An oblique projection filtering based DOA estimation algorithm without a priori knowledge
英汉人文地理词汇
A阿朗索模型Alonso model阿罗定理Arrow’s theoremB保护conservation备选格网分析repertory grid analysis背景理论contextual theory背景效应contextual effect本体论ontology比较成本分析comparative cost analysis 比较优势comparative advantage边疆frontier边疆理论frontier thesis边界boundary边缘带fringe belt辩证法dialectic变动成分components of change变量转换transformation of variables 波斯坦论题Postan thesis博塞洛普论点Boserup thesis博弈论game theory伯克利学派Berkeley School不公平分配选区malapportionment不公正的选区划分gerrymandering不均衡发展uneven development不确定性uncertainty布赖纳争议Brenner debateC财政危机fiscal crisis财政转移fiscal migration参与观察participant observation残差residual测度measurement测量measurement ; survey产业组织industrial organization场所place ;locale超空间hyperspace超前——滞后模型lead-lag models成本结构cost structrue成本面cost surface成本曲线cost curve成本收益分析cost-benefit analysis城市urban ; city城市企业家化urban entrepreneurialism城市村庄urban village城市的职能分类functional classification of cities 城市地理学urban geography城市更新urban renewal城市管理者与守护者urban managers and gatekeepers 城市规模分布city-size distribution城市化urbanization城市集居区barrio城市景观townscape城市起源urban origins城市群conurbation城市社会运动urban social movement城市生活方式urbanism城市生态学urban ecology城市首位律primate city , law of the城市特殊人口聚居区ghetto城市体系urban system城市与区域规划urban and regional planning城乡边缘带rural- urban fringe城乡过渡带rural- urban fringe城乡连续谱rural- urban continum城镇town乘数multipliers承载力carrying capacity尺度scale冲突conflict重组restructuring抽象化abstraction抽样sampling初始工业化protoindustrialization出口加工区export platform出行travel传播diffusion创新innovation粗放农业extensive agriculture村庄village存在主义existentialismD达尔文主义Darwinism大都市带megalopolis大都市劳动力区metropolitan labour area (MLA)大理论Grand Theory大陆架continental shelf带状发展ribbon development代表权representation等费线isodapane等级规模法则rank-size rule等值线isarithms ; isolines ; isopleths抵抗态度NIMBY帝国主义imperialism蒂伯特模型Tiebout model蒂森多边形Thiessen polygon第二住宅second home第三世界Third Word地带zone地点locale地方place地方感sence of place地方效用place utility地方政府local state地方主义regionalism地理信息系统geographical information systems (GIS)地理学geography地理学和分析马克思主义analytical Maxism , geography地理学会geographical societies地理学史geography , history of地理学与公正justice , geography and地理学与伦理ethics , geography and地理学想象力geographical imagination地理战略区域geostrategic regions地理政治变迁geopolitical transition地理政治学geopolitics地理知识论geosophy地名place-names地盘政治turf-politics地图影像与地图map image and map地图学cartography地图学史cartography , history of地形图topographic map地形转换transformation地域territory地域单元问题areal unit problem地域分异areal differentiation地域社会指标territorial social indicator地域性(体)locality地缘政治学geopolitik地租rent地租缺口rent gap调查surveying ; survey调查分析survey analysis定量方法quantitative methods定期集市体系periodic market systems定性方法qualitative methods东方主义orientalism都市区metropolitan area读图map reading杜能模型von ThÜnen model对数--线性模型log—linear modelling多层次模型multilevel modelling多国公司multinational corporation(MNC)多核心模型multiple nuclei model多米诺理论domino theory多维标度multidimensional scaling(MDS)多元社会plural society多元文化主义multiculturalism多元论pluralismE二项分布binomial distribution二元经济dual economyF发达development发展development发展方式mode of development发展极growth pole发展论developmentalism法兰克福学派Frankfurt School法律地理学law , geography of法则law反工业化deindustrialization反馈feadback反事实解释法couterfacture explanation反推法retrogressive approach反证法retroduction范式paradigm范围经济economies of scope犯罪地理学crime , geography of方差分析analysis of variance (ANOVA)方法论个人主义methodological individualism方言dialect方域地理学chorography方志学chorology仿真simulation非参数统计学non-parametric statistics非法占用squatting非法占用者居住区squatter settlement非汇总交通需求模型disaggegate travel demand modelling非均衡发展uneven development非正式部门informal