2012年北京西城区中考一模数学(理科)卷及答案

合集下载

2012年北京中考数学试卷及答案解析

2012年北京中考数学试卷及答案解析

2012年北京市高级中等学校招生考试数学试卷(答案)一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.9-的相反数是A.19-B.19C.9-D.92.首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为A.96.01110⨯B.960.1110⨯C.106.01110⨯D.110.601110⨯3.正十边形的每个外角等于A.18︒B.36︒C.45︒D.60︒4.右图是某个几何体的三视图,该几何体是A.长方体B.正方体C.圆柱D.三棱柱5.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是A.16B.13C.12D.236.如图,直线AB,CD交于点O,射线OM平分AOC∠,若76BOD∠=︒,则B O M∠等于A.38︒B.104︒C.142︒D.144︒7.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:A.180,160 B.160,180 C.160,160 D.180,1808. 小翔在如图1所示的场地上匀速跑步,他从点A 出发,沿箭头所示方向经过点B 跑到点C ,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t (单位:秒),他与教练的距离为y (单位:米),表示y 与t 的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的 A .点MB .点NC .点PD .点Q二、填空题(本题共16分,每小题4分) 9. 分解因式:269mn mn m ++= .10.若关于x 的方程220x x m --=有两个相等的实数根,则m 的值是 . 11.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边40cm DE =,20cm EF =,测得边DF 离地面的高度1.5m AC =,8m CD =,则树高AB = m .12.在平面直角坐标系xOy 中,我们把横 、纵坐标都是整数的点叫做整点.已知点()04A ,,点B 是x 轴正半轴上的整点,记AOB △内部(不包括边界)的整点个数为m .当3m =时,点B 的横坐标的所有可能值是 ;当点B 的横坐标为4n (n 为正整数)时,m = (用含n 的代数式表示.)三、解答题(本题共30分,每小题5分)13.计算:()11π32sin 458-⎛⎫-+︒- ⎪⎝⎭.14.解不等式组:4342 1.x x x x ->⎧⎨+<-⎩,15.已知023a b =≠,求代数式()225224a ba b a b -⋅--的值.16.已知:如图,点E A C ,,在同一条直线上,AB CD ∥,AB CE AC CD ==,.求证:BC ED =.17.如图,在平面直角坐标系xOy 中,函数()40y xx=>的图象与一次函数y kx k =-的图象的交点为()2A m ,.(1)求一次函数的解析式;(2)设一次函数y kx k =-的图象与y 轴交于点B ,若P 是x 轴上一点,且满足PAB △的面积是4,直接写出点P 的坐标.18.列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.四、解答题(本题共20分,每小题5分)19.如图,在四边形ABCD 中,对角线AC BD ,交于点E ,904530BAC CED DCE DE ∠=︒∠=︒∠=︒=,,,BE =CD 的长和四边形ABCD 的面积.20.已知:如图,AB 是O ⊙的直径,C 是O ⊙上一点,OD BC ⊥于点D ,过点C 作O ⊙的切线,交OD 的延长线于点E ,连结BE . (1)求证:BE 与O ⊙相切;(2)连结AD 并延长交BE 于点F ,若9OB =,2s i n 3ABC ∠=,求BF 的长.21.近年来,北京市大力发展轨道交通,轨道运营里程大幅增加,2011年北京市又调整修订了2010至2020年轨道交通线网的发展规划.以下是根据北京市轨道交通指挥中心发布的有关数据制作的统计图表的一部分.请根据以上信息解答下列问题:(1)补全条形统计图并在图中标明相应数据;(2)按照2011年规划方案,预计2020年北京市轨道交通运营里程将达到多少千米?(3)要按时完成截至2015年的轨道交通规划任务,从2011到2015这4年中,平均每年需新增运营里程多少千米?22.操作与探究:(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P 的对应点P '.点A B ,在数轴上,对线段AB 上的每个点进行上述操作后得到线段A B '',其中点A B ,的对应点分别为A B '',.如图1,若点A 表示的数是3-,则点A '表示的数是 ;若点B '表示的数是2,则点B 表示的数是 ;已知线段AB 上的点E 经过上述操作后得到的对应点E '与点E 重合,则点E 表示的数是 ;北京市轨道交通已开通线路相关数据统计表(截至2010年底)(2)如图2,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每 个点的横、纵坐标都乘以同一种实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(00m n >>,),得到正方形A B C D ''''及其内部的点,其中点A B ,的对应点分别为A B '',。

2012年北京市各区一模试题分类解析(数学理)(5)三角函数

2012年北京市各区一模试题分类解析(数学理)(5)三角函数

五、三角函数11.(2012年海淀一模理11)若1tan 2α=,则cos(2)απ2+= . 答案:45-。

5.(2012年西城一模理5)已知函数44()sin cos f x x x ωω=-的最小正周期是π,那么正数ω=( B )A .2B .1C .12 D .147.(2012年丰台一模理7)已知a b <,函数()=sin f x x ,()=cos g x x .命题p :()()0f a f b ⋅<,命题q :函数()g x 在区间(,)a b 内有最值.则命题p 是命题q 成立的( A )条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要 4.(2012年门头沟一模理4)在ABC ∆中,已知4A π∠=,3B π∠=,1AB =,则BC 为( A )11C.311.(2012年东城11校联考理11)在ABC ∆中,角,,A B C 所对的边分别为c b a ,,,若sin A C =, 30=B ,2=b ,则边c = .答案:2。

11.(2012年房山一模11)已知函数()()ϕω+=x x f sin (ω>0, πϕ<<0)的图象如图所示,则ω=_ _,ϕ=_ _. 答案:58,910π。

6.(2012年密云一模理6) 已知函数sin(),(0,||)2y x πωϕωϕ=+><的简图如下图, 则ωϕ的值为( B ) A. 6π B. 6π C. 3π D. 3π15.(2012年海淀一模理15)在ABC ∆中,角A ,B ,C 的对边分别为,,a b c ,且A ,B ,C 成等差数列.(Ⅰ)若b =,3a =,求c 的值;(Ⅱ)设sin sin t A C =,求t 的最大值.解:(Ⅰ)因为,,A B C 成等差数列, 所以2B A C =+. 因为A B C ++=π, 所以3B π=.因为b =3a =,2222cos b a c ac B =+-,所以2340c c --=.所以4c =或1c =-(舍去).(Ⅱ)因为23A C +=π, 所以2sin sin()3t A A π=-1sin sin )2A A A =+11cos22()22A A -=+ 11sin(2)426A π=+-. … 因为203A π<<,所以72666A πππ-<-<.所以当262A ππ-=,即3A π=时,t 有最大值34.15.(2012年西城一模理15)在△ABC 中,已知sin()sin sin()A B B A B +=+-.(Ⅰ)求角A ;(Ⅱ)若||7BC =,20=⋅,求||AB AC +.解:(Ⅰ)原式可化为 B A B A B A B sin cos 2)sin()sin(sin =--+=.因为(0,π)B ∈, 所以 0sin >B , 所以 21cos =A . 因为(0,π)A ∈, 所以 π3A =.(Ⅱ)由余弦定理,得 222||||||2||||cos BC AB AC AB AC A =+-⋅.因为 ||7BC =,||||cos 20AB AC AB AC A ⋅=⋅=, 所以 22||||89AB AC +=.因为 222||||||2129AB AC AB AC AB AC +=++⋅=, 所以 ||129AB AC +=15.(2012年东城一模理15)已知函数22()(sin2cos2)2sin 2f x x x x =+-.(Ⅰ)求()f x 的最小正周期;(Ⅱ)若函数()y g x =的图象是由()y f x =的图象向右平移8π个单位长度,再向上平移1个单位长度得到的,当x ∈[0,4π]时,求()y g x =的最大值和最小值. 解:(Ⅰ)因为22()(sin 2cos2)2sin 2f x x x x =+-sin 4cos 4x x =+)4x π=+ ,所以函数()f x 的最小正周期为2π.(Ⅱ)依题意,()y g x ==[4()8x π-4π+]1+)14x π=-+.因为04x π≤≤,所以34444x πππ-≤-≤.当442x ππ-=,即316x π=时,()g x 1; 当444x ππ-=-,即0x =时, ()g x 取最小值0.15. (2012年丰台一模理15)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin cos cos a B b C c B -=.(Ⅰ)判断△ABC 的形状;(Ⅱ)若121()cos 2cos 232f x x x =-+,求()f A 的取值范围.解:(Ⅰ)(法1)因为 sin cos cos a B b C c B -=,由正弦定理可得 sin sin sin cos sin cos A B B C C B -=. 即sin sin sin cos cos sin A B C B C B =+, ……2分所以 sin()sin sin C B A B +=. …4分 因为在△ABC 中,A B C ++=π,所以 sin sin sin A A B = 又sin 0A ≠, ……5分 所以 sin 1B =,2B π=. 所以 △ABC 为2B π=的直角三角形.……6分 (法2)因为 sin cos cos a B b C c B -=,由余弦定理可得 222222sin 22a b c a c b a B b c ab ac+-+-=⋅+⋅, …4分即sin a B a =.因为0a ≠, 所以sin 1B =. ……5分 所以在△ABC 中,2B π=. 所以 △ABC 为2B π=的直角三角形. ……6分 (Ⅱ)因为121()cos 2cos 232f x x x =-+22cos cos 3x x =- …8分=211(cos )39x --. ………10分所以 211()(cos )39f A A =--.因为△ABC 是2B π=的直角三角形,所以 02A π<<,且0cos 1A <<, …11分所以 当1cos 3A =时,()f A 有最小值是19-. …12分所以()f A 的取值范围是11[,)93-. …13分15.(2012年朝阳一模理15)已知函数π()cos()4f x x =-.(Ⅰ)若()10f α=,求si n 2α的值;(II )设()()2g x f x f x π⎛⎫=⋅+ ⎪⎝⎭,求函数()g x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上的最大值和最小值.解:(Ⅰ)因为π()cos()410f αα=-=,所以sin )210αα+=, 所以 7cos sin 5αα+=. 平方得,22sin 2sin cos cos αααα++=4925, 所以 24sin 225α=. ……6分 (II )因为()π()2g x f x f x ⎛⎫=⋅+⎪⎝⎭=ππcos()cos()44x x -⋅+=(cos sin )sin )22x x x x +⋅- =221(cos sin )2x x - =1cos 22x . …10分 当ππ,63x ⎡⎤∈-⎢⎥⎣⎦时,π2π2,33x ⎡⎤∈-⎢⎥⎣⎦. 所以,当0x =时,()g x 的最大值为12; 当π3x =时,()g x 的最小值为14-. ……13分15.(2012年东城11校联考理15)已知函数x x x x f ωωωcos sin 3cos )(2⋅-= )0(>ω的最小正周期是π,(1)求函数)(x f 的单调递增区间和对称中心;(2)若A 为锐角ABC ∆的内角,求)(A f 的取值范围.解:(1)x x x f ωω2sin 2322cos 1)(-+=21)32cos(++=πωx πωπ==22T 1=ω 21)32cos()(++=πx x fππππππππk x k Zk k x k +-≤≤+-∈≤+≤+-632,2322函数)(x f 的单调增区间为⎥⎦⎤⎢⎣⎡+-+-ππππk k 6,32,Z k ∈Z k k k x k x ∈+∴+=+=+),21,212(212,232πππππππ对称中心为令 ………7分(2)所以)(A f 的取值范围为 )1,21⎢⎣⎡- ………13分15.(2012年石景山一模理15)在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,且C b B c a cos cos )2(=-.(Ⅰ)求角B 的大小;(Ⅱ)若cos 22A a ==,求AB C ∆的面积.解:(Ⅰ)因为C b B c a cos cos )2(=-,由正弦定理,得C B B C A cos sin cos )sin sin 2(=-. …2分∴ A C B C B B C B A sin )sin(cos sin cos sin cos sin 2=+=+=.…4分 ∵ 0A π<<, ∴0sin ≠A ,121)32cos(2121)32cos(13432320<++≤-<+≤-<+<<<ππππππA A A A∴ 21cos =B . 又∵ π<<B 0 , ∴ 3π=B . ……6分(Ⅱ)由正弦定理BbA a sin sin =,得b = …8分由 cos A =可得4A π=,由3π=B ,可得sin C =, …11分∴113sin 22242s ab C +==⨯=. ……13分15.(2012年房山一模15)已知ABC ∆的三个内角A ,B ,C 所对的边分别是a ,b ,c ,tan tan tan A B A B +,,2=a c (Ⅰ)求tan()A B +的值; (Ⅱ)求ABC ∆的面积.解:(I )解tan tan tan A B A B +tan tan )A B =-tan tantan()1tan tan A BA B A B+∴+=-=………5分(II )由(I )知 60A B +=︒,120C ∴=︒ ……7分C ab b a c cos 2222-+=∴⎪⎭⎫⎝⎛-⨯⨯-+=21224192b b ∴3=b ……10分 ∴233221sin 21⨯⨯⨯==∆C ab S ABC 233=…13分15.(2012年密云一模理15) 已知函数()22sin sin()2f x x x x π=+⋅+.(I)求()f x 的最小正周期 ,最大值以及取得最大值时x 的集合.(II) 若A 是锐角三角形ABC ∆的内角,()05,7,f A b a ===,求ABC ∆的面积.解:(I):()22sin .sin(22sin .cos 2f x x x x x x x π=+++)32sin 2=2sin(2x x x π++ ……4分().f x π∴的最小正周期是 ……5分=+2,.322k k Z x πππ∈+令:+,.12x k k Z ππ=∈解得+,}.12()2,x k k Z f x x ππ∴=∈的最大值是取得最大值时的集合是{x| ……7分(II)()sin(2)032f A A πππ=+=∴,0<A<A=3……9分ABC ∆在中,2222.cos a b c bc A =+-,25240c c --=,解得83c c ==-或(舍) ……11分1.sin 2ABC S bc A ∆∴==……13分15.(2012年门头沟一模理15)已知:函数2()sincos222xxxf x ωωω=+(0)ω>的周期为π.(Ⅰ)求ω的值;(Ⅱ)求函数()f x 的单调递增区间.解:(Ⅰ)1()cos )sin 2f x x x ωω=-+ …………4分()sin()3f x x πω=-……… 6分 因为函数的周期为π所以2ω= ………7分(Ⅱ)由(Ⅰ)知 ()s i n (2)32f x x π=-+ ………8分当 222()232k x k k Z πππππ-≤-≤+∈ 时函数单增……………10分5()1212k x k k Z ππππ-≤≤+∈ …………12分所以函数()f x 的单增区间为5[,]1212k k ππππ-+,其中k Z ∈ ……13分。

