KMOC3063中文资料
可控硅光耦MOC3061-3062-3063英文手册
25
20
q NORMALIZED TO:
PWin 100 µs
15
10
5
0
1
2
5
10
20
50
100
PWin, LED TRIGGER PULSE WIDTH (µs)
Figure 6. LED Current Required to Trigger versus LED Pulse Width
IFT, NORMALIZED
• Simplifies Logic Control of 115/240 Vac Power
• Zero Voltage Crossing
• dv/dt of 1500 V/µs Typical, 600 V/µs Guaranteed
• To order devices that are tested and marked per VDE 0884 requirements, the suffix ”V” must be included at end of part number. VDE 0884 is a test option.
MOC3061, MOC3062, MOC3063
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
INPUT LED
Reverse Leakage Current (VR = 6 V)
ITM, ON–STATE CURRENT (mA) VINH, NORMALIZED
MOC3061, MOC3062, MOC3063
MOC3063光耦
LITE-ON TECHNOLOGY CORPORATIONProperty of Lite-on OnlyFEATURES* Isolation voltage between input and output V iso : 5,000V rms January 2010 * 6pin DIP zero-cross optoisolators triac driver output * High repetitive peak off-state voltage V DRM : Min. 600V * High critical rate of rise of off-state voltage( dv/dt : MIN. 1000V / µs ) * Dual-in-line package :MOC3063* Wide lead spacing package :MOC3063M* Surface mounting package :MOC3063S* Tape and reel packaging :MOC3063S-TA1 * Safety approvalUL / CSA / FIMKO / VDE* approved *Required “V” ordering option * RoHS complianceAPPLICATIONS* AC Motor Drives * AC Motor Starters * E.M. Contactors * Lighting Controls* Solenoid/Valve Controls * Solid State Relays * Static Power Switches * Temperature Controls深圳市腾恩科技有限公司SHENZHEN TENAND TECHNOLOGY CO.,LTDABSOLUTE MAXIMUM RATING( Ta = 25°C ) PARAMETER SYMBOL RATING UNITForward Current I F50 mAReverse Voltage V R 6 V INPUTPower Dissipation P D120 mWOff-State Output Terminal Voltage V DRM600 VPeak Repetitive Surge Current ( PW=100µs, 120pps ) I TSM 1 AOUTPUTCollector Power Dissipation P C150 mW Total Power Dissipation P tot250 mW *1 Isolation Voltage V iso5,000 Vrms Ambient Operating Temperature Range T A-40 ~ +100 °C Storage Temperature Range T stg-55 ~ +150 °C *2 Soldering Temperature T L260 °C*1. AC For 1 Minute, R.H. = 40 ~ 60%Isolation voltage shall be measured using the following method.(1) Short between anode and cathode on the primary side and between collector,emitter on the secondary side.(2) The isolation voltage tester with zero-cross circuit shall be used.(3) The waveform of applied voltage shall be a sine wave.*2. For 10 SecondsELECTRICAL - OPTICAL CHARACTERISTICS( Ta = 25°C ) PARAMETER SYMBOL MIN. TYP. MAX. UNIT CONDITIONSForward Voltage V F — 1.2 1.4 V I F=20mAINPUTReverse Current I R — 0.05 10 µA V R=6V*1 Peak Blocking Current, EitherDirectionI DRM1— — 500 nA V DRM = 600VPeak On-State Voltage, Either Direction V TM— — 3.0 V I TM=100 mA PeakOUTPUT*2 Critical rate of Rise of Off-StateVoltagedv/dt 1000 — — V/µs *3 Led Trigger Current,Current Required to Latch Output, Either Direction MOC3063 I FT— — 5 mAMain TerminalVoltage = 3VCOUPLEDHolding Current, EitherDirectionI H— 400 — µAInhibit Voltage V INH— 5 20 Volts I F=Rated I FT, MT1-MT2 Voltage above which device will not trigger.ZEROCROSSINGLeakage in Inhibited State I DRM2— — 500 µA I F = Rated I FT, Rated V DRM, Off State*1 Test voltage must be applied within dv/dt rating.*2 This is static dv/dt. Commutating dv/dt is a function of the load-driving thyristor(s) only.*3 All devices are guaranteed to trigger at an I F value less than or equal to max I FT. Therefore, recommended operating I F lies between max I FT 5mA for MOC3063 and absolute max I F (50mA)Part No. :MOC3063 SERIES Page : 6 of 8 BNS-OD-C131/A4。
简单可控硅充电机制作四款可控硅充电机电路图详解
简单可控硅充电机制作四款可控硅充电机电路图详解在现代社会中,电器的使用越来越频繁,充电器也成为了我们生活中必不可少的用品之一。
然而,不合格的充电器可能会造成安全事故,使用不当可能会损坏电器,因此对于充电器的制作,我们需要严格遵循相关的规定和标准。
可控硅充电机电路图是充电器制作中常用的一种电路,本文将会介绍四款可控硅充电机电路图的详细制作过程。
一、单管稳压可控硅充电机电路图单管稳压可控硅充电机电路图如下:+---------------------+| |R1 || |+---+ / +------+ /| | \\ | | \\ E1| |_ |/---+ | / MOC3063AC | --/\\/\\/----|VO_____| \\| _|_ |\\---+ | || | | | | | |+---+ C1 | +------+ || |+---------------------+其中,元器件描述如下:•R1:2.2 kΩ 横向,1/4W 金属膜电阻•C1:0.1 μF,250V 陶瓷电容器•MOC3063: 隔离型三端高速可控硅输出光耦,用于隔离控制电路和功率电路。
•VO:触发电压,可根据实际需要进行调整。
在制作单管稳压可控硅充电机电路时,需要注意以下几点:•电阻R1的阻值需根据电源电压和电路电流进行选择,保证可控硅的正向电流灭火电流不小于电路电流(额定载流量);•需要进行触发电流的选择,尽可能使得触发性能优良,可以选择超过5 mA的稳定电流源。
二、双晶体双向可控硅充电机电路图双晶体双向可控硅充电机电路图如下:+--------------+/ | \\/ *T1 (2N6661) \\/ ,--C1 | C2 --. \\+--|_ / | ,--|+CD---+| | |/ R1 +----|>| (_) | __Load__ +--VAL (AC)--|--+--+-----------<| ( ) +--|______| | | +-------------|<-|+CD---+| \\ || \\ |\\ / / _ \\ R2\\ / --- | /\\/\\/\\/\\----|>| -------+vo DC+\\__________/ |/ |_____ __|______|其中,元器件描述如下:•T1:2N6661 双向隔离型可控硅•R1:2KΩ,1/4W 金属膜电阻•R2:1KΩ,1/2W 碳膜电阻•C1:0.15 μF, 630 版电解电容•C2:0.1 μF, 630 版陶瓷电容在制作双晶体双向可控硅充电机电路时,需要注意以下几点:•确保稳压电源的稳定性,否则会影响充电器的充电效果。
数字量输入输出与抗干扰设计技术 -
可控硅型光耦还有一种光耦是可控硅型光耦。
例如:MOC3063、IL420;它们的主要指标是负载能力;例如:MOC3063的负载能力是100mA;IL420是300mA;MOC3020、MOC3021、MOC3023、MOC3030可控硅驱动输出。
MOC3040、MOC3041、MOC3061、MOC3081过零触发可控硅输出双向可控硅过零电压触发驱动电路(MOC3040应用电路)双向可控硅过零电压触发驱动电路(MOC3040应用电路)这种器件是一种单片机输出与双向可控硅之间较理想的接口器件。
它由输入和输出两部分组成,输入部分是一砷化镓发光二极管。
该二极管在5~15mA正向电流作用下发出足够强度的红外线,触发输出部分。
输出部分是一硅光敏双向可控硅,在紫外线的作用下可双向导通。
该器件为六引脚双列直插式封装,其引脚配置和内部结构见下图:有的型号的光耦合双向开关可控硅驱动器还带有过零检测器。
以保证电压为零(接近于零)时才可触发可控硅导通。
如MOC3030/31/32(用于115V交流),MOC3040/41(用于220V交流)。
下图是过零电压触发双向可控硅驱动器MOC3040系列的典型应用电路。
【例2】用过零触发可控硅控制交流灯泡【CAP11-双向可控硅-交流】开关按下时,过零时灯亮;松开时,过零时熄灭。
【例3】用过零触发可控硅控制直流灯泡【通过CAP11-双向可控硅-直流】【可以看出,开关按下时,灯亮;松开时,灯仍然亮,因为是直流电源,没有过零。
】TLP521-1 单光耦、TLP521-2 双光耦、TLP521-4 四光耦、TLP621 四光耦TIL113 达林顿输出TIL117 TTL逻辑输出PC814 单光耦PC817 单光耦H11A2 晶体管输出H11D1 高压晶体管输出H11G2 电阻达林顿输*过零触发含义是在零电压和零电流状态下导通可控硅,可以承受大的电流,同时触发完后免除了电流和电压的冲击,对可控硅的使用寿命有很好的保护作用2.2 线性光耦的选取原则在设计光耦反馈式开关电源时,必须正确选择光耦的型号及参数,选取原则如下:(1)光耦的电流传输比(CTR)的允许的范围是50%~200%,这是因为当CTR<50%时,光耦中的LED就需要较大的工作电流(IF>5.0mA),才能正常控制单片机开关电源IC的占空比,这会增大光耦的功耗。
MOC3061M
