【说课稿】含分母的一元一次不等式组的解法(5)
一元一次不等式优秀教案
一元一次不等式【课时安排】3课时【第一课时】【教学目标】1.理解一元一次不等式、不等式的解、不等式的解集、解不等式等概念。
2.会解一元一次不等式,并会在数轴上表示不等式的解集。
3.通过类比一元一次方程的有关概念、解法来学习一元一次不等式的有关概念及解法,发展学生的类比推理能力。
【教学重点】一元一次不等式的解法和用数轴表示不等式的解集。
【教学难点】准确求一元一次不等式的解集。
【教学过程】一、复习不等式的基本性质二、引例问题:某公司的统计资料表明,科研经费每增加1万元,年利润就增加1.8万元。
如果该公司原来的年利润为200万元,要使年利润超过245万元,那么增加的科研经费应高于多少万元?分析:设该公司增加的科研经费为x万元,根据题意,得:200>+x8.1245三、新授课含有一个未知数,未知数的次数为1,且不等号两边都是整式的不等式叫做一元一次不等式。
(一)问题:请你找出一个数,使得上述不等式成立。
一般地,能够使不等式成立的未知数的值,叫做这个不等式的解。
所有这些解的全体成为这个不等式的解集。
求不等式解集的过程,叫做解不等式。
(二)提示:不等式的解集与不等式的解的区别:解集是使不等式成立的未知数的取值范围,是所有解的集合。
而不等式的解是使不等式成立的未知数的值,二者的关系是解集包含解,所有的解组成解集。
(三)回顾:解一元一次方程的过程 1.去分母(等式基本性质2) 2.去括号(去括号法则)3.移项(移项法则、等式基本性质1) 4.合并同类项(整式加减) 5.系数化为1(等式基本性质2)(四)类比一元一次方程的解法来研究一元一次不等式如何解。
例1:1.解方程:)2(752x x -=+ 2.解不等式:)2(752x x -≤+(五)总结:解一元一次不等式的过程。
(六)将不等式的解集在数轴上表示出来。
(七)注意1.空心点和实心点的使用,注意它们在表示不等式解集时的差别; 2.小于(小于或等于)时向左,大于(大于或等于)时向右。
《一元一次不等式组》说课稿
《一元一次不等式组》说课稿说课内容: 《一元一次不等式组》一、教材分析:(一)地位和作用一元一次不等式组在初中数学中占着十分重要的地位。
它的内容波及到方程、函数、应用题及大型的综合题型中的方案设计。
全面系统地掌握本章知识,是学习好方程、函数的关键所在,是体验数形结合、构建数学模型,使数学知识高度统一的一个重要环节。
也是为学生在今后的生活和学习中更好地应用数学作好准备。
对今后的学习有着十分重要的意义。
(二)教材简析:新课标要求:“要使学生具有初步的创新精神和实践能力”。
在课堂教学设计上.必须通过创设丰富的情境.激发学生的学习和兴趣.引导学生积极参与,主动探索。
因此本节课的目标设定为:学生探究为主,教师引领为辅。
(三)课程目标:1.知识与技能目标:(1)经历一元一次不等式组的解法的探索过程,掌握一元一次不等式组的概念和解法。
(2)运用不等式组的解法解答有关问题。
2.过程和方法目标:(1)通过不等式组的解法的探索,培养学生的观察.分析.归纳.概括的思维能力。
(2)通过探索过程,渗透类比,分类讨论的数学思想。
3情感态度和价值观目标:(1)培养学生的钻研精神,加强学生间的合作与交流.(2)让学生亲自参与.探索.研究的情感体验.增强学习数学的热情. (3)养成实事求是的良好的学习习惯.培养严谨的科学态度和勇于探索的精神.(四)教学重点和难点:教学重点:1、理解有关不等式组的概念。
2、会解由两个一元一次不等式组成的不等式组。
教学难点:在数轴上确定解集。
(五)教学难点突破办法:一般由两个一元一次不等式组成的不等式组由四种基本类型构成,它们的解集、数轴表示,学生很难确定,用顺口溜的方式解决问题,即:大大取大;小小取小;比小大,比大小,中间找;比小小,比大大,解不了(无解)。
二、学生分析:学生已经学习了一元一次不等式,并会解简单的一元一次不等式,知道了用数轴表示一元一次不等式的解集分三步进行:画数轴、定界点、走方向。
《一元一次不等式组的解法 》 教案精品 2022年数学
9.3 一元一次不等式组第1课时 一元一次不等式组的解法1.理解一元一次不等式组及其解集的概念; 2.掌握一元一次不等式组的解法;(重点)3.会利用数轴表示一元一次不等式组的解集.(难点)一、情境导入你能列出上面的不等式并将其解集在数轴上表示出来吗? 二、合作探究探究点一:在数轴上表示不等式组的解集不等式组⎩⎪⎨⎪⎧x <3,x ≥1的解集在数轴上表示为( )解析:把不等式组中每个不等式的解集在数轴上表示出来,它们的公共局部是1≤x <3.应选C.方法总结:利用数轴确定不等式组的解集,如果不等式组由两个不等式组成,其公共局部在数轴上方应当是有两根横线穿过.探究点二:解一元一次不等式组解以下不等式组,并把它们的解集在数轴上表示出来:(1)⎩⎪⎨⎪⎧2x -3≥1,x +2<2x ; (2)⎩⎪⎨⎪⎧3〔x +2〕>x +8,x 4≥x -13.解析:先求出不等式组中每一个不等式的解集,再求它们的公共局部.解:(1)⎩⎪⎨⎪⎧2x -3≥1,①x +2<2x .②解不等式①,得x ≥2,解不等式②,得x >2.所以这个不等式组的解集为x >2.将不等式组的解集在数轴上表示如下:(2)⎩⎪⎨⎪⎧3〔x +2〕>x +8,①x 4≥x -13.②解不等式①,得x >1,解不等式②,得x ≤4. 所以这个不等式组的解集是1<x ≤4. 将不等式组的解集在数轴上表示如下:方法总结:解一元一次不等式组的一般步骤:先分别求出不等式组中每一个不等式的解集,并把它们的解集在数轴上表示出来,然后利用数轴确定这几个不等式解集的公共局部.也可利用口诀确定不等式组的解集:大大取较大,小小取较小,大小小大中间找,大大小小无处找.探究点三:求不等式组的特殊解求不等式组⎩⎪⎨⎪⎧2-x ≥0,x -12-2x -13<13的整数解.解析:分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x 的整数值即可.解:⎩⎪⎨⎪⎧2-x ≥0,①x -12-2x -13<13.②解不等式①,得x ≤2,解不等式②,得x >-3.故此不等式组的解集为-3<x ≤2,x 的整数解为-2,-1,0,1,2.方法总结:求不等式组的特殊解时,先解每一个不等式,求出不等式组的解集,然后根据题目要求确定特殊解.