sector菲利普斯曲线Phillips curve分岔bifurcation分成制sharecropping分割cleavage分割的劳动市场segmented labour market分级统计图choropleth map分类区间class interval分类与规划classification and regionalization 分配方式mode of distribution分配者gatekeepers分区模型zonal model分区制zoning分权devolution封建制度feudalism封建主义feudalism风险risk福利地理学welfare geography福利国家welfare state福特制Fordism福特主义Fordism福祉well-being符号学semiology (semiotics)符号互动论symbolic interactionism符号化symbolization服务阶级service class服务业地理学service , geography of辅助数据分析secondary data analysis抚养比dependency ratio腹地hinterland负担系数dependency ratioG概率地图probability map感应perception隔离segregation隔离指数indices of segregation耕作cultivation耕作类型farming , type of耕作业farming更替率replacement rates更新renewal工具主义instrumentalism工业地理学industrial geography工业革命industrial revolution工业惯性industrial inertia工业化industrialization工业区位论industrial location theory工业区位政策industrial location policy功能主义functionalism供给曲线supply curve公共财政地理学public finance , geography of公共地的悲剧tragedy of the commons公共服务业地理学public services , geography of公共管理地理学public administration , geography of 公共物品public goods公共选择理论public choice theory公共政策地理学public policy , geography of公民权citizenship公正justice共产主义communism共同市场common market共线性collinearity共享资源common pool resources关联性relevance关税tariff观念类型ideal types管制学派regulation school光谱分析spectral analysis规范理论normative theory规划planning规模scale规模经济economics of scale国家state国家二元论dual theory of the state国家公园national parks国家机器state apparatus国民生产总值gross national product (GNP)国内生产总值gross domestic product (GDP)过程process过度城市化overurbanization过滤filteringH海洋法law of sea旱作农业dry farming核心—边缘模式core-periphery model核心区域core area合成理论compositional theory合作社cooperative合作主义corporatism黑色经济black economy红线歧视redlining宏观地理学macrogeography后福特主义post-Fordism后工业城市post-industrial city后工业社会post-industrial society后结构主义poststucturalism后马克思主义post-Maxism后现代主义postmodernism后殖民主义postcolonialism厚描thick description互补性complementarity花园城市garden city划分fragmentation划区算法districting algorithm话语discourse环境environment环境感知environmental perception环境决定论environmental determinism ; environmentalism 环境论environmentalism环境审核environmental audit环境影响评价environmental impact assessment环境运动environmental movement环境灾害environmental hazard环境主义environmentalism荒漠化desertification荒野wilderness回归regression会展地理学spectacle , geography of汇总交通模型aggregate travel model混沌chaos混沌概念chaotic conception混合经济mixed economy混合农业mixed farming活动分配模型activity allocation model活动空间activity space霍特林模型Hotelling model或然论probabilism货币地理学money , geography ofJ激进地理学radical geography积极的歧视positive discrimination积累accumulation积累制度regime of accumulation基本供给品merit good基布兹(以色列集体农庄)kibbutz基础设施infrastructure机会成本opportunity cost饥荒famines集合城市conurbation集聚体agglomeration集体collective集体消费collective consumption集约农业intensive agriculture集中化centralization集中化和中心化concentration and centralization 即时生产just-in-time计量革命quantitative revolution计算机辅助制图computer-assisted cartography寄居工人gastarbeitev家庭重构family reconstitution家庭类型family types假说hypothesis价格政策pricing policies价值观values兼职农业part-time farming监测surveillance监督surveillance阶层class阶级class健康与保健地理学health and health care , geography of 交换reciprocity交通travel交通地理学transport geography交易分析transactional analysis郊区suburb校准calibration教育education教育地理学education , geography of街区级变blockbusting结构功能主义structural functionalism结构化理论structraction theory结构马克思主义structural Maxism结构主义structuralism结婚率nuptiality解除管制deregulation解构主义deconstruction解释学hermeneutics进化论Darwinism经济地理学economic geography经济基础infrastructure经济基础理论economic base theory经济人economic man经济一体化形式form of economic integration 经验主义empiricism景观landscape ; landschaft竞争方式genre de