高考数学基础知识总结:第五章 平面向量
平面向量复习基本知识点及结论总结
平面向量复习基本知识点及结论总结平面向量是指在平面上具有大小和方向的量,用箭头表示。
平面向量有两个重要的基本运算:向量的加法和数乘。
1.平面向量的加法:-向量的加法满足交换律:A+B=B+A-向量的加法满足结合律:(A+B)+C=A+(B+C)-零向量的性质:对于任意向量A,有A+0=0+A=A-负向量的性质:对于任意向量A,有A+(-A)=02.平面向量的数乘:-数乘的分配律:k(A+B)=kA+kB-数乘的结合律:(k+m)A=kA+mA- 数乘的分配律:k(lmA)= (klm)A-零向量的数乘:0A=03.平面向量的基本性质和结论:-平行向量:若存在非零实数k,使得A=kB,称向量A与向量B平行。
-相等向量:若AB,CD是向量,则A=C,B=D,则称向量AB和CD相等。
-相反向量:若AB是向量,则存在一个向量BA,满足AB+BA=0,称向量BA是向量AB的相反向量。
-向量共线:若有两个不共线的向量AB和CD,如果存在非零实数k,使得CD=kAB,则称向量CD与向量AB共线。
-平移:若向量u等于向量a加上向量b,即u=a+b,则向量u和向量a平行。
4.向量的模:-向量的模表示向量的长度,通常用,A,表示,它的计算公式为,A,=√(x²+y²),其中(x,y)是向量A的坐标。
5.向量的共线与垂直:-向量共线:若向量A与向量B不为零向量且存在非零实数k,使得A=kB,则称向量A与向量B共线。
-向量垂直:若点A的坐标(x₁,y₁)和点B的坐标(x₂,y₂)满足x₁x₂+y₁y₂=0,则称向量AB垂直。
6.单位向量与方向角:-单位向量:向量长度为1的向量称为单位向量。
-方向角:向量与x轴的夹角称为它的方向角,用θ表示。
以上是平面向量的基本知识点和结论的总结,掌握这些知识可以帮助我们进行平面向量的运算、证明和推断。
为了更好地理解和应用平面向量,需要进行大量的练习和实践。
高中数学平面向量知识点归纳总结
高中数学平面向量知识点归纳总结
1. 平面向量的定义
平面向量是具有大小和方向的有序数对,可以用箭头表示。
常
用字母表示向量,如a、b等。
向量的大小可以用模表示,记作|a|。
2. 平面向量的运算
2.1 向量的加法
向量的加法是指将两个向量按照相同的方向连接起来,得到一
个新的向量。
加法满足交换律和结合律。
2.2 向量的减法
向量的减法是指将两个向量相加的相反向量相加,得到一个新
的向量。
2.3 向量的数量积
向量的数量积(点积)是指两个向量相乘后的数量,用点表示,记作a · b。
数量积满足交换律和分配律。
2.4 向量的向量积
向量的向量积(叉积)是指两个向量相乘后的向量,用叉表示,记作a × b。
3. 平面向量的性质
3.1 平行向量
如果两个向量的方向相同或相反,则它们是平行向量。
平行向
量的数量积等于两个向量的模的乘积。
3.2 垂直向量
如果两个向量的数量积为0,则它们是垂直向量。
垂直向量的
点积为0。
3.3 向量的模
向量的模表示向量的大小,可以使用勾股定理求解。
4. 平面向量的应用
平面向量在几何中有广泛的应用,可以用来表示平移、旋转和
线段的位置关系等。
在物理学中,平面向量可以用来表示力的大小
和方向。
以上是关于高中数学平面向量的基本知识点归纳总结。
希望能够对你的学习和理解有所帮助!。
平面向量复习基本知识点及经典结论总结
平面向量复习基本知识点及经典结论总结平面向量是数学中常见的概念,它是一种具有大小和方向的量。
本文将对平面向量的基本知识点及经典结论进行总结,以帮助读者复习和理解。
一、基本知识点1.定义:平面向量是具有大小和方向的量,可用有向线段来表示。
通常用字母a、b、c等表示向量,用小写字母表示有向线段的长度,用大写字母表示向量的大小。
2.向量的表示方法:在平面直角坐标系中,可以用坐标表示一个向量。
设平面向量a的起点为原点O(0,0),终点为点A(x,y),则向量a的表示为a=(x,y)。
3.向量的加法:设有两个向量a=(x1,y1)和b=(x2,y2),则向量a+b可以表示为(a,b)=(x1+x2,y1+y2)。
4.向量的数量积:设有两个向量a=(x1,y1)和b=(x2,y2),则向量a和b的数量积为a·b=x1×x2+y1×y25.向量的模长:向量a的模长表示为,a,可通过勾股定理求得,即,a,=√(x^2+y^2)。
二、经典结论1.平面向量共线:如果有两个向量a和b,且b与a同方向或反方向,那么向量a和b共线;如果b与a不同方向,那么向量a和b不共线。
2. 平面向量定比分点:如果有两个向量a = (x1,y1)和b = (x2,y2),且存在一个实数k,使得x2 = kx1,y2 = ky1,则向量a和b的终点共线,并且b在a的延长线上(如k>1)或b在a的连线上(如0<k<1)。
3.向量共线定理:如果有三个向量a,b,c,且c=λa+μb,则向量c与向量a和b共线。
4.平面向量的线性运算:设有三个向量a,b,c,和两个实数λ、μ,那么有以下性质成立:(1)a+b=b+a(交换律)(2)(a+b)+c=a+(b+c)(结合律)(3)λ(μa)=(λμ)a=μ(λa)=λ(μa)(乘法结合律)(4)λ(a+b)=λa+λb(分配律)(5)(λ+μ)a=λa+μa(分配律)5.向量共线的判定方法:(1)数量积:如果两个向量a和b的数量积a·b=0,则向量a和b垂直;如果a·b>0,则向量a和b夹角小于90°;如果a·b<0,则向量a和b夹角大于90°。
高考平面向量知识点总结
高考平面向量知识点总结高考平面向量的知识点总结如下:1. 平面向量的定义:平面上的向量是有大小和方向的有向线段,可以用有向线段的终点与起点之间的位移来表示。
2. 平面向量的表示:平面向量可以用坐标表示,形如AB→=(x2-x1, y2-y1)。
3. 平面向量的基本运算:a) 向量的加法:将两个向量的相应分量相加,得到一个新的向量。
b) 向量的减法:将两个向量的相应分量相减,得到一个新的向量。
c) 向量的数乘:将向量的每一个分量都乘以一个标量,得到一个新的向量。
d) 向量的数量积:将两个向量的相应分量相乘,再将这些乘积相加,得到一个标量。
e) 向量的模长:向量的模长等于对应坐标差的平方和的平方根。
4. 平面向量的运算规律:a) 加法的交换律:A+B=B+Ab) 加法的结合律:(A+B)+C = A+(B+C)c) 数乘的结合律:k(A+B) = kA+kBd) 数乘的分配律:(k+l)A = kA + lA5. 平面向量共线与平行:若向量a与向量b线性相关,则称向量a 与向量b共线;若向量a与向量b既共线又同向或反向,则称向量a与向量b平行。
6. 平面向量的数量积与夹角关系:a) 两个向量共线时,它们的数量积等于它们的模长的乘积。
b) 两个向量平行时,它们的数量积等于它们的模长的乘积乘以它们的夹角余弦值。
7. 平面向量的坐标表示与几何应用:a) 两个向量的坐标之间的关系:可以根据向量与坐标之间的关系,求解所有给出的向量的坐标。
b) 利用向量的坐标表示进行运算:可以通过向量的坐标表示来进行向量的加法、减法、数量积等运算。
c) 利用向量的几何应用:可以用向量的几何性质解决平面几何问题,如求线段的垂直平分线等。
这些是高考平面向量的基本知识点,掌握了这些知识点可以帮助理解和解决与平面向量相关的问题。
高中数学《平面向量》知识点总结
高中数学《平面向量》知识点总结平面向量是高中数学中的重要内容之一、它是描述平面上的有向线段的数学工具,广泛应用于几何、物理和工程等领域。
以下是对平面向量知识点的总结。
1.平面向量的定义和表示法:平面向量是具有大小和方向的有向线段。
可以用有序数对(x,y)表示向量,也可以用字母加上箭头表示向量,如向量a用小写字母a加上箭头表示。
2.平面向量的运算:(1)向量的加法:向量的加法满足“三角形法则”,即两个向量相加等于以它们为相邻边的平行四边形的对角线;(2)向量的数乘:向量的数乘是指将一个向量与一个实数相乘,结果仍然是一个向量,其大小等于原向量大小乘以实数,方向与原向量相同(如果实数为正)或相反(如果实数为负);(3)数乘的性质:数乘满足交换律、结合律和分配律;(4)向量的减法:向量减法即向量加上其负向量;(5)零向量:大小为0的向量,任何向量与零向量相加等于原向量本身,与零向量的数乘等于零向量本身;(6)向量的线性组合:若有一组向量,每个向量乘以相应的实数再相加得到的向量称为向量的线性组合;(7)内积:内积是一种向量间的一种运算,定义为两个向量的大小之积乘以夹角的余弦值,用点乘符号表示,即向量a与向量b的内积为a·b;(8)内积的性质:内积满足交换律、结合律、分配律和数乘结合律,同时与向量的长度、夹角以及方向都有关系;(9)垂直:若两个非零向量的内积为0,则它们互相垂直。
3.平面向量的坐标表示:平面上的向量可以用坐标表示。
设平面上一个点的坐标为A(x1,y1),则以原点O为起点的向量可以表示为向量a(x1,y1),其中x1和y1分别是向量在x轴和y轴上的投影长度。
4.平面向量的模和方向角:(1) 模:向量的模是指向量的长度,用,a,表示,计算公式为:,a,=sqrt(x^2 + y^2),其中x和y分别表示向量在x轴和y轴上的投影长度;(2) 方向角:向量的方向角是指向量与x轴正半轴之间的夹角,一般用θ表示,计算公式为:θ=tan^(-1)(y/x),其中x和y分别表示向量在x轴和y轴上的投影长度。
高三数学文科第五章 平面向量总结 人教版
高三数学文科第五章 平面向量总结 人教版一. 本周教学内容:第五章 平面向量总结 二. 基础知识:1. 向量的有关概念定义:既有大小又有方向的量叫做向量(自由向量) 记作: AB 或a ),(y x a =表示:有向线段向量长度(模): a22y x a +=单位向量:||0a aa =(与a 同向的) ),(22220yx y yx x a ++=相等向量:⎪⎩⎪⎨⎧=⇔==方向相同||||b a CD AB ba ⎩⎨⎧==⇔==21212211),(),,(y y x x y x b y x a 共线向量:若0≠b ,则a 与b 共线(平行)b a λ=⇔(λ唯一)0//1221=-⇔=⇔y x y x b a b a λ相反向量: a 的相反向量a -),(y x a --=- 加法: b a + ),(2121y y x x b a ++=+ 减法: b a -),(2121y y x x b a --=-实数与向量的积: a λ),(),(y x y x a λλλλ==数量积: θcos ||||⋅⋅=⋅b a b a2121y y x x b a +=⋅ 向量垂直非零向量a ,b ,0=⋅⇔⊥b a b a02121=+⇔⊥y y x x b a2. 向量的加法与减法(1)加法法则:三角形法则与平行四边有法则三角形法则:首尾相接 平行四边形法则:起点相同(2)运算性质:a a a a b b a =+=++=+00,,)()(c b a c b a ++=++ (3)减法法则:b a -是起点O 连接a ,b 终点指向被减数的向量(4)常用结论:BA AB -=AD CD BC AB =++;CB AC AB =-0113221=++++-A A A A A A A A n n n b a b a b a +≤±≤3. 实数与向量的积(1)定义:a λ ① 0>λ时,a λ与a 同向 ② 0<λ时,a λ与a 反向③0=λ时,0=a λ(2)运算律: ① a a λλ= ②a a )()(λμμλ=③ a a a μλμλ+=+)( ④b a b a λλλ+=+)((3)⇔≠)0(//b b a 有且只有一个实数λ,使01221=-⇔=y x y x b a λ 注:此条件应用非常广泛,是证明三点共线的重要依据....。
高中数学第五章_平面向量
第五章⎪⎪⎪平面向量第一节平面向量的概念及其线性运算1.向量的有关概念平行四边形法则向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使得b =λa . [小题体验]1.下列四个命题中,正确的命题是( ) A .若a ∥b ,则a =b B .若|a |=|b |,则a =b C .若|a |=|b |,则a ∥b D .若a =b ,则|a |=|b |答案:D2.若m ∥n ,n ∥k ,则向量m 与向量k ( ) A .共线 B .不共线 C .共线且同向 D .不一定共线答案:D3.若D 是△ABC 的边AB 上的中点,则向量CD ―→等于( ) A .-BC ―→+12BA ―→B .-BC ―→-12 BA ―→C .BC ―→ -12BA ―→D .BC ―→+12BA ―→答案:A4.已知a 与b 是两个不共线的向量,且向量a +λb 与-(b -3a )共线,则λ=________. 答案:-131.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误. 2.在向量共线的重要条件中易忽视“a ≠0”,否则λ可能不存在,也可能有无数个. 3.要注意向量共线与三点共线的区别与联系. [小题纠偏]1.若菱形ABCD 的边长为2,则|AB ―→-CB ―→+CD ―→|=________. 解析:|AB ―→-CB ―→+CD ―→|=|AB ―→+BC ―→+CD ―→|=|AD ―→|=2. 答案:22.已知a ,b 是非零向量,命题p :a =b ,命题q :|a +b |=|a |+|b |,则p 是q 的________条件. 解析:若a =b ,则|a +b |=|2a |=2|a |,|a |+|b |=|a |+|a |=2|a |,即p ⇒q . 若|a +b |=|a |+|b |,由加法的运算知a 与b 同向共线, 即a =λb ,且λ>0,故q ⇒/ p . ∴p 是q 的充分不必要条件. 答案:充分不必要考点一 平面向量的有关概念(基础送分型考点——自主练透)[题组练透]1.设a 0为单位向量,下列命题中:①若a 为平面内的某个向量,则a =|a |·a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.假命题的个数是( )A .0B .1C .2D .3解析:选D 向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.2.下列说法中错误的是( )A .有向线段可以表示向量但不是向量,且向量也不是有向线段B .若向量a 和b 不共线,则a 和b 都是非零向量C .长度相等但方向相反的两个向量不一定共线D .方向相反的两个非零向量必不相等解析:选C 选项A 中向量与有向线段是两个完全不同的概念,故正确;选项B 中零向量与任意向量共线,故a ,b 都是非零向量,故正确;选项C 中是共线向量,故错误;选项D 中既然方向相反就一定不相等,故正确.3.(易错题)给出下列命题: ①若a =b ,b =c ,则a =c ;②若A ,B ,C ,D 是不共线的四点,则AB ―→=DC ―→是四边形ABCD 为平行四边形的充要条件; ③a =b 的充要条件是|a |=|b |且a ∥b ; ④若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是________.解析:①正确.∵a =b ,∴a ,b 的长度相等且方向相同, 又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c .②正确.∵AB ―→=DC ―→,∴|AB ―→|=|DC ―→|且AB ―→∥DC ―→, 又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形; 反之,若四边形ABCD 为平行四边形, 则AB ―→∥DC ―→且|AB ―→|=|DC ―→|,因此,AB ―→=DC ―→.③不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.④不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是①②. 答案:①②[谨记通法]向量有关概念的5个关键点 (1)向量:方向、长度.(2)非零共线向量:方向相同或相反. (3)单位向量:长度是一个单位长度. (4)零向量:方向没有限制,长度是0. (5)相等相量:方向相同且长度相等.考点二 向量的线性运算(基础送分型考点——自主练透)[题组练透]1.(2018·武汉调研)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内的任意一点,则OA ―→+OB ―→+OC ―→+OD ―→等于( )A .OM ―→B .2OM ―→C .3OM ―→D .4OM ―→解析:选D 因为M 是平行四边形ABCD 对角线AC ,BD 的交点,所以OA ―→+OC ―→=2OM ―→,OB ―→+OD ―→=2OM ―→,所以OA ―→+OB ―→+OC ―→+OD ―→=4OM ―→.2.(2018·温州模拟)在等腰梯形ABCD 中,AB ―→=-2CD ―→,M 为BC 的中点,则AM ―→=( ) A.12AB ―→+12AD ―→ B.34AB ―→+12AD ―→C.34AB ―→+14AD ―→ D.12AB ―→+34AD ―→ 解析:选B 因为AB ―→=-2CD ―→,所以AB ―→=2DC ―→.又M 是BC 的中点,所以AM ―→=12(AB ―→+AC ―→)=12(AB―→+AD ―→+DC ―→)=12⎝⎛⎭⎫AB ―→+AD ―→+12AB ―→=34AB ―→+12AD ―→.3.(2019·郑州第一次质量预测)如图,在△ABC 中,N 为线段AC 上靠近点A 的三等分点,点P 在线段BN 上且AP ―→=⎝⎛⎭⎫m +211AB ―→+211BC ―→,则实数m 的值为( )A .1 B.13C.911D.511解析:选D AP ―→=⎝⎛⎭⎫m +211AB ―→+211BC ―→=⎝⎛⎭⎫m +211AB ―→+211(AC ―→-AB ―→)=m AB ―→+211AC ―→,设BP ―→=λBN ―→(0≤λ≤1),则AP ―→=AB ―→+λBN ―→=AB ―→+λ(AN ―→-AB ―→)=(1-λ)AB ―→+λAN ―→,因为AN ―→ =13AC ―→,所以AP ―→=(1-λ)AB ―→+13λAC ―→,则⎩⎪⎨⎪⎧m =1-λ,211=13λ,解得⎩⎨⎧λ=611,m =511,故选D.