嘉兴市2013数学

合集下载

2013年嘉兴市中考数学试卷及答案(word解析版)

2013年嘉兴市中考数学试卷及答案(word解析版)

浙江省嘉兴市2013年中考数学试卷一、选择题(本大题有10小题,每小题4分,共40分.请选出各小题中唯一的正确选项,不选、多选、错选,均不得分)1.(4分)(2013•嘉兴)﹣2的相反数是()A.2B.﹣2 C.D.考点:相反数.分析:根据相反数的定义:只有符号不同的两个数叫做互为相反数即可得到答案.解答:解:﹣2的相反数是2,故选:A.点评:此题主要考查了相反数,关键是掌握相反数的定义.2.(4分)(2013•嘉兴)如图,由三个小立方块搭成的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面看可得到两个相邻的正方形.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.(4分)(2013•嘉兴)据统计,1959年南湖革命纪念馆成立以来,约有2500万人次参观了南湖红船(中共一大会址).数2500万用科学记数法表示为()A.2.5×108B.2.5×107C.2.5×106D.25×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:2500万=2500 0000=2.5×107,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)(2013•嘉兴)在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是()A.1.71 B.1.85 C.1.90 D.2.31考点:众数.分析:根据众数的概念:一组数据中出现次数最多的数据叫做众数求解即可.解答:解:数据1.85出现2次,次数最多,所以众数是1.85.故选B.点评:考查众数的概念.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.5.(4分)(2013•嘉兴)下列运算正确的是()A.x2+x3=x5B.2x2﹣x2=1 C.x2•x3=x6D.x6÷x3=x3考点:同底数幂的除法;合并同类项;同底数幂的乘法.分析:根据合并同类项的法则、幂的乘方及积的乘方法则、同底数幂的除法法则,分别进行各选项的判断即可.解答:解:A、x2与x3不是同类项,不能直接合并,原式计算错误,故本选项错误;B、2x2﹣x2=x2,原式计算错误,故本选项正确;C、x2•x3=x5,原式计算错误,故本选项错误;D、x6÷x3=x3,原式计算正确,故本选项正确;故选D.点评:本题考查了同底数幂的除法、幂的乘方与积的乘方,解答本题的关键是熟练掌握各部分的运算法则.6.(4分)(2013•嘉兴)如图,某厂生产横截面直径为7cm的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为45°,则“蘑菇罐头”字样的长度为()A.cm B.cmC.cmD.7πcm考点:弧长的计算.分析:根据题意得出圆的半径,及弧所对的圆心角,代入公式计算即可.解答:解:∵字样在罐头侧面所形成的弧的度数为45°,∴此弧所对的圆心角为90°,由题意可得,R=cm,则“蘑菇罐头”字样的长==π.故选B.点评:本题考查了弧长的计算,解答本题关键是根据题意得出圆心角,及半径,要求熟练记忆弧长的计算公式.7.(4分)(2013•嘉兴)下列说法:①要了解一批灯泡的使用寿命,应采用普查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;③甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,=0.2,则甲组数据比乙组数据稳定;④“掷一枚硬币,正面朝上”是必然事件.正确说法的序号是()A.①B.②C.③D.④考点:全面调查与抽样调查;方差;随机事件;概率的意义.分析:了解一批灯泡的使用寿命,应采用抽样调查的方式,普查破坏性较强,不合适;根据概率的意义可得②错误;根据方差的意义可得③正确;根据必然事件可得④错误.解答:解:①要了解一批灯泡的使用寿命,应采用抽样调查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖,说法错误;③甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,=0.2,则甲组数据比乙组数据稳定,说法正确;④“掷一枚硬币,正面朝上”是必然事件,说法错误,是随机事件.故选:C.点评:此题主要考查了抽样调查、随机事件、方差、概率,关键是掌握方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.8.(4分)(2013•嘉兴)若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx的对称轴为()A.直线x=1 B.直线x=﹣2 C.直线x=﹣1 D.直线x=﹣4考点:二次函数的性质;一次函数图象上点的坐标特征.分析:先将(﹣2,0)代入一次函数解析式y=ax+b,得到﹣2a+b=0,即b=2a,再根据抛物线y=ax2+bx的对称轴为直线x=﹣即可求解.解答:解:∵一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),∴﹣2a+b=0,即b=2a,∴抛物线y=ax2+bx的对称轴为直线x=﹣=﹣1.故选C.点评:本题考查了一次函数图象上点的坐标特征及二次函数的性质,难度适中.用到的知识点:点在函数的图象上,则点的坐标满足函数的解析式;二次函数y=ax2+bx+c的对称轴为直线x=﹣.9.(4分)(2013•嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8C.2D.2考点:垂径定理;勾股定理;圆周角定理.专题:探究型.分析:先根据垂径定理求出AC的长,设⊙O的半径为r,则OC=r﹣2,由勾股定理即可得出r的值,故可得出AE的长,连接BE,由圆周角定理可知∠ABE=90°,在Rt△BCE 中,根据勾股定理即可求出CE的长.解答:解:∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=4,设⊙O的半径为r,则OC=r﹣2,在Rt△AOC中,∵AC=4,OC=r﹣2,∴OA2=AC2+OC2,即r2=42+(r﹣2)2,解得r=5,∴AE=2r=10,连接BE,∵AE是⊙O的直径,∴∠ABE=90°,在Rt△ABE中,∵AE=10,AB=8,∴BE===6,在Rt△BCE中,∵BE=6,BC=4,∴CE===2.故选D.点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.(4分)(2013•舟山)对于点A(x1,y1),B(x2,y2),定义一种运算:A⊕B=(x1+x2)+(y1+y2).例如,A(﹣5,4),B(2,﹣3),A⊕B=(﹣5+2)+(4﹣3)=﹣2.若互不重合的四点C,D,E,F,满足C⊕D=D⊕E=E⊕F=F⊕D,则C,D,E,F四点()A.在同一条直线上B.在同一条抛物线上C.在同一反比例函数图象上D.是同一个正方形的四个顶点考点:一次函数图象上点的坐标特征.专题:新定义.分析:如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),先根据新定义运算得出(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),则x3+y3=x4+y4=x5+y5=x6+y6,若令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D (x4,y4),E(x5,y5),F(x6,y6)都在直线y=﹣x+k上.解答:解:∵对于点A(x1,y1),B(x2,y2),A⊕B=(x1+x2)+(y1+y2),如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么C⊕D=(x3+x4)+(y3+y4),D⊕E=(x4+x5)+(y4+y5),E⊕F=(x5+x6)+(y5+y6),F⊕D=(x4+x6)+(y4+y6),又∵C⊕D=D⊕E=E⊕F=F⊕D,∴(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),∴x3+y3=x4+y4=x5+y5=x6+y6,令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=﹣x+k上,∴互不重合的四点C,D,E,F在同一条直线上.故选A.点评:本题考查了一次函数图象上点的坐标特征,以及学生的阅读理解能力,有一定难度.二、填空题(本大题有6小题,每小题5分,共30分)11.(5分)(2013•嘉兴)二次根式中,x的取值范围是x≥3.考点:二次根式有意义的条件.分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.解答:解:根据题意得:x﹣3≥0,解得:x≥3.故答案是:x≥3.点评:本题考查的知识点为:二次根式的被开方数是非负数.12.(5分)(2013•嘉兴)一个布袋中装有3个红球和4个白球,这些除颜色外其它都相同.从袋子中随机摸出一个球,这个球是白球的概率为.考点:概率公式.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:∵布袋中装有3个红球和4个白球,∴从袋子中随机摸出一个球,这个球是白球的概率为:=.故答案为:.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.(5分)(2010•鞍山)因式分解:ab2﹣a=a(b+1)(b﹣1).考点:提公因式法与公式法的综合运用.分析:首先提取公因式a,再运用平方差公式继续分解因式.解答:解:ab2﹣a,=a(b2﹣1),=a(b+1)(b﹣1).点评:本题考查了提公因式法与公式法分解因式,关键在于提取公因式后要进行二次因式分解,因式分解一定要彻底,直到不能再分解为止.14.(5分)(2013•嘉兴)在同一平面内,已知线段AO=2,⊙A的半径为1,将⊙A绕点O 按逆时针方向旋转60°得到的像为⊙B,则⊙A与⊙B的位置关系为外切.考点:圆与圆的位置关系;旋转的性质.专题:计算题.分析:根据旋转的性质得到△OAB为等边三角形,则AB=OA=2,而⊙A、⊙B的半径都为1,根据圆与圆的位置关系即可判断两圆的位置关系.解答:解:∵⊙A绕点O按逆时针方向旋转60°得到的⊙B,∴△OAB为等边三角形,∴AB=OA=2,∵⊙A、⊙B的半径都为1,∴AB等于两圆半径之和,∴⊙A与⊙B外切.故答案为外切.点评:本题考查了圆与圆的位置关系:两圆的半径分别为R、r,两圆的圆心距为d,若d=R+r,则两圆外切.也考查了旋转的性质.15.(5分)(2013•嘉兴)杭州到北京的铁路长1487千米.火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为﹣=3.考点:由实际问题抽象出分式方程.分析:先分别求出提速前和提速后由杭州到北京的行驶时间,再根据由杭州到北京的行驶时间缩短了3小时,即可列出方程.解答:解:根据题意得:﹣=3;故答案为:﹣=3.点评:此题考查了由实际问题抽象出分式方程,关键是读懂题意,找出题目中的等量关系并列出方程.16.(5分)(2013•嘉兴)如图,正方形ABCD的边长为3,点E,F分别在边AB,BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P与正方形的边碰撞的次数为6,小球P所经过的路程为6.考点:正方形的性质;轴对称的性质.分析:根据已知中的点E,F的位置,可知入射角的正切值为,通过相似三角形,来确定反射后的点的位置,从而可得反射的次数.再由勾股定理就可以求出小球经过的路径的总长度.解答:解:根据已知中的点E,F的位置,可知入射角的正切值为,第一次碰撞点为F,在反射的过程中,根据入射角等于反射角及平行关系的三角形的相似可得第二次碰撞点为G,在DA上,且DG=DA,第三次碰撞点为H,在DC上,且DH=DC,第四次碰撞点为M,在CB上,且CM=BC,第五次碰撞点为N,在DA上,且AN=AD,第六次回到E点,AE=AB.由勾股定理可以得出EF=,FG=,GH=,HM=,MN=,NE=,故小球经过的路程为:+++++=6,故答案为:6,6.点评:本题主要考查了反射原理与三角形相似知识的运用.通过相似三角形,来确定反射后的点的位置,从而可得反射的次数,由勾股定理来确定小球经过的路程,是一道学科综合试题,属于难题.三、解答题(本大题有8小题,第17~20题每题8分,第21题每题10分,第22、23题每题12分,第24题14分,共80分)17.(8分)(2013•嘉兴)(1)计算:|﹣4|﹣+(﹣2)0;(2)化简:a(b+1)﹣ab﹣1.考点:整式的混合运算;实数的运算;零指数幂.专题:计算题.分析:(1)原式第一项利用负数的绝对值等于它的相反数化简,第二项利用平方根的定义化简,最后一项利用零指数幂法则计算,即可得到结果;(2)原式去括号合并即可得到结果.解答:解:(1)原式=4﹣3+1=2;(2)原式=ab+a﹣ab﹣1=a﹣1.点评:此题考查了整式的混合运算,以及实数的运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.18.(8分)(2013•嘉兴)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?考点:全等三角形的判定与性质.分析:(1)根据AAS即可推出△ABE和△DCE全等;(2)根据三角形全等得出EB=EC,推出∠EBC=∠ECB,根据三角形的外角性质得出∠AEB=2∠EBC,代入求出即可.解答:(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.点评:本题考查了三角形外角性质和全等三角形的性质和判定的应用,主要考查学生的推理能力.19.(8分)(2013•嘉兴)如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积?考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)将A坐标代入一次函数解析式中求出k的值,确定出一次函数解析式,将A坐标代入反比例函数解析式中求出m的值,即可确定出反比例解析式;(2)设一次函数与x轴交点为D点,过A作AE垂直于x轴,三角形ABC面积=三角形BDN面积﹣三口安排下ADE面积﹣梯形AECN面积,求出即可.解答:解:(1)将A(1,2)代入一次函数解析式得:k+1=2,即k=1,∴一次函数解析式为y=x+1;将A(1,2)代入反比例解析式得:m=2,∴反比例解析式为y=;(2)设一次函数与x轴交于D点,令y=0,求出x=﹣1,即OD=1,∴A(1,2),∴AE=2,OE=1,∵N(3,0),∴到B横坐标为3,将x=3代入一次函数得:y=4,将x=3代入反比例解析式得:y=,∴B(3,4),即ON=3,BN=4,C(3,),即CN=,则S△ABC=S△BDN﹣S△ADE﹣S梯形AECN=×4×4﹣×2×2﹣×(+2)×2=.点评:此题考查了一次函数与反比例函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法求函数解析式,三角形、梯形的面积求法,熟练掌握待定系数法是解本题的关键.20.(8分)(2013•嘉兴)为了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成).请根据图中信息,回答下列问题:(1)校团委随机调查了多少学生?请你补全条形统计图;(2)表示“50元”的扇形的圆心角是多少度?补调查的学生每人一周零花钱数额的中位数是多少元?(3)四川雅安地震后,全校1000名学生每人自发地捐出一周零花钱的一半,以支援灾区建设.请估算全校学生共捐款多少元?考点:条形统计图;用样本估计总体;扇形统计图;中位数.分析:(1)零用钱是40元的是10人,占25%,据此即可求得总人数,总人数乘以所占的比例即可求得零用钱是20元的人数,则统计图可以作出;(2)求出零用钱是50元的所占的比例,乘以360度即可求得对应的扇形的圆心角,根据中位数的定义可以求得中位数;(3)首先求得抽取的学生的零用钱的平均数,平均数的一半乘以1000即可求解.解答:解:(1)随机调查的学生数是:10÷25%=40(人),零花钱是20圆的人数是:40×20%=8(人).;(2)50元的所占的比例是:=,则圆心角36°,中位数是30元;(3)学生的零用钱是:=32.5(元),则全校学生共捐款×32.5×1000=16250元.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(10分)(2013•舟山)某学校的校门是伸缩门(如图1),伸缩门中的每一行菱形有20个,每个菱形边长为30厘米.校门关闭时,每个菱形的锐角度数为60°(如图2);校门打开时,每个菱形的锐角度数从60°缩小为10°(如图3).问:校门打开了多少米?(结果精确到1米,参考数据:sin5°≈0.0872,cos5°≈0.9962,sin10°≈0.1736,cos10°≈0.9848).考点:解直角三角形的应用;菱形的性质.分析:先求出校门关闭时,20个菱形的宽即大门的宽;再求出校门打开时,20个菱形的宽即伸缩门的宽;然后将它们相减即可.解答:解:如图,校门关闭时,取其中一个菱形ABCD.根据题意,得∠BAD=60°,AB=0.3米.∵在菱形ABCD中,AB=AD,∴△BAD是等边三角形,∴BD=AB=0.3米,∴大门的宽是:0.3×20≈6(米);校门打开时,取其中一个菱形A1B1C1D1.根据题意,得∠B1A1D1=10°,A1B1=0.3米.∵在菱形A1B1C1D1中,A1C1⊥B1D1,∠B1A1O1=5°,∴在Rt△A1B1O1中,B1O1=sin∠B1A1O1•A1B1=sin5°×0.3=0.02616(米),∴B1D1=2B1O1=0.05232米,∴伸缩门的宽是:0.05232×20=1.0464米;∴校门打开的宽度为:6﹣1.0464=4.9536≈5(米).故校门打开了5米.点评:本题考查了菱形的性质,解直角三角形的应用,难度适中.解题的关键是把实际问题转化为数学问题,只要把实际问题抽象到解直角三角形中,一切将迎刃而解.22.(12分)(2013•嘉兴)小明在做课本“目标与评定”中的一道题:如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?小明的做法是:如图2,画PC∥a,量出直线b与PC的夹角度数,即直线a,b所成角的度数.(1)请写出这种做法的理由;(2)小明在此基础上又进行了如下操作和探究(如图3):①以P为圆心,任意长为半径画圆弧,分别交直线b,PC于点A,D;②连结AD并延长交直线a于点B,请写出图3中所有与∠PAB相等的角,并说明理由;(3)请在图3画板内作出“直线a,b所成的跑到画板外面去的角”的平分线(画板内的部分),只要求作出图形,并保留作图痕迹.考点:作图—应用与设计作图;平行线的性质;等腰三角形的性质.分析:(1)根据平行线的性质得出即可;(2)根据题意,有3个角与∠PAB相等.由等腰三角形的性质,可知∠PAB=∠PDA;又对顶角相等,可知∠BDC=∠PDA;由平行线性质,可知∠PDA=∠1.因此∠PAB=∠PDA=∠BDC=∠1;(3)作出线段AB的垂直平分线EF,由等腰三角形的性质可知,EF是顶角的平分线,故EF即为所求作的图形.解答:解:(1)PC∥a(两直线平行,同位角相等);(2)∠PAB=∠PDA=∠BDC=∠1,如图,∵PA=PD,∴∠PAB=∠PDA,∵∠BDC=∠PDA(对顶角相等),又∵PC∥a,∴∠PDA=∠1,∴∠PAB=∠PDA=∠BDC=∠1;(3)如图,作线段AB的垂直平分线EF,则EF是所求作的图形.点评:本题涉及到的几何基本作图包括:(1)过直线外一点作直线的平行线,(2)作线段的垂直平分线;涉及到的考点包括:(1)平行线的性质,(2)等腰三角形的性质,(3)对顶角的性质,(4)垂直平分线的性质等.本题借助实际问题场景考查了学生的几何基本作图能力,是一道好题.题目篇幅较长,需要仔细阅读,理解题意,正确作答.23.(12分)(2013•嘉兴)某镇水库的可用水量为12000立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?考点:二元一次方程组的应用;一元一次方程的应用.分析:(1)设年降水量为x万立方米,每人每年平均用水量为y立方米,根据储水量+降水量=总用水量建立方程求出其解就可以了;(2)设该城镇居民年平均用水量为z立方米才能实现目标,同样由储水量+25年降水量=25年20万人的用水量为等量关系建立方程求出其解即可.解答:解:(1)设年降水量为x万立方米,每人每年平均用水量为y立方米,由他提议,得,解得:答:年降水量为200万立方米,每人年平均用水量为50立方米.(2)设该城镇居民年平均用水量为z立方米才能实现目标,由题意,得12000+25×200=20×25z,解得:z=34则50﹣34=16(立方米).答:该城镇居民人均每年需要节约16立方米的水才能实现目标.点评:本题是一道生活实际问题,考查了列二元一次方程组解实际问题的运用,列一元一次方程解实际问题的运用,解答时根据储水量+降水量=总用水量建立方程是关键.24.(14分)(2013•嘉兴)如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m 的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?考点:二次函数综合题.专题:数形结合.分析:(1)将m=2代入原式,得到二次函数的顶点式,据此即可求出B点的坐标;(2)延长EA,交y轴于点F,证出△AFC≌△AED,进而证出△ABF∽△DAE,利用相似三角形的性质,求出DE=4;(3)①根据点A和点B的坐标,得到x=2m,y=﹣m2+m+4,将m=代入y=﹣m2+m+4,即可求出二次函数的表达式;②作PQ⊥DE于点Q,则△DPQ≌△BAF,然后分(如图1)和(图2)两种情况解答.解答:解:(1)当m=2时,y=(x﹣2)2+1,把x=0代入y=(x﹣2)2+1,得:y=2,∴点B的坐标为(0,2).(2)延长EA,交y轴于点F,∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE,∴△AFC≌△AED,∴AF=AE,∵点A(m,﹣m2+m),点B(0,m),∴AF=AE=|m|,BF=m﹣(﹣m2+m)=m2,∵∠ABF=90°﹣∠BAF=∠DAE,∠AFB=∠DEA=90°,∴△ABF∽△DAE,∴=,即:=,∴DE=4.(3)①∵点A的坐标为(m,﹣m2+m),∴点D的坐标为(2m,﹣m2+m+4),∴x=2m,y=﹣m2+m+4,∴y=﹣•++4,∴所求函数的解析式为:y=﹣x2+x+4,②作PQ⊥DE于点Q,则△DPQ≌△BAF,(Ⅰ)当四边形ABDP为平行四边形时(如图1),点P的横坐标为3m,点P的纵坐标为:(﹣m2+m+4)﹣(m2)=﹣m2+m+4,把P(3m,﹣m2+m+4)的坐标代入y=﹣x2+x+4得:﹣m2+m+4=﹣×(3m)2+×(3m)+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=8.(Ⅱ)当四边形ABDP为平行四边形时(如图2),点P的横坐标为m,点P的纵坐标为:(﹣m2+m+4)+(m2)=m+4,把P(m,m+4)的坐标代入y=﹣x2+x+4得:m+4=﹣m2+m+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=﹣8,综上所述:m的值为8或﹣8.点评:本题是二次函数综合题,涉及四边形的知识,同时也是存在性问题,解答时要注意数形结合及分类讨论.。

