投产,它们都需经过A、B、C三道工序加工。
有关数据如下表:
甲、乙、丙三种产品投产时,固定费用分别是2000元、2500元和3000元。
试建立此问题的数学模型,确定投产方案,使获利润最大。
注意:选一道题即可。
数学建模期末考试试题
数学建模期末考试试题# 数学建模期末考试试题## 第一部分:选择题### 题目1在数学建模中,以下哪个选项不是模型的组成部分?A) 假设B) 目标C) 约束条件D) 计算工具### 题目2以下哪个是线性规划问题的一个特征?A) 目标函数和约束条件都是非线性的B) 目标函数和约束条件都是线性的C) 目标函数是线性的,约束条件是非线性的D) 目标函数是非线性的,约束条件是线性的### 题目3在数学建模中,敏感性分析的主要目的是什么?A) 确定模型的最优解B) 评估模型参数变化对结果的影响C) 简化模型结构D) 确定模型的稳定性## 第二部分:简答题简述数学建模中模型的校验过程。
### 题目2解释什么是多目标优化问题,并给出一个实际应用的例子。
### 题目3在进行数学建模时,为什么需要对模型进行敏感性分析?请说明其重要性。
## 第三部分:应用题### 题目1假设你被要求为一家工厂设计一个生产调度模型。
工厂有三种产品A、B和C,每种产品都需要经过三个不同的生产阶段:加工、装配和包装。
每个阶段的机器数量有限,且每种产品在每个阶段所需的时间不同。
请建立一个线性规划模型来最大化工厂的日利润。
### 题目2考虑一个城市交通流量的优化问题。
城市有多个交叉路口,每个交叉路口在不同时间段的交通流量是不同的。
如何建立一个数学模型来预测交通流量,并提出减少交通拥堵的策略?### 题目3一个公司想要评估其产品在市场上的竞争力。
公司有多个产品,每个产品都有不同的成本和利润率。
同时,公司需要考虑市场需求和竞争对手的情况。
请为该公司设计一个多目标优化模型,以确定最优的产品组合和市场策略。
## 第四部分:论文题选择一个你感兴趣的实际问题,建立一个数学模型来解决这个问题。
请详细描述你的建模过程,包括问题的定义、模型的假设、模型的建立、求解方法以及模型的验证。
### 题目2在数学建模中,模型的可解释性是一个重要的考虑因素。
请讨论模型可解释性的重要性,并给出一个例子来说明你的观点。
数学建模期末试卷
数学建模期末试卷第一部分:理论知识运用(800字)在数学建模中,理论知识是基础和核心。
本部分试题旨在考察你对数学建模相关理论的理解和应用能力。
问题一:线性回归模型给定一组数据集,其中包含自变量x和因变量y的取值。
请用线性回归模型拟合数据,得到最优拟合直线,并解释拟合效果和参数含义。
解答一:线性回归模型是一种用于建立自变量和因变量之间关系的数学模型。
它假设自变量和因变量之间存在线性关系,并通过最小二乘法求解出最优拟合直线。
最优拟合直线可以通过参数方程y = β0 +β1x表示,其中β0表示截距,β1表示斜率。
通过最优拟合直线,我们可以预测因变量y的值,并评估拟合效果。
问题二:时间序列模型某公司过去5年的销售额数据如下:2015年:1000万元,2016年:1200万元,2017年:1300万元,2018年:1500万元,2019年:1700万元。
请根据给定数据,建立时间序列模型,并预测2020年的销售额。
解答二:时间序列模型是一种用于分析和预测时间序列数据的数学模型。
通过观察历史数据的变化趋势和周期性,我们可以建立合适的时间序列模型。
对于给定数据,我们可以使用移动平均法或指数平滑法进行预测。
根据过去5年的销售额数据,可以看出销售额呈上升趋势,因此我们可以使用指数平滑法进行预测。
根据指数平滑法的公式,我们可以得到2020年的销售额预测值。
问题三:优化模型某工厂生产两种产品A、B,产品A每件利润为10元,产品B每件利润为20元。
工厂的生产能力有限,每天生产产品A最多100件,产品B最多80件。
产品A和B的生产时间分别为2小时和3小时。
请问工厂每天应该生产多少件产品A和产品B,以使总利润最大化?解答三:该问题可以建立一个线性规划模型来求解。
设产品A的生产量为x,产品B的生产量为y。
由于生产能力有限,我们可以得到以下约束条件:x≤100,y≤80。
另外,由于产品A和产品B的生产时间分别为2小时和3小时,所以我们还有时间的约束条件:2x+3y≤24。
2019年年数学建模作业题.doc