2012西城初三数学一模试题和答案

2012西城初三数学一模试题和答案

北京市西城区2012年初三一模试卷 数 学 2012. 5考生须知 1.本试卷共5页,共五道大题,25道小题,满分120分。

考试时间120分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.6-的相反数是A .6B .6-C .16- D .162.国家体育场“鸟巢”建筑面积达258 000平方米,258 000用科学记数法表示应为 A .2.58×103B .25.8×104C .2.58×105D .258×1033.正五边形各内角的度数为A .72° B.108° C .120° D.144° 4.抛掷两枚质地均匀的硬币,两枚硬币落地后,正面都朝上的概率是A .21B .31C .41D .515.如图,过O ⊙上一点C 作O ⊙的切线,交O ⊙直径AB 的 延长线于点D . 若∠D =40°,则∠A 的度数为 A .20° B .25° C .30° D .40°6.某班体育委员统计了全班45名同学一周的 体育锻炼时间(单位:小时),并绘制了如图 所示的折线统计图,下列说法中错误..的是 A .众数是9 B .中位数是9 C .平均数是9D .锻炼时间不低于9小时的有14人7.由n 个相同的小正方体堆成的几何体,其主视图、俯视图如下所示,则n 的最大值是A .16B .18C .19D .208.对于实数c 、d ,我们可用min{ c ,d }表示c 、d 两数中较小的数,如min{3,1-}=1-.若关于x 的函数y = min{22x ,2()a x t -}的图象关于直线3x =对称,则a 、t 的值可能是A .3,6B .2,6-C .2,6D .2-,6二、填空题(本题共16分,每小题4分)9.函数2+=x y 中,自变量x 的取值范围是 .10.分解因式:2212123b ab a +-= .11.如图,正方形ABCD 的面积为3,点E 是DC 边上一点,DE =1,将线段AE 绕点A 旋转,使点E 落在直线BC 上,落点记为F , 则FC 的长为 .12.如图,直角三角形纸片ABC 中,∠ACB =90°,AC=8,BC =6.折叠该纸片使点B 与点C 重合,折痕与AB 、BC 的交点分别 为D 、E . (1) DE 的长为 ;(2) 将折叠后的图形沿直线AE 剪开,原纸片被剪成三块,其中最小一块的面积等于 .三、解答题(本题共30分,每小题5分) 13.计算:12)21(30tan 3201+-+︒--.14.解不等式组 并求它的所有的非负整数解.15.如图,在△ABC 中,AB=CB ,∠ABC=90º,D 为AB 延长线 上一点,点E 在BC 边上,且BE=BD ,连结AE 、DE 、DC . (1) 求证:△ABE ≌△CBD ;(2) 若∠CAE=30º,求∠BCD 的度数.⎪⎩⎪⎨⎧-+<-21 15)1(3x x x ,≥2x -4,16.已知20a b +=,其中a 不为0,求22222b a ab a bab a --÷+的值.17. 平面直角坐标系xOy 中,反比例函数的图象经过点),2(m A ,过点A 作 AB ⊥x 轴于点B ,△AOB 的面积为1.(1) 求m 和k 的值;(2) 若过点A 的直线与y 轴交于点C ,且∠ACO =45°,直接写出点C 的坐标.18. 列方程(组)解应用题:为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场. 现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.)0(>=k xky四、解答题(本题共20分,每小题5分)19. 为了让更多的失学儿童重返校园,某社区组织“献爱心手拉手”捐款活动. 对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整). 已知A 、B 两组捐款户数的比为1 : 5.请结合以上信息解答下列问题.(1) a= ,本次调查样本的容量是 ; (2) 先求出C 组的户数,再补全“捐款户数分组统计图1”;(3) 若该社区有500户住户,请根据以上信息估计,全社区捐款不少于300元的户数是多少?20.如图,梯形ABCD 中,AD ∥BC ,90A ∠=︒,BC=2,15ABD ∠=︒,60C ∠=︒.(1) 求∠BDC 的度数; (2) 求AB 的长.21.如图,AC 为⊙O 的直径,AC=4,B 、D 分别在AC两侧的圆上,∠BAD=60°,BD 与AC 的交点为E .(1) 求点O 到BD 的距离及∠OBD 的度数;[来源:学科网ZXXK] (2) 若DE=2BE ,求cos OED ∠的值和CD 的长.捐款户数分组统计表 组别 捐款额(x )元 户数 A 1≤x <100 a B 100≤x <200 10 C 200≤x <300 D 300≤x <400 Ex ≥400捐款户数分组统计图1捐款户数分组统计图222. 阅读下列材料:问题:如图1,在正方形ABCD 内有一点P ,PA =5,PB =2,PC =1,求∠BPC 的度数.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC 绕点B 逆时针旋转90°,得到了△BP ′A (如图2),然后连结PP ′.请你参考小明同学的思路,解决下列问题: (1) 图2中∠BPC 的度数为 ;(2) 如图3,若在正六边形ABCDEF 内有一点P ,且PA =132,PB =4,PC =2,则∠BPC 的度数为 ,正六边形ABCDEF 的边长为 .图1 图2 图3五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 已知关于x 的一元二次方程210x px q +++=的一个实数根为 2. (1) 用含p 的代数式表示q ;(2) 求证:抛物线2y x px q =++与x 轴有两个交点;(3) 设抛物线21y x px q =++的顶点为M ,与 y 轴的交点为E ,抛物线221y x px q =+++ 顶点为N ,与y 轴的交点为F ,若四边形FEMN 的面积等于2,求p 的值.24.已知:在如图1所示的锐角三角形ABC 中,CH ⊥AB 于点H ,点B 关于直线CH 的对称点为D ,AC 边上一点E 满足∠EDA =∠A ,直线DE 交直线CH 于点F . (1) 求证:BF ∥AC ;(2) 若AC 边的中点为M ,求证:2DF EM =;(3) 当AB =BC 时(如图2),在未添加辅助线和其它字母的条件下,找出图2中所有与BE 相等的线段,并证明你的结论.图1 图225.平面直角坐标系xOy 中,抛物线244y ax ax a c =-++与x 轴交于点A 、点B ,与y 轴的正半轴交于点C ,点 A 的坐标为(1, 0),OB =OC ,抛物线的顶点为D . (1) 求此抛物线的解析式;(2) 若此抛物线的对称轴上的点P 满足∠APB =∠ACB ,求点P 的坐标;(3) Q 为线段BD 上一点,点A 关于∠AQB 的平分线的对称点为A ',若2=-QB QA ,求点Q 的坐标和此时△QAA '的面积.北京市西城区2012年初三一模试卷 数学答案及评分标准 2012. 5一、选择题(本题共32分,每小题4分) 题号 1 2 3 4 5 6 7 8 答案 AC BC BDB C二、填空题(本题共16分,每小题4分)910 1112x ≥-2()223b a -13 13+-或(各2分)4,4(各2分)三、解答题(本题共30分,每小题5分)13.解:原式=32133321++⨯- …………………………………………………………4分 =323+.…………………………………………………………………… 5分14.解:由①得2->x .……………………………………………………………………1分由②得x ≤37. ……………………………………………………………………3分∴ 原不等式组的解集是-2< x ≤37.………………………………………………4分∴ 它的非负整数解为0,1,2.………………………………………………… 5分 15.(1)证明:如图1.∵ ∠ABC=90º,D 为AB 延长线上一点,∴ ∠ABE=∠CBD=90º . …………………………………………………1分 在△ABE 和△CBD 中,⎪⎩⎪⎨⎧=∠=∠=,,,BD BE CBD ABE CB AB∴ △ABE ≌△CBD. …………………… 2分(2)解:∵ AB=CB ,∠ABC=90º,∴ ∠CAB =45°. …….…………………… 3分 又∵ ∠CAE=30º,∴ ∠BAE =15°. ……………………………………………………………4分∵ △ABE ≌△CBD ,∴ ∠BCD =∠BAE =15°. ……………………………………………………5分16. 解:原式=()()()()2a ab a b a b b a a b ++-⋅- =()22b b a +. ..….….….….….……………………3分①② 图1⎪⎩⎪⎨⎧-+<-2115)1(3x x x ,≥2x -4,∵ 2a +b =0,∴ a b 2-=. ……………………………………………………………………… 4分∴ 原式=22224)2()(a a a a =--. ∵ a 不为0, ∴ 原式=41. (5)分17. 解:(1)∵ 反比例函数 的图象经过点),2(m A ,[来源:] ∴ 2m k =,且m >0.∵ AB ⊥x 轴于点B ,△AOB 的面积为1,∴ 1212m ⋅⋅=.解得 1=m . ........................................................................ 1分 ∴ 点A 的坐标为)1,2(. (2)分∴ 22k m ==. ..................................................................... 3分 (2)点C 的坐标为(0,3)或(0,-1). (5)分18.解:设甲工厂每天能加工x 件新产品,则乙工厂每天能加工1.5x 件新产品.依题意得 105.112001200+=x x . ……………………………………………………2分解得40=x . …………………………………………………………………… 3分 经检验,40=x 是原方程的解,并且符合题意. …………………………… 4分[来源:学科网ZXXK]∴ 605.1=x .答: 甲工厂每天能加工40件新产品, 乙工厂每天能加工60件新产品. ……………5分四、解答题(本题共20分,每小题5分)19.解:(1)2,50;…………………………………2分 (2)5040%20⨯=,C 组的户数为20. … 3分补图见图2. …………………………4分 (3)∵ 500(28%8%)180⨯+=,∴ 根据以上信息估计,全社区捐款不少 于300元的户数是180.[来源:学科网] ……………………………… 5分20.解:(1)∵ 梯形ABCD 中,AD ∥BC ,90A ∠=︒,60C ∠=︒,∴ 90ABC ∠=︒,180120ADC C ∠=︒-∠=︒. 在Rt △ABD 中,∵90A ∠=︒,15ABD ∠=︒,)0(>=k xky 图2捐款户数分组统计图1∴ 75ADB ∠=︒.∴ 45BDC ADC ADB ∠=∠-∠=︒.…… 2分 (2)作BE CD ⊥于点E ,DF BC ⊥于点F .(如图3)在Rt △BCE 中,∵ BC=2,60C ∠=︒,∴ sin 3BE BC C =⋅=,cos 1CE BC C =⋅=. ∵ 45BDC ∠=︒, ∴ 3DE BE ==.∴ 31CD DE CE =+=+. …………………………………………… 3分 ∵ BC DF CD BE ⋅=⋅, ∴ (31)33322CD BE DF BC ⋅+⋅+===. …………………………… 4分 ∵ AD ∥BC ,90A ∠=︒,DF BC ⊥,∴ 332AB DF +==. …………………………………………………… 5分 21.解:(1)作OF BD ⊥于点F ,连结OD .(如图4) ∵ ∠BAD=60°,∴ ∠BOD=2∠BAD =120°.……………1分 又∵OB =OD ,∴ 30OBD ∠=︒.……………………… 2分∵ AC 为⊙O 的直径,AC=4, ∴ OB= OD= 2.在Rt △BOF 中,∵∠OFB =90°, OB=2,︒=∠30OBF , ∴ 130sin 2sin =︒=∠⋅=OBF OB OF ,即点O 到BD 的距离等于1. ………………………………………… 3分(2)∵ OB= OD ,OF BD ⊥于点F ,∴ BF=DF .由DE=2BE ,设BE=2x ,则DE=4x ,BD=6x ,EF=x ,BF=3x . ∵ cos303BF OB =⋅︒=,∴ 33x =, EF=33. 在Rt △OEF 中,90OFE ∠=︒, ∵ tan 3OFOED EF∠==, ∴ 60OED ∠=︒,1cos 2OED ∠=. …………………………………… 4分 ∴ 30BOE OED OBD ∠=∠-∠=︒. ∴ 90DOC DOB BOE ∠=∠-∠=︒. ∴ 45C ∠=︒.∴ 222CD OC ==. ………………………………………………… 5分 22.解:(1)135°;………………………………………………………………………… 2分图3FEA DBC图4FE DAOCB(2)120°;………………………………………………………………………… 3分27 . ……………………………………………………………………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)∵ 关于x 的一元二次方程2 10x px q +++=的一个实数根为 2,∴ 22 210p q +++=.…………………………………………………… 1分 整理,得 25q p =--. …………………………………………………… 2分 (2)∵ 222244(25)820(4)4p q p p p p p ∆=-=++=++=++, 无论p 取任何实数,都有2(4)p +≥0,∴ 无论p 取任何实数,都有 2(4)40p ++>.∴ 0∆>. ………………………………………………………………… 3分∴ 抛物线2y x px q =++与x 轴有两个交点.………………………… 4分(3)∵ 抛物线21y x px q =++与抛物线221y x px q =+++的对称轴相同,都为直线2px =-,且开口大小相同, 抛物线221y x px q =+++可由抛物线21y x px q =++沿y 轴方向向上平移一个单位得到,(如图5所示,省略了x 轴、y 轴) ∴ EF ∥MN ,EF =MN =1.∴ 四边形FEMN 是平行四边形. ………………5分由题意得 22FEMN pS EF =⨯-=四边形.解得4p =±.………………………………………7分24.证明:(1)如图6.∵ 点B 关于直线CH 的对称点为D ,CH ⊥AB 于点H ,直线DE 交直线CH 于点F , ∴ BF=DF ,DH=BH .…………………1分 ∴ ∠1=∠2.又∵ ∠EDA =∠A ,∠EDA =∠1, ∴ ∠A =∠2.∴ BF ∥AC .……………………………………………………………… 2分 (2)取FD 的中点N ,连结HM 、HN . ∵ H 是BD 的中点,N 是FD 的中点,∴ HN ∥BF . 由(1)得BF ∥AC , ∴ HN ∥AC ,即HN ∥EM . ∵ 在Rt △ACH 中,∠AHC =90°,AC 边的中点为M ,图6图5y 2y 1FE N M∴ 12HM AC AM ==.∴ ∠A =∠3. ∴ ∠EDA =∠3. ∴ NE ∥HM .∴ 四边形ENHM 是平行四边形.……………………………………… 3分 ∴ HN=EM .∵ 在Rt △DFH 中,∠DHF =90°,DF 的中点为N , ∴ 12HN DF =,即2DF HN =.∴ 2DF EM =. ………………………………………………………… 4分 (3)当AB =BC 时,在未添加辅助线和其它字母的条件下,原题图2中所有与BE相等的线段是EF 和CE . (只猜想结论不给分) 证明:连结CD .(如图8)∵ 点B 关于直线CH 的对称点为D ,CH ⊥AB 于点H ,∴ BC=CD ,∠ABC =∠5. ∵ AB =BC ,∴ 1802ABC A ∠=︒-∠,AB =CD .①∵ ∠EDA =∠A ,∴ 61802A ∠=︒-∠,AE =DE .② ∴ ∠ABC =∠6=∠5. ∵ ∠BDE 是△ADE 的外角, ∴ 6BDE A ∠=∠+∠. ∵ 45BDE ∠=∠+∠, ∴ ∠A =∠4.③由①,②,③得 △ABE ≌△DCE .………………………………………5分 ∴ BE = CE . ……………………………………………………………… 6分由(1)中BF=DF 得 ∠CFE=∠BFC .由(1)中所得BF ∥AC 可得 ∠BFC=∠ECF . ∴ ∠CFE=∠ECF . ∴ EF=CE .∴ BE=EF . ……………………………………………………………… 7分 ∴ BE =EF =CE .(阅卷说明:在第3问中,若仅证出BE =EF 或BE =CE 只得2分)图825.解:(1)∵ 2244(2)y ax ax a c a x c =-++=-+,∴ 抛物线的对称轴为直线2x =.∵ 抛物线244y ax ax a c =-++与x 轴交于点A 、点B ,点A 的坐标为(1,0),∴ 点B 的坐标为(3,0),OB =3.…………… 1分 可得该抛物线的解析式为(1)(3)y a x x =--. ∵ OB =OC ,抛物线与y 轴的正半轴交于点C , ∴ OC =3,点C 的坐标为(0,3).将点C 的坐标代入该解析式,解得a =1.……2分∴ 此抛物线的解析式为243y x x =-+.(如图9)…………………… 3分(2)作△ABC 的外接圆☉E ,设抛物线的对称轴与x 轴的交点为点F ,设☉E 与抛物线的对称轴位于x 轴上方的部分的交点为点1P ,点1P 关于x 轴的对称点为点2P ,点1P 、点2P 均为所求点.(如图10)可知圆心E 必在AB 边的垂直平分线即抛物线的对称轴直线2x =上.∵ 1APB ∠、ACB ∠都是弧AB 所对的圆周角, ∴ ACB B AP ∠=∠1,且射线FE 上的其它点P 都不满足ACB APB ∠=∠. 由(1)可知 ∠OBC=45°,AB=2,OF=2.可得圆心E 也在BC 边的垂直平分线即直线y x =上.∴ 点E 的坐标为(2,2)E .………………………………………………… 4分∴ 由勾股定理得 5EA =. ∴ 15EP EA ==.∴ 点1P 的坐标为1(2,25)P +.…………………………………………… 5分 由对称性得点2P 的坐标为2(2,25)P --. ……………………………… 6分 ∴符合题意的点P 的坐标为1(2,25)P +、2(2,25)P --. (3)∵ 点B 、D 的坐标分别为(3,0)B 、(2,1)D -,可得直线BD 的解析式为3y x =-,直线BD 与x 轴所夹的锐角为45°.[来源:学科网]∵ 点A 关于∠AQB 的平分线的对称点为A ',(如图11) 若设AA '与∠AQB 的平分线的交点为M ,则有 QA QA '=,AM A M '=,AA QM '⊥,Q ,B ,A '三点在一条直线上. ∵ 2QA QB -=,∴ .2''=-=-=QB QA QB QA BA 作A N '⊥x 轴于点N .∵ 点Q 在线段BD 上, Q ,B ,A '三点在一条直线上, ∴ sin 451A N BA ''=⋅︒=,cos 451BN BA '=⋅︒=. ∴ 点A '的坐标为(4,1)A '. ∵ 点Q 在线段BD 上,图9xyO 1DCBA∴ 设点Q 的坐标为(,3)Q x x -,其中23x <<. ∵ QA QA '=,∴ 由勾股定理得 2222(1)(3)(4)(31)x x x x -+-=-+--.解得114x =. 经检验,114x =在23x <<的范围内.∴ 点Q 的坐标为111(,)44Q -. …………………………………………… 7分此时1115()2(1)2244QAA A AB QAB A Q S S S AB y y '''∆∆∆=+=⋅⋅+=⨯⨯+=.… 8分图10xy O 1FP 2EP 1DCBA图11xyO QMA'DB AN。

2012年北京初三数学一模试卷中压轴题(六城区)

2012年北京初三数学一模试卷中压轴题(六城区)

北京市海淀区区2012年初三一模试卷 数 学 2012. 5一、选择题8.下列图形中,能通过折叠围成一个三棱柱的是( )A.B. C. D.二、填空题12.在平面直角坐标系xOy 中,正方形111A B C O 、2221A B C B 、3332A B C B ,…,按图中所示的方式放置。

点1A 、2A 、3A ,…和1B 、2B 、3B ,…分别在直线y kx b =+和x 轴上。

已知1(1C ,1)-,27(2C ,3)2-,则点3A 的坐标是________;点n A 的坐标是___________________. . 22.小明遇到这样一个问题:如图1,ABO 和CDO BOC 的面积为1,试求以AD ,BC ,OC OD +的长度为三边长的三角形的面积.图1 图2小明是这样思考的,要解决这上问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可。

他利用图形变换解决了这个问题,其解题思路是延长CO 到E ,使OE CO =,连接BE ,可证OBE OAD≌,从而得到BCE即是以AD ,BC ,OC OD +的长度为三边长的三角形(如图2).请你回答:图中BCE 的面积等于_______.请你尝试用平移,旋转,翻折的方法,解决下列问题:如图3,已知ABC,分别以AB ,AC ,BC 为边向外作正方形ABDE 、AGFC 、BCHI ,连接EG ,FH ,ID .(1)在图3中利用图形变换画出并指明以EG 、FH 、ID 的长度为三边长的一个三角形(保留画图痕迹); (2)若ABC 的面积为1,则以EG ,FH ,ID 的长度为三边长的三角形面积等于_______.EOODBA DCBA HGFEDIC BA3图五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的方程2(31)30m mx x +++=.(1)求证:不论m 为任何实数,此方程总有实数根;(2)若抛物线2(31)3y m x mx +++=与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式; (3)若点1(P x ,1)y 与点1(Q x n +,2)y 在(2)中抛物线上(点P 、Q 不重合),若12y y =,求代数式22114516812n x n x n ++++的值.24.在ABCD中,A DBC ∠=∠,过点D 作DE DF =,且EDF ABD =∠,连接EF ,EC ,N 、P 分别为EC ,BC 的中点,连接NP .(1)如图1,若点E 在DP 上,EF 与DC 交于点M ,试探究线段NP 与线段NM 的数量关系及ABD ∠与MNP ∠满足的等量关系,请直接写出你的结论;(2)如图2,若点M 在线段EF 上,当点M 在何位置时,你在(1)中得到的结论仍然成立,写出你确定的点M 的位置,并证明(1)中的结论.图1图2ABCDEFNPP NMFEDBA25.已知抛物线2y x bx c =++的顶点为P ,与y 轴交于点A ,与直线OP 交于点B . (1)如图1,若点P 的横坐标为1,点(3B ,6),试确定抛物线的解析式;(2)在(1)的条件下,若点M 是直线AB 下方抛物线上的一点,且3ABM S = ,求点M 的坐标;(3)如图2,若P 在第一象限,且PA PO =,过点P 作PD x ⊥轴于点D ,将抛物线2y x bx c =++平移,平移后的抛物线经过点A 、D ,该抛物线与x 轴的另一个交点为C ,请探索四边形OABC 的形状,并说明理由.图1图2北京市西城区2012年初三一模试卷 数 学 2012. 5一、选择题(本题共32分,每小题4分)7.由n 个相同的小正方体堆成的几何体,其主视图、俯视图如下所示,则n 的最大值是A .16B .18C .19D .208.对于实数c 、d ,我们可用min{ c ,d }表示c 、d 两数中较小的数,如min{3,1-}=1-.若关于x 的函数y = min{22x ,2()a x t -}的图象关于直线3x =对称,则a 、t 的值可能是A .3,6B .2,6-C .2,6D .2-,6 二、填空题12.如图,直角三角形纸片ABC 中,∠ACB =90°,AC=8,BC =6.折叠该纸片使点B 与点C 重合,折痕与AB 、BC 的交点分别 为D 、E . (1) DE 的长为 ;(2) 将折叠后的图形沿直线AE 剪开,原纸片被剪成三块,其中最小一块的面积等于 .22. 阅读下列材料:问题:如图1,在正方形ABCD 内有一点P ,PA =5,PB =2,PC =1,求∠BPC 的度数.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC 绕点B 逆时针旋转90°,得到了△BP ′A (如图2),然后连结PP ′. 请你参考小明同学的思路,解决下列问题: (1) 图2中∠BPC 的度数为 ;(2) 如图3,若在正六边形ABCDEF 内有一点P ,且P A =132,PB =4,PC =2,则∠BPC 的度数为 ,正六边形ABCDEF 的边长为 .五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 已知关于x 的一元二次方程210x px q +++=的一个实数根为 2. (1) 用含p 的代数式表示q ;(2) 求证:抛物线2y x px q =++与x 轴有两个交点;(3) 设抛物线21y x px q =++的顶点为M ,与 y 轴的交点为E ,抛物线221y x px q =+++ 顶点为N ,与y 轴的交点为F ,若四边形FEMN 的面积等于2,求p 的值.24.已知:在如图1所示的锐角三角形ABC 中,CH ⊥AB 于点H ,点B 关于直线CH 的对称点为D ,AC 边上一点E 满足∠EDA =∠A ,直线DE 交直线CH 于点F . (1) 求证:BF ∥AC ;(2) 若AC 边的中点为M ,求证:2DF EM =;(3) 当AB =BC 时(如图2),在未添加辅助线和其它字母的条件下,找出图2中所有与BE 相等的线段,并证明你的结论.图25.平面直角坐标系xOy 中,抛物线244y ax ax a c =-++与x 轴交于点A 、点B ,与y 轴的正半轴交于点C ,点 A 的坐标为(1, 0),OB =OC ,抛物线的顶点为D . (1) 求此抛物线的解析式;(2) 若此抛物线的对称轴上的点P 满足∠APB =∠ACB ,求点P 的坐标;(3) Q 为线段BD 上一点,点A 关于∠AQB 的平分线的对称点为A ',若2=-QB QA ,求点Q 的坐标和此时△QAA '的面积.北京市东城区2011--2012学年第二学期初三综合练习(一)一、选择题(8. 如图,在正方形ABCD 中,AB =3cm ,动点M 自A 点出发沿AB 方向以每秒1cm 的速度向B 点运动,同时动点N 自A 点出发沿折线AD —DC —CB 以每秒3cm 的速度运动,到达B 点时运动同时停止.设△AMN 的面积为y (cm 2),运动时间为x (秒),则下列图象中能大致反映y 与x 之间的函数关系的是AB C D 二、填空题12. 如图,正方形ABCD 的边长为10,内部有6个全等的正方形,小正方形的顶点E 、F 、G 、H 分别落在边AD 、AB 、BC 、CD 上,则DE 的长为 .22. 在ABC △中,AB 、BC 、AC小宝同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC △(即ABC △三个顶点都在小正方形的顶点处),如图1所示.这样不需求ABC △的高,而借用网格就能计算出它的面积.(1)请你将ABC △的面积直接填写在横线上__________________; 思维拓展:(2)我们把上述求ABC △面积的方法叫做构图法....若ABC △(0a >),请利用图2的正方形网格(每个小正方形的边长为a )画出相应的ABC △,并求出它的面积填写在横线上__________________; 探索创新:(3)若ABC △(0a >),且ABC △的面积为22a ,试运用构图法...在图3的正方形网格(每个小正方形的边长为a )中画出所有符合题意的ABC △(全等的三角形视为同一种情况),并求出它的第三条边长填写在横线上__________________.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的一元二次方程22(41)30x m x m m -+++=. (1)求证:无论m 取何实数时,原方程总有两个实数根;(2)若原方程的两个实数根一个大于2,另一个小于7,求m 的取值范围;(3)抛物线22(41)3y x m x m m =-+++与x 轴交于点A 、B ,与y 轴交于点C ,当m 取(2)中符合题意的最小整数时,将此抛物线向上平移n 个单位,使平移后得到的抛物线顶点落在△ABC 的内部(不包括△ABC 的边界),求n 的取值范围(直接写出答案即可).24. 已知∠ABC =90°,点P 为射线BC 上任意一点(点P 与点B 不重合),分别以AB 、AP 为边在∠ABC 的内部作等边△ABE 和△APQ,连结QE 并延长交BP 于点F .(1)如图1,若AB =32,点A 、E 、P 恰好在一条直线上时,求此时EF 的长(直接写出结果);(2)如图2,当点P 为射线BC 上任意一点时,猜想EF 与图中的哪条线段相等(不能添加辅助线产生新的线段),并加以证明;(3)若AB =32,设BP =x ,以QF 为边的等边三角形的面积y ,求y 关于x 的函数关系式.25. 如图,在平面直角坐标系xOy 中,二次函数2y bx c =++的图象与x 轴交于A (-1,0)、B (3,0)两点, 顶点为C .(1) 求此二次函数解析式;(2) 点D 为点C 关于x 轴的对称点,过点A 作直线l :y x 交BD 于点E ,过点B 作直线BK ∥AD 交直线l 于K 点.问:在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由;(3) 在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN N M M K ++和的最小值.北京市朝阳区九年级综合练习(一)一、选择题 8.已知关于x 的一元二次方程02=++n mx x 的两个实数根分别为a x =1,b x =2(b a <),则二次函数n mx x y ++=2中,当0<y 时,x 的取值范围是A .a x <B .b x >C .b x a <<D .a x <或b x >二、填空题(第12题) 12.如图,在正方形ABCD 中,AB =1,E 、F 分别是BC 、CD 边上点,(1)若CE =12CB ,CF =12CD ,则图中阴影部分的面积是 ;(2)若CE =1n CB ,CF =1nCD ,则图中阴影部分的面积是 (用含n 的式子表示,n 是正整数). 22. 根据对北京市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y 1(千元)与进货量x (吨)之间的函数kx y =1的图象如图①所示,乙种蔬菜的销售利润y 2(千元)与进货量x (吨)之间的函数bx ax y +=22的图象如图②所示. (1)分别求出y 1、y 2与x 之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t 吨,写出这两种蔬菜所获得的销售利润之和W (千元)与t (吨)之间的函数关系式,并求出这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少?图②五、解答题(本题共21分,第23题6分,第24题8分,第25题7分) 23. 阅读下面材料:问题:如图①,在△ABC 中, D 是BC 边上的一点,若∠BAD =∠C =2∠DAC =45°,DC =2.求BD 的长. 小明同学的解题思路是:利用轴对称,把△ADC 进行翻折,再经过推理、计算使问题 得到解决.(1)请你回答:图中BD 的长为 ;(2)参考小明的思路,探究并解答问题:如图②,在△ABC 中,D 是BC 边上的一点,若∠BAD =∠C =2∠DAC =30°,DC =2,求BD 和AB 的长.y (万元)(吨)O y (千元) A图① 图②24. 在平面直角坐标系xOy 中,抛物线23y ax bx =++经过点N (2,-5),过点N 作x 轴的平行线交此抛物线左侧于点M ,MN =6.(1)求此抛物线的解析式;(2)点P (x ,y )为此抛物线上一动点,连接MP 交此抛物线的对称轴于点D ,当△DMN 为直角三角形时,求点P 的坐标; (3)设此抛物线与y 轴交于点C ,在此抛物线上是否存在点Q ,使∠QMN =∠CNM ?若存在,求出点Q 的坐标;若不存在,说明理由.25. 在矩形ABCD 中,点P 在AD 上,AB =2,AP =1,将三角板的直角顶点放在点P 处,三角板的两直角边分别能与AB 、BC 边相交于点E、F ,连接EF .(1)如图,当点E 与点B 重合时,点F 恰好与点C 重合,求此时PC 的长;(2)将三角板从(1)中的位置开始,绕点P 顺时针旋转,当点E 与点A 重合时停止,在这个过程中,请你观察、探究并解答:① ∠PEF 的大小是否发生变化?请说明理由;② 直接写出从开始到停止,线段EF 的中点所经过的路线长.C B AD北京市丰台区2011-2012学年度第二学期初三综合练习(一)8.如图,矩形ABCD 中,AB =3,BC =5,点P 是BC 边上的一个动点 (点P 不与点B 、C 重合),现将△PCD 沿直线PD 折叠,使点C 落到点C’处;作∠BPC’的角平分线交AB 于点E .设BP =x ,BE =y ,则下列图象中,能表示y 与x 的函数关系的图象大致是A .B .C .D .二、填空题(本题共16分,每小题4分)12.在数学校本活动课上,张老师设计了一个游戏,让电动娃娃在边长为1的正方形的四个顶点上依次跳动.规定:从顶点A 出发,每跳动一步的长均为1.第一次顺时针方向跳1步到达顶点D ,第二次逆时针方向跳2步到达顶点B ,第三次顺时针方向跳3步到达顶点C ,第四次逆时针方向跳4步到达顶点C ,… ,以此类推,跳动第10次到达的顶点是 ,跳动第2012次到达的顶点是 .22.将矩形纸片分别沿两条不同的直线剪两刀,可以使剪得的三块纸片恰能拼成一个等腰三 角形(不能有重叠和缝隙).小明的做法是:如图1所示,在矩形ABCD 中,分别取AD 、AB 、CD 的中点P 、E 、 F ,并沿直线PE 、PF 剪两刀,所得的三部分可拼成等腰三角形△PMN (如图2). (1)在图3中画出另一种剪拼成等腰三角形的示意图;(2)以矩形ABCD 的顶点B 为原点,BC 所在直线为x 轴建立平面直角坐标系(如图4),矩形ABCD 剪拼后得到等腰三角形△PMN ,点P 在边AD 上(不与点A 、D 重合),点M 、N 在x 轴上(点M 在N 的左边).如果点D 的坐标为(5,8),直线PM 的解析式为=y kx b +,则所有满足条件的k 的值为 .图一 图二 图三图四 备用五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知:关于x 的一元二次方程:22240x mx m -+-=.EPC’A DBCP E FDA P E F DA B C(1)求证:这个方程有两个不相等的实数根;(2)当抛物线2224y x mx m =-+-与x 轴的交点位于原点的两侧,且到原点的距离相等时,求此抛物线的解析式;(3)将(2)中的抛物线在x 轴下方的部分沿x 轴翻折,其余部分保持能够不变,得到图形C 1,将图形C 1向右平移一个单位,得到图形C 2,当直线y=x b +(b <0)与图形C 2恰有两个公共点时,写出b 的取值范围.24.已知:△ABC 和△ADE 是两个不全等的等腰直角三角形,其中BA =BC ,DA =DE ,联结EC ,取EC 的中点M ,联结BM 和DM .(1)如图1,如果点D 、E 分别在边AC 、AB 上,那么BM 、DM 的数量关系与位置关系是 ; (2)将图1中的△ADE 绕点A 旋转到图2的位置时,判断(1)中的结论是否仍然成立,并说明理由.CB AEMM EABC点A ,与x 轴相交于B 、C 两点(点B 在点C 的左边). (1)求经过A 、B 、C 三点的抛物线的解析式;(2)在(1)中的抛物线上是否存在点M ,使△MBP 的面积是菱形ABCP 面积的21.如果 存在,请直接写出所有满足条件的M 点的坐标;如果若不存在,请说明理由;(3)如果一个动点D 自点P 出发,先到达y 轴上的某点,再到达x 轴上某点,最后运动到(1)中抛物线的顶点Q 处,求使点D 运动的总路径最短的路径的长..(1)将两端剪掉则可以得到正五边形,若将展开,展开后的平面图形是 ;(2)若原长方形纸条(图①)宽为2cm ,求(1)中展开后平面图形的周长(可以用三角函数表示). 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知:关于x 的方程()()01342=---+m x m x 有两个不相等的实数根.(1)求m 的取值范围;图① 图② 图③图②(2)抛物线C :()()1342-+---=m x m x y 与x 轴交于A 、B 两点.若1-≤m 且直线1l :12--=x my 经过点A ,求抛物线C 的函数解析式;(3)在(2)的条件下,直线1l :12--=x my 绕着点A 旋转得到直线2l :b kx y +=,设直线2l 与y 轴交于点D ,与抛物线C 交于点M (M 不与点A 重合),当23≤AD MA 时,求k 的取值范围.24.(1)如图1,在矩形ABCD 中,AB=2BC ,M 是AB 的中点.直接写出∠BMD 与∠ADM 的倍数关系;(2)如图2,若四边形ABCD 是平行四边形, AB=2BC ,M 是AB 的中点,过C 作CE ⊥AD 与AD 所在直线交于点E .①若∠A 为锐角,则∠BME 与∠AEM 有怎样的倍数关系,并证明你的结论; ②当︒<∠<︒A 0时,上述结论成立;当︒<∠≤︒180A 时,上述结论不成立.M D BA CEADC25.已知二次函数)34()22(22-+++-=m m x m x y 中,m 为不小于0的整数,它的图像与x 轴交于点A 和点B ,点A 在原点左边,点B 在原点右边. (1)求这个二次函数的解析式;(2)点C 是抛物线与y 轴的交点,已知AD=AC (D 在线段AB 上),有一动点P 从点A 出发,沿线段AB 以每秒1个单位长度的速度移动,同时,另一动点Q 从点C 出发,以某一速度沿线段CB 移动,经过t 秒的移动,线段PQ 被CD 垂直平分,求t 的值;(3)在(2)的情况下,求四边形ACQD 的面积.顺义区2012届初三第一次统一练习一、选择题8.如图,在Rt△ABC中,90ACB∠=︒,60A∠=︒,AC=2,D是AB边上一个动点(不与点A、B重合),E是BC边上一点,且30CDE∠=︒.设AD=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是二、填空题12.如图,菱形ABCD中,AB=2 ,∠C=60°,我们把菱形ABCD的对称中心称作菱形的中心.菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过1次这样的操作菱形中心O所经过的路径长为;经过18次这样的操作菱形中心O所经过的路径总长为;经过3n(n为正整数)次这样的操作菱形中心O所经过的路径总长为.(结果都保留π)22.问题背景(1)如图1,△ABC中,DE∥BC分别交AB,AC于D,E两点,过点D作DF∥AC交BC于点F.请按图示数据填空:四边形DFCE的面积S=,△DBF的面积1S=,△ADE的面积2S=.探究发现(2)在(1)中,若BF a=,FC b=,DG与BC间的距离为h.直接写出2S=(用含S、1S的代数式表示).拓展迁移(3)如图2,□DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为4、8、1,试利用..(2.)中的结论....求□DEFG的面积,直接写出结果.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x的方程032)1(2=+++-kkxxk.(1)若方程有两个不相等的实数根,求k的取值范围;(2)当方程有两个相等的实数根时,求关于y的方程2(4)10y a k y a+-++=的整数根(a为正整数).OABD24.如图,在平面直角坐标系xOy 中,抛物线y =mx 2+2mx +n 经过点A (-4,0)和点B (0,3).(1)求抛物线的解析式;(2)向右平移上述抛物线,若平移后的抛物线仍经过点B ,求平移后抛物线的解析式;(3)在(2)的条件下,记平移后点A 的对应点为A’,点B 的对应点为B’,试问:在平移后的抛物线上是否存在一点P ,使'OA P △的面积与四边形AA ’B ’B 的面积相等,若存在,求出点P 的坐标;若不存在,说明理由.25.问题:如图1, 在Rt △ABC 中,90C ∠=︒,30ABC ∠=︒,点D 是射线CB 上任意一点,△ADE 是等边三角形,且点D 在ACB ∠的内部,连接BE .探究线段BE 与DE 之间的数量关系.请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明. (1) 当点D 与点C 重合时(如图2),请你补全图形.由BAC ∠的度数为 ,点E 落在 ,容易得出BE 与DE 之间的数量关系为 ;(2) 当点D 在如图3的位置时,请你画出图形,研究线段BE 与DE 之间的数量关系是否与(1)中的结论相同,写出你的猜想并加以证明.图1D EBCA。

