信号与系统报告
信号与系统实验报告总结
信号与系统实验实验一常用信号的观察方波:正弦波:三角波:在观测中,虚拟示波器完全充当实际示波器的作用,在工作台上连接AD1为示波器的输入,输入方波、正弦波、三角波信号时,可在电脑上利用软件观测到相应的波形,其纵轴为幅值可通过设置实现幅值自动调节以观测到最佳大小的波形,其横轴为时间,宜可通过设置实现时间自动调节以观测到最佳宽度的波形。
实验四非正弦周期信号的分解与合成方波DC信号:DC信号几乎没有,与理论相符合,原信号没有添加偏移。
方波基波信号:基波信号为与原方波50Hz信号相对应的频率为50Hz的正弦波信号,是方波分解的一次谐波信号。
方波二次谐波信号:二次谐波信号频率为100Hz为原方波信号频率的两倍,幅值较一次谐波较为减少。
方波三次谐波信号:三次谐波信号频率为150Hz为原方波信号的三倍。
幅值较一二次谐波大为减少。
方波四次谐波信号:四次谐波信号的频率为200Hz为原方波信号的四倍。
幅值较三次谐波再次减小。
方波五次谐波信号:五次谐波频率为250Hz为原方波信号的五倍。
幅值减少到0.3以内,几乎可以忽略。
综上可知:50Hz方波可以分解为DC信号、基波信号、二次、三次、四次、五次谐波信号…,无偏移时即无DC信号,DC信号幅值为0。
分解出来的基波信号即一次谐波信号频率与原方波信号频率相同,幅值接近方波信号的幅值。
二次谐波、三次谐波、四次谐波、五次谐波依次频率分别为原方波信号的二、三、四、五倍,且幅值依次衰减,直至五次谐波信号时几乎可以忽略。
可知,方波信号可分解为多个谐波。
方波基波加三次谐波信号:基波叠加上三次谐波信号时,幅值与方波信号接近,形状还有一定差异,但已基本可以看出叠加后逼近了方波信号。
方波基波加三次谐波信号加五次谐波信号:基波信号、三次谐波信号、五次谐波信号叠加以后,比基波信号、三次谐波信号叠加后的波形更加接近方波信号。
综上所述:方波分解出来的各次谐波以及DC信号,叠加起来以后会逼近方波信号,且叠加的信号越多,越是接近方波信号。
信号与系统测试报告
信号与系统测试报告在进行信号与系统测试时,我们主要关注信号的特性以及系统的响应。
通过测试,我们可以验证系统的性能是否符合设计要求,以及信号是否能够正确地传输和处理。
本次测试旨在评估系统的频率响应、时域响应和稳定性等方面的表现,以确保系统能够准确、稳定地工作。
我们对系统的频率响应进行了测试。
通过输入不同频率的信号,我们可以观察系统对不同频率信号的响应情况。
测试结果显示,系统在特定频率范围内表现良好,能够准确地传输信号并保持稳定。
然而,在高频率下系统的响应有所下降,需要进一步优化以提高高频响应能力。
我们对系统的时域响应进行了测试。
通过输入不同形状的信号,如方波、正弦波等,我们可以观察系统对信号的延迟、失真等情况。
测试结果显示,系统在时域上能够准确地响应输入信号,并且延迟较小,失真程度也较低。
这表明系统具有良好的时域特性,能够满足实际应用中的需求。
我们还对系统的稳定性进行了测试。
通过输入不同幅度的信号,我们可以观察系统的稳定性和抗干扰能力。
测试结果显示,系统在输入信号幅度较小的情况下表现稳定,但在输入信号幅度较大时出现了一定程度的失真。
这提示我们需要进一步优化系统的动态范围,以提高系统的稳定性和抗干扰能力。
综合以上测试结果,我们可以得出结论,系统在频率响应、时域响应和稳定性等方面表现良好,能够满足大多数实际应用的需求。
然而,仍有一些方面需要进一步优化,如提高高频响应能力、优化动态范围等。
通过持续的测试和优化,我们相信系统将能够更好地满足用户的需求,并在实际应用中发挥更大的作用。
总的来说,信号与系统测试是确保系统正常工作的重要环节。
通过不断测试和优化,我们可以提高系统的性能和稳定性,确保系统能够准确、稳定地传输和处理信号。
希望通过本次测试报告的分享,能够帮助更多的人了解信号与系统测试的重要性,促进系统技术的进步和发展。
信号与系统软件实验实验报告
信号与系统软件实验实验报告一、实验目的本次信号与系统软件实验的主要目的是通过使用相关软件工具,深入理解和掌握信号与系统的基本概念、原理和分析方法,并通过实际操作和实验结果的观察与分析,提高对信号处理和系统性能的认识和应用能力。
二、实验环境本次实验使用的软件工具为_____,运行环境为_____操作系统。
计算机配置为_____处理器,_____内存,_____硬盘。
三、实验内容1、信号的表示与运算生成常见的连续时间信号,如正弦信号、余弦信号、方波信号、锯齿波信号等,并观察其波形和特征参数。
对生成的信号进行加、减、乘、除等运算,分析运算结果的波形和频谱变化。
2、系统的时域分析构建简单的线性时不变系统,如一阶惯性系统、二阶振荡系统等。
输入不同类型的信号,如阶跃信号、冲激信号等,观察系统的输出响应,并分析系统的稳定性、瞬态性能和稳态性能。
3、系统的频域分析对给定的系统进行频率响应分析,计算系统的幅频特性和相频特性。
通过改变系统的参数,观察频率响应的变化规律,并分析系统对不同频率信号的滤波特性。
4、信号的采样与重构对连续时间信号进行采样,研究采样频率对信号重构的影响。
采用不同的重构方法,如零阶保持重构、一阶线性重构等,比较重构信号与原始信号的误差。
四、实验步骤1、打开实验软件,熟悉软件的操作界面和功能菜单。
2、按照实验内容的要求,依次进行各项实验操作。
在信号表示与运算实验中,通过软件提供的函数生成所需的信号,并使用绘图功能显示信号的波形。
然后,利用软件的计算功能进行信号运算,并观察运算结果的波形。
对于系统时域分析实验,首先在软件中构建指定的系统模型,然后输入相应的激励信号,使用仿真功能获取系统的输出响应。
通过观察输出响应的波形,分析系统的性能指标,如上升时间、调节时间、超调量等。
在系统频域分析实验中,利用软件的频率响应分析工具,计算系统的幅频特性和相频特性曲线。
通过调整系统的参数,如增益、时间常数等,观察频率响应曲线的变化情况,并总结规律。
《信号与系统》课程实验报告
《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。
上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。