(2013嘉兴一模)浙江省嘉兴市2013届高三教学测试数学理试卷(一)

(2013嘉兴一模)浙江省嘉兴市2013届高三教学测试数学理试卷(一)

2013年高三教学测试(一)理科数学试题卷注意事项:1. 本科考试分试題卷和答題卷,考生须在答題卷上作答.答题前,请在答題卷的密封线内填写学校、班级、学号、姓名;2. 本试題卷分为第1卷(选择題)和第π卷(非选择題)两部分,共6页,全卷满分150分,考试时间120分钟.参考公式:如果事件,互斥,那么棱柱的体积公式如果事件,相互独立,那么其中表示棱柱的底面积,表示棱柱的高棱锥的体积公式如果事件在一次试验中发生的概率是,那么次独立重复试验中事件恰好发生次的概率其中表示棱锥的底面积,表示棱锥的高棱台的体积公式球的表面积公式球的体积公式其中分别表示棱台的上底、下底面积,其中表示球的半径表示棱台的高第I卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若i为虚数单位,则复数=A. iB. -iC.D.-2. 函数的最小正周期是A. B. π C. 2πD.4π3. 执行如图所示的程序框图,则输出的结果是A. OB. -1C. D.4. 已知α,β是空间中两个不同平面,m , n是空间中两条不同直线,则下列命题中错误的是A. 若m//n m 丄α, 则n 丄αB. 若m//ααβ, 则m//nC. 若m丄α,m 丄β,则α//βD. 若m丄α, m β则α丄β5. 已知函数下列命题正确的是A. 若是增函数,是减函数,则存在最大值B. 若存在最大值,则是增函数,是减函数C. 若,均为减函数,则是减函数D. 若是减函数,则,均为减函数6. 已知a,b∈R,a.b≠O,则“a>0,b>0”是“”的A.充分不必要条件B.必要不充分条件C. 充要条件D.既不充分也不必要条件7. 已知双曲线c:,以右焦点F为圆心,|OF|为半径的圆交双曲线两渐近线于点M、N(异于原点O),若|MN|=,则双曲线C的离心率是A. B. C. 2 D.8. 已知,则下列命题正确的是A.若则.B.若,则C. 若,则 D若,则9. 如图,给定由10个点(任意相邻两点距离为1)组成的正三角形点阵,在其中任意取三个点,以这三个点为顶点构成的正三角形的个数是A. 13B. 14C. 15D. 1710. 已知函数f(x)=x2+bx+c,(b,c∈R),集合A = {x丨f(x)=0}, B ={x|f(f(x)))= 0},若且存在x0∈B,x0∈A则实数b的取值范围是A B b<0或C D非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分.14. 设(x-2)6=a0+a1(x+1)+a2(x+1)2+…+a6(x+1)6,则a0+a1+a2+…+a6的值为15. 一盒中有6个小球,其中4个白球,2个黑球•从盒中一次任取3个球,若为黑球则放回盒中,若为白球则涂黑后再放回盒中.此时盒中黑球个数X的均值E(X) =__17. 己知抛物线y2=4x的焦点为F,若点A,B是该抛物线上的点,,线段AB的中点M在三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步驟•18. (本题满分14分)在ΔABC中,a,b,c分别是角A,B,C所对的边,且a=c + bcosC.(I )求角B的大小(II)若,求b的最小值.19. (本题满分14分)已知等差数列{a n}的公差不为零,且a3 =5, a1 , a2.a5成等比数列(I)求数列{a n}的通项公式:(II)若数列{b n}满足b1+2b2+4b3+…+2n-1b n=a n且数列{b n}的前n项和T n试比较T n与的大小20. (本题满分15分)如图,直角梯形ABCD中,AB//CD,= 90° , BC = CD =,AD = BD:EC丄底面ABCD, FD 丄底面ABCD 且有E C=F D=2.(I)求证:AD丄B F :(II )若线段EC上一点M在平面BDF上的射影恰好是BF的中点N,试求二面角B-MF-C 的余弦值.21 (本题满分15分)已知椭圆C:的左、右焦点分别为F1,F2, O为原点.(I)如图①,点M为椭圆C上的一点,N是MF1的中点,且NF2丄MF1,求点M 到y轴的距离;(II)如图②,直线l: :y=k + m与椭圆C上相交于P,G两点,若在椭圆C上存在点R,使OPRQ为平行四边形,求m的取值范围.22. (本题满分14分)已知函数(I )求f(x)的单调区间;(II)对任意的,恒有,求正实数的取值范围.三、解答题(本大题共5小题,第18-20题各14分,第21、22题各15分,共72分)18.解:(Ⅰ)由正弦定理可得:,…2分又因为,所以,…4分可得,…6分即.所以…7分(Ⅱ)因为,所以,所以…10分由余弦定理可知:…12分所以,即,所以的最小值为2.…14分19.解:(Ⅰ)在等差数列中,设公差为,由题,,…3分解得: . …4分. …5分(Ⅱ)①20.解:(Ⅰ)证明:∵,且,∴且;…1分又由,可知∵,∴是等腰三角形,且,∴,即;…3分∵底面ABCD于D,平面ABCD,∴,…4分∴平面DBF.又∵平面DBF,∴可得. …6分(Ⅱ)解:如图,以点C为原点,直线CD、CB、CE方向为x、y、z轴建系. 可得,…8分又∵ N恰好为BF的中点,∴. …9分设,∴.又∵,∴可得.故M为线段CE的中点. …11分设平面BMF的一个法向量为,且,,由可得,取得. …13分又∵平面MFC的一个法向量为,…14分∴.故所求二面角B-MF-C的余弦值为. …15分21.解(Ⅰ),…1分设,则的中点为,…2分∵,∴,即,…3分∴(1)…4分又有,(2)由(1)、(2)解得(舍去)…5分所以点M 到y轴的距离为. …6分(Ⅱ)设,,∵OPRQ为平行四边形,∴,.…8分∵R点在椭圆上,∴,即,…9分化简得,.…(1)…10分由得.由,得…(2),…11分且.…12分代入(1)式,得,化简得,代入(2)式,得.…14分又,∴或.…15分22.解:(Ⅰ)= ()令,…1分①时,,所以增区间是;②时,,所以增区间是与,减区间是③时,,所以增区间是与,减区间是④时,,所以增区间是,减区间是…5分(Ⅰ)因为,所以,由(1)知在上为减函数. …6分若,则原不等式恒成立,∴…7分若,不妨设,则,,所以原不等式即为:,即对任意的,恒成立令,所以对任意的,有恒成立,所以在闭区间上为增函数 (9)分所以对任意的,恒成立。

浙江嘉兴卷

浙江嘉兴卷

罐头横截面2013年浙江嘉兴中考数学试卷全卷满分150分,考试时间120分钟.一、选择题(本大题有10小题,每小题4分,共40分.) 1.-2的相反数是( ) (A )2(B )-2(C )12(D )-122.如图,由三个小立方块搭成的俯视图是( )3.据统计,1959年南湖革命纪念馆成立以来,约有2500万人次参观了南湖红船(中共一大会址). 数2500万用科学计数法表示为( )(A )2.5×108(B )2.5×107(C )2.5×106(D )25×1064.在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m )分别为:1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是( )(A )1.71 (B )1.85 (C )1.90 (D )2.315.下列运算正确的是( )(A )x 2+x 3=x 5(B )2x 2-x 2=1 (C )x 2•x 3=x 6(D )x 6÷x 3=x 36.如图,某厂生产横截面直径为7cm 的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为30º,则“蘑菇罐头”字样的长度为( )(A )4πcm (B )74πcm(C )72πcm (D )7πcm7.下列说法:①要了解一批灯泡的使用寿命,应采用普查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;③甲、乙两组数据的样本容量与平均数分别相同,若方差2S 甲=0.1,2S 乙=0.2,则甲组数据比乙组数据稳定;④“掷一枚硬币,正面朝上”是必然事件.正确说法的序号是( ) (A )①(B )②(C )③(D )④8.若一次函数y =ax +b (a ≠0)的图象与x 轴的交点坐标为(-2,0),则抛物线y =ax 2+bx 的对称轴为( )(A )直线x =1 (B )直线x =-2 (C )直线x =-1 (D )直线x =-49.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,则EC 的长为( )(A )(B )8 (C )(D )10.对于点A (x 1,y 1),B (x 2,y 2),定义一种运算:A ○+B =(x 1+x 2)+(y 1+y 2).例如,A (-5,4),B(2,-3),A ○+B =(-5+2)+(4-3)=-2.若互不重合的四点C ,D ,E ,F ,满足C ○+D =D ○+E =E ○+F =F ○+D ,则C ,D ,E ,F 四点( )(A )在同一条直线上(B )在同一条抛物线上(C )在同一反比例函数图象上(D )是同一正方形的四个顶点二、填空题(本大题有6小题,每小题4分,共24分) 11中,x 的取值范围是12.一个布袋中装有3个红球和4个白球,这些除颜色外其它都相同.从袋子中随机摸出一个球,这个球是白球的概率为 .13.分解因式:ab 2-a = .14.在同一平面内,已知线段AO =2,⊙A 的半径为1,将⊙A 绕点O 按逆时针方向旋转60º得到的像为⊙B ,则⊙A 与⊙B 的位置关系为 .15.杭州到北京的铁路长1487千米.火车的原平均速度为x 千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程 .16.如图,正方形ABCD 的边长为3,点E ,F 分别在边AB ,BC 上,AE =BF =1,小球P 从点E 出发沿直线向点F 运动,每当碰到正方形的边时反弹,反弹时 反射角等于入射角.当小球P 第一次碰到点E 时,小球P 与正方形的边碰撞 的次数为 ,小球P 所经过的路程为 .正面(A ) (B ) (C ) (D )三、解答题(本大题有8小题,第17~20题每题8分,第21题每题10分,第22、23题每题12分,第24题14分,共80分)17.(1)计算:|―4(-2)0; (2)化简:a (b +1)―ab ―1.18.如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A =∠D ,AB =DC .(1)求证:△ABE ≌DCE ;(2)当∠AEB =50º,求∠EBC 的度数?19.如图,一次函数y =kx +1(k ≠0)与反比例函数y =mx(m ≠0)的图象有公共点A (1,2).直线l ⊥x 轴于点N (3,0),与一次函数和反比例函数的图象分别交于点B ,C . (1(2)求△ABC20.为了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人一周的零花钱数额,并绘制了如图所示的两个统计图(部分未完成).请根据图中信息,回答下列问题:(1)校团委随机调查了多少学生?请你补全条形统计图;(2)表示“50元”的扇形的圆心角是多少度?补调查的学生每人一周零花钱数额的中位数是多少元?(3)四川雅安地震后,全校1000名学生每人自发地捐出一周零花钱的一半,以支援灾区建设.请估算全校学生共捐款多少元?(元)该校部分学生每人一周零花钱数额扇形统计图21.某学校的校门是伸缩门(如图1),伸缩门中的每一行菱形有20个,每个菱形边长为30厘米.校门关闭时,每个菱形的锐角度数为60º(如图2);校门打开时,每个菱形的锐角度数从60º缩小为10º(如图3).问:校门打开了多少米?(结果精确到1米,参考数据:sin5º≈0.0872,cos5º≈0.9962,sin10º≈0.1736,cos10º≈0.9848).22.小明在做课本“目标与评定”中的一道题:如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?小明的做法是:如图2,画PC∥a,量出直线b与PC的夹角度数,即直线a,b所成角的度数.(1)请写出这种做法的理由;(2)小明在此基础上又进行了如下操作和探究(如图3):①以P为圆心,任意长为半径画圆弧,分别交直线b,PC于点A,D;②连结AD并延长交直线a于点B,请写出图3中所有与∠PAB相等的角,并说明理由;(3)请在图3画板内作出“直线a,b所成的跑到画板外面去的角”的平分线(画板内的部分),只要求作出图形,并保留作图痕迹.(图3)C…20个(图2)1C 1B…20个(图3)(图1)(图1)23.某镇水库的可用水量为12000立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?24.如图,在平面直角坐标系xOy中,抛物线y=14(x―m)2―14m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?。

浙江省嘉兴市2013年中考数学试卷(解析版)

浙江省嘉兴市2013年中考数学试卷(解析版)

浙江省嘉兴市2013年中考数学试卷一、选择题(本大题有10小题,每小题4分,共40分.请选出各小题中唯一的正确选项,不选、多选、错选,均不得分)2.(4分)(2013•嘉兴)如图,由三个小立方块搭成的俯视图是()B3.(4分)(2013•嘉兴)据统计,1959年南湖革命纪念馆成立以来,约有2500万人次参观4.(4分)(2013•嘉兴)在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m)6.(4分)(2013•嘉兴)如图,某厂生产横截面直径为7cm的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为45°,则“蘑菇罐头”字样的长度为()cm Bcm cm7.(4分)(2013•嘉兴)下列说法:①要了解一批灯泡的使用寿命,应采用普查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;③甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,=0.2,则甲组数据比乙组数据稳定;④“掷一枚硬币,正面朝上”是必然事件.甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1=0.28.(4分)(2013•嘉兴)若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),2即可求解.﹣.9.(4分)(2013•嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()2BE===6CE===210.(4分)(2013•舟山)对于点A(x1,y1),B(x2,y2),定义一种运算:A⊕B=(x1+x2)+(y1+y2).例如,A(﹣5,4),B(2,﹣3),A⊕B=(﹣5+2)+(4﹣3)=﹣2.若互不重二、填空题(本大题有6小题,每小题5分,共30分)11.(5分)(2013•嘉兴)二次根式中,x的取值范围是x≥3.12.(5分)(2013•嘉兴)一个布袋中装有3个红球和4个白球,这些除颜色外其它都相同.从袋子中随机摸出一个球,这个球是白球的概率为.∴从袋子中随机摸出一个球,这个球是白球的概率为:13.(5分)(2010•鞍山)因式分解:ab2﹣a=a(b+1)(b﹣1).14.(5分)(2013•嘉兴)在同一平面内,已知线段AO=2,⊙A的半径为1,将⊙A绕点O 按逆时针方向旋转60°得到的像为⊙B,则⊙A与⊙B的位置关系为外切.15.(5分)(2013•嘉兴)杭州到北京的铁路长1487千米.火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为﹣=3.﹣故答案为:﹣=316.(5分)(2013•嘉兴)如图,正方形ABCD的边长为3,点E,F分别在边AB,BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P与正方形的边碰撞的次数为6,小球P所经过的路程为6.EF=,GH=HM=MN=NE=+++=6.三、解答题(本大题有8小题,第17~20题每题8分,第21题每题10分,第22、23题每题12分,第24题14分,共80分)17.(8分)(2013•嘉兴)(1)计算:|﹣4|﹣+(﹣2)0;(2)化简:a(b+1)﹣ab﹣1.18.(8分)(2013•嘉兴)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?19.(8分)(2013•嘉兴)如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积?.20.(8分)(2013•嘉兴)为了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成).请根据图中信息,回答下列问题:(1)校团委随机调查了多少学生?请你补全条形统计图;(2)表示“50元”的扇形的圆心角是多少度?补调查的学生每人一周零花钱数额的中位数是多少元?(3)四川雅安地震后,全校1000名学生每人自发地捐出一周零花钱的一半,以支援灾区建设.请估算全校学生共捐款多少元?==32.521.(10分)(2013•舟山)某学校的校门是伸缩门(如图1),伸缩门中的每一行菱形有20个,每个菱形边长为30厘米.校门关闭时,每个菱形的锐角度数为60°(如图2);校门打开时,每个菱形的锐角度数从60°缩小为10°(如图3).问:校门打开了多少米?(结果精确到1米,参考数据:sin5°≈0.0872,cos5°≈0.9962,sin10°≈0.1736,cos10°≈0.9848).22.(12分)(2013•嘉兴)小明在做课本“目标与评定”中的一道题:如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?小明的做法是:如图2,画PC∥a,量出直线b与PC的夹角度数,即直线a,b所成角的度数.(1)请写出这种做法的理由;(2)小明在此基础上又进行了如下操作和探究(如图3):①以P为圆心,任意长为半径画圆弧,分别交直线b,PC于点A,D;②连结AD并延长交直线a于点B,请写出图3中所有与∠PAB相等的角,并说明理由;(3)请在图3画板内作出“直线a,b所成的跑到画板外面去的角”的平分线(画板内的部分),只要求作出图形,并保留作图痕迹.23.(12分)(2013•嘉兴)某镇水库的可用水量为12000立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?24.(14分)(2013•嘉兴)如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m 的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?=,即:=•x×﹣m。