确定特殊解时也可以借助数轴.探究点四:根据不等式组的解集求字母的取值范围假设不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2无解,那么实数a 的取值范围是( )A .a ≥-1B .a <-1C .a ≤1D .a ≤-1解析:解第一个不等式得x ≥-a ,解第二个不等式得x <1.因为不等式组无解,所以-a ≥1,解得a ≤-1.应选D.方法总结:根据不等式组的解集求字母的取值范围,可按以下步骤进行:①解每一个不等式,把解集用数字或字母表示;②根据条件即不等式组的解集情况,列出新的不等式.这时一定要注意是否包括边界点,可以进行检验,看有无边界点是否满足题意;③解这个不等式,求出字母的取值范围.三、板书设计一元一次不等式组⎩⎪⎨⎪⎧概念解法不等式组的解集⎩⎪⎨⎪⎧利用数轴确定解集利用口诀确定解集解一元一次不等式组是建立在解一元一次不等式的根底之上,解不等式组时,先解每一个不等式,再确定各个不等式的解集的公共局部.教学中可以把利用数轴与利用口诀确定不等式组的解集结合起来,互相验证15.1.2 分式的根本性质1.通过类比分数的根本性质,说出分式的根本性质,并能用字母表示.(重点) 2.理解并掌握分式的根本性质和符号法那么.(难点)3.理解分式的约分、通分的意义,明确分式约分、通分的理论依据.(重点) 4.能正确、熟练地运用分式的根本性质,对分式进行约分和通分.(难点)一、情境导入中国古代的数学论著中就有对“约分〞的记载,如?九章算术?中就曾记载“约分术〞,并给出了详细的约分方法,这节课我们就来学习分式化简的相关知识,下面先来探索分式的根本性质.二、合作探究探究点一:分式的根本性质【类型一】 利用分式的根本性质对分式进行变形以下式子从左到右的变形一定正确的选项是( )A.a +3b +3=a b B.a b =acbcC.3a 3b =a bD.a b =a 2b2 解析:A 中在分式的分子与分母上同时加上3不符合分式的根本性质,故A 错误;B 中当c =0时不成立,故B 错误;C 中分式的分子与分母同时除以3,分式的值不变,故C 正确;D 中分式的分子与分母分别乘方,不符合分式的根本性质,故D 错误;应选C.方法总结:考查分式的根本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.【类型二】 不改变分式的值,将分式的分子、分母中各项系数化为整数不改变分式0.2x +12+0.5x的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为( )A.2x +12+5xB.x +54+x C.2x +1020+5x D.2x +12+x解析:利用分式的根本性质,把0.2x +12+0.5x 的分子、分母都乘以10得2x +1020+5x .应选C.方法总结:观察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需根据分式的根本性质让分子和分母同乘以某一个数即可.【类型三】 分式的符号法那么不改变分式的值,使以下分式的分子和分母都不含“-〞号. (1)-3b 2a ;(2)5y -7x 2;(3)-a -2b 2a +b. 解析:在分子的符号,分母的符号,分式本身的符号三者当中同时改变其中的两个,分式的值不变.解:(1)原式=-3b 2a ;(2)原式=-5y 7x 2;(3)原式=-a +2b 2a +b.方法总结:这类题目容易出现的错误是把分子的符号,分母的项的符号,特别是首项的符号当成分子或分母的符号.探究点二:最简分式、分式的约分和通分 【类型一】 判定分式是否是最简分式以下分式是最简分式的是( ) A.2a 2+a ab B.6xy 3aC.x 2-1x +1D.x 2+1x +1解析:A 中该分式的分子、分母含有公因式a ,那么它不是最简分式.错误;B 中该分式的分子、分母含有公因数3,那么它不是最简分式.错误;C 中分子为(x +1)(x -1),所以该分式的分子、分母含有公因式(x +1),那么它不是最简分式.错误;D 中该分式符合最简分式的定义.正确.应选D.方法总结:最简分式的标准是分子,分母中不含公因式.判断的方法是把分子、分母分解因式,并且观察有无公因式.【类型二】 分式的约分约分:(1)-5a 5bc 325a 3bc 4;(2)x 2-2xyx 3-4x 2y +4xy 2. 解析:先找分子、分母的公因式,然后根据分式的根本性质把公因式约去. 解:(1)-5a 5bc 325a 3bc 4=5a 3bc 3〔-a 2〕5a 3bc 3·5c =-a25c; (2)x 2-2xy x 3-4x 2y +4xy 2=x 〔x -2y 〕x 〔x -2y 〕2=1x -2y. 方法总结:约分的步骤:(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.【类型三】 分式的通分通分: (1)b 3a 2c 2,c -2ab ,a5cb 3; (2)1a 2-2a ,a a +2,1a 2-4. 解析:确定最简公分母再通分.解:(1)最简公分母为30a 2b 2c 2,b 3a 2c 2=10b 430a 2b 3c 2,c -2ab =-15ab 3c 330a 2b 3c 2,a 5cb 3=6a 3c30a 2b 3c2;(2)最简公分母为a (a +2)(a -2),1a 2-2a =a 2+2a a 〔a +2〕〔a -2〕,aa +2=a 3-2a 2a 〔a +2〕〔a -2〕,1a 2-4=aa 〔a +2〕〔a -2〕.方法总结:通分的一般步骤:(1)确定分母的最简公分母.(2)用最简公分母分别除以各分母求商.(3)用所得到的商分别乘以分式的分子、分母,化成同分母的分式.三、板书设计分式的根本性质1.分式的根本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.2.符号法那么:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;假设只改变其中一个的符号或三个全变号,那么分式的值变成原分式值的相反数.本节课的流程比拟顺畅,先探究分式的根本性质,然后顺势探究分式变号法那么.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.。
