高中数学竞赛教材讲义第五章数列讲义
高中数学竞赛讲义(免费)
高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。
高中数学讲义 第五章 数列 (超级详细)
(3)由函数 f (x) x2 8x 5 的单调性: (, 4) 是减区间, (4, ) 是增区间,
所以当 n 4 时, an 最小,即 a4 最小。
点评:该题考察数列通项的定义,会判断数列项的归属,要注重函数与数列之间的联系,用函数的观点解 决数列的问题有时非常方便。
①
2[(b1 b2 ... bn bn1) (n 1)] (n 1)bn1.
②;
②-①,得 2(bn1 1) (n 1)bn1 nbn , 即 (n 1)bn1 nbn 2 0, ③
∴ nbn2 (n 1)bn1 2 0. ④
③-④,得 nbn2 2nbn1 nbn 0, 即
数列的比较简单的数列进行化归与转化. 4.一些简单特殊数列的求通项与求和问题,应注重通性通法的复习.如错位相减法、迭加法、迭乘法等. 5.增强用数学的意识,会针对有关应用问题,建立数学模型,并求出其解.
第 1 课 数列的概念
【考点导读】 1. 了解数列(含等差数列、等比数列)的概念和几种简单的表示方法(列表、图象、通项公式),了解 数列是一种特殊的函数; 2. 理解数列的通项公式的意义和一些基本量之间的关系;
∴ a1 an 60
(2)答案:2
因为前三项和为 12,∴a1+a2+a3=12,∴a2= S3 =4 3
又 a1·a2·a3=48, ∵a2=4,∴a1·a3=12,a1+a3=8, 把 a1,a3 作为方程的两根且 a1<a3, ∴x2-8x+12=0,x1=6,x2=2,∴a1=2,a3=6,∴选 B. 点评:本题考查了等差数列的通项公式及前 n 项和公式的运用和学生分析问题、解决问题的能力。
高中数学竞赛讲义(免费)(完整资料).doc
【最新整理,下载后即可编辑】高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
三、高中数学竞赛基础知识第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。
高中数学竞赛数列专题
高中数学竞赛数列专题摘要:一、高中数学竞赛数列专题简介1.高中数学竞赛背景2.数列专题在竞赛中的重要性3.数列专题的主要内容二、等差数列与等比数列1.等差数列的概念与性质2.等差数列的通项公式与求和公式3.等比数列的概念与性质4.等比数列的通项公式与求和公式三、常见的数列类型1.质数数列2.斐波那契数列3.几何数列4.调和数列四、数列的性质与应用1.数列的递推关系2.数列的极限与无穷数列3.数列在实际问题中的应用五、高中数学竞赛数列专题的备考策略1.掌握基础知识2.熟练运用公式与性质3.分析与解决问题的方法与技巧4.模拟试题与真题训练正文:高中数学竞赛数列专题涵盖了丰富的知识点,旨在培养学生的逻辑思维能力和解决问题的能力。
为了更好地应对数列专题的挑战,我们需要对这一专题有全面的了解,包括基本概念、公式、性质以及实际应用等方面。
首先,高中数学竞赛的背景为选拔优秀的学生参加各类数学竞赛,如全国青少年数学竞赛、国际奥林匹克数学竞赛等。
在这些竞赛中,数列专题具有很高的出现频率和重要性,因此,对这一专题的掌握程度对竞赛成绩有着直接影响。
数列专题的主要内容包括等差数列与等比数列、常见的数列类型、数列的性质与应用等方面。
等差数列与等比数列是数列的基本类型,它们在数学竞赛中占据重要地位。
等差数列具有以下性质:任意两项之差相等;等差数列的通项公式为an=a1+(n-1)d,求和公式为Sn=n/2(2a1+(n-1)d)。
等比数列具有以下性质:任意两项之比相等;等比数列的通项公式为an=a1*q^(n-1),求和公式为Sn=a1*(1-q^n)/(1-q)。
在高中数学竞赛中,还常遇到一些常见的数列类型,如质数数列、斐波那契数列、几何数列和调和数列等。
这些数列具有独特的性质和规律,需要我们熟练掌握其定义、公式和性质。
数列的性质与应用方面,我们需要了解数列的递推关系、极限与无穷数列,以及数列在实际问题中的应用。
递推关系是指数列的通项公式可以通过已知的前几项求得。
高中数学竞赛讲义(全套)
高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。
高中数学竞赛辅导讲义 第五章 数列【讲义】
第五章 数列一、基础知识定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。
其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。
定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。
若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d. 定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式:S n =d n n na a a n n 2)1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn .定义3 等比数列,若对任意的正整数n ,都有q a a nn =+1,则{a n }称为等比数列,q 叫做公比。
定理3 等比数列的性质:1)a n =a 1q n -1;2)前n 项和S n ,当q ≠1时,S n =qq a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。
人教B版高中数学选择性必修第三册精品课件 第五章 数列 5.3.1 第1课时 等比数列的定义
(2)存在一个数列既是等差数列,又是等比数列.( √ )
(3)等比数列中的项可以为零.( × )
(4)若a,b,c三个数满足b2=ac,则a,b,c一定能构成等比数列.( × )
合作探究 释疑解惑
探究一
等比数列的通项公式及应用
【例1】 在等比数列{an}中,
1
由 得 q=2,从而 a1=32,
①
②
1 -1
又 an=1,所以 32× 2
=1,
即26-n=20,所以n=6.