t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。
三、实验步骤该仿真提供了7种典型连续时间信号。
用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。
图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。
界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。
控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。
图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。
在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。
在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。
矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。
图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。
信号与系统实验实验报告
信号与系统实验实验报告一、实验目的本次信号与系统实验的主要目的是通过实际操作和观察,深入理解信号与系统的基本概念、原理和分析方法。
具体而言,包括以下几个方面:1、掌握常见信号的产生和表示方法,如正弦信号、方波信号、脉冲信号等。
2、熟悉线性时不变系统的特性,如叠加性、时不变性等,并通过实验进行验证。
3、学会使用基本的信号处理工具和仪器,如示波器、信号发生器等,进行信号的观测和分析。
4、理解卷积运算在信号处理中的作用,并通过实验计算和观察卷积结果。
二、实验设备1、信号发生器:用于产生各种类型的信号,如正弦波、方波、脉冲等。
2、示波器:用于观测输入和输出信号的波形、幅度、频率等参数。
3、计算机及相关软件:用于进行数据处理和分析。
三、实验原理1、信号的分类信号可以分为连续时间信号和离散时间信号。
连续时间信号在时间上是连续的,其数学表示通常为函数形式;离散时间信号在时间上是离散的,通常用序列来表示。
常见的信号类型包括正弦信号、方波信号、脉冲信号等。
2、线性时不变系统线性时不变系统具有叠加性和时不变性。
叠加性意味着多个输入信号的线性组合产生的输出等于各个输入单独作用产生的输出的线性组合;时不变性表示系统的特性不随时间变化,即输入信号的时移对应输出信号的相同时移。
3、卷积运算卷积是信号处理中一种重要的运算,用于描述线性时不变系统对输入信号的作用。
对于两个信号 f(t) 和 g(t),它们的卷积定义为:\(f g)(t) =\int_{\infty}^{\infty} f(\tau) g(t \tau) d\tau \在离散时间情况下,卷积运算为:\(f g)n =\sum_{m =\infty}^{\infty} fm gn m \四、实验内容及步骤实验一:常见信号的产生与观测1、连接信号发生器和示波器。
2、设置信号发生器分别产生正弦波、方波和脉冲信号,调整频率、幅度和占空比等参数。
3、在示波器上观察并记录不同信号的波形、频率和幅度。
信号与系统实验报告
信号与系统实验报告
实验名称:信号与系统实验
一、实验目的:
1.了解信号与系统的基本概念
2.掌握信号的时域和频域表示方法
3.熟悉常见信号的特性及其对系统的影响
二、实验内容:
1.利用函数发生器产生不同频率的正弦信号,并通过示波器观察其时域和频域表示。
2.通过软件工具绘制不同信号的时域和频域图像。
3.利用滤波器对正弦信号进行滤波操作,并通过示波器观察滤波前后信号的变化。
三、实验结果分析:
1.通过实验仪器观察正弦信号的时域表示,可以看出信号的振幅、频率和相位信息。
2.通过实验仪器观察正弦信号的频域表示,可以看出信号的频率成分和幅度。
3.利用软件工具绘制信号的时域和频域图像,可以更直观地分析信号的特性。
4.经过滤波器处理的信号,可以通过示波器观察到滤波前后的信号波形和频谱的差异。
四、实验总结:
通过本次实验,我对信号与系统的概念有了更深入的理解,掌
握了信号的时域和频域表示方法。
通过观察实验仪器和绘制图像,我能够分析信号的特性及其对系统的影响。
此外,通过滤波器的处理,我也了解了滤波对信号的影响。
通过实验,我对信号与系统的理论知识有了更加直观的了解和应用。
信号与系统实验报告
信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。
实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。
实验一:信号的基本特性与运算。
学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。
实验二:信号的时间域分析。
在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。
实验三:系统的时域分析。
学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。
信号与系统实验报告
信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。
由于b=2,故平移量为2时,实际是右移1,符合平移性质。
两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。
平移,伸缩变化都会导致输出结果相对应的平移伸缩。
2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。
两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。
二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。
两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。