[谨记通法]1.平面向量的线性运算技巧(1)不含图形的情况:可直接运用相应运算法则求解.(2)含图形的情况:将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示出来求解.2.利用平面向量的线性运算求参数的一般思路 (1)没有图形的准确作出图形,确定每一个点的位置.(2)利用平行四边形法则或三角形法则进行转化,转化为要求的向量形式. (3)比较、观察可知所求.考点三 共线向量定理的应用(重点保分型考点——师生共研)[典例引领]1.在△ABC 中,点D 在线段BC 的延长线上,且BC ―→=3CD ―→,点O 在线段CD 上(与点C ,D 不重合),若AO ―→=x AB ―→+(1-x )·AC ―→,则x 的取值范围是( )A.⎝⎛⎭⎫0,12 B.⎝⎛⎭⎫0,13 C.⎝⎛⎭⎫-12,0 D.⎝⎛⎭⎫-13,0 解析:选D 设CO ―→=y BC ―→,∵AO ―→=AC ―→+CO ―→=AC ―→+y BC ―→=AC ―→+y (AC ―→-AB ―→)=-y AB ―→+(1+y ) AC ―→,∵BC ―→=3CD ―→,点O 在线段CD 上(与点C ,D 不重合),∴y ∈⎝⎛⎭⎫0,13,∵AO ―→=x AB ―→+(1-x )AC ―→,∴x ∈⎝⎛⎭⎫-13,0. 2.设两个非零向量a 与b 不共线,(1)若AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3(a -b ), 求证:A ,B ,D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 同向.解:(1)证明:∵AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b , ∴BD ―→=BC ―→+CD ―→=2a +8b +3a -3b =5(a +b )=5AB ―→.∴AB ―→,BD ―→共线,又∵它们有公共点B ,∴A ,B ,D 三点共线. (2)∵k a +b 与a +k b 同向,∴存在实数λ(λ>0),使k a +b =λ(a +k b ), 即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b .∵a ,b 是不共线的两个非零向量,⎩⎪⎨⎪⎧ k -λ=0,λk -1=0,解得⎩⎪⎨⎪⎧ k =1,λ=1或⎩⎪⎨⎪⎧k =-1,λ=-1,又∵λ>0,∴k =1.[由题悟法]共线向量定理的3个应用(1)证明向量共线:对于向量a ,b ,若存在实数λ,使a =λb ,则a 与b 共线. (2)证明三点共线:若存在实数λ,使AB ―→=λAC ―→,则A ,B ,C 三点共线. (3)求参数的值:利用共线向量定理及向量相等的条件列方程(组)求参数的值. [提醒] 证明三点共线时,需说明共线的两向量有公共点.[即时应用]1.设向量a ,b 不共线,AB ―→=2a +p b ,BC ―→=a +b ,CD ―→=a -2b ,若A ,B ,D 三点共线,则实数p 的值为( )A .-2B .-1C .1D .2解析:选B 因为BC ―→=a +b ,CD ―→=a -2b ,所以BD ―→=BC ―→+CD ―→=2a -b .又因为A ,B ,D 三点共线,所以AB ―→,BD ―→共线.设AB ―→=λBD ―→,所以2a +p b =λ(2a -b ),所以2=2λ,p =-λ,即λ=1,p =-1.2.如图,在△ABC 中,D ,F 分别是BC ,AC 的中点,AE ―→=23AD ―→,AB ―→=a ,AC―→=b .(1)用a ,b 表示向量AD ―→,AE ―→,AF ―→,BE ―→,BF ―→; (2)求证:B ,E ,F 三点共线.解:(1)延长AD 到G ,使AD ―→=12AG ―→,连接BG ,CG ,得到▱ABGC , 所以AG ―→=a +b , AD ―→=12AG ―→=12(a +b ),AE ―→=23AD ―→=13(a +b ),AF ―→=12AC ―→=12b ,BE ―→=AE ―→-AB ―→=13(a +b )-a =13(b -2a ),BF ―→=AF ―→-AB ―→=12b -a =12(b -2a ).(2)证明:由(1)可知BE ―→=23BF ―→,又因为BE ―→,BF ―→有公共点B , 所以B ,E ,F 三点共线.一抓基础,多练小题做到眼疾手快1.已知O ,A ,B 是同一平面内的三个点,直线AB 上有一点C 满足2AC ―→+CB ―→=0,则OC ―→=( ) A .2OA ―→-OB ―→B .-OA ―→+2OB ―→C.23OA ―→-13OB ―→ D .-13OA ―→+23OB ―→解析:选A 依题意,得OC ―→=OB ―→+BC ―→=OB ―→+2AC ―→=OB ―→+2(OC ―→-OA ―→),所以OC ―→=2OA ―→-OB ―→. 2.(2019·石家庄质检)在△ABC 中,点D 在边AB 上,且BD ―→=12DA ―→,设CB ―→=a ,CA ―→=b ,则CD ―→=( )A.13a +23bB.23a +13b C.35a +45b D.45a +35b 解析:选B ∵BD ―→=12DA ―→,∴BD ―→=13BA ―→,∴CD ―→=CB ―→+BD ―→=CB ―→+13BA ―→=CB ―→+13(CA ―→-CB ―→)=23CB ―→+13CA ―→=23a +13b . 3.在四边形ABCD 中,AB ―→=a +2b ,BC ―→=-4a -b ,CD ―→=-5a -3b ,则四边形ABCD 的形状是( ) A .矩形 B .平行四边形 C .梯形D .以上都不对解析:选C 由已知,得AD ―→=AB ―→+BC ―→+CD ―→=-8a -2b =2(-4a -b )=2BC ―→,故AD ―→∥BC ―→. 又因为AB ―→与CD ―→不平行,所以四边形ABCD 是梯形.4.(2018·扬州模拟)在△ABC 中,N 是AC 边上一点且AN ―→=12NC ―→,P 是BN 上一点,若AP ―→=m AB ―→+29AC ―→,则实数m 的值是________.解析:如图,因为AN ―→=12NC ―→,P 是BN ―→上一点.所以AN ―→=13AC ―→,AP ―→=m AB ―→+29AC ―→=m AB ―→+23AN ―→,因为B ,P ,N 三点共线,所以m +23=1,则m =13. 答案:135.在△ABC 中,∠A =60°,∠A 的平分线交BC 于点D ,若AB =4,且AD ―→=14AC ―→+λAB ―→(λ∈R),则AD 的长为________.解析:因为B ,D ,C 三点共线,所以14+λ=1,解得λ=34,如图,过点D 分别作AC ,AB 的平行线交AB ,AC 于点M ,N ,则AN ―→=14AC ―→,AM ―→=34AB ―→,因为在△ABC 中,∠A =60°,∠A 的平分线交BC 于点D ,所以四边形ANDM 为菱形,因为AB =4,所以AN =AM =3,AD =3 3.答案:3 3二保高考,全练题型做到高考达标1.已知向量a ,b ,且AB ―→=a +2b ,BC ―→=-5a +6b ,CD ―→=7a -2b ,则一定共线的三点是( ) A .A ,B ,D B .A ,B ,C C .B ,C ,DD .A ,C ,D解析:选A AD ―→=AB ―→+BC ―→+CD ―→=3a +6b =3AB ―→.因为AB ―→与AD ―→有公共点A ,所以A ,B ,D 三点共线.2.已知向量a ,b 不共线,且c =λa +b ,d =a +(2λ-1)b ,若c 与d 共线反向,则实数λ的值为( ) A .1 B .-12C .1或-12D .-1或-12解析:选B 由于c 与d 共线反向,则存在实数k 使c =k d (k <0),于是λa +b =k []a +(2λ-1)b . 整理得λa +b =k a +(2λk -k )b .由于a ,b 不共线,所以有⎩⎪⎨⎪⎧λ=k ,2λk -k =1,整理得2λ2-λ-1=0,解得λ=1或λ=-12.又因为k <0,所以λ<0,故λ=-12.3.(2019·浙江六校联考)在平行四边形ABCD 中,点E 为CD 的中点,BE 与AC 的交点为F ,设AB ―→=a ,AD ―→=b ,则向量BF ―→=( )A.13a +23b B .-13a -23bC .-13a +23b D.13a -23b解析:选C 如图,因为点E 为CD 的中点,CD ∥AB ,所以BFEF =ABEC =2,所以BF ―→=23BE ―→=23(BC ―→+CE ―→)=23⎝⎛⎭⎫b -12a =-13a +23b . 4.(2018·遂昌期初)已知a ,b 是两个不共线的非零向量,且起点在同一点上,若a ,t b ,13(a +b )三向量的终点在同一直线上,则实数t 的值为( )A .2B .1C .23D .12解析:选D 由题可设13(a +b )=λa +μt b ,因为a ,t b ,13(a +b )三向量的终点在同一直线上,所以有λ+μ=1.所以13=λ,μ=23,所以13=23t ,解得t =12.5.(2019·丹东五校协作体联考)P 是△ABC 所在平面上的一点,满足PA ―→+PB ―→+PC ―→=2AB ―→,若S △ABC=6,则△PAB 的面积为( )A .2B .3C .4D .8解析:选A ∵PA ―→+PB ―→+PC ―→=2AB ―→=2(PB ―→-PA ―→),∴3PA ―→=PB ―→-PC ―→=CB ―→,∴PA ―→∥CB ―→,且方向相同,∴S △ABC S △PAB =BC AP =|CB ―→||PA ―→|=3,∴S △PAB =S △ABC3=2. 6.已知O 为△ABC 内一点,且2AO ―→=OB ―→+OC ―→,AD ―→=t AC ―→,若B ,O ,D 三点共线,则t 的值为________.解析:设线段BC 的中点为M ,则OB ―→+OC ―→=2OM ―→. 因为2AO ―→=OB ―→+OC ―→,所以AO ―→=OM ―→,则AO ―→=12AM ―→=14(AB ―→+AC ―→)=14⎝⎛⎭⎫AB ―→+1t AD ―→=14AB ―→+14t AD ―→.由B ,O ,D 三点共线,得14+14t =1,解得t =13.答案:137.设点M 是线段BC 的中点,点A 在直线BC 外,BC ―→2=16,|AB ―→+AC ―→|=|AB ―→-AC ―→|,则|AM ―→|=________.解析:由|AB ―→+AC ―→|=|AB ―→-AC ―→|可知,AB ―→⊥AC ―→, 则AM 为Rt △ABC 斜边BC 上的中线, 因此,|AM ―→|=12|BC ―→|=2.答案:28.已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC ―→=a ,CA ―→=b ,给出下列命题:①AD ―→=12a -b ;②BE ―→=a +12b ;③CF ―→=-12a +12b ;④AD ―→+BE ―→+CF ―→=0. 其中正确命题的个数为________.解析:BC ―→=a ,CA ―→=b ,AD ―→=12CB ―→+AC ―→=-12a -b ,故①错;BE ―→=BC ―→+12CA ―→=a +12b ,故②正确;CF ―→=12(CB ―→+CA ―→)=12(-a +b )=-12a +12b ,故③正确;AD ―→+BE ―→+CF ―→=-b -12a +a +12b +12b -12a =0,故④正确.∴正确命题为②③④. 答案:39.设e 1,e 2是两个不共线的向量,已知AB ―→=2e 1-8e 2,CB ―→=e 1+3e 2,CD ―→=2e 1-e 2. (1)求证:A ,B ,D 三点共线;(2)若BF ―→=3e 1-k e 2,且B ,D ,F 三点共线,求k 的值.解:(1)证明:由已知得BD ―→=CD ―→-CB ―→=(2e 1-e 2)-(e 1+3e 2)=e 1-4e 2, ∵AB ―→=2e 1-8e 2, ∴AB ―→=2BD ―→.又∵AB ―→与BD ―→有公共点B , ∴A ,B ,D 三点共线. (2)由(1)可知BD ―→=e 1-4e 2,∵BF ―→=3e 1-k e 2,且B ,D ,F 三点共线, ∴BF ―→=λBD ―→(λ∈R ), 即3e 1-k e 2=λe 1-4λe 2,得⎩⎪⎨⎪⎧λ=3,-k =-4λ. 解得k =12.10.已知a ,b 不共线,OA ―→=a ,OB ―→=b ,OC ―→=c ,OD ―→=d ,OE ―→=e ,设t ∈R ,如果3a =c ,2b =d ,e =t (a +b ),是否存在实数t 使C ,D ,E 三点在一条直线上?若存在,求出实数t 的值,若不存在,请说明理由.解:由题设知,CD ―→=d -c =2b -3a ,CE ―→=e -c =(t -3)a +t b ,C ,D ,E 三点在一条直线上的充要条件是存在实数k ,使得CE ―→=k CD ―→,即(t -3)a +t b =-3k a +2k b ,整理得(t -3+3k )a =(2k -t )b .因为a ,b 不共线,所以有⎩⎪⎨⎪⎧t -3+3k =0,t -2k =0,解得t =65.故存在实数t =65使C ,D ,E 三点在一条直线上.三上台阶,自主选做志在冲刺名校1.如图,在△ABC 中,点D 在线段BC 上,且满足BD =12DC ,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AM ―→=m AB ―→,AN ―→=n AC ―→,则( )A .m +n 是定值,定值为2B .2m +n 是定值,定值为3 C.1m +1n 是定值,定值为2 D.2m +1n 是定值,定值为3解析:选D 因为M ,D ,N 三点共线,所以AD ―→=λAM ―→+(1-λ)AN ―→.又AM ―→=m AB ―→,AN ―→=n AC ―→,所以AD ―→=λm AB ―→+(1-λ)n AC ―→.又BD ―→=12DC ―→,所以AD ―→-AB ―→=12AC ―→-12AD ―→,所以AD ―→=13AC ―→+23AB ―→.比较系数知λm =23,(1-λ)n =13,所以2m +1n =3,故选D.2.(2019·长沙模拟)在平行四边形ABCD 中,M 为BC 的中点.若AB ―→=λAM ―→+μDB ―→,则λ-μ=________.解析:如图,在平行四边形ABCD 中,AB ―→=DC ―→,所以AB ―→=AM ―→+MB ―→=AM ―→+12CB ―→=AM ―→+12(DB ―→-DC ―→)=AM ―→+12(DB ―→-AB ―→)=AM ―→+12DB ―→-12AB ―→,所以32AB ―→=AM ―→+12DB ―→,所以AB ―→=23AM ―→+13DB ―→,所以λ=23,μ=13,所以λ-μ=13.答案:133.已知O ,A ,B 是不共线的三点,且OP ―→=m OA ―→+n OB ―→(m ,n ∈R ). (1)若m +n =1,求证:A ,P ,B 三点共线; (2)若A ,P ,B 三点共线,求证:m +n =1. 证明:(1)若m +n =1,则OP ―→=m OA ―→+(1-m )OB ―→=OB ―→+m (OA ―→-OB ―→), ∴OP ―→-OB ―→=m (OA ―→-OB ―→), 即BP ―→=m BA ―→,∴BP ―→与BA ―→共线. 又∵BP ―→与BA ―→有公共点B ,∴A ,P ,B 三点共线. (2)若A ,P ,B 三点共线, 则存在实数λ,使BP ―→=λBA ―→, ∴OP ―→-OB ―→=λ(OA ―→-OB ―→). 又OP ―→=m OA ―→+n OB ―→.故有m OA ―→+(n -1)OB ―→=λOA ―→-λOB ―→, 即(m -λ)OA ―→+(n +λ-1)OB ―→=0.∵O ,A ,B 不共线,∴OA ―→,OB ―→不共线,∴⎩⎪⎨⎪⎧m -λ=0,n +λ-1=0,∴m +n =1. 第二节平面向量的基本定理及坐标表示1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模: 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1), |AB ―→|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.[小题体验]1.已知a =(4,2),b =(-6,m ),若a ∥b ,则m 的值为______.答案:-32.(教材习题改编)已知a =(2,1),b =(-3,4),则3a +4b =________. 答案:(-6,19)3.设e 1,e 2是平面内一组基向量,且a =e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量a ,b 的线性组合,即e 1+e 2=________a +________b .解析:由题意,设e 1+e 2=m a +n b . 因为a =e 1+2e 2,b =-e 1+e 2,所以e 1+e 2=m (e 1+2e 2)+n (-e 1+e 2)=(m -n )e 1+(2m +n )e 2.由平面向量基本定理,得⎩⎪⎨⎪⎧m -n =1,2m +n =1,所以⎩⎨⎧m =23,n =-13.答案:23 -134.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________. 答案:-11.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.[小题纠偏]1.