1
方法二:因为 a3+a6=q(a2+a5),所以 q= .
2
由a1q+a1q4=18,知a1=32.
由an=a1qn-1=1,知n=6.
反思感悟
1.已知等比数列的首项a1与公比q可求得数列中的任何一项.
出门望见九堤,堤有九木,木有九枝,枝有九巢,巢有九禽,禽有九雏,雏有九毛,
毛有九色,问各几何?”该问题中的各种东西的数量构成的数列为
9,92,93,…,97 .
2.某人年初投资10 000元,如果年收益率是5%,那么按照复利,5年内各年末
的本利和构成的数列为 10 000×1.05,10 000×1.052,…,10 000×1.055 .
2.在等比数列的通项公式中,已知a1,q,n,an四个量中的任意三个,可以求得
另一个量,即“知三求一”.
【变式训练1】 在等比数列{an}中,a5-a1=15,a4-a2=6,求a3.
解:因为
5 -1 = 1 4 -1 = 15,①
4 -2 = 1 3 -1 = 6,②
4 -1 15
(1)a4=2,a7=8,求an;
高中数学竞赛讲义(全套)
高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。
高中数学竞赛校本教材 (全套 共30讲 有详解)
高中数学竞赛校本教材(共30讲,含详细答案)目录§1数学方法选讲(1) (1)§2数学方法选讲(2) (11)§3集合 (22)§4函数的性质 (30)§5二次函数(1) (41)§6二次函数(2) (55)§7指、对数函数,幂函数 (63)§8函数方程 (73)§9三角恒等式与三角不等式 (76)§10向量与向量方法 (85)§11数列 (95)§12递推数列 (102)§13数学归纳法 (105)§14不等式的证明 (111)§15不等式的应用 (122)§16排列,组合 (130)§17二项式定理与多项式 (134)§18直线和圆,圆锥曲线 (143)§19立体图形,空间向量 (161)§20平面几何证明 (173)§21平面几何名定理 (180)§22几何变换 (186)§23抽屉原理 (194)§24容斥原理 (205)§25奇数偶数 (214)§26整除 (222)§27同余 (230)§28高斯函数 (238)§29覆盖 (245)§29涂色问题 (256)§30组合数学选讲 (265)§1数学方法选讲(1)同学们在阅读课外读物的时候,或在听老师讲课的时候,书上的例题或老师讲解的例题他都能听懂,但一遇到没有见过面的问题就不知从何处入手。
看来,要提高解决问题的能力,要能在竞赛中有所作为,首先得提高分析问题的能力,这就需要学习一些重要的数学思想方法。
例题讲解一、从简单情况考虑华罗庚先生曾经指出:善于“退”,足够的“退”,退到最原始而又不失去重要性的地方,是学好数学的一个诀窍。
高中数学竞赛讲义(全套)
高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。
新教材高中数学第5章数列:数列中的递推pptx课件新人教B版选择性必修第三册
1.数列 1,3,6,10,15,…的递推公式是( ) A.an+1=an+n,n∈N+ B.an=an-1+n,n∈N+,n≥2 C.an+1=an+(n+1),n∈N+ D.an=an-1+(n-1),n∈N+,n≥2
(变条件)若把本例(1)中的 Sn 换为 Sn=2n2-3n+1,再求{an}的通 项公式.