3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。
两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。
三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。
2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。
两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。
信号与系统课程实验报告
合肥工业大学宣城校区《信号与系统》课程实验报告专业班级学生姓名《信号与系统》课程实验报告一实验名称一阶系统的阶跃响应姓名系院专业班级学号实验日期指导教师成绩一、实验目的1.熟悉一阶系统的无源和有源电路;2.研究一阶系统时间常数T的变化对系统性能的影响;3.研究一阶系统的零点对系统响应的影响。
二、实验原理1.无零点的一阶系统无零点一阶系统的有源和无源电路图如图2-1的(a)和(b)所示。
它们的传递函数均为:10.2s1G(s)=+(a) 有源(b) 无源图2-1 无零点一阶系统有源、无源电路图2.有零点的一阶系统(|Z|<|P|)图2-2的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:10.2s1)0.2(sG(s)++=,⎪⎪⎪⎪⎭⎫⎝⎛++=S611S161G(s)(a) 有源(b) 无源图2-2 有零点(|Z|<|P|)一阶系统有源、无源电路图3.有零点的一阶系统(|Z|>|P|)图2-3的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:1s10.1sG(s)=++(a) 有源(b) 无源图2-3 有零点(|Z|>|P|)一阶系统有源、无源电路图三、实验步骤1.打开THKSS-A/B/C/D/E型信号与系统实验箱,将实验模块SS02插入实验箱的固定孔中,利用该模块上的单元组成图2-1(a)(或(b))所示的一阶系统模拟电路。
2.实验线路检查无误后,打开实验箱右侧总电源开关。
3.将“阶跃信号发生器”的输出拨到“正输出”,按下“阶跃按键”按钮,调节电位器RP1,使之输出电压幅值为1V,并将“阶跃信号发生器”的“输出”端与电路的输入端“Ui”相连,电路的输出端“Uo”接到双踪示波器的输入端,然后用示波器观测系统的阶跃响应,并由曲线实测一阶系统的时间常数T。
4.再依次利用实验模块上相关的单元分别组成图2-2(a)(或(b))、2-3(a)(或(b))所示的一阶系统模拟电路,重复实验步骤3,观察并记录实验曲线。
信号与系统实验报告
信号与系统实验报告在现代科学与工程领域中,信号与系统是一个至关重要的研究方向。
信号与系统研究的是信号的产生、传输和处理,以及系统对信号的响应和影响。
在这个实验报告中,我们将讨论一些关于信号与系统实验的内容,以及实验结果的分析和讨论。
实验一:信号的采集与展示在这个实验中,我们学习了信号的采集与展示。
信号是通过传感器或其他仪器采集的电压或电流的变化,可以是连续的或离散的。
我们使用示波器和数据采集卡来采集信号,并在计算机上进行展示和分析。
实验二:线性时不变系统的特性线性时不变系统是信号与系统中的重要概念。
在这个实验中,我们通过观察系统对不同的输入信号作出的响应来研究系统的特性。
我们使用信号发生器产生不同的输入信号,并观察输出信号的变化。
通过比较输入信号和输出信号的频谱以及幅度响应,我们可以了解系统的频率响应和幅频特性。
实验三:系统的时域特性分析在这个实验中,我们将研究系统的时域特性。
我们使用了冲击信号和阶跃信号作为输入信号,观察输出信号的变化。
通过测量系统的冲击响应和阶跃响应,我们可以了解系统的单位冲激响应和单位阶跃响应。
实验四:卷积与系统的频域特性在这个实验中,我们学习了卷积的概念和系统的频域特性。
卷积是信号与系统中的重要运算,用于计算系统对输入信号的响应。
我们通过使用傅里叶变换来分析系统的频域特性,观察输入信号和输出信号的频谱变化。
实验五:信号的采样与重构在这个实验中,我们研究了信号的采样与重构技术。
信号的采样是将连续时间的信号转换为离散时间的过程,而信号的重构是将离散时间的信号恢复为连续时间的过程。
我们使用数据采集卡来对信号进行采样,并使用数字滤波器来进行信号的重构。
通过观察信号的采样和重构结果,我们可以了解采样率对信号质量的影响。
实验六:系统的稳定性与性能在这个实验中,我们研究了系统的稳定性与性能。
系统的稳定性是指系统对输入信号的响应是否有界,而系统的性能是指系统对不同频率信号的响应如何。
我们使用极坐标图和Nyquist图来分析系统的稳定性和性能,通过观察图形的变化来评估系统的性能。
信号与系统分析实验报告
信号与系统分析实验报告信号与系统分析实验报告引言:信号与系统分析是电子工程领域中的重要课程之一,通过实验可以更好地理解信号与系统的基本概念和原理。
本实验报告将对信号与系统分析实验进行详细的描述和分析。
实验一:信号的采集与重构在这个实验中,我们学习了信号的采集与重构。
首先,我们使用示波器采集了一个正弦信号,并通过数学方法计算出了信号的频率和幅值。
然后,我们使用数字信号处理器对采集到的信号进行重构,并与原始信号进行比较。
实验结果表明,重构后的信号与原始信号非常接近,证明了信号的采集与重构的有效性。
实验二:线性系统的时域响应本实验旨在研究线性系统的时域响应。
我们使用了一个线性系统,通过输入不同的信号,观察输出信号的变化。
实验结果显示,线性系统对于不同的输入信号有不同的响应,但都遵循线性叠加的原则。
通过分析输出信号与输入信号的关系,我们可以得出线性系统的传递函数,并进一步研究系统的稳定性和频率响应。
实验三:频域特性分析在这个实验中,我们研究了信号的频域特性。
通过使用傅里叶变换,我们将时域信号转换为频域信号,并观察信号的频谱。
实验结果显示,不同频率的信号在频域上有不同的分布特性。
我们还学习了滤波器的设计和应用,通过设计一个低通滤波器,我们成功地去除了高频噪声,并得到了干净的信号。