数学模型课程期末大作业题1、课本Page 56 ex82、课本Page 56 ex103、课本Page 57 ex124、课本Page 57 ex135、课本Page 57 ex146、课本Page 82 ex77、课本Page 83 ex88、课本Page 83 ex99、课本Page 83 ex1011、课本Page 180 ex6,ex712、课本Page 181 ex1113、课本Page 181 ex1214、课本Page 181 ex1315、课本Page 181 ex1416、课本Page 181 ex1517、课本Page 182 ex1618、课本Page 182 ex17,ex1819、课本Page 182 ex1920、课本Page 182 ex2021、课本Page 214 ex1122、课本Page 214 ex1223、课本Page 248 ex1324、课本Page 248 ex1425、课本Page 248 ex1526、课本Page 248 ex1627、课本Page 248 ex1728、生产安排问题某厂拥有4台磨床,2台立式钻床,3台卧式钻床,一台镗床和一台刨床,用以生产7种产品,记作p1至p7。
工厂收益规定作产品售价减去原材料费用之余。
每种产品单件的收益及所需各机床的加工工时(以小时计)列于下表(表1):表1各种产品各月份的市场容量如下表(表2):表2每种产品存货最多可到100件。
存费每件每月为0.5元。
现在无存货。
要求到6月底每种产品有存货50件。
工厂每周工作6天,每天2班,每班8小时。
不需要考虑排队等待加工的问题。
在工厂计划问题中,各台机床的停工维修不是规定了月份,而是选择最合适的月份维修。
除了磨床外,每月机床在这6个月中的一个月中必须停工维修;6个月中4台磨床只有2台需要维修。
扩展工厂计划模型,以使可作上述灵活安排维修时间的决策。
停工时间的这种灵活性价值若何?注意,可假设每月仅有24个工作日。
(完整版)数学建模期末考试题
班级:通工13**学号:0313****姓名:***成绩:西安邮电大学理学院2014年12月3日一、解释下列词语,并举例说明(每小题满分5分,共15分)1.模型答:为了一定的目的,人们对原型的一个抽象。
通过抽象和化简,使用数学语言,对实际问题的一个近似描述,以便于人们更深刻的认识所研究的对象。
举例:牛顿定律。
假设:(1)物体为质点,忽略物体的大小和形状。
(2)没有阻力、摩擦力及其他外力。
令x (t )表示在t 时刻物体的位置,则F =ma =m d 2x dt 22.数学模型答:数学模型是架于数学与实际问题之间的桥梁,在数学发展的进程中无时无刻不留下数学模型的印记。
它包括三大特征:1.实践性:有实际背景,有针对性,接受实践的检验。
2.应用性:注意实际问题的要求。
强调模型的实用价值。
3.综合性:数学知识的综合,模型的综合。
举例:管道包扎问题:用带子包扎管道,使带子全部包住管道,且用料最省。
假设:(1)直圆管,粗细一致。
(2)带子无弹性等宽。
(3)带宽小于圆管截面周长。
(4)包扎时不剪断带子且不重叠。
设W 为带宽,C 为截面周长,L 为管长,M 为带长。
则M=+LC W C 2‒W 23.抽象模型答:通过人们对原型的反复认识,将获取的知识以经验的形式直接存储在大脑中的模型称之谓抽象模型。
举例:如汽车司机对方向盘的操作。
二、简答题(每小题满分8分,共24分)1.模型的分类答:(1) 按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、扩展模型等。
(2) 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等。
(3) 按是否考虑随机因素分:确定性模型、随机性模型。
(4) 按是否考虑模型的变化分:静态模型、动态模型。
(5) 按应用的离散方法或连续方法分:离散模型、连续模型。
数学建模期末作业题
数学建模期末作业题1、数学规划有三种物品:A、B和C。
它们的重量、体积和价值如下表所示:A、B和C重量(单位:公斤)体积(单位:l)123213价值(单位:100元)357当有人旅行时,选择10件物品陪伴他。
根据情况,个人物品的总重量不得超过18kg,体积不得超过100L。
在这三件物品中,你能选择多少件来最大限度地提高你物品的价值?2、谣言的传播假设一个城市有n+1个人。