2013浙江嘉兴中考数学考试试题(解析版)

2013浙江嘉兴中考数学考试试题(解析版)

浙江省嘉兴市2013年中考数学试卷一、选择题(本大题有10小题,每小题4分,共40分.请选出各小题中唯一的正确选项,不选、多选、错选,均不得分)1.(4分)(2013•嘉兴)﹣2的相反数是()A.2B.﹣2 C.D.考点:相反数.分析:根据相反数的定义:只有符号不同的两个数叫做互为相反数即可得到答案.解答:解:﹣2的相反数是2,故选:A.点评:此题主要考查了相反数,关键是掌握相反数的定义.2.(4分)(2013•嘉兴)如图,由三个小立方块搭成的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面看可得到两个相邻的正方形.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.(4分)(2013•嘉兴)据统计,1959年南湖革命纪念馆成立以来,约有2500万人次参观了南湖红船(中共一大会址).数2500万用科学记数法表示为()A.2.5×108B.2.5×107C.2.5×106D.25×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:2500万=2500 0000=2.5×107,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)(2013•嘉兴)在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是()A.1.71 B.1.85 C.1.90 D.2.31考点:众数.分析:根据众数的概念:一组数据中出现次数最多的数据叫做众数求解即可.解答:解:数据1.85出现2次,次数最多,所以众数是1.85.故选B.点评:考查众数的概念.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.5.(4分)(2013•嘉兴)下列运算正确的是()A.x2+x3=x5B.2x2﹣x2=1 C.x2•x3=x6D.x6÷x3=x3考点:同底数幂的除法;合并同类项;同底数幂的乘法.分析:根据合并同类项的法则、幂的乘方及积的乘方法则、同底数幂的除法法则,分别进行各选项的判断即可.解答:解:A、x2与x3不是同类项,不能直接合并,原式计算错误,故本选项错误;B、2x2﹣x2=x2,原式计算错误,故本选项正确;C、x2•x3=x5,原式计算错误,故本选项错误;D、x6÷x3=x3,原式计算正确,故本选项正确;故选D.点评:本题考查了同底数幂的除法、幂的乘方与积的乘方,解答本题的关键是熟练掌握各部分的运算法则.6.(4分)(2013•嘉兴)如图,某厂生产横截面直径为7cm的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为45°,则“蘑菇罐头”字样的长度为()A.cm B.cmC.cmD.7πcm考点:弧长的计算.分析:根据题意得出圆的半径,及弧所对的圆心角,代入公式计算即可.解答:解:∵字样在罐头侧面所形成的弧的度数为45°,∴此弧所对的圆心角为90°,由题意可得,R=cm,则“蘑菇罐头”字样的长==π.故选B.点评:本题考查了弧长的计算,解答本题关键是根据题意得出圆心角,及半径,要求熟练记忆弧长的计算公式.7.(4分)(2013•嘉兴)下列说法:①要了解一批灯泡的使用寿命,应采用普查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;③甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,=0.2,则甲组数据比乙组数据稳定;④“掷一枚硬币,正面朝上”是必然事件.正确说法的序号是()A.①B.②C.③D.④考点:全面调查与抽样调查;方差;随机事件;概率的意义.分析:了解一批灯泡的使用寿命,应采用抽样调查的方式,普查破坏性较强,不合适;根据概率的意义可得②错误;根据方差的意义可得③正确;根据必然事件可得④错误.解答:解:①要了解一批灯泡的使用寿命,应采用抽样调查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖,说法错误;③甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,=0.2,则甲组数据比乙组数据稳定,说法正确;④“掷一枚硬币,正面朝上”是必然事件,说法错误,是随机事件.故选:C.点评:此题主要考查了抽样调查、随机事件、方差、概率,关键是掌握方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.8.(4分)(2013•嘉兴)若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx的对称轴为()A.直线x=1 B.直线x=﹣2 C.直线x=﹣1 D.直线x=﹣4考点:二次函数的性质;一次函数图象上点的坐标特征.分析:先将(﹣2,0)代入一次函数解析式y=ax+b,得到﹣2a+b=0,即b=2a,再根据抛物线y=ax2+bx的对称轴为直线x=﹣即可求解.解答:解:∵一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),∴﹣2a+b=0,即b=2a,∴抛物线y=ax2+bx的对称轴为直线x=﹣=﹣1.故选C.点评:本题考查了一次函数图象上点的坐标特征及二次函数的性质,难度适中.用到的知识点:点在函数的图象上,则点的坐标满足函数的解析式;二次函数y=ax2+bx+c的对称轴为直线x=﹣.9.(4分)(2013•嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8C.2D.2考点:垂径定理;勾股定理;圆周角定理.专题:探究型.分析:先根据垂径定理求出AC的长,设⊙O的半径为r,则OC=r﹣2,由勾股定理即可得出r的值,故可得出AE的长,连接BE,由圆周角定理可知∠ABE=90°,在Rt△BCE 中,根据勾股定理即可求出CE的长.解答:解:∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=4,设⊙O的半径为r,则OC=r﹣2,在Rt△AOC中,∵AC=4,OC=r﹣2,∴OA2=AC2+OC2,即r2=42+(r﹣2)2,解得r=5,∴AE=2r=10,连接BE,∵AE是⊙O的直径,∴∠ABE=90°,在Rt△ABE中,∵AE=10,AB=8,∴BE===6,在Rt△BCE中,∵BE=6,BC=4,∴CE===2.故选D.点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.(4分)(2013•舟山)对于点A(x1,y1),B(x2,y2),定义一种运算:A⊕B=(x1+x2)+(y1+y2).例如,A(﹣5,4),B(2,﹣3),A⊕B=(﹣5+2)+(4﹣3)=﹣2.若互不重合的四点C,D,E,F,满足C⊕D=D⊕E=E⊕F=F⊕D,则C,D,E,F四点()A.在同一条直线上B.在同一条抛物线上C.在同一反比例函数图象上D.是同一个正方形的四个顶点考点:一次函数图象上点的坐标特征.专题:新定义.分析:如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),先根据新定义运算得出(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),则x3+y3=x4+y4=x5+y5=x6+y6,若令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D (x4,y4),E(x5,y5),F(x6,y6)都在直线y=﹣x+k上.解答:解:∵对于点A(x1,y1),B(x2,y2),A⊕B=(x1+x2)+(y1+y2),如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么C⊕D=(x3+x4)+(y3+y4),D⊕E=(x4+x5)+(y4+y5),E⊕F=(x5+x6)+(y5+y6),F⊕D=(x4+x6)+(y4+y6),又∵C⊕D=D⊕E=E⊕F=F⊕D,∴(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),∴x3+y3=x4+y4=x5+y5=x6+y6,令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=﹣x+k上,∴互不重合的四点C,D,E,F在同一条直线上.故选A.点评:本题考查了一次函数图象上点的坐标特征,以及学生的阅读理解能力,有一定难度.二、填空题(本大题有6小题,每小题5分,共30分)11.(5分)(2013•嘉兴)二次根式中,x的取值范围是x≥3.考点:二次根式有意义的条件.分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.解答:解:根据题意得:x﹣3≥0,解得:x≥3.故答案是:x≥3.点评:本题考查的知识点为:二次根式的被开方数是非负数.12.(5分)(2013•嘉兴)一个布袋中装有3个红球和4个白球,这些除颜色外其它都相同.从袋子中随机摸出一个球,这个球是白球的概率为.考点:概率公式.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:∵布袋中装有3个红球和4个白球,∴从袋子中随机摸出一个球,这个球是白球的概率为:=.故答案为:.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.(5分)(2010•鞍山)因式分解:ab2﹣a=a(b+1)(b﹣1).考点:提公因式法与公式法的综合运用.分析:首先提取公因式a,再运用平方差公式继续分解因式.解答:解:ab2﹣a,=a(b2﹣1),=a(b+1)(b﹣1).点评:本题考查了提公因式法与公式法分解因式,关键在于提取公因式后要进行二次因式分解,因式分解一定要彻底,直到不能再分解为止.14.(5分)(2013•嘉兴)在同一平面内,已知线段AO=2,⊙A的半径为1,将⊙A绕点O 按逆时针方向旋转60°得到的像为⊙B,则⊙A与⊙B的位置关系为外切.考点:圆与圆的位置关系;旋转的性质.专题:计算题.分析:根据旋转的性质得到△OAB为等边三角形,则AB=OA=2,而⊙A、⊙B的半径都为1,根据圆与圆的位置关系即可判断两圆的位置关系.解答:解:∵⊙A绕点O按逆时针方向旋转60°得到的⊙B,∴△OAB为等边三角形,∴AB=OA=2,∵⊙A、⊙B的半径都为1,∴AB等于两圆半径之和,∴⊙A与⊙B外切.故答案为外切.点评:本题考查了圆与圆的位置关系:两圆的半径分别为R、r,两圆的圆心距为d,若d=R+r,则两圆外切.也考查了旋转的性质.15.(5分)(2013•嘉兴)杭州到北京的铁路长1487千米.火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为﹣=3.考点:由实际问题抽象出分式方程.分析:先分别求出提速前和提速后由杭州到北京的行驶时间,再根据由杭州到北京的行驶时间缩短了3小时,即可列出方程.解答:解:根据题意得:﹣=3;故答案为:﹣=3.点评:此题考查了由实际问题抽象出分式方程,关键是读懂题意,找出题目中的等量关系并列出方程.16.(5分)(2013•嘉兴)如图,正方形ABCD的边长为3,点E,F分别在边AB,BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P与正方形的边碰撞的次数为6,小球P所经过的路程为6.考点:正方形的性质;轴对称的性质.分析:根据已知中的点E,F的位置,可知入射角的正切值为,通过相似三角形,来确定反射后的点的位置,从而可得反射的次数.再由勾股定理就可以求出小球经过的路径的总长度.解答:解:根据已知中的点E,F的位置,可知入射角的正切值为,第一次碰撞点为F,在反射的过程中,根据入射角等于反射角及平行关系的三角形的相似可得第二次碰撞点为G,在DA上,且DG=DA,第三次碰撞点为H,在DC上,且DH=DC,第四次碰撞点为M,在CB上,且CM=BC,第五次碰撞点为N,在DA上,且AN=AD,第六次回到E点,AE=AB.由勾股定理可以得出EF=,FG=,GH=,HM=,MN=,NE=,故小球经过的路程为:+++++=6,故答案为:6,6.点评:本题主要考查了反射原理与三角形相似知识的运用.通过相似三角形,来确定反射后的点的位置,从而可得反射的次数,由勾股定理来确定小球经过的路程,是一道学科综合试题,属于难题.三、解答题(本大题有8小题,第17~20题每题8分,第21题每题10分,第22、23题每题12分,第24题14分,共80分)17.(8分)(2013•嘉兴)(1)计算:|﹣4|﹣+(﹣2)0;(2)化简:a(b+1)﹣ab﹣1.考点:整式的混合运算;实数的运算;零指数幂.专题:计算题.分析:(1)原式第一项利用负数的绝对值等于它的相反数化简,第二项利用平方根的定义化简,最后一项利用零指数幂法则计算,即可得到结果;(2)原式去括号合并即可得到结果.解答:解:(1)原式=4﹣3+1=2;(2)原式=ab+a﹣ab﹣1=a﹣1.点评:此题考查了整式的混合运算,以及实数的运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.18.(8分)(2013•嘉兴)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?考点:全等三角形的判定与性质.分析:(1)根据AAS即可推出△ABE和△DCE全等;(2)根据三角形全等得出EB=EC,推出∠EBC=∠ECB,根据三角形的外角性质得出∠AEB=2∠EBC,代入求出即可.解答:(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.点评:本题考查了三角形外角性质和全等三角形的性质和判定的应用,主要考查学生的推理能力.19.(8分)(2013•嘉兴)如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积?考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)将A坐标代入一次函数解析式中求出k的值,确定出一次函数解析式,将A坐标代入反比例函数解析式中求出m的值,即可确定出反比例解析式;(2)设一次函数与x轴交点为D点,过A作AE垂直于x轴,三角形ABC面积=三角形BDN面积﹣三口安排下ADE面积﹣梯形AECN面积,求出即可.解答:解:(1)将A(1,2)代入一次函数解析式得:k+1=2,即k=1,∴一次函数解析式为y=x+1;将A(1,2)代入反比例解析式得:m=2,∴反比例解析式为y=;(2)设一次函数与x轴交于D点,令y=0,求出x=﹣1,即OD=1,∴A(1,2),∴AE=2,OE=1,∵N(3,0),∴到B横坐标为3,将x=3代入一次函数得:y=4,将x=3代入反比例解析式得:y=,∴B(3,4),即ON=3,BN=4,C(3,),即CN=,则S△ABC=S△BDN﹣S△ADE﹣S梯形AECN=×4×4﹣×2×2﹣×(+2)×2=.点评:此题考查了一次函数与反比例函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法求函数解析式,三角形、梯形的面积求法,熟练掌握待定系数法是解本题的关键.20.(8分)(2013•嘉兴)为了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成).请根据图中信息,回答下列问题:(1)校团委随机调查了多少学生?请你补全条形统计图;(2)表示“50元”的扇形的圆心角是多少度?补调查的学生每人一周零花钱数额的中位数是多少元?(3)四川雅安地震后,全校1000名学生每人自发地捐出一周零花钱的一半,以支援灾区建设.请估算全校学生共捐款多少元?考点:条形统计图;用样本估计总体;扇形统计图;中位数.分析:(1)零用钱是40元的是10人,占25%,据此即可求得总人数,总人数乘以所占的比例即可求得零用钱是20元的人数,则统计图可以作出;(2)求出零用钱是50元的所占的比例,乘以360度即可求得对应的扇形的圆心角,根据中位数的定义可以求得中位数;(3)首先求得抽取的学生的零用钱的平均数,平均数的一半乘以1000即可求解.解答:解:(1)随机调查的学生数是:10÷25%=40(人),零花钱是20圆的人数是:40×20%=8(人).;(2)50元的所占的比例是:=,则圆心角36°,中位数是30元;(3)学生的零用钱是:=32.5(元),则全校学生共捐款×32.5×1000=16250元.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(10分)(2013•舟山)某学校的校门是伸缩门(如图1),伸缩门中的每一行菱形有20个,每个菱形边长为30厘米.校门关闭时,每个菱形的锐角度数为60°(如图2);校门打开时,每个菱形的锐角度数从60°缩小为10°(如图3).问:校门打开了多少米?(结果精确到1米,参考数据:sin5°≈0.0872,cos5°≈0.9962,sin10°≈0.1736,cos10°≈0.9848).考点:解直角三角形的应用;菱形的性质.分析:先求出校门关闭时,20个菱形的宽即大门的宽;再求出校门打开时,20个菱形的宽即伸缩门的宽;然后将它们相减即可.解答:解:如图,校门关闭时,取其中一个菱形ABCD.根据题意,得∠BAD=60°,AB=0.3米.∵在菱形ABCD中,AB=AD,∴△BAD是等边三角形,∴BD=AB=0.3米,∴大门的宽是:0.3×20≈6(米);校门打开时,取其中一个菱形A1B1C1D1.根据题意,得∠B1A1D1=10°,A1B1=0.3米.∵在菱形A1B1C1D1中,A1C1⊥B1D1,∠B1A1O1=5°,∴在Rt△A1B1O1中,B1O1=sin∠B1A1O1•A1B1=sin5°×0.3=0.02616(米),∴B1D1=2B1O1=0.05232米,∴伸缩门的宽是:0.05232×20=1.0464米;∴校门打开的宽度为:6﹣1.0464=4.9536≈5(米).故校门打开了5米.点评:本题考查了菱形的性质,解直角三角形的应用,难度适中.解题的关键是把实际问题转化为数学问题,只要把实际问题抽象到解直角三角形中,一切将迎刃而解.22.(12分)(2013•嘉兴)小明在做课本“目标与评定”中的一道题:如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?小明的做法是:如图2,画PC∥a,量出直线b与PC的夹角度数,即直线a,b所成角的度数.(1)请写出这种做法的理由;(2)小明在此基础上又进行了如下操作和探究(如图3):①以P为圆心,任意长为半径画圆弧,分别交直线b,PC于点A,D;②连结AD并延长交直线a于点B,请写出图3中所有与∠PAB相等的角,并说明理由;(3)请在图3画板内作出“直线a,b所成的跑到画板外面去的角”的平分线(画板内的部分),只要求作出图形,并保留作图痕迹.考点:作图—应用与设计作图;平行线的性质;等腰三角形的性质.分析:(1)根据平行线的性质得出即可;(2)根据题意,有3个角与∠PAB相等.由等腰三角形的性质,可知∠PAB=∠PDA;又对顶角相等,可知∠BDC=∠PDA;由平行线性质,可知∠PDA=∠1.因此∠PAB=∠PDA=∠BDC=∠1;(3)作出线段AB的垂直平分线EF,由等腰三角形的性质可知,EF是顶角的平分线,故EF即为所求作的图形.解答:解:(1)PC∥a(两直线平行,同位角相等);(2)∠PAB=∠PDA=∠BDC=∠1,如图,∵PA=PD,∴∠PAB=∠PDA,∵∠BDC=∠PDA(对顶角相等),又∵PC∥a,∴∠PDA=∠1,∴∠PAB=∠PDA=∠BDC=∠1;(3)如图,作线段AB的垂直平分线EF,则EF是所求作的图形.点评:本题涉及到的几何基本作图包括:(1)过直线外一点作直线的平行线,(2)作线段的垂直平分线;涉及到的考点包括:(1)平行线的性质,(2)等腰三角形的性质,(3)对顶角的性质,(4)垂直平分线的性质等.本题借助实际问题场景考查了学生的几何基本作图能力,是一道好题.题目篇幅较长,需要仔细阅读,理解题意,正确作答.23.(12分)(2013•嘉兴)某镇水库的可用水量为12000立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?考点:二元一次方程组的应用;一元一次方程的应用.分析:(1)设年降水量为x万立方米,每人每年平均用水量为y立方米,根据储水量+降水量=总用水量建立方程求出其解就可以了;(2)设该城镇居民年平均用水量为z立方米才能实现目标,同样由储水量+25年降水量=25年20万人的用水量为等量关系建立方程求出其解即可.解答:解:(1)设年降水量为x万立方米,每人每年平均用水量为y立方米,由他提议,得,解得:答:年降水量为200万立方米,每人年平均用水量为50立方米.(2)设该城镇居民年平均用水量为z立方米才能实现目标,由题意,得12000+25×200=20×25z,解得:z=34则50﹣34=16(立方米).答:该城镇居民人均每年需要节约16立方米的水才能实现目标.点评:本题是一道生活实际问题,考查了列二元一次方程组解实际问题的运用,列一元一次方程解实际问题的运用,解答时根据储水量+降水量=总用水量建立方程是关键.24.(14分)(2013•嘉兴)如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m 的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?考点:二次函数综合题.专题:数形结合.分析:(1)将m=2代入原式,得到二次函数的顶点式,据此即可求出B点的坐标;(2)延长EA,交y轴于点F,证出△AFC≌△AED,进而证出△ABF∽△DAE,利用相似三角形的性质,求出DE=4;(3)①根据点A和点B的坐标,得到x=2m,y=﹣m2+m+4,将m=代入y=﹣m2+m+4,即可求出二次函数的表达式;②作PQ⊥DE于点Q,则△DPQ≌△BAF,然后分(如图1)和(图2)两种情况解答.解答:解:(1)当m=2时,y=(x﹣2)2+1,把x=0代入y=(x﹣2)2+1,得:y=2,∴点B的坐标为(0,2).(2)延长EA,交y轴于点F,∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE,∴△AFC≌△AED,∴AF=AE,∵点A(m,﹣m2+m),点B(0,m),∴AF=AE=|m|,BF=m﹣(﹣m2+m)=m2,∵∠ABF=90°﹣∠BAF=∠DAE,∠AFB=∠DEA=90°,∴△ABF∽△DAE,∴=,即:=,∴DE=4.(3)①∵点A的坐标为(m,﹣m2+m),∴点D的坐标为(2m,﹣m2+m+4),∴x=2m,y=﹣m2+m+4,∴y=﹣•++4,∴所求函数的解析式为:y=﹣x2+x+4,②作PQ⊥DE于点Q,则△DPQ≌△BAF,(Ⅰ)当四边形ABDP为平行四边形时(如图1),点P的横坐标为3m,点P的纵坐标为:(﹣m2+m+4)﹣(m2)=﹣m2+m+4,把P(3m,﹣m2+m+4)的坐标代入y=﹣x2+x+4得:﹣m2+m+4=﹣×(3m)2+×(3m)+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=8.(Ⅱ)当四边形ABDP为平行四边形时(如图2),点P的横坐标为m,点P的纵坐标为:(﹣m2+m+4)+(m2)=m+4,把P(m,m+4)的坐标代入y=﹣x2+x+4得:m+4=﹣m2+m+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=﹣8,综上所述:m的值为8或﹣8.点评:本题是二次函数综合题,涉及四边形的知识,同时也是存在性问题,解答时要注意数形结合及分类讨论.。