实验四:系统辨识本实验旨在研究系统的辨识方法。
我们使用了一组输入信号和对应的输出信号,通过数学建模的方法,推导出了系统的传递函数。
实验结果表明,通过系统辨识可以准确地描述系统的特性,并为系统的控制和优化提供了基础。
结论:通过本次实验,我们深入学习了信号与系统分析的基本概念和原理。
实验结果证明了信号的采集与重构的有效性,线性系统的时域响应的线性叠加原则,信号的频域特性和滤波器的设计方法,以及系统辨识的重要性。
这些知识和技能对于我们理解和应用信号与系统分析具有重要的意义。
通过实验的实际操作和分析,我们对信号与系统的理论有了更深入的理解,为我们今后的学习和研究打下了坚实的基础。
信号与系统的实验报告
信号与系统的实验报告信号与系统的实验报告引言:信号与系统是电子工程、通信工程等领域中的重要基础学科,它研究的是信号的传输、处理和变换过程,以及系统对信号的响应和特性。
在本次实验中,我们将通过实际操作和数据分析,深入了解信号与系统的相关概念和实际应用。
实验一:信号的采集与重构在这个实验中,我们使用了示波器和函数发生器来采集和重构信号。
首先,我们通过函数发生器产生了一个正弦信号,并将其连接到示波器上进行观测。
通过调整函数发生器的频率和幅度,我们可以观察到信号的不同特性,比如频率、振幅和相位等。
然后,我们将示波器上的信号通过数据采集卡进行采集,并使用计算机软件对采集到的数据进行处理和重构。
通过对比原始信号和重构信号,我们可以验证信号的采集和重构过程是否准确。
实验二:信号的时域分析在这个实验中,我们使用了示波器和频谱分析仪来对信号进行时域分析。
首先,我们通过函数发生器产生了一个方波信号,并将其连接到示波器上进行观测。
通过调整函数发生器的频率和占空比,我们可以观察到方波信号的周期和占空比等特性。
然后,我们使用频谱分析仪对方波信号进行频谱分析,得到信号的频谱图。
通过分析频谱图,我们可以了解信号的频率成分和能量分布情况,进而对信号的特性进行深入研究。
实验三:系统的时域响应在这个实验中,我们使用了函数发生器、示波器和滤波器来研究系统的时域响应。
首先,我们通过函数发生器产生了一个正弦信号,并将其连接到滤波器上进行输入。
然后,我们通过示波器观测滤波器的输出信号,并记录下其时域波形。
通过改变滤波器的参数,比如截止频率和增益等,我们可以观察到系统对信号的响应和滤波效果。
通过对比输入信号和输出信号的波形,我们可以分析系统的时域特性和频率响应。
实验四:系统的频域响应在这个实验中,我们使用了函数发生器、示波器和频谱分析仪来研究系统的频域响应。
首先,我们通过函数发生器产生了一个正弦信号,并将其连接到系统中进行输入。
然后,我们通过示波器观测系统的输出信号,并记录下其时域波形。
《信号与系统》实验报告
信号与系统实验报告班级:姓名:信息与通信工程学院实验一 系统的卷积响应实验性质:提高性 实验级别:必做 开课单位:信息与通信工程学院 学 时:2一、实验目的:深刻理解卷积运算,利用离散卷积实现连续卷积运算;深刻理解信号与系统的关系,学习MATLAB 语言实现信号通过系统的仿真方法。
二、实验设备: 计算机,MATLAB 软件 三、实验原理: 1、 离散卷积和: 调用函数:conv ()∑∞-∞=-==i i k f i f f f conv S )()(1)2,1(为离散卷积和,其中,f1(k), f2 (k) 为离散序列,K=…-2, -1, 0 , 1, 2, …。
但是,conv 函数只给出纵轴的序列值的大小,而不能给出卷积的X 轴序号。
为得到该值,进行以下分析:对任意输入:设)(1k f 非零区间n1~n2,长度L1=n2-n1+1;)(2k f 非零区间m1~m2,长度L2=m2-m1+1。
则:)(*)()(21k f k f k s =非零区间从n1+m1开始,长度为L=L1+L2-1,所以S (K )的非零区间为:n1+m1~ n1+m1+L-1。
2、 连续卷积和离散卷积的关系:计算机本身不能直接处理连续信号,只能由离散信号进行近似: 设一系统(LTI )输入为)(t P ∆,输出为)(t h ∆,如图所示。
)t)()(t h t P ∆∆→)()(lim )(lim )(0t h t h t P t =→=∆→∆∆→∆δ若输入为f(t):∆∆-∆=≈∑∞-∞=∆∆)()()()(k t P k f t f t f k得输出:∆∆-∆=∑∞-∞=∆∆)()()(k t hk f t y k当0→∆时:⎰∑∞∞-∞-∞=∆→∆∆→∆-=∆∆-∆==ττδτd t f k t P k f t f t f k )()()()(lim)(lim )(0⎰∑∞∞-∞-∞=∆→∆∆→∆-=∆∆-∆==τττd t h f k t hk f t y t y k )()()()(lim)(lim )(0所以:∆∆-∆=-==∑⎰→∆)()(lim)()()(*)()(212121k t f k fd t f f t f t f t s τττ如果只求离散点上的f 值)(n f ∆])[()()()()(2121∑∑∞-∞=∞-∞=∆-∆∆=∆∆-∆∆=∆k k k n f k f k n f k fn f所以,可以用离散卷积和CONV ()求连续卷积,只需∆足够小以及在卷积和的基础上乘以∆。
信号与系统实验报告一
信号与系统实验报告一实验一:信号与系统实验报告实验目的:1. 了解信号与系统的基本概念和理论知识;2. 学习使用MATLAB 对信号进行分析和处理;3. 掌握系统的时域和频域分析方法。
实验内容:本次实验包括以下两个部分:1. 信号的生成与表示;2. 系统的时域和频域分析。
一、信号的生成与表示1. 在MATLAB 中生成并绘制以下信号的波形图:(1) 正弦信号:A*sin(2*pi*f*t);(2) 方波信号:sign(sin(2*pi*f*t));(3) 带噪声的正弦信号:(1+N)*sin(2*pi*f*t)。
2. 对以上生成的信号进行分析和处理:(1) 计算各种信号的幅值、频率和相位;(2) 绘制各种信号的功率谱密度图。
二、系统的时域和频域分析1. 在MATLAB 中定义以下信号系统的单位脉冲响应h(n):(1) 线性时不变系统:h(n) = (0.4)^n * u(n),其中,u(n) 表示单位阶跃函数;(2) 非线性时变系统:h(n) = n * u(n)。