设e 1,e 2是平面内一组基底,若λ1e 1+λ2e 2=0,则λ1+λ2=________. 答案:02.已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________. 解析:∵ma +nb =(2m +n ,m -2n )=(9,-8),∴⎩⎪⎨⎪⎧ 2m +n =9,m -2n =-8,∴⎩⎪⎨⎪⎧m =2,n =5,∴m -n =2-5=-3. 答案:-3考点一 平面向量基本定理及其应用(基础送分型考点——自主练透)[题组练透]1.(2019·温州模拟)如图,在直角梯形ABCD 中,AB =2AD =2DC ,E 为BC边上一点,BC ―→=3EC ―→,F 为AE 的中点,则BF ―→=( )A.23AB ―→-13AD ―→B.13AB ―→-23AD ―→ C .-23AB ―→+13AD ―→D .-13AB ―→+23AD ―→解析:选C 如图,取AB 的中点G ,连接DG ,CG ,易知四边形DCBG 为平行四边形,∴BC ―→=GD ―→=AD ―→-AG ―→=AD ―→-12AB ―→,∴AE ―→=AB ―→+BE ―→=AB ―→+23BC ―→=AB ―→+23⎝⎛⎭⎫AD ―→-12AB ―→=23AB ―→+23AD ―→,于是BF ―→=AF ―→-AB ―→=12AE ―→-AB ―→=12⎝⎛⎭⎫23AB ―→+23AD ―→-AB ―→=-23AB ―→+13AD ―→,故选C.2.在△ABC 中,点M ,N 满足AM ―→=2MC ―→,BN ―→=NC ―→.若MN ―→=x AB ―→+y AC ―→,则x =________;y =________.解析:∵AM ―→=2MC ―→,∴AM ―→=23AC ―→.∵BN ―→=NC ―→,∴AN ―→=12(AB ―→+AC ―→),∴MN ―→=AN ―→-AM ―→=12(AB ―→+AC ―→)-23AC ―→=12AB ―→-16AC ―→. 又MN ―→=x AB ―→+y AC ―→, ∴x =12,y =-16.答案:12 -16L ,且AK ―→=3.如图,已知平行四边形ABCD 的边BC ,CD 的中点分别是K ,e 1,AL ―→=e 2,试用e 1,e 2表示BC ―→,CD ―→.解:设BC ―→=x ,CD ―→=y ,则BK ―→=12x ,DL ―→=-12y .由AB ―→+BK ―→=AK ―→,AD ―→+DL ―→=AL ―→,得⎩⎨⎧-y +12x =e 1, ①x -12y =e 2, ②①+②×(-2),得12x -2x =e 1-2e 2,即x =-23(e 1-2e 2)=-23e 1+43e 2,所以BC ―→=-23e 1+43e 2.同理可得y =-43e 1+23e 2,即CD ―→=-43e 1+23e 2.[谨记通法]用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决. (2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.考点二 平面向量的坐标运算(基础送分型考点——自主练透)[题组练透]1.向量a ,b 满足a +b =(-1,5),a -b =(5,-3),则b 为( ) A .(-3,4) B .(3,4) C .(3,-4)D .(-3,-4)解析:选A 由a +b =(-1,5),a -b =(5,-3),得2b =(-1,5)-(5,-3)=(-6,8),∴b =12(-6,8)=(-3,4),故选A.2.已知M (3,-2),N (-5,-1),且MP ―→=12MN ―→,则P 点的坐标为( )A .(-8,1)B .⎝⎛⎭⎫-1,-32 C .⎝⎛⎭⎫1,32 D .(8,-1)解析:选B 设P (x ,y ),则MP ―→= (x -3,y +2),而12MN ―→=12(-8,1)=⎝⎛⎭⎫-4,12,所以⎩⎪⎨⎪⎧x -3=-4,y +2=12,解得⎩⎪⎨⎪⎧x =-1,y =-32,所以P ⎝⎛⎭⎫-1,-32. 3.已知A (-2,4),B (3,-1),C (-3,-4).设AB ―→=a ,BC ―→=b ,CA ―→=c ,且CM ―→=3c ,CN ―→=-2b , (1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ; (3)求M ,N 的坐标及向量MN ―→的坐标.解:由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5, 解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点,∵CM ―→=OM ―→-OC ―→=3c , ∴OM ―→=3c +OC ―→=(3,24)+(-3,-4)=(0,20). ∴M (0,20).又∵CN ―→=ON ―→-OC ―→=-2b ,∴ON ―→=-2b +OC ―→=(12,6)+(-3,-4)=(9,2), ∴N (9,2),∴MN ―→=(9,-18).[谨记通法]平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解. 考点三 平面向量共线的坐标表示(重点保分型考点——师生共研)[典例引领]1.已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.解析:∵在梯形ABCD 中,DC =2AB ,AB ∥CD ,∴DC ―→=2AB ―→.设点D 的坐标为(x ,y ),则DC ―→=(4-x ,2-y ),AB ―→=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 答案:(2,4)2.已知a =(1,0),b =(2,1).(1)当k 为何值时,k a -b 与a +2b 共线;(2)若AB ―→=2a +3b ,BC ―→=a +m b ,且A ,B ,C 三点共线,求m 的值. 解:(1)∵a =(1,0),b =(2,1), ∴k a -b =k (1,0)-(2,1)=(k -2,-1), a +2b =(1,0)+2(2,1)=(5,2), ∵k a -b 与a +2b 共线, ∴2(k -2)-(-1)×5=0,∴k =-12.(2)AB ―→=2(1,0)+3(2,1)=(8,3), BC ―→=(1,0)+m (2,1)=(2m +1,m ). ∵A ,B ,C 三点共线,∴AB ―→∥BC ―→, ∴8m -3(2m +1)=0,∴m =32.[由题悟法]向量共线的充要条件 (1)a ∥b ⇔a =λb (b ≠0);(2)a ∥b ⇔x 1y 2-x 2y 1=0(其中a =(x 1,y 1),b =(x 2,y 2)).当涉及向量或点的坐标问题时一般利用(2)比较方便.[即时应用]1.已知向量a =(-1,2),b =(3,m ),m ∈R ,则“m =-6”是“a ∥(a +b )”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选A 由题意得a +b =(2,2+m ),由a ∥(a +b ),得-1×(2+m )=2×2,所以m =-6.当m =-6时,a ∥(a +b ),则“m =-6”是“a ∥(a +b )”的充要条件.2.(2018·贵阳监测)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )∥(m -n ),则λ=________. 解析:因为m +n =(2λ+3,3),m -n =(-1,-1), 又(m +n )∥(m -n ),所以(2λ+3)×(-1)=3×(-1),解得λ=0. 答案:03.设向量a ,b 满足|a |=25,b =(2,1),且a 与b 的方向相反,则a 的坐标为________. 解析:∵a 与b 方向相反,∴可设a =λb (λ<0), ∴a =λ(2,1)=(2λ,λ).由|a |=5λ2=25,解得λ=-2或λ=2(舍去), 故a =(-4,-2). 答案:(-4,-2)4.若三点A (2,2),B (a,0),C (0,b )(ab ≠0)共线,则1a +1b 的值等于________.解析:AB ―→=(a -2,-2),AC ―→=(-2,b -2),依题意,有(a -2)(b -2)-4=0,即ab -2a -2b =0,所以1a +1b =12.答案:12一抓基础,多练小题做到眼疾手快1.在平行四边形ABCD 中,AC 为对角线,若AB ―→=(2,4),AC ―→=(1,3),则BD ―→=( ) A .(-2,-4) B .(-3,-5) C .(3,5)D .(2,4)解析:选B 由题意得BD ―→=AD ―→-AB ―→=BC ―→-AB ―→=(AC ―→-AB ―→)-AB ―→=AC ―→-2AB ―→=(1,3)-2(2,4)=(-3,-5).2.已知A (-1,-1),B (m ,m +2),C (2,5)三点共线,则m 的值为( ) A .1 B .2 C .3D .4解析:选A AB ―→=(m ,m +2)-(-1,-1)=(m +1,m +3), AC ―→=(2,5)-(-1,-1)=(3,6), ∵A ,B ,C 三点共线,∴AB ―→∥AC ―→,∴3(m +3)-6(m +1)=0, ∴m =1.故选A.3.如图,在△OAB 中,P 为线段AB 上的一点,OP ―→=x OA ―→+y OB ―→,且BP―→=2PA ―→,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14解析:选A 由题意知OP ―→=OB ―→+BP ―→,又BP ―→=2PA ―→,所以OP ―→=OB ―→+23BA ―→=OB ―→+23(OA ―→-OB ―→)=23OA ―→+13OB ―→,所以x =23,y =13. 4.(2019·舟山模拟)已知向量a =(2,3),b =(-1,2),若m a +b 与a -2b 共线,则m 的值为________. 解析:由a =(2,3),b =(-1,2),得m a +b =(2m -1,3m +2),a -2b =(4,-1),又m a +b 与a -2b 共线,所以-1×(2m -1)=(3m +2)×4,解得m =-12.答案:-125.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________.解析:因为a =(1,2),b =(x,1),u =a +2b ,v =2a -b , 所以u =(1,2)+2(x,1)=(2x +1,4), v =2(1,2)-(x,1)=(2-x,3).又因为u ∥v ,所以3(2x +1)-4(2-x )=0, 即10x =5,解得x =12.答案:12二保高考,全练题型做到高考达标1.(2018·温州十校联考)已知a =(-3,1),b =(-1,2),则3a -2b =( ) A .(7,1) B .(-7,-1) C .(-7,1)D .(7,-1)解析:选B 由题可得,3a -2b =3(-3,1)-2(-1,2)=(-9+2,3-4)=(-7,-1).2.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(a ,3b )与n =(cos A ,sin B )平行,则A =( )A.π6B.π3C.π2D.2π3解析:选B 因为m ∥n ,所以a sin B -3b cos A =0,由正弦定理,得sin A sin B -3sin B cos A =0,又sin B ≠0,从而tan A =3,由于0<A <π,所以A =π3.3.已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC ―→=2CB ―→,则实数a 等于( )A .2B .1C .45D .53解析:选A 设C (x ,y ),则AC ―→=(x -7,y -1),CB ―→=(1-x,4-y ),∵AC ―→=2CB ―→,∴⎩⎪⎨⎪⎧ x -7=2(1-x ),y -1=2(4-y ),解得⎩⎪⎨⎪⎧x =3,y =3.∴C (3,3). 又∵点C 在直线y =12ax 上,∴3=12a ×3,∴a =2.4.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限内的点,且∠AOC =π4,|OC |=2,若OC ―→=λOA ―→+μOB ―→,则λ+μ=( )A .2 2B . 2C .2D .4 2解析:选A 因为|OC |=2,∠AOC =π4,所以C (2,2),又OC ―→=λOA ―→+μOB ―→,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=2,λ+μ=2 2.5.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC ―→=a ,BD ―→=b ,则AF ―→=( )A.14a +12bB.12a +14bC.23a +13bD.13a +23b 解析:选C 如图,∵AC ―→=a ,BD ―→=b , ∴AD ―→=AO ―→+OD ―→=12AC ―→+12BD ―→=12a +12b .∵E 是OD 的中点, ∴|DE ||EB |=13, ∴|DF |=13|AB |.∴DF ―→=13AB ―→=13(OB ―→-OA ―→)=13×⎣⎡⎦⎤-12 BD ―→⎝⎛⎭⎫-12AC ―→=16AC ―→-16BD ―→=16a -16b , ∴AF ―→=AD ―→+DF ―→=12a +12b +16a -16b =23a +13b ,故选C.6.已知向量a =(1,3),b =(-2,1),c =(3,2).若向量c 与向量k a +b 共线,则实数k =________,若c =x a +y b ,则x +y 的值为________.解析:k a +b =k (1,3)+(-2,1)=(k -2,3k +1),因为向量c 与向量k a +b 共线,所以2(k -2)-3(3k +1)=0,解得k =-1.因为c =x a +y b ,所以(3,2)=(x -2y,3x +y ),即x -2y =3,3x +y =2,解得x =1,y =-1,所以x +y =0.答案:-1 07.已知向量OA ―→=(1,-3),OB ―→=(2,-1),OC ―→=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.解析:若点A ,B ,C 能构成三角形,则向量AB ―→,AC ―→不共线. ∵AB ―→=OB ―→-OA ―→=(2,-1)-(1,-3)=(1,2), AC ―→=OC ―→-OA ―→=(k +1,k -2)-(1,-3)=(k ,k +1), ∴1×(k +1)-2k ≠0,解得k ≠1. 答案:k ≠18.如图,在正方形ABCD 中,P 为DC 边上的动点,设向量AC ―→=λDB ―→+μAP ―→,则λ+μ的最大值为________.解析:以A 为坐标原点,以AB ,AD 所在直线分别为x 轴,y 轴建立平面直角坐标系(图略),设正方形的边长为2,则B (2,0),C (2,2),D (0,2),P (x,2),x ∈[0,2]. ∴AC ―→=(2,2),DB ―→=(2,-2),AP ―→=(x,2).∵AC ―→=λDB ―→+μAP ―→,∴⎩⎪⎨⎪⎧2λ+xμ=2,-2λ+2μ=2,∴⎩⎪⎨⎪⎧λ=2-x2+x ,μ=42+x ,∴λ+μ=6-x 2+x .令f (x )=6-x2+x(0≤x ≤2), ∵f (x )在[0,2]上单调递减,∴f (x )max =f (0)=3,即λ+μ的最大值为3. 答案:39.平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1). (1)求满足a =m b +n c 的实数m ,n ; (2)若(a +k c )∥(2b -a ),求实数k . 解:(1)由题意得(3,2)=m (-1,2)+n (4,1),所以⎩⎪⎨⎪⎧-m +4n =3,2m +n =2,解得⎩⎨⎧m =59,n =89.(2)a +k c =(3+4k,2+k ),2b -a =(-5,2), 由题意得2×(3+4k )-(-5)×(2+k )=0, 解得k =-1613.10.如图,在梯形ABCD 中,AD ∥BC ,且AD =13BC ,E ,F 分别为线段AD 与BC 的中点.设BA ―→=a ,BC ―→=b ,试用a ,b 为基底表示向量EF ―→,DF ―→,CD ―→.解:EF ―→=EA ―→+AB ―→+BF ―→=-16b -a +12b =13b -a ,DF ―→=DE ―→+EF ―→=-16b +⎝⎛⎭⎫13b -a =16b -a , CD ―→=CF ―→+FD ―→=-12b -⎝⎛⎭⎫16b -a =a -23b . 三上台阶,自主选做志在冲刺名校1.在平面直角坐标系xOy 中,已知点A (2,3),B (3,2),C (1,1),点P (x ,y )在△ABC 三边围成的区域(含边界)内,设OP ―→=m AB ―→-n CA ―→(m ,n ∈R ),则2m +n 的最大值为( )A .-1B .1C .2D .3解析:选B 由已知得AB ―→=(1,-1),CA ―→=(1,2),设OP ―→=(x ,y ),∵OP ―→=m AB ―→-n CA ―→,∴⎩⎪⎨⎪⎧x =m -n ,y =-m -2n ,∴2m +n =x -y .作出平面区域如图所示,令z =x -y ,则y =x -z ,由图象可知当直线y =x -z 经过点B (3,2)时,截距最小,即z 最大.∴z 的最大值为3-2=1,即2m +n 的最大值为1.2.设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若A 1A 3―→=λA 1A 2―→(λ∈R ),A 1A 4―→=μA 1A 2―→(μ∈R ),且1λ+1μ=2,则称A 3,A 4调和分割A 1,A 2.