其中一人出于某种目的编造了一个谣言,所以他利用他认识的人来传播谣言。
该市初中及以上文化程度的人口比例为p。
只有1%的人相信这个谣言,而其他人中约有B%会相信。
还假设单位时间内每个人相信谣言的平均人数与当时没有听到谣言的人数成正比,而不相信谣言的人不会传播谣言。
试图建立一个数学模型来反映谣言的传播,并简单分析其规律。
假设1第一个人仍将参与第二次谣言传播。
也就是说,第一个人和相信谣言的人会继续传播谣言。
假设2相信此谣言的人每人在单位时间内传播的平均人数正比于当时尚未听说此谣言的人数这个比恒定不变假设3在传播的同时,它也会传播给那些传播谣言和听到谣言的人设第i个单位时间开始时相信谣言总人数xyz(i)没有听说过MT(I)的人数受传播人数中没听过的人数占总人数比例(共有n+1个人,出去自己就有n个人)t(i)=mt(i)/n;受传播人数如果k为定植scb(i)=k*mt(i)*xyz(i);没有听到谣言的人数(考虑到他们也会传播给那些传播谣言和听到谣言的人)sch_mt(i)=scb(i)*t(i);其中相信的有scb_uumt_uxx(i)=sch_mt(i)*p*a/100+sch_mt(i)*(1-p)*b/100;有些人不相信scb_mt_bxx(i)=sch_mt(i)-scb_xx(i);在时间I+1的单位时间开始时相信谣言的总人数xyz(i+1)=xyz(i)+scb_mt_xx(i);没听过人数mt(i+1)=mt(i)-sch_umt(i);受传播人数中没听过的人数占总人数比例t(i+1)=mt(i+1)/n;如果K为定殖,则SCB(I+1)=K*MT(I+1)*XYZ(I+1);受传播人数中没听过谣言的人数(考虑到传播的时候也会传给传播谣和听过谣言的人)sch_mt(i+1)=scb(i+1)*t(i+1);其中包括scb_mt_xx(i+1)=sch_mt(i+1)*p*a/100+sch_mt(i+1)*(1-p)*b/100;其中不相信的有scb_umt_bxx(i+1)=sch_mt(i+1)-scb_xx(i+1);可以看到各种数构成了一个循环,这样就可以无限迭代下去根据由1单位时刻相信谣言总人数xyz(1)=1没听过人数mt(1)=n然后重复。
数学建模期末作业
数学建模期末作业按数学建模竞赛格式书写一篇论文--抄袭者两份同时记0分。
1、某钻井队要从以下10个可供选择的井位中确定5个钻井探油,使总的钻探费用为最小.若10个井位的代号为1A 、……10A ,相应的钻探费用为1C 、……10C ,并且井位选择要满足下列限制条件:(1)1A 、5A 、6A 只能选其中之一;(2)选2A 或3A 就不能选4A ,反之亦然;(3)在7A 、8A 、9A 、10A 中最多只能选两个。
试建立其数学模型,并给出一组[1C 、……10C ]值,用软件求解,建立你的钻井方案。
2、下面是中国人口增长情况数据:试建立一个数学模型预测2012年中国的人口数。
如果你的模型与实际不符,应怎样修正?《数学建模》(选修)期中测验1、有三台打印机同时工作,一分钟共打印1580行字,如果第一台打印机工作2分钟,第二台打印机工作3分钟,共打印2740行字,如果第一台打印机工作1分钟,第二台打印机工作2分钟,第三台打印机工作3分钟,共可打印3280行字.问:每台打印机每分钟可打印多少行字?(1)建立方程组: (2)MA TLAB 求解程序(3)结果2、432112.008.01.015.0max x x x x f +++=⎪⎪⎩⎪⎪⎨⎧≥=---≥-+≤---0,,,1..432143214324321x x x x x x x x x x x x x x x t s(1)MA TLAB 程序或Lingo 程序或QSB 操作过程(2)结果3、解微分方程:⎩⎨⎧='==+'-''0)0(,1)0(442y y xe y y y x(1)MATLAB 程序:(2)结果:整数规划建模及求解【例1】某钻井队要从以下10个可供选择的井位中确定5个钻井探油,使总的钻探费用为最小.若10个井位的代号为s1,s2, …,s10,相应的钻探费用为c1,c2, …,c10,并且井位选择上要满足下列限制条件:1. 或选择s1和s7,或选择s8;2. 选择了s3 或s4 就不能选择s5,或反过来也一样;3. 在s5,s6,s7,s8中最多只能选两个。