2024年《一元一次不等式》优秀说课稿范文(精选5篇)
2024年《一元一次不等式》优秀说课稿范文(精选5篇)《一元一次不等式》优秀说课稿1说教材的地位与作用《一元一次不等式组》是华东师大版义务教育课程标准实验教科书数学七年级下册第八章第三节,是一元一次不等式知识的综合运用和拓展延伸,是进一步刻画现实世界数量关系的数学模型,是下一节利用一元一次不等式组解决实际问题的关键。
是继一元一次方程、二元一次方程组和一元一次不等式之后,又一次数学建模思想的学习,也是后继学习一元二次方程、函数的重要基础,具有承前启后的重要作用。
说教学目标(一)知识与能力1.掌握一元一次不等式组以及一元一次不等式组的解集的概念。
2.会解一元一次不等式组,并教会学生通过在数轴上表示不等式的解集得到不等式组的解集。
(二)过程与方法1.创设情境,通过实例引导学生考虑多个不等式联合的解法。
并总结一元一次不等式组的解与一元一次不等式的解之间的关系。
2.通过对典型例题的分析加深对结一元一次不等式组的认识。
(三)情感、态度与价值观1.通过数轴的表示不等式组的解,渗透数形结合这一重要的思想方法。
2.在解不等式组的过程中让学生体会数学解题的直观性和简洁性的数学美。
说教学重、难点重点:1.一元一次不等式组的概念,会用数轴表示一元一次不等式组解集的情况。
2.一元一次不等式组的解法。
难点:灵活运用一元一次不等式组的知识解决问题。
(四)说教学方法本节课采用多媒体教学,利用多媒体教学信息容量大、操作简单、形象生动、反馈及时等优点,直观地展示教学内容,这样不但可以提高学习效率和质量,而且容易激发学生学习的兴趣,调动积极性。
(五)说学生的学法:学生已经学习了一元一次不等式,并会解简单的一元一次不等式,知道了用数轴表示一元一次不等式的解集分三步进行:画数轴、定界点、走方向。
本节我们要学习一元一次不等式组,因此由一元一次不等式猜想一元一次不等式组的概念学生易于接受,同时能更好的培养学生的类比推理能力。
本节所选例题也真正的实现了低起点小台阶,循序渐进,能使学生更好的掌握知识。
人教版初中数学一元一次不等式教案范文优秀7篇
人教版初中数学一元一次不等式教案范文优秀7篇一元一次不等式教案篇一一、教学目标:(一)知识与能力目标:(课件第2张)1.体会解不等式的步骤,体会比较、转化的作用。
2.学生理解、巩固一元一次不等式的解法。
3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。
4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。
(二)过程与方法目标:1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。
3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。
4.学生将文字表达转化为数学语言,从而解决实际问题。
5.练习巩固,将本节和上节内容联系起来。
(三)情感、态度与价值目标:(课件第3张)1.在教学过程中,学生体会数学中的比较和转化思想。
2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。
3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。
4.通过本节的学习,学生体会不等式解集的奇异的数学美。
二、教学重、难点:1.掌握一元一次不等式的`解法。
2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。
3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。
三、教学突破:教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。
在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。
在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。
四、教具:计算机辅助教学。
五、教学流程:(一)、复习:教学环节教师活动学生活动设计意图一元一次不等式教案篇二师:下面我们先看一下购物金额对选择哪家超市有何影响?请同学们根据老师给出的学习目标和问题,自学课文一三1页至一三2页例1上边的内容,要求独立或者小组合作,完成书上的问题(1)、(2),时间是10分钟。
含分母的一元一次不等式组的解法
六、词语点将(据意写词)。
1.看望;访问。 ( ) 2.互相商量解决彼此间相关的问题。 ( )
3.竭力保持庄重。 ( ) 4.洗澡,洗浴,比喻受润泽。 ( )
5.弯弯曲曲地延伸的样子。 ( ) 七、对号入座(选词填空)。
冷静 寂静 幽静 恬静 安静
1.蒙娜丽莎脸上流露出( )的微笑。
2.贝多芬在一条( )的小路上散步。 3.同学们( )地坐在教室里。
这两个不等式解集的公共部分是x>4, 所以不等式组的解集是x>4.
(3)
4-5 x>-3 x+8,①
3 1-x >13-5 x.②
解:(3)解不等式①,得x<-2.解不等式②,得x>5. 在数轴上表示不等式①和②的解集,如图.
从数轴上可以看出,这两个不等式的解集没有公 共部分,所以这个不等式组无解.
19、别因为落入了一把牛毛就把一锅奶 油泼掉 ,别因 为犯了 一点错 误就把 一生的 事业扔 掉。——蒙古 20、许多人之所以在生活中一事无成, 最根本 原因在 于他们 不知道 自己到 底要做 什么。 在生活 和工作 中,明 确自己 的目标 和方向 是非常 必要的 。只有 在知道 你的目 标是什 么、你 到底想 做什么 之后, 你才能 够达到 自己的 目的, 你的梦 想才会 变成现 实。
(1)
1 2
x-1
7- 3 x;② 2
解:(1)解不等式①,得x>2.5.解不等式②,得x≤4.
在数轴上表示不等式①和②的解集,如图,
这两个不等式解集的公共部分是2.5<x≤4. 所以不等式组的解集是2.5<x≤4.
3 x-1>2 x+1,① (2) -2x<-8; ② 解:(2)解不等式①,得x>2.解不等式②,得x>4. 在数轴上表示不等式①和②的解集,如图.