北京市西城区2012届高三第一次模拟考试理科数学试题

北京市西城区2012届高三第一次模拟考试理科数学试题

北京市西城区2012年高三一模试卷数 学(理科) 2012.4第Ⅰ卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U =R ,集合1{|1}A x x=≥,则U A =ð( ) (A )(0,1) (B )(0,1](C )(,0](1,)-∞+∞ (D )(,0)[1,)-∞+∞2.执行如图所示的程序框图,若输入2x =,则输出y 的 值为( ) (A )2 (B )5 (C )11 (D )233.若实数x ,y 满足条件0,30,03,x y x y x +≥⎧⎪-+≥⎨⎪≤≤⎩则2x y -的最大值为( )(A )9 (B )3 (C )0 (D )3-4.已知正六棱柱的底面边长和侧棱长相等,体积为3. 其三视图中的俯视图如图所示,则其左视图的面积是( ) (A)2 (B)2 (C )28cm(D )24cm5.已知函数44()sin cos f x x x ωω=-的最小正周期是π,那么正数ω=( )(A )2(B )1(C )12(D )146.若2log 3a =,3log 2b =,4log 6c =,则下列结论正确的是( ) (A )b a c << (B )a b c << (C )c b a << (D )b c a <<7.设等比数列{}n a 的各项均为正数,公比为q ,前n 项和为n S .若对*n ∀∈N ,有23n n S S <,则q 的取值范围是( ) (A )(0,1] (B )(0,2)(C )[1,2)(D)8.已知集合230123{|333}A x x a a a a ==+⨯+⨯+⨯,其中{0,1,2}(0,1,2,3)k a k ∈=,且30a ≠.则A 中所有元素之和等于( ) (A )3240(B )3120(C )2997(D )2889第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9. 某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[1314),,[1415),, [1516),,[1617),,[1718],,得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16,18]的学生人数是_____.10.6(2)x -的展开式中,3x 的系数是_____.(用数字作答)11. 如图,AC 为⊙O 的直径,OB AC ⊥,弦BN 交AC于点M.若OC =1OM =,则MN =_____.12. 在极坐标系中,极点到直线:l πsin()4ρθ+=_____.ABCOMN13. 已知函数12,0,(),20,x x c f x x x x ⎧≤≤⎪=⎨+-≤<⎪⎩ 其中0c >.那么()f x 的零点是_____;若()f x 的值域是1[,2]4-,则c 的取值范围是_____.14. 在直角坐标系xOy 中,动点A ,B分别在射线(0)y x x =≥和(0)y x =≥上运动,且△OAB 的面积为1.则点A ,B 的横坐标之积为_____;△OAB 周长的最小值是_____.三、解答题共6小题,共80分. 解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在△ABC 中,已知sin()sin sin()A B B A B +=+-. (Ⅰ)求角A ;(Ⅱ)若||7BC =,20=⋅,求||AB AC +.16.(本小题满分13分)乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(Ⅰ)求甲以4比1获胜的概率;(Ⅱ)求乙获胜且比赛局数多于5局的概率; (Ⅲ)求比赛局数的分布列.17.(本小题满分14分)如图,四边形ABCD 与BDEF 均为菱形, ︒=∠=∠60DBF DAB ,且FA FC =. (Ⅰ)求证:AC ⊥平面BDEF ;(Ⅱ)求证:FC ∥平面EAD ; (Ⅲ)求二面角B FC A --的余弦值.18.(本小题满分13分)已知函数()e (1)axaf x a x=⋅++,其中1-≥a .(Ⅰ)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)求)(x f 的单调区间. 19.(本小题满分14分)已知椭圆:C 22221(0)x y a b a b +=>>的离心率为3,定点(2,0)M ,椭圆短轴的端点是1B ,2B ,且12MB MB ⊥.(Ⅰ)求椭圆C 的方程;(Ⅱ)设过点M 且斜率不为0的直线交椭圆C 于A ,B 两点.试问x 轴上是否存在定点P ,使PM 平分APB ∠?若存在,求出点P 的坐标;若不存在,说明理由. 20.(本小题满分13分)对于数列12:,,,(,1,2,,)n n i A a a a a i n ∈=N ,定义“T 变换”:T 将数列n A 变换成数 列12:,,,n n B b b b ,其中1||(1,2,,1)i i i b a a i n +=-=-,且1||n n b a a =-,这种“T 变换”记作()n n B T A =.继续对数列n B 进行“T 变换”,得到数列n C ,…,依此类推,当得到的数列各项均为0时变换结束.(Ⅰ)试问3:4,2,8A 和4:1,4,2,9A 经过不断的“T 变换”能否结束?若能,请依次写出经过“T 变换”得到的各数列;若不能,说明理由;(Ⅱ)求3123:,,A a a a 经过有限次“T 变换”后能够结束的充要条件; (Ⅲ)证明:41234:,,,A a a a a 一定能经过有限次“T 变换”后结束.北京市西城区2012年高三一模试卷数学(理科)参考答案及评分标准2012.4一、选择题:本大题共8小题,每小题5分,共40分.1.C;2. D;3. A;4.A;5. B;6. D;7. A;8. D .二、填空题:本大题共6小题,每小题5分,共30分.;11.1;9.54;10.16012 13.1-和0,(0,4]; 14.2,2(1. 注:13题、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分.15.(本小题满分13分)(Ⅰ)解:原式可化为 B A B A B A B sin cos 2)sin()sin(sin =--+=. ………………3分因为(0,π)B ∈, 所以 0sin >B , 所以 21cos =A . ………………5分因为(0,π)A ∈, 所以 π3A =. ………………6分(Ⅱ)解:由余弦定理,得 222||||||2||||cos BC AB AC AB AC A =+-⋅.………………8分因为 ||7BC =,||||cos 20AB AC AB AC A ⋅=⋅=,所以 22||||89AB AC +=. ………………10分因为 222||||||2129AB AC AB AC AB AC +=++⋅=, ………………12分所以 ||129AB AC += ………………13分16.(本小题满分13分)(Ⅰ)解:由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是21. ………………1分记“甲以4比1获胜”为事件A , 则334341111()C ()()2228P A -==. ………………4分(Ⅱ)解:记“乙获胜且比赛局数多于5局”为事件B . 因为,乙以4比2获胜的概率为3353151115C ()()22232P -==, ………………6分乙以4比3获胜的概率为3363261115C ()()22232P -==, ………………7分所以 125()16P B P P =+=. ………………8分(Ⅲ)解:设比赛的局数为X ,则X 的可能取值为4,5,6,7.44411(4)2C ()28P X ===, ………………9分334341111(5)2C ()()2224P X -===, ………………10分335251115(6)2C ()()22216P X -==⋅=, ………………11分336361115(7)2C ()()22216P X -==⋅=. ………………12分比赛局数的分布列为:X 4 5 6 7 P18 14 516 516………………13分17.(本小题满分14分)(Ⅰ)证明:设AC 与BD 相交于点O ,连结FO .因为 四边形ABCD 为菱形,所以BD AC ⊥, 且O 为AC 中点. ………………1分又 FC FA =,所以 AC FO ⊥. ………3分 因为 O BD FO = ,所以 ⊥AC 平面BDEF . ………………4分 (Ⅱ)证明:因为四边形ABCD 与BDEF 均为菱形,所以AD //BC ,DE //BF ,所以平面FBC//平面EAD . ………………7分又⊂FC 平面FBC , 所以FC// 平面EAD . ………………8分(Ⅲ)解:因为四边形BDEF 为菱形,且︒=∠60DBF ,所以△DBF 为等边三角形.因为O 为BD 中点,所以BD FO ⊥,故FO ⊥平面ABCD .由OF OB OA ,,两两垂直,建立如图所示的空间直角坐标系xyz O -. ………………9分设2=AB .因为四边形ABCD 为菱形,︒=∠60DAB ,则2=BD ,所以1OB =,OA OF ==所以 )3,0,0(),0,0,3(),0,1,0(),0,0,3(),0,0,0(F C B A O -.所以(3,0,CF =,(3,1,0)CB =.设平面BFC 的法向量为=()x,y,z n ,则有0,0.CF CB ⎧⋅=⎪⎨⋅=⎪⎩n n所以 ⎩⎨⎧=+=+.03,033y x z x 取1=x ,得)1,3,1(--=n . ………………12分易知平面AFC 的法向量为(0,1,0)=v . ………………13分由二面角B FC A --是锐角,得cos ,⋅〈〉==n v n v n v. 所以二面角B FC A --的余弦值为515. ………………14分18.(本小题满分13分)(Ⅰ)解:当1a =时,1()e (2)x f x x =⋅+,211()e (2)xf x x x '=⋅+-. ………………2分由于(1)3e f =,(1)2e f '=,所以曲线()y f x =在点(1,(1))f 处的切线方程是2e e 0x y -+=. ………………4分(Ⅱ)解:2(1)[(1)1]()e axx a x f x a x++-'=,0x ≠. ………………6分① 当1-=a 时,令()0f x '=,解得 1x =-.)(x f 的单调递减区间为(,1)-∞-;单调递增区间为(1,0)-,(0,)+∞. (8)分当1a ≠-时,令()0f x '=,解得 1x =-,或11x a =+. ② 当01<<-a 时,)(x f 的单调递减区间为(,1)-∞-,1(,)1a +∞+;单调递增区间为(-,1(0,)1a +. ………………10分 ③ 当0=a 时,()f x 为常值函数,不存在单调区间. ………………11分④ 当0a >时,)(x f 的单调递减区间为(1,0)-,1(0,)1a +;单调递增区间为(,1)-∞-,1(,)1a +∞+. ………………13分19.(本小题满分14分)(Ⅰ)解:由 222222519a b b e a a-===-, 得 23b a =. ………………2分依题意△12MB B 是等腰直角三角形,从而2b =,故3a =. ………………4分所以椭圆C的方程是22194x y +=. ………………5分 (Ⅱ)解:设11(,)A x y ,22(,)B x y ,直线AB 的方程为2x my =+.将直线AB 的方程与椭圆C 的方程联立, 消去x得22(49)16200m y my ++-=. ………………7分所以 1221649m y y m -+=+,1222049y y m -=+. ………………8分若PF 平分APB ∠,则直线PA ,PB 的倾斜角互补, 所以0=+PB PA k k . ………………9分设(,0)P a ,则有12120y yx a x a+=--. 将 112x my =+,222x my =+代入上式, 整理得1212122(2)()0(2)(2)my y a y y my a my a +-+=+-+-,所以 12122(2)()0my y a y y +-+=. ………………12分将 1221649m y y m -+=+,1222049y y m -=+代入上式, 整理得 (29)0a m -+⋅=. ………………13分由于上式对任意实数m 都成立,所以 92a =. 综上,存在定点9(,0)2P ,使PM 平分APB ∠. ………………14分20.(本小题满分13分)(Ⅰ)解:数列3:4,2,8A 不能结束,各数列依次为2,6,4;4,2,2;2,0,2;2,2,0;0,2,2;2,0,2;….从而以下重复出现,不会出现所有项均为0的情形. ………………2分数列4:1,4,2,9A 能结束,各数列依次为3,2,7,8;1,5,1,5;4,4,4,4;0,0,0,0. ………………3分(Ⅱ)解:3A 经过有限次“T 变换”后能够结束的充要条件是123a a a ==.………………4分若123a a a ==,则经过一次“T 变换”就得到数列0,0,0,从而结束. ……………5分当数列3A 经过有限次“T 变换”后能够结束时,先证命题“若数列3()T A 为常数列,则3A 为常数列”.当123a a a ≥≥时,数列3122313():,,T A a a a a a a ---.由数列3()T A 为常数列得122313a a a a a a -=-=-,解得123a a a ==,从而数列3A 也为常数列.其它情形同理,得证.在数列3A 经过有限次“T 变换”后结束时,得到数列0,0,0(常数列),由以上命题,它变换之前的数列也为常数列,可知数列3A 也为常数列. ………………8分所以,数列3A 经过有限次“T 变换”后能够结束的充要条件是123a a a ==. (Ⅲ)证明:先证明引理:“数列()n T A 的最大项一定不大于数列n A 的最大项,其中3n ≥”.证明:记数列n A 中最大项为max()n A ,则0max()i n a A ≤≤.令()n n B T A =,i p q b a a =-,其中p q a a ≥.因为0q a ≥, 所以max()i p n b a A ≤≤,故max()max()n n B A ≤,证毕. ………………9分现将数列4A 分为两类.第一类是没有为0的项,或者为0的项与最大项不相邻(规定首项与末项相邻),此时由引理可知,44max()max()1B A ≤-.第二类是含有为0的项,且与最大项相邻,此时44max()max()B A =. 下面证明第二类数列4A 经过有限次“T 变换”,一定可以得到第一类数列. 不妨令数列4A 的第一项为0,第二项a 最大(0a >).(其它情形同理) ① 当数列4A 中只有一项为0时,若4:0,,,A a b c (,,0a b a c bc >>≠),则4():,,||,T A a a b b c c--,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若4:0,,,(,0)A a a b a b b >≠,则4():,0,T A a a b b -;4(()):,,|2|,T T A a a b a b a b ---此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若4:0,,,A a b a (,0a b b >≠),则4():,,,T A a a b a b b--,此数列各项均不为0,为第一类数列;若4:0,,,A a a a ,则4():,0,0,T A a a ;4(()):,0,,0T T A a a ;4((())):,,,T T T A a a a a , 此数列各项均不为0,为第一类数列.② 当数列4A 中有两项为0时,若4:0,,0,A a b (0a b ≥>),则4():,,,T A a a b b ,此数列各项均不为0,为第一类数列;若4:0,,,0A a b (0a b ≥>),则():,,,0T A a a b b -,(()):,|2|,,T T A b a b b a -,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列.③ 当数列4A 中有三项为0时,只能是4:0,,0,0A a ,则():,,0,0T A a a , (()):0,,0,T T A a a ,((())):,,,T T T A a a a a ,此数列各项均不为0,为第一类数列.总之,第二类数列4A 至多经过3次“T 变换”,就会得到第一类数列,即至多连续经历3次“T 变换”,数列的最大项又开始减少.又因为各数列的最大项是非负整数,故经过有限次“T变换”后,数列的最大项一定会为0,此时数列的各项均为0,从而结束.………………13分薄雾浓云愁永昼,瑞脑消金兽。

2012北京市各区中考数学一模试卷及答案试题试卷_1 (2)

2012北京市各区中考数学一模试卷及答案试题试卷_1 (2)