数学建模期末作业
数学建模期末作业一.问题的提出某公共汽车站每隔30分钟到达一辆汽车,但可能有[0,3]分钟误差,此误差大小与前一辆汽车的运行无关。
汽车最多容纳50名旅客,到达该汽车站时车内旅客人数服从[20,50]的均匀分布,到站下车的旅客人数服从[3,7]的均匀分布,每名旅客下车的时间服从[1,7]秒的均匀分布。
旅客按照每30分钟到达12个人的泊松分布到达汽车站,单队排列等车,先到先上,如果某位旅客未能上车,他不再等候。
旅客上车时间服从[4,12]秒的均匀分布。
上下车的规则是:先下后上,逐个上车,逐个下车。
假设每天共发车25辆,现在要求模拟30天汽车的运行情况,了解平均一天中在站内等候汽车的总人数、能上车及不能上车的人数、旅客排队时间分布情况、不能上车人数的分布情况。
二.问题的分析本问题涉及到两种数据:一是汽车运行状况,包括汽车到站、旅客下车、上车及汽车离站;二是旅客活动情况,包括到站、排队、上车及未能上车而离站。
这里我们用下次事件法推进模拟时间,具体做法是:首先确定汽车到站时间,然后再按旅客到站的分布情况计算出上一辆汽车至现在所到的旅客数,根据上下车旅客数确定该汽车离站的时间。
由于上下车时间以秒计算,因此,模拟过程中的时间均以秒为单位。
另外,旅客到站的分布可以转换成为间隔时间以150秒的指数分布。
这里假定汽车到站后,在旅客上下车期间未有旅客到达,于是,要在该汽车离站后才开始统计等待下一辆汽车的旅客数。
三.问题的假设:1)候车队伍有良好的秩序;即要保证乘客先来后到的原则;2)忽略其他情况对公交车的影响,即不计公交车启动,加速,制动时间的情况;3)公交公司只对公交车进行调度,但是在允许的范围内不限制乘客上车,即只要该车乘客数不大于50则允许乘客上车,直到达到50人为止。
4)排队方式为单一队列的等待制,先到先服务。
5)每天的乘客数量都一样,不考虑高峰期等因素。
四.符号说明与概念引进下面是建立模拟模型时所用的符号的说明;t------当前模拟时间;上一辆汽车离开车站的时间;tl-----------------当天到达汽车站候车的乘客总人数;NqN------当天在汽车站下车额乘客的总人数;d------当天候车乘客中能上车的总人数;NuN------当天候车乘客中不能上车的总人数;o-----当天候车乘客队列的最大长度;Qmaxn------到站汽车到达时等候的乘客数;q------到达汽车车内的乘客数;nbn------到站汽车下车的乘客数;u------到站汽车能载走的候车乘客数;nut------到站汽车到达时,候车乘客的排队时间;qQ------当天候车乘客总的排队时间;tN[i]----当天候车时间在i*300 -i*300+300秒的乘客数;C[i]----当天有i个乘客不能上车的次数。
数学建模期末练习题
数学建模期末练习题射线扫描成像在医学领域有着广泛的应用。
对于一台射线扫描成像设备,我们将设扫描区域的平面模型为D,该模型区域内有若干个感兴趣的物体O。
设扫描仪的扫描平面为P,我们需要确定物体O的边界曲线在扫描平面P上的投影。
为了简化问题,我们假设扫描区域的边界曲线可以近似为N条不相交的曲线段的集合。
请你通过使用数学建模的方法,给出一种算法来求解物体O在扫描平面P上的投影。
一、问题描述在一台射线扫描成像设备中,我们需要求解物体O在扫描平面P上的投影。
设物体O的边界曲线为C,P的方程为f(x, y) = 0。
我们需要求解物体O的边界曲线在扫描平面P上的参数方程。
二、问题分析1. 对于物体O的边界曲线C,可以通过采集扫描数据得到。
我们可以将C计算为一系列离散的点集。
2. 我们可以通过计算点集C中的每个点在扫描平面P上的投影点,来确定物体O在扫描平面P上的投影。
三、算法设计1. 输入:物体O的边界曲线C,扫描平面P的方程f(x, y) = 0。
2. 遍历曲线C中的每个点(x, y),计算其在平面P上的投影点(x', y'):- 将点(x, y)代入平面P的方程,解得点(x', y'),即为该点在平面P上的投影点。
3. 输出:物体O在扫描平面P上的投影的参数方程。
四、实现步骤1. 遍历物体O的边界曲线C,对于每个点(x, y),计算其在扫描平面P上的投影点(x', y')。
2. 将计算得到的投影点集合按照顺序连接,得到物体O的投影曲线。
3. 输出物体O的投影曲线的参数方程。