已知点C (c,0),D (d,0)(c ,d ∈R )调和分割点A (0,0),B (1,0),则下面说法正确的是( )A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上解析:选D 根据已知得(c,0)-(0,0)=λ[(1,0)-(0,0)],即(c,0)=λ(1,0),从而得c =λ.(d,0)-(0,0)=μ[(1,0)-(0,0)],即(d,0)=μ(1,0),得d =μ.根据1λ+1μ=2,得1c +1d =2.线段AB 的方程是y =0,x ∈[0,1].若C 是线段AB 的中点,则c =12,代入1c +1d =2得,1d =0,此等式不可能成立,故选项A 的说法不正确;同理选项B 的说法也不正确;若C ,D 同时在线段AB 上,则0<c ≤1,0<d ≤1,此时1c ≥1,1d ≥1,1c +1d ≥2,若等号成立,则只能c =d =1,根据定义,C ,D 是两个不同的点,矛盾,故选项C 的说法也不正确;若C ,D 同时在线段AB 的延长线上,即c >1,d >1,则1c +1d <2,与1c +1d =2矛盾,若c <0,d <0,则1c +1d 是负值,与1c +1d =2矛盾,若c >1,d <0,则1c <1,1d <0,此时1c +1d <1,与1c +1d =2矛盾,故选项D 的说法是正确的.3.已知三点A (a,0),B (0,b ),C (2,2),其中a >0,b >0.(1)若O 是坐标原点,且四边形OACB 是平行四边形,试求a ,b 的值; (2)若A ,B ,C 三点共线,试求a +b 的最小值. 解:(1)因为四边形OACB 是平行四边形, 所以OA ―→=BC ―→,即(a,0)=(2,2-b ),⎩⎪⎨⎪⎧ a =2,2-b =0,解得⎩⎪⎨⎪⎧a =2,b =2. 故a =2,b =2.(2)因为AB ―→=(-a ,b ),BC ―→=(2,2-b ), 由A ,B ,C 三点共线,得AB ―→∥BC ―→,所以-a (2-b )-2b =0,即2(a +b )=ab , 因为a >0,b >0,所以2(a +b )=ab ≤⎝⎛⎭⎫a +b 22, 即(a +b )2-8(a +b )≥0,解得a +b ≥8或a +b ≤0. 因为a >0,b >0,所以a +b ≥8,即a +b 的最小值是8. 当且仅当a =b =4时,“=”成立.第三节平面向量的数量积与平面向量应用举例1.向量的夹角2.平面向量的数量积3.向量数量积的运算律 (1)a ·b =b ·a .(2)(λa )·b =λ(a ·b )=a ·(λb ). (3)(a +b )·c =a ·c +b ·c .4.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.[小题体验]1.已知|a |=2,|b |=6,a ·b =-63,则a 与b 的夹角θ为( ) A.π6 B.π3 C.2π3 D.5π6 答案:D2.已知向量a 和向量b 的夹角为30°,|a |=2,|b |=3,则向量a 和向量b 的数量积a ·b =( ) A .1 B .2 C .3D .4解析:选C 由题意可得a ·b =|a |·|b |·cos 〈a ,b 〉=2×3×32=3. 3.已知向量a ,b 均为单位向量,若它们的夹角为60°,则|a +3b |=( ) A.7 B.10 C.13D .4解析:选C 依题意得a ·b =12,则|a +3b |=a 2+9b 2+6a ·b =13.4.已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =________.解析:因为向量a ,b 为单位向量,所以b 2=1,又向量a ,b 的夹角为60°,所以a ·b =12,由b ·c =0,得b ·[t a +(1-t )b ]=0,即t a ·b +(1-t )b 2=0,所以12t +(1-t )=0,所以t =2.答案:25.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE ―→·BD ―→=________.解析:选向量的基底为AB ―→,AD ―→,则BD ―→=AD ―→-AB ―→,AE ―→=AD ―→+12AB ―→,所以AE ―→·BD ―→=⎝⎛⎭⎫AD ―→+12AB ―→ ·(AD ―→-AB ―→)=2. 答案:21.数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0)不能得出b =c ,两边不能约去一个向量. 2.两个向量的夹角为锐角,则有a ·b >0,反之不成立;两个向量夹角为钝角,则有a ·b <0,反之不成立.3.a ·b =0不能推出a =0或b =0,因为a ·b =0时,有可能a ⊥b . 4.在用|a |=a 2求向量的模时,一定要把求出的a 2再进行开方. [小题纠偏]1.若a ,b 是两个互相垂直的非零向量,给出以下式子:①a ·b =0;②a +b =a -b ;③|a +b |=|a -b |;④a 2+b 2=(a +b )2.其中正确的个数是( )A .1B .2C .3D .4解析:选C 因为a ,b 是两个互相垂直的非零向量,所以a·b =0;所以(a +b )2=a 2+b 2+2a·b =a 2+b 2;(a -b )2=a 2+b 2-2a ·b =a 2+b 2;所以(a +b )2=(a -b )2,即|a +b |=|a -b |.故①③④是正确的,②是错误的.2.设向量a ,b 满足|a |=|b |=1,a ·b =-12,则|a +2b |=________.解析:|a +2b |=(a +2b )2=|a |2+4a ·b +4|b |2= 1+4×⎝⎛⎭⎫-12+4= 3. 答案: 3考点一 平面向量的数量积的运算(基础送分型考点——自主练透)[题组练透]1.设a =(1,-2),b =(-3,4),c =(3,2),则(a +2b )·c =( ) A .(-15,12) B .0 C .-3D .-11解析:选C ∵a +2b =(1,-2)+2(-3,4)=(-5,6), ∴(a +2b )·c =(-5,6)·(3,2)=-3.2.(2018·浙江考前冲刺)若两个非零向量a ,b 满足|a +b |=|a -b |=2|b |=4,则向量a 在a +b 上的投影为( )A. 3 B .3 C. 6D .6解析:选B 由|a +b |=|a -b |,得a 2+2a ·b +b 2=a 2-2a ·b +b 2,即a ·b =0, 由|a +b |=2|b |,得a 2+2a ·b +b 2=4b 2,即a 2=3b 2,所以|a |=3|b |=23, 所以向量a 在a +b 上的投影为a ·(a +b )|a +b |=a 2|a +b |=3.中点,则AB ―→·AD―→3.如图,在等腰直角三角形ABC 中,∠C =90°,AC =2,D 为BC 的=________.解析:法一:由题意知,AC =BC =2,AB =22, ∴AB ―→·AD ―→=AB ―→·(AC ―→+CD ―→)=AB ―→·AC ―→+AB ―→·CD ―→=|AB ―→|·|AC ―→|cos 45°+|AB ―→|·|CD ―→|cos 45° =22×2×22+22×1×22=6. 法二:建立如图所示的平面直角坐标系,由题意得A (0,2),B (-2,0), D (-1,0),∴AB ―→=(-2,0)-(0,2)=(-2,-2), AD ―→=(-1,0)-(0,2)=(-1,-2), ∴AB ―→·AD ―→=-2×(-1)+(-2)×(-2)=6. 答案:64.(2019·台州模拟)以O 为起点作三个不共线的非零向量OA ―→,OB ―→,OC ―→,使AB ―→=-2BC ―→,|OA ―→|=4,OA ―→|OA ―→|+OB ―→|OB ―→|=OC ―→|OC ―→|,则OA ―→·BC ―→=________. 解析:法一:由OA ―→|OA ―→|+OB ―→|OB ―→|=OC ―→|OC ―→|,平方得OA ―→|OA ―→|·OB ―→|OB ―→|=-12,即cos ∠AOB =-12,因为OA ―→,OB ―→不共线,所以0°<∠AOB <180°,所以∠AOB =120°.因为AB ―→=-2BC ―→,所以C 为线段AB 的中点.由OA ―→|OA ―→|+OB ―→|OB ―→|=OC ―→|OC ―→|两边同乘以OC ―→|OC ―→|,得cos ∠AOC +cos ∠BOC =1,即cos ∠AOC +cos(120°-∠AOC )=1,解得∠AOC =60°,所以OC 为∠AOB 的平分线,所以OC ―→⊥AB ―→.又|OA ―→|=4,所以|AC ―→|=|BC ―→|=23,所以OA ―→·BC ―→=(OC ―→+CA ―→)·BC ―→=BC ―→2=12.法二:由OA ―→|OA ―→|+OB ―→|OB ―→|=OC ―→|OC ―→|及AB ―→=-2BC ―→,结合向量加法的平行四边形法则得OC 为∠AOB 的平分线,C 为AB 的中点,所以OC ―→⊥AB ―→,且|OA ―→|=|OB ―→|=4,|AC ―→|=|BC ―→|=23,所以OA ―→·BC ―→=(OC ―→+CA ―→)·BC ―→=BC ―→2=12.答案:12[谨记通法]向量数量积的2种运算方法考点二 平面向量数量积的性质(题点多变型考点——多角探明) [锁定考向]平面向量的夹角与模的问题是高考中的常考内容,题型多为选择题、填空题,难度适中,属中档题. 常见的命题角度有: (1)平面向量的模; (2)平面向量的夹角; (3)平面向量的垂直;(4)与最值、范围有关问题.[题点全练]角度一:平面向量的模1.已知e 1,e 2是单位向量,且e 1·e 2=12.若向量b 满足b ·e 1=b ·e 2=1,则|b |=________.解析:法一:∵e 1·e 2=12,∴|e 1||e 2|cos e 1,e 2=12,∴e 1,e 2=60°.又∵b ·e 1=b ·e 2=1>0,∴b ,e 1=b ,e 2=30°. 由b ·e 1=1,得|b ||e 1|cos 30°=1,∴|b |=132=233.法二:由题可得,不妨设e 1=(1,0),e 2=⎝⎛⎭⎫12,32,b =(x ,y ). ∵b ·e 1=b ·e 2=1,∴x =1,12x +32y =1,解得y =33.∴b =⎝⎛⎭⎫1,33,∴|b |= 1+13=233. 答案:233角度二:平面向量的夹角2.(2018·浙江十校联盟适考)若向量a ,b 满足|a |=4,|b |=1,且(a +8b )⊥a ,则向量a ,b 的夹角为( ) A.π6 B.π3C.2π3D.5π6解析:选C 由(a +8b )⊥a ,得|a |2+8a ·b =0,因为|a |=4,所以a ·b =-2,所以cos 〈a ,b 〉=a ·b |a |·|b |=-12,所以向量a ,b 的夹角为2π3. 3.已知平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =________.解析:因为a =(1,2),b =(4,2),所以c =m a +b =(m +4,2m +2),|a |=5,|b |=25, 所以c ·a =5m +8,c ·b =8m +20. 因为c 与a 的夹角等于c 与b 的夹角, 所以c ·a |c |·|a |=c ·b|c |·|b |, 即5m +85=8m +2025,解得m =2. 答案:2角度三:平面向量的垂直4.(2019·南宁模拟)已知向量AB ―→与AC ―→的夹角为120°,且|AB ―→|=3,|AC ―→|=2.若AP ―→=λAB ―→+AC ―→,且AP ―→⊥BC ―→,则实数λ的值为________.解析:由AP ―→⊥BC ―→,知AP ―→·BC ―→=0,即AP ―→·BC ―→=(λAB ―→+AC ―→)·(AC ―→-AB ―→)=(λ-1)AB ―→·AC ―→-λAB ―→2+AC ―→2=(λ-1)×3×2×⎝⎛⎭⎫-12-λ×9+4=0,解得λ=712. 答案:7125.已知向量a =(cos α,sin α),b =(cos β,sin β),0<β<α<π. (1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值. 解:(1)证明:由题意得|a -b |2=2, 即(a -b )2=a 2-2a ·b +b 2=2. 又因为a 2=b 2=|a |2=|b |2=1, 所以2-2a ·b =2, 即a ·b =0,故a ⊥b .(2)因为a +b =(cos α+cos β,sin α+sin β)=(0,1),所以⎩⎪⎨⎪⎧cos α+cos β=0,sin α+sin β=1,由此得,cos α=cos(π-β),由0<β<π,得0<π-β<π,又0<α<π,故α=π-β.代入sin α+sin β。
2024年高考数学总复习第五章《平面向量与复数》平面向量的概念及线性运算
2024年高考数学总复习第五章《平面向量与复数》§5.1平面向量的概念及线性运算最新考纲1.通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示.2.通过实例,掌握向量加法、减法的运算,并理解其几何意义.3.通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义.4.了解向量线性运算的性质及其几何意义.1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量平行.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算交换律:a +b =b +a ;结合律:(a +b )+c =a +(b +c )减法求a 与b 的相反向量-b 的和的运算a -b =a +(-b )数乘求实数λ与向量a 的积的运算|λa |=|λ||a |,当λ>0时,λa与a 的方向相同;当λ<0时,λa 与a 的方向相反;当λ=0时,λa =0λ(μa )=(λμ)a ;(λ+μ)a =λa +μa ;λ(a +b )=λa +λb3.向量共线定理向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa .概念方法微思考1.若b 与a 共线,则存在实数λ使得b =λa ,对吗?提示不对,因为当a =0,b ≠0时,不存在λ满足b =λa .2.如何理解数乘向量?提示λa 的大小为|λa |=|λ||a |,方向要分类讨论:当λ>0时,λa 与a 同方向;当λ<0时,λa 与a 反方向;当λ=0或a 为零向量时,λa 为零向量,方向不确定.3.如何理解共线向量定理?提示如果a =λb ,则a ∥b ;反之,如果a ∥b ,且b ≠0,则一定存在唯一一个实数λ,使得a =λb .题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)向量不能比较大小,但向量的模可以比较大小.(√)(2)|a |与|b |是否相等与a ,b 的方向无关.(√)(3)若a ∥b ,b ∥c ,则a ∥c .(×)(4)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.(×)(5)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.(√)(6)若两个向量共线,则其方向必定相同或相反.(×)题组二教材改编2.已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________.(用a ,b 表示)答案b -a-a -b解析如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b .3.在平行四边形ABCD 中,若|AB →+AD →|=|AB →-AD →|,则四边形ABCD 的形状为________.答案矩形解析如图,因为AB →+AD →=AC →,AB →-AD →=DB →,所以|AC →|=|DB →|.由对角线长相等的平行四边形是矩形可知,四边形ABCD 是矩形.题组三易错自纠4.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案A解析若a +b =0,则a =-b ,所以a ∥b .若a ∥b ,则a +b =0不一定成立,故前者是后者的充分不必要条件.5.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________.答案12解析∵向量a ,b 不平行,∴a +2b ≠0,又向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb λ=μ,1=2μ,解得λ=μ=12.6.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.答案12解析DE →=DB →+BE →=12AB →+23BC→=12AB →+23(BA →+AC →)=-16AB →+23AC →,∴λ1=-16,λ2=23,即λ1+λ2=12.题型一平面向量的概念1.给出下列命题:①若两个向量相等,则它们的起点相同,终点相同;②若a 与b 共线,b 与c 共线,则a 与c 也共线;③若A ,B ,C ,D 是不共线的四点,且AB →=DC →,则ABCD 为平行四边形;④a =b 的充要条件是|a |=|b |且a ∥b ;⑤已知λ,μ为实数,若λa =μb ,则a 与b 共线.其中真命题的序号是________.