[解] 当 n=1 时,a1=S1=2-3+1=0, 当 n≥2 时,an=Sn-Sn-1=4n-5.(*) 显然 n=1 不满足(*)式, 故 an=04,n-n= 5,1, n≥2.
(已知数列{an}的前 n 项和公式 Sn,求通项公式 an 的步骤: 1当 n=1 时,a1=S1. 2当 n≥2 时,根据 Sn 写出 Sn-1,化简 an=Sn-Sn-1. 3如果 a1 也满足当 n≥2 时,an=Sn-Sn-1 的通项公式,那么数列{an}的 通项公式为 an=Sn-Sn-1;,如果 a1 不满足当 n≥2 时,an=Sn-Sn-1 的通项公
a5=a24+a42=522+×252=31. 故该数列的前 5 项为 1,23,12,25,13.
已知 Sn 求通项公式 an 【例 2】 (教材 P12 例 3 改编)已知数列{an}的前 n 项和为 Sn,求 {an}的通项公式: (1)Sn=2n2-3n; (2)Sn=3n-2. [思路点拨] 应用 an=Sn-Sn-1(n≥2)求解,注意检验 n=1 时 a1 是否满足 an(n≥2).
高中数学专题-数列知识点讲义及练习题
高中数学专题-数列知识点讲义及练习题考点一:数列的概念与表示知识点1数列的有关概念1、数列的三种表示:列表法、图象法和解析式法.2、数列的分类分类标准类型满足条件按项数分类有穷数列项数有限无穷数列项数无限按项与项递增数列1n na a +>其中n ∈N *间的大小关系分类递减数列1n n a a +<常数列1n na a +=按其他标准分类有界数列存在正数M ,使n a M≤摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列周期数列对n ∈N *,存在正整数常数k ,使n k na a +=3、数列的通项公式:如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表达,那么这个公式叫做这个数列的通项公式.4、数列的递推公式:如果已知数列{}n a 的首项(或前几项),且任一项n a 与它的前一项1(2)n a n -≥(或前几项)间的关系可用一个公式来表示,那么这个公式叫做数列的递推公式.知识点2数列通项公式的求法1、观察法:已知数列前若干项,求该数列的通项时,一般对所给的项观察分析,寻找规律,从而根据规律写出此数列的一个通项.2、公式法(1)使用范围:若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式11,(1),(2)-=⎧=⎨-≥⎩n n n S n a S S n 构造两式作差求解.(2)用此公式时要注意结论有两种可能,一种是“一分为二”,即分段式;另一种是“合二为一”,即1a 和n a 合为一个表达,(要先分1=n 和2≥n 两种情况分别进行运算,然后验证能否统一).3、累加法:适用于a n +1=a n +f (n ),可变形为a n +1-a n =f (n )要点:利用恒等式a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)(n ≥2,n ∈N *)求解4、累乘法:适用于a n +1=f (n )a n ,可变形为a n +1a n=f (n )要点:利用恒等式a n =a 1·a 2a 1·a3a 2·…·a n a n -1(a n ≠0,n ≥2,n ∈N *)求解5、构造法:对于不满足a n +1=a n +f (n ),a n +1=f (n )a n 形式的递推关系,常采用构造法要点:对所给的递推公式进行变形构造等差数列或等比数列进行求解类型一:形如1+=+n n a pa q (其中,p q 均为常数且0≠p )型的递推式:(1)若1=p 时,数列{n a }为等差数列;(2)若0=q 时,数列{n a }为等比数列;(3)若1≠p 且0q ≠时,数列{n a }为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法有如下两种:法一:设1()++=+n n a p a λλ,展开移项整理得1(1)+=+-n n a pa p λ,与题设1+=+n n a pa q 比较系数(待定系数法)得1,(0)()111+=≠⇒+=+---n n q q q p a p a p p p λ1()11-⇒+=+--n n q qa p a p p ,即1⎧⎫+⎨⎬-⎩⎭n q a p 构成以11+-qa p 为首项,以p 为公比的等比数列.