2. 对定义的信号系统进行时域和频域分析:(1) 绘制并分析系统的单位脉冲响应;(2) 计算系统的单位脉冲响应的离散时间傅里叶变换;(3) 绘制系统的幅频响应函数。
实验结果:1. 信号的生成与表示:(1) 正弦信号:根据给定的振幅A、频率f 和时间t,在MATLAB 中生成相应的正弦信号,并绘制出波形图。
根据波形图可以观察到正弦信号的周期性和振幅。
(2) 方波信号:根据给定的频率f 和时间t,在MATLAB 中生成相应的方波信号,并绘制出波形图。
方波信号由正负两个幅值相等的部分组成,可以通过绘制图形来观察到。
(3) 带噪声的正弦信号:根据给定的振幅A、频率f、时间t 和噪声系数N,在MATLAB 中生成带噪声的正弦信号,并绘制出波形图。
可以通过观察波形图来分析噪声对信号的影响。
2. 系统的时域和频域分析:(1) 线性时不变系统的单位脉冲响应:根据给定的线性时不变系统的单位脉冲响应函数,计算并绘制出相应的单位脉冲响应图。
信号与系统 实验报告
信号与系统实验报告信号与系统实验报告一、引言信号与系统是电子信息工程领域中的重要基础课程,通过实验可以加深对于信号与系统理论的理解和掌握。
本次实验旨在通过实际操作,验证信号与系统的基本原理和性质,并对实验结果进行分析和解释。
二、实验目的本次实验的主要目的是:1. 了解信号与系统的基本概念和性质;2. 掌握信号与系统的采样、重建、滤波等基本操作;3. 验证信号与系统的时域和频域特性。
三、实验仪器与原理1. 实验仪器本次实验所需的主要仪器有:信号发生器、示波器、计算机等。
其中,信号发生器用于产生不同类型的信号,示波器用于观测信号波形,计算机用于数据处理和分析。
2. 实验原理信号与系统的基本原理包括采样定理、重建定理、线性时不变系统等。
采样定理指出,对于带限信号,为了能够完全恢复原始信号,采样频率必须大于信号最高频率的两倍。
重建定理则是指出,通过理想低通滤波器可以将采样得到的离散信号重建为连续信号。
四、实验步骤与结果1. 采样与重建实验首先,将信号发生器输出的正弦信号连接到示波器上,观察信号的波形。
然后,将示波器的输出信号连接到计算机上,进行采样,并通过计算机对采样信号进行重建。
最后,将重建得到的信号与原始信号进行对比,分析重建误差。
实验结果显示,当采样频率满足采样定理时,重建误差较小,重建信号与原始信号基本一致。
而当采样频率不满足采样定理时,重建信号存在失真和混叠现象。
2. 系统特性实验接下来,通过调节示波器和信号发生器的参数,观察不同系统对信号的影响。
例如,将示波器设置为高通滤波器,通过改变截止频率,观察信号的低频衰减情况。
同样地,将示波器设置为低通滤波器,观察信号的高频衰减情况。
实验结果表明,不同系统对信号的频率特性有着明显的影响。
高通滤波器会使低频信号衰减,而低通滤波器则会使高频信号衰减。
通过调节滤波器的参数,可以实现对信号频率的选择性衰减。
五、实验分析与讨论通过本次实验,我们对信号与系统的基本原理和性质有了更深入的理解。
《信号与系统》实验报告
《信号与系统》实验报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验原理 (3)3. 实验设备与工具 (4)二、实验内容与步骤 (5)1. 实验一 (6)1.1 实验目的 (7)1.2 实验原理 (7)1.3 实验内容与步骤 (8)1.4 实验结果与分析 (9)2. 实验二 (10)2.1 实验目的 (12)2.2 实验原理 (12)2.3 实验内容与步骤 (13)2.4 实验结果与分析 (14)3. 实验三 (15)3.1 实验目的 (16)3.2 实验原理 (16)3.3 实验内容与步骤 (17)3.4 实验结果与分析 (19)4. 实验四 (20)4.1 实验目的 (20)4.2 实验原理 (21)4.3 实验内容与步骤 (22)4.4 实验结果与分析 (22)三、实验总结与体会 (24)1. 实验成果总结 (25)2. 实验中的问题与解决方法 (26)3. 对信号与系统课程的理解与认识 (27)4. 对未来学习与研究的展望 (28)一、实验概述本实验主要围绕信号与系统的相关知识展开,旨在帮助学生更好地理解信号与系统的基本概念、性质和应用。
通过本实验,学生将能够掌握信号与系统的基本操作,如傅里叶变换、拉普拉斯变换等,并能够运用这些方法分析和处理实际问题。
本实验还将培养学生的动手能力和团队协作能力,使学生能够在实际工程中灵活运用所学知识。
本实验共分为五个子实验,分别是:信号的基本属性测量、信号的频谱分析、信号的时域分析、信号的频域分析以及信号的采样与重构。
每个子实验都有明确的目标和要求,学生需要根据实验要求完成相应的实验内容,并撰写实验报告。
在实验过程中,学生将通过理论学习和实际操作相结合的方式,逐步深入了解信号与系统的知识体系,提高自己的综合素质。
1. 实验目的本次实验旨在通过实践操作,使学生深入理解信号与系统的基本原理和概念。
通过具体的实验操作和数据分析,掌握信号与系统分析的基本方法,提高解决实际问题的能力。
信号与系统 课程目标达成度报告
信号与系统课程目标达成度报告信号与系统是电子信息工程专业的一门基础课程,也是其他相关专业的重要学科之一。
学习信号与系统的目标是使学生掌握信号与系统的基本概念和理论知识,培养学生分析和处理信号的能力,为后续专业课程的学习打下坚实的基础。
学习信号与系统的目标是理解信号的概念和特性。
信号是电子信息传输和处理的基础,了解信号的种类和特性对于理解和应用信号处理技术至关重要。
学生需要掌握连续信号和离散信号的定义、分类和描述方法,了解信号的时域表示和频域表示方式,并能够通过数学方法分析信号的性质和特征。
学习信号与系统的目标是掌握系统的基本概念和性质。
系统是对信号进行处理和转换的工具,理解系统的基本原理和性质对于设计和优化系统具有重要意义。
学生需要学习系统的定义、分类和描述方法,了解系统的时域响应和频域响应的表示方式,并能够通过数学方法分析系统的性质和特征。
学习信号与系统的目标是培养学生分析和处理信号的能力。
信号处理是对信号进行加工和改变的过程,学生需要掌握信号处理的基本方法和技巧。
