第10章 辐射换热

合集下载

传热学第五版完整版答案

传热学第五版完整版答案

1.冰雹落地后,即慢慢融化,试分析一下,它融化所需的热量是由哪些途径得到的?答:冰雹融化所需热量主要由三种途径得到:a 、地面向冰雹导热所得热量;b 、冰雹与周围的空气对流换热所得到的热量;c 、冰雹周围的物体对冰雹辐射所得的热量。

2.秋天地上草叶在夜间向外界放出热量,温度降低,叶面有露珠生成,请分析这部分热量是通过什么途径放出的?放到哪里去了?到了白天,叶面的露水又会慢慢蒸发掉,试分析蒸发所需的热量又是通过哪些途径获得的?答:通过对流换热,草叶把热量散发到空气中;通过辐射,草叶把热量散发到周围的物体上。

白天,通过辐射,太阳和草叶周围的物体把热量传给露水;通过对流换热,空气把热量传给露水。

4.现在冬季室内供暖可以采用多种方法。

就你所知试分析每一种供暖方法为人们提供热量的主要传热方式是什么?填写在各箭头上。

答:暖气片内的蒸汽或热水对流换热暖气片内壁导热暖气片外壁对流换热和辐射室内空气对流换热和辐射人体;暖气片外壁辐射墙壁辐射人体电热暖气片:电加热后的油对流换热暖气片内壁导热暖气片外壁对流换热和辐射室内空气对流换热和辐射人体红外电热器:红外电热元件辐射人体;红外电热元件辐射墙壁辐射人体电热暖机:电加热器对流换热和辐射加热风对流换热和辐射人体冷暖两用空调机(供热时):加热风对流换热和辐射人体太阳照射:阳光辐射人体5.自然界和日常生活中存在大量传热现象,如加热、冷却、冷凝、沸腾、升华、凝固、融熔等,试各举一例说明这些现象中热量的传递方式?答:加热:用炭火对锅进行加热——辐射换热冷却:烙铁在水中冷却——对流换热和辐射换热凝固:冬天湖水结冰——对流换热和辐射换热沸腾:水在容器中沸腾——对流换热和辐射换热升华:结冰的衣物变干——对流换热和辐射换热冷凝:制冷剂在冷凝器中冷凝——对流换热和导热融熔:冰在空气中熔化——对流换热和辐射换热5.夏季在维持20℃的室内,穿单衣感到舒服,而冬季在保持同样温度的室内却必须穿绒衣,试从传热的观点分析其原因?冬季挂上窗帘布后顿觉暖和,原因又何在?答:夏季室内温度低,室外温度高,室外物体向室内辐射热量,故在20℃的环境中穿单衣感到舒服;而冬季室外温度低于室内,室内向室外辐射散热,所以需要穿绒衣。

作业-给排水设备工艺(黄廷林 主编) (课后答案)

作业-给排水设备工艺(黄廷林 主编) (课后答案)

第一章水工艺设备常用材料1. 金属材料的基本性能包括哪几个方面的内容?你认为水工艺设备对金属材料的哪些性能要求更高?怎样才能满足这些要求?答:使用性能:1 化学性能:抗氧化性和耐腐蚀性。