MOC306XM, MOC316XM — 6-Pin DIP Zero-Cross Phototriac Driver Optocoupler (600 Volt Peak)MOC3162M, MOC3163M6-Pin DIP Zero-Cross Phototriac Driver Optocoupler (600 Volt Peak)Features■ Simplifies logic control of 115/240 VAC power ■ Zero voltage crossing■ dv/dt of 1000V/µs guaranteed (MOC316X-M),– 600V/µs guaranteed (MOC306X-M) ■ VDE recognized (File # 94766)– ordering option V (e.g., MOC3063V-M) ■ Underwriters Laboratories (UL) recognized (File #E90700, volume 2)Applications■ Solenoid/valve controls ■ Static power switches ■ Temperature controls ■ AC motor starters ■ Lighting controls ■ AC motor drives ■ E.M. contactors ■ Solid state relaysDescriptionThe MOC306XM and MOC316XM devices consist of a GaAs infrared emitting diode optically coupled to a monolithic silicon detector performing the function of a zero voltage crossing bilateral triac driver. They are designed for use with a triac in the interface of logic sys-tems to equipment powered from 115/240 VAC lines,such as solid-state relays, industrial controls, motors,solenoids and consumer appliances, etc.Schematic Package OutlinesMAIN TERM.NC*N/C *DO NOT CONNECT 123ANODE CATHODE 456MAIN TERM.ZERO CROSSING CIRCUITMOC306XM, MOC316XM — 6-Pin DIP Zero-Cross Phototriac Driver Optocoupler (600 Volt Peak)Note:1.Isolation surge voltage, V ISO, is an internal device dielectric breakdown rating. For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common.TOTAL DEVICE T STG Storage Temperature All-40 to +150°C T OPR Operating Temperature All-40 to +85°C T SOL Lead Solder Temperature All260 for 10 sec°C T J Junction Temperature Range All-40 to +100°C V ISO Isolation Surge Voltage(1)(peak AC voltage, 60Hz, 1 sec. duration)All7500Vac(pk)P D T otal Device Power Dissipation @ 25°C Ambient Derate above 25°C All250mW2.94mW/°C EMITTER I F Continuous Forward Current All60mA V R Reverse Voltage All6V P D T otal Power Dissipation @ 25°C Ambient Derate above 25°C All120mW1.41mW/°C DETECTOR V DRM Off-State Output Terminal Voltage All600V I TSM Peak Repetitive Surge Current (PW = 100µs, 120pps)All1A P D T otal Power Dissipation @ 25°C Ambient Derate above 25°C All150mW1.76mW/°CMOC306XM, MOC316XM — 6-Pin DIP Zero-Cross Phototriac Driver Optocoupler (600 Volt Peak)Transfer Characteristics Zero Crossing Characteristics Isolation Characteristics *Typical values at T A = 25°CNotes:2.Test voltage must be applied within dv/dt rating.V F Input Forward Voltage I F = 30mA All 1.3 1.5V I R Reverse Leakage Current V R = 6VAll 0.005100µADETECTORI DRM1 Peak Blocking Current, Either Direction V DRM = 600V , I F = 0 (2) MOC316XM 10100nA MOC306XM 10500dv/dtCritical Rate of Rise of Off-State VoltageI F = 0 (Figure 9) (3)MOC306XM 6001500V/µsMOC316XM1000SymbolDC CharacteristicsTest ConditionsDeviceMin.Typ.*Max.UnitsI FTLED Trigger Current (rated I FT )Main Terminal Voltage = 3V (3)MOC3061M 15mAMOC3062M/MOC3162M 10MOC3063M/MOC3163M5V TM Peak On-State Voltage, Either Direction I TM = 100 mA peak, I F = rated I FTAll 1.83V I HHolding Current, Either DirectionAll500µASymbolCharacteristics Test Conditions DeviceMin.Typ.*Max.UnitsV INHInhibit Voltage (MT1-MT2 voltage above which device will not trigger)I F = Rated I FT MOC3061M/2M/3M 1220VMOC3162M/3M1215I DRM2Leakage in Inhibited StateI F = Rated I FT , V DRM = 600V , off stateAll150500µA SymbolCharacteristicsTest ConditionsDeviceMin.Typ.*Max.UnitsV ISOIsolation Voltagef = 60 Hz, t = 1 secAll7500VMOC306XM, MOC316XM — 6-Pin DIP Zero-Cross Phototriac Driver Optocoupler (600 Volt Peak)Basic ApplicationsTypical circuit for use when hot line switching is required. In this circuit the “hot” side of the line is switched and the load connected to the cold or neutral side. The load may be connected to either the neutral or hot line.R in is calculated so that I F is equal to the rated I FTof the part, 15mA for the MOC3061M, 10mA for the MOC3062M, or 5mA for the MOC3063M. The 39Ω resistor and 0.01µF capacitor are for snubbing of the triac and is often, but not always, necessary depending upon the particular triac and load used.Suggested method of firing two, back-to-back SCR’s with a Fairchild triac driver. Diodes can be 1N4001; resistors, R1 and R2, are optional 330Ω.Note:This optoisolator should not be used to drive 272W2W1002WdV dt VERNIERMOUNT DUT ONTEMPERATURE CONTROLLED C µ PLATEDIFFERENTIAL PREAMPf = 10 Hz PW = 100 µs 50 Ω PULSE GENERATORALL COMPONENTS ARE NON-INDUCTIVE UNLESS SHOWN822W470pF0.0010.0050.010.0470.470.1562W1N91420V10001/4W1N967A 18VRFP4N100DUT 20kX100 PROBEX100 PROBEV DRM /V RRM SELECT6412100010 WATT WIREWOUND 0.331000VPOWER1 MEG2W EACH 1.2 MEG2WTEST0-1000V 10mA0.0471000VFigure 9. Circuit for Static dVMeasurement of Power ThyristorsdtFigure 10. Hot-Line Switching Application CircuitV CCR in123654240 VACHOTNEUTRAL360Ω360ΩMOC3061-MMOC3062-M MOC3063-M39Ω0.01µFFKPF12N60LOAD V CCR in1265115 VACR1D1SCRMOC3061-M MOC3062-MMOC306XM, MOC316XM — 6-Pin DIP Zero-Cross Phototriac Driver Optocoupler (600 Volt Peak)6.10–6.60Pin 1130.25–0.365.08 (Max.)3.28–3.530.38 (Min.) 2.54–3.812.54 (Bsc)(0.86)0.41–0.511.02–1.780.76–1.146.10–6.60Pin 1130.25–0.365.08 (Max.)3.28–3.530.38 (Min.)2.54–3.812.54 (Bsc)(0.86)0.41–0.511.02–1.780.76–1.147.62 (Typ.)15° (Typ.)0.20–0.300.20–0.3010.16–10.80Surface MountRcommended Pad Layout(1.78)(2.54)(1.52)(7.49)(10.54)(0.76)8.13–8.896.10–6.608.43–9.90Pin 164130.25–0.362.54 (Bsc)(0.86)0.41–0.511.02–1.780.76–1.140.38 (Min.)3.28–3.535.08(Max.)0.20–0.300.16–0.88(8.13)MOC306XM, MOC316XM — 6-Pin DIP Zero-Cross Phototriac Driver Optocoupler (600 Volt Peak)Marking Information S MOC3061SM Surface Mount Lead Bend SR2MOC3061SR2M Surface Mount; T ape and Reel T MOC3061TM0.4" Lead Spacing V MOC3061VM VDE 0884TV MOC3061TVM VDE 0884, 0.4" Lead Spacing SV MOC3061SVM VDE 0884, Surface Mount SR2V MOC3061SR2VM VDE 0884, Surface Mount, T ape and Reel MOC3061126435*Note – Parts that do not have the ‘V’ option (see definition 3 above) that are marked with date code ‘325’ or earlier are marked in portrait format.Definitions1Fairchild logo2Device number3VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)4One digit year code, e.g., ‘3’5T wo digit work week ranging from ‘01’ to ‘53’6Assembly package code V X YY QMOC306XM, MOC316XM — 6-Pin DIP Zero-Cross Phototriac Driver Optocoupler (600 Volt Peak)Reflow Profile User Direction of Feed 1.75 ± 0.1011.5 ± 1.024.0 ± 0.321.0 ± 0.10.1 MAX10.1 ± 0.209.1 ± 0.20Ø1.5 ± 0.1/-0300280260240220200180160140120100806040200°C Time (s)060180120270260°C>245°C = 42 Sec Time above 183°C = 90 Sec3601.822°C/Sec Ramp up rate33 SecBuild it Now™CorePLUS™CorePOWER™CROSSVOLT™CTL™Current Transfer Logic™EcoSPARK®EfficentMax™EZSWITCH™*™®Fairchild®Fairchild Semiconductor®FACT Quiet Series™FACT®FAST®FastvCore™FlashWriter®*FPS™F-PFS™FRFET®Global Power Resource SMGreen FPS™Green