答案③解析①错误,两个向量起点相同,终点相同,则两个向量相等;但两个向量相等,不一定有相同的起点和终点;②错误,若b =0,则a 与c 不一定共线;③正确,因为AB →=DC →,所以|AB →|=|DC →|且AB →∥DC →;又A ,B ,C ,D 是不共线的四点,所以四边形ABCD 为平行四边形;④错误,当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,所以|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件;⑤错误,当λ=μ=0时,a 与b 可以为任意向量,满足λa =μb ,但a 与b 不一定共线.故填③.2.判断下列四个命题:①若a ∥b ,则a =b ;②若|a |=|b |,则a =b ;③若|a |=|b |,则a ∥b ;④若a =b ,则|a |=|b |.其中正确的个数是()A .1B .2C .3D .4答案A解析只有④正确.思维升华向量有关概念的关键点(1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制.(3)相等向量的关键是方向相同且长度相等.(4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任何向量共线.题型二平面向量的线性运算命题点1向量加、减法的几何意义例1(2017·全国Ⅱ)设非零向量a ,b 满足|a +b |=|a -b |,则()A .a ⊥bB .|a |=|b |C .a ∥bD .|a |>|b |答案A 解析方法一∵|a +b |=|a -b |,∴|a +b |2=|a -b |2.∴a 2+b 2+2a·b =a 2+b 2-2a·b .∴a·b =0.∴a ⊥b .故选A.方法二利用向量加法的平行四边形法则.在▱ABCD 中,设AB →=a ,AD →=b ,由|a +b |=|a -b |知,|AC →|=|DB →|,从而四边形ABCD 为矩形,即AB ⊥AD ,故a ⊥b .故选A.命题点2向量的线性运算例2(1)在平行四边形ABCD 中,点E 为CD 的中点,BE 与AC 的交点为F ,设AB →=a ,AD →=b ,则向量BF →等于()A.13a +23b B .-13a -23bC .-13a +23bD.13a -23b 答案C解析BF →=23BE →=23(BC →+CE →)-12a =-13a +23b ,故选C.(2)(2018·全国Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →等于()A.34AB →-14AC →B.14AB →-34AC →C.34AB →+14AC →D.14AB →+34AC →答案A解析作出示意图如图所示.EB →=ED →+DB →=12AD →+12CB→=12×12(AB →+AC →)+12(AB →-AC →)=34AB →-14AC →.故选A.命题点3根据向量线性运算求参数例3在锐角△ABC 中,CM →=3MB →,AM →=xAB →+yAC →,则xy =________.答案3解析由题意得CA →+AM →=3(AB →-AM →),即4AM →=3AB →+AC →,亦即AM →=34AB →+14AC →,则x =34,y =14.故x y=3.思维升华平面向量线性运算问题的常见类型及解题策略(1)向量加法或减法的几何意义.向量加法和减法均适合三角形法则.(2)求已知向量的和.共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.(3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较,求参数的值.跟踪训练1(1)在△ABC 中,点D ,E 分别在边BC ,AC 上,且BD →=2DC →,CE →=3EA →,若AB →=a ,AC →=b ,则DE →等于()A.13a +512bB.13a -1312b C .-13a -512bD .-13a +1312b答案C解析DE →=DC →+CE →=13BC →+34CA→=13(AC →-AB →)-34AC →=-13AB →-512AC →=-13a -512b ,故选C.(2)(2018·威海模拟)在平行四边形ABCD 中,E ,F 分别为边BC ,CD 的中点,若AB →=xAE →+yAF →(x ,y ∈R ),则x -y =________.答案2解析由题意得AE →=AB →+BE →=AB →+12AD →,AF →=AD →+DF →=AD →+12AB →,因为AB →=xAE →+yAF →,所以AB →→,+y2=1,y =0,=43,=-23,所以x -y =2.题型三共线定理的应用例4设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 共线.(1)证明∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),∴BD →=BC →+CD →=2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB →,∴AB →,BD →共线.又∵它们有公共点B ,∴A ,B ,D 三点共线.(2)解假设k a +b 与a +k b 共线,则存在实数λ,使k a +b =λ(a +k b ),即(k -λ)a =(λk -1)b .又a ,b 是两个不共线的非零向量,∴k -λ=λk -1=0.消去λ,得k 2-1=0,∴k =±1.引申探究1.若将本例(1)中“BC →=2a +8b ”改为“BC →=a +m b ”,则m 为何值时,A ,B ,D 三点共线?解BC →+CD →=(a +m b )+3(a -b )=4a +(m -3)b ,即BD →=4a +(m -3)b .若A ,B ,D 三点共线,则存在实数λ,使BD →=λAB →.即4a +(m -3)b =λ(a +b ).=λ,-3=λ,解得m =7.故当m =7时,A ,B ,D 三点共线.2.若将本例(2)中的“共线”改为“反向共线”,则k 为何值?解因为k a +b 与a +k b 反向共线,所以存在实数λ,使k a +b =λ(a +k b )(λ<0).=λ,=1,所以k =±1.又λ<0,k =λ,所以k =-1.故当k =-1时两向量反向共线.思维升华(1)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.跟踪训练2已知O ,A ,B 是不共线的三点,且OP →=mOA →+nOB →(m ,n ∈R ).(1)若m +n =1,求证:A ,P ,B 三点共线;(2)若A ,P ,B 三点共线,求证:m +n =1.证明(1)若m +n =1,则OP →=mOA →+(1-m )OB →=OB →+m (OA →-OB →),∴OP →-OB →=m (OA →-OB →),即BP →=mBA →,∴BP →与BA →共线.又∵BP →与BA →有公共点B ,则A ,P ,B 三点共线.(2)若A ,P ,B 三点共线,则存在实数λ,使BP →=λBA →,∴OP →-OB →=λ(OA →-OB →).又OP →=mOA →+nOB →.故有mOA →+(n -1)OB →=λOA →-λOB →,即(m -λ)OA →+(n +λ-1)OB →=0.∵O ,A ,B 不共线,∴OA →,OB →不共线,-λ=0,+λ-1=0,∴m +n =1.1.对于非零向量a ,b ,“a +2b =0”是“a ∥b ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案A解析若a +2b =0,则a =-2b ,所以a ∥b .若a ∥b ,则a +2b =0不一定成立,故前者是后者的充分不必要条件.2.已知向量AB →=a +3b ,BC →=5a +3b ,CD →=-3a +3b ,则()A .A ,B ,C 三点共线B .A ,B ,D 三点共线C .A ,C ,D 三点共线D .B ,C ,D 三点共线答案B解析∵BD →=BC →+CD →=2a +6b =2AB →,∴BD →与AB →共线,由于BD →与AB →有公共点B ,因此A ,B ,D 三点共线,故选B.3.如图,在正方形ABCD 中,点E 是DC 的中点,点F 是BC 上的一个靠近点B 的三等分点,那么EF →等于()A.12AB →-13AD →B.14AB →+12AD →C.13AB →+12DA →D.12AB →-23AD →答案D解析在△CEF 中,有EF →=EC →+CF →.因为点E 为DC 的中点,所以EC →=12DC →.因为点F 为BC 上的一个靠近点B 的三等分点,所以CF →=23CB →.所以EF →=12DC →+23CB →=12AB →+23DA →=12AB →-23AD →,故选D.4.(2018·唐山模拟)在△ABC 中,点G 满足GA →+GB →+GC →=0.若存在点O ,使得OG →=16BC →,且OA →=mOB →+nOC →,则m -n 等于()A .2B .-2C .1D .-1答案D 解析∵GA →+GB →+GC →=0,∴OA →-OG →+OB →-OG →+OC →-OG →=0,∴OG →=13(OA →+OB →+OC →)=16BC →=16(OC →-OB →),可得OA →=-12OC →-32OB →,∴m =-32,n =-12,m -n =-1,故选D.5.如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD→等于()A .a -12b B.12a -b C .a +12b D.12a +b 答案D 解析连接OC ,OD ,CD ,由点C ,D 是半圆弧的三等分点,可得∠AOC =∠COD =∠BOD =60°,且△OAC 和△OCD 均为边长等于圆O 半径的等边三角形,所以四边形OACD 为菱形,所以AD →=AO →+AC →=12AB →+AC →=12a +b ,故选D.6.如图,在△ABC 中,AN →=13AC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为()A.911B.511C.311D.211答案B解析注意到N ,P ,B 三点共线,因此AP →=mAB →+211AC →=mAB →+611AN →,从而m +611=1,所以m =511.7.若|AB →|=|AC →|=|AB →-AC →|=2,则|AB →+AC →|=________.答案23解析因为|AB →|=|AC →|=|AB →-AC →|=2,所以△ABC 是边长为2的正三角形,所以|AB →+AC →|为△ABC 的边BC 上的高的2倍,所以|AB →+AC →|=23.8.若点O 是△ABC 所在平面内的一点,且满足|OB →-OC →|=|OB →+OC →-2OA →|,则△ABC 的形状为________.答案直角三角形解析因为OB →+OC →-2OA →=OB →-OA →+OC →-OA→=AB →+AC →,OB →-OC →=CB →=AB →-AC →,所以|AB →+AC →|=|AB →-AC →|,即AB →·AC →=0,故AB →⊥AC →,△ABC 为直角三角形.9.若M 是△ABC 的边BC 上的一点,且CM →=3MB →,设AM →=λAB →+μAC →,则λ的值为________.答案34解析由题设知CM MB=3,过M 作MN ∥AC 交AB 于N ,则MN AC =BN BA =BM BC =14,从而AN AB =34,又AM →=λAB →+μAC →=AN →+NM →=34AB →+14AC →,所以λ=34.10.(2019·钦州质检)已知e 1,e 2为平面内两个不共线的向量,MN →=2e 1-3e 2,NP →=λe 1+6e 2,若M ,N ,P 三点共线,则λ=________.答案-4解析因为M ,N ,P 三点共线,所以存在实数k 使得MN →=kNP →,所以2e 1-3e 2=k (λe 1+6e 2),又e 1,e 2为平面内两个不共线的向量,=kλ,3=6k ,解得λ=-4.11.如图所示,设O 是△ABC 内部一点,且OA →+OC →=-2OB →,求△ABC 与△AOC 的面积之比.解取AC 的中点D ,连接OD ,则OA →+OC →=2OD →,∴OB →=-OD →,∴O 是AC 边上的中线BD 的中点,∴S △ABC =2S △OAC ,∴△ABC 与△AOC 面积之比为2∶1.12.如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,试用a ,b 表示向量AO →.解方法一由D ,O ,C 三点共线,可设DO →=k 1DC →=k 1(AC →-AD →)=k-12a=-12k 1a +k 1b (k 1为实数),同理,可设BO →=k 2BF →=k 2(AF →-AB →)=k-k 2a +12k 2b (k 2为实数),①又BO →=BD →+DO →=-12a -12k 1a +k 1=-12(1+k 1)a +k 1b ,②所以由①②,得-k 2a +12k 2b =-12(1+k 1)a +k 1b ,即12(1+k 1-2k 2)a2-k=0.又a ,b 不共线,1+k 1-2k 2)=0,2-k 1=0,1=13,2=23.所以BO →=-23a +13b .所以AO →=AB →+BO →=a -23a +13b =13(a +b ).方法二延长AO 交BC 于点E ,O 为△ABC 的重心,则E 为BC 的中点,所以AO →=23AE →=23×12(AB →+AC →)=13(a +b ).13.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2等于()A.58B.14C .1 D.516答案A 解析DE →=12DA →+12DO →=12DA →+14DB →=12DA →+14(DA →+AB →)=14AB →-34AD →,所以λ=14,μ=-34,故λ2+μ2=58,故选A.14.A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D (点O 与点D 不重合),若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的取值范围是()A .(0,1)B .(1,+∞)C .(1,2]D .(-1,0)答案B 解析设OC →=mOD →,则m >1,因为OC →=λOA →+μOB →,所以mOD →=λOA →+μOB →,即OD →=λm OA →+μmOB →,又知A ,B ,D 三点共线,所以λm +μm=1,即λ+μ=m ,所以λ+μ>1,故选B.15.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足OP →=OA →+12OB →+12OC P 一定为△ABC 的()A .BC 边中线的中点B .BC 边中线的三等分点(非重心)C .重心D .BC 边的中点答案B 解析设BC 的中点为M ,则12OC →+12OB →=OM →,∴OP →=13(OM →+2OA →)=13OM →+23OA →,即3OP →=OM →+2OA →,也就是MP →=2PA →,∴P ,M ,A 三点共线,且P 是AM 上靠近A 点的一个三等分点.16.设W 是由一平面内的n (n ≥3)个向量组成的集合.若a ∈W ,且a 的模不小于W 中除a 外的所有向量和的模.则称a 是W 的极大向量.有下列命题:①若W 中每个向量的方向都相同,则W 中必存在一个极大向量;②给定平面内两个不共线向量a ,b ,在该平面内总存在唯一的平面向量c =-a -b ,使得W ={a ,b ,c }中的每个元素都是极大向量;③若W 1={a 1,a 2,a 3},W 2={b 1,b 2,b 3}中的每个元素都是极大向量,且W 1,W 2中无公共元素,则W 1∪W 2中的每一个元素也都是极大向量.其中真命题的序号是________.答案②③解析①若有几个方向相同,模相等的向量,则无极大向量,故不正确;②由题意得a ,b ,c 围成闭合三角形,则任意向量的模等于除它本身外所有向量和的模,故正确;③3个向量都是极大向量,等价于3个向量之和为0,故W 1={a 1,a 2,a 3},W 2={b 1,b 2,b 3}中的每个元素都是极大向量时,W 1∪W 2中的每一个元素也都是极大向量,故正确.。
高考数学平面向量的基本定理总结
高考数学平面向量的基本定理总结一、平面向量的定义在平面上,任意给定的两个点A和B,我们可以由点A指向点B画出一条有向线段,这条有向线段就是一个平面向量,记作AB。
二、平面向量的表示平面向量既可以用有向线段表示,也可以用坐标表示。
对于平面上的向量AB,用坐标表示为:AB = (x2-x1, y2-y1)其中(x1, y1)和(x2, y2)分别是向量起点A和终点B的坐标。
这种表示方法非常直观,也很容易理解。
三、平面向量的基本运算在平面向量的基本定理中,我们需要掌握平面向量的基本运算,主要包括向量的加法、减法和数量乘法。
1. 向量的加法设有向量A的坐标为(x1, y1),向量B的坐标为(x2, y2),则向量A和向量B的和向量C的坐标为:C = A + B = (x1+x2, y1+y2)2. 向量的减法设有向量A的坐标为(x1, y1),向量B的坐标为(x2, y2),则向量A减去向量B的差向量D的坐标为:D = A - B = (x1-x2, y1-y2)3. 数量乘法设k为实数,向量A的坐标为(x1, y1),则向量A的数量乘积ka的坐标为:ka = (kx1, ky1)四、平面向量的基本定理平面向量的基本定理是指任何一个平面向量都可以表示成两个非零向量的和。
具体而言,对于平面上的向量A,可以找到两个非零向量B和C,使得:A =B + C其中,向量B和向量C的坐标满足条件:B = (x1, y1),C = (x2, y2)B和C分别称为向量A的两个互补向量。
根据平面向量的基本定理,我们可以将任意一个向量拆分成两个向量的和,从而简化向量的运算和应用。