2013浙江省嘉兴市中考数学试题及答案(Word解析版)

2013浙江省嘉兴市中考数学试题及答案(Word解析版)
(1)将A坐标代入一次函数解析式中求出k的值,确定出一次函数解析式,将A坐标代入反比例函数解析式中求出m的值,即可确定出反比例解析式;
(2)设一次函数与x轴交点为D点,过A作AE垂直于x轴,三角形ABC面积=三角形BDN面积﹣三口安排下ADE面积﹣梯形AECN面积,求出即可.
解答:
解:(1)将A(1,2)代入一次函数解析式得:k+1=2,即k=1,
∴一次函数解析式为y=x+1;
将A(1,2)代入反比例解析式得:m=2,
∴反比例解析式为y=;
(2)设一次函数与x轴交于D点,令y=0,求出x=﹣1,即OD=1,
∴A(1,2),
∴AE=2,OE=1,
∵N(3,0),
∴到B横坐标为3,
将x=3代入一次函数得:y=4,将x=3代入反比例解析式得:y=,
∴B(3,4),即ON=3,BN=4,C(3,),即CN=,
则S△ABC=S△BDN﹣S△ADE﹣S梯形AECN=×4×4﹣×2×2﹣×(+2)×2= .
点评:
此题考查了一次函数与反比例函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法求函数解析式,三角形、梯形的面积求法,熟练掌握待定系数法是解本题的关键.
19.(8分)(2013•嘉兴)如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.
(1)求一次函数与反比例函数的解析式;交点问题.
分析:

浙江省嘉兴市2013届高三一模试题:数学(理)(扫描版)--含答案

浙江省嘉兴市2013届高三一模试题:数学(理)(扫描版)--含答案

三、解答题(本大题共5小题,第18-20题各14分,第21、22题各15分,共72分) 18.解:(Ⅰ)由正弦定理可得:C B C A cos sin sin 21sin +=, …2分 又因为)(C B A +-=π,所以)sin(sin C B A +=, …4分 可得C B C C B C B cos sin sin 21sin cos cos sin +=+,…6分即21cos =B .所以3π=B …7分 (Ⅱ) 因为 3=∆ABC S ,所以 33sin 21=πac ,所以4=ac…10分 由余弦定理可知:ac ac ac ac c a b =-≥-+=2222…12分所以42≥b ,即2≥b ,所以b 的最小值为2. …14分19.解:(Ⅰ)在等差数列中,设公差为)0(≠d d ,由题⎪⎩⎪⎨⎧==532251a a a a ,∴⎪⎩⎪⎨⎧=++=+52)()4(12111d a d a d a a ,…3分解得:⎩⎨⎧==211d a .…4分122)1(1)1(1-=-+=-+=∴n n d n a a n .…5分(Ⅱ)n n n a b b b b =++++-1321242 ①20.解:(Ⅰ)证明:∵DC BC ⊥,且2==CD BC ,∴2=BD 且 45=∠=∠BDC CBD ; …1分又由DC AB //,可知 45=∠=∠CBD DBA∵2=AD ,∴ADB ∆是等腰三角形,且 45=∠=∠DBA DAB , ∴ 90=∠ADB ,即DB AD ⊥;…3分 ∵⊥FD 底面ABCD 于D ,⊂AD 平面ABCD ,∴DF AD ⊥, …4分 ∴⊥AD 平面DBF .又∵⊂BF 平面DBF ,∴可得BF AD ⊥. …6分 (Ⅱ)解:如图,以点C 为原点,直线CD 、CB 、CE 方向为x 、y 、z 轴建系. 可得)0,2,22(),2,0,2(),0,2,0(),0,0,2(A F B D , …8分 又∵ N 恰好为BF 的中点,∴ )1,22,22(N .设),0,0(0z M ,∴)1,22,22(0z -=.又∵⎪⎩⎪⎨⎧=⋅=⋅00DF MN BD MN ,∴可得10=z .故M 为线段CE 的中点. …11分设平面BMF 的一个法向量为),,(1111z y x n =, 且)2,2,2(--=BF ,)1,2,0(-=BM ,由⎪⎩⎪⎨⎧=⋅=⋅0011n BM n BF 可得⎪⎩⎪⎨⎧=+-=--02022211111z y z y x , 取⎪⎩⎪⎨⎧===213111z y x 得)2,1,3(1=n . …13分又∵平面MFC 的一个法向量为)0,1,0(2=n , …14分∴63,cos 21<n n . 故所求二面角B -MF -C 的余弦值为63. …15分 21.解(Ⅰ))0,1(1-F ,…1分 设),(00y x M ,则1MF 的中点为)2,21(0y x N -, …2分∵21NF MF ⊥,∴021=⋅NF MF ,即0)2,23(),1(0000=-⋅+y x y x , …3分∴03220020=+--y x x (1) …4分又有122020=+y x, (2)由(1)、(2)解得2220-=x (2220+=x 舍去) …5分 所以点M 到y 轴的距离为222-.…6分(Ⅱ)设),(11y x P ,),(22y x Q ,∵OPRQ 为平行四边形,∴R x x x =+21,R y y y =+21. …8分∵R 点在椭圆上,∴1)(2)(221221=+++y y x x ,即1]2)([2)(221221=++++m x x k x x ,…9分化简得,28)(8))(21(2212212=+++++m x x km x x k .…(1) …10分 由⎪⎩⎪⎨⎧+==+m kx y y x 1222得0224)21(222=-+++m kmx x k .由0>∆,得2212m k >+…(2), …11分 且221214k km x x +-=+.…12分代入(1)式,得282132)21()21(16222222222=++-++m km k k m k k ,化简得22214k m +=,代入(2)式,得0≠m . …14分 又121422≥+=k m , ∴21-≤m 或21≥m .…15分22.解:(Ⅰ)xa a x x f 12)22()(+++-='=x x a x )1)(12(--- (0>x )令0)(='x f ,1,1221=+=x a x …1分① 0=a 时,0)1()(2≥-='xx x f ,所以)(x f 增区间是()+∞,0;② 0>a 时,112>+a ,所以)(x f 增区间是)1,0(与),12(+∞+a ,减区间是)12,1(+a ③021<<-a 时,1120<+<a ,所以)(x f 增区间是)12,0(+a 与),1(+∞,减区间是)1,12(+a ④ 21-≤a 时,012≤+a ,所以)(x f 增区间是),1(+∞,减区间是)1,0( (5)分(Ⅰ)因为]25,23[∈a ,所以]6,4[)12(∈+a ,由(1)知)(x f 在]2,1[上为减函数. …6分若21x x =,则原不等式恒成立,∴),0(∞+∈λ …7分若21x x ≠,不妨设2121≤<≤x x ,则)()(21x f x f >,2111x x >, 所以原不等式即为:)11()()(2121x x x f x f -≤-λ,即22111)(1)(x x f x x f λλ-≤-对任意的]25,23[∈a ,]2,1[,21∈x x 恒成立令x x f x g λ-=)()(,所以对任意的]25,23[∈a ,]2,1[,21∈x x 有)()(21x g x g <恒成立,所以xx f x g λ-=)()(在闭区间]2,1[上为增函数 …9分所以0)(≥'x g 对任意的]25,23[∈a ,]2,1[∈x 恒成立。

浙江省嘉兴市2013届高三第二次模拟考试数学(理)试题(扫描版)

浙江省嘉兴市2013届高三第二次模拟考试数学(理)试题(扫描版)

‘2013年高三教学测试(二)理科数学 参考答案一、选择题(本大题共10小题,每题5分,共50分)1.B ;2.B ; 3.C ; 4.A ; 5.D ; 6.A ; 7.B ; 8.D ; 9.C ; 10.A .第9题提示:动直线n 的轨迹是以点P 为顶点、以平行于m 的直线为轴的两个圆锥面,而点Q 的轨迹就是这两个圆锥面与平面α的交线.第10题提示:数列20132,,3,2,1 共有20132项,它们的乘积为!22013.经过20122次变换,产生了有20122项的一个新数列,它们的乘积也为!22013.对新数列进行同样的变换,直至最后只剩下一个数,它也是!22013,变换终止.在变换过程中产生的所有的项,可分为2013组,每组的项数依次为01201120122,2,,2,2 ,乘积均为!22013,故答案为20132013)!2(.二、填空题(本大题共7小题,每题4分,共28分)11.81; 12.5; 13.)121sin(+=x y ; 14.22; 15.3222c b a ++; 16.①③; 17.81. 第17题提示:设),(00y x P ,则)11,(00y x E λ+,)3(3:00++=x x y y PA …① )3(311:00--+=x x y y BE λ…② 由①②得)9()9)(1(220202--+=x x y y λ, 将20209x y -=代入,得119922=++λy x .由1199=+-λ,得到81=λ. 三、解答题(本大题共5小题,第18、19、22题各14分,20、21题各15分,共72分)18.(本题满分14分)在△ABC 中,角C B A ,,所对的边分别为c b a ,,,满足C A B A b c a sin sin sin sin --=+. (Ⅰ)求角C ; (Ⅱ)求c b a +的取值范围. 解:(Ⅰ)C A B A b c a sin sin sin sin --=+ca b a --=,化简得222c ab b a =-+, …4分所以212cos 222=-+=ab c b a C ,3π=C . …7分 (Ⅱ)C B A c b a sin sin sin +=+)]32sin([sin 32A A -+=π)6sin(2π+=A . …11分 因为)32,0(π∈A ,)65,6(6πππ∈+A ,所以]1,21()6sin(∈+πA . 故,cb a +的取值范围是]2,1(. …14分 19.(本题满分14分)一个袋中装有大小相同的黑球和白球共9个,从中任取3个球,记随机变量X 为取出3球中白球的个数,已知215)3(==X P . (Ⅰ)求袋中白球的个数;(Ⅱ)求随机变量X 的分布列及其数学期望.解:(Ⅰ)设袋中有白球n 个,则215)3(393===C C X P n , …4分 即215789)2)(1(=⨯⨯--n n n ,解得6=n .…7分 (Ⅱ)随机变量X 的分布列如下:…11分221532815214318410)(=⨯+⨯+⨯+⨯=X E . …14分20.(本题满分15分)如图,在△ABC 中,︒=∠90C ,a BC AC ==,点P 在AB 上,BC PE //交AC 于E ,AC PF //交BC 于F .沿PE 将△APE 翻折成△PE A ',使平面⊥PE A '平面ABC ;沿PF 将△BPF 翻折成△PF B ',使平面⊥PF B '平面ABC .(Ⅰ)求证://'C B 平面PE A '. (Ⅱ)设λ=PB AP ,当λ为何值时,二面角P B A C --''的大小为︒60?B FPA F C 'B 'A E解:(Ⅰ)因为PE FC //,⊄FC 平面PE A ',所以//FC 平面PE A '. …2分因为平面⊥PE A '平面ABC ,且PE E A ⊥',所以⊥E A '平面ABC . 同理,⊥F B '平面ABC ,所以E A F B '//',从而//'F B 平面PE A '. …4分 所以平面//'CF B 平面PE A ',从而//'C B 平面PE A '. …6分 (Ⅱ)以C 为原点,CB 所在直线为x 轴,CA 所在直线为y 轴,过C 且垂直于平面ABC 的直线为z 轴,建立空间直角坐标系,如图.…7分 则)0,0,0(C ,)1,1,0('++λλλa a A , )1,0,1('++λλλa a B ,)0,1,1(++λλλa a P . )1,1,0('++=λλλa a CA ,)1)1(,1,1(''+-+-+=λλλλλa a a B A ,)1,1,0('+-+=λλa a P B .平面''B CA 的一个法向量)1,,1(-=λλm ,…9分 平面''B PA 的一个法向量)1,1,1(=n .…11分 由2160cos 311|11|||||22=︒=⋅++-+=λλλλn m , …13分 化简得0988122=+--+λλλλ,解得2537±=λ. …15分21.(本题满分15分)如图,已知抛物线py x C 2:21=的焦点在抛物线121:22+=x y C 上,点P 是抛物线1C 上的动点.(Ⅰ)求抛物线1C 的方程及其准线方程;(Ⅱ)过点P 作抛物线2C 的两条切线,M 、N 分别为两个切点,设点P 到直线MN 的(第20题)距离为d ,求d 的最小值.解:(Ⅰ)1C 的焦点为)2,0(p F ,…2分 所以102+=p ,2=p .…4分 故1C 的方程为y x 42=,其准线方程为1-=y .…6分 (Ⅱ)设),2(2t t P ,)121,(211+x x M ,)121,(222+x x N , 则PM 的方程:)()121(1121x x x x y -=+-, 所以12122112+-=x tx t ,即02242121=-+-t tx x . 同理,PN :121222+-=x x x y ,02242222=-+-t tx x . …8分MN 的方程:)()121(121)121(121222121x x x x x x x y --+-+=+-, 即))((21)121(12121x x x x x y -+=+-. 由⎪⎩⎪⎨⎧=-+-=-+-0224022422222121t tx x t tx x ,得t x x 421=+,21211221t tx x -=-. …10分所以直线MN 的方程为222t tx y -+=.…12分 于是222222241)1(241|24|t t t t t t d ++=+-+-=. 令)1(412≥+=s t s ,则366216921=+≥++=s s d (当3=s 时取等号). 所以,d 的最小值为3.…15分 22.(本题满分14分)已知R ∈a ,函数)1(ln )(--=x a x x f .(Ⅰ)若11-=e a ,求函数|)(|x f y =的极值点; (Ⅱ)若不等式ex ea a e ax x f )21()(22-++-≤恒成立,求a 的取值范围. (e 为自然对数的底数)解:(Ⅰ)若11-=e a ,则11ln )(---=e x x x f ,111)('--=e x x f .当)1,0(-∈e x 时,0)('>x f ,)(x f 单调递增; 当),1(+∞-∈e x 时,0)('<x f ,)(x f 单调递减. …2分 又因为0)1(=f ,0)(=e f ,所以当)1,0(∈x 时,0)(<x f ;当)1,1(-∈e x 时,0)(>x f ; 当),1(e e x -∈时,0)(>x f ;当),(+∞∈e x 时,0)(<x f . …4分 故|)(|x f y =的极小值点为1和e ,极大值点为1-e . …6分 (Ⅱ)不等式e x ea a e ax x f )21()(22-++-≤, 整理为0)21(ln 22≤++-+a e xa e ax x .…(*) 设a e xa e ax x x g ++-+=)21(ln )(22, 则e ae ax x x g 2121)('2+-+=(0>x )x e e ex a ax 222)21(2++-=x e e ax ex 2)2)((--=.…8分 ①当0≤a 时,02<-e ax ,又0>x ,所以,当),0(e x ∈时,0)('>x g ,)(x g 递增;当),(+∞∈e x 时,0)('<x g ,)(x g 递减.从而0)()(max ==e g x g .故,0)(≤x g 恒成立. …11分 ②当0>a 时,x e e ax e x x g 2)2)(()('--=)12)((2ex e ae x --=. 令2212e a ex e a =-,解得a e x =1,则当1x x >时,2212e aex e a >-; 再令1)(2=-e ae x ,解得e a e x +=22,则当2x x >时,1)(2>-e ae x .取),max(210x x x =,则当0x x >时,1)('>x g . 所以,当),(0+∞∈x x 时,00)()(x x x g x g ->-,即)()(00x g x x x g +->. 这与“0)(≤x g 恒成立”矛盾.综上所述,0≤a .…14分。