FPS™e-Series™GTO™IntelliMAX™ISOPLANAR™MegaBuck™MICROCOUPLER™MicroFET™MicroPak™MillerDrive™MotionMax™Motion-SPM™OPTOLOGIC®OPTOPLANAR®®PDP SPM™Power-SPM™PowerTrench®PowerXS™Programmable Active Droop™QFET®QS™Quiet Series™RapidConfigure™™Saving our world,1mW/W/kW at a time™SmartMax™SMART START™SPM®STEALTH™SuperFET™SuperSOT™-3SuperSOT™-6SuperSOT™-8SupreMOS™SyncFET™®The Power Franchise®TinyBoost™TinyBuck™TinyLogic®TINYOPTO™TinyPower™TinyPWM™TinyWire™TriFault Detect™µSerDes™UHC®Ultra FRFET™UniFET™VCX™VisualMax™XS™*EZSWITCH™and FlashWriter®are trademarks of System General Corporation,used under license by Fairchild Semiconductor.DISCLAIMERFAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY,FUNCTION,OR DESIGN.FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS,NOR THE RIGHTS OF OTHERS.THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILDíS WORLDWIDE TERMS AND CONDITIONS,SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.LIFE SUPPORT POLICYFAIRCHILDíS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices or systems which,(a)areintended for surgical implant into the body or(b)support or sustain life, and(c)whose failure to perform when properly used in accordance with instructions for use provided in the labeling,can be reasonably expected to result in a significant injury of the user.2.A critical component in any component of a life support,device,orsystem whose failure to perform can be reasonably expected to cause the failure of the life support device or system,or to affect its safety or effectiveness.ANTI-COUNTERFEITING POLICYFairchild Semiconductor Corporation's Anti-Counterfeiting Policy.Fairchild's Anti-Counterfeiting Policy is also stated on our external website,,under Sales Support.Counterfeiting of semiconductor parts is a growing problem in the industry.All manufacturers of semiconductor products are experiencing counterfeiting of their parts.Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation,substandard performance,failed applications,and increased cost of production and manufacturing delays.Fairchild is taking strong measures to protect ourselves and our customers from the proliferation ofcounterfeit parts.Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who arelisted by country on our web page cited above.Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts,havefull traceability,meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information.Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise.Fairchild will not provideany warranty coverage or other assistance for parts bought from Unauthorized Sources.Fairchild is committed to combat this global problem and encourage ourcustomers to do their part in stopping this practice by buying direct or from authorized distributors.PRODUCT STATUS DEFINITIONSDefinition of TermsDatasheet Identification Product Status Definition MOC306XM, MOC316XM — 6-Pin DIP Zero-Cross Phototriac Driver Optocoupler (600 Volt Peak)。
光耦简介及常见型号
常用光耦简介及常见型号光电耦合器(简称光耦)是开关电源电路中常用的器件。
光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。
常用的4N系列光耦属于非线性光耦常用的线性光耦是PC817A—C系列。
非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于弄开关信号的传输,不适合于传输模拟量。
线性光耦的电流传输手特性曲线接进直线,并且小信号时性能较好,能以线性特性进行隔离控制。
开关电源中常用的光耦是线性光耦。
如果使用非线性光耦,有可能使振荡波形变坏,严重时出现寄生振荡,使数千赫的振荡频率被数十到数百赫的低频振荡依次为号调制。
由此产生的后果是对彩电,彩显,VCD,DCD等等,将在图像画面上产生干扰。
同时电源带负载能力下降。
在彩电,显示器等开关电源维修中如果光耦损坏,一定要用线性光耦代换。
常用的4脚线性光耦有PC817A----C。
PC111 TLP521等常用的六脚线性光耦有:TLP632 TLP532 PC614 PC714 PS2031等。
常用的4N25 4N26 4N35 4N36是不适合用于开关电源中的,因为这4种光耦均属于非线性光耦。
经查大量资料后,以下是目前市场上常见的高速光藕型号:100K bit/S:6N138、6N139、PS87031M bit/S:6N135、6N136、CNW135、CNW136、PS8601、PS8602、PS8701、PS9613、PS9713、CNW4502、HCPL-2503、HCPL-4502、HCPL-2530(双路)、HCPL-2531(双路)10M bit/S:6N137、PS9614、PS9714、PS9611、PS9715、HCPL-2601、HCPL-2611、HCPL-2630(双路)、HCPL-2631(双路)光耦合器的增益被称为晶体管输出器件的电流传输比(CTR),其定义是光电晶体管集电极电流与LED正向电流的比率(ICE/IF)。
光电晶体管集电极电流与VCE有关,即集电极和发射极之间的电压。
MOC3063-A
Direction
*2 Critical rate of Rise of Off-State Voltage
VTM dv/dt
—— 1000 —
3.0 V ITM=100 mA Peak — V/µs
*3 Led Trigger Current, Current Required to Latch Output, Either Direction
Part No. : MOC3063-A SERIES BNS-OD-C131/A4
Page : 3 of 8
www TTEELL::440000--99999999--444400 GGYY--OOCC
LITE-ON TECHNOLOGY CORPORATION
m m Property of Lite-on Only r.co upler.co TAPING DIMENSIONS
Part No. : MOC3063-A SERIES BNS-OD-C131/A4
Page : 6 of 8
r.co upler.co ELECTRICAL - OPTICAL CHARACTERISTICS
www.gy-optoco INPUT
PARAMETER Forward Voltage Reverse Current
SYMBOL MIN. TYP. MAX. UNIT
2SC3063资料
2SC3063
Silicon NPN triple diffusion planar type
Unit: mm
For TV video output amplification
φ 3.16±0.1
8.0+0.5 –0.1
3.2±0.2
1.9±0.1
I Absolute Maximum Ratings TC = 25°C
Parameter Collector to base voltage Collector to emitter voltage Emitter to base voltage Peak collector current Collector current Collector power dissipation Junction temperature Storage temperature Symbol VCBO VCEO VEBO ICP IC PC Tj Tstg Rating 300 300 7 200 100 1.2 150 −55 to +150 Unit V V V mA mA W °C °C
0 0 10 20 30 40 50 60
0 0 0.4 0.8 1.2 1.6 2.0
Ambient temperature Ta (˚C)
Collector to emitter voltage VCE (V)
Base to emitter voltage VBE (V)
VCE(sat) IC
1 2 0.75±0.1 4.6±0.2 0.5±0.1 0.5±0.1 2.3±0.2 3 1.76±0.1
16.0±1.0
• High collector to emitter voltage VCEO • Small collector output capacitance Cob • TO-126B package which requires no insulation plate for installation to the heat sink
moc3063规格书
moc3063规格书MOC3063规格书MOC3063是一种高性能光耦隔离器,常用于电气隔离和信号传输的应用中。
它的规格书详细描述了该器件的电气特性、光学特性以及封装信息,为用户提供了使用该器件的重要参考。
该规格书首先介绍了MOC3063的主要特点和应用领域。
MOC3063具有高速开关性能、高耐压能力和低输出耦合电容等特点,适用于工业控制、电力电子和通信设备等领域。
接下来,规格书详细列出了该器件的封装信息,包括引脚定义、尺寸和材料等。
这些信息对于用户进行电路设计和焊接工艺选择非常重要。
在电气特性方面,规格书对MOC3063的工作电流、工作电压和输出电压等进行了详细描述。
其中,工作电流是指在正常工作条件下器件所需的电流,工作电压是指器件能够承受的最大电压,输出电压是指在给定的输入条件下器件输出的电压。
这些特性的准确描述对于用户选择合适的工作条件和保证电路的可靠性至关重要。
光学特性是MOC3063规格书的另一个重要部分。
光耦隔离器通过发射器和接收器之间的光信号来隔离输入和输出电路,因此光学特性对于器件的性能至关重要。
规格书详细描述了MOC3063的发射器和接收器的光电参数,包括发射器的峰值波长、发射功率和接收器的响应时间等。
这些参数的准确描述对于用户选择合适的光耦隔离器和设计稳定的工作条件非常重要。
规格书还介绍了MOC3063的工作温度范围和存储温度范围。
工作温度范围是指器件能够正常工作的温度范围,存储温度范围是指器件能够安全存储的温度范围。
用户在使用该器件时,需要根据实际应用环境选择合适的工作温度范围,以确保器件的稳定性和可靠性。
MOC3063规格书是使用该器件的重要参考资料,它详细描述了该器件的电气特性、光学特性和封装信息。
用户通过仔细阅读和理解规格书,可以更好地选择和使用MOC3063,确保电路的稳定性和可靠性。
MOC3063应用