数学《一元一次不等式》教学设计(通用6篇)
数学《一元一次不等式》教学设计数学《一元一次不等式》教学设计(通用6篇)作为一名教师,时常需要准备好教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
一份好的教学设计是什么样子的呢?下面是小编精心整理的数学《一元一次不等式》教学设计,仅供参考,欢迎大家阅读。
数学《一元一次不等式》教学设计篇1【教学目标】:1、知识目标:能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模型,会用一元一次不等式解决简单的实际问题。
2、能力目标:通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型3、情感目标:在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习惯;学会在解决问题时,与其他同学交流,培养互相合作精神。
【重点难点】:重点:一元一次不等式在实际问题中的应用。
难点:在实际问题中建立一元一次不等式的数量关系。
关键:突出建模思想,刻画出数量关系,从实际中抽象出数量关系。
注意问题中隐含的不等量关系,列代数式得到不等式,转化为纯数学问题求解。
【教学过程】:创设情境,研究新知这个周末我们要去杜氏旅游渡假村,为此我们要做两个准备:先选择一家旅行社,然后购买一些必需的旅游用品。
在这个过程中,我们会碰到一些问题,看同学们能不能用数学知识来解决。
问题1:中国旅行社的原价是每人100元,可以给我们打7.7折;蓝天旅行社的原价和他们相同,但可以三人免费,并且其他人费用打8折;根据我们的实际情况,要选择哪一家比较省钱?(从生活中的问题入手,激发学生探究问题的兴趣,这是一个最优方案的选择问题,具有一定的开放性和探索性,解这类问题,一般要根据题目的条件,分别计算结果,再比较、择优。
本题通过问题设置,培养学生分析题意的能力,分析题中相关条件,找到不等关系。
七年级数学《一元一次不等式》说课稿
七年级数学《一元一次不等式》说课稿七年级数学《一元一次不等式》说课稿七年级数学《一元一次不等式》说课稿1一、说教学目标1. 了解一元一次不等式的概念;2. 会解一元一次不等式。
3 通过学习对一元一次不等式的概念及解一元一次不等式的探究过程,体会类比数学思想方法。
4、培养学生理论联系实际的思维能力及总结概括能。
基于对数学新课程标准的理解,数学是研究数量关系和变化规律的数学模型,可以帮助学生从数量关系的角度更准确、清晰地认识、描述和把握现实世界,体会数学思想,发展学生的思维水平。
本教材的结构和教学内容分析,结合七年级学生的认知结构和心理特点,基于教学大纲和新课程标准的要求,本章的结构和教学内容分析,结合七年级学生的认知发展水平和心理特点,基于对学情的了解,《一元一次不等式》是人教版必修教材第 9 章第 2 课时的教学内容。
在此之前,学生们已经学习了一元一次方程这为过渡到本课题的学习起到了铺垫的作用。
而本课题的理论、知识是学好以后课题的基础,它在整个教材中起着承上启下的作用。
综上所述,我将本节课的教学重点确定:会解一元一次不等式。
教学难点:把不等式中的未知数化为1这一步时,应根据不等式的性质确定不等号的方向是否改变;二、说教法、学法数学新课程标准指出,数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。
数学知识相对比较抽象,学生在学习是觉得很枯燥,接受新知识会比较困难。
为了激发学生学习的主动性、积极性我采用了复习导入法、演示法、讲解法、类比法。
三、说学法根据七年级学生注意力不太集中,又好动的心理特点我采用了合作讨论法和自主探究法、练习法以提高学生自觉学习的习惯。
四、说教学过程在本节课的教学过程中,我能够根据学生的认知结构和心理特点选择合适的教学方法,激发学生学习的主动性、积极性,将新知识化难为易,提高本节课的教学效果。
我主要从以下五个环节进行教学的。
1、回顾旧知,提出目标首先通过不等式的基本性质和一元一次方程的复习引入课题,体现了数学中常用的类比数学思想,既能激发学生学习的兴趣,同时这种类比思想有利于提高学生的创造性。
《一元一次不等式》说课稿(精选5篇)
《一元一次不等式》说课稿(精选5篇)《一元一次不等式》说课稿1一、教学内容的分析1、教材的地位和作用(1)本节内容、是在学习了用方程思想解决实际问题和一元一次不等式的性质及其解法等知识的基础上、把实际问题和一元一次不等式结合在一起、既是对已学知识的运用和深化、又为今后用不等式组解决实际问题以及更广泛的应用数学建模的思想方法奠定基础、具有在代数学中承上启下的作用;(2)通过本节的学习、学生将继续经历把生活中的数和数量关系转化为数学符号的体验过程、体会不等式和方程一样都是刻画现实世界数量关系的重要模型。
(3)在列不等式解决实际问题的探索过程中、引导学生注意估算意识、体会算式结果所对应的实际意义、渗透建立数学模型、分类讨论等数学思想、对提升学生应用数学意识思考和解决问题的能力起到积极的作用。
2、教学的重点和难点对于用不等式解决实际问题、学生容易出现的认知困难主要有两个方面:①哪类的实际问题需要用一元一次不等式来解决;②如何将实际问题转化为一元一次不等式并加以解决。
根据以上的分析和《数学课程标准》对本课内容的教学要求、本节课的教学重点是:一元一次不等式在决策类实际问题中的应用;难点是:如何将实际问题中的数量关系符号化、并根据解集和结合实际情况分类讨论得出合理结论。