【VIP专享】2013年浙江省嘉兴市中考数学试卷

【VIP专享】2013年浙江省嘉兴市中考数学试卷

A x2+x3=x5 .
B 1.85

B .
2x2﹣x2=1
6.如图,某厂生产横截面直径为 7cm 的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧
面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为 45°,则“蘑菇罐头”字样
的长度为( )
A cm .
7.下列说法:
B

①要了解一批灯泡的使用寿命,应采用普,则做 100 次这样的游戏一定会中奖;
③甲、乙两组数据的样本容量与平均数分别相同,若方差 =0.1, =0.2,则甲组数据
比乙组数据稳定;
④“掷一枚硬币,正面朝上”是必然事件.
正确说法的序号是( )
A ①

B②

第 1 页 共 10 页
6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2征.通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1和.通过学理解的蛔1虫.过观适1、察于程3观阅 六蛔寄.内列察读 、虫生出蚯材 让标容生3根常蚓料 学本教活.了 据见身: 生,师的2、解 问的体巩鸟 总看活形作 用蛔 题线的固类 结雌动态业 手虫 自形练与 本雄学、三: 摸对 学动状习人 节蛔生结4、、收 一人 后物和同类 课虫活构请一蚯集 摸体 回并颜步关 重的动、学、蚓鸟 蚯的 答归色学系 点形教生生让在类 蚓危 问纳。习从 并状学理列学平的害 题线蚯四线人 归、意特出四生面体以形蚓、形类 纳大图点常、五观玻存 表及动的鸟请动文 本小引以见引、察璃现 ,预物身类 3学物明 节有言及的、导巩蚯上状 是防的体之生和历 课什根蚯环怎学固蚓和, 干感主是所列环史 学么据蚓节二样生练引牛鸟 燥染要否以举节揭 到不上适动、区回习导皮类 还的特分分蚯动晓 的同节于物让分答。学纸减 是方征节布蚓物起 一,课穴并学蚯课生上少 湿法。?广的教, 些体所居归在生蚓前回运的 润;4泛益学鸟色生纳.靠物完的问答动原 的4蛔,处目类 习和活环.近在成前题蚯的因 ?了虫以。标就 生体的节身其实端并蚓快及 触解寄上知同 物表内特动体结验和总利的慢我 摸蚯生适识人 学有容点物前构并后结用生一国 蚯蚓在于与类 的什,的端中思端线问活样的 蚓人飞技有 基么引进主的的考?形题环吗十 体生行能着 本特出要几变以动,境?大 节活的1密 方征本“特节化下物.让并为珍 近习会形理切 法。课生征有以问的小学引什稀 腹性态解的 。2课物。什游题主.结生出么鸟 面和起结蛔关观题体么戏:要利明蚯?类 处适哪构虫系察:的特的特用确蚓等 ,于些特适。蛔章形殊形征板,这资 是穴疾点于可虫我态结式。书生种料 光居病是寄的们结构,五小物典, 滑生?重生鸟内学构,学、结的型以 还活5要生类部习与.其习巩鸟结的爱 是如原活生结了功颜消固类构线鸟 粗形何因的存构腔能色化练适特形护 糙态预之结的,肠相是系习于点动鸟 ?、防一构现你动适否统。飞都物为结蛔。和状认物应与的行是。主构虫课生却为和”其结的与题、病本理不蛔扁的他构特环以生?8特乐虫形观部特8征境小理三页点观的动位点梳相组等、这;,哪物教相,理适为方引些2鸟,育同师.知应单面导鸟掌类结了;?生识的位学你握日构解2互.。办特生认线益特了通动手征观识形减点它过,抄;察吗动少是们理生报5蛔?物,与的解.参一了虫它和有寄主蛔与份解结们环些生要虫其。蚯构都节已生特对中爱蚓。会动经活征人培鸟与飞物灭相。类养护人吗的绝适这造兴鸟类?主或应节成趣的为要濒的课情关什特临?就危感系么征灭来害教;?;绝学,育,习使。我比学们它生可们理以更解做高养些等成什的良么两好。类卫动生物习。惯根的据重学要生意回义答;的3.情通况过,了给解出蚯课蚓课与题人。类回的答关:系线,形进动行物生和命环科节学动价环值节观动的物教一育、。根教据学蛔重虫点病1.引蛔出虫蛔适虫于这寄种生典生型活的线结形构动和物生。理二特、点设;置2.问蚯题蚓让的学生生活思习考性预和习适。于穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。

2013年初中数学中考嘉兴试题解析

2013年初中数学中考嘉兴试题解析

浙江省嘉兴市2013年中考数学试卷一、选择题(本大题有10小题,每小题4分,共40分.请选出各小题中唯一的正确选项,不选、多选、错选,均不得分)1.(4分)(2013•嘉兴)﹣2的相反数是()A.2B.﹣2 C.D.考点:相反数.分析:根据相反数的定义:只有符号不同的两个数叫做互为相反数即可得到答案.解答:解:﹣2的相反数是2,故选:A.点评:此题主要考查了相反数,关键是掌握相反数的定义.2.(4分)(2013•嘉兴)如图,由三个小立方块搭成的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面看可得到两个相邻的正方形.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.(4分)(2013•嘉兴)据统计,1959年南湖革命纪念馆成立以来,约有2500万人次参观了南湖红船(中共一大会址).数2500万用科学记数法表示为()A.2.5×108B.2.5×107C.2.5×106D.25×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:2500万=2500 0000=2.5×107,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)(2013•嘉兴)在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是()A.1.71 B.1.85 C.1.90 D.2.31考点:众数.分析:根据众数的概念:一组数据中出现次数最多的数据叫做众数求解即可.解答:解:数据1.85出现2次,次数最多,所以众数是1.85.故选B.点评:考查众数的概念.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.5.(4分)(2013•嘉兴)下列运算正确的是()A.x2+x3=x5B.2x2﹣x2=1 C.x2•x3=x6D.x6÷x3=x3考点:同底数幂的除法;合并同类项;同底数幂的乘法.分析:根据合并同类项的法则、幂的乘方及积的乘方法则、同底数幂的除法法则,分别进行各选项的判断即可.解答:解:A、x2与x3不是同类项,不能直接合并,原式计算错误,故本选项错误;B、2x2﹣x2=x2,原式计算错误,故本选项正确;C、x2•x3=x5,原式计算错误,故本选项错误;D、x6÷x3=x3,原式计算正确,故本选项正确;故选D.点评:本题考查了同底数幂的除法、幂的乘方与积的乘方,解答本题的关键是熟练掌握各部分的运算法则.6.(4分)(2013•嘉兴)如图,某厂生产横截面直径为7cm的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为45°,则“蘑菇罐头”字样的长度为()A.cm B.cmC.cmD.7πcm考点:弧长的计算.分析:根据题意得出圆的半径,及弧所对的圆心角,代入公式计算即可.解答:解:∵字样在罐头侧面所形成的弧的度数为45°,∴此弧所对的圆心角为90°,由题意可得,R=cm,则“蘑菇罐头”字样的长==π.故选B.点评:本题考查了弧长的计算,解答本题关键是根据题意得出圆心角,及半径,要求熟练记忆弧长的计算公式.7.(4分)(2013•嘉兴)下列说法:①要了解一批灯泡的使用寿命,应采用普查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;③甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,=0.2,则甲组数据比乙组数据稳定;④“掷一枚硬币,正面朝上”是必然事件.正确说法的序号是()A.①B.②C.③D.④考点:全面调查与抽样调查;方差;随机事件;概率的意义.分析:了解一批灯泡的使用寿命,应采用抽样调查的方式,普查破坏性较强,不合适;根据概率的意义可得②错误;根据方差的意义可得③正确;根据必然事件可得④错误.解答:解:①要了解一批灯泡的使用寿命,应采用抽样调查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖,说法错误;③甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,=0.2,则甲组数据比乙组数据稳定,说法正确;④“掷一枚硬币,正面朝上”是必然事件,说法错误,是随机事件.故选:C.点评:此题主要考查了抽样调查、随机事件、方差、概率,关键是掌握方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.8.(4分)(2013•嘉兴)若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx的对称轴为()A.直线x=1 B.直线x=﹣2 C.直线x=﹣1 D.直线x=﹣4考点:二次函数的性质;一次函数图象上点的坐标特征.分析:先将(﹣2,0)代入一次函数解析式y=ax+b,得到﹣2a+b=0,即b=2a,再根据抛物线y=ax2+bx的对称轴为直线x=﹣即可求解.解答:解:∵一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),∴﹣2a+b=0,即b=2a,∴抛物线y=ax2+bx的对称轴为直线x=﹣=﹣1.故选C.点评:本题考查了一次函数图象上点的坐标特征及二次函数的性质,难度适中.用到的知识点:点在函数的图象上,则点的坐标满足函数的解析式;二次函数y=ax2+bx+c的对称轴为直线x=﹣.9.(4分)(2013•嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8C.2D.2考点:垂径定理;勾股定理;圆周角定理.专题:探究型.分析:先根据垂径定理求出AC的长,设⊙O的半径为r,则OC=r﹣2,由勾股定理即可得出r的值,故可得出AE的长,连接BE,由圆周角定理可知∠ABE=90°,在Rt△BCE 中,根据勾股定理即可求出CE的长.解答:解:∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=4,设⊙O的半径为r,则OC=r﹣2,在Rt△AOC中,∵AC=4,OC=r﹣2,∴OA2=AC2+OC2,即r2=42+(r﹣2)2,解得r=5,∴AE=2r=10,连接BE,∵AE是⊙O的直径,∴∠ABE=90°,在Rt△ABE中,∵AE=10,AB=8,∴BE===6,在Rt△BCE中,∵BE=6,BC=4,∴CE===2.故选D.点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.(4分)(2013•舟山)对于点A(x1,y1),B(x2,y2),定义一种运算:A⊕B=(x1+x2)+(y1+y2).例如,A(﹣5,4),B(2,﹣3),A⊕B=(﹣5+2)+(4﹣3)=﹣2.若互不重合的四点C,D,E,F,满足C⊕D=D⊕E=E⊕F=F⊕D,则C,D,E,F四点()A.在同一条直线上B.在同一条抛物线上C.在同一反比例函数图象上D.是同一个正方形的四个顶点考点:一次函数图象上点的坐标特征.专题:新定义.分析:如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),先根据新定义运算得出(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),则x3+y3=x4+y4=x5+y5=x6+y6,若令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D (x4,y4),E(x5,y5),F(x6,y6)都在直线y=﹣x+k上.解答:解:∵对于点A(x1,y1),B(x2,y2),A⊕B=(x1+x2)+(y1+y2),如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么C⊕D=(x3+x4)+(y3+y4),D⊕E=(x4+x5)+(y4+y5),E⊕F=(x5+x6)+(y5+y6),F⊕D=(x4+x6)+(y4+y6),又∵C⊕D=D⊕E=E⊕F=F⊕D,∴(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),∴x3+y3=x4+y4=x5+y5=x6+y6,令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=﹣x+k上,∴互不重合的四点C,D,E,F在同一条直线上.故选A.点评:本题考查了一次函数图象上点的坐标特征,以及学生的阅读理解能力,有一定难度.二、填空题(本大题有6小题,每小题5分,共30分)11.(5分)(2013•嘉兴)二次根式中,x的取值范围是x≥3.考点:二次根式有意义的条件.分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.解答:解:根据题意得:x﹣3≥0,解得:x≥3.故答案是:x≥3.点评:本题考查的知识点为:二次根式的被开方数是非负数.12.(5分)(2013•嘉兴)一个布袋中装有3个红球和4个白球,这些除颜色外其它都相同.从袋子中随机摸出一个球,这个球是白球的概率为.考点:概率公式.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:∵布袋中装有3个红球和4个白球,∴从袋子中随机摸出一个球,这个球是白球的概率为:=.故答案为:.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.(5分)(2010•鞍山)因式分解:ab2﹣a=a(b+1)(b﹣1).考点:提公因式法与公式法的综合运用.分析:首先提取公因式a,再运用平方差公式继续分解因式.解答:解:ab2﹣a,=a(b2﹣1),=a(b+1)(b﹣1).点评:本题考查了提公因式法与公式法分解因式,关键在于提取公因式后要进行二次因式分解,因式分解一定要彻底,直到不能再分解为止.14.(5分)(2013•嘉兴)在同一平面内,已知线段AO=2,⊙A的半径为1,将⊙A绕点O 按逆时针方向旋转60°得到的像为⊙B,则⊙A与⊙B的位置关系为外切.考点:圆与圆的位置关系;旋转的性质.专题:计算题.分析:根据旋转的性质得到△OAB为等边三角形,则AB=OA=2,而⊙A、⊙B的半径都为1,根据圆与圆的位置关系即可判断两圆的位置关系.解答:解:∵⊙A绕点O按逆时针方向旋转60°得到的⊙B,∴△OAB为等边三角形,∴AB=OA=2,∵⊙A、⊙B的半径都为1,∴AB等于两圆半径之和,∴⊙A与⊙B外切.故答案为外切.点评:本题考查了圆与圆的位置关系:两圆的半径分别为R、r,两圆的圆心距为d,若d=R+r,则两圆外切.也考查了旋转的性质.15.(5分)(2013•嘉兴)杭州到北京的铁路长1487千米.火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为﹣=3.考点:由实际问题抽象出分式方程.分析:先分别求出提速前和提速后由杭州到北京的行驶时间,再根据由杭州到北京的行驶时间缩短了3小时,即可列出方程.解答:解:根据题意得:﹣=3;故答案为:﹣=3.点评:此题考查了由实际问题抽象出分式方程,关键是读懂题意,找出题目中的等量关系并列出方程.16.(5分)(2013•嘉兴)如图,正方形ABCD的边长为3,点E,F分别在边AB,BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P与正方形的边碰撞的次数为6,小球P所经过的路程为6.考点:正方形的性质;轴对称的性质.分析:根据已知中的点E,F的位置,可知入射角的正切值为,通过相似三角形,来确定反射后的点的位置,从而可得反射的次数.再由勾股定理就可以求出小球经过的路径的总长度.解答:解:根据已知中的点E,F的位置,可知入射角的正切值为,第一次碰撞点为F,在反射的过程中,根据入射角等于反射角及平行关系的三角形的相似可得第二次碰撞点为G,在DA上,且DG=DA,第三次碰撞点为H,在DC上,且DH=DC,第四次碰撞点为M,在CB上,且CM=BC,第五次碰撞点为N,在DA上,且AN=AD,第六次回到E点,AE=AB.由勾股定理可以得出EF=,FG=,GH=,HM=,MN=,NE=,故小球经过的路程为:+++++=6,故答案为:6,6.点评:本题主要考查了反射原理与三角形相似知识的运用.通过相似三角形,来确定反射后的点的位置,从而可得反射的次数,由勾股定理来确定小球经过的路程,是一道学科综合试题,属于难题.三、解答题(本大题有8小题,第17~20题每题8分,第21题每题10分,第22、23题每题12分,第24题14分,共80分)17.(8分)(2013•嘉兴)(1)计算:|﹣4|﹣+(﹣2)0;(2)化简:a(b+1)﹣ab﹣1.考点:整式的混合运算;实数的运算;零指数幂.专题:计算题.分析:(1)原式第一项利用负数的绝对值等于它的相反数化简,第二项利用平方根的定义化简,最后一项利用零指数幂法则计算,即可得到结果;(2)原式去括号合并即可得到结果.解答:解:(1)原式=4﹣3+1=2;(2)原式=ab+a﹣ab﹣1=a﹣1.点评:此题考查了整式的混合运算,以及实数的运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.18.(8分)(2013•嘉兴)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?考点:全等三角形的判定与性质.分析:(1)根据AAS即可推出△ABE和△DCE全等;(2)根据三角形全等得出EB=EC,推出∠EBC=∠ECB,根据三角形的外角性质得出∠AEB=2∠EBC,代入求出即可.解答:(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.点评:本题考查了三角形外角性质和全等三角形的性质和判定的应用,主要考查学生的推理能力.19.(8分)(2013•嘉兴)如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积?考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)将A坐标代入一次函数解析式中求出k的值,确定出一次函数解析式,将A坐标代入反比例函数解析式中求出m的值,即可确定出反比例解析式;(2)设一次函数与x轴交点为D点,过A作AE垂直于x轴,三角形ABC面积=三角形BDN面积﹣三口安排下ADE面积﹣梯形AECN面积,求出即可.解答:解:(1)将A(1,2)代入一次函数解析式得:k+1=2,即k=1,∴一次函数解析式为y=x+1;将A(1,2)代入反比例解析式得:m=2,∴反比例解析式为y=;(2)设一次函数与x轴交于D点,令y=0,求出x=﹣1,即OD=1,∴A(1,2),∴AE=2,OE=1,∵N(3,0),∴到B横坐标为3,将x=3代入一次函数得:y=4,将x=3代入反比例解析式得:y=,∴B(3,4),即ON=3,BN=4,C(3,),即CN=,则S△ABC=S△BDN﹣S△ADE﹣S梯形AECN=×4×4﹣×2×2﹣×(+2)×2=.点评:此题考查了一次函数与反比例函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法求函数解析式,三角形、梯形的面积求法,熟练掌握待定系数法是解本题的关键.20.(8分)(2013•嘉兴)为了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成).请根据图中信息,回答下列问题:(1)校团委随机调查了多少学生?请你补全条形统计图;(2)表示“50元”的扇形的圆心角是多少度?补调查的学生每人一周零花钱数额的中位数是多少元?(3)四川雅安地震后,全校1000名学生每人自发地捐出一周零花钱的一半,以支援灾区建设.请估算全校学生共捐款多少元?考点:条形统计图;用样本估计总体;扇形统计图;中位数.分析:(1)零用钱是40元的是10人,占25%,据此即可求得总人数,总人数乘以所占的比例即可求得零用钱是20元的人数,则统计图可以作出;(2)求出零用钱是50元的所占的比例,乘以360度即可求得对应的扇形的圆心角,根据中位数的定义可以求得中位数;(3)首先求得抽取的学生的零用钱的平均数,平均数的一半乘以1000即可求解.解答:解:(1)随机调查的学生数是:10÷25%=40(人),零花钱是20圆的人数是:40×20%=8(人).;(2)50元的所占的比例是:=,则圆心角36°,中位数是30元;(3)学生的零用钱是:=32.5(元),则全校学生共捐款×32.5×1000=16250元.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(10分)(2013•舟山)某学校的校门是伸缩门(如图1),伸缩门中的每一行菱形有20个,每个菱形边长为30厘米.校门关闭时,每个菱形的锐角度数为60°(如图2);校门打开时,每个菱形的锐角度数从60°缩小为10°(如图3).问:校门打开了多少米?(结果精确到1米,参考数据:sin5°≈0.0872,cos5°≈0.9962,sin10°≈0.1736,cos10°≈0.9848).考点:解直角三角形的应用;菱形的性质.分析:先求出校门关闭时,20个菱形的宽即大门的宽;再求出校门打开时,20个菱形的宽即伸缩门的宽;然后将它们相减即可.解答:解:如图,校门关闭时,取其中一个菱形ABCD.根据题意,得∠BAD=60°,AB=0.3米.∵在菱形ABCD中,AB=AD,∴△BAD是等边三角形,∴BD=AB=0.3米,∴大门的宽是:0.3×20≈6(米);校门打开时,取其中一个菱形A1B1C1D1.根据题意,得∠B1A1D1=10°,A1B1=0.3米.∵在菱形A1B1C1D1中,A1C1⊥B1D1,∠B1A1O1=5°,∴在Rt△A1B1O1中,B1O1=sin∠B1A1O1•A1B1=sin5°×0.3=0.02616(米),∴B1D1=2B1O1=0.05232米,∴伸缩门的宽是:0.05232×20=1.0464米;∴校门打开的宽度为:6﹣1.0464=4.9536≈5(米).故校门打开了5米.点评:本题考查了菱形的性质,解直角三角形的应用,难度适中.解题的关键是把实际问题转化为数学问题,只要把实际问题抽象到解直角三角形中,一切将迎刃而解.22.(12分)(2013•嘉兴)小明在做课本“目标与评定”中的一道题:如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?小明的做法是:如图2,画PC∥a,量出直线b与PC的夹角度数,即直线a,b所成角的度数.(1)请写出这种做法的理由;(2)小明在此基础上又进行了如下操作和探究(如图3):①以P为圆心,任意长为半径画圆弧,分别交直线b,PC于点A,D;②连结AD并延长交直线a于点B,请写出图3中所有与∠PAB相等的角,并说明理由;(3)请在图3画板内作出“直线a,b所成的跑到画板外面去的角”的平分线(画板内的部分),只要求作出图形,并保留作图痕迹.考点:作图—应用与设计作图;平行线的性质;等腰三角形的性质.分析:(1)根据平行线的性质得出即可;(2)根据题意,有3个角与∠PAB相等.由等腰三角形的性质,可知∠PAB=∠PDA;又对顶角相等,可知∠BDC=∠PDA;由平行线性质,可知∠PDA=∠1.因此∠PAB=∠PDA=∠BDC=∠1;(3)作出线段AB的垂直平分线EF,由等腰三角形的性质可知,EF是顶角的平分线,故EF即为所求作的图形.解答:解:(1)PC∥a(两直线平行,同位角相等);(2)∠PAB=∠PDA=∠BDC=∠1,如图,∵PA=PD,∴∠PAB=∠PDA,∵∠BDC=∠PDA(对顶角相等),又∵PC∥a,∴∠PDA=∠1,∴∠PAB=∠PDA=∠BDC=∠1;(3)如图,作线段AB的垂直平分线EF,则EF是所求作的图形.点评:本题涉及到的几何基本作图包括:(1)过直线外一点作直线的平行线,(2)作线段的垂直平分线;涉及到的考点包括:(1)平行线的性质,(2)等腰三角形的性质,(3)对顶角的性质,(4)垂直平分线的性质等.本题借助实际问题场景考查了学生的几何基本作图能力,是一道好题.题目篇幅较长,需要仔细阅读,理解题意,正确作答.23.(12分)(2013•嘉兴)某镇水库的可用水量为12000立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?考点:二元一次方程组的应用;一元一次方程的应用.分析:(1)设年降水量为x万立方米,每人每年平均用水量为y立方米,根据储水量+降水量=总用水量建立方程求出其解就可以了;(2)设该城镇居民年平均用水量为z立方米才能实现目标,同样由储水量+25年降水量=25年20万人的用水量为等量关系建立方程求出其解即可.解答:解:(1)设年降水量为x万立方米,每人每年平均用水量为y立方米,由他提议,得,解得:答:年降水量为200万立方米,每人年平均用水量为50立方米.(2)设该城镇居民年平均用水量为z立方米才能实现目标,由题意,得12000+25×200=20×25z,解得:z=34则50﹣34=16(立方米).答:该城镇居民人均每年需要节约16立方米的水才能实现目标.点评:本题是一道生活实际问题,考查了列二元一次方程组解实际问题的运用,列一元一次方程解实际问题的运用,解答时根据储水量+降水量=总用水量建立方程是关键.24.(14分)(2013•嘉兴)如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m 的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?考点:二次函数综合题.专题:数形结合.分析:(1)将m=2代入原式,得到二次函数的顶点式,据此即可求出B点的坐标;(2)延长EA,交y轴于点F,证出△AFC≌△AED,进而证出△ABF∽△DAE,利用相似三角形的性质,求出DE=4;(3)①根据点A和点B的坐标,得到x=2m,y=﹣m2+m+4,将m=代入y=﹣m2+m+4,即可求出二次函数的表达式;②作PQ⊥DE于点Q,则△DPQ≌△BAF,然后分(如图1)和(图2)两种情况解答.解答:解:(1)当m=2时,y=(x﹣2)2+1,把x=0代入y=(x﹣2)2+1,得:y=2,∴点B的坐标为(0,2).(2)延长EA,交y轴于点F,∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE,∴△AFC≌△AED,∴AF=AE,∵点A(m,﹣m2+m),点B(0,m),∴AF=AE=|m|,BF=m﹣(﹣m2+m)=m2,∵∠ABF=90°﹣∠BAF=∠DAE,∠AFB=∠DEA=90°,∴△ABF∽△DAE,∴=,即:=,∴DE=4.(3)①∵点A的坐标为(m,﹣m2+m),∴点D的坐标为(2m,﹣m2+m+4),∴x=2m,y=﹣m2+m+4,∴y=﹣•++4,∴所求函数的解析式为:y=﹣x2+x+4,②作PQ⊥DE于点Q,则△DPQ≌△BAF,(Ⅰ)当四边形ABDP为平行四边形时(如图1),点P的横坐标为3m,点P的纵坐标为:(﹣m2+m+4)﹣(m2)=﹣m2+m+4,把P(3m,﹣m2+m+4)的坐标代入y=﹣x2+x+4得:﹣m2+m+4=﹣×(3m)2+×(3m)+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=8.(Ⅱ)当四边形ABDP为平行四边形时(如图2),点P的横坐标为m,点P的纵坐标为:(﹣m2+m+4)+(m2)=m+4,把P(m,m+4)的坐标代入y=﹣x2+x+4得:m+4=﹣m2+m+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=﹣8,综上所述:m的值为8或﹣8.点评:本题是二次函数综合题,涉及四边形的知识,同时也是存在性问题,解答时要注意数形结合及分类讨论.。