Application Note AN-3004Applications of Zero Voltage Crossing Optically Isolated Triac DriversREV. 4.00 5/7/02IntroductionThe zero-cross family of optically isolated triac drivers is an inexpensive, simple and effective solution for interface appli-cations between low current dc control circuits such as logic gates and microprocessors and ac power loads (120, 240 or 380 volt, single or 3-phase).These devices provide sufficient gate trigger current for high current, high voltage thyristors, while providing a guaran-teed 7.5 kV dielectric withstand voltage between the line and the control circultry. An integrated, zero-crossing switch on the detector chip eliminates current surges and the resulting electromagnetic interference (EMI) and reliability problems for many applications. The high transient immunity of 5000 V/µs, combined with the features of low coupling capaci-tance, high isolation resitance and up to 800 volt specified VDRM ratings qualify this triac driver family as the ideal link between sensitive control circuitry and the ac power system environment.Optically isolated triac drivers are not intended for stand alone service as are such devices as solid state relays. They will, however, replace costly and space demanding discrete drive circuitry having high component count consisting of standard transistor optoisolators, support componentsincluding a full wave rectifier bridge, discrete transistor, trig-ger SCRs and various resistor and capacitor combinations.This paper describes the operation of a basic driving circuit and the determination of circuit values needed for proper implementation of the triac driver. Inductive loads are dis-cussed along with the special networks required to use triacsin their presence. Brief examples of typical applications are presented.ConstructionThe zero-cross family consists of a liquid phase EPI, infra-red, light emitting diode which optically triggers a silicon detector chip. A schematic representation of the triac driver is shown in Figure 1. Both chips are housed in a small, 6-pin dual-in-line (DIP) package which provides mechanical integrity and protection for the semiconductor chips from external impurities. The chips are insulated by an infrared transmissive medium which reliably isolates the LED input drive circuits from the environment of the ac power load. This insulation system meets the stringent requirements for isolation set forth by regulatory agencies such as UL and VDE.The Detector ChipThe detector chip is a complex monolithic IC which contains two infrared sensitive, inverse parallel, high voltage SCRs which function as a light sensitive triac. Gates of the individ-ual SCRs are connected to high speed zero crossing detec-tion circuits. This insures that with a continuous forward current through the LED, the detector will not switch to the conducting state until the applied ac voltage passes through a point near zero. Such a feature not only insures lower gener-ated noise (EMI) and inrush (Surge) currents into resistive loads and moderate inductive loads but it also provides high noise immunity (several thousand V/µs) for the detection circuit.AN-3004APPLICATION NOTE2REV. 4.00 5/7/02APPLICATION NOTE AN-3004REV. 4.00 5/7/023AN-3004APPLICATION NOTE4REV. 4.00 5/7/02APPLICATION NOTE AN-3004REV. 4.00 5/7/025AN-3004APPLICATION NOTE6REV. 4.00 5/7/02APPLICATION NOTE AN-3004REV. 4.00 5/7/027AN-3004APPLICATION NOTE8REV. 4.00 5/7/02APPLICATION NOTE AN-3004REV. 4.00 5/7/029AN-3004APPLICATION NOTE5/7/02 0.0m 001Stock#AN300000xx2002 Fairchild Semiconductor CorporationDISCLAIMERFAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANYLIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.LIFE SUPPORT POLICYFAIRCHILD ’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:1.Life support devices or systems are devices or systemswhich, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.2. A critical component is any component of a life supportdevice or system whose failure to perform can bereasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.。
所有光藕型号、电路统计
型号-引脚功能说明脚位内部结构电路图AQY210 4引脚位,单组AQY214 4引脚位,单组AQY210S 4引脚位,单组AQY214Sx 4引脚位,单组AQV210 6引脚位,单组器件AQV212 6引脚位,单组器件AQV215 6引脚位,单组器件AQV217 6引脚位,单组器件AQV214 6引脚位,单组器件AQV216 6引脚位,单组器件AQV414 6引脚位,单组器件HCPL2530 高速光耦8引脚位HCPL2531 高速光耦8引脚位HCPL4502 高速光耦8引脚位HCPL2503 高速光耦HCPL2533 高速光耦8引脚位HCPL2601 高速光耦8引脚位HCPL2611 高速光耦8引脚位8引脚位HCPL2630 高速光耦8引脚位HCPL2631 高速光耦8引脚位HCPL2730 高速光耦8引脚位HCPL2731 高速光耦8引脚位K1010 三极管输出4N25 三极管输出6引脚位,单组器件4N26 三极管输出6引脚位,单组器件4N27 三极管输出6引脚位,单组器件4N28 三极管输出6引脚位,单组器件4N29 达林顿管输出6引脚位,单组器件4N30 达林顿管输出6引脚位,单组器件4N31 达林顿管输出6引脚位,单组器件4N32 达林顿管输出6引脚位,单组器件4N33 达林顿管输出6引脚位,单组器件4N35 三极管输出6引脚位,单组器件4N36 三极管输出6引脚位,单组器件4N37 三极管输出6引脚位,单组器件4N38 三极管输出6引脚位,单组器件4N38A 三极管输出6引脚位,单组器件4N39 单向晶闸管输出6引脚位,单组器件4N40 单向晶闸管输出6引脚位,单组器件6N135 高速光耦,高速光耦6N136 高速光耦6N137 逻辑高速输出TTL兼容6N138 高增益高速光耦6N139 高增益高速光耦CNX62A 三极管输出6引脚位,单组器件CNX72A 三极管输出6引脚位,单组器件CNX82A 三极管输出6引脚位,单组器件CNX83A 三极管输出6引脚位,单组器件CNY17-1 三极管输出6引脚位,单组器件CNY17-2 三极管输出6引脚位,单组器件CNY17-3 三极管输出6引脚位,单组器件CNY17-4 三极管输出6引脚位,单组器件CNY17-5 三极管输出6引脚位,单组器件CNY17F-1 三极管输出6引脚位,单组器件CNY17F-2 三极管输出6引脚位,单组器件CNY17F-3 三极管输出6引脚位,单组器件CNY17F-4 三极管输出6引脚位,单组器件6CNY30 单向晶闸管输出CNY34 单向晶闸管输出CNY35 交流输入型光耦三极管输出6引脚位,单组器件CNY75A 三极管输出6引脚位,单组器件CNY75B 三极管输出6引脚位,单组器件CNY75C 三极管输出6引脚位,单组器件CQY80 三极管输出6引脚位,单组器件H11A1 三极管输出6引脚位,单组器件H11A2 三极管输出6引脚位,单组器件H11A3 三极管输出6引脚位,单组器件H11A4 三极管输6引脚出位,单组器件H11A5 三极管输出6引脚位,单组器件H11AA1 交流输入型光耦三极管输出6引脚位,单组器件H11AA2 交流输入型光耦三极管输出6引脚位,单组器件H11AA3 交流输入型光耦三极管输出6引脚位,单组器件H11AA4 交流输入型光耦三极管输出6引脚位,单组器件H11AV1 三极管输出6引脚位,单组器件H11AV2 三极管输出6引脚位,单组器件H11AV3 三极管输出6引脚位,单组器件H11B1 达林顿管6引脚输出位,单组器件H11B2 达林顿管输出6引脚位,单组器件H11B3 达林顿管输出6引脚位,单组器件H11C1 单向晶闸管输出6引脚位,单组器件H11C2 单向晶闸管输出6引脚位,单组器件H11C3 单向晶闸管输出6引脚位,单组器件H11C4 单向晶闸管输出6引脚位,单组器件H11C5 单向晶闸管输出6引脚位,单组器件H11C6 单向晶闸管输出6引脚位,单组器件H11D1 高耐压三6引脚极管输出位,单组器件H11D2 高耐压三极管输出6引脚位,单组器件H11D3 高耐压三极管输出6引脚位,单组器件H11D4 高耐压三极管输出6引脚位,单组器件H11F1 场效应管对称输出6引脚位,单组器件H11F2 场效应管对称输出6引脚位,单组器件H11F3 场效应管对称输出6引脚位,单组器件H11G1 达林顿管输出6引脚位,单组器件H11G2 达林顿管输出6引脚位,单组器件H11G3 达林顿管6引脚输出位,单组器件H11J1 双向可控硅非过零型光藕6引脚位,单组器件H11J2 双向可控硅非过零型光藕6引脚位,单组器件H11J3 双向可控硅非过零型光藕6引脚位,单组器件H11J4 双向可控硅非过零型光藕6引脚位,单组器件H11J5 双向可控硅非过零型光藕6引脚位,单组器件H11L1 施密特触发器输出H11L2 施密特触发器输出H11L3 施密特触发器输出H11L4 施密特触发器输出H24A1 三极管输出型光电藕合器4引脚位,单组件H24A2 三极管输出型光电藕合器件4引脚位,单组H24A3 三极管输出型光电藕合器件4引脚位,单组H24A4 三极管输出型光电藕合器件4引脚位,单组光藕型号引脚内部结构图IL1 三极管输出6引脚位,单组器件IL2 三极管输出6引脚位,单组器件IL5 三极管输出型6引脚位,单组器件IL74 三极管输出型6引脚位,单组器件ILD1 三极管输出8引脚位ILD2 三极管输出8引脚位ILD5 