二、教学目标的确定根据本课教材的特点、《数学课程标准》对本节课的教学要求以及学生的认知水平、我从三个方面确定了以下教学目标:1、能进一步熟练的解一元一次不等式、能从实际问题中抽象出不等关系的数学模型、并结合解集解决简单的实际问题。
2、通过观察、实践、讨论等活动、积累利用一元一次不等式解决实际问题的经验、提高分类考虑、讨论问题的能力、感知方程与不等式的内在联系、体会不等式和方程同样都是刻画现实世界数量关系的重要模型。
3、在积极参与数学学习活动的过程中、体会实事求是的态度和从数学的角度思考问题的习惯;学会在解决困难时、与其他同学交流、相互启发、培养合作精神。
完整版)一元一次不等式说课稿
完整版)一元一次不等式说课稿教学重点:1.掌握一元一次不等式的解法.2.熟练运用不等式的性质解一元一次不等式.教学难点:1.通过解一元一次方程的步骤来探索解一元一次不等式的一般步骤.2.用数轴表示解集,启发学生对数形结合思想进一步理解和掌握.二、教法分析本节课的教法应以启发式教学为主,通过引导学生思考和发现,让学生掌握一元一次不等式的解法和应用。
同时,还需要采用巩固练和案例分析等教学方法,加深学生对知识的理解和掌握,提高解题能力。
在教学过程中,要注重学生的参与和互动,引导学生积极思考,提高学生的自主研究能力和创新思维能力。
三、学法分析学生在研究本节课时,应注重以下学法:1.注重理解和记忆基本概念和公式.2.注重练和巩固,熟练掌握不等式的性质和解法.3.注重思考和探究,通过解一元一次方程的步骤来探索解一元一次不等式的一般步骤.4.注重归纳和总结,掌握一元一次不等式的解法和应用.四、教学过程1.引入:通过生活中的例子引入不等式的概念.2.知识点讲解:讲解一元一次不等式的解法和不等式的性质.3.案例分析:通过案例分析巩固学生对知识点的理解和掌握.4.练巩固:通过练巩固学生对知识点的应用和解题能力.5.归纳总结:通过归纳总结,让学生掌握一元一次不等式的解法和应用.五、教学反思本节课的教学设想,通过教材分析、学情分析、教法分析、学法分析和教学过程等方面的综合考虑,制定了具有可行性和针对性的教学目标和教学方案。
在教学实践中,要注重学生的参与和互动,引导学生积极思考,提高学生的自主研究能力和创新思维能力。
同时,要注重教学反思,及时总结教学效果,不断改进教学方法,提高教学质量。
通过对一元一次方程和一元一次不等式的比较,引导学生发现它们的相似之处和不同之处,特别是在解题的过程中,要注意不等号方向的改变问题。
通过类比推理,让学生理解解不等式的一般步骤,并能够用数轴表示解集。
同时,加强“去分母”和“化系数为1”这两个步骤的训练,帮助学生更好地解决不等式问题。
八年级数学北师大版下册名师说课稿:第二章课题 一元一次不等式组及其解集
八年级数学北师大版下册名师说课稿:第二章课题一元一次不等式组及其解集一. 教材分析本次说课的教材是北师大版八年级数学下册第二章课题《一元一次不等式组及其解集》。
本节课的内容是在学生已经掌握了不等式的概念、性质和一元一次不等式的解法的基础上进行学习的。
通过本节课的学习,使学生理解不等式组的含义,掌握不等式组的解法,以及会用图像法表示不等式组的解集,培养学生解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了一元一次不等式的相关知识,具备了一定的逻辑思维能力和解决问题的能力。
但是,对于不等式组的解法和解集的表示方法,可能还存在一定的困难。
因此,在教学过程中,要注重引导学生,激发学生的学习兴趣,帮助学生理解和掌握不等式组的知识。
三. 说教学目标1.知识与技能目标:使学生理解不等式组的含义,掌握不等式组的解法,以及会用图像法表示不等式组的解集。
2.过程与方法目标:通过自主学习、合作交流的方式,培养学生解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的逻辑思维能力,使学生感受到数学在生活中的应用。
四. 说教学重难点1.教学重点:不等式组的解法和不等式组的解集的表示方法。
2.教学难点:不等式组的解集的图像表示方法。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、启发引导的教学方法,让学生在解决问题的过程中,掌握不等式组的知识。
2.教学手段:利用多媒体课件、黑板、粉笔等教学手段,辅助教学。
六. 说教学过程1.导入新课:通过复习一元一次不等式的知识,引出不等式组的概念,激发学生的学习兴趣。
2.自主学习:让学生自主探究不等式组的解法,引导学生发现解法的规律。
3.合作交流:学生分组讨论,分享解法经验,互相学习,共同提高。
4.教师讲解:教师讲解不等式组的解集的表示方法,特别是图像法的含义和画法。
5.练习巩固:让学生通过练习题,巩固所学知识,提高解题能力。
6.总结提升:教师引导学生总结不等式组的知识,使学生形成系统化的知识结构。
【教案】 含分母的一元一次不等式的解法
含分母的一元一次不等式的解法〖教学目标〗1、掌握解一元一次不等式的一般步骤.2、会运用解一元一次不等式的一般步骤解一元一次不等式.〖教学重点与难点〗教学重点:运用解一元一次不等式的一般步骤解一元一次不等式.教学难点:例2步骤较多,容易发生错误,是本节教学的难点.〖教学过程〗一、复习旧知,引入新课:1、不等式的三个基本性质。
2、一元一次不等式的概念。
3、不等式的解的概念。
二、合作交流,探求新知:1、合作学习,根据已学过的知识,你能解下列一元一次不等式吗?(1)5x>3(x-2)+2 (2)2m-3<(7m+3)/22、解一元一次不等式与解一元一次方程的步骤类似。