五、基本定理的应用平面向量的基本定理在高考数学中有着广泛的应用。
主要包括以下几个方面:1. 向量的坐标运算:利用基本定理,我们可以通过向量的坐标进行加法、减法、数量乘法和求模等运算,从而简化向量的运算。
2. 向量的平衡力:基于平面向量的基本定理,我们可以将受力问题转化为向量的平衡问题,通过求解向量的平衡条件,得到力的大小和方向。
高中数学平面向量知识点总结
高中数学平面向量知识点总结
向量的基本概念:向量是有大小和方向的量,通常用箭头表示。
向量的起点和终点可以表示为一个有序对,如AB(或→AB),其中A为向量的起点,B为向量的终点。
零向量是大小为0的向量,与任何向量都平行。
向量的负向量是与原向量大小相等、方向相反的向量。
向量的相等:两个向量相等当且仅当它们的大小相等且方向相同。
向量的加法:向量相加的结果称为向量的和,可以用平行四边形法则或三角形法则进行计算。
向量的数乘:一个向量乘以一个实数得到的向量。
即向量AB乘以实数k得到的向量为k→AB,大小为|k||→AB|,方向与→AB相同或相反。
向量的分解:可以将一个向量分解为两个或多个其他向量的和,这通常用于解决复杂的问题。
向量的坐标表示:在平面直角坐标系中,向量可以用坐标表示。
向量的x轴和y轴的分量分别为向量的坐标中的x分量和y分量。
向量的数量积:两个向量的数量积等于它们的模的乘积与它们夹角的余弦值的乘积。
数量积可以用来计算向量的夹角、判断向量的垂直关系等。
向量的应用:向量在物理、工程、计算机图形学等领域有广泛的应用。
例如,在物理学中,力、速度和加速度等都是向量;在计算机图形学中,向量用于表示方向和位置等。
以上就是高中数学平面向量的主要知识点。
学习这些知识时,需要注意理解向量的概念和运算,掌握向量的性质和定理,并能够应用这些知识解决实际问题。
高二数学第五章总结知识点
高二数学第五章总结知识点数学是一门非常重要的学科,它有助于我们提高逻辑思维能力和解决实际问题的能力。
在高二数学学习过程中,第五章是一个非常重要的章节,它包含了许多关键的知识点。
本文将对高二数学第五章的知识点进行总结,并提供相应的例题进行说明。
一、平面向量1. 平面向量的定义和性质:平面向量是具有大小和方向的量,常用箭头表示。
平面向量的相等、加法、减法、数量乘法等运算有特定的规则。
2. 向量的模、方向角和方向余弦:向量的模表示向量的长度,方向角表示向量与正 x 轴的夹角,方向余弦是方向角的余弦值。
3. 向量的共线和垂直:两个向量共线表示它们的方向相同或相反,两个向量垂直表示它们的数量积为零。
4. 向量的数量积和夹角余弦:向量的数量积表示两个向量的长度乘积与它们夹角余弦的乘积,有重要的几何和物理意义。
例题:已知向量 $\overrightarrow{a} = 2\overrightarrow{i} -3\overrightarrow{j}$,$\overrightarrow{b} = 4\overrightarrow{i} + \overrightarrow{k}$,求向量 $\overrightarrow{a}$ 和$\overrightarrow{b}$ 的数量积及夹角余弦。
二、空间向量1. 空间向量的定义和性质:空间向量与平面向量类似,只是在三维坐标系中有三个方向。
2. 空间向量的坐标表示和合成:空间向量可以表示为有序数组(a,b,c),合成表示为向量的和。
3. 向量的数量积和夹角余弦:向量的数量积和夹角余弦的计算方法与平面向量类似,只是方向余弦需要考虑三个坐标轴。
4. 向量的混合积和体积:向量的混合积表示由三个向量构成的差乘,有重要的几何和物理意义。
例题:已知向量 $\overrightarrow{a} = \overrightarrow{i} +2\overrightarrow{j} - \overrightarrow{k}$,$\overrightarrow{b} = 2\overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}$,$\overrightarrow{c} = 3\overrightarrow{i} + 4\overrightarrow{j} + 2\overrightarrow{k}$,求向量 $\overrightarrow{a}$、$\overrightarrow{b}$ 和 $\overrightarrow{c}$ 的混合积和体积。
平面向量知识点总结
平面向量知识点总结平面向量是高中数学中的重要内容,也是数学中的基础知识之一。
它在几何、代数、物理等方面有着广泛的应用,因此对平面向量的理解和掌握是非常重要的。
接下来,我将对平面向量的基本概念、性质和运算进行总结,希望能够帮助大家更好地理解和掌握这一知识点。
1. 平面向量的基本概念。
平面向量是具有大小和方向的量,通常用有向线段来表示。
在平面直角坐标系中,平面向量可以表示为一个有序数对(a, b),其中a和b分别表示向量在x轴和y 轴上的投影。
平面向量的模可以表示为|AB|,方向可以用角度或者方向角来表示。
2. 平面向量的性质。
平面向量具有以下性质:平行向量,如果两个向量的方向相同或者相反,则它们是平行向量。
相等向量,具有相同大小和方向的向量称为相等向量。
零向量,模为0的向量称为零向量,记作0。
共线向量,如果存在实数k,使得向量a=kb,则称向量a与b共线。
3. 平面向量的运算。
平面向量具有加法、数乘和数量积等运算。
加法,向量a和向量b的和记作a+b,其坐标分别相加。
数乘,实数k与向量a的数乘记作ka,其坐标分别乘以k。
数量积,向量a与向量b的数量积记作a·b,其大小为|a|·|b|·cosθ,其中θ为向量a和向量b的夹角。
4. 平面向量的应用。
平面向量在几何、代数和物理等方面有着广泛的应用。
几何,平面向量可以用来表示线段、向量共线、向量共面等几何性质。
代数,平面向量的运算可以用来解决代数方程组、向量方程等问题。
物理,平面向量可以用来表示力、速度、位移等物理量,并且可以进行运算和分解。
总结,平面向量是数学中的重要内容,它具有基本概念、性质和运算,应用广泛。
通过对平面向量的学习,可以帮助我们更好地理解和应用数学知识,提高数学解决问题的能力。
希望以上内容能够帮助大家更好地理解和掌握平面向量的知识点,欢迎大家在学习过程中多加练习,加深对平面向量的理解和运用。
平面向量知识点归纳高考
平面向量知识点归纳高考一、向量的定义和性质在数学中,向量是由大小和方向组成的量。
平面向量可以表示为有序的数对,其中第一个数表示向量在水平方向上的分量,第二个数表示向量在垂直方向上的分量。
即向量a可以表示为a=(a₁, a₂)。
向量的性质有:1. 向量相等:如果两个向量的对应分量相等,那么这两个向量是相等的。
2. 向量的加法:向量的加法是指将两个向量的对应分量相加得到一个新的向量。
即a+b=(a₁+b₁, a₂+b₂)。
3. 向量的数乘:向量的数乘是指将向量的每个分量都乘以一个常数得到一个新的向量。
即k×a=(k×a₁, k×a₂)。
4. 向量的减法:向量的减法是指将两个向量的对应分量相减得到一个新的向量。
即a-b=(a₁-b₁, a₂-b₂)。
5. 零向量:所有分量都为零的向量称为零向量,用0表示。
二、向量的模和方向角1. 向量的模:向量的模是指向量的长度,也就是向量的大小。
向量a的模可以表示为|a|=√(a₁²+a₂²)。
2. 向量的方向角:向量的方向角是指向量与某个固定直线之间的夹角。
一般将向量与x轴正方向之间的夹角称为向量的方向角。
三、向量的数量积和向量积1. 向量的数量积:向量的数量积又称为点积或内积。
数量积的结果是一个标量,表示两个向量的相似程度。
向量a和向量b的数量积可以表示为a·b=a₁b₁+a₂b₂。
2. 向量的向量积:向量的向量积又称为叉积或外积。
向量积的结果是一个向量,垂直于这两个向量所在的平面。
向量a和向量b的向量积可以表示为a×b=(a₁b₂-a₂b₁)。
四、平面向量的运算定律1. 交换律:向量的加法满足交换律,即a+b=b+a;向量的数量积满足交换律,即a·b=b·a。
2. 结合律:向量的加法满足结合律,即(a+b)+c=a+(b+c);向量的数量积满足结合律,即(a·b)·c=a·(b·c)。
平面向量知识点总结
平面向量知识点总结平面向量是解析几何中的重要概念,是用来表示平面上的点的有方向的量。
平面向量的运算和性质有很多,下面将对其进行详细总结。
一、平面向量的定义平面向量是一个有方向的量,可以用有序数对表示。
通常使用大写的字母如A、B、C等来表示平面向量。
二、平面向量的表示平面向量可以用有序数对(a, b)表示,其中a表示向量在x轴上的投影,b表示向量在y轴上的投影。
表示为AB(a, b)。
三、向量的长度和方向角向量的长度就是向量的模,用||AB||表示,可以根据勾股定理计算向量的模。
向量的方向角指向量与x轴的夹角,用α表示,可以根据三角函数来计算。
四、向量的运算1. 向量的加法:向量的加法满足平行四边形法则,即将一个向量的起点放在另一个向量的终点,连成一个新的向量。
2. 向量的减法:向量的减法相当于加上一个负向量,即将向量取负后进行加法运算。
3. 向量与常数的乘法:向量与常数相乘,即将向量的每个分量都乘以该常数。
4. 向量的数量积:数量积也叫点积或内积,表示为A·B,计算公式为A·B=|A||B|cosα,其中α为向量A与向量B的夹角。
5. 向量的向量积:向量积也叫叉积或外积,表示为A×B,计算公式为A×B=|A||B|sinαn,其中α为向量A与向量B的夹角,n为向量A与向量B所在平面的法向量。
五、向量的性质1. 交换律:向量的加法满足交换律,即A+B=B+A。
2. 结合律:向量的加法满足结合律,即(A+B)+C=A+(B+C)。
3. 数乘结合律:向量与常数的乘法满足数乘结合律,即k(A+B)=kA+kB。
4. 分配律:向量的加法对乘法满足分配律,即(k+m)A=kA+mB。
5. 向量的相等性:向量的相等性表示向量的模和方向都相等。
六、平面向量的应用平面向量广泛应用于几何、物理等学科中,常用于求解平面上的几何问题和运动问题。
例如,可以利用平面向量求解线段的垂直、平行及相交关系,求解角平分线、边中垂线等几何问题;还可以运用平面向量解决速度、加速度等物理问题。
高中数学知识点总结(第五章 平面向量 第二节 平面向量基本定理及坐标表示)
第二节 平面向量基本定理及坐标表示一、基础知识1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1e 2叫做表示这一平面内所有向量的一组基底. 1基底e 1,e 2必须是同一平面内的两个不共线向量,零向量不能作为基底; 2基底给定,同一向量的分解形式唯一; 3如果对于一组基底e 1,e 2,有a =λ1e 1+λ2e 2=μ1e 1+μ2e 2,则可以得到⎩⎪⎨⎪⎧λ1=μ1,λ2=μ2.2.平面向量的坐标运算(1)向量的加法、减法、数乘向量及向量的模: 设a =(x 1,y 1),b =(x 2,y 2), 则a +b =(x 1+x 2,y 1+y 2), a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a|=x 21+y 21.若a =b ,则x 1=x 2且y 1=y 2. (2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1), |AB ―→|=x 2-x 12+y 2-y 12.3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.当且仅当x 2y 2≠0时,a ∥b 与x 1x 2=y 1y 2等价.即两个不平行于坐标轴的共线向量的对应坐标成比例.考点一 平面向量基本定理及其应用[典例] 如图,以向量OA ―→=a ,OB ―→=b 为邻边作平行四边形OADB ,BM ―→=13BC ―→,CN ―→=13CD ―→,用a ,b 表示OM ―→,ON ―→,MN ―→.[解] ∵BA ―→=OA ―→-OB ―→=a -b ,BM ―→=16BA ―→=16a -16b ,∴OM ―→=OB ―→+BM ―→=16a +56b.∵OD ―→=a +b , ∴ON ―→=OC ―→+13CD ―→=12OD ―→+16OD ―→ =23OD ―→=23a +23b , ∴MN ―→=ON ―→-OM ―→=23a +23b -16a -56b =12a -16b.综上,OM ―→=16a +56b ,ON ―→=23a +23b ,MN ―→=12a -16b.[解题技法]1.平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.2.应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面向量的一组基底,基底可以有无穷多组. (2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算.[题组训练]1.在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB―→=a ,AC ―→=b ,则P Q ―→=( )A.13a +13b B .-13a +13bC.13a -13b D .-13a -13b解析:选A 由题意知P Q ―→=PB ―→+B Q ―→=23AB ―→+13BC ―→=23AB ―→+13(AC ―→-AB ―→)=13AB―→+13AC ―→=13a +13b.2.已知在△ABC 中,点O 满足OA ―→+OB ―→+OC ―→=0,点P 是OC 上异于端点的任意一点,且OP ―→=m OA ―→+n OB ―→,则m +n 的取值范围是________.解析:依题意,设OP ―→=λOC ―→(0<λ<1),由OA ―→+OB ―→+OC ―→=0,知OC ―→=-(OA ―→+OB ―→), 所以OP ―→=-λOA ―→-λOB ―→,由平面向量基本定理可知, m +n =-2λ,所以m +n ∈(-2,0). 答案:(-2,0)考点二 平面向量的坐标运算[典例] 已知A (-2,4),B (3,-1),C (-3,-4).设AB ―→=a ,BC ―→=b ,CA ―→=c ,且CM ―→=3c ,CN ―→=-2b ,(1)求3a +b -3c ;(2)求M ,N 的坐标及向量MN ―→的坐标.[解] 由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)设O 为坐标原点,∵CM ―→=OM ―→-OC ―→=3c , ∴OM ―→=3c +OC ―→=(3,24)+(-3,-4)=(0,20). ∴M (0,20).又∵CN ―→=ON ―→-OC ―→=-2b , ∴ON ―→=-2b +OC ―→=(12,6)+(-3,-4)=(9,2), ∴N (9,2),∴MN ―→=(9,-18). [变透练清] 1.变结论本例条件不变,若a =m b +n c ,则m =________,n =________.解析:∵m b +n c =(-6m +n ,-3m +8n ),a =(5,-5),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5, 解得⎩⎪⎨⎪⎧m =-1,n =-1.答案:-1 -12.已知O 为坐标原点,向量OA ―→=(2,3),OB ―→=(4,-1),且AP ―→=3PB ―→,则|OP ―→|=________.解析:设P (x ,y ),由题意可得A ,B 两点的坐标分别为(2,3),(4,-1),由AP ―→=3PB ―→,可得⎩⎪⎨⎪⎧x -2=12-3x ,y -3=-3y -3,解得⎩⎪⎨⎪⎧x =72,y =0,故|OP ―→|=72.答案:72[解题技法]1.平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用“向量相等,则其坐标相同”这一原则,通过列方程(组)来进行求解.2.向量坐标运算的注意事项(1)向量坐标与点的坐标形式相似,实质不同. (2)向量坐标形式的线性运算类似多项式的运算.(3)向量平行与垂直的坐标表达形式易混淆,需清楚结论推导过程与结果,加以区分. 考点三 平面向量共线的坐标表示[典例] 已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线;(2)若AB ―→=2a +3b ,BC ―→=a +m b ,且A ,B ,C 三点共线,求m 的值. [解] (1)∵a =(1,0),b =(2,1), ∴k a -b =k (1,0)-(2,1)=(k -2,-1), a +2b =(1,0)+2(2,1)=(5,2), ∵k a -b 与a +2b 共线,∴2(k -2)-(-1)×5=0,∴k =-12.(2)AB ―→=2(1,0)+3(2,1)=(8,3), BC ―→=(1,0)+m (2,1)=(2m +1,m ).∵A ,B ,C 三点共线,∴AB ―→∥BC ―→, ∴8m -3(2m +1)=0,∴m =32.[解题技法]1.平面向量共线的充要条件的2种形式(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0. (2)若a ∥b(b≠0),则a =λb.2.两个向量共线的充要条件的作用判断两个向量是否共线(或平行),可解决三点共线的问题;另外,利用两个向量共线的充要条件可以列出方程(组),求参数的值.[题组训练]1.已知向量a =(1,2),b =(-3,2),若(k a +b)∥(a -3b),则实数k 的取值为( ) A .-13B.13C .-3D .3解析:选A k a +b =k (1,2)+(-3,2)=(k -3,2k +2). a -3b =(1,2)-3(-3,2)=(10,-4), 则由(k a +b)∥(a -3b)得(k -3)×(-4)-10×(2k +2)=0,所以k =-13.2.(2019·唐山模拟)已知在平面直角坐标系xOy 中,P 1(3,1),P 2(-1,3),P 1,P 2,P 3三点共线且向量OP 3―→与向量a =(1,-1)共线,若OP 3―→=λOP 1―→+(1-λ)OP 2―→,则λ=( )A .