浙江省嘉兴市2013届高三数学教学测试试题(一)(2013嘉兴一模)理 新人教A版

浙江省嘉兴市2013届高三数学教学测试试题(一)(2013嘉兴一模)理 新人教A版

2013年高三教学测试(一)理科数学试题卷注意事项:1. 本科考试分试題卷和答題卷,考生须在答題卷上作答.答题前,请在答題卷的密 封线内填写学校、班级、学号、姓名;2. 本试題卷分为第1卷(选择題)和第π卷(非选择題)两部分,共6页,全卷满 分150分,考试时间120分钟. 参考公式:如果事件A ,B 互斥,那么 棱柱的体积公式()()()P A B P A P B +=+ V Sh =如果事件A ,B 相互独立,那么 其中S 表示棱柱的底面积,h 表示棱柱的高()()()P A B P A P B ⋅=⋅ 棱锥的体积公式如果事件A 在一次试验中发生的概率是p ,那么13V Sh= n次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示棱锥的底面积,h 表示棱锥的高()()()1,0,1,2,,n kk kn n P k C p k k n -=-= 棱台的体积公式球的表面积公式 24S R π= ()112213V h S S S S =++球的体积公式 343V R π= 其中12,S S 分别表示棱台的上底、下底面积,其中R 表示球的半径 h 表示棱台的高第I 卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一项是符合题目要求的.1. 若i 为虚数单位,则复数i i-+11=A. iB. -iC.i 2 D.- i 22.函数xx x f cos ).2sin()(π+=的最小正周期是A. 2πB. πC. 2πD. 4π3. 执行如图所示的程序框图,则输出的结果是 A. O B. -1C. 23-D. 47-4. 已知α,β是空间中两个不同平面,m , n 是空间中两条不 同直线,则下列命题中错误的是 A. 若m//n m 丄α, 则n 丄α B. 若m//α α ⋂β, 则m//n C. 若m 丄α , m 丄β, 则α//β D.若m 丄α, m ⊂ β 则 α 丄β5. 已知函数⎩⎨⎧>≤0),(0),(21x x f x x f 下列命题正确的是A. 若)(1x f 是增函数,)(2x f 是减函数,则)(x f 存在最大值B. 若)(x f 存在最大值,则)(1x f 是增函数,)(2x f 是减函数C. 若)(1x f ,)(2x f 均为减函数,则)(x f 是减函数D. 若)(x f 是减函数,则)(1x f ,)(2x f 均为减函数6. 已知a,b ∈R,a.b ≠O,则“a>0,b>0” 是“ab ba ≥+2”的A.充分不必要条件B.必要不充分条件C. 充要条件D.既不充分也不必要条件7. 已知双曲线c: )0(12222>>=-b a b y a x ,以右焦点F 为圆心,|OF|为半径的圆交双曲线两渐近线于点M 、N (异于原点O),若|MN|=a 32,则双曲线C 的离心率 是 A.2 B.3 C. 2 D. 13+8.已知20π<<x ,则下列命题正确的是A.若x x sin 1<则. x x sin 1> B.若x x sin 1<,则x x sin 1<C. 若x x sin 1<,则x x sin 1> D 若x x sin 1<,则x x sin 1<9.如图,给定由10个点(任意相邻两点距离为1)组成的 正三角形点阵,在其中任意取三个点,以这三个点为顶 点构成的正三角形的个数是 A. 13 B. 14 C. 15 D. 1710. 已知函数f(x)=x2+bx+c,(b,c ∈R),集合A = {x 丨f(x)=0}, B = {x|f(f(x)))= 0},若≠⋂B A 且存在x0∈B ,x0∈A 则实数b 的取值范围是 A 0≠b B b<0或4≥b C 40<≤b D 44≥≤b b 或非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分.11. 已知奇函数f(x),当x>0时,f(x)= log2(x+ 3), 则f(-1)=__▲__12. 已知实数x,y 满足⎪⎩⎪⎨⎧≤≤-≤-≤+2122x y x y x 则z = 2x+y 的最小值是__▲__13. —个几何体的三视图如图所示,则该几何体的体积为__▲__14. 设(x-2)6=a0+a1(x+1)+a2(x+1)2+…+a6(x+1)6,则a0+a1+a2+…+a6 的值为__▲__ 15. 一盒中有6个小球,其中4个白球,2个黑球•从盒中一次任取3个球,若为黑球则放 回盒中,若为白球则涂黑后再放回盒中.此时盒中黑球个数X 的均值E(X) =__▲__. 16. 若b a ,是两个非零向量,且]1,33[|,|||||∈+==λλb a b a ,则b 与b a -的夹角的 取值范围是__▲__.17. 己知抛物线y2=4x 的焦点为F,若点A, B 是该抛物线上的点,2π=∠AFB ,线段AB 的中点M 在抛物线的准线上的射影为N,则||||AB MN 的最大值为__▲__.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步驟• 18. (本题满分14分)在ΔABC 中,a,b,c 分别是角A,B,C 所对的边,且a=21c + bcosC .(I )求角B 的大小 (II)若3=∆ABC S ,求b 的最小值.19. (本题满分14分)已知等差数列{an}的公差不为零,且a3 =5, a1 , a2.a5 成等比数列 (I)求数列{an}的通项公式:(II)若数列{bn}满足b1+2b2+4b3+…+2n-1bn=an 且数列{bn}的前n 项和Tn 试比较Tn 与113+-n n 的大小20. (本题满分15分)如图,直角梯形ABCD 中,AB//CD ,BCD ∠ = 90° , BC = CD =2,AD = BD :EC 丄底面ABCD,FD 丄底面ABCD 且有EC=FD=2. (I )求证:AD 丄BF :(II )若线段EC 上一点M 在平面BDF 上的射影恰好是BF 的中点N,试求二面角 B-MF-C 的余弦值.21 (本题满分15分)已知椭圆C:1222=+yx的左、右焦点分别为F1,F2, O为原点.(I)如图①,点M为椭圆C上的一点,N是MF1的中点,且NF2丄MF1,求点M 到y轴的距离;(II)如图②,直线l: :y=k + m与椭圆C上相交于P,G两点,若在椭圆C上存在点R,使OPRQ 为平行四边形,求m的取值范围.22. (本题满分14分)已知函数xaxaxxf ln)12()22(21)(2+++-=(I )求f(x)的单调区间;(II)对任意的]2,1[,],25,23[21∈∈xxa,恒有|211|)(|)(|121xxxfxf-≤-λ,求正实数λ的取值范围.三、解答题(本大题共5小题,第18-20题各14分,第21、22题各15分,共72分)18.解:(Ⅰ)由正弦定理可得:CB C A cos sin sin 21sin +=, …2分 又因为)(C B A +-=π,所以)sin(sin C B A +=,…4分可得C B C C B C B cos sin sin 21sin cos cos sin +=+,…6分 即21cos =B .所以3π=B…7分 (Ⅱ) 因为 3=∆ABC S ,所以 33sin 21=πac ,所以4=ac …10分 由余弦定理可知:ac ac ac ac c a b =-≥-+=2222…12分所以42≥b ,即2≥b ,所以b 的最小值为2.…14分19.解:(Ⅰ)在等差数列中,设公差为)0(≠d d ,由题⎪⎩⎪⎨⎧==532251a a a a ,∴⎪⎩⎪⎨⎧=++=+52)()4(12111d a d a d a a ,…3分解得:⎩⎨⎧==211d a . …4分 122)1(1)1(1-=-+=-+=∴n n d n a a n .…5分(Ⅱ)n n n a b b b b =++++-1321242 ①20.解:(Ⅰ)证明:∵DC BC ⊥,且2==CD BC , ∴2=BD 且45=∠=∠BDC CBD ; …1分又由DC AB //,可知45=∠=∠CBD DBA∵2=AD ,∴ADB ∆是等腰三角形,且45=∠=∠DBA DAB , ∴90=∠ADB ,即DB AD ⊥;…3分∵⊥FD 底面ABCD 于D ,⊂AD 平面ABCD ,∴DF AD ⊥, …4分 ∴⊥AD 平面DBF.又∵⊂BF 平面DBF ,∴可得BF AD ⊥. …6分 (Ⅱ)解:如图,以点C 为原点,直线CD 、CB 、CE 方向为x 、y 、z 轴建系. 可得)0,2,22(),2,0,2(),0,2,0(),0,0,2(A F B D , …8分 又∵ N 恰好为BF 的中点,∴ )1,22,22(N . …9分设),0,0(0z M ,∴)1,22,22(0z MN -=.又∵⎪⎩⎪⎨⎧=⋅=⋅00DF MN BD MN ,∴可得10=z .故M 为线段CE 的中点. …11分y ACM EDBN20题解答xz设平面BMF 的一个法向量为),,(1111z y x n =, 且)2,2,2(--=BF ,)1,2,0(-=BM ,由⎪⎩⎪⎨⎧=⋅=⋅0011n BM n BF 可得⎪⎩⎪⎨⎧=+-=--020********z y z y x ,取⎪⎩⎪⎨⎧===213111z y x 得)2,1,3(1=n .…13分又∵平面MFC 的一个法向量为)0,1,0(2=n , …14分∴63,cos 21=><n n .故所求二面角B-MF-C 的余弦值为63.…15分 21.解(Ⅰ))0,1(1-F ,…1分设),(00y x M ,则1MF 的中点为)2,21(0y x N -,…2分∵21NF MF ⊥,∴021=⋅NF MF ,即0)2,23(),1(0000=-⋅+y x y x ,…3分∴3220020=+--y x x (1) …4分又有122020=+y x , (2)由(1)、(2)解得2220-=x (2220+=x 舍去) …5分 所以点M 到y 轴的距离为222-.…6分(Ⅱ)设),(11y x P ,),(22y x Q ,∵OPRQ 为平行四边形,∴R x x x =+21,R y y y =+21. …8分∵R 点在椭圆上,∴1)(2)(221221=+++y y x x ,即1]2)([2)(221221=++++m x x k x x ,…9分化简得,28)(8))(21(2212212=+++++m x x km x x k . (1)…10分由⎪⎩⎪⎨⎧+==+m kx y y x 1222得0224)21(222=-+++m kmx x k .由0>∆,得2212m k >+…(2),…11分且221214k kmx x +-=+. …12分代入(1)式,得282132)21()21(16222222222=++-++m k m k k m k k ,化简得22214k m +=,代入(2)式,得0≠m .…14分又121422≥+=k m , ∴21-≤m 或21≥m .…15分22.解:(Ⅰ)x a a x x f 12)22()(+++-='=x x a x )1)(12(--- (0>x )令0)(='x f ,1,1221=+=x a x…1分① 0=a 时,0)1()(2≥-='x x x f ,所以)(x f 增区间是()+∞,0;② 0>a 时,112>+a ,所以)(x f 增区间是)1,0(与),12(+∞+a ,减区间是)12,1(+a ③021<<-a 时,1120<+<a ,所以)(x f 增区间是)12,0(+a 与),1(+∞,减区间是)1,12(+a④21-≤a 时,012≤+a ,所以)(x f 增区间是),1(+∞,减区间是)1,0(…5分(Ⅰ)因为]25,23[∈a ,所以]6,4[)12(∈+a ,由(1)知)(x f 在]2,1[上为减函数. …6分 若21x x =,则原不等式恒成立,∴),0(∞+∈λ …7分若21x x ≠,不妨设2121≤<≤x x ,则)()(21x f x f >,2111x x >,所以原不等式即为:)11()()(2121x x x f x f -≤-λ,即22111)(1)(x x f x x f λλ-≤-对任意的]25,23[∈a ,]2,1[,21∈x x 恒成立 令x x f x g λ-=)()(,所以对任意的]25,23[∈a ,]2,1[,21∈x x 有)()(21x g x g <恒成立,所以x x f x g λ-=)()(在闭区间]2,1[上为增函数…9分所以0)(≥'x g 对任意的]25,23[∈a ,]2,1[∈x 恒成立。

【精校】2013年浙江省嘉兴市初中毕业生学业考试数学(含答案)