三极管输出8引脚位ILD74 三极管输出6,8,16引脚位,4组器件ILQ1 三极管输出16引脚位,4组器件ILQ2 三极管输出16引脚位,4组器件ILQ5 三极管输出16引脚位,4组器件ILQ74 三极管输出6引脚位,单组器件IS201 三极管输出型6引脚位,单组器件IS202 三极管输出型6引脚位,单组器件IS203 三极管输出型6引脚位,单组器件IS204 三极管输出型6引脚位,单组器件IS205 三极管输出6引脚位,单组器件IS205-1 三极管输出型光电藕合器件6引脚位,单组器件IS205-2 三极管输出型光电藕合器件6引脚位,单组器件IS206 三极管输出IS357 三极管输出IS4N45 高压达林顿管输出光电藕合器件IS4N46 高压达林顿管输出光电藕合器件IS6003 双向可控硅非过零型光藕6引脚位,单组器件IS6005 双向可控硅非过零型光藕6引脚位,单组器件IS6010 双向可控硅非过零型光藕6引脚位,单组器件IS6015 双向可控硅非过零型光藕6引脚位,单组器件IS6030 双向可控硅非过零型光藕6引脚位,单组器件IS604 交流信号输入三极管输出6引脚位,单组器件IS6051IS607 双向可控硅非过零型光藕6引脚位,单组器件IS608 双向可控硅非过零型光藕6引脚位,单组器件IS609 施密特触发器输出IS610 场效应管对称输出6引脚位,单组器件IS611 场效应管对称输出6引脚位,单组器件IS7000 高压达林顿管输出光偶4引脚位,单组ISD201 三极管输出8引脚位ISD202 三极管输出ISD203 三极管输出ISD204 三极管输出ISD5 三极管输出8引脚位ISD74 三极管输出光偶8引脚位ISP321-1 三极管输出形式4引脚位,单组ISP321-2 三极管输出8引脚位ISP321-4 三极管输出16引脚位,4组器件ISP521-1 三极管输出形式4引脚位,单组ISP521-2 三极管输出8引脚位ISP521-4 三极管输出16引脚位,4组器件ISP620-1 交流信号输入三极管输出4引脚位,单组ISP620-2 交流信号输入三极管输出8引脚位ISP620-4 交流输入型光耦三极管输出16引脚位,4组器件ISP621-1 三极管输出形式4引脚位,单组ISP621-2 三极管输出8引脚位ISP621-4 三极管输出16引脚位,4组器件ISP624-1 三极管输出形式4引脚位,单组ISP624-2 三极管输出8引脚位ISP624-4 三极管输出16引脚位,4组器件ISP814 交流信号输入三极管输出4引脚位,单组ISP814-1 交流信号输入三极管输出4引脚位,单组ISP814-2 交流信号输4引脚位,单组入三极管输出ISP815 达林顿管输出4引脚位,单组ISP815-1 达林顿管输4引脚位,单组出ISP815-2 达林顿管输4引脚位,单组出ISP815-3 达林顿管输4引脚位,单组出ISP817 三极管输出形4引脚位,单组式ISP817-1 三极管输出4引脚位,单组ISP817-2 三极管输出4 Pin4 PinISP817-3 三极管输出4引脚位,单组ISP824 交流信号输入8引脚位三极管输出ISP824-1 交流信号输8引脚位入三极管输出ISP824-2 交流信号输8引脚位入三极管输出ISP824-3 交流信号输8引脚位入三极管输出ISP825 达林顿管输出8引脚位ISP825-1 达林顿管输8引脚位出ISP825-2 达林顿管输8引脚位出ISP825-3 达林顿管输出8引脚位ISP827 三极管输出8引脚位ISP827-1 三极管输出光电藕合器件8引脚位ISP844 交流输入型光耦三极管输出16引脚位,4组器件ISP845 达林顿管输出16引脚位,4组器件ISP847 三极管输出16引脚位,4组器件ISPD60 达林顿管输出6引脚位,单组器件ISPD61 达林顿管输出6引脚位,单组器件ISPD62 达林顿管输出6引脚位,单组器件ISPD63 达林顿管输出6引脚位,单组器件ISPD64 达林顿管输出6引脚位,单组器件ISPD65 达林顿管输出6引脚位,单组器件ISQ1 三极管输出6引脚位,单组器件ISQ201 三极管输出16引脚位,4组器件ISQ202 三极管输出16引脚位,4组器件ISQ203 三极管输出16引脚位,4组器件ISQ204 三极管输出16引脚位,4组器件ISQ5 三极管输出16引脚位,4组器件ISQ74 三极管输出16引脚位,4组器件MCA2230 达林顿管输出6引脚位,单组器件MCA2231 达林顿管输出6引脚位,单组器件MCA2255 达林顿管输出6引脚位,单组器件MCA230 达林顿管输出6引脚位,单组器件MCA231 达林顿管输出6引脚位,单组器件MCA255 达林顿管输出6引脚位,单组器件MCS2400 单向晶闸管输出6引脚位,单组器件MCT2 三极管输出型6引脚位,单组器件MCT210 三极管输出型6引脚位,单组器件MCT6 三极管输出8引脚位MCT6 三极管输出8引脚位MCT61 三极管输出光电藕合器件8引脚位MCT62 三极管输出8引脚位MCT66 三极管输出8引脚位MOC3009 双向可控硅非过零型光藕6引脚位,单组器件MOC3010 双向可控硅非过零型光藕6引脚位,单组器件MOC3011 双向可控硅非过零型光藕6引脚位,单组器件MOC3012 双向可控硅非过零型光藕6引脚位,单组器件MOC3020 双向可控硅非过零型光藕6引脚位,单组器件MOC3021 双向可控硅非过零型光藕6引脚位,单组器件MOC3022 双向可控硅非过零型光藕6引脚位,单组器件MOC3023 双向可控硅非过零型光藕6引脚位,单组器件MOC3030(M) 双向晶闸管过6引脚位,单MOC3083 双向晶闸管过零检测输出6引脚位,单组器件MOC5007 施密特触发器输出MOC5008 施密特触发器输出MOC5009 施密特触发器输出MOC8020 达林顿管输出6引脚位,单组器件MOC8021 达林顿管输出6引脚位,单组器件MOC8030 达林顿管输出6引脚位,单组器件MOC8050 达林顿管输出6引脚位,单组器件MOC8080 达林顿管输出6引脚位,单组器件MOC8100 三极管输出型6引脚位,单组器件MOC8101 三极管输出6引脚位,单组器件MOC8102 三极管输出6引脚位,单组器件MOC8103 三极管输出6引脚位,单组器件MOC8104 三极管输出6引脚位,单组器件MOC8105 三极管输出6引脚位,单组器件MOC8106 三极管输出6引脚位,单组器件MOC8107 三极管输出6引脚位,单组器件MOC8108 三极管输出6引脚位,单组器件MOC8111 三极管输出6引脚位,单组器件MOC8112 三极管输出6引脚位,单组器件MOC8113 三极管输出6引脚位,单组器件PS2501-1 三极管输出形式4引脚位,单组PS2501-2 三极管输出8引脚位PS2501-4 三极管输出16引脚位,4组器件PS2502-1 达林顿管输出4引脚位,单组PS2502-2 达林顿管输出8引脚位PS2502-4 达林顿管输出16引脚位,4组器件PS2505-1 交流信号输入三极管输出4引脚位,单组PS2505-2 交流信号输入三极管输出8引脚位PS2505-4 交流输入型光耦三极管输出16引脚位,4组器件SFH600-0 三极管输出型6引脚位,单组器件SFH600-1 三极管输出型6引脚位,单组器件SFH600-2 三极管输出型6引脚位,单组器件SFH600-3 三极管输出型6引脚位,单组器件SFH600-4 三极管输出型6引脚位,单组器件SFH601-1 三极管输出型6引脚位,单组器件SFH601-2 三极管输出型6引脚位,单组器件SFH601-3 三极管输出型6引脚位,单组器件SFH601-4 三极管输出型6引脚位,单组器件SFH601-5 三极管输出型6引脚位,单组器件SFH609-1 三极管输出型6引脚位,单组器件SFH609-2 三极管输出型6引脚位,单组器件SFH609-3 三极管输出型6引脚位,单组器件SFH610-2 三极管输出形式4引脚位,单组SFH610-3 三极管输出形式4引脚位,单组SFH610-4 三极管输出形式4引脚位,单组SFH615A-1 三极管输出形式4引脚位,单组SFH615A-2 三极管输出形式4引脚位,单组SFH615A-3 三极管输出形式4引脚位,单组SFH615A-4 三极管输出形4引脚位,单SFH618A-4 三极管输出形式4引脚位,单组SFH620A-1 交流信号输入三极管输出4引脚位,单组SFH620A-1 交流信号输入三极管输出4引脚位,单组SFH620A-2 交流信号输入三极管输出4引脚位,单组SFH620A-3 交流信号输入三极管输出4引脚位,单组SFH628-2 交流信号输入三极管输出4引脚位,单组SFH628-3 交流信号输入三极管输出4引脚位,单组SFH628-4 交流信号输入三极管输出4引脚位,单组SFH6286-3 AC Input , Single 6引脚位,单组器件TIL111 三极管输出型6引脚位,单组器件TIL113 达林顿管输出6引脚位,单组器件TIL114 三极管输出型6引脚位,单组器件TIL116 三极管输出型6引脚位,单组器件TIL117 三极管输出型6引脚位,单组器件TIL119 达林顿管输出6引脚位,单组器件TIL191 三极管输出形式4引脚位,单组TIL191A 三极管输出形式4引脚位,单组TIL191B 三极管输出形式4引脚位,单组TIL192 三极管输出8引脚位TIL192A 三极管输出8引脚位TIL192B 三极管输出8引脚位TIL193 三极管输出16引脚位,4组器件TIL193A 三极管输出16引脚位,4组器件TIL193B 三极管输出16引脚位,4组器件TIL194 交流信号输入三极管输出TIL194A 交流信号输入三极管输出4引脚位,单组TIL194B 交流信号输入三极管输出4引脚位,单组TIL195 交流信号输入三极管输出TIL195A 交流信号输入三极管输出8引脚位TIL195B 交流信号输入三极管输出8引脚位TIL196 交流信号输入三极管输出TIL196A 交流信号输入三极管输出16引脚位,4组器件TIL196B 交流信号输入三极管输出16引脚位,4组器件TIL197 达林顿管输出4引脚位,单组TIL197A 达林顿管输出4引脚位,单组TIL197B 达林顿管输出4引脚位,单组TIL198 达林顿管输出8引脚位TIL198A 达林顿管输出8引脚位TIL198B 达林顿管输出8引脚位TIL199 达林顿管输出16引脚位,4组器件TIL199A 达林顿管输出16引脚位,4组器件TIL199B 达林顿管输出16引脚位,4组器件TLP321 三极管输出形式4引脚位,单组TLP321-2 三极管输出8引脚位TLP321-4 三极管输出16引脚位,4组器件TLP421 三极管输出形式4引脚位,单组TLP521 三极管输出形式4引脚位,单组TLP521-2 三极管输出8引脚位TLP521-4 三极管输出16引脚位,4组器件TLP620 交流信号输入三极管输出4引脚位,单组TLP620-2 交流信号输入三极管输出8引脚位TLP620-4 交流输入型光耦三极管输出16引脚位,4组器件TLP621 三极管输出形式4引脚位,单组TLP621-2 三极管输出8引脚位TLP621-4 三极管输出16引脚位,4组器件TLP624 三极管输出形式4引脚位,单组TLP624-2 三极管输出8引脚位TLP624-4 三极管输出16引脚位,4组器件TLP721LTV702VA 三极管输出形式6引脚位,单组器件LTV702VB 三极管输出形式6引脚位,单组器件LTV702VC 三极管输出形式6引脚位,单组器件LTV702VD 三极管输出形式6引脚位,单组器件LTV817 三极管输出形式4引脚位,单组LTV817A 三极管输出形式4引脚位,单组LTV817B 三极管输出形式4引脚位,单组LTV817C 三极管输出形式4引脚位,单组LTV817D 三极管输出形式4引脚位,单组PC354 三极管输出4引脚位,单组PC355NT 三极管输出4引脚位,单组PC357 三极管输出 4 Pin4 PC817PC1138PC829 三极管输出8引脚位PC849 三极管输出光电藕合器件16引脚位,4组器件PS2701-1 三极管输出4引脚位,单组PS2702-1 三极管输出4引脚位,单组PS2702-2 三极管输出8引脚位PS2702-4 三极管输出16引脚位,4组器件PS2705-1 三极管输出4引脚位,单组PC817 三极管输出光电藕合器件4引脚位,单组TLP121 三极管输出4引脚位,单组TLP126 三极管输出4引脚位,单组TLP181 三极管输出4引脚位,单组LAA110 8引脚位LBA110LCA110 6引脚位,单组器件LBB110 8引脚位LCB110 6引脚位,单组器件。
KMOC3083中文资料
5000
Unit mA V V A ℃ ℃ ℃ V rms
Characteristic Forward current Peak Blocking Current On-state Voltage
Inhibit Voltage Critical rate of rise of
2004
New Product Info.
COSMO New Product Launch KMOC308X ,Photo Traic
冠西電子企業股份有限公司
COSMO Electronics Corporation.
2004 .04
COSMO New Product
Peak repetitive surge current
Operation Temperature
Storage Temperature
Soldering Temperature
Isolation voltage
Symbol IF VR
VDRM ITSM Topr Tstg Tsol Viso
Rating 50 5 800 1
z Solenoid/valve Controls
z Static Power Switches z AC Motor Drives z Temperature Controls z AC Motor Starters z E.M. Contactors z Solid State Relay
Minimum trigger current (IFT)
Item
Max. Unit
KMOC3081 15
KMOC3082 10 mA
moc3063s-ta1 pdf规格
moc3063s-ta1 pdf规格**一、文档介绍**本文档旨在详细介绍moc3063s-ta1芯片的pdf规格。
该规格包含了该芯片的各项参数、性能、应用、注意事项等信息,为使用该芯片的开发人员提供参考。