顺义区2012届初三第一次统一练习 数学学科参考答案及评分细则二、填空题(本题共16分,每小题4分,)9.4;10.25()x x y -; 11.11.4; 12, 2)π+,π. 三、解答题(本题共30分,每小题5分) 13()12cos303-︒+--1213⎛⎫=+-- ⎪⎝⎭……………………………………………… 4分 113=+ 43= …………………………………………………………………… 5分 14.解: 221x y x y +=⎧⎨-=⎩①②①+②,得 33x =.1x =. …………………………………………………… 2分 把1x =代入①,得 12y +=.1y =. ………………………………………………………… 4分 ∴原方程组的解为 1,1.x y =⎧⎨=⎩ ………………………………………………… 5分15.证明:∵AB=AC ,∴B C ∠=∠. …………………………………………………………… 1分 在△ABD 和△ACE 中,,,,AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABD ≌△ACE .……………………………………………………… 3分 ∴ AD=AE . ……………………………………………………………… 4分∴∠ADE =∠AED . ……………………………………………………… 5分16.解:6931x x x x -⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭2693x x x x x -+-=÷ …………………………………………………… 2分 2(3)3x xx x -=-3x =- ……………………………………………………………………… 4分当2012x =时,原式=201232009-=.…………………………………… 5分17.解:(1)∵点(4,)A m 在反比例函数4y x=(0x >)的图象上, ∴414m ==. …………………………………………………………… 1分 ∴(4,1)A .将(4,1)A 代入一次函数y x b =-+中,得 5b =.∴一次函数的解析式为5y x =-+. …………………………………… 2分(2)由题意,得 (0,5)B , ∴5OB =.设P 点的横坐标为P x .∵OBP △的面积为5, ∴1552p x ⨯=.…………………………………………………………… 3分 ∴2P x =±.∴点P 的坐标为(2,3)或(-2,7). ………………………………… 5分 18.解:设A 户型的每户窗户改造费用为x 元,则B 户型的每户窗户改造费用为(500)x -元. ……………………………… 1分 根据题意,列方程得5400004800005x x =-. 解得 4500x =.经检验,4500x =是原方程的解,且符合题意.…………………………… 4分 ∴5004000x -=.答:A 户型的每户窗户改造费用为4500元,B 户型的每户窗户改造费用为4000 元.…………………………………… 5分MF EDCBAFE DCO BA四、解答题(本题共20分,每小题5分)19.解:(1)∵在□ABCD 中,∠B=60°,AB=4,∠ACB=45°,∴∠D=60°,CD=AB=4,AD ∥BC . ……………………………… 1分 ∴∠DAC=45°. 过点C 作CM ⊥AD 于M , 在Rt △CDM 中,sin 4sin 6023CM CD D ==︒=cos 4cos602DM CD D ==︒=.………………………………… 2分在Rt △ACM中,∵∠MAC=45°, ∴AM CM==∴2AD AM DM =+=.…………………………………… 3分∵EF ⊥AD ,CM ⊥AD , ∴EF ∥CM .∴12EF CM ==在Rt △AEF 中,AF EF ==4分∴22DF AD AF =-=-=.……………………… 5分20.(1)证明:连结OD .∵AB 是⊙O 的直径,∴∠ADB=90°. ……………………………………………………… 1分 ∵∠A=30°, ∴∠ABD=60°.∴∠BDC =1302ABD ∠=︒. ∵OD=OB ,∴△ODB 是等边三角形. ∴∠ODB=60°.∴∠ODC=∠ODB+∠BDC =90°. 即OD ⊥DC .∴CD 是⊙O 的切线.…………………………………………………… 2分(2)解:∵OF ∥AD ,∠ADB=90°,∴OF ⊥BD ,∠BOE=∠A =30°. ……………………………………… 3分∴112DE BE BD ===. 在Rt △OEB中,OB=2BE=2,OE ==.………… 4分 ∵OD=OB=2,∠C=∠ABD -∠BDC =30°,∠DOF=30°, ∴CD =tan 30DF OD =︒=∴CF CD DF =-== ……………………………5分21.解:(1)此次共调查了100名学生. …………………………………………………1分(2)填表:…………………………………………………3分(3)补全统计图如下:到校方式条形统计图 到校方式扇形统计图.…………………………………………………………………………5分22.解:(1)四边形DFCE 的面积S = 6 ,△DBF 的面积1S = 6 ,△ADE 的面积2S = 32 . …………………………………… 3分(2)2S = 214S S (用含S 、1S 的代数式表示). ………… 4分 (3)□DEFG 的面积为12. ………………………………………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)△=244(1)(3)k k k --+=2244812k k k --+=812k -+ ……………………………………………………………… 1分∵方程有两个不相等的实数根, ∴10,0.k -≠⎧⎨∆>⎩ 即 10,8120.k k -≠⎧⎨-+>⎩∴k 的取值范围是32k <且1k ≠. …………………………………… 3分 (2)当方程有两个相等的实数根时,△=812k -+=0.∴32k =. ………………………………………………………………… 4分 ∴关于y 的方程为2(6)10y a y a +-++=.∴2'(6)4(1)a a ∆=--+2123644a a a =-+--21632a a =-+2(8)32a =--.由a 为正整数,当2(8)32a --是完全平方数时,方程才有可能有整数根. 设22(8)32a m --=(其中m 为整数),32p q =(p 、q 均为整数), ∴22(8)32a m --=.即(8)(8)32a m a m -+--=.不妨设8,8.a m p a m q -+=⎧⎨--=⎩两式相加,得 162p q a ++=.∵(8)a m -+与(8)a m --的奇偶性相同,∴32可分解为216⨯,48⨯,(2)(16)-⨯-,(4)(8)-⨯-, ∴18p q +=或12或18-或12-.∴17a =或14或1-(不合题意,舍去)或2.当17a =时,方程的两根为1172y -±=,即12y =-,29y =-.…… 5分 当14a =时,方程的两根为822y -±=,即13y =-,25y =-.…… 6分当2a =时, 方程的两根为422y ±=,即13y =,21y =. ………… 7分24.解:(1)∵抛物线y =mx 2+2mx +n 经过点A (-4,0)和点B (0,3),∴1680,3.m m n n -+=⎧⎨=⎩ ∴3,83.m n ⎧=-⎪⎨⎪=⎩. ∴抛物线的解析式为:233384y x x =--+.………………………… 2分 (2)令3y =,得2333384x x --+=,得10x =,22x =-, ∵抛物线向右平移后仍经过点B ,∴抛物线向右平移2个单位.……… 3分∵233384y x x =--+ 233(21)388x x =-++++2327(1)88x =-++. ………… 4分∴平移后的抛物线解析式为2327(1)88y x =--+. …………………… 5分(3)由抛物线向右平移2个单位,得'(2,0)A -,'(2,3)B .∴四边形AA ’B ’B 为平行四边形,其面积'236AA OB ==⨯=.设P 点的纵坐标为P y ,由'OA P △的面积=6, ∴1'62P OA y =,即1262P y ⨯= ∴6P y =, 6P y =±.………………………………………………… 6分当6P y =时,方程2327(1)688x --+=无实根, 当6P y =-时,方程2327(1)688x --+=-的解为16x =,24x =-.∴点P 的坐标为(6,6)-或(4,6)--.……………………………… 7分25.解:(1)完成画图如图2,由BAC ∠的度数为 60°,点E 落在 AB 的中点处 ,容易得出BE 与DE 之间的数量关系 为 BE=DE ;…………… 3分(2)完成画图如图3.猜想:BE DE =.证明:取AB 的中点F ,连结EF .∵90ACB ∠=︒,30ABC ∠=︒,∴160∠=︒,12CF AF AB ==. ∴△ACF 是等边三角形.∴AC AF =. ① …… 4分∵△ADE 是等边三角形,∴260∠=︒, AD AE =. ②∴12∠=∠. ∴12BAD BAD ∠+∠=∠+∠.即CAD FAE ∠=∠.③ ………………………………………… 5分 由①②③得 △ACD ≌△AFE (SAS ). …………………………… 6分 ∴90ACD AFE ∠=∠=︒. ∵F 是AB 的中点,∴EF 是AB 的垂直平分线.∴BE=AE . ……………………………………………………… 7分 ∵△ADE 是等边三角形, ∴DE=AE .∴BE DE =. …………………………………………………… 8分EAB C (D )图221F EDB C A图3。

2012北京各区一模数学理试题分类解析-统计、概率、随机变量.

2012北京各区一模数学理试题分类解析-统计、概率、随机变量.

8 4 4 6 4 7m 9 35 4 5 5 10 7 9乙甲2012北京各区一模数学理试题分类解析(14)--统计、概率、随机变量及其分布 第一部分 统计、概率 1.9.(2012年西城一模理9)某年级120名学生在一次百米测试中, 成绩全部介于13秒与18秒之间.将测试结果分成5组:[1314),,[1415),,[1516),,[1617),,[1718],,得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16,18]的学生人数是_____.答案:54.11.(2012年东城一模理11)在如图所示的茎叶图中,乙组数据的 中位数是 ;若从甲、乙两组数据中分别去掉一个最大数和一个 最小数后,两组数据的平均数中较大的一组是 组. 答案:84; 乙。

11.(2012年门头沟一模理11)某单位招聘员工,从400名报名者中选出200名参加笔试, 再按笔试成绩择优取40名参加面试,随机抽查了20名笔试者,统计他们的成绩如下:由此预测参加面试所画的分数线是 . 答案:80。

13.(2012年石景山一模理13)如图,圆222:O x y π+=内的正弦曲线sin y x =与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是 .答案:34π。

10.(2012年密云一模理10)样本容量为1000的频率分布直方图如图所示.根据样本的频率分布直方图,计算x 的值为 ,样本数据落在[)6,14内的频数为 .答案:0.09,680。

10第二部分 随机变量及其分布17.(2012年海淀一模理17)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100]. (Ⅰ)求直方图中x 的值; (Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿;(Ⅲ)从学校的新生中任选4名学生,这4名学生中上学所需时间少于20分钟的人数记为X ,求X 的分布列和数学期望.(以直方图中新生上学所需时间少于20分钟的频率作为每名学生上学所需时间少于20分钟的概率) 解:(Ⅰ)由直方图可得:200.025200.0065200.0032201x ⨯+⨯+⨯+⨯⨯=.所以 0.0125x =. (Ⅱ)新生上学所需时间不少于1小时的频率为:0.0032200.12⨯⨯=,因为6000.1272⨯=,所以600名新生中有72名学生可以申请住宿. (Ⅲ)X 的可能取值为0,1,2,3,4.由直方图可知,每位学生上学所需时间少于20分钟的概率为14,4381(0)4256P X ⎛⎫===⎪⎝⎭,3141327(1)C 4464P X ⎛⎫⎛⎫===⎪⎪⎝⎭⎝⎭,22241327(2)C 44128P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,334133(3)C 4464P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,411(4)4256P X ⎛⎫===⎪⎝⎭.所以的分布列为:812727310123412566412864256EX =⨯+⨯+⨯+⨯+⨯=.(或1414EX =⨯=) 所以X 的数学期望为1.16.(2012年西城一模理16)乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(Ⅰ)求甲以4比1获胜的概率;(Ⅱ)求乙获胜且比赛局数多于5局的概率;Ⅲ求比赛局数的分布列.解:(Ⅰ)由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是21.记“甲以4比1获胜”为事件A , 则334341111()C ()()2228P A -==.(Ⅱ)记“乙获胜且比赛局数多于5局”为事件B . 因为,乙以4比2获胜的概率为3353151115C ()()22232P -==,乙以4比3获胜的概率为3363261115C ()()22232P -==,所以125()16P B P P =+=.(Ⅲ)设比赛的局数为X ,则X 的可能取值为4,5,6,7.44411(4)2C ()28P X ===,334341111(5)2C ()()2224P X -===,335251115(6)2C ()()22216P X -==⋅=,336361115(7)2C ()()22216P X -==⋅=.比赛局数的分布列为:X 45 6 7 P1814 516 51616.(2012年东城一模理16)某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品,则获利4万元,若是二等品,则亏损1万元;生产1件乙产品,若是一等品,则获利6万元,若是二等品,则亏损2万元.两种产品生产的质量相互独立.(Ⅰ)设生产1件甲产品和1件乙产品可获得的总利润为X (单位:万元),求X 的分布列;(Ⅱ)求生产4件甲产品所获得的利润不少于10万元的概率.解:(Ⅰ)由题设知,X 的可能取值为10,5,2,3-.(10)P X =0.80.90.72=⨯=, (5)0.20.90.18P X ==⨯= , (2)0.80.10.08P X ==⨯=, (3)0.20.10.02P X =-=⨯=. 由此得的分布列为:(Ⅱ)设生产的4件甲产品中一等品有n 件,则二等品有4n -件. 由题设知4(4)10n n --≥,解得145n ≥,又n *∈N 且4n ≤,得3n =,或4n =. 所求概率为33440.80.20.80.8192P C =⨯⨯+=.(或写成512625)答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192.17. (2012年丰台一模理17)某班共有学生40人,将一次数学考试成绩(单位:分)绘制成频率分布直方图,如图所示.(Ⅰ)请根据图中所给数据,求出a 的值;(Ⅱ)从成绩在[50,70)内的学生中随机选3名学生,求这3名学生的成绩都在[60,70)内的概率;(Ⅲ)为了了解学生本次考试的失分情况,从成绩在[50,70)内的学生中随机选取3人的成绩进行分析,用X 表示所选学生成绩在[60,70)内的人数,求X 的分布列和数学期望.解:(Ⅰ)根据频率分布直方图中的数据,可得1(0.0050.00750.02250.035)100.10.070.0310a -+++⨯==-=, 所以 0.03a =. ……2分(Ⅱ)学生成绩在[50,60)内的共有40×0.05=2人,在[60,70)内的共有40×0.225=9人,成绩在[50,70)内的学生共有11人. …4分设“从成绩在[50,70)的学生中随机选3名,且他们的成绩都在[60,70)内”为事件A , 则3931128()55C P A C ==. ……7分所以选取的3名学生成绩都在[60,70)内的概率为2855.(Ⅲ)依题意,X 的可能取值是1,2,3. …8分21293113(1)55C C P X C ===;122931124(2)55C C P X C ===;28(3)()55P X P A ===. …10分所以X324282712355555511E ξ=⨯+⨯+⨯=. …13分16.(2012年朝阳一模理16)某次有1000人参加的数学摸底考试,其成绩的频率分布直方图如图所示,规定85分及其以上为优秀.(Ⅰ)下表是这次考试成绩的频数分布表,求正整(II )现在要用分层抽样的方法从这1000人中抽取40人的成绩进行分析,求其中成绩为优秀的学生人数;(Ⅲ)在(II )中抽取的40名学生中,要随机选取2名学生参加座谈会,记“其中成绩为优秀的人数”为X ,求X 的分布列与数学期望.解:(Ⅰ)依题意,0.0451000200,0.025*******a b =⨯⨯==⨯⨯=. ……4分 (Ⅱ)设其中成绩为优秀的学生人数为x ,则350300*********x++=,解得:x=30,即其中成绩为优秀的学生人数为30名. …7分(Ⅲ)依题意,X 的取值为0,1,2,2102403(0)52C P X C===,1110302405(1)13C C P X C ===,23024029(2)52C P X C ===,所以X 的分布列为352930125213522EX =⨯+⨯+⨯=,所以X 的数学期望为32. 13分16.(2012年东城11校联考理16)某中学选派40名同学参加北京市高中生技术设计创意大赛的培训,他们参加培训的次数统计如表所示:(1)从这40人中任意选3名学生,求这3名同学中至少有2名同学参加培训次数恰好相等的概率;(2)从40人中任选两名学生,用X 表示这两人参加培训次数之差的绝对值,求随机变量X的分布 列及数学期望EX .解:(1)这3名同学中至少有2名同学参加培训次数恰好相等的概率为494419134012011515=-=C C C C P . ……5分(2)由题意知X =0,1,222251520240111151515202401152024061(0);15675(1);1565(2).39C C C P X C C C C C P X C C C P X C ++===+======则随机变量X 的分布列:012.156********X EX =⨯+⨯+⨯=所以的数学期望……13分16.(2012年石景山一模理16)甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为31,乙每次投中的概率为21,每人分别进行三次投篮.(Ⅰ)记甲投中的次数为ξ,求ξ的分布列及数学期望E ξ;(Ⅱ)求乙至多投中2次的概率;(Ⅲ)求乙恰好比甲多投进2次的概率.解:(Ⅰ)ξ的可能取值为:0,1,2,3. …1分;27832)0(303=⎪⎭⎫ ⎝⎛==C P ξ;943231)1(213=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;923231)2(223=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛==C P ξ.27131)3(333=⎪⎭⎫ ⎝⎛==C P ξξ的分布列如下表:……4分127139229412780=⨯+⨯+⨯+⨯=ξE . 5分 (Ⅱ)乙至多投中2次的概率为87211333=⎪⎭⎫ ⎝⎛-C . ……8分(Ⅲ)设乙比甲多投中2次为事件A ,乙恰投中2次且甲恰投中0次为事件B 1, 乙恰投中3次且甲恰投中1次为事件B 2,则2121,,B B B B A =为互斥事件. ……10分=+=)()()(21B P B P A P 61819483278=⨯+⨯.所以乙恰好比甲多投中2次的概率为61. …13分16.(2012年房山一模16)今年雷锋日,某中学从高中三个年级选派4名教师和20名学生去当雷锋志愿者,学生的名额分配如下:高一年级 高二年级 高三年级 10人6人4人(I )若从20名学生中选出3人参加文明交通宣传,求他们中恰好有1人是高一年级学生的概率;(II )若将4名教师安排到三个年级(假设每名教师加入各年级是等可能的,且各位教师的选择是相互独立的),记安排到高一年级的教师人数为X ,求随机变量X 的分布列和数学期望.解:(I )设“他们中恰好有1人是高一年级学生”为事件A ,则()3815320210110==C C C A P答:若从选派的学生中任选3人进行文明交通宣传活动,他们中恰好有1人是高一年级学生的概率为3815. ……4分(II )解法1:ξ的所有取值为0,1,2,3,4.由题意可知,每位教师选择高一年级的概率均为31.所以 …6分()8116323104004=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;()8132323113114=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;()2788124323122224==⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;()818323131334=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;()811323140444=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ. 11分随机变量ξ的分布列为:ξ 0 1 2 3 4P81168132 278 818 811 …12分 所以3481148183812428132181160=⨯+⨯+⨯+⨯+⨯=ξE …13分解法2:由题意可知,每位教师选择高一年级的概率均为31. …5分则随机变量ξ服从参数为4,31的二项分布,即ξ~)31,4(B .……7分 随机变量ξ的分布列为:ξ 0 1 2 3 4P8116 8132 278 818 811 所以34314=⨯==np E ξ ……13分17.(2012年密云一模理17)在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰,已知某选手能正确回答第一、二、三、四轮问题的概率分别为56、45、34、13,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手进入第三轮才被淘汰的概率;(Ⅱ)求该选手至多进入第三轮考核的概率;(Ⅲ)该选手在选拔过程中回答过的问题的个数记为X ,求随机变量X 的分布列和期望. 解:设事件(1,2,3,4)iA i =表示“该选手能正确回答第i 轮问题”,由已知12345431(),(),(),()6543P A P A P A P A ====(Ⅰ)设事件B 表示“该选手进入第三轮才被淘汰”, 则331212()()()()()P B P A A A P A P A P A ==543116546⎛⎫=⨯⨯-= ⎪⎝⎭.…3分(Ⅱ)设事件C 表示“该选手至多进入第三轮考核”, 则123112()()P C P A A A A A A =++1231121515431()()()(1)6656542P A P A A P A A A =++=+⨯+⨯⨯-=;…7分(Ⅲ)X 的可能取值为1,2,3,411(1)()6P X P A ===,21541(2)()(1)656P X P A A ===⨯-=,3125431(3)()(1)6546P X P A A A ===⨯⨯-=,1235431(4)()6542P X P A A A ===⨯⨯=,所以,的分布列为1111()123436662E X =⨯+⨯+⨯+⨯=17.(2012年门头沟一模理17)将编号为1,2,3,4的四个材质和大小都相同的球,随机放入编号为1,2,3,4的四个盒子中,每个盒子放一个球,ξ表示球的编号与所放入盒子的编号正好相同的个数.(Ⅰ)求1号球恰好落入1号盒子的概率;(Ⅱ)求ξ的分布列和数学期望ξE .解:(Ⅰ) 设事件A 表示 “1号球恰好落入1号盒子”,33441()4A P A A ==所以1号球恰好落入1号盒子的概率为14……5分(Ⅱ)ξ的所有可能取值为0,1,2,4 ……6分44333(0)8P A ξ⨯=== 44421(1)3P A ξ⨯===22441(2)4C P A ξ===4411(4)24P A ξ===(每个1分)……10分所以ξ的分布列为……11分数学期望31110124183424E ξ=⨯+⨯+⨯+⨯= ……13分。