2 物理性能:密度,熔点,热膨胀系数,导热性以及弹性模量等。

3 机械性能:弹性,塑性,强度和韧性。

工艺性能:可焊性,可锻性,切削加工性,成型工艺性,热处理性能。

我觉得水工艺设备对金属材料的强度,刚度和抗腐蚀性的性能要求更高。

按照实际的工程需要,通过不同材料间的比较,从中选出较优的材料。

2. 影响钢材性能的因素主要有哪些?答:碳是决定钢材的主要元素,随含碳量增加,钢的强度和硬度将不断提高,而塑性和韧性则会随之下降。

硫是一种有害元素,产生“热脆”现象。

磷也是一种有害元素,产生“冷脆”现象。

锰是一种有益元素,作为脱氧剂和合金元素,减轻硫的有害作用,提高钢的强度和硬度。

硅是一种有益元素,作为脱氧剂和合金元素,提高强度,硬度,弹性,降低塑性和韧性。

氧,氮:未除尽的氧氮大部分以化合物形式存在,降低强度,冷弯性能和焊接性能。

氧增加热脆,氮增加冷脆。

钛,钒,铌:钢的强脱氧剂和合金元素,改善韧性,提高强度。

3. 不锈钢有哪些类型?在酸性介质、碱性介质及中性水溶液中是否可以选用同一种不锈钢?简述理由。

答:按显微组织为马氏体不锈钢,铁素体不锈钢和奥氏体不锈钢。

按化学成分为铬不锈钢和铬镍不锈钢。

不可以,因为不同介质溶液中PH值不同,对不锈钢的化学反应都不一样,所以不能用同一种不锈钢,应该有所针对的选择。

4、高分子材料主要有哪些类型?耐蚀有机高分子有哪些类型?各有什么特点?答:按照化学组分分:碳链有机聚合物、杂链有机聚合物、元素有机聚合物、无机聚合物。

常用于水工程及水工艺设备中的高分子材料有:塑料、橡胶、纤维和胶粘剂等。

耐蚀有机高分子类型有:热塑性树脂、工程塑料类、热固性树脂等。

热塑性树脂中聚乙烯、聚丙烯的应用占主流。

工程塑料类虽然有优异的耐腐性能,但因其价格的原因,在中等的腐蚀环境中首选的仍是价廉易得、加工容易的材料。

传热学-辐射换热PPT课件

传热学-辐射换热PPT课件
传热学-辐射换热
一、热辐射与辐射换热
1、定义
辐射-辐射是物体中分子或原子受到激发而以电磁波的方式释放能量
的现象。
辐射能-辐射能是电磁波所携带的能量(或热能转变成电磁波形式的
能量)。
热辐射-物体由于热的原因(温度高于 0 K)而发射电磁波的现象。
辐射换热-物体之间通过热辐射交换热量的过程。
当系统达到热平衡时,辐射换热量为零,但热辐射仍然不断进行。
(3)不同温度下黑体的单色辐射力随波长的变化图
1) 黑体的温度一定时, 不同波长的能量不同。 并在某一波长时存在极 大值;
2) Eb 的最大值随温度 的升高向短波方向移动。
对数坐标
3) 相同波长下,温度高 时的光谱辐射力也强
4) 某一温度下曲线与横 轴之间的面积即代表 了该温度下的总辐射 力,即
=
E Eb
=
E Eb
C
T 100
4
Cb
T 100
4
C Cb
实际物体的发射率为图7-9曲线下的面积(辐射力)之比。
同一温度下黑体的辐射力最大。
(2)实际物体的辐射力E
E
Eb
Cb
T 100
4
(3)影响发射率的因素
发射率只取决于发射物本身的材料类别、表面状况和温度,而不 涉及外界条件(见教材P151表7-1)。
2、实际物体的单色发射率 对同温度、同波长
E Eb
单色发射率是曲线的纵坐标之比。
3、实际物体的发射率与单色发射率的关系
E Eb
E d
0
Eb d
Eb d
0
Eb d
图7-9
0
0
4、灰体的发射率与单色发射率的关系

辐射换热

辐射换热

F1
F2
1
1
1F 1
J1
12 F1
1
2
J2
2 F2
Q2
1
F3
Eb2
Eb1
Q1
1
Q12 Q13 Q23
13 F1
Q3
23 F2
J3
1
3
3 F3
Eb3
12.辐射换热
12.6 灰体表面间的辐射换热 三个灰体表面间的辐射换热
克西霍夫定律:稳定态传热时,汇入节点的热量之和为零。
节点1:
Eb3 = J 3 Eb3 = J 3

3 F3
0

3 F3
12.辐射换热
12.6 灰体表面间的辐射换热 三个灰体表面间的辐射换热
热网络图可以简化为 Eb1
1 1
1
1 F1
J1
12 F1
Q12 Q23
1 2
J2
2 F2
Eb2
Q1
1
1
Q2
13 F1
Q13
23 F2
统,然后通过电路
分析来确定辐射换 热量的一种方法。
J1
J2
灰表面间的 空间热阻
可以使问题简化。
12.辐射换热
12.6 灰体表面间的辐射换热 两个灰体表面间的辐射换热
两灰表面组成的封闭系统
Eb1
Q1
1
J1
1
Q12
1
J2
Q2 Eb2
1
1 F1
12 F1
2
2 F2
两灰表面间的 Q12 辐射换热量
q = E – AG= Eb –AG
1
J Eb ( 或: qF Q

《传热学辐射换热》PPT课件

《传热学辐射换热》PPT课件
对于平面和凸面: Fii 0
对于凹面:
Fii 0
31
(3) 完整性
对于有n个外表组成的封闭系统,据能量守恒可得:
Q i Q i 1 Q i 2 Q i i Q i N
Q i1Q i2 Q ii Q iN 1
Q i Q i
Q i
Q i
N
F ij F i1 F i2 F ii F iN 1