【精校】2013年浙江省嘉兴市初中毕业生学业考试数学(含答案)

罐头横截面2013年浙江省初中毕业生学业考试(嘉兴卷)数学 试题卷 考生须知:1.全卷满分150分,考试时间120分钟.试题卷共6页,有三大题,共24小题. 2.全卷答案必须做在答题纸卷Ⅰ、卷Ⅱ的相应位置上,做在试题卷上无效. 参考公式:二次函数y =ax 2+bx +c (a ≠0)图象的顶点坐标是(-2b a,244ac b a -).温馨提示:请仔细审题,细心答题,答题前仔细阅读答题纸上的“注意事项”. 卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题4分,共40分.请选出各小题中唯一的正确选项,不选、多选、错选,均不得分) 1.-2的相反数是( ▲ ) (A )2(B )-2(C )(D )-2.如图,由三个小立方块搭成的俯视图是( ▲ )3.据统计,1959年南湖革命纪念馆成立以来,约有2500万人次参观了南湖红船(中共一大会址).数2500万用科学计数法表示为( ▲ ) (A )2.5×108(B )2.5×107 (C )2.5×106(D )25×1064.在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m )分别为:1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是( ▲ ) (A )1. 71 (B )1.85 (C )1.90 (D )2.31 5.下列运算正确的是( ▲ )(A )x 2+x 3=x 5(B )2x 2-x 2=1 (C )x 2•x 3=x 6(D )x 6÷x 3=x 36.如图,某厂生产横截面直径为7cm 的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为30º,则“蘑菇罐头”字样的长度为( ▲ ) (A )cm (B )74πcm 正面(A ) (B ) (C ) (D )(C )72πcm (D )7πcm 7.下列说法:①要了解一批灯泡的使用寿命,应采用普查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;③甲、乙两组数据的样本容量与平均数分别相同,若方差2S 甲=0.1,2S 乙=0.2,则甲组数据比乙组数据稳定;④“掷一枚硬币,正面朝上”是必然事件.正确说法的序号是( ▲ ) (A )①(B )②(C )③(D )④8.若一次函数y =ax +b (a ≠0)的图象与x 轴的交点坐标为(-2,0),则抛物线y =ax 2+b 的对称轴为( ▲ )(A )直线x =1 (B )直线x =-2 (C )直线x =-1 (D )直线x =-49.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,则EC 的长为(▲ )(A )(B )8(C )(D )10.对于点A (x 1,y 1),B (x 2,y 2),定义一种运算:A ○+B =(x 1+x 2)+(y 1+y 2).例如,A (-5,4),B (2,-3),A ○+B =(-5+2)+(4-3)=-2.若互不重合的四点C ,D ,E ,F ,满足C ○+D =D ○+E =E ○+F =F ○+D ,则C ,D ,E ,F 四点( ▲ ) (A )在同一条直线上(B )在同一条抛物线上(C )在同一反比例函数图象上(D )是同一正方形的四个顶点卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题4分,共24分) 11中,x 的取值范围是 ▲ 时.12.一个布袋中装有3个红球和4个白球,这些除颜色外其它都相同.从袋子中随机摸出一个球,这个球是白球的概率为 ▲ . 13.分解因式:ab 2-a = ▲ .14.在同一平面内,已知线段AO =2,⊙A 的半径为1,将⊙A 绕点O 按逆时针方向旋转60º得到的像为⊙B ,则⊙A 与⊙B 的位置关系为 ▲ .15.杭州到北京的铁路长1487千米.火车的原平均速度为x 千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程来 ▲ .16.如图,正方形ABCD 的边长为3,点E ,F 分别在边AB ,BC 上,AE =BF =1,小球P 从点E 出发沿直线向点F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P 第一次碰到点E 时,小球P 与正方形的边碰撞 的次数为 ▲ ,小球P 所经过的路程为 ▲ .三、解答题(本大题有8小题,第17~20题每题8分,第21题每题10分,第22、23题每题12分,第24题14分,共80分)17.(1)计算:|―4|―(-2)0; (2)化简:a(b +1)―ab ―1.18.如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A =∠D ,AB =DC .(1)求证:△ABE ≌DCE ;(2)当∠AEB =50º,求∠EBC 的度数?19.如图,一次函数y =kx (1,2).直线l ⊥x B ,C .(1(2)求△ABC 的面积?20列问题:(1)校团委随机调查了多少学生?请你补全条形统计图;(2)表示“50元”的扇形的圆心角是多少度?补调查的学生每人一周零花钱数额的中位数是多少元?(3)四川雅安地震后,全校1000名学生每人自发地捐出一周零花钱的一半,以支援灾区建设.请估算全校学生共捐款多少元?21.某学校的校门是伸缩门(如图1),伸缩门中的每一行菱形有20个,每个菱形边长为30厘米.校门关闭时,每个菱形的锐角度数为60º(如图2);校门打开时,每个菱形的锐角度数从60º缩小为10º(如图3).问:校门打开了多少米?(结果精确到1米,参考数据:sin5º≈0.0872,cos5º≈0.9962,sin10º≈0.1736,cos10º≈0.9848).22.小明在做课本“目标与评定”中的一道题:如图1,直线a ,b 所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?60ºDACB…20个(图2)10ºD 1A 1C 1B 1…20个 (图3)(图1)(图3)小明的做法是:如图2,画PC ∥a ,量出直线b 与PC 的夹角度数, 即直线a ,b 所成角的度数. (1)请写出这种做法的理由;(2)小明在此基础上又进行了如下操作和探究(如图3):①以P 为圆心,任意长为半径画圆弧,分别交直线b ,PC 于 点A ,D ;②连结AD 并延长交直线a 于点B ,请写出图3中所有与∠PAB 相等的角,并说明理由;(3)请在图3画板内作出“直线a ,b 所成的跑到画板外面去的角”的平分线(画板内的部分)23.某镇水库的可用水量为12000立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1(2)政府号召节约用水,希望将水库的保用年限提高到25年需节约多少立方米才能实现目标?24.如图,在平面直角坐标系xOy 中,抛物线y = (x ―m)2―m 2+m 的顶点为A ,与y 轴的交点为B ,连结AB ,AC ⊥AB ,交y 轴于点C ,延长到点D ,使AD =AC ,连结BD .作AE ∥x 轴,DE ∥y 轴.(1)当m =2时,求点B 的坐标; (2)求DE 的长?(3)①设点D 的坐标为(x ,y ),求y 关于x 的函数关系式?②过点D 作AB 的平行线,与第(3)①题确定的函数图象的另一个交点为P ,当m 为何值时,以,A ,B ,D ,P 为顶点的四边形是平行四边形?2013年浙江省初中毕业生学业考试(嘉兴卷) 数学 参考答案 一.选择题l .A 2.A 3.B 4.B 5.D 6.B 7.C 8.C 9.D l0.A 二、填空题11.x ≥3;l2.;13.a(b +1)(b -1);14.外切;15.1487x -148770x +=3;16.6,三、解答题17.(1)2 ; (2)a -1 18.(1)略; (2)∠EBC =25º 19.(1)y =x +1,y =; (2)S △ABC =10320.(1)略;(2)圆心角36º,中位数是30元;(3)16250元 21.5米.22.(1)PC ∥a (两直线平行,同位角相等) (2)∠PAB =∠PDA =∠BDC =∠1 如图3,∵PA =PD ∴∠PAB =∠PDA∵∠BDC =∠PDA (对顶角相等) 又∵PC ∥a ∴∠PDA =∠1∴∠PAB =∠PDA =∠BDC =∠1 (3)如图,EF 是所求作的图形.23.(1)设年降水量为x 万立方米,每人每年平均用水量为y 立方米,则:1200020162012000152015x y x y +=⨯⎧⎨+=⨯⎩,解得:20050x y =⎧⎨=⎩答:年降水量为200万立方米,每人年平均用水量为50立方米. (2)设该城镇居民年平均用水量为z 立方米才能实现目标,则: 12000+25×200=20×25z ,解得:z =34 ∴50-34=16答:该城镇居民人均每年需要节约16立方米的水才能实现目标.24.(1)当m=2时,y= (x―2)2+1把x=0代入y= (x―2)2+1,得:y=2∴点B的坐标为(0,2)(2)延长EA,交y轴于点F∵AD=AC,∠AFC=∠AED=90º,∠CAF=∠DAE∴△AFC≌△AED∴AF=AE,∵点A(m,―m2+m),点B(0,m)∴AF=AE=|m|,BF=m―(―m2+m)=m2∵∠ABF=90º―∠BAF=∠DAE,∠AFB=∠DEA=90º,∴△ABF∽△DAE∴BFAF=AEDE,即:214||mm=||mDE∴DE=4(3)①∵点A的坐标为(m ∴点D的坐标为(2m,―m2∴x=2m,y=―m2+m+4∴y=―•22x⎛⎫⎪⎝⎭++4∴所求函数的解析式为:y ②作PQ⊥DE于点Q,则△(Ⅰ)当四边形ABDP点P的横坐标为3m 点P的纵坐标为:(―m2+m 把P(3m,―m2+m+4―m2+m+4=―116×(3m)2解得:m=0(此时A,B,D 或m=8(Ⅱ)当四边形ABDP点P的横坐标为m点P的纵坐标为:(―m2+m+4)+(m2)=m+4把P(m,m+4)的坐标代入y=―116x2+x+4得:m+4=―116m2+m+4解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=―8综上所述:m的值8或―8.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。

【解析版】浙江省嘉兴市2012-2013学年高二下学期期末考试数学(文)试题

【解析版】浙江省嘉兴市2012-2013学年高二下学期期末考试数学(文)试题

嘉兴市2012-2013学年第二学期期末检测 高二文科数学(B )试题卷(2013.6)一、选择题1.已知i 是虚数单位,则32ii -=+ A .1i + B .75i + C .75i- D .1i -2.某物体的运动路程S (单位:m )与时间t (单位:s )的关系可用函数3()2S t t =-表示,则此物体在1t s =时的瞬时速度(单位:/m s )为A .1B .3C .1-D .03.已知20,0,,aba b M N a b>>==+,则 A .M N > B .M N ≥ C .M N < D .M N ≤4.已知函数32()3([2,2]),()f x x x m x f x =-++∈-的最小值为1,则()f x 的最大值为A .5B .22C .21D .25.函数32()31f x ax x x =-++在R 上是单调函数,则实数a 的取值范围是 A.3a > B.3a ≥ C.3a < D.3a ≤6.在复平面内,复数12z i =-对应的向量为OA ,复数2z 对应的向量为OB ,则向量AB所对应的复数为A .42i +B .42i -C .42i --D .42i -+7.函数2()ln f x x x x =+-的极值点的个数是 A .0个 B .1个 C .2个 D .3个8.已知i 是虚数单位,设复数(1)()z a ai a R =-+∈的共轭复数为z ,若1z z=,则a 的值为A .1B .0C .0或1D .1或29.如下图所示,把1,3,6,10,15,21,……这些数叫做三角形数,这是因为这些数目的点可以排成一个正三角形,试求第20个三角形数是A .208B .209C .210D .21110.设函数()f x 的导数()f x ',且()()cos sin 6f x f x x π'=+,则()3f π'=A .1B .0C .3 D .211.若直线0()x y m m R ++=∈不可能是曲线2()ln f x ax x =+的切线,则实数a 的取值范围是A .0a ≤B .18a ≥-C .18a <- D .0a ≥12.已知函数ln ()xf x x=,则下列命题正确的是 A .对任意1a e >,方程()f x a =只有一个实根 B .对任意1a e <,方程()f x a =总有两个实根 C .对任意1a e <,总存在正数x ,使得()f x a >成立 D .对任意1a e<和正数x ,总有()f x a >成立二、填空题13.已知i 是虚数单位,234234z i i i i =+++,则||z = 。

浙江省嘉兴市2013年中考数学试卷(解析版)

浙江省嘉兴市2013年中考数学试卷(解析版)
2013 年浙江省嘉兴市中考数学试卷
一.选择题(共 10 小题) 1.(2013 嘉兴)(﹣2)0 等于( )
A. 1
B. 2
C. 0
考点:零指数幂。
解答:解:(﹣2)0=1.
故选 A. 2.(2013 嘉兴)下列图案中,属于轴对称图形的是( )
D. ﹣2
A
B
考点:轴对称图形。
C
D
解答:解:根据轴对称图形的概念知 B、C、D 都不是轴对称图形,只有 A 是轴对称图形.
考点:众数;折线统计图。 解答:解:9℃出现了 2 次,出现次数最多,故众数为 30, 故答案为:9. 15.(2013 嘉兴)如图,在⊙O 中,直径 AB 丄弦 CD 于点 M,AM=18,BM=8,则 CD 的长为 24 .
考点:垂径定理;勾股定理。 解答:解:连接 OD, ∵AM=18,BM=8,


故①正确; ∵∠ABC=90°,BG⊥CD, ∴∠DBE+∠BDE=∠BDE+∠BCD=90°, ∴∠DBE=∠BCD, ∵AB=CB,点 D 是 AB 的中点,
∴BD= AB= CB,
∵tan∠BCD= = ,
-6-
∴在 Rt△ABG 中,tan∠DBE= = ,


∴FG= FB,
故②错误; ∵△AFG∽△CFB, ∴AF:CF=AG:BC=1:2, ∴AF= AC,
D. 90°
-2-
考点:三角形内角和定理。 解答:解:设∠A=x,则∠B=2x,∠C=x+20°,则 x+2x+x+20°=180°,解得 x=40°,即∠A=40°. 故选 A. 9.(2013 嘉兴)定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”如“947” 就是一个“V 数”.若十位上的数字为 2,则从 1,3,4,5 中任选两数,能与 2 组成“V 数”的概率是 ( )

【VIP专享】嘉兴市2013数学

【VIP专享】嘉兴市2013数学

6.(4 分)(2013•嘉兴)如图,某厂生产横截面直径为 7cm 的圆柱形罐头,需将“蘑菇罐头” 字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为 45°, 则“蘑菇罐头”字样的长度为( )
A cm .
B

cm
6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2征.通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1和.通过学理解的蛔1虫.过观适1、察于程3观阅 六蛔寄.内列察读 、虫生出蚯材 让标容生3根常蚓料 学本教活.了 据见身: 生,师的2、解 问的体巩鸟 总看活形作 用蛔 题线的固类 结雌动态业 手虫 自形练与 本雄学、三: 摸对 学动状习人 节蛔生结4、、收 一人 后物和同类 课虫活构请一蚯集 摸体 回并颜步关 重的动、学、蚓鸟 蚯的 答归色学系 点形教生生让在类 蚓危 问纳。习从 并状学理列学平的害 题线蚯四线人 归、意特出四生面体以形蚓、形类 纳大图点常、五观玻存 表及动的鸟请动文 本小引以见引、察璃现 ,预物身类 3学物明 节有言及的、导巩蚯上状 是防的体之生和历 课什根蚯环怎学固蚓和, 干感主是所列环史 学么据蚓节二样生练引牛鸟 燥染要否以举节揭 到不上适动、区回习导皮类 还的特分分蚯动晓 的同节于物让分答。学纸减 是方征节布蚓物起 一,课穴并学蚯课生上少 湿法。?广的教, 些体所居归在生蚓前回运的 润;4泛益学鸟色生纳.靠物完的问答动原 的4蛔,处目类 习和活环.近在成前题蚯的因 ?了虫以。标就 生体的节身其实端并蚓快及 触解寄上知同 物表内特动体结验和总利的慢我 摸蚯生适识人 学有容点物前构并后结用生一国 蚯蚓在于与类 的什,的端中思端线问活样的 蚓人飞技有 基么引进主的的考?形题环吗十 体生行能着 本特出要几变以动,境?大 节活的1密 方征本“特节化下物.让并为珍 近习会形理切 法。课生征有以问的小学引什稀 腹性态解的 。2课物。什游题主.结生出么鸟 面和起结蛔关观题体么戏:要利明蚯?类 处适哪构虫系察:的特的特用确蚓等 ,于些特适。蛔章形殊形征板,这资 是穴疾点于可虫我态结式。书生种料 光居病是寄的们结构,五小物典, 滑生?重生鸟内学构,学、结的型以 还活5要生类部习与.其习巩鸟结的爱 是如原活生结了功颜消固类构线鸟 粗形何因的存构腔能色化练适特形护 糙态预之结的,肠相是系习于点动鸟 ?、防一构现你动适否统。飞都物为结蛔。和状认物应与的行是。主构虫课生却为和”其结的与题、病本理不蛔扁的他构特环以生?8特乐虫形观部特8征境小理三页点观的动位点梳相组等、这;,哪物教相,理适为方引些2鸟,育同师.知应单面导鸟掌类结了;?生识的位学你握日构解2互.。办特生认线益特了通动手征观识形减点它过,抄;察吗动少是们理生报5蛔?物,与的解.参一了虫它和有寄主蛔与份解结们环些生要虫其。蚯构都节已生特对中爱蚓。会动经活征人培鸟与飞物灭相。类养护人吗的绝适这造兴鸟类?主或应节成趣的为要濒的课情关什特临?就危感系么征灭来害教;?;绝学,育,习使。我比学们它生可们理以更解做高养些等成什的良么两好。类卫动生物习。惯根的据重学要生意回义答;的3.情通况过,了给解出蚯课蚓课与题人。类回的答关:系线,形进动行物生和命环科节学动价环值节观动的物教一育、。根教据学蛔重虫点病1.引蛔出虫蛔适虫于这寄种生典生型活的线结形构动和物生。理二特、点设;置2.问蚯题蚓让的学生生活思习考性预和习适。于穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。