-3B .3C .1D .-1解析:选D 设OP 3―→=(x ,y ),则由OP 3―→∥a 知x +y =0,于是OP 3―→=(x ,-x ).若OP 3―→=λOP 1―→+(1-λ)OP 2―→,则有(x ,-x )=λ(3,1)+(1-λ)(-1,3)=(4λ-1,3-2λ),即⎩⎪⎨⎪⎧4λ-1=x ,3-2λ=-x ,所以4λ-1+3-2λ=0,解得λ=-1,故选D.3.在梯形ABCD 中,AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.解析:∵在梯形ABCD 中,DC =2AB ,AB ∥CD , ∴DC ―→=2AB ―→.设点D 的坐标为(x ,y ),则DC ―→=(4-x,2-y ),AB ―→=(1,-1), ∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 答案:(2,4)[课时跟踪检测]1.(2019·昆明调研)已知向量a =(-1,2),b =(1,3),则|2a -b|=( ) A.2 B .2 C.10D .10解析:选C 由已知,易得2a -b =2(-1,2)-(1,3)=(-3,1),所以|2a -b|=-32+12=10.故选C.2.已知向量a =(5,2),b =(-4,-3),c =(x ,y ),若3a -2b +c =0,则c =( ) A .(-23,-12) B .(23,12) C .(7,0)D .(-7,0)解析:选A 由题意可得3a -2b +c =3(5,2)-2(-4,-3)+(x ,y )=(23+x,12+y )=(0,0),所以⎩⎪⎨⎪⎧ 23+x =0,12+y =0,解得⎩⎪⎨⎪⎧x =-23,y =-12,所以c =(-23,-12).3.(2018·石家庄模拟)已知向量a =(1,m ),b =(m,1),则“m =1”是“a ∥b”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 若a ∥b ,则m 2=1,即m =±1,故“m =1”是“a ∥b”的充分不必要条件,选A.4.已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC ―→=2AE ―→,则EM ―→=( )A.12AC ―→+13AB ―→B.12AC ―→+16AB ―→C.16AC ―→+12AB ―→ D.16AC ―→+32AB ―→解析:选C 如图,因为EC ―→=2AE ―→,所以EC ―→=23AC ―→,所以EM―→=EC ―→+CM ―→=23AC ―→+12CB ―→=23AC ―→+12(AB ―→-AC ―→)=12AB ―→+16AC ―→.5.已知点A (8,-1),B (1,-3),若点C (2m -1,m +2)在直线AB 上,则实数m =( ) A .-12 B .13 C .-13D .12解析:选C 因为点C 在直线AB 上,所以AC ―→与AB ―→同向.又AB ―→=(-7,-2),AC ―→=(2m -9,m +3),故2m -9-7=m +3-2,所以m =-13.故选C.6.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限的点,且∠AOC =π4,|OC |=2,若OC ―→=λOA ―→+μOB ―→,则λ+μ=( )A .22 B.2 C .2D .42解析:选A 因为|OC |=2,∠AOC =π4,所以C (2,2),又因为OC ―→=λOA ―→+μOB ―→,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=2,λ+μ=2 2.7.已知|OA ―→|=1,|OB ―→|=3,OA ―→⊥OB ―→, 点C 在线段AB 上,∠AOC =30°.设OC ―→=m OA ―→+n OB ―→(m ,n ∈R),则m n等于( )A.13 B .3 C.33D.3解析:选B 如图,由已知|OA ―→|=1,|OB ―→|=3,OA ―→⊥OB ―→,可得AB =2,∠A =60°,因为点C 在线段AB 上,∠AOC =30°,所以OC ⊥AB ,过点C 作CD ⊥OA ,垂足为点D ,则OD =34,CD =34,所以OD ―→=34OA ―→,DC ―→=14OB ―→,即OC ―→=34OA ―→+14OB ―→,所以m n=3.8.(2019·深圳模拟)如图,在正方形ABCD 中,M 是BC 的中点,若AC ―→=λAM ―→+μBD ―→,则λ+μ=( )A.43B.53C.158D .2解析:选B 以点A 为坐标原点,分别以AB ―→,AD ―→的方向为x 轴,y 轴的正方向,建立平面直角坐标系(图略).设正方形的边长为2,则A (0,0),C (2,2),M (2,1),B (2,0),D (0,2),所以AC ―→=(2,2),AM ―→=(2,1),BD ―→=(-2,2),所以λAM ―→+μBD ―→=(2λ-2μ,λ+2μ),因为AC ―→=λAM ―→+μBD ―→,所以⎩⎪⎨⎪⎧2λ-2μ=2,λ+2μ=2,解得⎩⎨⎧λ=43,μ=13,所以λ+μ=53.9.已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R),则m -n 的值为________.解析:∵m a +n b =(2m +n ,m -2n )=(9,-8),∴⎩⎪⎨⎪⎧ 2m +n =9,m -2n =-8,∴⎩⎪⎨⎪⎧m =2,n =5,∴m -n =2-5=-3. 答案:-310.已知向量a =(1,m ),b =(4,m ),若有(2|a|-|b|)(a +b)=0,则实数m =________. 解析:因为a +b =(5,2m )≠0,所以由(2|a|-|b|)(a +b)=0得2|a|-|b|=0, 所以|b|=2|a|,所以42+m 2=212+m 2,解得m =±2. 答案:±211.(2019·南昌模拟)已知向量a =(m ,n ),b =(1,-2),若|a|=25,a =λb(λ<0),则m -n =________.解析:∵a =(m ,n ),b =(1,-2), ∴由|a|=25,得m 2+n 2=20, ① 由a =λb(λ<0),得⎩⎪⎨⎪⎧m <0,n >0,-2m -n =0, ②由①②,解得m =-2,n =4. ∴m -n =-6. 答案:-612.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________. 解析:因为a =(1,2),b =(x,1),u =a +2b ,v =2a -b , 所以u =(1,2)+2(x,1)=(2x +1,4), v =2(1,2)-(x,1)=(2-x,3).又因为u ∥v ,所以3(2x +1)-4(2-x )=0, 即10x =5,解得x =12.答案:1213.在平面直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上.(1)若P A ―→+PB ―→+PC ―→=0,求|OP ―→|;(2)设OP ―→=m AB ―→+n AC ―→(m ,n ∈R),用x ,y 表示m -n .解:(1)∵P A ―→+PB ―→+PC ―→=0,P A ―→+PB ―→+PC ―→=(1-x,1-y )+(2-x,3-y )+(3-x,2-y )=(6-3x,6-3y ),∴⎩⎪⎨⎪⎧6-3x =0,6-3y =0,解得x =2,y =2, 即OP ―→=(2,2),故|OP ―→|=2 2.(2)∵OP ―→=m AB ―→+n AC ―→,AB ―→=(1,2),AC ―→=(2,1). ∴(x ,y )=(m +2n,2m +n ),即⎩⎪⎨⎪⎧x =m +2n ,y =2m +n ,两式相减,得m -n =y -x .。
高中数学中的平面向量知识点总结
高中数学中的平面向量知识点总结在高中数学学习的过程中,平面向量是一个重要的内容,它在几何与代数中都有广泛的应用。
本文将对高中数学中的平面向量知识点进行总结。
一、平面向量的定义与表示平面向量是有大小和方向的量,它可以由箭头表示,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
通常用大写字母表示向量,例如向量A。
二、平面向量的运算1. 平面向量的加法:将两个向量的对应部分相加,得到一个新的向量。
2. 平面向量的数乘:将一个向量的大小与一个标量相乘,得到一个新的向量。
3. 平面向量的减法:将两个向量相加其中一个的相反向量,得到一个新的向量。
三、平面向量的数量表示平面向量还可以用坐标表示。
设向量A的起点坐标为(x1, y1),终点坐标为(x2, y2),则向量A可以表示为A = (x2 - x1, y2 - y1)。
四、平面向量的数量运算1. 平面向量的加法:将对应坐标相加得到新的坐标表示的向量。
2. 平面向量的数乘:将向量的每一个坐标与标量相乘得到新的坐标表示的向量。
3. 平面向量的减法:将对应坐标相减得到新的坐标表示的向量。
五、平面向量的性质1. 平面向量共线性:如果两个向量的方向相同或者相反,那么它们是共线向量。
2. 平面向量垂直性:如果两个向量的乘积等于0,那么它们是垂直向量。
3. 平面向量的模长:向量的模长即向量的大小,可以用勾股定理计算,模长公式为|A| = √(x^2 + y^2)。
六、平面向量的应用1. 平面向量的平移:设向量A的起点为点P,终点为点Q,平移向量v的起点为点P,终点为点R,则点Q和点R在同一条平行线上。
2. 平面向量的共线与面积:三个向量共线时,它们的向量积为0;三角形面积可以由两个向量的向量积的模长的一半来计算。
3. 平面向量的位矢:位矢是以参考点为起点,以某个点为终点的向量。
综上所述,高中数学中的平面向量是一个重要的知识点,掌握了平面向量的定义、表示、运算、性质和应用,有助于解决几何和代数中的各种问题。
高考数学基础知识总结第五章平面向量
§05. 平面向量知识要点1.向量的概念(1)向量的基本要素:大小和方向.(2)向量的表示:几何表示法 AB ;字母表示:a ;坐标表示法 a =xi+yj =(x,y). (3)向量的长度:即向量的大小,记作|a |.(4)特殊的向量:零向量a =O ⇔|a |=O .单位向量a O 为单位向量⇔|a O |=1. (5)相等的向量:大小相等,方向相同(x1,y1)=(x2,y2)⎩⎨⎧==⇔2121y y x x(6) 相反向量:a =-b ⇔b =-a ⇔a +b =0(7)平行向量(共线向量):方向相同或相反的向量,称为平行向量.记作a ∥b .平行向量也称为共线向量.2.向量的运算 运算类型 几何方法 坐标方法 运算性质 向量的 加法 1.平行四边形法则2.三角形法则1212(,)a b x x y y +=++a b b a +=+()()a b c a b c ++=++AC BC AB =+向量的 减法三角形法则 1212(,)a b x x y y -=--()a b a b -=+-AB BA =-,AB OA OB =-数 乘 向量1.aλ是一个向量,满足:||||||a a λλ=2.λ>0时, a a λ与同向;λ<0时, a a λ与异向; λ=0时, 0a λ=.(,)a x y λλλ=()()a a λμλμ=()a a a λμλμ+=+ ()a b a b λλλ+=+//a b a b λ⇔=向 量 的 数 量 积a b ∙是一个数1.00a b ==或时, 0a b ∙=.2.00||||cos(,)a b a b a b a b ≠≠=且时,1212a b x x y y ∙=+a b b a ∙=∙()()()a b a b a b λλλ∙=∙=∙()a b c a c b c +∙=∙+∙ 2222||||=a a a x y =+即||||||a b a b ∙≤3.重要定理、公式(1)平面向量基本定理:e 1,e 2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)两个向量平行的充要条件: a ∥b ⇔a =λb (b ≠0)⇔x 1y 2-x 2y 1=O. (3)两个向量垂直的充要条件: a ⊥b ⇔a ·b =O ⇔x 1x 2+y 1y 2=O. (4)线段的定比分点公式:设点P 分有向线段21P P 所成的比为λ,即P P1=λ2PP ,则OP =λ+111OP +λ+112OP (线段的定比分点的向量公式)⎪⎪⎩⎪⎪⎨⎧++=++=.1,12121λλλλy y y x x x (线段定比分点的坐标公式)当λ=1时,得中点公式:OP =21(1OP +2OP )或⎪⎪⎩⎪⎪⎨⎧+=+=.2,22121y y y x x x(5)平移公式: 设点P (x ,y )按向量a =(h,k)平移后得到点P ′(x ′,y ′),则P O '=OP +a 或⎩⎨⎧+='+='.,k y y h x x曲线y =f (x )按向量a =(h,k)平移后所得的曲线的函数解析式为:y -k=f (x -h)空间向量1.空间向量的概念:具有大小和方向的量叫做向量 注:⑴空间的一个平移就是一个向量⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量 ⑶空间的两个向量可用同一平面内的两条有向线段来表示 2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下b a AB OA OB+=+=b a OB OA BA-=-=)(R a OP ∈=λλ运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(3 共线向量表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a平行于b 记作b a //.当我们说向量a 、b 共线(或a //b )时,表示a 、b的有向线段所在的直线可能是同一直线,也可能是平行直线.4.共线向量定理及其推论:共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 的充要条件是存在实数λ,使a=λb .推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对于任意一点O ,点P 在直线l 上的充要条件是存在实数t 满足等式 t OA OP +=a.其中向量a叫做直线l 的方向向量. 5.向量与平面平行:已知平面α和向量a ,作OA a =,如果直线OA 平行于α或在α内,那么我们说向量a 平行于平面α,记作://a α.通常我们把平行于同一平面的向量,叫做共面向量 说明:空间任意的两向量都是共面的 6.共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的充要条件是存在实数,x y 使p xa yb=+推论:空间一点P 位于平面MAB 内的充分必要条件是存在有序实数对,x y ,使MP xMA yMB =+或对空间任一点O ,有OP OM xMA yMB =++ ①①式叫做平面MAB 的向量表达式7 空间向量基本定理:如果三个向量,,a b c不共面,那么对空间任一向量p,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OPxOA yOB zOC=++8 空间向量的夹角及其表示:已知两非零向量,a b ,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫做向量a 与b的夹角,记作,a b <>;且规定0,a b π≤<>≤,显然有,,a b b a <>=<>;若,2a b π<>=,则称a 与b 互相垂直,记作:a b ⊥. 9.向量的模: 设OA a =,则有向线段OA 的长度叫做向量a 的长度或模,记作:||a .10.向量的数量积: a b⋅=||||cos ,a b a b ⋅⋅<>.已知向量AB a =和轴l ,e 是l 上与l 同方向的单位向量,作点A 在l 上的射影A ',作点B 在l 上的射影B ',则A B ''叫做向量AB 在轴l 上或在e 上的正射影.可以证明A B ''的长度||||cos ,||A B AB a e a e ''=<>=⋅.11.空间向量数量积的性质: (1)||cos ,a ea a e ⋅=<>.(2)0a b a b ⊥⇔⋅=.(3)2||a a a =⋅. 12.空间向量数量积运算律: (1)()()()a b a b a b λλλ⋅=⋅=⋅.(2)a b b a ⋅=⋅(交换律)(3)()a b c a b a c ⋅+=⋅+⋅(分配律).空间向量的坐标运算一.知识回顾:(1)空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵轴),z 轴是竖轴(对应为竖坐标).①令a =(a 1,a 2,a 3),),,(321b b b b =,则),,(332211b a b a b a b a ±±±=+))(,,(321R a a a a ∈=λλλλλ332211b a b a b a b a ++=⋅ a∥)(,,332211R b a b a b a b ∈===⇔λλλλ332211b a b ab a ==⇔ 0332211=++⇔⊥b a b a b a b a222321a a a a a a ++=⋅=(用到常用的向量模与向量之间的转化:a a a a a a ⋅=⇒⋅=2)232221232221332211||||,cos b b b a a a b a b a b a b a ba b a ++⋅++++=⋅⋅>=<②空间两点的距离公式:212212212)()()(z z y y x x d -+-+-=.(2)法向量:若向量a 所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥a ,如果α⊥a 那么向量a 叫做平面α的法向量.(3)用向量的常用方法:①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α的距离为||||n n AB ⋅.②利用法向量求二面角的平面角定理:设21,n n 分别是二面角βα--l 中平面βα,的法向量,则21,n n 所成的角就是所求二面角的平面角或其补角大小(21,n n 方向相同,则为补角,21,n n 反方,则为其夹角). ③证直线和平面平行定理:已知直线≠⊄a 平面α,α∈⋅∈⋅D C a B A ,,且CDE 三点不共线,则a ∥α的充要条件是存在有序实数对μλ⋅使CE CD AB μλ+=.(常设CE CD AB μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交).▲nBC A αβ▲n2n1αCEDA Bα。