再利用等比数列的通项公式求出1⎧⎫+⎨⎬-⎩⎭n q a p 的通项整理可得.n a 法二:由1+=+n n a pa q 得1(2)-=+≥n n a pa q n 两式相减并整理得11,+--=-n nn n a a p a a 即{}1+-n n a a 构成以21-a a 为首项,以p 为公比的等比数列.求出{}1+-n n a a 的通项再转化为累加法便可求出.n a 类型二:形如1()+=+n n a pa f n (1)≠p 型的递推式:(1)当()f n 为一次函数类型(即等差数列)时:法一:设[]1(1)-++=+-+n n a An B p a A n B ,通过待定系数法确定、A B 的值,转化成以1++a A B 为首项,以()!!=-mnn A n m 为公比的等比数列{}++n a An B ,再利用等比数列的通项公式求出{}++n a An B 的通项整理可得.n a 法二:当()f n 的公差为d 时,由递推式得:1()+=+n n a pa f n ,1(1)-=+-n n a pa f n 两式相减得:11()+--=-+n n n n a a p a a d ,令1+=-n n n b a a 得:1-=+n n b pb d 转化为类型Ⅴ㈠求出n b ,再用累加法便可求出.n a (2)当()f n 为指数函数类型(即等比数列)时:法一:设[]1()(1)-+=+-n n a f n p a f n λλ,通过待定系数法确定λ的值,转化成以1(1)+a f λ为首项,以()!!=-m n n A n m 为公比的等比数列{}()+n a f n λ,再利用等比数列的通项公式求出{}()+n a f n λ的通项整理可得.n a 法二:当()f n 的公比为q 时,由递推式得:1()+=+n n a pa f n —①,1(1)-=+-n n a pa f n ,两边同时乘以q 得1(1)-=+-n n a q pqa qf n —②,由①②两式相减得11()+--=-n n n n a a q p a qa ,即11+--=-n nn n a qa p a qa ,构造等比数列。
高中数学竞赛标准讲义
高中数学竞赛标准讲义高中数学竞赛是对学生数学知识和解题能力的一次全面考验,也是培养学生逻辑思维和数学兴趣的重要途径。
在参加数学竞赛的过程中,学生需要掌握一定的数学知识和解题技巧,才能取得好成绩。
本讲义将从高中数学竞赛的题型、考点和解题技巧等方面进行详细介绍,希望能够帮助广大学生更好地备战数学竞赛。
一、高中数学竞赛题型。
高中数学竞赛的题型主要包括选择题、填空题、解答题和证明题。
选择题是考查学生对基本概念和定理的理解和掌握程度,填空题则更加注重学生对知识的灵活运用能力,解答题和证明题则需要学生具备较强的逻辑思维和解题技巧。
在备战数学竞赛的过程中,学生需要根据不同题型的特点有针对性地进行练习和训练,做到对各种题型都能够熟练应对。
二、高中数学竞赛考点。
高中数学竞赛的考点主要包括数列、函数、方程不等式、三角函数、数学归纳法、排列组合、数论等内容。
这些考点是数学竞赛中经常出现的题型,也是学生备战竞赛时需要重点关注和加强练习的内容。
在备战数学竞赛的过程中,学生需要对这些考点进行系统性的学习和掌握,做到能够熟练运用于解题中。
三、高中数学竞赛解题技巧。
在解高中数学竞赛的题目时,学生需要具备一定的解题技巧。
首先,要注意审题,理清题意,明确问题所求;其次,要善于归纳总结,发现问题的规律,找到解题的突破口;再次,要注重细节,避免粗心导致的错误;最后,要善于思考,灵活运用所学知识,多角度思考问题,找到解题的最佳方法。