解一元一次不等式的一般步骤和根据如下:步骤根据1 去分母不等式的基本性质32 去括号单项式乘以多项式法则3 移项不等式的基本性质2合并同类项法则4 合并同类项,得ax>b,或ax<b(a≠o)5 两边同除以a(或乘1/a) 不等式的基本性质33、例1、解不等式3(1-x)>2(1-2x)解:去括号,得 3-3x>2-4x移项,得 -3x+4x>2-3合并同类项,得 x>-14、例2、解不等式(1+x)/2≤(1+2x)/3+1解:去分母,得 3(1+x)≤2(1+2x)+6去括号,得 3+3x≤2+4x+6移项,得 3x-4x≤2+6-3合并同类项,得 -x≤5两边同除以-1,得 x≥-5注:1、五个步骤要求当堂背出,同桌之间可以互相核对。
2、要求作业严格按照上述步骤进行。
三、课内练习解下列不等式,并把解在数轴上表示出来:(1)5x-3<1-3x(2)3(1-3x)-2(4-2x) ≤0(3)(2x-1)/4-(1+x)/6≥1四、小结:1、解一元一次不等式的基本步骤。
2、不等式的解在数轴上的表示方法。
五、作业:。
2020春沪科版七年级数学下册课件-第7章-【说课稿】 含分母的一元一次不等式的解法
含分母的一元一次不等式的解法今天我说课的内容是沪科版数学七年级下第7章第2节的第2课时《解一元一次不等式》,下面我就分别从教材、教法、学法、教学过程和板书设计五个方面来说明我对这节课的教学设想。
一、教材分析<一> 教材的地位和作用在前面已学习了一元一次方程的相关知识和不等式的性质,本节课主要是通过类比一元一次方程的解法总结归纳出一元一次不等式的解法,并熟练运用不等式的性质解一元一次不等式。
只有学生掌握好了一元一次不等式的解法,才能更好学习后面的不等式组及不等式(组)的应用。
同时,学习本节课时涉及的类比思想、化归思想对后继学习也是十分有益的,所以本课的教学不能仅仅停留在知识的探索上,更要注重数学方法和数学思想的渗透和传播。
日常生产生活中不等关系的情况常常发生,所以不等式在日常生产生活中的应用很广泛,它与数、式、方程、函数甚至几何图形有着密切的联系,它几乎渗透到初中数学的每一部分。
可见,本节课内容在本章乃至整个初中数学中都具有承上启下的作用,处于一个基础性、工具性的地位,不仅是对已有知识的运用和深化,还为后继学习打下基础。
<二>教学目标根据《课标》要求和上述教材分析,结合学生的实际情况,我制定了以下教学目标:●知识与技能1.使学生会一元一次不等式的概念;能解一元一次不等式。
2.在依据不等式的性质探究一元一次不等式的解法过程中,加深化归思想。
●过程与方法学生在参与活动过程中,通过联系一元一次方程的解法,自主探索解一元一次不等式的一般步骤,体会数学学习中类比和化归的数学思想。
在数轴上正确表示不等式的解集,加深对数形结合思想方法的理解。
●情感态度和价值观在积极参与数学活动的过程中,通过小组之间的竞争,培养学生集体主义情感;通过讨论发言,培养学生勇于发言、合作交流和团结协作的意识和尊重他人的态度以及独立思考的习惯。
<三>教学重难点和教学关键根据上面的教材分析和《课标》要求,确定本节课的教学重点是:正确求一元一次不等式的解集。
中职数学基础模块上册(人教版)教案:一元一次不等式(组)的解法
中职数学基础模块上册(人教版)教案:一元一次不等式(组)的解法
2.2.2 一元一次不等式(组)的解法
【教学目标】
1. 了解一元一次不等式(组)概念,掌握一元一次不等式(组)的解法.
2. 通过教学,体会数形结合、类比等数学思想方法.
3. 通过对不等式有关概念的学习,培养学生的知识迁移能力和建模意识,以及合作学习的意识.
【教学重点】
一元一次不等式(组)的解法.
【教学难点】
用数轴确定不等式(组)的解集.
【教学方法】
本节课主要采用讲练结合法.首先介绍一元一次不等式的有关概念,接着介绍一元一次不等式的解法及相应的步骤,这是解一元一次不等式组的基础.最后引导学生在数轴上用区间表示各不等式的解集,在此基础上求出相应不等式组的解集.
【教学过程】。
八年级数学一元一次不等式(组)说课稿北师大版
《一元一次不等式组的解法》说课稿金堂县五凤学校唐仕兴我说课的题目是《一元一次不等式组》,内容选自八年级数学下册第一章第六节。
我主要从教材与学情分析、教法学法和手段、教学过程的设计、板书设计、设计说明五个方面来进行说课。
一、教材与学情分析1、教材的地位与作用本节主要学习一元一次不等式组的解集的确定,并要求学生会用数轴确定解集。
它是一元一次不等式的后续学习,也为下节和今后解决实际生产和生活问题奠定了坚实的知识基础。
另外,整个学习的过程中数轴起着不可替代的作用,处处渗透着数形结合的思想,这种数学思想会一直影响着学生今后数学的学习。
因此,一元一次不等式组是初中代数的一个重要内容。
2、学情分析:学生通过第一节课的学习,对一元一次不等式组概念已了解,并经历了“大小小大中间找”确定不等式组解集的探究过程,为此,学习一元一次不等式组的另外三种形式的解集的确定应该有了基础。
3、教学目标:根据以育人为本、以学生发展为本、以学生终身学习为本的理念,依据本节课的教材以及课程标准,我确定本节课的教学目标如下:(1)知识与技能:了解一元一次不等式组的解集的确定,会解由两个一元一次不等式组成的一元一次不等式组(另外三种形式)。
继续加强解一元一次不等式组的技能训练。
(2)数学思考:经历一元一次不等式组解集的探究过程,渗透类比和化归思想。
(3)解决问题:通过利用数轴解一元一次不等式组,培养学生数形结合的思想方法。
(4)情感、态度与价值观:让学生充分参与数学学习活动,从而获得成功的体验,建立良好的自信心。