G G
所吸收的波长为的投射辐射,w/m2 波长为的投射辐射,w/m2
1G G 10
E d ,T1 ,T2 b,T2
E d 0 ,T2 b,T2
?
黑体
1
E d 0 ,T1 b,T2 T24
?
24
基尔霍夫定律 〔吸收率与辐射率之间的关系〕
1859年,Kirchhoff 用热力学方法答复了这个问题,从而提出了 Kirchhoff 定律。最简单的推导是用两块无限大平物体,参数分别为Eb, T1 以 及E, , T2,那么当系统处于热平衡时,有
QEAJA 1
因为: E Eb 所以有:QEb1AJAE1bJ
A
外表辐射 热阻
35
5.1 辐射换热热阻
〔2〕空间辐射热阻
Eb Eb
J JJ1 J1
J2 J2
1 1 A A
11 A1F12 A1F12
物体外表1辐射到外表2的辐射能为
Q 12J1A 1F 12
物体外表2辐射到外表1的辐射能为
Q 21 J2A 2F 21
右图是根据上式描绘的黑体单色辐 射力随波长和温度的关系。
m与T 的关系由Wien偏移定律给
出 m T 2 .8 9 6 1 0 3m K
到达最大单色辐射力时的波长

传热学(第10章--辐射换热)

传热学(第10章--辐射换热)

1 2
1、强化辐射换热的主要途径有两种: (1) 增加表面黑度; (2) 增加角系数。
2、削弱辐射换热的主要途径有三种: (1) 降低表面黑度; (2) 降低角系数; (3) 加入遮热板。
遮热板:在两辐射换热面之间放置的一黑度很小 的,用于削弱辐射换热的薄板。
22
遮热原理:通过在热路中增加热阻来减少辐射换热量。
)4
式中,Cb=5.67 W/(m2K4) ,为黑体的辐射系数。
实际物体的辐射力------引入修正系数(黑度)
8
黑度ε:实际物体的辐射力与同温度下黑体辐
射力之比。
E
Eb
式中,Eb为黑体的辐射力,E为实际物体的辐射力。
f (物体本身的性质 )
实际物体的辐射力为:E
Eb
Cb
(T 100
)4
1
热辐射穿过气体层时的衰减
30
2.火焰辐射的特点
火焰中含有固体微粒 火焰辐射类似于固体辐射 可视为灰体处理
31
思考题
教材P154.思考题10-2、10-4、10-5
32
本章小结
热辐射的本质及特点; 黑度、黑体及灰体等概念; 四次方定律; 有效辐射的概念;角系数的性质; 两灰体表面间的辐射换热计算(两种特例); 辐射换热的增强与削弱
1 A1 X 1,2
A1 X1,2
A2 X 2,1
黑体间的辐射换热网络图
式中,1/A1X1,2为空间辐射热阻,其大小完全取决于物体表面间的几何 关系,而与物体表面的性质无关,故是所有物体均具有的辐射热阻。
16
三、灰体表面的有效辐射
17
有效辐射 本身辐射反射辐射
表面1的有效辐射:
J1 E1 1G1 1Eb1 (11)G1 表面1与外界的辐射换热:

第十章传热和换热器

第十章传热和换热器

tw,
q qc qr (hc hr ) tw t f
qr , tam
h tw t f
qc , hc , t f
§ 10-3 换热器的型式和基本构造
一、分类
1.按结构型式分: 1)间壁式: 冷、热流体被固体壁面隔开。
如:暖风机、冷凝器、蒸发器等。
暖风机
风冷冷凝器
2)混合式: 冷、热流体互相混合。 如:喷淋式冷却塔、蒸汽喷射器。
以管壳式换热器为例,说明方法的要点.
总传热系数可表示为:
1 k
1 ho
Rw
Rf
1 hi
do di
(a)
Rw 管壁导热热阻
R f 污垢热阻
工业换热器中的管内流体的流动一般都是处于 旺盛湍流状态,hi 与流速u的0.8次方成正比.则
two
ho A1 two t fo ho f A2 two t fo
h0A0 (tw0 t f 0 )
为肋面总效率:
A1 A2 f
A0
1
tf1 tf2
1
hi Ai Ai ho A0
则以光壁为基准的传热系数:
ki
1
1
1
hi ho
定义肋化系数: Ao Ai
1, 1
(3)根据结构,算出传热系数K。(带有假设性)
(4)由传热方程(换热面积A已定),得到 。
(5)由热平衡方程得出’(出口温度均是未知量,也 带假设性.) (6)与’的误差<5%,则满足计算要求. 否则重新假设t,重复上述步骤.
2. 传热单元数法
1)换热器的效能定义:
实际传热量 最大可能传热量
实际传热量: M1c1(t'1t"1 ) M 2c2 (t"2 t'2 )