通过不断的练习和总结,学生可以逐渐提高解题的能力和技巧,取得更好的成绩。
四、高中数学竞赛备考建议。
在备战高中数学竞赛时,学生需要有计划地进行复习和练习。
首先,要对各个考点进行系统性的复习,巩固基础知识;其次,要针对不同题型进行有针对性的练习,提高解题能力;再次,要多参加模拟考试,检验备考效果,发现问题并及时调整学习计划;最后,要保持良好的心态,相信自己的能力,不断提升自己的数学水平。
通过科学合理的备考方法,相信每位学生都能够在数学竞赛中取得优异的成绩。
2021年最新高中数学竞赛教材讲义第五章数列教师版
x0 成立,则称 x0 为 f ( x) 的
定理 1 设 f ( x) ax b( a 0,1) ,且 x0 为 f (x) 的不动点, { an } 满足递推关系 an f ( an 1) ,
n 2,3, ,证明 { an x0} 是公比为 a 的等比数列。 例 1 已知数列 an 的前 n 项和为 Sn ,且 Sn n 5a n 85 , n N *
an 与前 n 项和 Sn 是确定次数的多项式 (关于 n 的 ),先设出多项
(3) 裂项相消法:其出发点是 an 能写成 an=f(n+1)-f(n) (4) 化归法:把高阶等差数列的问题转化为易求的同阶等差数列或低阶等差数列的问题,达到简化的目的
例 1.数列 { an} 的二阶差数列的各项均为 16,且 a63=a89=10,求 a51
例 2.一个三阶等差数列 { an} 的前 4 项依次为 30,72,140,240,求其通项公式
解:由性质 (2), an 是 n 的三次多项式,可设
A B C D 30
A1
8 A 4 B 2C D 72
B7
解得
27 A 9 B 3 C D 140
C 14
64 A 16 B 4 C D 240
D8
(3) 如果数列 {an} 是 p 阶等差数列,则其前 n 项和 Sn 是关于 n 的 p+1 次多项式
5.高阶等差数列中最重要也最常见的问题是求通项和前
n 项和,更深层次的问题是差分方程的求解,解决问题的基
本方法有:
(1)逐差法:其出发点是
n1
an=a1+ (ak 1 ak )
k1
(2) 待定系数法:在已知阶数的等差数列中,其通项 式的系数,再代入已知条件解方程组即得
高中数学第五章数列5.1数列基础5.1.1数列的概念课件新人教B版选择性必修第三册
结论: 1.数列的通项公式 如果数列的第n项an与n之间的关系可以用a_n_=_f_(_n_)_来表示,则称此关系式为这个 数列的一个通项公式. 2.数列与函数的关系 (1)数列可以看成以_正__整__数__集__(或它的有限子集{1,2,…,k})为定义域的函数. (2)数列可以用相应函数图像上横坐标为正整数的一些孤立的点表示.
结论: 1.数列的概念 (1)数列:按照_一__定__次__序__排列的一列数称为数列. (2)项:数列中的_每__一__个__数__都称为这个数列的项.
2.数列的分类
按项 的个 数
按项 的变 化趋 势
类别 有穷数列 无穷数列 递增数列 递减数列 常数列
摆动数列
项数_有__限__的数列
含义
项数_无__限__的数列
22 1,32 1,42 1,52 1; 1,4,7 ,10 . 2 3 4 5 4 7 10 13
写出数列{an},{bn}的通项公式.
【解析】数列{an}中的第n项的分母是项数加1,分子是项数加1的平方再减去1,
故an=(n 1)2 1 .数列{bn}中的第n项分母是3n+1,分子是3n-2,故bn= 3n 2 .
【定向训练】
已知数列{an}的通项公式为an=n2-n-50,n∈N+,则-8是该数列的 ( )
A.第5项
B.第6项
C.第7项
D.非任何一项
【解析】选C.解n2-n-50=-8,得n=7或n=-6(舍去).
【补偿训练】1.已知数列{an}的通项公式是an= n2 n 1 ,其中n∈N*.
3
(1)写出a10,an+1和
2345
③π精确到1,0.1,0.01,0.001,…的不足近似值排成一列数: 3,3.1,3.14,3.141,….