**二、芯片概述**moc3063s-ta1是一款高性能的模拟芯片,适用于各种电子设备中模拟信号的处理。
该芯片采用先进的工艺技术制造,具有出色的性能和稳定性。
其主要特点包括低噪声、高精度、低功耗等,适用于音频、视频、通信、仪器仪表等领域。
**三、技术参数*** 输入电压范围:DC 0v~5v* 输出电压范围:DC 0v~5v(可调)* 分辨率:16位(可扩展至24位)* 精度:±1%或更低(取决于分辨率)* 工作温度范围:-40℃~+85℃(工业级)* 工作功耗:小于25mW(典型值)**四、性能特点*** 低噪声:moc3063s-ta1具有极低的噪声水平,适用于对噪声敏感的应用场景。
* 高精度:采用高精度运算放大器,具有出色的线性度和动态范围。
* 低输入偏置电流:输入偏置电流极低,可有效减少电源噪声干扰。
* 宽电源电压范围:适用于各种电压范围的电源环境。
* 高速转换速率:具有较高的开环电压增益和快速的转换速率。
**五、应用示例**moc3063s-ta1适用于音频放大器、语音处理、视频信号处理等应用场景。
以下是一个简单的应用示例:在一个音频放大器中,我们将moc3063s-ta1用于音频信号放大,通过外部电阻和电容设置音频输入和输出的电平。
电路原理图如下:1. 音频信号输入:通过麦克风或线路输入的音频信号,经过一个可调电阻分压器进行适当衰减后输入到moc3063s-ta1的同相输入端。
2. 放大输出信号:moc3063s-ta1的输出端经过一个可调电阻分压器进行适当放大后,输出到扬声器播放音频信号。
3. 电源和地:芯片电源和地线通过一个去耦电容连接到电源和地线,以减少电源噪声干扰。
NCV3063资料
NCP3063, NCP3063B,NCV30631.5 A, Step−Up/Down/ Inverting Switching RegulatorsThe NCP3063 Series is a higher frequency upgrade to the popular MC34063A and MC33063A monolithic DC−DC converters. These devices consist of an internal temperature compensated reference, comparator, a controlled duty cycle oscillator with an active current limit circuit, a driver and a high current output switch. This series was specifically designed to be incorporated in Step−Down, Step−Up and V oltage−Inverting applications with a minimum number of external components.Features•Operation from 3.0 V to 40 V Input•Low Standby Current•Output Switch Current to 1.5 A•Output V oltage Adjustable•Frequency Operation of 150 kHz•Precision 1.5% Reference•New Features: Internal Thermal Shutdown with HysteresisCycle−by−Cycle Current Limiting•Pb−Free Packages are AvailableApplications•Step−Down, Step−Up and Inverting supply applications •High Power LED Lighting•Battery ChargersFigure 1. Typical Buck Application Circuit Lm HSee detailed ordering and shipping information in the packagedimensions section on page 13 of this data sheet.ORDERING INFORMATIONPIN CONNECTIONSTiming CapacitorComparator Inverting InputV CCN.C.I pk Sense GNDSwitch Emitter Switch Collector (Top View)43215678Figure 2. Block DiagramNCP3063Switch CollectorSwitch EmitterTiming Capacitor GNDComparator Inverting Input+V CCI pk SenseN.C.PIN DESCRIPTIONPin No.Pin Name Description1Switch Collector Internal Darlington switch collector2Switch Emitter Internal Darlington switch emitter3Timing Capacitor Timing Capacitor to control the switching frequency4GND Ground pin for all internal circuits5ComparatorInverting InputInverting input pin of internal comparator6V CC Voltage supply7I pk Sense Peak Current Sense Input to monitor the voltage drop across an external resistor to limit the peakcurrent through the circuit8N.C.Pin not connectedMAXIMUM RATINGS (measured vs. pin 4, unless otherwise noted)Rating Symbol Value UnitV CC pin 6V CC0 to +40V Comparator Inverting Input pin 5V CII− 0.2 to + V CC V Darlington Switch Collector pin 1V SWC0 to +40V Darlington Switch Emitter pin 2 (transistor OFF)V SWE− 0.6 to + V CC V Darlington Switch Collector to Emitter pin 1−2V SWCE0 to +40V Darlington Switch Current I SW 1.5AI pk Sense pin 7V IPK− 0.2 to V CC + 0.2V Power Dissipation and Thermal CharacteristicsPDIP−8Thermal Resistance Junction−to−Air R q JA100°C/WSOIC−8Thermal Resistance Junction−to−Air R q JA180°C/W Storage Temperature Range T STG−65 to +150°C Maximum Junction Temperature T J MAX+150°COperating Junction Temperature Range (Note 3) NCP3063NCP3063B, NCV3063T J0 to +70−40 to +125°CStresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.1.This device series contains ESD protection and exceeds the following tests:Pin 1−8: Human Body Model 2000 V per AEC Q100−002; 003 or JESD22/A114; A115Machine Model Method 200 V2.This device contains latch−up protection and exceeds 100 mA per JEDEC Standard JESD78.3.The relation between junction temperature, ambient temperature and Total Power dissipated in IC is T J = T A + R q•P D4.The pins which are not defined may not be loaded by external signalsELECTRICAL CHARACTERISTICS (V CC= 5.0 V, T J= T low to T high[Note 5], unless otherwise specified) Symbol Characteristic Conditions Min Typ Max Unit OSCILLATORf OSC Frequency(VPin 5 = 0 V, CT = 2.2 nF,T J = 25°C)110150190kHzI DISCHG/I CHGDischarge to Charge Current Ratio(Pin 7 to V CC, T J = 25°C) 5.5 6.0 6.5−V IPK(Sense)Current Limit Sense Voltage(T J = 25°C) (Note 6)165200235mV OUTPUT SWITCH (Note 7)V SWCE(DROP)Darlington Switch Collector toEmitter Voltage Drop (I SW = 1.0 A, Pin 2 to GND,T J = 25°C) (Note 7)1.0 1.3VI C(OFF)Collector Off−State Current(V CE = 40 V)0.01100m A COMPARATORV TH Threshold Voltage T J = 25°C 1.250VNCP3063−1.5+1.5%NCP3063B, NCV3063−2+2% REG LiNE Threshold Voltage Line Regulation(V CC = 5.0 V to 40 V)−6.0 2.0 6.0mVI CII in Input Bias Current(V in = V th)−1000−1001000nA TOTAL DEVICEI CC Supply Current(V CC = 5.0 V to 40 V,CT = 2.2 nF, Pin 7 = V CC,VPin 5 > V th, Pin 2 = GND,remaining pins open)7.0mAThermal Shutdown Threshold160°CHysteresis10°C 5.NCP3063: T low = 0°C, T high = +70°C;NCP3063B, NCV3063: T low = −40°C, T high = +125°C6.The V IPK(Sense)Current Limit Sense Voltage is specified at static conditions. In dynamic operation the sensed current turn−off value dependson comparator response time and di/dt current slope. See the Operating Description section for details.7.Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.8.NCV prefix is for automotive and other applications requiring site and change control.Figure 7. Emitter Follower Configuration Output Darlington Switch Voltage Drop vs. Emitter CurrentFigure 8. Common Emitter Configuration Output Darlington Switch Voltage Drop vs.Collector CurrentI E , EMITTER CURRENT (A)I C , COLLECTOR CURRENT (A)F R E Q U E N C Y (k H z )V O L T A G E D R O P (V )V O L T A G E D R O P (V )Figure 9. Comparator Threshold Voltage vs.TemperatureFigure 10. Current Limit Sense Voltage vs.TemperatureT J , JUNCTION TEMPERATURE (°C)T J , JUNCTION TEMPERATURE (°C)1259535205−25−401.201.221.241.261.281.3012550355−10−25−400.100.120.140.180.200.220.280.30Figure 11. Standby Supply Current vs. Supply VoltageV CC , SUPPLY VOLTAGE (V)2.02.53.03.54.55.05.56.0V t h , C O M P A R A T O R T H R E S H O L D V O L T A G E (V )V i p k (s e n s e ), C U R R E N T L I M I T S E N S E V O L T A G E (V )20951100.16I C C , S U P P L Y C U R R E N T (m A )−108065501100.260.2465804.0INTRODUCTIONThe NCP3063 is a monolithic power switching regulator optimized for dc to dc converter applications. The combination of its features enables the system designer to directly implement step−up, step−down, and voltage−inverting converters with a minimum number of external components. Potential applications include cost sensitive consumer products as well as equipment for industrial markets. A representative block diagram is shown in Figure 2.Operating DescriptionThe NCP3063 is a hysteric, dc−dc converter that uses a gated oscillator to regulate output voltage. In general, this mode of operation is somewhat analogous to a capacitor charge pump and does not require dominant pole loop compensation for converter stability. The Typical Operating Waveforms are shown in Figure 12. The output voltage waveform shown is for a step−down converter with the ripple and phasing exaggerated for clarity. During initial converter startup, the feedback comparator senses that the output voltage level is below nominal. This causes the output switch to turn on and off at a frequency and duty cyclecontrolled by the oscillator, thus pumping up the output filter capacitor. When the output voltage level reaches nominal,the output switch next cycle turning on is inhibited. The feedback comparator will enable the switching immediately when the load current causes the output voltage to fall below nominal. Under these conditions, output switch conduction can be enabled for a partial oscillator cycle, a partial cycle plus a complete cycle, multiple cycles, or a partial cycle plus multiple cycles. (See AN920/D for more information).OscillatorThe oscillator frequency and off−time of the output switch are programmed by the value selected for timing capacitor C T . Capacitor C T is charged and discharged by a 1 to 6 ratio internal current source and sink, generating a positive going sawtooth waveform at Pin 3. The oscillator peak and valley voltage difference is 500 mV typically. To calculate the C T capacitor value for required oscillator frequency, use the equations found in Figure 13. An Excel based design tool can be found at on the NCP3063 product page.Figure 12. Typical Operating Waveforms10Output Switch1OnOffFeedback Comparator OutputNominal Output Voltage LevelStartupOperationOutput VoltageTiming Capacitor, C TI PK Comparator OutputPeak Current Sense ComparatorWith a voltage ripple gated converter operating under normal conditions, output switch conduction is initiated by the V oltage Feedback comparator and terminated by the oscillator. Abnormal operating conditions occur when the converter output is overloaded or when feedback voltage sensing is lost. Under these conditions, the I pk Current Sense comparator will protect the Darlington output Switch. The switch current is converted to a voltage by inserting a fractional ohm resistor, R SC , in series with V CC and the Darlington output switch. The voltage drop across R SC is monitored by the Current Sense comparator. If the voltage drop exceeds 200 mV with respect to V CC , the comparator will set the latch and terminate output switch conduction on a cycle−by−cycle basis. This Comparator/Latch configuration ensures that the Output Switch has only a single on−time during a given oscillator cycle.Real V turn−off on Rs Resistort_delayI1Iodi/dt slopeI through the DarlingtonSwitchV ipk(sense)The V IPK(Sense) Current Limit Sense V oltage threshold is specified at static conditions. In dynamic operation the sensed current turn−off value depends on comparator response time and di/dt current slope.Real V turn−off on Rsc resistorV turn_off +V ipk(sense))Rs @(t_delay @di ńdt)Typical I pk comparator response time t_delay is 350 ns.The di/dt current slope is growing with voltage difference on the inductor pins and with decreasing inductor value.It is recommended to check the real max peak current in the application at worst conditions to be sure that the max peak current will never get over the 1.5A Darlington Switch Current max rating.Thermal ShutdownInternal thermal shutdown circuitry is provided to protect the IC in the event that the maximum junction temperature is exceeded. When activated, typically at 160°C, the Output Switch is disabled. The temperature sensing circuit is designed with 10°C hysteresis. The Switch is enabled again when the chip temperature decreases to at least 150°C threshold. This feature is provided to prevent catastrophic failures from accidental device overheating. It is not intended to be used as a replacement for proper heatsinking.Output SwitchThe output switch is designed in a Darlington configuration. This allows the application designer to operate at all conditions at high switching speed and low voltage drop. The Darlington Output Switch is designed to switch a maximum of 40 V collector to emitter voltage and current up to 1.5 A.APPLICATIONSFigures 14 through 22 show the simplicity and flexibility of the NCP3063. Three main converter topologies are demonstrated with actual test data shown below each of the circuit diagrams.Figure 13 gives the relevant design equations for the key parameters. Additionally, a complete application design aid for the NCP3063 can be found at .The Following Converter Characteristics Must Be Chosen:V in − Nominal operating input voltage.V out − Desired output voltage.I out − Desired output current.D I L − Desired peak−to−peak inductor ripple current. For maximum output current it is suggested that D I L be chosen to be less than 10% of the average inductor current I L(avg). This will help prevent I pk(Switch) from reaching the current limit threshold set by R SC. If the design goal is to use a minimum inductance value, let D I L = 2(I L(avg)). This will proportionally reduce converter output current capability.f − Maximum output switch frequency.V ripple(pp) − Desired peak−to−peak output ripple voltage. For best performance the ripple voltage should be kept to a low value since it will directly affect line and load regulation. Capacitor C O should be a low equivalent series resistance (ESR) electrolytic designed for switching regulator applications.9.V SWCE − Darlington Switch Collector to Emitter Voltage Drop, refer to