vie竞租曲线bid-rent curve敬地情结geopiety救济区zone of depedence聚落settlement聚落连续性settlement continuity距离摩擦friction of distance距离衰减distance decay决策decision-making决定论determinism均衡equilibriumK卡方检验chi square开发development开拓地frontier康德拉季耶夫周期Kondratieff cycles康德主义Kantianism康乐recreation科学园science park可变成本分析variable cost analysis可变收益分析variable revenue analysis可持续发展sustainable development可能论possibilism可修正地域单元问题modifiable areal unit problem 可转移性transferability克里斯塔勒模型Christaller model客籍工人gastarbeitev空间space空间边际spatial margin空间不均衡inequality , spatial空间崇拜spatial fetishism空间费用曲线space cost curve空间分离论spatial separatism空间分析spatial analysis空间结构spatial structure空间经济学space-economy空间科学spatial science空间垄断spatial monopoly空间偏好spatial preference空间的生产production of space空间收益曲线space revenue curve空间相互作用spatial interaction空间性spatiality空间自相关spatial autocorrelation跨国公司transnational corporation扩散diffusionL拉马克主义Lamarck(ian)ism劳动labour劳动分工division on labour劳动过程labour process劳动价值论labour theory of value劳动力市场labour market劳里模型Lowry model勒普拉社会Le Play Society类型数据分析categorical data analysis离散选择模型discrete choice modelling离心力和向心力centrifugal and centripetal forces 理论theory理性选择理论rational choice theory利润面profit surface例外主义exceptionalism历史地理学historical geography历史唯物主义historic materialism联邦制federalism联合主义consociationalism联盟alliance联系linkages连锁linkages连通度connectivity连续占据sequent occupance链式迁移chain migration恋地情结topophilia邻里neighbourhood邻里单元neighbourhood unit邻里效应neighbourhood effect零售业地理学retailing , geography of领地territory领海territorial sea领土territory领土性territoryiality“陆军中尉”研究subaltern studies旅游地理学tourism , geography of绿带green belt绿色革命green revolution逻辑斯蒂模型logit逻辑实证主义logical positivismM马尔可夫过程(或马尔可夫链)Markov processes (or Markov chains )马尔萨斯模型Malthusuan model马克思主义地理学Maxist geography马克思主义经济学Maxist economics满意化行为satisfying behaviour蔓延sprawl贸易trade贸易比价terms of trade门户城市gateway city密度梯度density gradient面surface面谈interviewing苗床地区seed bed location民族nation民族方法学ethnomethodology民族国家nation-state民族统一主义irredentism民族性ethnicity民族志ethnography民族主义nationalism模拟simulation模式model模型modelN南--北North-South男性中心主义phallocentrism难民refugees内城inner city内飞地exclave内涵式研究intensive research内在关系internal relations能量energy能源energy逆城市化counterurbanization 逆向法retroduction逆中心化decentralization年鉴学派Annales School年龄与性别结构age and sex structure 农场划分farm fragmentation 农民peasant农田系统field system农业agriculture农业地理学agriculture geography 农业革命agriculture revolution 农业退化agriculture involution 农业综合企业agribusiness奴隶制度slavery女权主义地理学家feminist geographies P帕累托最优Pareto optimality配置allocation批判理性主义critical rationalism皮雷纳命题Pirenne thesis毗连区contiguous zone偏离—份额模型shift-share model贫困poverty贫困的循环cycle of poverty贫民窟slum贫民区slum平等equality平衡邻里balanced neighourhood 平均信息场mean information field 频率分布frequency distribution频数分布frequency distribution剖面cross-sectionQ歧视discrimination企业区enterprise zone迁徙耕种shifting cultivation迁移migration前工业城市preindustrial city欠发达underdevelopment欠消费underconsumption侵入和演替invasion and succession 囚徒困境prisoner’s dilemma区段section区划regionalization区际人口统计population accounts区位布局模型location-allocation model 区位分析location analysis区位理论location theory区位三角形locational triangle区位商location quotient区位相互依赖locational interdependence区域region区域地理学regional geography ; chorology ; chorography 区域公正territorial justice区域阶级联盟regional science区域经济周期regional cycles区域科学regional science区域联盟regional alliance区域趋同regional convergence ; convergence , regional 区域政策regional policy曲面surface趋势面分析trend surface analysis圈地enclosure权力power全球变暖(与温室效应) global warming (and greenhouse effect )全球未来global futures群落communityR人本主义地理学humanistic geography人口变动模型commodity人口地理学commercial