传热学答案+第五版+章熙民(完整版)

传热学答案+第五版+章熙民(完整版)

绪论1.冰雹落体后溶化所需热量主要是由以下途径得到:Qλ——与地面的导热量fQ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。

6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。

(T T〉外内)冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。

(T T〈外内)。

挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。

7.热对流不等于对流换热,对流换热 = 热对流 + 热传导热对流为基本传热方式,对流换热为非基本传热方式8.门窗、墙壁、楼板等等。

以热传导和热对流的方式。

9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。

当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。

10.tR R Aλλ=⇒1t R R A λλ==2218.331012m --=⨯ 11.q t λσ=∆const λ=→直线const λ≠ 而为λλ=(t )时→曲线 12. iRα1R λ3R λ0R α1f t −−→ q首先通过对流换热使炉子内壁温度升高,炉子内壁通过热传导,使内壁温度生高,内壁与空气夹层通过对流换热继续传递热量,空气夹层与外壁间再通过热传导,这样使热量通过空气夹层。

(空气夹层的厚度对壁炉的保温性能有影响,影响aα的大小。

)13.已知:360mm σ=、0.61()W m K λ=•118f t=℃2187()Wh m K =•210f t =-℃22124()Wh m K =• 墙高2.8m ,宽3m求:q 、1w t 、2w t 、φ解:1211t q h h σλ∆=++=18(10)45.9210.361870.61124--=++2W m111()f w q h t t =-⇒11137.541817.5787w f q t t h =-=-=℃ 222()w f q h t t =-⇒22237.54109.7124w f q t t h =+=-+=-℃ 45.92 2.83385.73q A W φ=⨯=⨯⨯=14.已知:3H m =、0.2m σ=、2L m =、45λ=()W m K •1150w t =℃、2285w t =℃求:tR λ、R λ、q 、φ解:40.27.407104532tK R W A HL λσσλλ-====⨯⨯⨯ 30.2 4.4441045t R λσλ-===⨯2m K W •3232851501030.44.44410t KW q m R λ--∆-==⨯=⨯ 3428515010182.37.40710t t KW R λφ--∆-==⨯=⨯ 15.已知:50idmm =、 2.5l m =、85f t =℃、273()Wh mK =•、25110W q m = 求:iw t 、φ()i w f q h t h t t =∆=-⇒i w f qt t h=+ 51108515573=+=℃ 0.05 2.551102006.7i Aq d lq W φππ===⨯⨯=16.已知:150w t =℃、220w t =℃、241.2 3.96()Wc m K=•、1'200w t =℃ 求: 1.2q 、'1.2q 、 1.2q ∆解:12441.2 1.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦44227350273203.96()()139.2100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦12''441.21.2()()100100w w t t qc ⎡⎤=-⎢⎥⎢⎥⎣⎦442273200273203.96()()1690.3100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦'21.2 1.2 1.21690.3139.21551.1Wq q q m ∆=-=-=17.已知:224A m =、215000()W h mK =•、2285()Wh m K =•、145t=℃2500t =℃、'2285()Wk h mK ==•、1mm σ=、398λ=()W m K • 求:k 、φ、∆解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁 即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k • 383.5624(50045)10912.5kA t KWφ-=∆=⨯⨯-⨯=若k ≈2h '100k k k -∆=⨯%8583.56 1.7283.56-==% 因为:1211h h ,21h σλ即:水侧对流换热热阻与管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。

传热学第九章辐射基本定律

传热学第九章辐射基本定律

绝对黑体(黑体) 吸收比 α=1 → 绝对黑体(黑体) 镜体(对于漫反射称为白体) 反射比 ρ=1 → 镜体(对于漫反射称为白体) 穿透比 τ=1 绝对透明体(透明体) → 绝对透明体(透明体)
10
2、黑体辐射 、
黑体的基本概念 辐射力和 辐射力和光谱辐射力 普朗克定律 维恩位移定律 斯蒂芬斯蒂芬-波尔兹曼定律 黑体辐射函数 兰贝特定律 小结
物体的黑度:ε=f(物质种类,表面温度,表面状况) 物体的黑度:ε=f(物质种类,表面温度,表面状况)
28
2)吸收热辐射的性质 2)吸收热辐射的性质