学生需要学习信号的采样和重构技术,掌握信号的滤波和变换技术,了解信号的压缩和编码技术,并能够应用所学知识解决实际问题。
学习信号与系统的目标是为后续专业课程的学习打下坚实的基础。
信号与系统是电子信息工程专业的核心课程,与其他专业课程有着密切的联系。
学生通过学习信号与系统,可以为后续专业课程的学习提供必要的理论基础和分析工具。
同时,信号与系统的知识也是从事科学研究和工程实践的基础,对于提高学生的创新能力和实践能力具有重要意义。
学习信号与系统的目标是使学生掌握信号与系统的基本概念和理论知识,培养学生分析和处理信号的能力,为后续专业课程的学习打下坚实的基础。
通过系统地学习信号与系统,可以提高学生的理论素养和实践能力,为未来的学习和工作奠定基础。
信号与系统作为电子信息工程专业的重要学科,对于培养学生的综合素质和创新能力具有重要作用。
信号与系统实验报告
信号与系统实验报告信号与系统实验报告引言信号与系统是电子与通信工程领域中的重要基础课程,通过实验可以更好地理解信号与系统的概念、特性和应用。
本实验报告旨在总结和分析在信号与系统实验中所获得的经验和结果,并对实验进行评估和展望。
实验一:信号的采集与重构本实验旨在通过采集模拟信号并进行数字化处理,了解信号采集与重构的原理和方法。
首先,我们使用示波器采集了一个正弦信号,并通过模数转换器将其转化为数字信号。
然后,我们利用数字信号处理软件对采集到的信号进行重构和分析。
实验结果表明,数字化处理使得信号的重构更加准确,同时也提供了更多的信号处理手段。
实验二:滤波器的设计与实现在本实验中,我们学习了滤波器的基本原理和设计方法。
通过使用滤波器,我们可以对信号进行频率选择性处理,滤除不需要的频率分量。
在实验中,我们设计了一个低通滤波器,并通过数字滤波器实现了对信号的滤波。
实验结果表明,滤波器能够有效地滤除高频噪声,提高信号的质量和可靠性。
实验三:系统的时域和频域响应本实验旨在研究系统的时域和频域响应特性。
我们通过输入不同频率和幅度的信号,观察系统的输出响应。
实验结果表明,系统的时域响应可以反映系统对输入信号的时域处理能力,而频域响应则可以反映系统对输入信号频率成分的处理能力。
通过分析系统的时域和频域响应,我们可以更好地理解系统的特性和性能。
实验四:信号的调制与解调在本实验中,我们学习了信号的调制与解调技术。
通过将低频信号调制到高频载波上,我们可以实现信号的传输和远距离通信。
实验中,我们使用调制器将音频信号调制到无线电频率上,并通过解调器将其解调回原始信号。
实验结果表明,调制与解调技术可以有效地实现信号的传输和处理,为通信系统的设计和实现提供了基础。
结论通过本次信号与系统实验,我们深入了解了信号的采集与重构、滤波器的设计与实现、系统的时域和频域响应以及信号的调制与解调等基本概念和方法。
实验结果表明,信号与系统理论与实践相结合,可以更好地理解和应用相关知识。
信号与系统(连续系统的时域分析)实验报告1
信号与系统(连续系统的时域分析)实验报告1本次实验内容是关于连续信号和系统的时域分析,我将按照实验操作流程、实验结果、实验分析和实验总结四个方面进行本次实验报告。
实验操作流程:1、根据实验指导书,找到实验需要使用的硬件设备和软件平台。
3、进行连续信号的产生和输入,根据实验指导书中的要求,选择不同的信号类型,改变其频率、振幅、相位等参数。
5、通过实验软件平台对产生的信号和系统进行采样和采集,并进行大量的数据处理和分析。
6、根据实验结论和实验指导书中的要求,编写实验报告。
实验结果:在本次实验中,我成功产生了三种不同类型的连续信号,分别是正弦信号、方波信号和三角波信号,同时我也成功搭建了两种不同类型的连续系统,分别是低通滤波器和高通滤波器,随着不同的输入信号对系统的测试,产生了一系列不同的实验结果。
主要的实验结果如下:首先是正弦信号的生成和输入,通过改变其频率和幅值,观察到了信号的变化过程及其在系统中被处理的效果,在低通滤波器中,信号的频率被截止,经过系统后的信号相比于输入信号更加平滑;在高通滤波器中,信号的低频部分被丢弃,经过系统后的信号比输入信号更加尖锐。
其次是方波信号的生成和输入,由于方波信号富含基频及其谐波,我们可以在低通滤波器中观察到对基频和谐波的处理效果,在低通滤波器中,我们可以观察到基频及其谐波被通过,而高于截止频率的谐波则被丢掉;在高通滤波器中,方波信号的低频部分被丢掉,越高的谐波被通过,产生重音类的声音。
最后是三角波信号的生成和输入,我们发现三角波信号的频率变化相对于方波信号更加平缓,变化更加连续,因此在经过低通滤波器进行处理的时候,我们可以观察到频率更加平滑,而高通滤波器将产生一个类似于单谐波的效果,快速上升和下降的部分被丢掉,产生一个非常平滑的信号。
实验分析:通过本次实验,我们了解了连续信号和系统的时域分析方法,对不同类型的信号和系统有了更深入的了解,同时也提升了我们对实验平台的掌握能力和实际操作的经验。
信号与系统测试报告(一)
信号与系统测试报告(一)信号与系统测试报告引言•介绍信号与系统的基本概念和重要性。
测试目的•解释测试信号与系统的目的和意义。
测试方法1.选择合适的测试信号:–正弦信号–方波信号–脉冲信号2.测试系统的响应:–离散时间系统–连续时间系统3.分析信号与系统间的关系:–线性与非线性系统–时不变与时变系统测试结果•列出使用不同测试信号对系统进行测试的结果。
结论•总结测试的结果并对信号与系统的性能进行评估。
结果分析•对测试结果进行更深入的分析,比较不同测试信号的效果。
推荐改进措施•提出改进系统性能的建议和方案。
测试总结•总结整个测试过程和测试的收获。
参考文献•列出引用的相关资料、图书和论文等。
注意事项: - 文章中不可出现HTML字符。
- 文章中不可出现网址、图片及电话号码等内容。
信号与系统测试报告引言信号与系统是电子工程、通信工程等学科中的重要基础知识,对于系统分析和信号处理具有重要意义。
本测试报告旨在对信号与系统进行测试,并评估其在不同条件下的性能。
测试目的通过对信号与系统的测试,旨在探究系统对不同类型信号的响应特性,了解信号与系统之间的关系,并通过测试结果评估系统的性能。
测试方法1.选择合适的测试信号:–正弦信号:用于测试系统的频率响应。