五、实例演示假设物体O的边界曲线C为抛物线 y = x^2,扫描平面P的方程为 y = 0。
1. 对于曲线C上的点(1, 1),其在平面P上的投影点为(1, 0)。
2. 对于曲线C上的点(2, 4),其在平面P上的投影点为(2, 0)。
3. 连接投影点(1, 0)和(2, 0),得到物体O在扫描平面P上的投影曲线为线段(x, 0),x ∈ [1, 2]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
院系:计算机与信息工程学院专业:计算机科学与技术
班级:
学号:
姓名:
课时:
学习数学建模心得
我很高兴选了这门课,虽然老师讲的知识与我当初想的有些出入,但我学到了更有价值更有意义的知识。
第一次听说数学建模是暑假的时候,有一室友参加了暑期数学建模竞赛的培训,当时并不清楚到底是干什么的,觉得应该是很抽象的东西。
后来老师从生活中简单的实际问题入手,比如包饺子、渡河等问题,为我们讲解了数学建模的意义。
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。
数学建模可以培养我们的创新意识和创造能力;训练我们快速获取信息和资料的能力;锻炼我们快速了解和掌握新知识的技能;培养我们团队合作意识和团队合作精神;增强我们的写作技能和排版技术;更重要的是训练我们的逻辑思维和开放性思考方式。
所以我很高兴老师为我们讲数学建模的知识,让我的思维更加开阔,也懂得了“学以致用”的道理。
研究数学问题需要缜密的思维,数学建模中进一步体现了这一点。
数学建模需要有清晰地思路。
建立模型需要几个步骤:
模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。
用数学语言来描述问题。
模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。
(尽量用简单的数学工具)
模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。
模型分析:对所得的结果进行数学上的分析。
模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。
如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。
如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
模型应用:应用方式因问题的性质和建模的目的而异。
用一个数学建模实例来具体说明一下吧:
一、问题重述
在约10,000米高空的某边长160公里的正方形区域内,经常有若干架飞机作水平飞行。
区域内每架飞机的位置和速度向量均由计算机记录其数据,以便进行飞行管理。
当一架欲进入该区域的飞机到达区域边缘时,记录其数据后,要立即计算并判断是否会与区域内的其它飞机发生相撞。
如果发生相撞,则应计算如何调整各架(包括新进入的)飞机的飞行方向角,以避免碰撞。
现假设条件如下:
(1)不相撞的标准为任意两架飞机的距离大于8公里;
(2)飞机飞行方向角调整的幅度不应超过30度;
(3)所有飞机的飞行速度均为每小时800公里;
(4)进入该区域的飞机在到达区域边缘时,与区域内飞机的距离应在60公里
以上;
(5)最多需考虑6架飞机;
(6)不必考虑飞机离开此区域后的情况。
请你对这个避免碰撞的飞行管理问题建立数学模型,列出计算步骤,对以下数据进行计算(方向角误差不超过0.01度),要求飞机飞行方向角调整的幅度尽量小。
设该区域4个顶点的坐标为(0,0),(160,0),(160,160),(0,160)。
记录数据为:
二、问题分析
此问题很容易想到以飞机调整的飞行角度平方和作为目标函数,而以每两架飞机之间的最小距离不超过8km ,各飞机飞行角度调整的值不超过30°为约束条件。
如此得出的是一个非线性模型,在计算上可能会复杂些,但一目了然。
三、符号说明
t 表示表示时间;
,i i x y 分别表示第i 架飞机的横纵坐标(问题中已给出);
i θ表示第i 架飞机的飞行方向角(问题中已给出);
()
ij d t 表示t 时刻第i 架飞机与第j 架飞机间的距离;
v 表示飞机的飞行高度(800v =)。
四、模型的建立
由题意可知,目标函数是
6
21