4、教学重点、难点及关键根据教材的地位与作用、课程标准及学生的实际情况,教学重点确定如下:重点:一元一次不等式组及其解集的含义;一元一次不等式组的解法.由于不等式组的解集是组成它的几个不等式的解集的交集。
一般地,当这个集合是由无限个实数构成时,不可能一一列举出来。
而数轴上的点是与实数一一对应的,所以借助数轴就能直观地把不等式组的解集表示出来。
一元一次不等式及其解法说课稿
《一元一次不等式及其解法》说课稿一、说教材一元一次不等式是表示不等关系的最基本的工具,是学习其他不等式的基础。
初步认识,一元一次不等式的应用价值,从而发展学生的分析问题,解决问题的能力。
二、教学目标通过本节的学习让学生理解并掌握一元一次不等式的概念。
并由一元一次方程的解法到正确地运用不等式的基本性质解一元一次不等式。
使学生初步领会类比的思想方法。
三、重、难点掌握一元一次不等式的解法,并能在数轴上表示出来是本节的重点。
正确地运用不等式的基本性质3本节的难点和关键。
四、教学方法本节我采用“活动——探究——类比——交流——构建”的教学方法。
五、教具投仪、三角板六、教学过程A 、回顾交流观察导入1、什么叫一元一次方程?2、解一元一次方程的一般步骤有哪些?3、练一练、解下列方程(用投影仪)①①4x-3=5x+7 ②4313x x -= (学生上台演讲,教师订正)B 、问题牵引用投影器上有一些不等式。
让学生观察。
①2x-2.5≥15 ②x › ③x ∠4 ④5+3x ≥240学生讨论、找出共同点。
老师总结一元一次不等式和定义:只含有一个未知数,并且未知数的最高数为次这样的不等式叫做一元一次不等式。
②辨析,让学生观察投影器上的一些不等式并指出这些不等式那些是一元一次不等式。
①5›-1 ②x+y ≥0 ③2x ∠1 ④4∠x ⑤|2x-1|>3 ⑥1-3x>-2C 、一元一次不等式的举例例1解下列方程和不等式①3(1-x )=2(x+9) ②3(1-x )<2(x+9)(1)学生叙述解方程过程。
教师板书。
(2)启发学生利用不等式基本性质,依照解一元一次方程的方法步骤常识解不等式。
(让较好的一名学生演板。
其余的在位练习,教师检查)在讲一元一次不等式的解法时,从解法步骤,每步骤变形根据解集方面与解一元一次方程进行对比,找出它们的异同点。
并在此强调不等式的基本性质3的正确应用。
例2解不等式31232-≥+x x 并把它的解集在数轴上表示出来。
含分母的一元一次不等式组的解法
x.②
3 x-1>2 x+1,① (2) -2x<-8; ②
导引:根据解不等式组的一般步骤,分别解不等式组中的
每一个不等式,把它们的解集在数轴上表示出来,
找出解集的公共部分,从而得出不等式组的解集.
5x-2>3 x+1,①
(1)
1 2
x-1
7- 3 x;② 2
解:(1)解不等式①,得x>2.5.解不等式②,得x≤4.
1
的解集为-1<x<1,求a,b
的值.
2x+3<1,
2
若不等式组
x>
1(x-3)的整数解是关于x的方程 2
2x-4=ax的根,求a的值.
1、世上没有绝望的处境,只有对处境 绝望的 人。 2、挑水如同武术,武术如同做人。循序 渐进, 逐步实 现目标 ,才能 避免许 多无谓 的挫折 。
___________________________________ ______ ______ ______ ______ ______ ______ ______ 4.她的光辉照耀着每一个有幸看到她 的人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含分母的一元一次不等式组的解法
一.教材分析
本节课主要学习一元一次不等式组及其解法,是在一元一次不等式的有关概念和解法后,通过分析实际问题并类比方程组引出的一个重要数学概念,进而具体探究解一元一次不等式组的方法步骤。
不仅仅是对前面所学不等式的一个综合运用,而且还是后续学好利用一元一次不等式组解决实际问题的基础和关键。
更是今后研究函数的定义域、值域、研究函数的单调性,求最大值、最小值,一元二次方程根的讨论等数学知识的重要工具.在教材中起到承上启下的作用,处于非常重要的地位。
二.教学目标分析 1.知识技能目标:
(1)知道一元一次不等式组和解一元一次不等式组的含义;
(2)理解一元一次不等式组的解集是这个不等式组中每个不等式的解集的公共部分; (3)会解由两个一元一次不等式组成的不等式组。
2.数学思考目标:
(1)通过类比方程组的有关概念,学习一元一次不等式组的有关概念,体会类比思想。
(2)利用数轴确定一元一次不等式组的解集,体会数形结合思想。
3.解决问题目标:经历操作、观察、归纳、概括过程,感受数学活动充满探索性与创造性,积累数学活动经验。
4.情感态度目标:
(1)在自主探索,合作交流过程中获得成功的体验;
(2)通过本节课学习,培养独立思考的习惯和合作交流的意识。
三.教学重点、难点:
重点:1.理解一元一次不等式组的解集的含义;
2.会解由两个一元一次不等式组成的不等式组。
难点:在数轴上表示公共部分,确定不等式组的解集。
四.教法、学法
教学方法:采用启发式,引导学生观察、归纳、概括。
学习方法:合作交流,自主探究。
五.教学教程分析
(一) 创设情境,引入新知:
多媒体展示:2010年5月,举世瞩目的“上海世博会”在国际金融贸易中
变式训练 巩固新知
归纳小结 优化新知
反馈练习 深化新知
创设情境 引入新知
合作交流 探索新知
心上海市举行。
暑假期间,某市团市委组织120名“品学兼优”的学生前往科技馆参观。
小明发现如果租5辆车则学生有剩余,如果租6辆车则座位有剩余。
你能帮小明算一下,每辆车可以坐多少人吗?