高考数学基础知识总结:第五章平面向量
§05. 平面向量知识要点1.向量的概念(1>向量的基本要素:大小和方向.(2>向量的表示:几何表示法 ;字母表示:a ;坐标表示法 a =xi+yj =<x,y).(3>向量的长度:即向量的大小,记作|a |.(4>特殊的向量:零向量a =O |a |=O.单位向量aO 为单位向量|aO |=1.(5>相等的向量:大小相等,方向相同(x1,y1>=<x2,y2)(6> 相反向量:a=-b b=-a a+b=0(7>平行向量(共线向量>:方向相同或相反的向量,称为平行向量.记作a ∥b.平行向量也称为共线向量.b5E2RGbCAP满足:2.,同向。
向。
.是一个数1..2.3.重要定理、公式(1>平面向量基本定理:e1,e2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数λ1,λ2,使a=λ1e1+λ2e2.p1EanqFDPw(2>两个向量平行的充要条件: a∥b a=λb(b≠0>x1y2-x2y1=O.(3>两个向量垂直的充要条件: a⊥b a·b=O x1x2+y1y2=O.(4>线段的定比分点公式:设点P分有向线段所成的比为λ,即=λ,则=+ (线段的定比分点的向量公式> (线段定比分点的坐标公式>当λ=1时,得中点公式:=<+)或(5>平移公式:设点P(x,y>按向量a=<h,k)平移后得到点P′<x′,y′),则=+a或曲线y=f<x)按向量a=<h,k)平移后所得的曲线的函数解读式为:y-k=f<x-h>空间向量1.空间向量的概念:具有大小和方向的量叫做向量注:⑴空间的一个平移就是一个向量⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量⑶空间的两个向量可用同一平面内的两条有向线段来表示2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下运算律:⑴加法交换律:⑵加法结合律:⑶数乘分配律:3共线向量表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.平行于记作.当我们说向量、共线<或//)时,表示、的有向线段所在的直线可能是同一直线,也可能是平行直线.4.共线向量定理及其推论:共线向量定理:空间任意两个向量、<≠),//的充要条件是存在实数λ,使=λ.推论:如果为经过已知点A且平行于已知非零向量的直线,那么对于任意一点O,点P在直线上的充要条件是存在实数t满足等式DXDiTa9E3d.其中向量叫做直线的方向向量.5.向量与平面平行:已知平面和向量,作,如果直线平行于或在内,那么我们说向量平行于平面,记作:.通常我们把平行于同一平面的向量,叫做共面向量说明:空间任意的两向量都是共面的6.共面向量定理:如果两个向量不共线,与向量共面的充要条件是存在实数使推论:空间一点位于平面内的充分必要条件是存在有序实数对,使或对空间任一点,有①①式叫做平面的向量表达式7空间向量基本定理:如果三个向量不共面,那么对空间任一向量,存在一个唯一的有序实数组,使推论:设是不共面的四点,则对空间任一点,都存在唯一的三个有序实数,使8空间向量的夹角及其表示:已知两非零向量,在空间任取一点,作,则叫做向量与的夹角,记作;且规定,显然有;若,则称与互相垂直,记作:.RTCrpUDGiT9.向量的模:设,则有向线段的长度叫做向量的长度或模,记作:.10.向量的数量积:.已知向量和轴,是上与同方向的单位向量,作点在上的射影,作点在上的射影,则叫做向量在轴上或在上的正射影. 5PCzVD7HxA可以证明的长度.11.空间向量数量积的性质:<1).<2).<3).12.空间向量数量积运算律:<1).<2)<交换律)<3)<分配律).空间向量的坐标运算一.知识回顾:<1)空间向量的坐标:空间直角坐标系的x轴是横轴<对应为横坐标),y轴是纵轴<对应为纵轴),z轴是竖轴<对应为竖坐标).jLBHrnAILg①令=(a1,a2,a3>,,则∥(用到常用的向量模与向量之间的转化:>②空间两点的距离公式:.<2)法向量:若向量所在直线垂直于平面,则称这个向量垂直于平面,记作,如果那么向量叫做平面的法向量.<3)用向量的常用方法:①利用法向量求点到面的距离定理:如图,设n是平面的法向量,AB 是平面的一条射线,其中,则点B到平面的距离为.xHAQX74J0X②利用法向量求二面角的平面角定理:设分别是二面角中平面的法向量,则所成的角就是所求二面角的平面角或其补角大小<方向相同,则为补角,反方,则为其夹角).LDAYtRyKfE③证直线和平面平行定理:已知直线平面,,且CDE 三点不共线,则a∥的充要条件是存在有序实数对使.<常设求解若存在即证毕,若不存在,则直线AB与平面相交).Zzz6ZB2Ltk申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学第五章-平面向量考试内容:向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平面两点间的距离、平移. 考试要求:(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念. (2)掌握向量的加法和减法.(3)掌握实数与向量的积,理解两个向量共线的充要条件.(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.(6)掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用掌握平移公式.§05. 平面向量 知识要点1.本章知识网络结构2.向量的概念(1)向量的基本要素:大小和方向.(2)向量的表示:几何表示法 ;字母表示:a ;坐标表示法 a =xi+yj =(x,y). (3)向量的长度:即向量的大小,记作|a |. (4)特殊的向量:零向量a =O ⇔|a |=O .单位向量a O 为单位向量⇔|a O |=1.(5)相等的向量:大小相等,方向相同(x1,y1)=(x2,y2)⎩⎨⎧==⇔2121y y x x(6) 相反向量:a =-b ⇔b =-a ⇔a +b =0(7)平行向量(共线向量):方向相同或相反的向量,称为平行向量.记作a∥b.平行向量也称为共线向量.3.向量的运算()(a b c a b++=++ACBCAB=+AB BA=-,ABOAOB=-||||a aλλ=>0时, a aλ与同向;a a与异向;a=.()()a aλμλμ=)a a aμλμ=+)a bλλ=+//b a bλ⇔=是一个数1.0a b==或b∙=.2.||||a ba b a b≠≠=且a b b a∙=∙()()(a b a bλλλ∙=∙=()a b c a c b c+∙=∙+∙222||||=a a a x y=+即||||||a b a b∙≤4.重要定理、公式(1)平面向量基本定理e1,e2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数λ1,λ2,使a=λ1e1+λ2e2.(2)两个向量平行的充要条件a ∥b ⇔a =λb (b ≠0)⇔x 1y 2-x 2y 1=O. (3)两个向量垂直的充要条件 a ⊥b ⇔a ·b =O ⇔x 1x 2+y 1y 2=O. (4)线段的定比分点公式设点P 分有向线段21P P 所成的比为λ,即P P 1=λ2PP ,则=λ+111OP +λ+112OP (线段的定比分点的向量公式) ⎪⎪⎩⎪⎪⎨⎧++=++=.1,12121λλλλy y y x x x (线段定比分点的坐标公式) 当λ=1时,得中点公式:=21(1+2OP )或⎪⎪⎩⎪⎪⎨⎧+=+=.2,22121y y y x x x (5)平移公式设点P (x ,y )按向量a =(h,k)平移后得到点P ′(x ′,y ′),则P O '=+a 或⎩⎨⎧+='+='.,k y y h x x曲线y =f (x )按向量a =(h,k)平移后所得的曲线的函数解析式为: y -k=f (x -h) (6)正、余弦定理 正弦定理:.2sin sin sin R Cc B b A a === 余弦定理:a 2=b 2+c 2-2bc cos A , b 2=c 2+a 2-2ca cos B, c 2=a 2+b 2-2ab cos C .(7)三角形面积计算公式:设△ABC 的三边为a ,b ,c ,其高分别为h a ,h b ,h c ,半周长为P ,外接圆、内切圆的半径为R ,r .①S △=1/2ah a =1/2bh b =1/2ch c ②S △=Pr ③S △=abc/4R④S △=1/2sin C ·ab=1/2ac ·sin B=1/2cb ·sin A ⑤S △=()()()c P b P a P P --- [海伦公式] ⑥S △=1/2(b+c-a )r a [如下图]=1/2(b+a-c )r c =1/2(a+c-b )r b[注]:到三角形三边的距离相等的点有4个,一个是内心,其余3如图:图1 图2 图3 图4图1中的I 为S △ABC 的内心, S △=Pr图2中的I 为S △ABC 的一个旁心,S △=1/2(b+c-a )r a附:三角形的五个“心”; 重心:三角形三条中线交点.外心:三角形三边垂直平分线相交于一点. 内心:三角形三内角的平分线相交于一点. 垂心:三角形三边上的高相交于一点.旁心:三角形一内角的平分线与另两条内角的外角平分线相交一点.⑸已知⊙O 是△ABC 的内切圆,若BC =a ,AC =b ,AB =c [注:s 为△ABC 的半周长,即2cb a ++] 则:①AE=a s -=1/2(b+c-a ) ②BN=b s -=1/2(a+c-b ) ③FC=c s -=1/2(a+b-c )综合上述:由已知得,一个角的邻边的切线长,等于半周长减去对边(如图4).BIA BCDEF IABCDE Fr ar ar abca bc C特例:已知在Rt △ABC ,c 为斜边,则内切圆半径r =cb a abc b a ++=-+2(如图3). ⑹在△ABC 中,有下列等式成立C B A C B A tan tan tan tan tan tan =++. 证明:因为,C B A -=+π所以()()C B A -=+πtan tan ,所以C BA BA tan tan tan 1tan tan -=-+,∴结论!⑺在△ABC 中,D 是BC 上任意一点,则DC BD BCBCAB BD AC AD ⋅-+=222.证明:在△ABCD 中,由余弦定理,有 B BD AB BD AB AD cos 2222⋅⋅-+=① 在△ABC 中,由余弦定理有 BC AB AC BC AB B ⋅-+=2cos 222②,②代入①,化简可得,DC BD BCBCAB BD AC AD ⋅-+=222(斯德瓦定理)①若AD 是BC 上的中线,2222221a cb m a -+=; ②若AD 是∠A 的平分线,()a p p bc cb t a -⋅+=2,其中p为半周长; ③若AD 是BC 上的高,()()()c p b p a p p ah a ---=2,其中p 为半周长.⑻△ABC 的判定:⇔+=222b a c △ABC 为直角△⇔∠A + ∠B =2π2c <⇔+22b a △ABC 为钝角△⇔∠A + ∠B <2π 2c >⇔+22b a △ABC 为锐角△⇔∠A + ∠B >2π 附:证明:abc b a C 2cos 222-+=,得在钝角△ABC 中,222222,00cos c b a c b a C +⇔-+⇔⑼平行四边形对角线定理:对角线的平方和等于四边的平方和.)2=空间向量1.空间向量的概念:具有大小和方向的量叫做向量注:⑴空间的一个平移就是一个向量⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量⑶空间的两个向量可用同一平面内的两条有向线段来表示2.空间向量的运算DACB图5定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下b a AB OA OB+=+= b a-=-=)(R a OP ∈=λλ运算律:⑴加法交换律:a b b a+=+ ⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(3 共线向量表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a 平行于b 记作b a//.当我们说向量a 、b 共线(或a //b )时,表示a 、b的有向线段所在的直线可能是同一直线,也可能是平行直线. 4.共线向量定理及其推论:共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b的充要条件是存在实数λ,使a=λb .推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对于任意一点O ,点P 在直线l 上的充要条件是存在实数t 满足等式t OA OP +=a.其中向量a叫做直线l 的方向向量. 5.向量与平面平行:已知平面α和向量a ,作OA a =,如果直线OA 平行于α或在α内,那么我们说向量a 平行于平面α,记作://a α.通常我们把平行于同一平面的向量,叫做共面向量说明:空间任意的两向量都是共面的6.共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的充要条件是存在实数,x y 使p xa yb =+推论:空间一点P 位于平面MAB 内的充分必要条件是存在有序实数对,x y ,使MP xMA yMB =+或对空间任一点O ,有OP OM xMA yMB =++ ①①式叫做平面MAB7 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个 有序实数,,x y z ,使OP xOA yOB zOC =++8 空间向量的夹角及其表示:已知两非零向量,a b ,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫做向量a 与b 的夹角,记作,a b <>;且规定0,a b π≤<>≤,显然有,,a b b a <>=<>;若,2a b π<>=,则称a 与b 互相垂直,记作:a b ⊥. 9.向量的模:设OA a =,则有向线段OA 的长度叫做向量a 的长度或模,记作:||a . 10.向量的数量积: a b ⋅=||||cos ,a b a b ⋅⋅<>.已知向量AB a =和轴l ,e 是l 上与l 同方向的单位向量,作点A 在l 上的射影A ',作点B 在l 上的射影B ',则A B ''叫做向量AB 在轴l 上或在e 上的正射影.可以证明A B ''的长度||||cos ,||A B AB a e a e ''=<>=⋅. 11.空间向量数量积的性质:(1)||cos ,a e a a e ⋅=<>.(2)0a b a b ⊥⇔⋅=.(3)2||a a a =⋅.12.空间向量数量积运算律:(1)()()()a b a b a b λλλ⋅=⋅=⋅.(2)a b b a ⋅=⋅(交换律)(3)()a b c a b a c ⋅+=⋅+⋅(分配律).空间向量的坐标运算一.知识回顾:(1)空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵轴),z 轴是竖轴(对应为竖坐标). ①令a =(a 1,a 2,a 3),),,(321b b b =,则),,(332211b a b a b a b a ±±±=+))(,,(321R a a a a ∈=λλλλλ332211b a b a b a b a ++=⋅a ∥)(,,332211R b a b a b a b ∈===⇔λλλλ332211b a b a b a ==⇔0332211=++⇔⊥b a b a b a b a222321a a a ++==(=⇒⋅=) 232221232221332211||||,cos b b b a a a b a b a b a b a b a b a ++⋅++++=⋅⋅>=<②空间两点的距离公式:212212212)()()(z z y y x x d -+-+-=.(2)法向量:若向量a 所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥a ,如果α⊥a 那么向量a 叫做平面α的法向量. (3)用向量的常用方法:①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α②利用法向量求二面角的平面角定理:设21,n 分别是二面角βα--l 中平面βα,的法向量,则21,n n 所成的角就是所求二面角的平面角或其补角大小(21,n n 方向相同,则为补角,21,n n 反方,则为其夹角).③证直线和平面平行定理:已知直线≠⊄a 平面α,α∈⋅∈⋅D C a B A ,,且CDE 三点不共线,则a ∥α的充要条件是存在有序实数对μλ⋅使CE CD AB μλ+=.(常设CE CD AB μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交).A B。