geography人口过剩overpopulation人口金字塔population pyramid人口零增长zero population growth (ZPG )人口密度population density人口普查census人口普查区census tract人口潜力population potential人口预测population projection人类地理学anthropogeography人类能动性human agency人类生态学human ecology人类生态学方法错误ecological fallacy人类主观性subjectivity , human , human subjectivity 人类作用human agency人为灾害hazard , human-made人文地理学human geography人种学ethnography认识论epistemology日常城市体系daily urban system瑞利法则Reilly’s lawS扇形模型sectoral model商品commodity商业地理学commercial geography熵entropy熵最大化模型entropy-maximizing models上层建筑superstructure舍贝里模型Sjoberg model社会society社会达尔文主义social Darwinism社会地理学social geography社会反常状态anomie社会福祉social well-being社会公正social justice社会距离social distance社会空间social space社会理论social theory社会区分析social area analysis社会网络social network社会物理学social physics社会形态social formation社会运动social movement社会再生产social reproduction社会指标social indicator社会主义socialism社区community社团societies绅士化gentrification神圣空间与世俗空间sacred and profane space生产production生产地域综合体territorial production complex (TPC)生产方式mode of production生产力forces of production ; productive forces 生产率productivity生产要素factors of production生产者服务业production services生产综合体production complex生存空间lebensraum生活世界lifeworld生活质量quality of life生命表life table生命周期life-cycle生态系统ecosystem生态学ecosystem生育率fertility实用主义pragmatism实在论realism实证主义positivism识别问题的要领problematic时间地理学time-geography时空会聚time-space convergence时空趋同time-space convergence时空压缩time-space compression时空延展time-space distanciation时空预测模型space-time forecasting model 市场market市场交换market exchange市场潜能模型market potential model市场区分析market area analysis市场指向market orientation市民身份citizenship世界城市world city世界系统分析world-system analysis适度人口optimum population收益revenue收益面revenue surface守护者gatekeepers数据分析data analysis数据库database数量革命quantitative revolution数字化digitizing水利社会hydraulic society私人和公共领域private and public spheres私有化privatization死亡率mortality搜索行为search behaviour酸雨acid rain随机过程stochastic processT泰勒主义Taylorism弹性积累flexible accumulation探索数据分析exploratory data analysis 探险exploration特大城市区megalopolis特殊性idiographic体育地理学sport , geography of天然地区nature调整restructuring通达性accessibility通勤commuting通则性nomothetic同化assimilation同批人cohort统计地图cartogram统计学statistics投入—产出input-output投影projection投资investment投资层次layers of investment突变论catastrophe theory图解法iconography图论graph theory图形能力graphicacy土地改革land reform土地利用调查land use survey土地占有land tenure推动主义boosterism推理inference退出、抱怨和信任exit , voice and loyalty脱离secessionW外部经济external economies外部性externalities外飞地enclave外界externalities外延式研究extensive research网络network微观模拟microsimulation危机crisis韦伯模型Weber model围地enclosure唯心主义idealism维护preservation维也纳学派;维也纳小组Vienna Circle (Wiener Kreis)温室效应greenhouse effect文本text文化culture文化霸权hegemony , effect文化地理学cultural geography文化景观culture landscape文化区culture area文化生态学culture ecology文化政治学culture politics文化资本culture capital文化核心culture heart文明社会civil society稳定人口stable population问卷questionnaire问题的构成problematic污染pollution无差异曲线indifference curve无地方性placelessness无家可归homelessness无序资本主义disorganize capitalism无政府主义anarchismX习性habitus系统system系统分析system analysis下层阶级underclass下等街区skid row显示偏好分析revealed preference analysis 显著性检验significance text现代化modernization现代性modernity现代主义modernism现象环境phenomenal environment现象学phenomenology线性规划linear programming相关correlation相互依赖interdepedence相互作用interaction乡村rural乡村地理学rural geography乡村规划rural planning乡村社区rural community想当然的世界taken-for-granted world消费地理学consumption, geography of消费者服务业consumer service小农peasent效率effciency效用utility效用理论utility theory心脏地带heartland新城new town新古典经济学neoclassical economics新国际劳动分工new international division