浙江省嘉兴市2013届高三数学第二次模拟考试试题(嘉兴二模)理 新人教A版

浙江省嘉兴市2013届高三数学第二次模拟考试试题(嘉兴二模)理 新人教A版

嘉兴市2013年高三教学测试(二)理科数学 试题卷注意事项:1.本科考试分试题卷和答题卷,考生须在答题卷上作答.答题前,请在答题卷的规定处填写学校、姓名、考号、科目等指定内容,并正确涂黑相关标记;2.本试题卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,全卷满分150分,考试时间120分钟.参考公式:如果事件A ,B 互斥,那么 )()()(B P A P B A P +=+.如果事件A ,B 相互独立,那么 )()()(B P A P B A P ⋅=⋅.如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率),,2,1,0()1()(n k p p C k P k n kk n n =-=- .球的表面积公式 24R S π=,其中R 表示球的半径. 球的体积公式334R V π=, 其中R 表示球的半径.棱柱的体积公式 Sh V =,其中S 表示棱柱的底面积,h 表示棱柱的高.棱锥的体积公式Sh V 31=,其中S 表示棱锥的底面积,h 表示棱锥的高.棱台的体积公式)(312211S S S S h V ++=,其中21,S S 分别表示棱台的上、下底面积,h 表示棱台的高.第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合}3,2,1{=A ,}9,3,1{=B ,A x ∈,且B x ∉,则=x A .1B .2C .3D .92.在复平面内,复数i 1i31-+对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.若10<<a ,x x a a log )1(log <-,则A .10<<xB .21<xC .210<<x D .121<<x4.函数x x y 2sin 2cos +=,R ∈x 的值域是 A .]1,0[B .]1,21[ C .]2,1[-D .]2,0[5.在5)1)(21(x x +-的展开式中,3x 的系数是A .20B .20-C .10D .10- 6.某几何体的三视图如图所示,其中三角形的三边长与圆的直径均为2, 则该几何体的体积为 A .π334+B .π33832+C .π3332+D .π3334+7.在平面直角坐标系中,不等式2|2|≤≤-x y 表示的平面区域的面积是 A .24 B .4 C .22 D .28.若b a ,表示直线,α表示平面,且α⊂b ,则“b a //”是“α//a ”的 A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件正视图 侧视图俯视图 (第6题)9.设m 是平面α内的一条定直线,P 是平面α外的一个定点,动直线n 经过点P 且与m 成︒30角,则直线n 与平面α的交点Q 的轨迹是A .圆B .椭圆C .双曲线D .抛物线10.设}{n a 是有穷数列,且项数2≥n .定义一个变换η:将数列n a a a ,,,21 ,变成143,,,+n a a a ,其中211a a a n ⋅=+是变换所产生的一项.从数列20132,,3,2,1 开始,反复实施变换η,直到只剩下一项而不能变换为止.则变换所产生的所有项的乘积为 A .20132013)!2( B .20122013)!2( C .2012)!2013( D .)!!2(2013非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分. 11.设数列}{n a 满足11=a ,n n a a 31=+,则=5a ▲12.若某程序框图如图所示,则运行结果为 ▲ . 13.将函数x y sin =的图象先向左平移1个单位, 再横坐标伸长为原来的2倍,则所得图象对应 的函数解析式为 ▲ .14.从点A 到点B 的路径如图所示,则 不同的最短路径共有 ▲ 条.15.设△ABC 的三边长分别为c b a ,,则=++222||||||G C G B G A ▲ .16.设R ,,∈c b a ,有下列命题:①若0>a ,则b ax x f +=)(在R 上是单调函数; ②若b ax x f +=)(在R 上是单调函数,则0>a ;③若042<-ac b ,则 03≠++c ab a ; ④若03≠++c ab a ,则042<-ac b .其中,真命题的序号是 ▲ . 17.已知点)0,3(-A 和圆O :922=+y x ,AB 是圆O 的直径,M 和N 是AB 的三等分点,(第12题)P (异于B A ,)是圆O 上的动点,AB PD ⊥于D ,)0(>=λλED P E ,直线PA 与BE 交于C ,则当=λ ▲ 时,||||CN CM +为定值.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤. 18.(本题满分14分)在△ABC 中,角C B A ,,所对的边分别为c b a ,,,满足C A BA b c a sin sin sin sin --=+. (Ⅰ)求角C ;(Ⅱ)求c ba +的取值范围.19.(本题满分14分)一个袋中装有大小相同的黑球和白球共9个,从中任取3个球,记随机变量X 为取出3球中白球的个数,已知215)3(==X P . (Ⅰ)求袋中白球的个数;(Ⅱ)求随机变量X 的分布列及其数学期望.20.(本题满分15分)如图,在△ABC 中,︒=∠90C ,a BC AC ==,点P 在AB 上,BC PE //交AC 于E ,AC PF //交BC 于F .沿PE 将△APE 翻折成△PE A ',使平面⊥PE A '平面ABC ;沿PF将△BPF 翻折成△PF B ',使平面⊥PF B '平面ABC . (Ⅰ)求证://'C B 平面PE A '.(Ⅱ)设λ=PB AP,当λ为何值时,二面角P B A C --''的大小为︒60?B F P AFC 'B 'A E(第20题)21.(本题满分15分)如图,已知抛物线py x C 2:21=的焦点在抛物线121:22+=x y C 上,点P 是抛物线1C 上的动点.(Ⅰ)求抛物线1C 的方程及其准线方程;(Ⅱ)过点P 作抛物线2C 的两条切线,M 、N 分别为两个切点,设点P 到直线MN 的距离为d ,求d 的最小值.22.(本题满分14分)若)(0x f 是函数)(x f 在点0x 附近的某个局部范围内的最大(小)值,则称)(0x f 是函数)(x f 的一个极值,0x 为极值点.已知R ∈a ,函数)1(ln )(--=x a x x f .(Ⅰ)若11-=e a ,求函数|)(|xf y =的极值点;(Ⅱ)若不等式e xea a e ax x f )21()(22-++-≤恒成立,求a 的取值范围.(e 为自然对数的底数)(第21题)2013年高三教学测试(二) 理科数学 参考答案一、选择题(本大题共10小题,每题5分,共50分) 1.B ; 2.B ; 3.C ; 4.A ; 5.D ; 6.A ; 7.B ; 8.D ; 9.C ; 10.A .第9题提示:动直线n 的轨迹是以点P 为顶点、以平行于m 的直线为轴的两个圆锥面,而点Q 的轨迹就是这两个圆锥面与平面α的交线.第10题提示:数列20132,,3,2,1 共有20132项,它们的乘积为!22013.经过20122次变换,产生了有20122项的一个新数列,它们的乘积也为!22013.对新数列进行同样的变换,直至最后只剩下一个数,它也是!22013,变换终止.在变换过程中产生的所有的项,可分为2013组,每组的项数依次为01201120122,2,,2,2 ,乘积均为!22013,故答案为20132013)!2(.二、填空题(本大题共7小题,每题4分,共28分)11.81;12.5; 13.)121sin(+=x y ;14.22;15.3222c b a ++;16.①③;17.81.第17题提示:设),(00y x P ,则)11,(00y x E λ+,)3(3:00++=x x y y PA …①)3(311:00--+=x x y y BE λ…② 由①②得)9()9)(1(220202--+=x x y y λ,将20209x y -=代入,得119922=++λy x .由1199=+-λ,得到81=λ. 三、解答题(本大题共5小题,第18、19、22题各14分,20、21题各15分,共72分)18.(本题满分14分)在△ABC 中,角C B A ,,所对的边分别为c b a ,,,满足C A BA bc a sin sin sin sin --=+. (Ⅰ)求角C ;(Ⅱ)求c ba +的取值范围.解:(Ⅰ)C A B A b c a sin sin sin sin --=+c a ba --=,化简得222c ab b a =-+, …4分所以212cos 222=-+=ab c b a C ,3π=C . …7分(Ⅱ)C B A c b a sin sin sin +=+)]32sin([sin 32A A -+=π)6sin(2π+=A .…11分因为)32,0(π∈A ,)65,6(6πππ∈+A ,所以]1,21()6sin(∈+πA .故,c ba +的取值范围是]2,1(.…14分19.(本题满分14分)一个袋中装有大小相同的黑球和白球共9个,从中任取3个球,记随机变量X 为取出3球中白球的个数,已知215)3(==X P . (Ⅰ)求袋中白球的个数;(Ⅱ)求随机变量X 的分布列及其数学期望.解:(Ⅰ)设袋中有白球n 个,则215)3(393===C C X P n , …4分即215789)2)(1(=⨯⨯--n n n ,解得6=n . …7分 (Ⅱ)随机变量X 的分布列如下:…11分221532815214318410)(=⨯+⨯+⨯+⨯=X E .…14分20.(本题满分15分)如图,在△ABC 中,︒=∠90C ,a BC AC ==,点P 在AB 上,BC PE //交AC 于E ,AC PF //交BC 于F .沿PE 将△APE 翻折成△PE A ',使平面⊥PE A '平面ABC ;沿PF将△BPF 翻折成△PF B ',使平面⊥PF B '平面ABC .(Ⅰ)求证://'C B 平面PE A '.(Ⅱ)设λ=PB AP,当λ为何值时,二面角P B A C --''的大小为︒60?解:(Ⅰ)因为PE A ',所以//FC 平面PE A '. …2分因为平面⊥PE A '平面ABC ,且PE E A ⊥',所以⊥E A '平面ABC . 同理,⊥F B '平面ABC ,所以E A F B '//',从而//'F B 平面PE A '. …4分 所以平面//'CF B 平面PE A ',从而//'C B 平面PE A '.…6分(Ⅱ)以C 为原点,CB 所在直线为x 轴,CA 所在直线为y 轴,过C 且垂直于平面ABC 的直线为z 轴,建立空间直角坐标系,如图.…7分则)0,0,0(C ,)1,1,0('++λλλa a A ,)1,0,1('++λλλa a B ,)0,1,1(++λλλaa P .)1,1,0('++=λλλa a CA ,)1)1(,1,1(''+-+-+=λλλλλaa a B A , )1,1,0('+-+=λλaa P B .平面''B CA 的一个法向量)1,,1(-=λλm , …9分 平面''B PA 的一个法向量)1,1,1(=n .…11分由2160cos 311|11|||||22=︒=⋅++-+=λλλλn m n m , …13分化简得0988122=+--+λλλλ,解得2537±=λ.…15分(第20题)B F P A FC 'B 'A E(第20题)21.(本题满分15分)如图,已知抛物线py x C 2:21=的焦点在抛物线121:22+=x y C 上,点P 是抛物线1C 上的动点.(Ⅰ)求抛物线1C 的方程及其准线方程;(Ⅱ)过点P 作抛物线2C 的两条切线,M 、N 分别为两个切点,设点P 到直线MN 的距离为d ,求d 的最小值.解:(Ⅰ)1C 的焦点为)2,0(pF ,…2分所以102+=p,2=p .…4分 故1C 的方程为y x 42=,其准线方程为1-=y .…6分(Ⅱ)设),2(2t t P ,)121,(211+x x M ,)121,(222+x x N ,则PM 的方程:)()121(1121x x x x y -=+-,所以12122112+-=x tx t ,即02242121=-+-t tx x .同理,PN :121222+-=x x x y ,02242222=-+-t tx x .…8分MN 的方程:)()121(121)121(121222121x x x x x x x y --+-+=+-,即))((21)121(12121x x x x x y -+=+-.由⎪⎩⎪⎨⎧=-+-=-+-0224022422222121t tx x t tx x ,得t x x 421=+,21211221t tx x -=-.…10分 所以直线MN 的方程为222t tx y -+=.…12分于是222222241)1(241|24|t t t t t t d ++=+-+-=.(第21题)令)1(412≥+=s t s ,则366216921=+≥++=s s d (当3=s 时取等号).所以,d 的最小值为3. …15分22.(本题满分14分)若)(0x f 是函数)(x f 在点0x 附近的某个局部范围内的最大(小)值,则称)(0x f 是函数)(x f 的一个极值,0x 为极值点.已知R ∈a ,函数)1(ln )(--=x a x x f .(Ⅰ)若11-=e a ,求函数|)(|xf y =的极值点;(Ⅱ)若不等式e xea a e ax x f )21()(22-++-≤恒成立,求a 的取值范围.(e 为自然对数的底数)解:(Ⅰ)若11-=e a ,则11ln )(---=e x x xf ,111)('--=e x x f .当)1,0(-∈e x 时,0)('>x f ,)(x f 单调递增; 当),1(+∞-∈e x 时,0)('<x f ,)(x f 单调递减. …2分又因为0)1(=f ,0)(=e f ,所以当)1,0(∈x 时,0)(<x f ;当)1,1(-∈e x 时,0)(>x f ; 当),1(e e x -∈时,0)(>x f ;当),(+∞∈e x 时,0)(<x f . …4分 故|)(|x f y =的极小值点为1和e ,极大值点为1-e .…6分(Ⅱ)不等式e xea a e ax x f )21()(22-++-≤,整理为0)21(ln 22≤++-+a e xa e ax x .…(*) 设a e xa e ax x x g ++-+=)21(ln )(22,则e ae ax x x g 2121)('2+-+=(0>x )x e e ex a ax 222)21(2++-=x e e ax e x 2)2)((--=. …8分①当0≤a 时,02<-e ax ,又0>x ,所以,当),0(e x ∈时,0)('>x g ,)(x g 递增;当),(+∞∈e x 时,0)('<x g ,)(x g 递减.从而0)()(max ==e g x g .故,0)(≤x g 恒成立.…11分 ②当0>a 时,x e e ax e x x g 2)2)(()('--=)12)((2ex e ae x --=. 令2212e a ex e a=-,解得a e x =1,则当1x x >时,2212e a ex e a >-; 再令1)(2=-e a e x ,解得e a e x +=22,则当2x x >时,1)(2>-e a e x . 取),max(210x x x =,则当0x x >时,1)('>x g . 所以,当),(0+∞∈x x 时,00)()(x x x g x g ->-,即)()(00x g x x x g +->. 这与“0)(≤x g 恒成立”矛盾.综上所述,0≤a . …14分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省嘉兴市2013年中考数学试卷
一、选择题(本大题有10小题,每小题4分,共40分.请选出各小题中唯一的正确选项,不选、多选、错选,均不得分) 1.(4分)(2013•嘉兴)﹣2的相反数是(

A . 2
B . ﹣2
C .
D .
2.(4分)(2013•嘉兴)如图,由三个小立方块搭成的俯视图是( )
A .
B .
C .
D .
3.(4分)(2013•嘉兴)据统计,1959年南湖革命纪念馆成立以来,约有2500万人次参观了南湖红船(中共一大会址).数2500万用科学记数法表示为( )
A . 2.5×108
B . 2.5×107
C . 2.5×106
D . 25×106
4.(4分)(2013•嘉兴)在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m )分别为:1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是( ) A . 1.71 B . 1.85 C . 1.90 D . 2.31 5.(4分)(2013•嘉兴)下列运算正确的是( )
A . x 2+x 3=x 5
B .
2x 2﹣x 2=1 C . x 2•x 3=x 6
D . x 6÷x 3=x 3
6.(4分)(2013•嘉兴)如图,某厂生产横截面直径为7cm 的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为45°,则“蘑菇罐头”字样的长度为( )
A .
cm B . cm C .
cm D . 7πcm
7.(4分)(2013•嘉兴)下列说法:
①要了解一批灯泡的使用寿命,应采用普查的方式;
②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;
③甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,=0.2,则甲组数据比
乙组数据稳定;
④“掷一枚硬币,正面朝上”是必然事件.
正确说法的序号是()
A.①B.②C.③D.④
8.(4分)(2013•嘉兴)若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx的对称轴为()
A.直线x=1 B.直线x=﹣2 C.直线x=﹣1 D.直线x=﹣4
9.(4分)(2013•嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()
A.2B.8C.2D.2
10.(4分)(2013•舟山)对于点A(x1,y1),B(x2,y2),定义一种运算:A⊕B=(x1+x2)+(y1+y2).例如,A(﹣5,4),B(2,﹣3),A⊕B=(﹣5+2)+(4﹣3)=﹣2.若互不重合的四点C,D,E,F,满足C⊕D=D⊕E=E⊕F=F⊕D,则C,D,E,F四点()
A.在同一条直线上B.在同一条抛物线上
C.在同一反比例函数图象上D.是同一个正方形的四个顶点
二、填空题(本大题有6小题,每小题5分,共30分)
11.(5分)(2013•嘉兴)二次根式中,x的取值范围是.
12.(5分)(2013•嘉兴)一个布袋中装有3个红球和4个白球,这些除颜色外其它都相同.从袋子中随机摸出一个球,这个球是白球的概率为.
13.(5分)(2010•鞍山)因式分解:ab2﹣a=.
14.(5分)(2013•嘉兴)在同一平面内,已知线段AO=2,⊙A的半径为1,将⊙A绕点O按逆时针方向旋转60°得到的像为⊙B,则⊙A与⊙B的位置关系为.
15.(5分)(2013•嘉兴)杭州到北京的铁路长1487千米.火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为.
16.(5分)(2013•嘉兴)如图,正方形ABCD的边长为3,点E,F分别在边AB,BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P与正方形的边碰撞的次数为,小球P所经过的路程为.
三、解答题(本大题有8小题,第17~20题每题8分,第21题每题10分,第22、23题每题12分,第24题14分,共80分)
17.(8分)(2013•嘉兴)(1)计算:|﹣4|﹣+(﹣2)0;
(2)化简:a(b+1)﹣ab﹣1.
18.(8分)(2013•嘉兴)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;
(2)当∠AEB=50°,求∠EBC的度数?
19.(8分)(2013•嘉兴)如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.
(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积?
20.(8分)(2013•嘉兴)为了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成).请根据图中信息,回答下列问题:
(1)校团委随机调查了多少学生?请你补全条形统计图;
(2)表示“50元”的扇形的圆心角是多少度?补调查的学生每人一周零花钱数额的中位数是多少元?
(3)四川雅安地震后,全校1000名学生每人自发地捐出一周零花钱的一半,以支援灾区建设.请估算全校学生共捐款多少元?
21.(10分)(2013•舟山)某学校的校门是伸缩门(如图1),伸缩门中的每一行菱形有20个,每个菱形边长为30厘米.校门关闭时,每个菱形的锐角度数为60°(如图2);校门打开时,每个菱形的锐角度数从60°缩小为10°(如图3).问:校门打开了多少米?(结果精确到1米,参考数据:sin5°≈0.0872,cos5°≈0.9962,sin10°≈0.1736,cos10°≈0.9848).
22.(12分)(2013•嘉兴)小明在做课本“目标与评定”中的一道题:如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?小明的做法是:如图2,画PC∥a,量出直线b与PC的夹角度数,即直线a,b所成角的度数.
(1)请写出这种做法的理由;
(2)小明在此基础上又进行了如下操作和探究(如图3):①以P为圆心,任意长为半径画圆弧,分别交直线b,PC于点A,D;②连结AD并延长交直线a于点B,请写出图3中所有与∠PAB相等的角,并说明理由;
(3)请在图3画板内作出“直线a,b所成的跑到画板外面去的角”的平分线(画板内的部分),只要求作出图形,并保留作图痕迹.
23.(12分)(2013•嘉兴)某镇水库的可用水量为12000立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.
(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?
(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?
24.(14分)(2013•嘉兴)如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m 的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.
(1)当m=2时,求点B的坐标;
(2)求DE的长?
(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?。

相关文档
最新文档