2012年北京市西城区初三一模试卷数学

2012年北京市西城区初三一模试卷数学

数学3..的.1.计算:2( )A.-1 B.-3 C.3 D.52.我市深入实施环境污染整治,某经济开发区的40家化工企业中已关停、整改32家,每年排放的污水减少了167000吨.将167000用科学记数法表示为( )A.316710⨯B.416.710⨯C.51.6710⨯D.60.16710⨯3.已知,如图,AD与BC相交于点O,AB∥CD,如果∠B=20°,∠D=40°,那么∠BOD为( )A.40°B.50°C.60°D.70°4.因式分解()219x--的结果是( )A.()()24x x+-B.()()81x x++C.()()24x x-+D.()()108x x-+5.如图,是由一些相同的小正方体搭成的几何体的三视图,搭成这个几何体的小正方体的个数有( )A.2个B.3个C.4个D.6个6.已知抛一枚均匀硬币正面朝上的概率为12,下列说法正确的是( )A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现下面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的7.如图,AB是⊙O的直径,AB=4,AC是弦,AC=AOC为( )A.120°B.130°C.140°D.150°ACBO8.如图,在△ABC中,∠ACB=90°,AC=BC=2.E、F分别是射线AC、CB上的动点,且AE=BF,EF与AB交于点G,EH⊥AB于点H,设AE=x,GH=y,下面能够反映y与x之间函数关系的图象是( )二、填空题(本题共16分,每小题4分)9.函数y=__________.10.如图,点P在双曲线(0)ky kx=≠上,点(12)P',与点P关于y轴对称,则此双曲线的解析式为.11.如图,在平面直角坐标系中,等边三角形ABC的顶点B,C,0),过坐标原点O的一条直线分别与边AB,AC交于点M,N,若OM=MN,则点M的坐标为______________.12.如图,点A1,A2,A3,A4,…,A n在射线OA上,点B1,B2,B3,…,B n―1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥A n―1B n―1,A2B1∥A3B2∥A4B3∥…∥A n B n―1,△A1A2B1,△A2A3B2,…,△A n―1A nB n―1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为__________;面积小于2011的阴影三角形共有__________个.三、解答题(本题共30分,每小题5分)13.计算:1024sin60(-︒-.O1 2 3 4 52),14.(1)解不等式:112x x >+;(2)解方程组20328x y x y -=⎧⎨+=⎩15.已知:如图,A 点坐标为302⎛⎫- ⎪⎝⎭,,B 点坐标为()03,. (1)求过A B ,两点的直线解析式;(2)过B 点作直线BP 与x 轴交于点P ,且使2OP OA =,求ABP ∆的面积.x16.如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD 、等边△ABE .已知∠BAC=30º,EF ⊥AB ,垂足为F ,连结DF . (1)求证:AC =EF ;(2)求证:四边形ADFE 是平行四边形.17.先化简:2313(1)2349223x x x x ÷⋅++--;若结果等于23,求出相应x 的值.A BCDEF18.在某市举办的“读好书,讲礼仪”活动中,东华学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)七(1)班全体同学所捐献图书的中位数和众数分别是多少?四、解答题(本题共20分,每小题5分)19.某批发商以每件50元的价格购进800件T恤.第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单位应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元.设第二个月单价降低x元.(1)填表(不需要化简)时间第一个月第二个月清仓时单价(元) 80 ▲40销售量(件) 200 ▲▲(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?20.如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点.(1)求证:△MDC是等边三角形;(2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD交于一点F时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF 周长的最小值.C'CBM21.如图,已知ABC △,以BC 为直径,O 为圆心的半圆交AC 于点F ,点E 为弧CF 的中点,连接BE 交AC 于点M ,AD 为△ABC 的角平分线,且AD BE ⊥,垂足为点H . (1)求证:AB 是半圆O 的切线;(2)若3AB =,4BC =,求BE 的长.22.已知:如图1,矩形ABCD 中,AB =6,BC =8,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 四条边上的点(且不与各边顶点重合),设m =AB +BC +CD +DA ,探索m 的取值范围. (1)如图2,当E 、F 、G 、H 分别是AB 、BC 、CD 、DA 四边中点时,m =________.(2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD 为对称轴翻折,接着再连续翻折两次,从而找到解决问题的途径,求得m 的取值范围.①请在图1中补全小贝同学翻折后的图形;②m 的取值范围是__________.H GF EC DBA 图1图2H GF E CD BA 图3ABDCE FGHA AA五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知一元二次方程x2+ax+a-2=0.(1)求证:不论a为何实数,此方程总有两个不相等的实数根;(2)设a<0,当二次函数y=x2+ax+a-2的图象与x出此二次函数的解析式;(3)在(2)的条件下,若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB,若存在求出P点坐标,若不存在请说明理由.24.如图,在△ABC中,点D是BC上一点,∠B=∠DAC=45°.(1)如图1,当∠C=45°时,请写出图中一对相等的线段;_________________(2)如图2,若BD=2,BA AD的长及△ACD的面积.图1CD BA图2AB D C25.巳知二次函数y =a (x 2-6x +8)(a >0)的图象与x 轴分别交于点A 、B ,与y 轴交于点C .点D 是抛物线的顶点.(1)如图①.连接AC ,将△OAC 沿直线AC 翻折,若点O 的对应点0'恰好落在该抛物线的对称轴上,求实数a 的值;(2)如图②,在正方形EFGH 中,点E 、F 的坐标分别是(4,4)、(4,3),边HG 位于边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P 是边EH 或边HG 上的任意一点,则四条线段PA 、PB 、PC 、PD 不能与任何一个平行四边形的四条边对应相等(即这四条线段不能构成平行四边形).“若点P 是边EF 或边FG 上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程;(3)如图②,当点P 在抛物线对称轴上时,设点P 的纵坐标l 是大于3的常数,试问:是否存在一个正数a ,使得四条线段PA 、PB 、PC 、PD 与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.2012年北京市西城区初三一模试卷参考答案1.A .2.C .3.C .4.A .5.C .6.A .7.A .8.C .9.x ≥3.10.2y x -=.11.(5 4 ,3 4 )12.12;6.13.解:原式=1412+-=12-.14.(1)解:112x x ->,112x >,所以2x >. (2)21x y =⎧⎨=⎩15.(1)23y x =+;(2)设P 点坐标为()0x ,,依题意得3x =±,所以P 点坐标分别为()()123030P P -,,,. 1132733224ABP S ∆⎛⎫=⨯+⨯= ⎪⎝⎭,213933224ABP S ∆⎛⎫=⨯-⨯= ⎪⎝⎭,所以ABP ∆的面积为274或94. 17.原式=(23)(23)1233)233223x x x x x x +--+⋅⋅⋅+-=23x ;由23x =23,可,解得x.19.(1)80-x ,200+10x ,800-200-(200+10x );(2)根据题意,得80×200+(80-x )(200+10x )+40[800-200-(200+10x )]-50×800=9000.整理,得x 2-20x +100=0,解这个方程得x 1=x 2=10, 当x =10时,80-x =70>50. 答:第二个月的单价应是70元. 20.解:(1)证明:过点D 作DP ⊥BC ,于点P ,过点A 作AQ ⊥BC 于点Q ,PQCMB∵∠C =∠B =60°∴CP =BQ =12AB ,CP +BQ =AB ,又∵ADPQ 是矩形,AD =PQ , 故BC =2AD ,由已知,点M 是BC 的中点, BM =CM =AD =AB =CD ,即△MDC 中,CM =CD ,∠C =60°, 故△MDC 是等边三角形.(2)解:△AEF 的周长存在最小值,理由如下: 连接AM ,由(1)平行四边形ABMD 是菱形, △MAB ,△MAD 和△MC ′D ′是等边三角形,∠BMA =∠BME +∠AME =60°,∠EMF =∠AMF +∠AME =60°, ∴∠BME =∠AMF ,在△BME 与△AMF 中,BM =AM ,∠EBM =∠FAM =60°, ∴△BME ≌△AMF (ASA ),∴BE =AF ,ME =MF ,AE +AF =AE +BE =AB , ∵∠EMF =∠DMC =60°,故△EMF 是等边三角形,EF =MF , ∵MF 的最小值为点M 到AD即EF 的,△AEF 的周长=AE +AF +EF =AB +EF , △AEF 的周长的最小值为2答:存在,△AEF 的周长的最小值为2. 21.(1)连结CE ,过程略;(2)∵3AB =,4BC =.由(1)知,90ABC ∠=,∴5AC =.在ABM △中,AD BM ⊥于H ,AD 平分BAC ∠, ∴3AM AB ==,∴2CM =. 由CME △∽BCE △,得12EC MC EB CB ==. ∴2EB EC =,∴BE =22.(1)20;(2)如图所示(虚线可以不画),20≤m <28.23.解:(1)因为△=a 2-4(a -2)=(a -2)2+4>0,所以不论a 为何实数,此方程总有两个不相等的实数根.(2)设x 1、x 2是y =x 2+ax +a -2=0的两个根,则x 1+x 2=-a ,x 1•x 2=a -2,因两交所以|x 1-x 2|.即:(x 1-x 2)2=13 变形为:(x 1+x 2)-4x 1•x 2=13所以:(-a )2-4(a -2)=13 整理得:(a -5)(a +1)=0解方程得:a =5或-1 又因为:a <0,所以:a =-1所以:此二次函数的解析式为y =x 2-x -3.(3)设点P 的坐标为(x 0,y 0),因为函数图象与x,所以:ABS △PAB =12AB •|y 0|即:|y 0|=3,则y 0=±3当y 0=3时,x 02-x 0-3=3,即(x 0-3)(x 0+2)=0 解此方程得:x 0=-2或3当y 0=-2时,x 02-x 0-3=-3,即x 0(x 0-1)=0 解此方程得:x 0=0或1综上所述,所以存在这样的P 点,P 点坐标是(-2,3),(3,3),(0,-3)或(1,-3).H GFE CDBA24.(1)AB =AC 或AD =BD =CD ;(2)AD1,S △ACD提示:过点A 作AE ⊥BC ,可以求出AD 的长.过D 作平行线或过C 作垂线,可以利用两次相似求面积.ECDB AFABDC25.解:(1)令y =0,由2(68)0a x x -+=解得122,4x x ==;令x =0,解得y =8a .∴点A 、B 、C 的坐标分别是(2,0)、(4,0)、(0,8a ), 该抛物线对称轴为直线x =3. ∴OA =2.如图①,设抛物线对称轴与x 轴交点为M ,则AM =1. 由题意得:2O A OA '==.∴2O A AM '=,∴∠O ′AM =60°.∴OC AO ==,即8a =.∴4a =. (2)若点P 是边EF 或边FG 上的任意一点,结论同样成立.(Ⅰ)如图②,设点P 是边EF 上的任意一点(不与点E 重合),连接PM . ∵点E (4,4)、F (4,3)与点B (4,0)在一直线上,点C 在y 轴上, ∴PB <4,PC ≥4,∴PC >PB . 又PD >PM >PB ,PA >PM >PB , ∴PB ≠PA ,PB ≠PC ,PB ≠PD .∴此时线段PA 、PB 、PC 、PD 不能构成平行四边形. (Ⅱ)设P 是边FG 上的任意一点(不与点G 重合), ∵点F 的坐标是(4,3),点G 的坐标是(5,3).∴FB =3,GB =PB∵PC ≥4,∴PC >PB .GCDB A2012年北京市西城区初三一模试卷数学11 / 11图①(3)存在一个正数a ,使得线段PA 、PB 、PC 能构成一个平行四边形. 如图③,∵点A 、B 时抛物线与x 轴交点,点P 在抛物线对称轴上, ∴PA =PB .∴当PC =PD 时,线段PA 、PB 、PC 能构成一个平行四边形. ∵点C 的坐标是(0,8a ),点D 的坐标是(3,-a ). 点P 的坐标是(3,t ),∴PC 2=32+(t -8a )2,PD 2=(t +a )2.整理得7a 2-2ta +1=0,∴Δ=4t 2-28.∵t 是一个常数且t >3,∴Δ=4t 2-28>0∴方程7a 2-2ta +1=0有两个不相等的实数根2147t t a ±==.显然0a =>,满足题意. ∵当t 是一个大于3的常数,存在一个正数7t a =,使得线段PA 、PB 、PC 能构成一个平行四边(图②)(图③)。

[数学]2012年北京各城区中考一模数学试题汇编

[数学]2012年北京各城区中考一模数学试题汇编

2012年北京各城区一模试题汇编第8题汇总:1.(12海淀一模)2.(12西城一模)对于实数c 、d ,我们可用min{ c ,d }表示c 、d 两数中较小的数,如min{3,1-}=1-.若关于x 的函数y = min{22x ,2()a x t -}的图象关于直线3x =对称,则a 、t 的值可能是A .3,6B .2,6- C.2,6 D .2-,63.(12丰台一模)如图,矩形ABCD 中,AB =3,BC =5,点P 是BC 边上的一个动点(点P 不与点B 、C 重合),现将△PCD 沿直线PD 折叠,使点C 落到点C’处;作∠BPC’的角平分线交AB 于点E .设BP =x ,BE =y ,则下列图象中,能表示y 与x 的函数关系的图象大致是A .B .C .D .E PC’A DBCA 、CA第8题图D7.(12延庆一模) 将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的A .面CDHEB .面BCEFC .面ABFGD .面ADHG8.(12房山一模) 如图,梯形ABCD 中,AB ∥CD ,∠A =30°,∠B =60°,AD =32,CD =2,点P 是线段AB 上一个动点,过点P 作PQ ⊥AB 于P ,交其它边于Q ,设BP 为x ,△BPQ 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( ).xy 6312O xy 6312O A Bxy 6312O xy 6312O C D9.(12密云一模)在正方体的表面上画有如图⑴中所示的粗线,图⑵是其展开图的示意图,但只在A 面上画有粗线,那么将 图⑴中剩余两个面中的粗线画入图⑵中,画法正确的是10.(12通州一模)如图,在平行四边形ABCD中,AC = 4,BD = 6,P是BD上的任一点,过P作EF∥AC,与平行四边形的两条边分别交于点E,F.设BP=x,EF=y,则能大致反映y与x之间关系的图象为()A B C D11.(12顺义一模)12.(12东城一模)如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度向B点运动,同时动点N自A点出发沿折线AD—DC—CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间的函数关系的是A B C D13.(12朝阳一模)已知关于x 的一元二次方程02=++n mx x 的两个实数根分别为a x =1,b x =2(b a <),则二次函数n mx x y ++=2中,当0<y 时,x 的取值范围是 A .a x < B .b x > C .b x a << D .a x <或b x >第12题汇总:1.(12海淀一模)2.(12西城一模)如图,直角三角形纸片ABC 中,∠ACB =90°,AC=8,BC =6.折叠该纸片使点B 与点C 重合,折痕与AB 、BC 的交点分别为D 、E . (1) DE 的长为 ;(2) 将折叠后的图形沿直线AE 剪开,原纸片被剪成三块,其中最小一块的面积等于 .3.(12丰台一模)在数学校本活动课上,张老师设计了一个游戏,让电动娃娃在边长为1的正方形的四个顶点上依次跳动.规定:从顶点A 出发,每跳动一步的长均为1.第一次顺时针方向跳1步到达顶点D ,第二次逆时针方向跳2步到达顶点B ,第三次顺时针方向跳3步到达顶点C ,第四次逆时针方向跳4步到达顶点C ,… ,以此类推,跳动第10次到达的顶点是 ,跳动第2012次到达的顶点是 .ADCB4.(12石景山一模)一个正整数数表如下(表中下一行中数的个数是上一行中数的个数的2倍):则第4行中的最后一个数是 ,第n 行中共有 个数, 第n 行的第n 个数是 .5.(12昌平一模)己知□ABCD 中,AD =6,点E 在直线AD 上,且DE =3,连结BE 与对角线AC 相交于点M ,则MCAM= .6.(12平谷一模)abc 是一个三位的自然数,已知195abc ab a --=,这个三位数是_____________;聪明的小亮在解决这种问题时,采取列成连减竖式的方法(见右图)确定要求的自然数,请你仿照小亮的作法,解决这种问题.如果abcd 是一个四位的自然数,且2993abcd abc ab a ---=那么,这个四位数是_____________.7.(12延庆一模) 将1、2、3、6按右侧方式排列.若规定(m,n )表示第m 排从左向右第n 个数,则(7,3)所表示的数是 ;(5,2)与(20,17)表示的两数之积是111122663263323第1排第2排第3排第4排第5排8.(12房山一模)如图,已知Rt △ABC 中,∠ACB =90°,AC =6,BC = 8,过直角顶点C 作CA 1⊥AB ,垂足为A 1,再过A 1作A 1C 1⊥BC ,垂足为C 1,过C 1作C 1A 2⊥AB ,垂足为A 2,再过A 2作A 2C 2⊥BC ,垂足为C 2,…,这样一直作下去,得到了一组线段CA 1,A 1C 1,C 1A 2,A 2C 2,…,A n C n ,则A 1C 1= ,A n C n = .9.(12密云一模)在∠A (0°<∠A <90°)的内部画线段,并使线段的两端点分别落在角的两边AB 、AC 上,如图所示,从点A 1开始,依次向右画线段,使线段与线段在两端点处互相垂直,A 1A 2为第1条线段.设AA 1=A 1A 2=A 2A 3=1,则∠A = ;若记线段A 2n-1A 2n 的长度为a n (n 为正整数),如A 1A 2=a 1,A 3A 4=a 2,则此时a 2= ,a n = (用含n 的式子表示).10.(12通州一模)已知如图,△ABC 和△DCE 都是等边三角形,若△ABC 的边长为1,则△BAE 的面积是 .四边形ABCD 和四边形BEFG 都是正方形,若正方形ABCD 的边长为4,则△FAC 的面积是 .……如果两个正多边形ABCDE …和BPKGY …是正n (n ≥3)边形,正多边形ABCDE …的边长是2a ,则△KCA 的面积是 .(结果用含有a 、n 的代数式表示)ABCA 1A 2A 3A 4A 5 C 1 23 4 5 12题图第12题图E11.(12顺义一模)12.(12东城一模) 如图,正方形ABCD 的边长为10,内部有6个全等的正方形,小正方形的顶点E 、F 、G 、H 分别落在边AD 、AB 、BC 、CD 上,则DE 的长为 .13.(12朝阳一模)如图,在正方形ABCD 中,AB =1,E 、F 分别是BC 、CD 边上点,(1)若CE =12CB ,CF =12CD ,则图中阴影部分的面积是 ;(2)若CE =1n CB ,CF =1nCD ,则图中阴影部分的面积是 (用含n 的式子表示,n 是正整数).第22题汇总: 1.(12海淀一模)A2.(12西城一模)阅读下列材料:问题:如图1,在正方形ABCD内有一点P,PA=5,PB=2,PC=1,求∠BPC的度数.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连结PP′.请你参考小明同学的思路,解决下列问题:(1) 图2中∠BPC的度数为;(2) 如图3,若在正六边形ABCDEF内有一点P,且P A=132,PB=4,PC=2,则∠BPC的度数为,正六边形ABCDEF的边长为.图1 图3CB A D3.(12丰台一模) 将矩形纸片分别沿两条不同的直线剪两刀,可以使剪得的三块纸片恰能拼 成一个等腰三角形(不能有重叠和缝隙).小明的做法是:如图1所示,在矩形ABCD 中,分别取AD 、AB 、CD 的中点P 、E 、F ,并沿直线PE 、PF 剪两刀,所得的三部分可拼成等腰三角形△PMN (如图2). (1)在图3中画出另一种剪拼成等腰三角形的示意图;(2)以矩形ABCD 的顶点B 为原点,BC 所在直线为x 轴建立平面直角坐标系(如图4),矩形ABCD 剪拼后得到等腰三角形△PMN ,点P 在边AD 上(不与点A 、D 重合),点M 、N 在x 轴上(点M 在N 的左边).如果点D 的坐标为(5,8),直线PM 的解析式为=y kx b ,则所有满足条件的k 的值为 .图1 图2 图3图4 备用P E FDAPE FD A4.(12石景山一模)生活中,有人用纸条可以折成正五边形的形状,折叠过程是将图①中.(1)将,若将展开,展开后的平面图形是 ;(2)若原长方形纸条(图①)宽为2cm ,求(1)中展开后平面图形的周长(可以用三角函数表示).5.(12昌平一模) 问题探究:(1)如图1,在边长为3的正方形ABCD 内(含边)画出使∠BPC =90°的一个点P ,保留作图痕迹;(2)如图2,在边长为3的正方形ABCD 内(含边)画出使∠BPC =60°的所有的点P ,保留作图痕迹并简要说明作法;(3)如图3,已知矩形ABCD ,AB =3,BC =4,在矩形ABCD 内(含边)画出使∠BPC =60°,且使△BPC 的面积最大的所有点P ,保留作图痕迹.图① 图② 图③图3图2图1A DCBABCDD CBA图1图26.(12平谷一模)如图①,在矩形ABCD 中,将矩形折叠,使点B 落在AD (含端点)上,落点记为E ,这时折痕与边BC 或边CD (含端点)交于点F .然后再展开铺平,则以B E F 、、为顶点的BEF △称为矩形ABCD 的“折痕三角形”.(1)由“折痕三角形”的定义可知,矩形ABCD 的任意一个“折痕BEF △”一定是一个________三角形;(2)如图②,在矩形ABCD 中,24AB BC ==,,当它的“折痕BEF △”的顶点E 位于边AD 的中点时,画出这个“折痕BEF △”,并求出点F 的坐标;(3)如图③,在矩形ABCD 中,24AB BC ==,.当点F 在OC 上时,在图③中画出该矩形中面积最大的“折痕BEF △”,并直接写出这个最大面积.7.(12延庆一模)阅读下面材料:小红遇到这样一个问题,如图1:在△ABC 中,AD ⊥BC ,BD=4,DC=6,且∠BAC=45°,求线段AD 的长.图3小红是这样想的:作△ABC 的外接圆⊙O ,如图2:利用同弧所对圆周角和圆心角的关系,可以知道∠BOC=90°,然后过O 点作OE ⊥BC 于E ,作OF ⊥AD 于F ,在Rt △BOC 中可以求出⊙O 半径及 OE ,在Rt △AOF 中可以求出AF,最后利用AD=AF+DF 得以解决此题。

精品解析:北京市西城区2012届第一学期期末考试数学(理)试题解析(学生版)

精品解析:北京市西城区2012届第一学期期末考试数学(理)试题解析(学生版)

第Ⅰ卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项. 1.复数i1i =+( )(A )1i 22+(B )1i 22-(C )1i 22-+(D )1i 22--2.已知圆的直角坐标方程为2220x y y +-=.在以原点为极点,x 轴正半轴为极轴的极坐标系中,该圆的方程为( ) (A )2cos ρθ= (B )2sin ρθ= (C )2cos ρθ=-(D )2sin ρθ=-3.已知向量(3,1)=a ,(0,2)=-b .若实数k 与向量c 满足2k +=a b c ,则c 可以是( ) (A )(3,1)-(B )(1,3)--(C )(3,1)--(D )(1,3)-4.执行如图所示的程序框图,输出的S 值为( )(A )3(B )6- (C )10(D )15-5.已知点(,)P x y 的坐标满足条件1,2,220,x y x y ≤⎧⎪≤⎨⎪+-≥⎩那么22x y +的取值范围是( )(A )[1,4] (B )[1,5] (C )4[,4]5(D )4[,5]56.已知,a b ∈R .下列四个条件中,使a b >成立的必要而不充分的条件是( ) (A )1a b >- (B )1a b >+ (C )||||a b >(D )22a b >7.某几何体的三视图如图所示,该几何体的体积是( ) (A )8 (B )83(C )4 (D )438.已知点(1,1)A --.若曲线G 上存在两点,B C ,使A B C △为正三角形,则称G 为Γ型曲线.给定下列三条曲线:①3(03)y x x =-+≤≤; ② 22(20)y x x =--≤≤; ③ 1(0)y x x=->.其中,Γ型曲线的个数是( ) (A )0 (B )1(C )2 (D )3第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9. 函数21()log f x x=的定义域是______.10.若双曲线221x ky -=的一个焦点是(3,0),则实数k =______.11.如图,P A 是圆O 的切线,A 为切点,P B C是圆O 的割线.若32P A B C=,则P B B C=______.12. 已知{}n a 是公比为2的等比数列,若316a a -=,则1a = ;22212111naaa+++= ______.13. 在△A B C 中,三个内角A ,B ,C 的对边分别为a ,b ,c .若25b =,4B π∠=,5sin 5C =,则c = ;a = .14. 有限集合P 中元素的个数记作c a r d ()P .已知c a rd ()10M =,A M ⊆, B M ⊆,A B =∅ ,且card()2A =,card()3B =.若集合X 满足A X M ⊆⊆,则集合X 的个数是_____;若集合Y 满足Y M ⊆,且A Y ⊄,B Y ⊄,则集合Y 的个数是_____.(用数字作答)三、解答题共6小题,共80分. 解答应写出文字说明,演算步骤或证明过程.15.(本小题满分13分)已知函数2()3sin sin cosf x x x x=+,π[,π]2x∈.(Ⅰ)求()f x的零点;(Ⅱ)求()f x的最大值和最小值.16.(本小题满分13分)盒中装有7个零件,其中2个是使用过的,另外5个未经使用.(Ⅰ)从盒中每次随机抽取1个零件,每次观察后都将零件放回盒中,求3次抽取中恰有1次抽到使用过的零件的概率;(Ⅱ)从盒中随机抽取2个零件,使用后...放回盒中,记此时盒中使用过的零件个数为X,求X 的分布列和数学期望.18.(本小题满分13分)已知椭圆:C 22221(0)x y a b ab+=>>的一个焦点是(1,0)F ,且离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)设经过点F 的直线交椭圆C 于,M N 两点,线段M N 的垂直平分线交y 轴于点0(0,)P y ,求0y 的取值范围.19.(本小题满分14分)已知函数)1ln(21)(2x axx x f +--=,其中a ∈R .(Ⅰ)若2x =是)(x f 的极值点,求a 的值; (Ⅱ)求)(x f 的单调区间;(Ⅲ)若)(x f 在[0,)+∞上的最大值是0,求a 的取值范围.20.(本小题满分13分)已知数列12:,,,n n A a a a .如果数列12:,,,n n B b b b 满足1n b a =,11k k k k b a a b --=+-, 其中2,3,,k n = ,则称n B 为n A 的“衍生数列”.(Ⅰ)若数列41234:,,,A a a a a 的“衍生数列”是4:5,2,7,2B -,求4A ;(Ⅱ)若n 为偶数,且n A 的“衍生数列”是n B ,证明:n B 的“衍生数列”是n A ; (Ⅲ)若n 为奇数,且n A 的“衍生数列”是n B ,n B 的“衍生数列”是n C ,….依次将数列n A ,n B ,n C ,…的第(1,2,,)i i n = 项取出,构成数列:,,,i i i i a b c Ω .证明:i Ω是等差数列.。