of labour (NIDL)新李嘉图经济学neo-Ricardian economics新殖民主义neocolonialism信息城市information city信息论information theory形态morphology形态测量morphometry形态发生morphogenesis形态学morphology行为空间action space行为behaviour行为地理学behavioural geography行为环境behavioural environment性别与地理学gender and geography性与地理学sexuality and geography性质nature休闲recreation休闲地理学leisure, geography of修辞学rhetoric需求曲线demand curve畜牧pastozalism选举地理学electoral geography学会societies雪带snowbelt循环recyclingY亚细亚生产方式Asiatic model of production 演替succession验证数据分析confirmatory data analysis 阳光带/雪带sunbelt/snowbelt样方quadrat(e)遥感remote sensing野外性wilderness野外工作fieldwork依附dependence依附带zone of dependence一般线性模型general linear model一般系统论general systems theory一体化integration医学地理学medical geography遗产制度inheritance system移动mobility移居diaspora移民劳动力migrant labour意境地图mental map意识形态ideology异化alienation因子分析factor analysis因子复合体compage因子生态学factorical ecology应用地理学applied geography游牧transhumance游牧生活nomadism有序资本主义organize capitalism友邻效应friend-and-neibours effect语言language语言与方言地理学language and dialect, geography 语义(学)差别semantic difference预测forecasting预测寿命life expectancy预算estimate预言predicition原料指向material orientation援助aid运费率freight rate运输成本transport cost运输方式划分modal spilt运输问题transportation problemZ再分配redistribution暂时城市化temporary urbanization增长growth增长的极限limits to growth增长极growth pole增长阶段stages of growth占据occupancy整体论holism正态分布normal distribution证伪falsification政治地理学political geography政治经济学political economy芝加哥学派Chicago School殖民主义colonialism指令经济command economy治安地理学policing , geography of滞后hysteresis中间机会intervening opportunities中心地理论central place theory中心化centralization中心商务区central business district (CBD)中心图学centrography中央计划central planning种植园plantation种族race种族隔离apartheid种族中心主义ethnocentrism种族主义racism重力模型gravity model重商主义模式mercantile model主成分分析principal components analysis (PCA)主导产品staple主导产品理论staples theory主权sovereignty住房阶层housing class住房研究housing studies专家系统expert systems专题地图thematic map追溯法retrospective approach资本capital资本循环circuit of capital资本主义capitalism资源resource资源管理研究resource management资源管理部门resource management资源评价resource evaluation自发聚落spontaneous settlement自给农业subsistence agriculture自决权self-determination自然nature自然区natural area自然主义naturalism自然资源natural resource自相关autocorrelation自由布局型工业footloose industry自由港free port自由贸易区free trade area宗教地理学religion , geography of纵向课题vertical theme纵向数据分析longitudinal analysis租金rent最佳城市规模optimum city size最近相邻分析nearest neighbour analysis 最小最大化准则maximum criterion最优化模型optimization model。
基于Gabor原子的雷达辐射源信号无意调制特征提取
2 S h o fElc rc l g n e ig,S u h s io o g Un v r iy . c o lo e tia En i e rn o t we tJa t n ie st ,Ch n d 1 0 1 e g u 6 0 3 ,Ch n ) i a
Ab t a t s r c :An a p o c fu i t n i n lmo u a i n f a u e e t a to fr d r e te i n l sp e e t d a o h d — p r a h o n n e t a d l to e t r x r c i n o a a mit r sg a si r s n e s f r t e i i o n v d a if r n e .Ba e n t e o e — o p e e d c i n r fGa o t ms hec n i u u v a a mit r sg a swih i u l fe e c s d s d o h v r c m l t i t a y o b r a o o ,t o t o swa e r d r e t e i n l t n
己 口 9月 口I年 第己 卷 第 g期 g
基 于 G b r原 子 的雷 达辐 射 ao 无 意调 制特 征 提 取 *
田 波 张 葛 祥 。 龙 良将 王 庆 。
( .西 南 交 通 大 学 信 息 科 学 与技 术 学 院 成 都 6 0 3 ; 1 101
关 键 词 : 达 辐 射 源 ; 意 调 制 ; 征 提 取 ; 配 追 踪 雷 无 特 匹
中 图分 类 号 :TN9 5 5 文献 标 识 码 :A
Uni t nt0 lm o u a i n f a u e e t a to f r d r e it r n e i na d l to e t r x r c i n o a a m t e
混合Filter与改进自适应GA的特征选择方法
20215711特征选择是指为了降低数据维度,在保证特征集合分类性能的前提下,从原始特征集合中选出具有代表性的特征子集。
对于特征选择方法,按照分类器在算法选择特征过程中的参与方式进行分类,可将其分为三类:过滤式(Filter)、包装式(Wrapper)和嵌入式(Embedded)。