–方波信号:用于测试系统的阶跃响应和频率特性。
–脉冲信号:用于测试系统的冲击响应和频率特性。
2.测试系统的响应:–离散时间系统:用离散信号输入离散系统进行测试。
–连续时间系统:用连续信号输入连续系统进行测试。
3.分析信号与系统间的关系:–线性与非线性系统:比较线性系统和非线性系统对不同信号的响应差异。
–时不变与时变系统:测试系统对于不同时间偏移的信号的响应。
测试结果•对于正弦信号输入,不同频率下系统的响应特性进行记录。
•对于方波信号输入,观察系统的阶跃响应和频率特性。
•对于脉冲信号输入,测试系统的冲击响应和频率特性。
结论根据测试结果的分析,得出以下结论: - 系统对不同频率的正弦信号具有不同的响应特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统课程设计基于MATLAB的调制解调设计姓名/学号刘奎/2903003015谢姜陵/2902109028董琪玲/2902113031指导老师Wu Yue学院英才实验学院专业班级29001040《信号与系统》课程设计——基于MATLAB的调制解调设计【设计题目】基于MATLAB的调制解调设计【摘要】本文通过先对一个简单的正弦信号:y=sin(30*pi*t)进行正弦幅度调制,正弦AM 的同步解调;然后再任意截取一段mp3音频信号并将其转化为wav格式信号,对其进行正弦幅度调制以及正弦AM同步解调。
在传输过程中,加入一个余弦噪声;在接收端,通过滤波的方法把余弦噪声去掉。
全过程使用MATLAB进行仿真实现。
【关键词】正弦幅度调制正弦AM同步解调 MATLAB 调制解调滤波【背景】在当今科技发达的时代,通信系统在信息传递上起着至关重要的作用。
一般地,源信号在所有的通信系统中首先都需要在调制器中进行处理,以便将其变化到在通信信道上最适合传输的形式传输出去,而在接收端,则要通过一定的解调技术把有用信号从噪声中恢复出来。
因此,通信的调制与解调在信息传递工程中是不可缺少的。
【正文】一、原理(一)、基本原理“调制”就是将某一载有信息的信号嵌入另一信号的过程;“解调”就是将这个载有信息的信号提取出来的过程;“正弦载波幅度调制”就是用一正弦波信号乘以载有信息的信号x(t);“正弦AM同步解调”在解调过程中,解调器载波在相位上与调制器载波是同相的。
(二)、对信号 ft=sin(30*pi*t)的调制解调1、对信号进行调制在MATLAB中利用快速傅里叶变换fft并通过频谱搬移来求的信号的频率响应的频谱:Yk = fft(ft,10000);Yw = 2*pi/10000*abs(fftshift(yk));然后用载波信号cos(1000*pi*t)对原始信号进行调制:Sm=ft.*cos(1000*pi*t);同时求得已调信号的频率响应yk1=fft(Sm,10000);yw1=2*pi/10000*abs(fftshift(yk1));绘制出 1、原始信号时间——幅度图,2、原始信号的频谱图,3、已调信号的时间——幅度图4、已调信号的频谱图;对已调信号进行解调在解调器中用与载波信号相同的正弦函数cos(1000*pi*t)乘以已调信号mo=sm.*cos(1000*pi*t);对mo信号进行傅里叶变换并进行频谱搬移Yk=fft(mo,10000);Yw=2*pi/N*abs(fftshift(Yk));然后让信号mo通过一合适的低通滤波器b=ones(1,10)/10;ft1=filtfilt(b,1,mo);得到解调后的信号ft1对解调得到的信号进行fft变换并进行频谱搬移:Yk1=fft(ft1,10000);Yw1=2*pi/N*abs(fftshift(Yk1));最后绘制出,5、滤波前的解调信号时间—幅度图,6、滤波前的解调信号频谱图,7、滤波后的解调信号时间—幅度图,8、滤波后的解调信号频谱图。
(三)、对任意mp3的截取音频进行调制解调1、导入信号利用软件audacity任意截取一段mp3音频信号,并将其转换为WAV格式音频,利用函数wavread将其导入MATLABft=(wavread('the dawn'))'2、调制信号在MATLAB中利用快速傅里叶变换fft并通过频谱搬移来求的信号的频率响应的频谱:yk=fft(ft,120000);yw=2*pi/120000*abs(fftshift(yk))然后用载波信号cos(60000*pi*t)对原始信号进行调制:Sm=ft.*cos(60000*pi*t)同时求得已调信号的频率响应yk1=fft(Sm,120000);yw1=2*pi/120000*abs(fftshift(yk1));绘制出(1)、原始信号时间——幅度图,(2)、原始信号的频谱图,(3)、已调信号的时间——幅度图,(4)、已调信号的频谱图;3、对已调信号加噪对上述已调信号加上一个余弦噪声:zs=cos(10000*pi*t);并绘制出其加噪后的 1、幅度——时间图,2、加噪后信号的频谱图4、对已调信号进行解调在解调器中用与载波信号相同的正弦函数cos(60000*pi*t)乘以已调信号mo=Sm.*cos(60000*pi*t);对mo信号进行傅里叶变换并进行频谱搬移Yk=fft(mo,120000);Yw=2*pi/n*abs(fftshift(Yk));然后让信号mo通过一适合的低通滤波器得到解调后的信号ft1对解调得到的信号进行fft变换并进行频谱搬移:Yk1=fft(ft1,120000);Yw1=2*pi/n*abs(fftshift(Yk1));最后绘制出(5)、滤波前的解调信号时间——幅度图,(6)、滤波前的解调信号频谱图,(7)、滤波后的解调信号时间——幅度图,(8)、滤波后的解调信号频谱图。