E λ (T2 )
αλ
T1
λ
投入辐射与吸收辐射的关系
λ
29
光谱吸收比:物体对某一特定波长投入辐射能的吸收份额 份额。 光谱吸收比:物体对某一特定波长投入辐射能的吸收份额。 吸收比:物体对投入辐射在全波长范围内的吸收份额 吸收比: α=f(自身表面性质与温度T 辐射源性质与温度T α=f(自身表面性质与温度T1,辐射源性质与温度T2)
24
黑度: ① 黑度:
实际物体的辐射力与同温 度下黑体辐射力的比值 称为实际物体的黑度, 称为实际物体的黑度, 又称发射率 记为ε。 发射率, 又称发射率,记为 。
E ∫0 Eλ dλ ∫0 ελ Ebλ dλ ε= = = 4 Eb σT σT 4
∞ ∞
⇒ E = εEb = εσT 4
对于实际物体来说,黑度仍是温度的函数, 对于实际物体来说,黑度仍是温度的函数,即实 际物体的辐射力不满足四次方关系。 际物体的辐射力不满足四次方关系。
8
t>0K 内 的物体 能
热辐射传播速度c、波长 和频率 之间的关系c=f·λ 和频率f之间的关系 热辐射传播速度 、波长λ和频率 之间的关系 热辐射的主要波谱: 热辐射的主要波谱:

传热学-第十章

传热学-第十章
24
3. 其它复杂布置时换热器平均温差计算
交叉流及其它形式(简单顺流、逆流除外)换热器的 平均温差算法比较麻烦,有人已经作出了表格,用时可以 直接查表。查法如下: (1). 先按逆ห้องสมุดไป่ตู้方式算出对数平均温差(tm)c;
(2). 将(tm)c乘以一个修正系数,这样问题就归结为求不 同情况下的。
=f (P,R) 而P,R的定义见书P327-329。由图即可查得。注意书上 t’ 和t” 与图的对应关系,不再是我们前面所说的热、冷 流体。 25

l π (70 - 40) do 1 1 ln 2 0.15 0.0051 10 d o
9
计算结果用图线表示于图中。
讨论: 散热量先增后减, 有最大值 最大值的求法
1 1 π l (ti to ) 2 d 2d o ho d o 0 2 dd o 1 do 1 1 ln hi d i 2 d i ho d o
相应的,以光侧表面面积Ai为基准的传热系数为:
kf ' 1 Ai hi hoo Ao 1 1 1 hi hooβ 1
肋化系数 β=Ao/Ai,即加肋后的总表面积与该侧未加肋 时的表面积之比。 一般β>>1,ηo<1, 但ηoβ>1。 hoηoβ----当量对流换热系数,即把肋部分折算到对流中。
若以管内侧面积为基准,则传热系数为:
1 ki do 1 di 1 di ln hi 2 di ho d o
6
三、 通过肋壁的传热
下图是一侧有肋的平壁。在稳态条件下,通过传热过程 各环节的热流量 是一样的,于是可以列出以下方程式:
hi Ai (tfi t wi )