i
i f θ==
∆∑
约束条件为
2
m in 64ij ij t D d ≥=> 和 ,,1,2,,6,6
i i j i j
π
θ∆≤
=≠
其中
22()((cos()cos()))ij i j i i j j d t x x vt θθθθ=-++∆-+∆
2
((sin()sin()))i j i i j j y y vt θθθθ+-++∆-+∆
利用微积分的知识可求出ij D ,由
2
()0ij d d a t dt
b
=⇒=-
这里
()(cos()cos())
i j i i j j a x x θθθθ=-+∆-+∆
()(sin()sin())i j i i j j y y θθθθ+-+∆-+∆
2
[(cos()cos())i i j j b v θθθθ=+∆-+∆
2
(s i n ()s i n ())]
i i
j j
θθθθ++∆-
+∆ 将t 代入即可求出ij D 。
于是本问题的一个数学模型为
6
2
1
m in ..64,1,,6,6
i
i ij i
f s t D i j i j
θ
πθ=⎧
=∆⎪⎪⎪
>⎨⎪⎪∆≤
=≠⎪⎩
∑
引入记号:
()
16,,T
θθθ∆=∆∆ ,115(,,)T
g g g = ,(g 是由64ij D -按,1,2,,6,i j i j =≠ 构
成的向量,在下面的程序中计算),则模型变为
m in ..0T
f s t
g vlb
vub
θθ
θ
⎧=⎪
<⎨⎪≤≤
⎩
其中()1,1,1,1,1,16
T
vlb π
=-
,()1,1,1,1,1,16
T
vub
π
=。
五、模型的求解
调用Matlab 命令fmincon 求解,先写两个M 函数airfun.m 和airfunco.m 如下:
M 函数 airfun.m
function f=airfun(delta) f=delta*delta';
M 函数 airfunco.m
function [c,ceq]=airfunco(delta)
x0=[150 85 150 145 130 0];y0=[140,85,155,50,150,0]; alpha0=[243 236 220.5 159 230 52]*pi/180;v=800; co=cos(alpha0+delta);si=sin(alpha0+delta); for i=2:6
for j=1:i-1
t(i,j)=(x0(i)-x0(j))*(co(i)-co(j)); t(i,j)=t(i,j)+(y0(i)-y0(j))*(si(i)-si(j));
t(i,j)=-t(i,j)/v;
t(i,j)=t(i,j)/((co(i)-co(j))^2+(si(i)-si(j))^2);
if t(i,j)<0,d(i,j)=1000;
else
d(i,j)=(x0(i)-x0(j)+v*t(i,j)*(co(i)-co(j)))^2;
d(i,j)=d(i,j)+(y0(i)-y0(j)+v*t(i,j)*(si(i)-si(j)))^2;
end
end
end
c=64-[d(2,1),d(3,1:2),d(4,1:3),d(5,1:4),d(6,1:5)];ceq=[];
在Matlab命令窗口计算如下:
>> deltaini=zeros(1,6);
>> vlb=-pi*ones(1,6)/6;vub=pi*ones(1,6)/6;
>> options=optimset('LargeScale','off');
>> [dt,fval]=fmincon(@airfun,deltaini,[],[],[],[],vlb,vub,@airfunco,options); >> d1=dt*180/pi,fval=d1*d1'
d1 =
0.0000 0.0000 2.0683 -0.4896 -0.0055 1.5611
fval =
6.9547
六、模型的检验及推广(略)
数学建模带给我的是现在的指示,发散性思维,各种研究方法和手段.特别是对我们未来人生的奠基作用,毫不夸张地说,我们将在以后的人生享受它的思慧!通过数学建模,我学会了"我们",培养了"三人同心,其利断金"的团队精神,数学建模教会了我顽强和忍耐,教会我做事谨慎,言如其实,教会我凡事要有自己的创新,不能局限于俗套,它还教会我踏踏实实做人,认认真真做事.。