二、对调制解调过程进行MATLAB仿真1、具体程序:(1)、对ft=sin(30*pi*t)进行调制clear allt=linspace(0,1,5000);ft=sin(30*pi*t);fs=5000;f=[-5000:4999]/10000*fs;yk=fft(ft,10000);yw=2*pi/10000*abs(fftshift(yk)); Sm=ft.*cos(1000*pi*t);yk1=fft(Sm,10000);yw1=2*pi/10000*abs(fftshift(yk1)); subplot(4,1,1);plot(t,ft);title('原始调制信号');xlabel('t/s');ylabel('幅度');grid;subplot(4,1,2);plot(f,yw);title('原始调制信号的频谱');xlabel('f/hz');ylabel('幅度');grid;subplot(4,1,3);plot(t,Sm,t,ft,t,-ft);title('已调信号Sm');xlabel('t/s');ylabel('幅度');subplot(4,1,4);plot(f,yw1);title('已调信号的频谱');xlabel('f/hz');ylabel('幅度');(2)、对(1)中已调信号进行解调mo=Sm.*cos(1000*pi*t);Yk=fft(mo,10000);Yw=2*pi/10000*abs(fftshift(Yk)); Fw=[-5000:4999]/10000*fs;b=ones(1,10)/10;ft1=filtfilt(b,1,mo);Yk1=fft(ft1,10000);Yw1=2*pi/10000*abs(fftshift(Yk1)); subplot(4,1,1);plot(mo);title('滤波前的解调信号');xlabel('t/s');ylabel('幅度');subplot(4,1,2);plot(Fw,Yw);title('滤波前的解调信号频谱'); xlabel('f/hz');ylabel('幅度');subplot(4,1,3);plot(ft1);title('滤波后的解调信号');xlabel('t/s');ylabel('幅度');subplot(4,1,4);plot(Fw,Yw1);title('滤波后信号的频谱');xlabel('f/hz');ylabel('幅度');(3)、对任意信号进行调制clear all;ft=(wavread('the dawn'))';fs=48000;N=length(ft);t=(1:N)/fs;f=[-60000:59999]/120000*fs;Wa=randn(1,size(t));Wb=randn(1,size(t));tz=cos(60000*pi*t);zs=cos(10000*pi*t);yk=fft(ft,120000);yw=2*pi/120000*abs(fftshift(yk)); Sm0=ft.*cos(60000*pi*t);ykw=fft(Sm0,120000);yk1=fft(Sm0,120000);yw1=2*pi/120000*abs(fftshift(yk1)); figure(1);subplot(4,1,1);plot(t,ft);title('原信号时间幅度图');subplot(4,1,2);plot(f,yw);title('原信号频谱图');subplot(4,1,3);plot(t,Sm0);title('调制信号时间幅度图'); subplot(4,1,4);plot(f,yw1);title('调制信号频谱图');(4)、对(3)中已调信号进行加噪声处理Sm=0.03*zs+Sm0;Smk=fft(Sm,120000);Smw=2*pi/120000*abs(fftshift(Smk));figure(2);subplot(2,1,1);plot(t,Sm);title('加噪的时间幅度');subplot(2,1,2);plot(f,Smw);title('加噪的频谱');(5)、对(4)中信号进行解调去噪mo=2*Sm.*cos(60000*pi*t);Yk=fft(mo,120000);Yw=2*pi/120000*abs(fftshift(Yk));Fw=[-60000:59999]/120000*fs;ft1=filter(LPF,mo);Yk1=fft(ft1,120000);Yw1=2*pi/120000*abs(fftshift(Yk1));figure(3)subplot(4,1,1);plot(t,mo);title('滤波前的时间幅度')subplot(4,1,2);plot(Fw,Yw);title('滤波前频谱');subplot(4,1,3);plot(t,ft1);title('滤波后时间幅度');subplot(4,1,4);plot(Fw,Yw1);title('滤波后频谱');(6)、播放音频信号对比wavplay(ft,fs);wavplay(ft1,fs);(7)、滤波器的程序function Hd = LPF%LPF Returns a discrete-time filter object.%% M-File generated by MATLAB(R) 7.1 and the Signal Processing Toolbox 6.4. %% Generated on: 09-Dec-2010 20:31:37%% Butterworth Lowpass filter designed using FDESIGN.LOWPASS.% All frequency values are in Hz.Fs = 48000; % Sampling FrequencyFpass = 4500; % Passband FrequencyFstop = 6500; % Stopband FrequencyApass = 1; % Passband Ripple (dB)Astop = 80; % Stopband Attenuation (dB)match = 'stopband'; % Band to match exactly% Construct an FDESIGN object and call its BUTTER method.h = fdesign.lowpass(Fpass, Fstop, Apass, Astop, Fs);Hd = butter(h, 'MatchExactly', match);% [EOF]三.结果及结论经过本小组广泛查阅资料和多次讨论后,我们通过MATLAB模拟了一个声音信号的调制与同步解调过程。