过滤式的特征选择方法先对初始特征进行过滤,再用过滤后的特征训练模型,所以过滤式方法有计算量小、易实现的优点,但分类精度较低;包装式的特征选择方法由于在其特征选择过程中需要多次训练分类器,计算开销通常比过滤式特征选择要大得多,但分类效果要好于过滤式;嵌入式特征选择在分类器训练过程中将自动地进行特征选择,利用嵌入式特征选择,分类效果明显但参数设置复杂且时间复杂度较高。
遗传算法(GA)是一种基于种群的迭代的元启发式优化算法,对初始化个体通过算法的编码技术和一些基本的遗传算子选择、交叉、变异等操作,依据个体的适应度值进行选择遗传,经过迭代,得到适应度最高的个体[1]。
遗传算法以生物进化为原型,具有良好的全局搜混合Filter与改进自适应GA的特征选择方法邱云飞,高华聪辽宁工程技术大学软件学院,辽宁葫芦岛125100摘要:针对高维度小样本数据在特征选择时出现的维数灾难和过拟合的问题,提出一种混合Filter模式与Wrapper 模式的特征选择方法(ReFS-AGA)。
该方法结合ReliefF算法和归一化互信息,评估特征的相关性并快速筛选重要特征;采用改进的自适应遗传算法,引入最优策略平衡特征多样性,同时以最小化特征数和最大化分类精度为目标,选择特征数作为调节项设计新的评价函数,在迭代进化过程中高效获得最优特征子集。
在基因表达数据上利用不同分类算法对简化后的特征子集分类识别,实验结果表明,该方法有效消除了不相关特征,提高了特征选择的效率,与ReliefF算法和二阶段特征选择算法mRMR-GA相比,在取得最小特征子集维度的同时平均分类准确率分别提高了11.18个百分点和4.04个百分点。
结合频谱聚类与经验小波的轴承故障诊断方法
144机械设计与制造Machinery Design&Manufacture第5期2021年5月结合频谱聚类与经验小波的轴承故障诊断方法唐泽娴1,林建辉1,张兵',杨基宏2(1.西南交通大学牵引动力国家重点实验室,四川成都610031;2.中车青岛四方机车车辆股份有限公司,山东青岛266111)摘要:实测轴承振动信号就有非平稳、非线性特征,因此,对该类信号的分析需要进行解调得到特征频率,在众多解调法中包络分析是最为常用的方法;为了使解调结果更加清晰,常在解调前进行滤波,达到滤除干扰成分可有效提升解调的效果。
经验小波变换提供了基于频带划分的小波滤波框架,划分后频带可滤除部分干扰信号,突出故障信号。
对此,受“箱型图”和层次聚类法的启发,对“突出值”聚类法进行频带划分,通过平方包络互相关系数选取合理的频带划分个数。
最后选取平方包络峭度值最大的滤波子信号进行Teager能量算子解调,获取特征频率。
文章针对不同工况下的不同故障类型轴承运行数据进行分析,验证算法的有效性。
特别地,在复合故障分析中,利用动态阈值法到达分别突出不同轴承故障频率的效果。
关键词:滚动轴承故障诊断;经验小波变换;箱型图;层次聚类;平方包络;动态阈值中图分类号:TH16;U270.3文献标识码:A文章编号:1001-3997(2021)05-0144-05Bearing Fault Diagnosis Method Using Spectral Clustering and Empirical WaveletTANG Ze-xian1,LIN Jian-hui1,ZHANG Bing1,YANG Ji-hong2(1.State Key Laboratory of Traction Power,Southwest Jiaotong University,Sichaun Chengdu610031,China;2.CRRC Qingdao Sifang Co.,Ltd.,Shandong Qingdao266111,China)Abstract:The measured bearing vibration signals are usually non-stationary and non-linear,so the demodulation is necessary to obtain the frequency characteristic frequency.A mong lots of demodulation methods,envelope analysis is the most popular one.When using the envelope analysis demodulation method,filtering is necessary to wipe out irrelevant signal components which can effectively improve the demodulation effect.Empirical wavelet transform provides a wavelet filter framework based on frequency band division and it can achieve the purpose of f iltering out the interfering signals and highlight fault signals.Inspired by box-plot andhierarchical clustering,the method of"outliers"clustering is proposed for frequency band division, and reasonable number of f requency band divis ion is selected by means of cross correlation coefficient.Finally,the filter signal with the maximum square envelope kurtosis value is selected for the square envelope demodulation to obtain the characteristic frequency employing the Teager energy operator.The validity of the algorithm is verified by analyzing the measured data of the failure bearingscf different kinds under different working conditions collected from a test bed.Specially, dynamic threshold is used to highlight the characteristic frequencies^different bearingfaults.Key Words:Rolling Bearing Fault Diagnosis;Empirical Wavelet Transform;Box Figure;Hierarchical Clustering;Squared Envelope;Dynamic Threshold1引言高速列车在交通与工业领域起到越来越重要的作用。
频率分集雷达最优频率间隔选择方法
收稿日期:2016-07-12 网络出版时间:2017-03-15基金项目:国家自然科学基金资助项目(61571344);上海航天科技创新基金资助项目(S A S T 2015071,S A S T 2015064)作者简介:项 喆(1992-),男,西安电子科技大学博士研究生,E -m a i l :x z y s n 152@163.c o m.网络出版地址:h t t p://k n s .c n k i .n e t /k c m s /d e t a i l /61.1076.T N.20170315.1039.006.h t m l d o i :10.3969/j.i s s n .1001-2400.2017.04.003频率分集雷达最优频率间隔选择方法项 喆,陈伯孝,杨明磊(西安电子科技大学雷达信号处理国家重点实验室,陕西西安710071)摘要:传统的频率分集阵列雷达采用固定的频率间隔,从而限制了其在不同环境下的抗干扰性能.针对上述问题,提出了在干扰背景下基于斜投影滤波的频率间隔最优选择方法.通过对斜投影滤波输出信干噪比的分析,构建输出信干噪比与频率间隔的优化问题,并在每一个相干处理时间内得到最优的频率间隔.