10.2012初三一模题答案-西城

10.2012初三一模题答案-西城

北京市西城区2012年初三一模试卷数学答案及评分标准 2012. 5一、选择题(本题共32分,每小题4分) 题号 1 2 3 4 5 6 7 8 答案ACBCBDBC二、填空题(本题共16分,每小题4分)9 10 1112 x ≥-2()223b a -13 13+-或(各2分)4,4(各2分)三、解答题(本题共30分,每小题5分)13.解:原式=32133321++⨯- …………………………………………………………4分=323+.…………………………………………………………………… 5分14.解:由①得2->x .……………………………………………………………………1分由②得x ≤37. ……………………………………………………………………3分 ∴ 原不等式组的解集是-2< x ≤37.………………………………………………4分∴ 它的非负整数解为0,1,2.………………………………………………… 5分 15.(1)证明:如图1.∵ ∠ABC=90º,D 为AB 延长线上一点,∴ ∠ABE=∠CBD=90º . …………………………………………………1分 在△ABE 和△CBD 中,⎪⎩⎪⎨⎧=∠=∠=,,,BD BE CBD ABE CB AB∴ △ABE ≌△CBD. …………………… 2分 (2)解:∵ AB=CB ,∠ABC=90º,∴ ∠CAB =45°. …….…………………… 3分 又∵ ∠CAE=30º,∴ ∠BAE =15°. ……………………………………………………………4分∵ △ABE ≌△CBD ,①② 图1⎪⎩⎪⎨⎧-+<-21 15)1(3x x x ,≥2x -4,∴ ∠BCD =∠BAE =15°. ……………………………………………………5分16. 解:原式=()()()()2a ab a b a b b a a b ++-⋅- =()22bb a +. ..….….….….….……………………3分 ∵ 2a +b =0,∴ a b 2-=. ……………………………………………………………………… 4分∴ 原式=22224)2()(a a a a =--.∵ a 不为0,∴ 原式=41. ..….….….….……………………………………………………… 5分17. 解:(1)∵ 反比例函数 的图象经过点),2(m A ,∴ 2m k =,且m >0.∵ AB ⊥x 轴于点B ,△AOB 的面积为1,∴ 1212m ⋅⋅=.解得 1=m . ……………………………………………………………… 1分 ∴ 点A 的坐标为)1,2(. ………………………………………………… 2分 ∴ 22k m ==. …………………………………………………………… 3分 (2)点C 的坐标为(0,3)或(0,-1). ……………………………………………… 5分 18.解:设甲工厂每天能加工x 件新产品,则乙工厂每天能加工1.5x 件新产品.依题意得 105.112001200+=x x . ……………………………………………………2分解得40=x . …………………………………………………………………… 3分 经检验,40=x 是原方程的解,并且符合题意. …………………………… 4分∴ 605.1=x .答: 甲工厂每天能加工40件新产品, 乙工厂每天能加工60件新产品. ……………5分 四、解答题(本题共20分,每小题5分)19.解:(1)2,50;…………………………………2分 (2)5040%20⨯=,C 组的户数为20. … 3分补图见图2. …………………………4分 (3)∵ 500(28%8%)180⨯+=,∴ 根据以上信息估计,全社区捐款不少 于300元的户数是180.……………………………… 5分20.解:(1)∵ 梯形ABCD 中,AD ∥BC ,90A ∠=︒,60C ∠=︒,)0(>=k xky 图2捐款户数分组统计图1∴ 90ABC ∠=︒,180120ADC C ∠=︒-∠=︒. 在Rt △ABD 中,∵90A ∠=︒,15ABD ∠=︒, ∴ 75ADB ∠=︒.∴ 45BDC ADC ADB ∠=∠-∠=︒.…… 2分 (2)作BE CD ⊥于点E ,DF BC ⊥于点F .(如图3)在Rt △BCE 中,∵ BC=2,60C ∠=︒, ∴ sin 3BE BC C =⋅=,cos 1CE BC C =⋅=. ∵ 45BDC ∠=︒, ∴ 3DE BE ==.∴ 31CD DE CE =+=+. …………………………………………… 3分 ∵ BC DF CD BE ⋅=⋅, ∴ (31)33322CD BE DF BC ⋅+⋅+===. …………………………… 4分 ∵ AD ∥BC ,90A ∠=︒,DF BC ⊥,∴ 332AB DF +==. …………………………………………………… 5分 21.解:(1)作OF BD ⊥于点F ,连结OD .(如图4) ∵ ∠BAD=60°,∴ ∠BOD=2∠BAD =120°.……………1分 又∵OB =OD ,∴ 30OBD ∠=︒.……………………… 2分∵ AC 为⊙O 的直径,AC=4, ∴ OB= OD= 2.在Rt △BOF 中,∵∠OFB =90°, OB=2,︒=∠30OBF , ∴ 130sin 2sin =︒=∠⋅=OBF OB OF ,即点O 到BD 的距离等于1. ………………………………………… 3分(2)∵ OB= OD ,OF BD ⊥于点F ,∴ BF=DF .由DE=2BE ,设BE=2x ,则DE=4x ,BD=6x ,EF=x ,BF=3x . ∵ cos303BF OB =⋅︒=,∴ 33x =, EF=33. 在Rt △OEF 中,90OFE ∠=︒,∵ tan 3OFOED EF∠==,图3FEADBC 图4FE DAOCB∴ 60OED ∠=︒,1cos 2OED ∠=. …………………………………… 4分 ∴ 30BOE OED OBD ∠=∠-∠=︒.∴ 90DOC DOB BOE ∠=∠-∠=︒. ∴ 45C ∠=︒.∴ 222CD OC ==. ………………………………………………… 5分 22.解:(1)135°;………………………………………………………………………… 2分(2)120°;………………………………………………………………………… 3分27 . ……………………………………………………………………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)∵ 关于x 的一元二次方程2 10x px q +++=的一个实数根为 2,∴ 22 210p q +++=.…………………………………………………… 1分 整理,得 25q p =--. …………………………………………………… 2分 (2)∵ 222244(25)820(4)4p q p p p p p ∆=-=++=++=++, 无论p 取任何实数,都有2(4)p +≥0,∴ 无论p 取任何实数,都有 2(4)40p ++>.∴ 0∆>. ………………………………………………………………… 3分∴ 抛物线2y x px q =++与x 轴有两个交点.………………………… 4分(3)∵ 抛物线21y x px q =++与抛物线221y x px q =+++的对称轴相同,都为直线2px =-,且开口大小相同,抛物线221y x px q =+++可由抛物线21y x px q =++沿y 轴方向向上平移一个单位得到,(如图5所示,省略了x 轴、y 轴) ∴ EF ∥MN ,EF =MN =1.∴ 四边形FEMN 是平行四边形. ………………5分由题意得 22FEMN pS EF =⨯-=四边形.解得4p =±.………………………………………7分24.证明:(1)如图6.∵ 点B 关于直线CH 的对称点为D ,CH ⊥AB 于点H ,直线DE 交直线CH 于点F ,∴ BF=DF ,DH=BH .…………………1分 ∴ ∠1=∠2.图6图5y 2y 1FE N M又∵ ∠EDA =∠A ,∠EDA =∠1, ∴ ∠A =∠2.∴ BF ∥AC .……………………………………………………………… 2分 (2)取FD 的中点N ,连结HM 、HN . ∵ H 是BD 的中点,N 是FD 的中点,∴ HN ∥BF . 由(1)得BF ∥AC , ∴ HN ∥AC ,即HN ∥EM . ∵ 在Rt △ACH 中,∠AHC =90°, AC 边的中点为M , ∴ 12HM AC AM ==.∴ ∠A =∠3. ∴ ∠EDA =∠3. ∴ NE ∥HM .∴ 四边形ENHM 是平行四边形.……………………………………… 3分 ∴ HN=EM .∵ 在Rt △DFH 中,∠DHF =90°,DF 的中点为N , ∴ 12HN DF =,即2DF HN =.∴ 2DF EM =. ………………………………………………………… 4分 (3)当AB =BC 时,在未添加辅助线和其它字母的条件下,原题图2中所有与BE 相等的线段是EF 和CE . (只猜想结论不给分) 证明:连结CD .(如图8)∵ 点B 关于直线CH 的对称点为D ,CH ⊥AB 于点H ,∴ BC=CD ,∠ABC =∠5. ∵ AB =BC ,∴ 1802ABC A ∠=︒-∠, AB =CD .① ∵ ∠EDA =∠A ,∴ 61802A ∠=︒-∠,AE =DE .② ∴ ∠ABC =∠6=∠5. ∵ ∠BDE 是△ADE 的外角, ∴ 6BDE A ∠=∠+∠. ∵ 45BDE ∠=∠+∠,图7图8∴ ∠A =∠4.③由①,②,③得 △ABE ≌△DCE .………………………………………5分 ∴ BE = CE . ……………………………………………………………… 6分 由(1)中BF=DF 得 ∠CFE=∠BFC . 由(1)中所得BF ∥AC 可得 ∠BFC=∠ECF . ∴ ∠CFE=∠ECF . ∴ EF=CE .∴ BE=EF . ……………………………………………………………… 7分 ∴ BE =EF =CE .(阅卷说明:在第3问中,若仅证出BE =EF 或BE =CE 只得2分)25.解:(1)∵ 2244(2)y ax ax a c a x c =-++=-+,∴ 抛物线的对称轴为直线2x =.∵ 抛物线244y ax ax a c =-++与x 轴交于 点A 、点B ,点A 的坐标为(1,0),∴ 点B 的坐标为(3,0),OB =3.…………… 1分 可得该抛物线的解析式为(1)(3)y a x x =--. ∵ OB =OC ,抛物线与y 轴的正半轴交于点C , ∴ OC =3,点C 的坐标为(0,3).将点C 的坐标代入该解析式,解得a =1.……2分∴ 此抛物线的解析式为243y x x =-+.(如图9)…………………… 3分(2)作△ABC 的外接圆☉E ,设抛物线的对称轴与x 轴的交点为点F ,设☉E 与抛物线的对称轴位于x 轴上方的部分的交点为点1P ,点1P 关于x 轴的对称点为点2P ,点1P 、点2P 均为所求点.(如图10)可知圆心E 必在AB 边的垂直平分线即抛物线的对称轴直线2x =上.∵ 1APB ∠、ACB ∠都是弧AB 所对的圆周角, ∴ ACB B AP ∠=∠1,且射线FE 上的其它点P 都不满足ACB APB ∠=∠. 由(1)可知 ∠OBC=45°,AB=2,OF=2.可得圆心E 也在BC 边的垂直平分线即直线y x =上.∴ 点E 的坐标为(2,2)E .………………………………………………… 4分∴ 由勾股定理得 5EA =.∴ 15EP EA ==. ∴ 点1P 的坐标为1(2,25)P +.…………………………………………… 5分 由对称性得点2P 的坐标为2(2,25)P --. ……………………………… 6分 ∴符合题意的点P 的坐标为1(2,25)P +、2(2,25)P --.图9xyO 1DCBA(3)∵ 点B 、D 的坐标分别为(3,0)B 、(2,1)D -,可得直线BD 的解析式为3y x =-,直线BD 与x 轴所夹的锐角为45°. ∵ 点A 关于∠AQB 的平分线的对称点为A ',(如图11) 若设AA '与∠AQB 的平分线的交点为M ,则有 QA QA '=,AM A M '=,AA QM '⊥,Q ,B ,A '三点在一条直线上. ∵ 2QA QB -=,∴ .2''=-=-=QB QA QB QA BA作A N '⊥x 轴于点N .∵ 点Q 在线段BD 上, Q ,B ,A '三点在一条直线上, ∴ sin451A N BA ''=⋅︒=,cos451BN BA '=⋅︒=. ∴ 点A '的坐标为(4,1)A '. ∵ 点Q 在线段BD 上,∴ 设点Q 的坐标为(,3)Q x x -,其中23x <<. ∵ QA QA '=,∴ 由勾股定理得 2222(1)(3)(4)(31)x x x x -+-=-+--.解得114x =.经检验,114x =在23x <<的范围内.∴ 点Q 的坐标为111(,)44Q -. …………………………………………… 7分此时1115()2(1)2244QAA A AB QAB A Q S S S AB y y '''∆∆∆=+=⋅⋅+=⨯⨯+=.… 8分图10xy O 1FP 2EP 1DCBA图11xyO QMA'DB AN。

北京市西城区北区数学2012年初三毕业试题与答案

北京市西城区北区数学2012年初三毕业试题与答案

北京市西城区(北区)2012年初中毕业考试数 学 试 卷2012.4考生须知 1.本试卷共6页,四道大题,22道小题,满分100分。

考试时间60分钟。

2.在密封线内认真填写学校名称、班级、姓名。

3.试题答案一律书写在指定区域内,否则成绩无效。

题号一二三四总分1516 17 18 19 20 21 22 得分一、选择题答题表 题 号 1 2 3 4 5 6 7 8 9 10 答 案题 号 1112 13 14 答 案下面各题均有四个选项,其中只有一个..是符合题意的,请将答案填写在指定的表格中.............. 1. -3的绝对值是A .3B . -3C .13D .13-2.8的平方根是 A . 2B .2±C .22D .22±3.下列运算正确的是A .32545m m m += B. m 3·m 4=m 12C. m 8÷m 4=m 2D. 236()m m =4.在下列图案中,既是轴对称图形又是中心对称图形的是A B C D 5.等腰△ABC 中,AB=AC ,若∠A=70°,则∠B 的度数是 A .40° B .55° C .65° D .60°6.函数13y x =-中,自变量x 的取值范围是 A .3x ≠ B .3x ≠- C .3x >D .3x >-7.如图,△ABC 中,DE ∥AB ,DE 与AC ,BC 的交点分别为D ,E ,若25CD AC =,则DEAB等于A .23B .25C .32D . 358.如图,若直线y kx b =+经过(1,2)A -和(0,4)B -两点,直线y mx =经过A 点,则关于x 的不等式kx b mx +>的解集是 A . 1x > B . 1x < C . 01x << D . 12x <<9.如图, AB 和AC 分别是⊙O 的直径和弦,OD ⊥AC 于D 点,若OA=4,∠A=30°,则BD 等于A .4 BC .D .10.若反比例函数k y x =的图象经过点A 1(,2)2-,则一次函数y kx k =-+与k y x =在同一坐标系中的大致图象是A B D二、填空题(本题共16分,每小题4分)请将答案填写在第........1.页指定的表格中......... 11.若正n 边形的每一个外角等于45°,则n 等于 .(n 为整数,n ≥3) 12.计算:2(2)(1)(5)x x x -++-= .13.如图,平面直角坐标系xOy 中,正方形ABCD 的顶点B ,D的坐标分别为(0,1)B -,(0,3)D ,A 点在第二象限.则A 点 的坐标为 ,以B 点为顶点,经过A ,C 两点的抛物线 的解析式为 .14.如图,平面直角坐标系xOy 中,M 点的坐标为(3,0), ⊙M 的半径为2,过M 点的直线与⊙M 的交点分别为A ,B ,则△AOB 的面积的最大值为 ,此时A ,B 两点 所在直线与x 轴的夹角等于 °.三、解答题(本题共34分,第17、20题每小题5分,其余每小题6分)15212()2tan 60-+︒.16.用公式法解一元二次方程 2420x x -+=.17.化简22319()m m m ----÷,并求2m =-时代数式的值.18.已知:如图,BE ∥CF ,BE 上的一点A 满足AE= CF ,AD ∥BC ,E ,D , F 三点在一条直线上,EF 与BC 交于G 点. (1)求证:△ADE ≌△CGF ;(2)连结AG ,写出AG 与DC 的位置关系和数量关系.19.某单位有部分职工参与了一项“你最喜欢的球类运动”的调查,每人必须从所给出的球类运动中选出一项,将调查结果绘制成了以下统计图(图中信息不完整),又知道喜欢网球和排球的人数之和等于喜欢其它三项球类的所有人数之和,而且喜欢网球的人数比喜欢排球人数的2倍少5人,根据以上信息解答下列问题:(1)直接写出喜欢排球和喜欢网球的各有多少人;(2)补全统计图;(3)在调查时,有小明、小王、小李和小陈共四人选择了喜欢羽毛球,现要从这四人中随机选出两人去参加一项羽毛球比赛,用列举法或画树形图求小明被选中的概率.20.如图1,扇形AOB中,∠AOB=120°,C为半径OA上一点,CD∥OB,交»AB于D点.(1)当CD =6,AC=1时,直接写出半径OB的长,以及CD与OB的大小关系;(2)在图1中画出以OA,OB为邻边的菱形AOBE,并说明E点的位置;(不要求写菱形AOBE的画法)(3)若将图1中扇形的圆心角∠AOB改为105°(如图2),C仍为半径OA上一点(C点不与O,A两点重合),CD∥OB,交»AB于D点,在图2中画图..说明..满足CD≤OB时D点运动的范围.四、解答题(本题共12分,第21题7分,第22题5分)21.已知:k ,m 为实数,且k <1-,关于x 的方程22(2)()0x k m x k km ++++=有两个相等的实数根. 抛物线22(64)22y x m x k =-+++与直线y kx =的交点分别为A 点,B 点,与y 轴的交点为C ,顶点为D . (1)求m 的值; (2)求D 点的坐标;(3)若2ABD ABC S S ∆∆=,求k 的值.22.已知:如图,在Rt△ABC中,∠C=90°,∠A≠∠B.(1)画出△ABC关于直线AC对称的△AGC:(不要求写画法)(2)在AG边上找一点D,使得BD的中点E满足CE=AD.请利用直尺和圆规作.出.图形,并写出你的简要作图步骤;(只能利用直尺画直线不能测量线段长度)(3)在(1)、(2)和未添加辅助线及其他字母的条件下,直接写出图中与∠ABC相等的角,要求该角以C点为顶点.北京市西城区(北区)2012年初三毕业试卷参考答案及评分标准数 学 2012.4阅卷说明:第12题答案正确但未化简只得2分;13题、14题每空各2分。