《传热学》2版 辅导资料 思考题参考答案

《传热学》2版 辅导资料 思考题参考答案
2.参见附图,圆筒壁内侧t1<t2,请判断壁内温度分布应该是两图中哪一个?并说明理由,设导热系数等于常数。
回答:导热系数等于常数的一维导热方程是(3-1-15),于是温度梯度可以写作(dt/dr) =c/r。可见,温度梯度与径向坐标成反比,即半径小的圆筒壁内侧的温度梯度一定大于外侧的温度梯度。所以附图(b)是正确的。
回答:非稳态导热问题遵循两个基本规律,一个是能量守恒定律,一个是傅里叶定律。在对物体内的任意微元体积做热平衡分析时,切记傅里叶定律中的热流密度和温度梯度均代表瞬时值,傅里叶定律的规律仍成立。
3.应用傅里叶定律时有哪些限制?
回答:限制条件是:(1)纯导热物体(非纯导热物体以当量或表观导热系数描述之);(2)各向同性(各向异性物体须在导热主轴坐标系中运用傅里叶定律);(3)非超短时间、超大热流密度或超低温度的导热问题。
3.凸状轴呈对称图形,如果侧面绝热且导热系数为常数,其一维稳态温度分布呈什么?
回答:在一维、稳态、无内热源且常物性条件下,热流量为常数,即A(x)dt/dx=常数。这表明导热的截面积A与温度梯度成反比。只有在等截面情况下,温度梯度才是常量。
回答:导热系数随温度变化时,函数关系一般是写作=0(1+b t)的形式。但是一般来说0却并不代表0℃时该材料的导热系数。参见附图,这是因为0实际上是该式适用温度区间内近似线性关系的延长线与纵轴的交点。它一般不会正好与=f(t)曲线在0℃时的数值相等。
写为=0+bt时,0未变,而b相当于原式中的0b。
8.已知某个确定的热流场q=f(x, y),能否由此唯一地确定物体的温度场?或者还需要补充什么条件?反过来,从温度场能否唯一地确定热流场?
回答:导热问题中若全部边界条件都是第二类(包括绝热),将无法唯一地得到温度场的确定解。而对给定的温度场,却可以根据傅里叶定律唯一地确定热流场。因为一个物体若均匀地提升相同温度,其热流场将不会发生任何改变。即一个热流场可以对应无穷多个温度场。所以,导热问题必须至少具有一个温度参考点,才能唯一地确定其解。

传输原理辐射换热

传输原理辐射换热
工业高温范围内黑体辐射的最大单色辐射力对应 的波长位于红外线区段,太阳表面温度时则位于可 见光区段。 可利用该定律粗略估算物体的温度

可据钢坯的颜色来判断其温度,钢坯在加热过程中当: 无变化:低于500℃ 暗红:600℃左右 鲜红:800--850℃左右 桔黄:1000℃左右 白炽:1300℃左右
5. 兰贝特定律-黑体辐射能在空间的分布
(1)定向辐射强度 (辐射强度) ——单位时间,单位立体角内,与发射方向垂直的单位面积 上辐射的能量。
Ip
dQ p dF cos d
W/m 2 Sr
Qp-任意p方向(与法线夹角) 上辐射的热流率
Fs 2 r
-立体角(球面上表 面积与球半径平方之 比)。
(穿透率)
令 Q
Q
(吸收率)

(反射率)
则α+ρ+τ=1 固体、液体,1μm~1mm之间可以完成吸收,实际厚度一般 远大于此,可以认为固液体不能透过热辐射,即α + ρ = 1
二、黑体辐射
1. 黑体 吸收率α=1的物体叫绝对黑体,简称黑体。 反射率ρ=1的物体叫镜体。(漫反射,绝对白体) 穿透率τ=1的物体叫透明体。 2. 辐射力 (E) 单位时间内,单位表面积向表面半球空间所有方向发射 的全部波长的总辐射能。(W/m2)
2. 实际物体的吸收特性
实际物体的吸收率取决于辐射方向、波长、物质种类、 表面温度及表面状况等。 定义:单色吸收率 ——对某一波长辐射能的吸收率。 P.226 图10-9(玻璃吸收率-温室效应、激光加工)
3. 灰体
定义:单色吸收率和单色黑度与波长无关的物体
即:= =const


2 0

传热学-第十章

传热学-第十章
(c) 板翅式交叉流换热器
把单位体积内所包含的换热面积作为衡量换热器紧凑程度的 衡量指标,一般将大于700m2/m3的换热器称为紧凑式换热器, 板翅式换热器多属于紧凑式,因此,日益受到重视。
(4) 板式换热器:由一组几何结构相同的平行薄平板叠加所 组成,冷热流体间隔地在每个通道中流动,其特点是拆卸清 洗方便,故适用于含有易结垢物的流体。
1 通过平壁的传热
k K的计算1
1

1
公式?h1 h2
说明: (1) h1和h2的计算;(2)如果计及辐射时对流 换热系数应该采用等效换热系数(总表面传热系数)
单相对流:ht hc hr
(8-24)
膜态沸腾:ht43hc43hr43 (6-23)
hr
(T14 T24)
T1 T2
由于平壁两侧的面积是相等的,因此传热系数的数值无论 对哪一侧来说都是相等的。
2 通过圆管的传热
园管内外侧表面积不等,所以对内侧
而言和对外侧而言的传热系数在数值上不同的。先分析管长为L
的一段园管:见图(9-1)
传热过程包括管内流体到管内侧壁面, 管内侧壁面到管外侧壁面,管外侧壁面 到管外流体三个环节。
)dAx
t exp(kA)-1
(1)
k A
lntx t
kAx
Ax A
lnt kA
t
(2)
t exp(kA)
(3)
t
(1)+(2)+(3)
在固体微元面dA内,两种流体的换热量为:
d kd A t
对于热流体和冷流体:
dqmch hdth dthqm 1ch hd
dqmcccdtc dtcqm 1cccd