利用认知雷达的思想,将得到的最优频率间隔应用于下一个相干处理时间.理论和仿真均证明了频率分集阵列雷达能对抗主瓣干扰,而且当采用最优频率间隔时,频率分集阵列雷达可以获得更好的抗干扰性能.关键词:频率分集;斜投影;主瓣;频率间隔;滤波中图分类号:T N 973.2 文献标识码:A 文章编号:1001-2400(2017)04-0012-06F r e q u e n c y i n c r e m e n t o p t i m i z a t i o nm e t h o d f o r f r e q u e n c y di v e r s e r a d a r X I A N GZ h e ,C H E N B a i x i a o ,Y A N G M i n g l e i (N a t i o n a lK e y L a b .o fR a d a r S i g n a l P r o c e s s i n g,X i d i a nU n i v .,X i a n710071,C h i n a )A b s t r a c t : T h e c o n v e n t i o n a l F r e q u e n c y d i v e r s e a r r a y (F D A )e m p l o y s t h e f i x e d f r e q u e n c y i n c r e m e n t ,w h i c h r e s t r i c t s i t s a p p l i c a t i o n s i nv a r i o u s e n v i r o n m e n t s .W i t h t h e a b o v e f i n d i n g s ,w e p r o p o s e a no p t i m a l f r e q u e n c yi n c r e m e n t s e l e c t i o nm e t h o db a s e do no b l i q u e p r o j e c t i o n f i l t e r i n g f o rm a i n l o b e i n t e r f e r e n c e s u p p r e s s i o n .W e c a n o b t a i n t h e o p t i m a l f r e q u e n c y i n c r e m e n t b y m a x i m i z i n g t h e o u t p u t S I N Ro f t h e o b l i q u e p r o je c t i o nf i l t e r i n e a c hc o h e r e n t p r o c e s s i ng i n t e r v a l (C P I ).I n s p i r e db y th ec o g ni t i v er a d a r ,t h eo p t i m a l f r e q u e n c y in c r e m e n t w i l l b eu s e di nt h en e x tC P I .S i m u l a t i o nr e s u l t sd e m o n s t r a t et h a t j a mm i n g c a nb ee f f e c t i v e l y s u p p r e s s e d w i t h t h e r a d a r c o n f i g u r a t i o n ,a n d t h a t b e t t e r p e r f o r m a n c e i s a c h i e v e dw i t ha no p t i m a l f r e q u e n c y i n c r e m e n t .K e y Wo r d s : f r e q u e n c y d i v e r s i t y ;o b l i q u e p r o j e c t i o n ;m a i n l o b e ;f r e q u e n c y i n c r e m e n t ;f i l t e r i n g 随着数字射频存储转发技术的飞速发展,数字射频存储转发式干扰对雷达产生了严重的威胁[1].数字射频存储转发式干扰通过对雷达的发射波形进行截获㊁调制转发,从而可以在任意距离和多普勒单元形成假目标,这对雷达的目标检测和识别带来了很大的困难.常规的自适应波束形成技术能够对旁瓣干扰进行抑制,而针对主瓣干扰,自适应波束形成技术将带来雷达主波束变形和旁瓣升高的问题[2-3].近年来,频率分集阵列(F r e q u e n c y D i v e r s eA r r a y ,F D A )受到了国内外学者的广泛关注[4-6].频率分集阵列雷达通过在发射阵元之间使用一定的载频差,在空间形成距离-角度耦合的波束方向图[4].相对常规的相控阵雷达,频率分集阵列雷达扩展了距离维的自由度,可以利用距离和角度维的信息进行联合抗干扰.文献[5]中介绍了频率分集阵列雷达的距离和角度的参数估计方法.另外,文献[6]中提出了一种干扰背景下的频率分集阵列频率间隔的自适应选择方法,通过每个脉冲之间的频率搜索,得到最优的频率间隔.然而,这种方法并没有从原理上对输出信干噪比(S i g n a l t o I n t e r f e r e n c e a n dN o i s eR a t i o ,S I N R )和最优频率间隔之间的关系进行分析.在此基础上,F D A -M I MO 雷达也得到了广泛研究[7-8].F D A -M I MO 雷达联合了多输入多输2017年8月第44卷 第4期 西安电子科技大学学报(自然科学版)J O UR N A L O F X I D I A N U N I V E R S I T Y A u g .2017V o l .44 N o .4出(M u l t i p l e -I n p u tM u l t i p l e -O u t p u t ,M I MO )雷达和频率分集阵列雷达的优点,不但可以获得多输入多输出雷达具有的角度分辨率和目标检测能力,也可以获得频率分集阵列雷达的距离维自由度.在文献[7]中提出了F D A -M I MO 雷达鉴别真目标和有源假目标干扰的方法,并研究了对抗假目标干扰的方法.另外,在文献[8]中介绍了F D A -M I MO 雷达距离和角度的参数估计方法.斜投影算子被广泛利用在多域联合滤波中,利用斜投影滤波不仅能够对干扰进行抑制,而且不改变目标信号的幅度和相位[9].文献[10]中将斜投影算子利用到极化域中,实现极化域中的抗干扰.笔者结合斜投影算子,对频率分集阵列雷达和F D A -M I MO 雷达的有源假目标干扰进行抑制,并通过分析滤波输出信干噪比,得到对频率分集阵列雷达和F D A -M I MO 雷达的最优发射频率间隔的优化问题.根据认知雷达的概念[11],将当前相干处理时间内得到的最优发射频率间隔应用于下一个相干处理时间,以提升输出信干噪比.同时,分析了目标机动和参数估计误差对输出信干噪比的影响.理论和仿真均证明了频率分集阵列体制雷达能够对主瓣角度内的干扰进行抑制,并且通过对发射频率间隔的优化选择,可以得到更好的抗干扰性能.图1 频率分集阵列雷达空间示意图1 信号模型假设M 个阵元的均匀线阵同时作为频率分集阵列雷达的发射阵和接收阵,如图1所示.其相邻阵元之间的载频差为Δf ,那么M 个阵元的载频为f m =f 0+(m -1)Δf , m =1,2, ,M .(1) 将第1个阵元作为参考阵元.当该阵列工作在相控阵模式时,每个阵元发射相同信号.针对角度为θ㊁距离为r 的目标,阵列通过发射波束形成在空间合成波束,经过目标反射到达接收阵,此时第m 个阵元与参考阵元之间的相位差为[3]ψm -ψ0=-2πf 0(m -1)d s i n θc +2π(m -1)Δf r c -2π(m -1)2Δf d s i n θc,(2)其中,c 为光速,d 为阵元间距.由于(M -1)2Δf d ≪c ,此时可以忽略式(2)中的第3项.