20120503西城初三数学一模答案

20120503西城初三数学一模答案

北京市西城区2012年初三一模试卷数学答案及评分标准 2012. 5三、解答题(本题共30分,每小题5分)13.解:原式=32133321++⨯- …………………………………………………………4分 =323+.…………………………………………………………………… 5分14.解:由①得2->x .……………………………………………………………………1分由②得x ≤37. ……………………………………………………………………3分∴ 原不等式组的解集是-2< x ≤37.………………………………………………4分∴ 它的非负整数解为0,1,2.………………………………………………… 5分 15.(1)证明:如图1.∵ ∠ABC=90º,D 为AB 延长线上一点,∴ ∠ABE=∠CBD=90º . …………………………………………………1分 在△ABE 和△CBD 中,⎪⎩⎪⎨⎧=∠=∠=,,,BD BE CBD ABE CB AB∴ △ABE ≌△CBD. …………………… 2分 (2)解:∵ AB=CB ,∠ABC=90º,∴ ∠CAB =45°. (3)分 又∵ ∠CAE=30º,∴ ∠BAE =15°. ……………………………………………………………4分∵ △ABE ≌△CBD ,∴ ∠BCD =∠BAE =15°. ……………………………………………………5分⎪⎩⎪⎨⎧-+<-215)1(3x x x ≥2x -4,16. 解:原式=()()()()2a a b a b a b b a a b ++-⋅- =()22b b a +. ..….….….….….……………………3分 ∵ 2a +b =0,∴ a b 2-=. ……………………………………………………………………… 4分∴ 原式=22224)2()(aa a a =--. ∵ a 不为0,∴ 原式=41. ..….….….….……………………………………………………… 5分17. 解:(1)∵ 反比例函数 的图象经过点),2(m A ,∴ 2m k =,且m >0.∵ AB ⊥x 轴于点B ,△AOB 的面积为1,∴1212m ⋅⋅=. 解得 1=m . ……………………………………………………………… 1分 ∴ 点A 的坐标为)1,2(. ………………………………………………… 2分 ∴ 22k m ==. …………………………………………………………… 3分 (2)点C 的坐标为(0,3)或(0,-1). ……………………………………………… 5分 18.解:设甲工厂每天能加工x 件新产品,则乙工厂每天能加工1.5x 件新产品.依题意得 105.112001200+=x x . ……………………………………………………2分解得40=x . …………………………………………………………………… 3分 经检验,40=x 是原方程的解,并且符合题意. …………………………… 4分∴ 605.1=x .答: 甲工厂每天能加工40件新产品, 乙工厂每天能加工60件新产品. ……………5分 四、解答题(本题共20分,每小题5分)19.解:(1)2,50;…………………………………2分 (2)5040%20⨯=,C 组的户数为20. … 3分补图见图2. …………………………4分 (3)∵ 500(28%8%)180⨯+=,∴ 根据以上信息估计,全社区捐款不少 于300元的户数是180.……………………………… 5分20.解:(1)∵ 梯形ABCD 中,AD ∥BC ,90A ∠=︒,60C ∠=︒,∴ 90ABC ∠=︒,180120ADC C ∠=︒-∠=︒. 在Rt △ABD 中,∵90A ∠=︒,15ABD ∠=︒, ∴ 75ADB ∠=︒.B)0(>=k x ky∴ 45BDC ADC ADB ∠=∠-∠=︒.…… 2分 (2)作BE CD ⊥于点E ,DF BC ⊥于点F .(如图3)在Rt △BCE 中,∵ BC=2,60C ∠=︒, ∴sin BE BC C =⋅cos 1CE BC C =⋅=. ∵ 45BDC ∠=︒, ∴DE BE =∴1CD DE CE =+. …………………………………………… 3分 ∵ BC DF CD BE ⋅=⋅, ∴CD BE DF BC ⋅==. …………………………… 4分 ∵ AD ∥BC ,90A ∠=︒,DF BC ⊥,∴AB DF ==. …………………………………………………… 5分 21.解:(1)作OF BD ⊥于点F ,连结OD .(如图4) ∵ ∠BAD=60°,∴ ∠BOD=2∠BAD =120°.……………1分 又∵OB =OD ,∴ 30OBD ∠=︒.……………………… 2分∵ AC 为⊙O 的直径,AC=4, ∴ OB= OD= 2.在Rt △BOF 中,∵∠OFB =90°, OB=2,︒=∠30OBF , ∴ 130sin 2sin =︒=∠⋅=OBF OB OF ,即点O 到BD 的距离等于1. ………………………………………… 3分(2)∵ OB= OD ,OF BD ⊥于点F ,∴ BF=DF .由DE=2BE ,设BE=2x ,则DE=4x ,BD=6x ,EF=x ,BF=3x . ∵cos30BF OB =⋅︒=∴x =. 在Rt △OEF 中,90OFE ∠=︒, ∵tan OFOED EF∠=∴ 60OED ∠=︒,1cos 2OED ∠=. …………………………………… 4分 ∴ 30BOE OED OBD ∠=∠-∠=︒. ∴ 90DOC DOB BOE ∠=∠-∠=︒. ∴ 45C ∠=︒.∴CD = ………………………………………………… 5分 22.解:(1)135°;………………………………………………………………………… 2分图4AC(2)120°;………………………………………………………………………… 3分. ……………………………………………………………………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)∵ 关于x 的一元二次方程2 10x px q +++=的一个实数根为 2,∴ 22 210p q +++=.…………………………………………………… 1分 整理,得 25q p =--. …………………………………………………… 2分 (2)∵ 222244(25)820(4)4p q p p p p p ∆=-=++=++=++, 无论p 取任何实数,都有2(4)p +≥0,∴ 无论p 取任何实数,都有 2(4)40p ++>.∴ 0∆>. ………………………………………………………………… 3分∴ 抛物线2y x px q =++与x 轴有两个交点.………………………… 4分(3)∵ 抛物线21y x px q =++与抛物线221y x px q =+++的对称轴相同,都为直线2px =-抛物线221y x px q =+++可由抛物线21y x =沿y 轴方向向上平移一个单位得到, (如图5所示,省略了x 轴、y 轴) ∴ EF ∥MN ,EF =MN =1.∴ 四边形FEMN 是平行四边形. ………………由题意得 22FEMN pS EF =⨯-=四边形.解得4p =±.………………………………………724.证明:(1)如图6.∵ 点B 关于直线CH 的对称点为D ,CH ⊥AB 于点H ,直线DE 交直线CH 于点F ,∴ BF=DF ,DH=BH .…………………1分 ∴ ∠1=∠2.又∵ ∠EDA =∠A ,∠EDA =∠1, ∴ ∠A =∠2.∴ BF ∥AC .……………………………………………………………… 2分 (2)取FD 的中点N ,连结HM 、HN . ∵ H 是BD 的中点,N 是FD 的中点,∴ HN ∥BF . 由(1)得BF ∥AC , ∴ HN ∥AC ,即HN ∥EM . ∵ 在Rt △ACH 中,∠AHC =90°, AC 边的中点为M ,21∴ 12HM AC AM ==.∴ ∠A =∠3. ∴ ∠EDA =∠3. ∴ NE ∥HM .∴ 四边形ENHM 是平行四边形.……………………………………… 3分 ∴ HN=EM .∵ 在Rt △DFH 中,∠DHF =90°,DF 的中点为N , ∴ 12HN DF =,即2DF HN =.∴ 2DF EM =. ………………………………………………………… 4分 (3)当AB =BC 时,在未添加辅助线和其它字母的条件下,原题图2中所有与BE相等的线段是EF 和CE . (只猜想结论不给分) 证明:连结CD .(如图8)∵ 点B 关于直线CH 的对称点为D ,CH ⊥AB 于点H ,∴ BC=CD ,∠ABC =∠5. ∵ AB =BC ,∴ 1802ABC A ∠=︒-∠, AB =CD .① ∵ ∠EDA =∠A ,∴ 61802A ∠=︒-∠,AE =DE .② ∴ ∠ABC =∠6=∠5. ∵ ∠BDE 是△ADE 的外角, ∴ 6BDE A ∠=∠+∠. ∵ 45BDE ∠=∠+∠, ∴ ∠A =∠4.③由①,②,③得 △ABE ≌△DCE .………………………………………5分 ∴ BE = CE . ……………………………………………………………… 6分 由(1)中BF=DF 得 ∠CFE=∠BFC . 由(1)中所得BF ∥AC 可得 ∠BFC=∠ECF . ∴ ∠CFE=∠ECF . ∴ EF=CE .∴ BE=EF . ……………………………………………………………… 7分 ∴ BE =EF =CE .(阅卷说明:在第3问中,若仅证出BE =EF 或BE =CE 只得2分)25.解:(1)∵ 2244(2)y ax ax a c a x c =-++=-+,∴ 抛物线的对称轴为直线2x =.∵ 抛物线244y ax ax a c =-++与x 轴交于点A 、点B ,点A 的坐标为(1,0),∴ 点B 的坐标为(3,0),OB =3.…………… 1分 可得该抛物线的解析式为(1)(3)y a x x =--. ∵ OB =OC ,抛物线与y 轴的正半轴交于点C , ∴ OC =3,点C 的坐标为(0,3).将点C 的坐标代入该解析式,解得a =1.……2分∴ 此抛物线的解析式为243y x x =-+.(如图9)…………………… 3分(2)作△ABC 的外接圆☉E ,设抛物线的对称轴与x 轴的交点为点F ,设☉E 与抛物线的对称轴位于x 轴上方的部分的交点为点1P ,点1P 关于x 轴的对称点为点2P ,点1P 、点2P 均为所求点.(如图10)可知圆心E 必在AB 边的垂直平分线即抛物线的对称轴直线2x =上.∵ 1APB ∠、ACB ∠都是弧AB 所对的圆周角, ∴ ACB B AP ∠=∠1,且射线FE 上的其它点P 都不满足ACB APB ∠=∠. 由(1)可知 ∠OBC=45°,AB=2,OF=2.可得圆心E 也在BC 边的垂直平分线即直线y x =上.∴ 点E 的坐标为(2,2)E .………………………………………………… 4分∴ 由勾股定理得 EA =∴ 1EP EA =.∴ 点1P 的坐标为1(2,2P +.…………………………………………… 5分由对称性得点2P 的坐标为2(2,2P -. ……………………………… 6分∴符合题意的点P 的坐标为1(2,2P 、2(2,2P -. (3)∵ 点B 、D 的坐标分别为(3,0)B 、(2,1)D -,可得直线BD 的解析式为3y x =-,直线BD 与x 轴所夹的锐角为45°. ∵ 点A 关于∠AQB 的平分线的对称点为A ',(如图11) 若设AA '与∠AQB 的平分线的交点为M ,则有 QA QA '=,AM A M '=,AA QM '⊥,Q ,B ,A '三点在一条直线上.∵ QA QB -∴ .2''=-=-=QB QA QB QA BA 作A N '⊥x 轴于点N .∵ 点Q 在线段BD 上, Q ,B ,A '三点在一条直线上, ∴ sin 451A N BA ''=⋅︒=,cos 451BN BA '=⋅︒=. ∴ 点A '的坐标为(4,1)A '. ∵ 点Q 在线段BD 上,∴ 设点Q 的坐标为(,3)Q x x -,其中23x <<. ∵ QA QA '=,∴ 由勾股定理得 2222(1)(3)(4)(31)x x x x -+-=-+--.解得114x =. 经检验,114x =在23x <<的范围内.∴点Q的坐标为111(,)44Q-.…………………………………………… 7分此时1115()2(1)2244 QAA A AB QAB A QS S S AB y y'''∆∆∆=+=⋅⋅+=⨯⨯+=.… 8分图11。

2012北京西城北区初三毕业试题及答案

2012北京西城北区初三毕业试题及答案

北京市西城区(北区)2012年初中毕业考试数 学 试 卷 2012.4考生须知1.本试卷共6页,四道大题,22道小题,满分100分。

考试时间60分钟。

2.在密封线内认真填写学校名称、班级、姓名。

3.试题答案一律书写在指定区域内,否则成绩无效。

一、选择题(本题共38分,第1~8题每小题4分,第9、10题每小题3分)下面各题均有四个选项,其中只有一个是符合题意的,请将答案填写在指定的表格中. 1. -3的绝对值是A.3B. -3C.13 D.13-2.8的平方根是 A. 2B.2±C.22 D .22±3.下列运算正确的是A.32545m m m += B. m3·m4=m12C. m8÷m4=m2D. 236()m m =4.在下列图案中,既是轴对称图形又是中心对称图形的是A B C D 5.等腰△ABC 中,AB=AC ,若∠A=70°,则∠B 的度数是 A .40° B .55° C .65° D .60°6.函数13y x =-中,自变量x 的取值范围是A .3x ≠B .3x ≠-C .3x >D .3x >-7.如图,△ABC 中,DE ∥AB ,DE 与AC ,BC 的交点分别为D ,E ,若25CD AC =,则DEAB 等于A .23B .25C .32D . 358.如图,若直线y kx b =+经过(1,2)A -和(0,4)B -两点,直线y mx =经过A 点,则关于x 的不等式kx b mx +>的解集是A. 1x >B. 1x <C. 01x <<D. 12x <<9.如图, AB 和AC 分别是⊙O 的直径和弦,OD ⊥AC 于D 点,若OA=4,∠A=30°,则BD 等于 A .4 B .7 C .27 D .4310.若反比例函数k y x =的图象经过点A 1(,2)2-,则一次函数y kx k =-+与ky x =在同一坐标系中的大致图象是A B C D二、填空题(本题共16分,每小题4分) 请将答案填写在第1页指定的表格中.11.若正n 边形的每一个外角等于45°,则n 等于 .(n 为整数,n ≥3)12.计算:2(2)(1)(5)x x x -++-= . 13.如图,平面直角坐标系xOy 中,正方形ABCD 的顶点B ,D 的坐标分别为(0,1)B -,(0,3)D ,A 点在第二象限.则A 点 的坐标为 ,以B 点为顶点,经过A ,C 两点的抛物线的解析式为 .14.如图,平面直角坐标系xOy 中,M 点的坐标为(3,0), ⊙M 的半径为2,过M 点的直线与⊙M 的交点分别为A , B ,则△AOB 的面积的最大值为 ,此时A ,B 两点 所在直线与x 轴的夹角等于 °.三、解答题(本题共34分,第17、20题每小题5分,其余每小题6分)15.计算:2132()272tan 602--++-︒.16.用公式法解一元二次方程 2420x x -+=.17.化简22319()3693m m m m m m m m ----÷++++ ,并求2m =-时代数式的值.18.已知:如图,BE ∥CF ,BE 上的一点A 满足AE= CF ,AD ∥BC ,E ,D , F 三点在一条直线上,EF 与BC 交于G 点. (1)求证:△ADE ≌△CGF ;(2)连结AG ,写出AG 与DC 的位置关系和数量关系.19.某单位有部分职工参与了一项“你最喜欢的球类运动”的调查,每人必须从所给出的球类运动中选出一项,将调查结果绘制成了以下统计图(图中信息不完整),又知道喜欢网球和排球的人数之和等于喜欢其它三项球类的所有人数之和,而且喜欢网球的人数比喜欢排球人数的2倍少5人,根据以上信息解答下列问题: (1)直接写出喜欢排球和喜欢网球的各有多少人; (2)补全统计图;(3)在调查时,有小明、小王、小李和小陈共四人选择了喜欢羽毛球,现要从这四人中随机选出两人去参加一项羽毛球比赛,用列举法或画树形图求小明被选中的概率. 解:(1)喜欢排球的有 人 ; (2) 喜欢网球的有 人. (3)20.如图1,扇形AOB 中,∠AOB=120°,C 为半径OA 上一点,CD ∥OB ,交AB 于D 点.(1)当CD =6,AC=1时,直接写出半径OB 的长,以及CD 与OB 的大小关系; (2)在图1中画出以OA ,OB 为邻边的菱形AOBE ,并说明E 点的位置;(不要求写菱形AOBE 的画法)(3)若将图1中扇形的圆心角∠AOB 改为105°(如图2),C 仍为半径OA 上一点(C 点不与O ,A 两点重合),CD ∥OB ,交AB 于D 点,在图2中画图说明满足 CD ≤OB 时D 点运动的范围.解:(1)OB= ,CD OB . (3)答: (2)所画菱形AOBE 见图1, E 点的位置是 . .四、解答题(本题共12分,第21题7分,第22题5分)21.已知:k ,m 为实数,且k <1-,关于x 的方程22(2)()0x k m x k km ++++=有两个相等的实数根. 抛物线22(64)22y x m x k =-+++与直线y kx =的交点分别为A 点,B 点,与y 轴的交点为C ,顶点为D.(1)求m 的值; (2)求D 点的坐标;(3)若2ABD ABC S S ∆∆=,求k 的值.22.已知:如图,在Rt △ABC 中,∠C=90°,∠A≠∠B .(1)画出△ABC 关于直线AC 对称的△AGC : (不要求写画法) (2)在AG 边上找一点D ,使得BD 的中点E 满足CE=AD .请利用直尺和圆规作出图 形,并写出你的简要作图步骤;(只能利用直尺画直线不能测量线段长度) (3)在(1)、(2)和未添加辅助线及其他字母的条件下,直接写出图中与∠ABC 相等的角,要求该角以C 点为顶点.解:(2)画图简要步骤如下:(3)在(1)、(2)和未添加辅助线及其他字母的条件下,图中以C点为顶点,且与∠ABC 相等的角的是.北京市西城区(北区)2012年初三毕业试卷参考答案及评分标准数学2012.4一、选择题(本题共38分,第1~8题每小题4分,第9、10题每小题3分)题号 1 2 3 4 5 6 7 8 9 10答案 A D D C B A B A C D二、填空题(本题共16分,每小题4分)题号11 12 13 14答 案82281x x --(2,1)-6 2112y x =-90阅卷说明:第12题答案正确但未化简只得2分;13题、14题每空各2分。

2012年西城区第一次模拟考试之数学篇含答案可编辑

2012年西城区第一次模拟考试之数学篇含答案可编辑

2012年北京市西城区初三一模试卷数学命题人:郑荣国2012.4考生须知1.本试卷共5页,共五道大题,25道小题,满分120分.考试时间120分钟. 2.在试卷和答题纸上认真填写学校名称、班级和姓名. 3.试题答案一律填涂或书写在答题纸上,在试卷上作答无效. 4.在答题纸上,作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,请将本试卷、答题纸和草稿纸一并交回.一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.计算:29-=( )A .-1B .-3C .3D .52.我市深入实施环境污染整治,某经济开发区的40家化工企业中已关停、整改32家,每年排放的污水减少了167000吨.将167000用科学记数法表示为( )A .316710⨯B .416.710⨯C .51.6710⨯D .60.16710⨯3.已知,如图,AD 与BC 相交于点O ,AB ∥CD ,如果∠B =20°,∠D =40°,那么∠BOD 为( )A .40°B .50°C .60°D .70°4.因式分解()219x --的结果是( )A .()()24x x +-B .()()81x x ++C .()()24x x -+D .()()108x x -+5.如图,是由一些相同的小正方体搭成的几何体的三视图,搭成这个几何体的小正方体的个数有( )A .2个B .3个C .4个D .6个6.已知抛一枚均匀硬币正面朝上的概率为12,下列说法正确的是( ) A .连续抛一枚均匀硬币2次必有1次正面朝上 B .连续抛一枚均匀硬币10次都可能正面朝上C .大量反复抛一枚均匀硬币,平均每100次出现下面朝上50次D .通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的7.如图,AB 是⊙O 的直径,AB =4,AC 是弦,AC =23,∠AOC 为( ) A .120°B .130°C .140°D .150°A BCDO8.如图,在△ABC 中,∠ACB =90°,AC =BC =2.E 、F 分别是射线AC 、CB 上的动点,且AE =BF ,EF与AB 交于点G ,EH ⊥AB 于点H ,设AE =x ,GH =y ,下面能够反映y 与x 之间函数关系的图象是( )GHF A CBE yxxyyxyxDCBAOOOO二、填空题(本题共16分,每小题4分)9.函数3y x =-自变量的取值范围是__________. 10.如图,点P 在双曲线(0)ky k x=≠上,点(12)P ',与点P 关于y 轴对称,则此双曲线的解析式为.11.如图,在平面直角坐标系中,等边三角形ABC 的顶点B ,C 的坐标分别为(1,0),(3,0),过坐标原点O 的一条直线分别与边AB ,AC 交于点M ,N ,若OM =MN ,则点M 的坐标为______________.12.如图,点A 1,A 2,A 3,A 4,…,A n 在射线OA 上,点B 1,B 2,B 3,…,B n ―1在射线OB 上,且A 1B 1∥A 2B 2∥A 3B 3∥…∥A n ―1B n ―1,A 2B 1∥A 3B 2∥A 4B 3∥…∥A n B n ―1,△A 1A 2B 1,△A 2A 3B 2,…,△A n ―1A n B n ―1为阴影三角形,若△A 2B 1B 2,△A 3B 2B 3的面积分别为1、4,则△A 1A 2B 1的面积为__________;面积小于2011的阴影三角形共有__________个.xyOABCMN O1 2yx(12)P ',P ACBO三、解答题(本题共30分,每小题5分) 13.计算:102124sin60(3)-+-︒--.14.(1)解不等式:112x x >+;(2)解方程组20328x y x y -=⎧⎨+=⎩15.已知:如图,A 点坐标为302⎛⎫- ⎪⎝⎭,,B 点坐标为()03,. (1)求过A B ,两点的直线解析式; (2)过B 点作直线BP 与x 轴交于点P ,且使2OP OA =,求ABP ∆的面积.11BAOy x16.如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD 、等边△ABE .已知∠BAC =30º,EF ⊥AB ,垂足为F ,连结DF .BO A A 1 A2A 3 A 4 A 5B 1 B 2 B 3B 441(1)求证:AC =EF ;(2)求证:四边形ADFE 是平行四边形.17.先化简:2313(1)2349223x x x x ÷⋅++--;若结果等于23,求出相应x 的值.18.在某市举办的“读好书,讲礼仪”活动中,东华学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐献图书的情况统计图: 请你根据以上统计图中的信息,解答下列问题: (1)该班有学生多少人? (2)补全条形统计图;(3)七(1)班全体同学所捐献图书的中位数和众数分别是多少?ABCDEF四、解答题(本题共20分,每小题5分)19.某批发商以每件50元的价格购进800件T 恤.第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单位应高于购进的价格;第二个月结束后,批发商将对剩余的T 恤一次性清仓销售,清仓时单价为40元.设第二个月单价降低x 元. (1)填表(不需要化简)时间 第一个月 第二个月 清仓时单价(元)80 ▲ 40 销售量(件) 200▲ ▲ (2)如果批发商希望通过销售这批T 恤获利9000元,那么第二个月的单价应是多少元?20.如图,等腰梯形ABCD 中,AD ∥BC ,AD =AB =CD =2,∠C =60°,M 是BC 的中点. (1)求证:△MDC 是等边三角形;(2)将△MDC 绕点M 旋转,当MD (即MD ′)与AB 交于一点E ,MC (即MC ′)同时与AD 交于一点F 时,点E ,F 和点A 构成△AEF .试探究△AEF 的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF 周长的最小值.FEC'D'CDABM21.如图,已知ABC △,以BC 为直径,O 为圆心的半圆交AC 于点F ,点E 为弧CF 的中点,连接BE交AC 于点M ,AD 为△ABC 的角平分线,且AD BE ⊥,垂足为点H . (1)求证:AB 是半圆O 的切线;(2)若3AB =,4BC =,求BE 的长.22.已知:如图1,矩形ABCD 中,AB =6,BC =8,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 四条边上的点(且不与各边顶点重合),设m =AB +BC +CD +DA ,探索m 的取值范围.(1)如图2,当E 、F 、G 、H 分别是AB 、BC 、CD 、DA 四边中点时,m =________.(2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD 为对称轴翻折,接着再连续翻折两次,从而找到解决问题的途径,求得m 的取值范围. ①请在图1中补全小贝同学翻折后的图形; ②m 的取值范围是____________.H GF EC DBA 图1图2HGF E C D BA 图3A BDCE FGH五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知一元二次方程x 2+ax +a -2=0.(1)求证:不论a 为何实数,此方程总有两个不相等的实数根;BD A O AH AC A E AMA F AA(2)设a <0,当二次函数y =x 2+ax +a -2的图象与x 轴的两个交点的距离为13时,求出此二次函数的解析式;(3)在(2)的条件下,若此二次函数图象与x 轴交于A 、B 两点,在函数图象上是否存在点P ,使得△P AB的面积为3132,若存在求出P 点坐标,若不存在请说明理由.24.如图,在△ABC 中,点D 是BC 上一点,∠B =∠DAC =45°. (1)如图1,当∠C =45°时,请写出图中一对相等的线段;_________________ (2)如图2,若BD =2,BA =3,求AD 的长及△ACD 的面积.图1CD BA图2AB D C25.巳知二次函数y=a(x2-6x+8)(a>0)的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.(1)如图①.连接AC,将△OAC沿直线AC翻折,若点O的对应点0'恰好落在该抛物线的对称轴上,求实数a的值;(2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的任意一点,则四条线段P A、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即这四条线段不能构成平行四边形).“若点P是边EF或边FG上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程;(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标l是大于3的常数,试问:是否存在一个正数a,使得四条线段P A、PB、PC、PD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.CDBO'AxyOGH FECDBAxyO2012年北京市西城区初三一模试卷参考答案1.A . 2.C . 3.C .4.A . 5.C . 6.A . 7.A . 8.C . 9.x ≥3.10.2y x -=.11.(54,34)12.12;6.13.解:原式=13234122+-⨯-=12-. 14.(1)解:112x x ->,112x >,所以2x >.(2)21x y =⎧⎨=⎩15.(1)23y x =+;(2)设P 点坐标为()0x ,,依题意得3x =±,所以P 点坐标分别为()()123030P P -,,,. 1132733224ABP S ∆⎛⎫=⨯+⨯= ⎪⎝⎭,213933224ABP S ∆⎛⎫=⨯-⨯= ⎪⎝⎭,所以ABP ∆的面积为274或94. 16.略.17.原式=(23)(23)1233)233223x x x x x x +--+⋅⋅⋅+-=23x ;由23x=23,可,解得x =±2.18.解:(1)因为捐2本的人数是15人,占30%,所以该班人数为1530%=50 (2)根据题意知,捐4本的人数为:50-(10+15+7+5)=13.(如图)(3)七(1)班全体同学所捐献图书的中位数是242+=3(本),众数是2本. 19.(1)80-x ,200+10x ,800-200-(200+10x );(2)根据题意,得80×200+(80-x )(200+10x )+40[800-200-(200+10x )]-50×800=9000.整理,得x 2-20x +100=0,解这个方程得x 1=x 2=10, 当x =10时,80-x =70>50.答:第二个月的单价应是70元. 20.解:(1)证明:过点D 作DP ⊥BC ,于点P ,过点A 作AQ ⊥BC 于点Q ,PQFEC'D'CDA MB∵∠C =∠B =60°∴CP =BQ =12AB ,CP +BQ =AB ,又∵ADPQ 是矩形,AD =PQ , 故BC =2AD ,由已知,点M 是BC 的中点, BM =CM =AD =AB =CD , 即△MDC 中,CM =CD ,∠C =60°, 故△MDC 是等边三角形.(2)解:△AEF 的周长存在最小值,理由如下: 连接AM ,由(1)平行四边形ABMD 是菱形, △MAB ,△MAD 和△MC ′D ′是等边三角形, ∠BMA =∠BME +∠AME =60°,∠EMF =∠AMF +∠AME =60°, ∴∠BME =∠AMF ,在△BME 与△AMF 中,BM =AM ,∠EBM =∠F AM =60°, ∴△BME ≌△AMF (ASA ), ∴BE =AF ,ME =MF ,AE +AF =AE +BE =AB , ∵∠EMF =∠DMC =60°,故△EMF 是等边三角形,EF =MF , ∵MF 的最小值为点M 到AD 的距离错误!未找到引用源。