高中必修五数学数列讲义
第二章数列第一节:数列及其通项公式一.数列的概念1.数列的定义:;2.表示法:;3.数列的分类:;4.通项公式:;5.递推公式的概念:;注意:①数列与集合有本质的区别;②项与项数的区别;③}a{n 与na的区别;④不是每一个数列都有通项公式;⑤na是n的函数。
二.数列通项公式的求法1.根据数列的有限项,写出数列的通项公式。
练习1.已知数列{a n }的前几项,写出数列的一个通项公式(1)1,4,9,16,……;a n = ;(2)2468,,,,392781……;a n = ;(3)313131,,,,,,,23456a n = ;(4)9,99,999,9999,……;a n = ; (5)7,77,777,7777,……;a n = ;(6)7,-77,777,-7777,……;a n = ; (7)0.5,0.55,0.555,0.5555, ……;a n = ; (8)1.-1,1,-1,……;a n = ; (9)1,0,1,0,……;a n = ;(10)11,101,1001,10001,……;a n = ;(11)12341,2,3,4,2345……;a n = ;(12)1375,,,,24816;a n = ;(13)210172637,1,,,,3791113---,……;a n = ;2.数列1,3,2,6,5,15,14,x,y,z ,122,……,中x,y,z 的值依次是( )A 42,41,123B 13,39,123C 24,23,123D 28,27,1233.数列1,1,2,3,5,8,……;的第7项是 。
4.数列}a {n 中,11(2)(n n n a n n n -⎧⎪=⎨⎪-⎩为奇数)(为偶数), 则}a {n 的前5项是 。
5.已知函数xx x f 1-)(=,设*))((N n n f a n ∈= (1)求证:1<n a ;(2){a n }是递增数列还是递减数列?为什么?2.已知数列的前n 项和求数列的通项公式(1) 已知数列{a n }的前n 项和为221n S n n =++,求数列{a n }的通项公式;(2) 已知数列{a n }的前n 项和为22n S n n =+,求数列{a n }的通项公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 数列一、基础知识定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。
其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。
定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。
若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d.定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式:S n =d n n na a a n n 2)1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn . 定义3 等比数列,若对任意的正整数n ,都有q a a nn =+1,则{a n }称为等比数列,q 叫做公比。
定理3 等比数列的性质:1)a n =a 1q n -1;2)前n 项和S n ,当q ≠1时,S n =qq a n--1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。
定义4 极限,给定数列{a n }和实数A ,若对任意的ε>0,存在M ,对任意的n >M(n ∈N ),都有|a n -A |<ε,则称A 为n →+∞时数列{a n }的极限,记作.lim A a n n =∞→定义5 无穷递缩等比数列,若等比数列{a n }的公比q 满足|q |<1,则称之为无穷递增等比数列,其前n 项和S n 的极限(即其所有项的和)为qa -11(由极限的定义可得)。
定理3 第一数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )时n =k 成立时能推出p (n )对n =k +1成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。
竞赛常用定理定理4 第二数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )对一切n ≤k 的自然数n 都成立时(k ≥n 0)可推出p (k +1)成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。
定理5 对于齐次二阶线性递归数列x n =ax n -1+bx n -2,设它的特征方程x 2=ax +b 的两个根为α,β:(1)若α≠β,则x n =c 1a n -1+c 2βn -1,其中c 1, c 2由初始条件x 1, x 2的值确定;(2)若α=β,则x n =(c 1n +c 2) αn -1,其中c 1, c 2的值由x 1, x 2的值确定。
二、方法与例题 1.不完全归纳法。
这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。
通常解题方式为:特殊→猜想→数学归纳法证明。
例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。
【解】1)a n =n 2-1;2)a n =3n -2n ;3)a n =n 2-2n . 例2 已知数列{a n }满足a 1=21,a 1+a 2+…+a n =n 2a n , n ≥1,求通项a n .【解】 因为a 1=21,又a 1+a 2=22·a 2,所以a 2=231⨯,a 3=4311322⨯=-+1a a ,猜想)1(1+=n n a n (n ≥1).证明;1)当n =1时,a 1=121⨯,猜想正确。