Figures 5, 6, 7 and 8.10.V F − Output rectifier forward voltage drop. Typical value for 1N5819 Schottky barrier rectifier is 0.4 V.11.The calculated t on/t off must not exceed the minimum guaranteed oscillator charge to discharge ratio.Figure 13. Design EquationsFigure 14. Typical Buck Application Schematic+V Value of ComponentsName ValueL20147 m H, I sat > 1.5 AD201 1 A, 40 V Schottky Rectifier C202220 m F, 50 V, Low ESR C205470 m F, 25 V, Low ESRC2032.2 nF Ceramic CapacitorName ValueR201150 m W , 0.5 W R202 2.40 k W R203 3.90 k WC201100 nF Ceramic Capacitor C202100 nF Ceramic CapacitorTest ResultsTestConditionResultsLine Regulation V in = 9 V to 12 V, I o = 800 mA 8 mV Load Regulation V in = 12 V, I o = 80 mA to 800 mA 9 mV Output Ripple V in = 12 V, I o = 40 mA to 800 mA ≤ 85 mV pp EfficiencyV in = 12 V, I o = 400 mA to 800 mA > 73%Short Circuit CurrentV in = 12 V, R load = 0.15 W1.25 AFigure 15. Buck Demoboard LayoutFigure 16. Efficiency vs. Output Current for the Buck Demo Board at V in = 12 V, V out = 3.3 V, T A = 255COUTPUT LOAD (Adc)0.10.20.30.40.50.60.70.80.9 1.0E F F I C I E N C Y (%)76747270686664Figure 17. Typical Boost Application Schematic+V Value of ComponentsName ValueL101100 m H, I sat > 1.5 A D101 1 A, 40 V Schottky RectifierC102470 m F, 25 V, Low ESR C105330 m F, 50 V, Low ESR C1032.2 nF Ceramic CapacitorName ValueR101150 m W , 0.5 W R102 1.00 k W R10318.00 k WC101100 nF Ceramic Capacitor C106100 nF Ceramic CapacitorTest ResultsTestConditionResultsLine Regulation V in = 9 V to 15 V, I o = 250 mA 2 mV Load Regulation V in = 12 V, I o = 30 mA to 350 mA 5 mV Output Ripple V in = 12 V, I o = 10 mA to 350 mA ≤ 350 mV pp EfficiencyV in = 12 V, I o = 50 mA to 350 mA> 85.5%Figure 18. Boost Demoboard LayoutFigure 19. Efficiency vs. Output Current for the BoostDemo Board at V in = 12 V, V out = 24 V, T A = 255COUTPUT LOAD (Adc)00.050.10.150.20.30.4E F F I C I E N C Y (%)908584838281800.250.3589888786Figure 20. Typical Voltage Inverting Application SchematicJ504J503+V Value of ComponentsName ValueL50122 m H, I sat > 1.5 AD501 1 A, 40 V Schottky Rectifier C502330 m F, 25 V, Low ESR C505470 m F, 35 V, Low ESR C5032.2 nF Ceramic CapacitorName ValueR501150 m W , 0.5 W R50216.9 k W R503 1.96 k WC501100 nF Ceramic Capacitor C506100 nF Ceramic CapacitorTest ResultsTestConditionResultsLine Regulation V in = 4.5 V to 6 V, I o = 50 mA 1.5 mV Load Regulation V in = 5 V, I o = 10 mA to 100 mA 1.6 mV Output Ripple V in = 5 V, I o = 0 mA to 100 mA ≤ 300 mV pp EfficiencyV in = 5 V, I o = 100 mA 49.8%Short Circuit CurrentV in = 5 V, R load = 0.15 W0.885 AFigure 21. Voltage Inverting Demoboard LayoutFigure 22. Efficiency vs. Output Current for the Voltage Inverting Demo Board at V in = +5 V,V out = −12 V, T A = 255COUTPUT LOAD (mA dc )8040203638404446485052E F F I C I E N C Y (%)6010042ORDERING INFORMATIONDevice Package Shipping†50 Units / RailNCP3063PG PDIP−8(Pb−Free)50 Units / RailNCP3063BPG PDIP−8(Pb−Free)NCP3063DR2G SOIC−82500 Units / Tape & Reel(Pb−Free)2500 Units / Tape & Reel NCP3063BDR2G SOIC−8(Pb−Free)NCP3063DFN−8TBD(Pb−Free)50 Units / RailNCV3063PG PDIP−8(Pb−Free)NCV3063DR2G SOIC−82500 Units / Tape & Reel(Pb−Free)†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.NCV prefix is for automotive and other applications requiring site and change control.CASE 751−07NOTES:1.DIMENSIONING AND TOLERANCING PERANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: MILLIMETER.3.DIMENSION A AND B DO NOT INCLUDEMOLD PROTRUSION.4.MAXIMUM MOLD PROTRUSION 0.15 (0.006)PER SIDE.5.DIMENSION D DOES NOT INCLUDE DAMBARPROTRUSION. ALLOWABLE DAMBARPROTRUSION SHALL BE 0.127 (0.005) TOTALIN EXCESS OF THE D DIMENSION ATMAXIMUM MATERIAL CONDITION.6.751−01 THRU 751−06 ARE OBSOLETE. NEWSTANDARD IS 751−07.DIMAMIN MAX MIN MAXINCHES4.805.000.1890.197MILLIMETERSB 3.80 4.000.1500.157C 1.35 1.750.0530.069D0.330.510.0130.020G 1.27 BSC0.050 BSCH0.100.250.0040.010J0.190.250.0070.010K0.40 1.270.0160.050M0 8 0 8N0.250.500.0100.020S 5.80 6.200.2280.244 YM0.25 (0.010)Z S X S____ǒmminchesǓSCALE 6:1*For additional information on our Pb−Free strategy and solderingdetails, please download the ON Semiconductor Soldering andMounting Techniques Reference Manual, SOLDERRM/D.SOLDERING FOOTPRINT*NOTES:1.DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.2.PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).3.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.STYLE 1:PIN 1.AC IN 2.DC + IN 3.DC − IN 4.AC IN 5.GROUND 6.OUTPUT 7.AUXILIARY 8.V CCDIM MIN MAX MIN MAX INCHES MILLIMETERS A 9.4010.160.3700.400B 6.10 6.600.2400.260C 3.94 4.450.1550.175D 0.380.510.0150.020F 1.02 1.780.0400.070G 2.54 BSC 0.100 BSC H 0.76 1.270.0300.050J 0.200.300.0080.012K 2.92 3.430.1150.135L 7.62 BSC 0.300 BSC M −−−10 −−−10 N0.76 1.010.0300.040__CASE 626−058 PIN DFN, 4x4CASE 488AF−01ISSUE BNOTES:1.DIMENSIONS AND TOLERANCING PER ASME Y14.5M, 1994.2.CONTROLLING DIMENSION: MILLIMETERS.3.DIMENSION b APPLIES TO PLATEDTERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.4.COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.DIM MIN MAX MILLIMETERS A 0.80 1.00A10.000.05A30.20 REF b 0.250.35D 4.00 BSC D2 1.91 2.21E 4.00 BSC E2 2.09 2.39e 0.80 BSC K 0.20−−−L0.300.508XSCALE 2:1*For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.SOLDERING FOOTPRINT*ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.PUBLICATION ORDERING INFORMATION。
moc3063光耦参数
moc3063光耦参数MOC3063光耦参数MOC3063光耦是一种光电耦合器件,常用于电气隔离和信号传输的应用中。
它由发光二极管(LED)和光敏三端子可控硅(TRIAC)组成。
本文将详细介绍MOC3063光耦的参数特性及其在电路设计中的应用。
1. 输入参数MOC3063光耦的输入参数主要包括工作电流和工作电压。
工作电流通常为10-20毫安(mA),工作电压为1.2-1.5伏特(V)。
通过控制输入端的电流和电压,可以实现对光耦的开关控制。
2. 输出参数MOC3063光耦的输出参数包括最大阻断电压和最大导通电流。
最大阻断电压一般为400-600伏特(V),最大导通电流为1安(A)。
这些参数决定了光耦在电路中的承受能力,可以帮助设计者选择合适的负载和保护元件。
3. 灵敏度MOC3063光耦的灵敏度是指输入光功率和输出电流之间的关系。
光功率的增加会导致输出电流的增加,反之亦然。
通过控制输入端的光功率,可以实现对输出电路的精确控制。
4. 响应时间MOC3063光耦的响应时间是指从输入端接收到光信号到输出端相应变化所需的时间。
一般来说,响应时间越短,光耦的响应速度越快。
这对于需要高速开关和传输的应用非常重要。
5. 耦合电容MOC3063光耦的耦合电容是指输入端和输出端之间的电容。
耦合电容越小,输入端的信号更容易传输到输出端,但也容易受到外部干扰。
在设计电路时,需要根据具体应用需求来选择合适的耦合电容值。
6. 绝缘电阻MOC3063光耦的绝缘电阻是指输入端和输出端之间的电阻。
它用于衡量光耦的隔离性能,绝缘电阻越大,光耦的隔离效果越好。
在高压和高频应用中,需要选择具有较高绝缘电阻的光耦。
7. 工作温度MOC3063光耦的工作温度范围一般为-40到85摄氏度。
在不同的工作环境中,需要考虑光耦的温度特性,以确保其性能和可靠性。
MOC3063光耦作为一种常见的光电耦合器件,在电气隔离和信号传输领域有着广泛的应用。
它可以用于交流电路的开关控制、电机驱动、继电器控制等。