北京市西城区初三数学一模

北京市西城区初三数学一模

C.﹣B C.∴正面都朝上的概率是:.5.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为()A.20°B.25°C.30°D.40°考点:切线的性质;三角形内角和定理;三角形的外角性质;等腰三角形的性质;圆周角定理.思路:已知给出了CD是圆的切线,所以连接OC,根据切线的性质求出∠OCD,求出∠COD,求出∠A=∠OCA,根据三角形的外角性质求出即可.步骤:解:连接OC,∵CD切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠COD=180°﹣90°﹣40°=50°,∵OA=OC,∴∠A=∠OCA,∵∠A+∠OCA=∠COD=50°,∴∠A=25°.故选B.总结:本题考查了对三角形的外角性质,三角形的内角和定理,切线的性质,等腰三角形的性质的熟练应用.6.某班体育委员统计了全班45名同学一周的体育锻炼时间(单位:小时),并绘制了如图所示的折线统计图,下列说法中错误的是()A.众数是9 B.中位数是9C.平均数是9 D.锻炼时间不低于9小时的有14人考点:折线统计图;算术平均数;中位数;众数.思路:众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的数(或最中间两个数的平均数),叫做这组数据的中位数.平均数是所有数的和除以所有数的个数,D选项从折线统计图中分析数据可得18+10+4=32(人).步骤:解:由图可知,锻炼9小时的有18人,所以9在这组数中出现18次为最多,所以众数是9.把数据从小到大排列,中位数是第23位数,第23位是9,所以中位数是9.平均数是(7×5+8×8+9×18+10×10+11×4)÷45=9,所以平均数是9.锻炼时间不低于9小时的有18+10+4=32,故D错误.故选D.总结:此题主要考查折线统计图的信息分析能力,以及平均数、中位数、众数定义的熟练掌握.7.由n个相同的小正方体堆成的几何体,其主视图、俯视图如图所示,则n的最大值是()A.16 B.18 C.19 D.20考点:由三视图判断几何体.思路:根据主视图是从物体正面看、俯视图是从上面看,根据口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”,即可求出答案.步骤:解:由俯视图知,最少有7个立方块,∵由正视图知在最左边前后两层每层3个立方体,中间3个每层2个立方体和最右边前两排每层3个立方体,∴n的最大值是:3×2+3×2+3×2=18,故选:B.总结:此题主要考查了由三视图判断几何体中小方块的数量的能力.∵二次函数y=ax2+bx+c都可以化成y=a(x﹣m)2+n形式,其中m=﹣,n=,是解答此题的关键.9.函数y=中,自变量x的取值范围是.考点:函数自变量的取值范围.思路:二次根式有意义的条件是:被开方数是非负数.步骤:解:根据题意得:x+2≥0,解得x≥﹣2.故答案为:x≥﹣2.总结:本题主要考查了二次根式中,自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.11.如图,正方形ABCD的面积为3,点E是DC边上一点,DE=1,将线段AE绕点A旋转,使点E落在直线BC上,落点记为F,则FC的长为.考点:旋转的性质;勾股定理;正方形的性质.思路:已知“正方形的面积为3“,所以AD=,而DE=1,在Rt△ADE中,由勾股定理得AE=2,由旋转的性质可知,AF=AE=2,再由勾股定理求BF,得出FC,由于F点在直线BC上,故F点在线段BC上或在线段CB的延长线上.步骤:解:如图,∵正方形ABCD的面积为3,∴AB=BC=AD=,在Rt△ADE中,由勾股定理得AE==2,由旋转的性质可知,AF=AE=2,在Rt△ABF中,由勾股定理,得BF===1,则FC=BC﹣BF=﹣1,当F点在CB延长线上时,BF′=+1,故答案为:﹣1或+1.总结:本题考查了对旋转的性质、勾股定理及正方形的性质的熟练掌握.关键是利用勾股定理求线段长,12.如图,直角三角形纸片ABC中,∠ACB=90°,AC=8,BC=6.折叠该纸片使点B与点C重合,折痕与AB、BC的交点分别为D、E.(1)DE的长为;(2)将折叠后的图形沿直线AE剪开,原纸片被剪成三块,其中最小一块的面积等于.考点:翻折变换(折叠问题).思路:(1)根据图形折叠的性质可知:DE是线段BC的垂直平分线,易证得DE∥AC,即DE是△ABC 的中位线,即可求得DE的长;(2)首先证明△AOC∽△EOD,可由DE∥AC,DE=AC证得。

2012年北京市各区一模数学试题汇编--三角函数

2012年北京市各区一模数学试题汇编--三角函数

2012年北京市各区一模数学试题汇编三角函数(2012年西城一模文科)11. 函数22sin 3cos y x x =+的最小正周期为_____. (2012年西城一模文科)15.(本小题满分13分)在△ABC 中,已知2sin cos sin()B A A C =+.(Ⅰ)求角A ;(Ⅱ)若2BC =,△ABC 的面积是3,求AB .(2012年西城一模理科)5.已知函数44()sin cos f x x x ωω=-的最小正周期是π,那么正数ω=( )(A )2 (B )1 (C )12 (D )14(2012年西城一模理科)15.(本小题满分13分)在△ABC 中,已知sin()sin sin()A B B A B +=+-.(Ⅰ)求角A ;(Ⅱ)若||7BC =,20=⋅AC AB ,求||AB AC +.(2012年东城一模文科)6、已知2sin(45)10α-=-,且090<<α,则cos α的值为 (A )513 (B )1213 (C ) 35 (D )45 (2012年东城一模文科)15、(本小题共13分)已知函数22()(sin2cos2)2sin 2f x x x x =+-.(Ⅰ)求()f x 的最小正周期;(Ⅱ)若函数()y g x =的图象是由()y f x =的图象向右平移8π个单位长度得到的,当x ∈[0,4π]时,求()y g x =的最大值和最小值.(2012年东城一模理科)15、(本小题共13分)已知函数22()(sin2cos2)2sin 2f x x x x =+-.(Ⅰ)求()f x 的最小正周期;(Ⅱ)若函数()y g x =的图象是由()y f x =的图象向右平移8π个单位长度,再向上平移1个单位长度得到的,当x ∈[0,4π]时,求()y g x =的最大值和最小值. (2012年海淀一模文科)10、若tan 2α=,则sin 2α= .(2012年海淀一模文科)15、本小题满分13分) 已知函数()sin sin()3f x x x π=+-. (Ⅰ)求()f x 的单调递增区间; (Ⅱ)在ABC ∆中,角A ,B ,C 的对边分别为,,a b c . 已知3()2f A =,3a b =,试判断ABC ∆的形状(2012年海淀一模理科)11、若1tan 2α=,则cos(2)απ2+= . (2012年海淀一模理科)15、(本小题满分13分)在ABC ∆中,角A ,B ,C 的对边分别为,,a b c ,且A ,B , C 成等差数列. (Ⅰ)若13b =,3a =,求c 的值;(Ⅱ)设sin sin t A C =,求t 的最大值.(2012年朝阳一模文科)3.函数2cos 1y x =+在下列哪个区间上为增函数(A )π[0, ]2 (B )π[, π]2(C )[]0, π (D )[]π, 2π(2012年朝阳一模文科)15.(本小题满分13分)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c .已知2c a =,4C π=. (Ⅰ)求sin A 的值; (Ⅱ)求cos(2)3A π-的值.(2012年朝阳一模理科)15. (本小题满分13分)已知函数π()cos()4f x x =-. (Ⅰ)若72()10f α=,求sin 2α的值; (II )设()()2g x f x f x π⎛⎫=⋅+⎪⎝⎭,求函数()g x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上的最大值和最小值.(2012年丰台一模文科)15.(本小题共13分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin cos cos a B b C c B -=. (Ⅰ)判断△ABC 的形状;(Ⅱ)若()sin +cos f x x x =,求()f A 的最大值.(2012年丰台一模理科)4.已知向量(sin ,cos )a θθ=,(3,4)b =,若a b ⊥,则tan 2θ等于 (A) 247 (B) 67 (C) 2425- (D) 247- (2012年丰台一模理科)7.已知a b <,函数()=sin f x x ,()=cos g x x .命题p :()()0f a f b ⋅<,命题q :函数()g x 在区间(,)a b 内有最值.则命题p 是命题q 成立的(A) 充分不必要条件 (B) 必要不充分条件(C) 充要条件 (D) 既不充分也不必要条件(2012年丰台一模理科)15.(本小题共13分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin cos cos a B b C c B -=. (Ⅰ)判断△ABC 的形状; (Ⅱ)若121()cos 2cos 232f x x x =-+,求()f A 的取值范围. (2012年石景山一模文科)3 函数1sin()y x π=+-的图象( )(2012年石景山一模文科)9.设向量(cos ,1),(1,3cos )a b θθ==,且b a //,则θ2cos = .(2012年石景山一模文科)15.(本小题满分13分)在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,且C b B c a c o s c o s )2(=-. (Ⅰ)求角B 的大小; (Ⅱ)若2,4==a A π,求ABC ∆的面积.(2012年石景山一模理科)9.设向量)cos 3,1(),1,(cos θθ==b a ,且b a //,则θ2cos = .(2012年石景山一模理科)15.(本小题满分13分)在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,且C b B c a c o s c o s )2(=-. (Ⅰ)求角B 的大小;(Ⅱ)若2cos ,22A a ==,求ABC ∆的面积. A .关于2x π=对称 B .关于y 轴对称 C .关于原点对称 D .关于x π=对称。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市西城区2012年高三一模试卷数 学(理科) 2012.4第Ⅰ卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U =R ,集合1{|1}A x x=≥,则U A =ð( ) (A )(0,1) (B )(0,1](C )(,0](1,)-∞+∞ (D )(,0)[1,)-∞+∞2.执行如图所示的程序框图,若输入2x =,则输出y 的 值为( ) (A )2 (B )5 (C )11 (D )233.若实数x ,y 满足条件0,30,03,x y x y x +≥⎧⎪-+≥⎨⎪≤≤⎩则2x y -的最大值为( )(A )9 (B )3 (C )0 (D )3-4.已知正六棱柱的底面边长和侧棱长相等,体积为3123cm . 其三视图中的俯视图如图所示,则其左视图的面积是( ) (A )243cm (B )223cm (C )28cm(D )24cm5.已知函数44()sin cos f x x x ωω=-的最小正周期是π,那么正数ω=( )(A )2(B )1(C )12(D )146.若2log 3a =,3log 2b =,4log 6c =,则下列结论正确的是( ) (A )b a c << (B )a b c << (C )c b a << (D )b c a <<7.设等比数列{}n a 的各项均为正数,公比为q ,前n 项和为n S .若对*n ∀∈N ,有23n n S S <,则q 的取值范围是( ) (A )(0,1](B )(0,2)(C )[1,2)(D )(0,2)8.已知集合230123{|333}A x x a a a a ==+⨯+⨯+⨯,其中{0,1,2}(0,1,2,3)k a k ∈=,且30a ≠.则A 中所有元素之和等于( ) (A )3240(B )3120(C )2997(D )2889第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9. 某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[1314),,[1415),, [1516),,[1617),,[1718],,得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16,18]的学生人数是_____.10.6(2)x -的展开式中,3x 的系数是_____.(用数字作答)11. 如图,AC 为⊙O 的直径,OB AC ⊥,弦BN 交AC于点M .若3OC =,1OM =,则MN =_____.12. 在极坐标系中,极点到直线:l πsin()24ρθ+=的距离是_____.ABCOMN13. 已知函数122,0,(),20,x x c f x x x x ⎧≤≤⎪=⎨+-≤<⎪⎩ 其中0c >.那么()f x 的零点是_____;若()f x 的值域是1[,2]4-,则c 的取值范围是_____.14. 在直角坐标系xOy 中,动点A ,B 分别在射线3(0)3y x x =≥和3(0)y x x =-≥上运动,且△OAB 的面积为1.则点A ,B 的横坐标之积为_____; △OAB 周长的最小值是_____.三、解答题共6小题,共80分. 解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在△ABC 中,已知sin()sin sin()A B B A B +=+-. (Ⅰ)求角A ;(Ⅱ)若||7BC =,20=⋅AC AB ,求||AB AC +.16.(本小题满分13分)乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(Ⅰ)求甲以4比1获胜的概率;(Ⅱ)求乙获胜且比赛局数多于5局的概率; (Ⅲ)求比赛局数的分布列.17.(本小题满分14分)如图,四边形ABCD 与BDEF 均为菱形, ︒=∠=∠60DBF DAB ,且FA FC =. (Ⅰ)求证:AC ⊥平面BDEF ;(Ⅱ)求证:FC ∥平面EAD ; (Ⅲ)求二面角B FC A --的余弦值.ECBADF18.(本小题满分13分)已知函数()e (1)axa f x a x=⋅++,其中1-≥a .(Ⅰ)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)求)(x f 的单调区间.19.(本小题满分14分)已知椭圆:C 22221(0)x y a b a b +=>>的离心率为53,定点(2,0)M ,椭圆短轴的端点是1B ,2B ,且12MB MB ⊥.(Ⅰ)求椭圆C 的方程;(Ⅱ)设过点M 且斜率不为0的直线交椭圆C 于A ,B 两点.试问x 轴上是否存在定点P ,使PM 平分APB ∠?若存在,求出点P 的坐标;若不存在,说明理由.20.(本小题满分13分)对于数列12:,,,(,1,2,,)n n i A a a a a i n ∈=N ,定义“T 变换”:T 将数列n A 变换成数 列12:,,,n n B b b b ,其中1||(1,2,,1)i i i b a a i n +=-=-,且1||n n b a a =-,这种“T 变换”记作()n n B T A =.继续对数列n B 进行“T 变换”,得到数列n C ,…,依此类推,当得到的数列各项均为0时变换结束.(Ⅰ)试问3:4,2,8A 和4:1,4,2,9A 经过不断的“T 变换”能否结束?若能,请依次写出经过“T 变换”得到的各数列;若不能,说明理由;(Ⅱ)求3123:,,A a a a 经过有限次“T 变换”后能够结束的充要条件; (Ⅲ)证明:41234:,,,A a a a a 一定能经过有限次“T 变换”后结束.北京市西城区2012年高三一模试卷数学(理科)参考答案及评分标准2012.4一、选择题:本大题共8小题,每小题5分,共40分.1. C ;2. D ;3. A ;4.A ;5. B ;6. D ;7. A ;8. D .二、填空题:本大题共6小题,每小题5分,共30分.9.54; 10.160-; 11.1; 12.2; 13.1-和0,(0,4]; 14.32,2(12)+. 注:13题、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分.15.(本小题满分13分)(Ⅰ)解:原式可化为 B A B A B A B sin cos 2)sin()sin(sin =--+=. ………………3分因为(0,π)B ∈, 所以 0sin >B , 所以 21cos =A . ………………5分因为(0,π)A ∈, 所以 π3A =. ………………6分(Ⅱ)解:由余弦定理,得 222||||||2||||cos BC AB AC AB AC A =+-⋅.………………8分因为 ||7BC =,||||cos 20AB AC AB AC A ⋅=⋅=,所以 22||||89AB AC +=. ………………10分因为 222||||||2129AB AC AB AC AB AC +=++⋅=, ………………12分所以 ||129AB AC +=. ………………13分16.(本小题满分13分)(Ⅰ)解:由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是21. ………………1分记“甲以4比1获胜”为事件A , 则334341111()C ()()2228P A -==. ………………4分(Ⅱ)解:记“乙获胜且比赛局数多于5局”为事件B . 因为,乙以4比2获胜的概率为3353151115C ()()22232P -==, ………………6分乙以4比3获胜的概率为3363261115C ()()22232P -==, ………………7分所以 125()16P B P P =+=. ………………8分(Ⅲ)解:设比赛的局数为X ,则X 的可能取值为4,5,6,7.44411(4)2C ()28P X ===, ………………9分334341111(5)2C ()()2224P X -===, ………………10分335251115(6)2C ()()22216P X -==⋅=, ………………11分336361115(7)2C ()()22216P X -==⋅=. ………………12分比赛局数的分布列为:X 4 5 6 7 P18 14 516 516………………13分17.(本小题满分14分)(Ⅰ)证明:设AC 与BD 相交于点O ,连结FO .因为 四边形ABCD 为菱形,所以BD AC ⊥, 且O 为AC 中点. ………………1分又 FC FA =,所以 AC FO ⊥. ………3分 因为 O BD FO = ,所以 ⊥AC 平面BDEF . ………………4分 (Ⅱ)证明:因为四边形ABCD 与BDEF 均为菱形,所以AD //BC ,DE //BF ,所以 平面FBC //平面EAD . ………………7分又⊂FC 平面FBC , 所以FC// 平面EAD . ………………8分(Ⅲ)解:因为四边形BDEF 为菱形,且︒=∠60DBF ,所以△DBF 为等边三角形.因为O 为BD 中点,所以BD FO ⊥,故FO ⊥平面ABCD .由OF OB OA ,,两两垂直,建立如图所示的空间直角坐标系xyz O -. ………………9分设2=AB .因为四边形ABCD 为菱形,︒=∠60DAB ,则2=BD ,所以1OB =,3OA OF ==.所以 )3,0,0(),0,0,3(),0,1,0(),0,0,3(),0,0,0(F C B A O -.所以 (3,0,3)CF =,(3,1,0)CB =.设平面BFC 的法向量为=()x,y,z n ,则有0,0.CF CB ⎧⋅=⎪⎨⋅=⎪⎩n n所以 ⎩⎨⎧=+=+.03,033y x z x 取1=x ,得)1,3,1(--=n . ………………12分易知平面AFC 的法向量为(0,1,0)=v . ………………13分由二面角B FC A --是锐角,得 15cos ,5⋅〈〉==n v n v n v. 所以二面角B FC A --的余弦值为515. ………………14分18.(本小题满分13分)(Ⅰ)解:当1a =时,1()e (2)x f x x =⋅+,211()e (2)xf x x x '=⋅+-. ………………2分由于(1)3e f =,(1)2e f '=,所以曲线()y f x =在点(1,(1))f 处的切线方程是2e e 0x y -+=. ………………4分(Ⅱ)解:2(1)[(1)1]()e axx a x f x a x ++-'=,0x ≠. (6)分① 当1-=a 时,令()0f x '=,解得 1x =-.)(x f 的单调递减区间为(,1)-∞-;单调递增区间为(1,0)-,(0,)+∞. (8)分当1a ≠-时,令()0f x '=,解得 1x =-,或11x a =+. ② 当01<<-a 时,)(x f 的单调递减区间为(,1)-∞-,1(,)1a +∞+;单调递增区间为(-,1(0,)1a +. ………………10分 ③ 当0=a 时,()f x 为常值函数,不存在单调区间. ………………④ 当0a >时,)(x f 的单调递减区间为(1,0)-,1(0,)1a +;单调递增区间为(,1)-∞-,1(,)1a +∞+. ………………13分19.(本小题满分14分)(Ⅰ)解:由 222222519a b b e a a-===-, 得 23b a =. ………………2分依题意△12MB B 是等腰直角三角形,从而2b =,故3a =. ………………4分所以椭圆C的方程是22194x y +=. ………………5分 (Ⅱ)解:设11(,)A x y ,22(,)B x y ,直线AB 的方程为2x my =+.将直线AB 的方程与椭圆C 的方程联立,消去x得22(49)16200m y my ++-=. ………………7分所以 1221649m y y m -+=+,1222049y y m -=+. ………………8分若PF 平分APB ∠,则直线PA ,PB 的倾斜角互补, 所以0=+PB PA k k . ………………9分设(,0)P a ,则有12120y yx a x a+=--. 将 112x my =+,222x my =+代入上式, 整理得1212122(2)()0(2)(2)my y a y y my a my a +-+=+-+-,所以 12122(2)()0my y a y y +-+=. ………………将 1221649m y y m -+=+,1222049y y m -=+代入上式, 整理得 (29)0a m -+⋅=. ………………13分由于上式对任意实数m 都成立,所以 92a =. 综上,存在定点9(,0)2P ,使PM 平分APB ∠. ………………14分20.(本小题满分13分)(Ⅰ)解:数列3:4,2,8A 不能结束,各数列依次为2,6,4;4,2,2;2,0,2;2,2,0;0,2,2;2,0,2;….从而以下重复出现,不会出现所有项均为0的情形. ………………2分数列4:1,4,2,9A 能结束,各数列依次为3,2,7,8;1,5,1,5;4,4,4,4;0,0,0,0. ………………3分(Ⅱ)解:3A 经过有限次“T 变换”后能够结束的充要条件是123a a a ==.………………4分若123a a a ==,则经过一次“T 变换”就得到数列0,0,0,从而结束. ……………5分当数列3A 经过有限次“T 变换”后能够结束时,先证命题“若数列3()T A 为常数列,则3A 为常数列”.当123a a a ≥≥时,数列3122313():,,T A a a a a a a ---.由数列3()T A 为常数列得122313a a a a a a -=-=-,解得123a a a ==,从而数列3A 也 为常数列.其它情形同理,得证.在数列3A 经过有限次“T 变换”后结束时,得到数列0,0,0(常数列),由以上命题,它变换之前的数列也为常数列,可知数列3A 也为常数列. ………………8分所以,数列3A 经过有限次“T 变换”后能够结束的充要条件是123a a a ==.(Ⅲ)证明:先证明引理:“数列()n T A 的最大项一定不大于数列n A 的最大项,其中3n ≥”.证明:记数列n A 中最大项为max()n A ,则0max()i n a A ≤≤.令()n n B T A =,i p q b a a =-,其中p q a a ≥.因为0q a ≥, 所以max()i p n b a A ≤≤,故max()max()n n B A ≤,证毕. ………………9分现将数列4A 分为两类.第一类是没有为0的项,或者为0的项与最大项不相邻(规定首项与末项相邻),此时由引理可知,44max()max()1B A ≤-.第二类是含有为0的项,且与最大项相邻,此时44max()max()B A =.下面证明第二类数列4A 经过有限次“T 变换”,一定可以得到第一类数列.不妨令数列4A 的第一项为0,第二项a 最大(0a >).(其它情形同理)① 当数列4A 中只有一项为0时,若4:0,,,A a b c (,,0a b a c bc >>≠),则4():,,||,T A a a b b c c--,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若4:0,,,(,0)A a a b a b b >≠,则4():,0,T A a a b b -;4(()):,,|2|,T T A a a b a b a b ---此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若4:0,,,A a b a (,0a b b >≠),则4():,,,T A a a b a b b--,此数列各项均不为0,为第一类数列;若4:0,,,A a a a ,则4():,0,0,T A a a ;4(()):,0,,0T T A a a ;4((())):,,,T T T A a a a a , 此数列各项均不为0,为第一类数列.② 当数列4A 中有两项为0时,若4:0,,0,A a b (0a b ≥>),则4():,,,T A a a b b ,此数列各项均不为0,为第一类数列;若4:0,,,0A a b (0a b ≥>),则():,,,0T A a a b b -,(()):,|2|,,T T A b a b b a -,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列.③ 当数列4A 中有三项为0时,只能是4:0,,0,0A a ,则():,,0,0T A a a ,(()):0,,0,T T A a a ,((())):,,,T T T A a a a a ,此数列各项均不为0,为第一类数列.总之,第二类数列4A 至多经过3次“T 变换”,就会得到第一类数列,即至多连续经历3次“T 变换”,数列的最大项又开始减少.又因为各数列的最大项是非负整数,故经过有限次“T 变换”后,数列的最大项一定会为0,此时数列的各项均为0,从而结束. ………………13分。

相关文档
最新文档