2)假设当n ≤k 时猜想成立。
当n =k +1时,由归纳假设及题设,a 1+ a 1+…+a 1=[(k +1)2-1] a k +1,, 所以)1(1231121+⨯++⨯+⨯k k =k (k +2)a k +1,即1113121211+-++-+-k k=k (k +2)a k +1,所以1+k k=k (k +2)a k +1,所以a k +1=.)2)(1(1++k k由数学归纳法可得猜想成立,所以.)1(1+=n n a n例3 设0<a <1,数列{a n }满足a n =1+a , a n -1=a +na 1,求证:对任意n ∈N +,有a n >1.【证明】 证明更强的结论:1<a n ≤1+a . 1)当n =1时,1<a 1=1+a ,①式成立;2)假设n =k 时,①式成立,即1<a n ≤1+a ,则当n =k +1时,有.11111111121=++>+++=++≥+=>++aa aa a a aa a a a kk由数学归纳法可得①式成立,所以原命题得证。
2.迭代法。
数列的通项a n 或前n 项和S n 中的n 通常是对任意n ∈N 成立,因此可将其中的n 换成n +1或n -1等,这种办法通常称迭代或递推。
例4 数列{a n }满足a n +pa n -1+qa n -2=0, n ≥3,q ≠0,求证:存在常数c ,使得121+++n n paa ·a n +.02=+nncqqa【证明】121+++n n paa ·a n+1+221++=n n a qa(pa n +1+a n +2)+21+n qa=a n +2·(-qa n )+21+n qa=21221[)(+++=-n n n n a q a a a q +a n (pq n +1+qa n )]=q (2121nn n n qaa paa ++++).若211222qa a pa a ++=0,则对任意n , n n n a pa a 121++++2nqa=0,取c =0即可.若211222qa a pa a ++≠0,则{n n n a paa 121++++2nqa}是首项为211222qa a pa a ++,公式为q的等比数列。
所以n n n a paa 121++++2n qa=)(211222qa a pa a ++·q n.取)(212122qa a pa a c ++-=·q1即可.综上,结论成立。
例5 已知a 1=0, a n +1=5a n +1242+n a ,求证:a n 都是整数,n ∈N +. 【证明】 因为a 1=0, a 2=1,所以由题设知当n ≥1时a n +1>a n . 又由a n +1=5a n +1242+n a 移项、平方得.01102121=-+-++n n n n a a a a ①当n ≥2时,把①式中的n 换成n -1得01102112=-+---n n n n a a a a ,即 .01102121=-+-++n n n n a a a a ②因为a n -1<a n +1,所以①式和②式说明a n -1, a n +1是方程x 2-10a n x +2n a -1=0的两个不等根。
由韦达定理得a n +1+ a n -1=10a n (n ≥2).再由a 1=0, a 2=1及③式可知,当n ∈N +时,a n 都是整数。
3.数列求和法。
数列求和法主要有倒写相加、裂项求和法、错项相消法等。
例6 已知a n =100241+n(n =1, 2, …),求S 99=a 1+a 2+…+a 99.【解】 因为a n +a 100-n =100241+n+100100241+-n=10010010010010010021)44(2244422=++⨯++⨯--nnnn,所以S 99=.29929921)(21101100991100=⨯=+∑=-n nn a a例7 求和:43213211⨯⨯+⨯⨯=n S +…+.)2)(1(1++n n n【解】 一般地,)2)(1(22)2)(1(1++-+=++k k k k k k k k⎪⎪⎭⎫ ⎝⎛++-+=)2)(1(1)1(121k k k k , 所以S n =∑=++nk k k k 1)2)(1(1⎥⎦⎤⎢⎣⎡++-+++⨯-⨯+⨯-⨯=)2)(1(1)1(143132132121121n n n n⎥⎦⎤⎢⎣⎡++-=)2)(1(12121n n .)2)(1(2141++-=n n例8 已知数列{a n }满足a 1=a 2=1,a n +2=a n +1+a n , S n 为数列⎭⎬⎫⎩⎨⎧n n a 2的前n 项和,求证:S n <2。
【证明】 由递推公式可知,数列{a n }前几项为1,1,2,3,5,8,13。
因为nn n a S 228252322212165432+++++++= , ①所以1543222523222121++++++=n n n a S 。
②由①-②得12222222121212121+---⎪⎪⎭⎫ ⎝⎛++++=n n n n n a a S , 所以122412121+--+=n n n n a S S 。
又因为S n -2<S n 且12+n n a >0,所以412121+<n S S n , 所以2141<n S ,所以S n <2,得证。
4.特征方程法。
例9 已知数列{a n }满足a 1=3, a 2=6, a n +2=4n +1-4a n ,求a n .【解】 由特征方程x 2=4x -4得x 1=x 2=2. 故设a n =(α+βn )·2n -1,其中⎩⎨⎧⨯+=+=2)2(63βαβα,所以α=3,β=0,所以a n =3·2n -1.例10 已知数列{a n }满足a 1=3, a 2=6, a n +2=2a n +1+3a n ,求通项a n .【解】 由特征方程x 2=2x +3得x 1=3, x 2=-1,所以a n =α·3n+β·(-1)n,其中⎩⎨⎧+=-=βαβα9633,解得α=43,β43-=,所以11)1(3[41++-+=n n n a ·3]。