传热学第十章辐射换热计算

传热学第十章辐射换热计算


cos 1 cos 2
A1 A 2
r
2
dA1 dA2
这就是角系数计算的一般表达式,对于规则形状和位置,可 借助于线算图(教材图9-7,8,9)进行计算。部分二维和三
维结构角系数计算式见教材表9-1,2。
7
3)角系数的性质
① 相对性:
Ai X i , j A j X
j ,i
② 完整性:对封闭系统的n个表面,
J1 E1 1 1 G1 1 Eb1 1 1 G1
12
灰体表面的辐射热流
由灰体表面特性可得投入辐射表达式:
1 1 G1
J1 1 Eb1 1 1
灰体表面净换热:
A1 J1 G1 Eb1 J1 1 1
1 A1
结果只与几何因素有关,所以对于非黑体和非热 平衡也是适用的。
1, 2 E b1 E b 2 A1 X 1, 2 E b1 E b 2 1 A1 X 1, 2
空间辐射热阻
黑体间辐射换热计算关键参数——角系数
4
2)角系数的一般表达式和线算图 假设:物体为漫射(漫辐射,漫反射)表面——服从兰 贝特定律;表面性质(温度、黑度、吸收比)均匀 。
Eb 3 J 3 1 3 J2 J3 1 A2 X 2,3 J1 J 3 1 A1 X 1,3 0
J3
1 3
3 A3
Eb3
3 A3
其它类推。
19
④ 具有重辐射面的封闭腔辐射换热(与串并联电路 解法类似)
1
E b1
1 1
J1
X 1 , 2 A1
J2
1 2
内包物体(内1外2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

角系数的值永远小于1。
.
角系数
一旦两固体表面的表面积和相对位置确定了,它们的 角系数数值也就确定了。
表14-1 几种特殊情况的X值与C1,2的计算式
α1,即ρτ0,物体能吸收全部的辐射能。
材料的性质及其表面粗糙度对吸收率有重大影响。一般来讲,物体
的表面越粗糙,吸收率就越大。
• 白体(镜体)
如磨光的金属表面
如电影院内壁
ρ1,即ατ0,投射到物体上的辐射能被全部反射。
.
• 透热体
如绝对干燥空气
τ1,即αρ0,投射到物体上的辐射能被全部透过。
一般来讲,固体和液体都是不透热体。气体反射率为0。
4.灰体
工程中为简化辐射换热计算而引入
α<1,且吸收率不随波长而改变(α为常数)的物体。
绝大多数的工程材料在热辐射范围内均可近似为 灰体处理。
.
对于大多数的固体和液体:0, 1
对于不含颗粒的气体: 0, 1
对于黑体:
1
镜体或白体:
1
透明体:
1
.
§11.2 热辐射的基本定律
一、斯蒂芬—玻尔兹曼定律
.
§10.1 热辐射的基本概念
一、热辐射的概念 二、热辐射的特点 三、辐射换热 四、热辐射的性质
.
一、热辐射的概念
◦物体以电磁波的形式传递能量的过程称为辐 射,被传递的能量称为辐射能。 ◦因热的原因激发物质内部微观粒子振动,将 热能转变成辐射能,以电磁波的形式向外辐 射的过程称为热辐射。
.
电磁波谱
.
例14-1 试计算一黑体表面温度分别为25℃及500℃时辐 射力的变化。
.
二、黑度
工程上最重要的是确定实际 物体(灰体)的辐射力
实际物体的辐射力与同温度下黑体的辐射力之比称为
实际物体的黑度(也称为物体的发射率),用表示。即
E
Eb
黑度的物理意义:
恒小于1。
它表明物体的辐射能力接近于黑体的程度。
热能
物体辐射
辐射能
物体吸热
(3)任何物体的温度只要高于0K,都可以不停地向外发射电磁波。温度愈高, 热辐
射的能力愈强。具有强烈的方向性; 辐射能与温度和波长均有关。
(4)辐射换热是物体之间相互辐射和吸收的总效果。
高温
低温
物体
物体
.
三、辐射换热
1、辐射换热:物体间靠热辐射进行的热量传递,它与单纯的热辐射不同,就 像对流和对流换热一样。 2、辐射换热的特点 A、不需要冷热物体的直接接触;即:不需要介质的存在,在真空中就可以传 递能量。 B、在辐射换热过程中伴随着能量形式的转换。 C、无论温度高低,物体都在不停地相互发射电磁波能、相互辐射能量;高温 物体辐射给低温物体的能量大于低温物体辐射给高温物体的能量;总的结果 是热由高温传到低温。
揭示了黑体的辐射能力与其温度 之间的关系
辐射力:单位时间内单位表面积向半球空间所有方向发射的全波长辐射能的 总和。单位为W/㎡
黑体辐射力Eb与黑体热力学温度的四次方成正比,又称为四次方定律,即
Eb bT 4 (W / m 2 )