通过设置情境,让学生感受到数学来源于生活,并服务于生活,生活之中无处不体现着数学,然后引导学生认真分析,通过自主探究,合作交流,得出满足题意的两个不等式,从而引入新课,既大大激发了学生求知欲望和好奇心,又培养了学生的思维能力及合作交流意识。
(二)合作交流,探索新知:
探究活动:现有两根木条a 和b ,a 的长10,b 的长3。
如果再找一些木条c ,用这三根木条钉成一个三角形木框,那么对木条c 的长度有什么要求呢? (1) 让学生分小组进行操作,交流。
(2) 教师指导,师生共作。
(3) 引导发现结论。
通过学生熟悉的例子,鼓励学生动手操作,自主探究,让学生在操作、交流、概括过程中,感受不等式组的概念来源于实际问题。
体验数学应用的价值。
1.归纳概念: 像这样,把几个含有同一未知数的一元一次不等式合起来,组成一元一次不
等式组。
练一练:判断题 (1) 2>0
1≥0 是一元一次不等式组。
( )
(2) 3≤6
x >1 是一元一次不等式组。
( )
对概念的理解不是单纯的强调,设计判断题是想让学生根据判断的结果加深对不等式组的概念中的“含有同一未知数”的理解,达到强化概念的目的。
2.观察: 把不等式组 的解集在同一个数轴上表示出来。
结论:一般地,几个一元一次不等式的解集的公共部分叫做由它们所组成的一元一次不等式组的解集。
⎩⎨⎧<>3
2x x X >10-3
X <10+3
2
3
2<x <3
在此活动中让学生带着问题操作,观察,要给足学生自主活动的时间和空间,“从做中来学”让学生更好的理解和掌握不等式组的解集的概念。
进一步感受代数和几何的辨证统一性,渗透数形结合思想,从而感受数学的无穷魅力。
练一练:说出下列各不等式组中,每两个不等式解集的公共部分。
通过练一练,帮助学生总结依靠数轴找公共部分的经验教训,理顺思路,从而进一步完善学生的认知结构。
3.例题1:
解不等式组:
例题教学是课堂教学的一个重要环节。
学习例1的目的在于进一步加深学生对不等式组的解集的理解和掌握解一元一次不等式组的方法步骤。
同时对学生的解题格式进行进一步的规范,培养学生有条理的解决问题的习惯和能力。
4.归纳总结:一元一次不等式组的解法步骤: (三) 变式训练,巩固新知:
变式一: 变式二: 变式三: 变式四: 变式五:
变式是数学教学中巩固知识,提高能力的最好方法。
为了让学生更好地掌握不等式组的解法,我对例题进行了五次变式,其中变式一、二、三是对不等式组(1)的符号进行的变式,目的是为了把不等式组的各种解集的情况再次呈现出来,让学生去操作练习,体现了本节课的重点也突破了本节课的难点。
变式四是把单项式换成多项式,变式五是添加分母,目的是为了突破学生在解不等式的过程中容易出现错误的去分母,去括号。
五个变式由易到难,由浅入深,层层递进,达到熟能生巧的目的。
解决问题:解决创设情境中的问题。
知识在于应用,此环节用不等式组来解决开篇提出实际问题,让学生真正领悟到“数学来源于生活,又应用于生活。
”在教学环节上体现了首尾呼应。
(四)归纳小结,优化新知:
1.本节课你有哪些收获?
-1<2-x 23≥11
(2)
25
3
(1) 8<41
21>1 X <2 X <3 (2X >2 X <3 (3X <2 X >3 (4X >2
X >3 (18>41 21<1 8<4(1)-5
2(1)-3>1
2 2
3 ≤
3
11 3
25 - 1>2-x
8>41
21>1 8<41
21<1
2.你有哪些困惑?
教师提出问题,引导学生从知识、方法、情感三个方面来谈一谈学习这节课的收获,既要注重引导学生将数学知识体系化,又要从能力、情感态度等方面关注学生对课堂的整体感受。
同时,鼓励学生大胆质疑,让学生养成学习——总结——再学习的良好习惯。
(五)反馈练习,深化新知: 第一部分:课堂评价检测题(5分钟)
1.不等式组-1<x <2的解集在数轴上表示为 . 23>5
2.不等式组 32<4 的解集是 .
3.当a <0时,不等式组 X >2a
X >a 的解集是 .
4.解不等式组 21≥3
5<7-3x
学习贵在落实,为了达成目标,我设计了一组课堂评价检测题,供学生进行形成性评价。
同时教师通过反馈的信息,及时了解学生对本节知识的掌握情况,对教学进度和方法进行适当的调整,并对有困难的学生给予个别指导。
(2)填表:(a >b )
不等 式组 解集 归纳
适量的作业,有利于学生掌握所学内容,对学有余力的同学还应该给他们足够的发展空间,因此在作业设计上,我安排了“必做题”和“选做题”。
体现了分层教学构想,以满足不同层次学生的需求。
六.评价与反思:
第二部分:课外作业布置 1.
(1)解下列不等式组
43
1
21<+≤
-x x >a x >b
x <b
x >a x >b
x <a x <a x <b
(一)设计特点:
1.符合学生的认知规律:
从实例引入一元一次不等式组,不刻意地给概念下定义,让全体学生参与实验,探索结论的过程,发挥小组的智慧,学生的认识从具体到抽象,符合现代教育理论中“要把学生学习知识当作认识事物的过程来教学”的观点。
2.重视数学思想方法的渗透:
终要使不等式组中各个不等式变形为x>a或x<a的形式,即依据不等式的性质,使不等式组逐步化简,因此需要逐步提高对“化归”思想的认识。
此外,充分利用数轴对于解不等式组是行之有效的办法,应体现数形结合的研究方法。
数学思想方法对一个人的影响往往要大于具体的数学认识。
3.精选习题,分层作业:
本节课设计了不同度的练习和作业,力求体现新课改所倡导的教学理念:基础性,普及性和发展性。
(二)突出重点的策略:
本节课的重点是“理解一元一次不等式组的解集,会求一元一次不等式组的解集”。
为了突出重点,我采取的策略是:“一个结合,两个层次”。
一个结合——将数学知识与实际问题相结合。
既能丰富教学情境,激发学生的学习热情,又能将抽象的数学概念的形成过程呈现出来,有利于学生的理解。
两个层次——在通过实践操作,观察归纳出一元一次不等式组的解集后,为了让学生更好的理解解集的含义和找到公共部分,我设计了两个层次的练习,一是“练一练”,很直观;二就是通过变式。
这样的设计由浅入深,能使学生从概念的定性分析深入到定量分析,有利于培养学生思维的深度。
(三)突破难点的策略:
本节课的难点是“确定不等式组的解集”,在教学中我采用“一题多变”,不仅活跃了学生的思维,而且也强化了解题训练,提高了学生的计算能力。