Eb
Cb
T 100
4
(W
/
m2 )
b :黑体辐射常数, 其值为5.6710-8 W/(m2K4);
常用波长来描述电磁波
热射线——热辐射产生的电磁波,包括全部可见光(为0.38~ 0.76m) 、部分紫外线(<0.38m)和部分红外线(> 0.76m) 。一般可将热辐射看成红外线辐射。
.
二、热辐射的特点
直接接触,也不需要中间介质来传递热量,可以在 真空中进行热量传播。 (2)热辐射过程不仅有能量的传递,而且还伴随有能量形式的转换。
.
四、热辐射的性质
1、当热辐射投射到物体表面上时,一般会发生三 种现象,即吸收、反射和穿透 。
QQ Q Q
Q Q Q 1 QQQ
1
.
凡属黑体的一切量均 加下角标b
均为假定的理想物体
2、黑体、白体和透热体
• 黑体:能吸收投入到其表面上的所有热辐射的物体,包括所有方 向和所有波长,因此,相同温度下,黑体的吸收能力最强。
物体的黑度是物体本身的一种性质。
.
常用工程材料的黑度由实验确定,可在附录和有关手册中查出。
• 表面粗糙的物体或氧化金属表面具有较大的黑度。
• 磨光的金属表面黑度较小。
• 白体和透热体其黑度小到为零。 • 绝大部分非金属材料的黑度在0.85~0.95之间,且
与表面状况的关系不大。可近似取作0.9。
根据黑度得到实际物体辐射力的计算公式
E
Eb
Cb
T 100
4
(W
/
m2)
.
§10.3 固体壁面之间的辐射换热
一、角系数
物体间的辐射换热量除与物体的表面温度和黑度有关 外,还与物体换热表面的几何形状、大小及相对位置有关。
(a)板1辐射到板2的能量最多; (c)板1对板2的辐射能量为零; (b)则介于两种之间。
两固体表面之间的辐射换 热量与两表面间的相对位 置有很大关系
1.掌握热辐射和辐射换热的本质与特点。 2.理解有关热辐射的吸收、反射、透射、黑
体、白体、透热体及灰体等基本概念。 3.理解斯蒂芬—玻尔兹曼定律的实质。 4.了解气体辐射的特点。
.
主要内容
§10.1 热辐射的基本概念 §10.2 热辐射的基本定律 §10.3 固体壁面之间的辐射换热 §10.4 气体辐射和太阳辐射简介
T : 黑体表面的热力学温度,K。 Cb :黑体辐射系数,
其值为5.67W/(m2K4)。
.
一、斯蒂芬—玻尔兹曼定律
单色辐射力——物体在某一温度下,单位时间内单位表 面积向半球空间所有方向发射的某一波长的辐射能称为
单色辐射力。(光谱辐射力) Eλ。
E、Eλ关系:显然, E和Eλ之间具有如下关系:
E E d 0
第10章 辐射换热
.
学习导引
热辐射的传热现象与导热、热对流相比有着 本质的区别。物体之间以热辐射的形式实现热量 交换的现象称为辐射换热。本章主要介绍热辐射 的本质、特点及其有关的基本概念,阐述了热辐 射的基本定律。
.
学习要求
• 本章重点是理解热辐射的基本概念和基 本定律,通过学习应达到以下要求:
.
• 角系数
由辐射面直接落到接收面上的能量与辐射面发出的 全部能量之比称为角系数X。
1 :辐射面1发射出的能量,W; 2 :辐射面2发射出的能量,W; 1→2 :辐射面1发出的能量落到接收面2上的能量; 2→1 :辐射面2发出的能量落到接收面1上的能量。
X 1, 2
Φ1 2 Φ1
X 2,1
Φ21 Φ2
相关文档
最新文档