那么阵列的导向矢量可以表示为a (θ,r ,Δf )=1, ,e x p -j 2πf 0(M -1)d s i n θ-(M -1)Δf r æèçöø÷éëêêùûúúc T .(3) 距离转发式干扰通过截获雷达的发射信号,并通过调制向雷达进行延时转发形成假目标,干扰机通过调整内部的转发延时使假目标可以位于任意距离单元.为了影响雷达的检测能力和识别能力,通常真目标会湮没于假目标之中.假设空间中存在1个目标和K 个干扰源,目标的角度和距离分别为θs 和r s ,第k 个干扰源的角度和距离分别为θj k 和r j k .通过对接收信号匹配滤波之后,频率分集阵列雷达在目标距离单元的接收信号可以表示为x =x s +x j +n =ξs a (θs ,r s ,Δf )+ðK k =1ξj k a (θj k ,r j k ,Δf )+n ,(4)其中,ξs 和ξj k 分别为与雷达发射功率㊁目标与雷达距离㊁空间传播等有关的常数,n 是均值为零㊁方差为σ2n I 的高斯加性白噪声,I 为单位矩阵.需要特别指出的是,根据文献[8],假目标干扰的距离r j k 为真实的干扰机距离,而不是干扰机产生的假目标的距离.同理,当阵列工作在多输入多输出模式时,每个阵元的发射信号相互正交,此时发射波束形成可以在接收端进行.针对角度为θ㊁距离为r 的目标,第m 个阵元的发射信号经过目标反射到达第n 个接收阵元,此时与参考阵元之间的相位差为[7]τm n =2rc [-d (n -1)s i n θ+d (m -1)s i n ]θc .(5)那么阵列的导向矢量可以表示为a θr =a r θt θr 表示克罗内克积;发射导向31第4期 项 喆等:频率分集雷达最优频率间隔选择方法矢量a t (θ,r ,Δf )和接收导向矢量a r (θ)分别表示为[7]a t (θ,r ,Δf )[=1,e x (p -j 4πr Δf )c , ,e x (p -j 4πr (N -1)Δf )]c T [☉1,e x (pj 2πd s i n θλ)0, ,e x (pj 2πd (N -1)s i n θλ)]0T ,(6)a r (θ)[=1,e x (pj 2πd s i n θλ)0, ,e x (pj 2πd (N -1)s i n θλ)]0T .(7)式中☉表示阿达马积.在上述的干扰背景下,对接收信号进行匹配滤波之后,F D A -M I MO 雷达在目标距离单元的接收信号可以表示为x =x s +x j +n =ξs a (θs ,r s ,Δf )+ðK k =1ξj k a (θj k ,r j k ,Δf )+n .(8)2 基于斜投影的抗干扰分析根据斜投影理论[9],定义目标和干扰子空间分别为A =a (θs ,r s ,Δf )=d e fa s 和B [=a (θj 1,r j 1,Δf ), ,a (θj K ,r j K ,Δf ])=[b 1, ,b K ].当目标距离和角度与干扰距离和角度中有一个参数不同时,目标和干扰的子空间无交连[9-10],即两者之间的列矢量线性无关.此时可以得到斜投影算子和滤波权矢量分别为H A B =A (A H P ʅB A )-1A H P ʅB ,(9)w =(a A H A B )H ,(10)其中,a A [=a H (θs ,r s ,Δf )a (θs ,r s ,Δf ])-1a H (θs ,r s ,Δf );P ʅB =I -B (B H B )-1B H ,为正交投影算子.斜投影算子具有以下性质:H A B A =A ,H A B B =0 {.(11) 经过斜投影滤波之后,得到的滤波输出信号为z =w H x =A H A 2H A B A ξs +A H A2H A B ðK k =1ξj k b k +A H A 2H A B n =ξs +A H A 2H A B n ,(12)此时滤波输出信号的信干噪比为R S I N R ={E ξs }2{E A H H A B n A }22=σ2s σ2nA 2s i n 2ψ ,(13)其中,σ2s 为信号功率;ψɪ[0,π/2],为目标子空间和干扰子空间的主角.ψ可以表示为[8]ψ=m i n {k (a r c c o s a Hs b (k a H s b ))}k .(14) 定义a H s b (k a H s b )k 为目标和干扰之间的相关系数.由式(13)可以发现,当目标和干扰子空间的主角越大时,两者之间的相关性越弱,此时的输出信干噪比越高.而目标和干扰的距离角度参数均为信号源固有参数,可配置的参数只有发射阵元之间的频率间隔,那么可以对阵元之间的频率间隔进行优化选择,以获得更好的抗干扰性能.3 最优频率间隔选择为了获得更大的输出信干噪比,需要最大化目标和干扰子空间之间的主角,那么可以表示为m a x Δf m i n {k (a r c c o s a H s b (ka H sb ))}k .(15)由于a H s b (k a H s b )k ɪψ的取值范围为[41 西安电子科技大学学报(自然科学版) 第44卷降函数.另外,当阵列工作在相控阵模式时,有a s =b k =M1/2;当阵列工作在多输入多输出模式时,有a s =b k =M .那么阵列工作在相控阵模式和多输入多输出模式,上述的优化问题均可以转化为以下形式:m i n Δf m a x k a H s b k .(16) 在进行斜投影滤波时,需要已知目标和干扰的角度及距离参数,所以需要对目标和干扰的角度及距离参数进行估计.而距离及角度的估计问题在文献[5,8]中已有研究,目标的鉴别方法在文献[7]中也有研究,这里均不进行考虑.假设目标和干扰的距离与角度参数均已得到其估计值,在此基础上对频率间隔进行优化选择.假设发射机中包含频率间隔的选择库为[F m i n ʒΔF ʒF m a x ],通过在库中对频率间隔进行搜索,搜索步长为ΔF ,选择使目标和干扰子空间的主角最大的频率间隔作为最优的频率间隔.图2 频率分集阵列雷达工作流程那么最优频率间隔的估计方法可以总结如下(如图2所示):(1)发射机在第1个相干处理时间内任意设置一个初始频率间隔,并对接收信号进行匹配滤波;(2)采用文献[5,8]中的参数估计方法,对真目标和干扰的距离和角度参数进行估计,并根据文献[7]中的目标鉴别方法对真假目标进行鉴别;(3)根据式(16)对最优的发射频率间隔进行估计,并将最优频率间隔反馈至发射机,用于下一个相干处理时间内的信号发射.假设干扰为远方支援式干扰,其角度和距离保持不变;而目标为机动目标,其角度和距离会随着时间变化.此外,假设目标的距离和角度在一个相干处理时间内保持不变.由于远场目标位于波束主瓣内,其角度在相邻两个相干处理时间内变化不大,且其距离运动为一个距离单元,可以认为相邻两个相干处理时间内的最优频率间隔相同,所以可以将上一个相干处理时间得到的最优频率间隔应用于下一个相干处理时间.在计算最优的频率间隔时,目标和干扰参数均为其估计值.下面分析参数估计误差对输出信干噪比的影响.由于在导向矢量中,频率间隔和距离耦合,所以以下主要考虑距离误差的影响.取相控阵模式进行分析,同理可以对多输入多输出模式进行分析.假设空间中只存在一个干扰,其角度和距离分别为θj 和r j ,目标和干扰的距离估计误差分别为Δr s 和Δr j ,此时得到的最优频率间隔为Δ^f o p t .那么有a H(θs ,r s +Δr s ,Δ^f o p t )a (θj ,r j +Δr j ,Δ^f o p t )=1-e x [p j M (Δα+Δβ])1-e x [pj (Δα+Δβ])=[s i n M (Δα+Δβ)/]2[s i n (Δα+Δβ)/]2 ,(17)其中,Δα=2πf 0d (s i n θs -s i n θj )c ,Δβ=2πΔ^f o p t (r s -r j +Δr s -Δr j )c .可以得到此时的最优发射频率Δ^f o p t 为s i n c 函数两个峰值点的中点,即Δ^f o p t =12(2i ʃ1)c +f 0[d s i n (θs +Δθs )-s i n (θj +Δθj ])(^r s -^r j )+(Δr s -Δr j ) ,(18)其中,i 为任意整数.而一般采用超分辨算法估计角度时,角度误差较小,此时可以得到s i n (θs +Δθs )-s i n (θj +Δθj )ʈs i n θs -s i n θj +Δθs -Δθj .真实目标和干扰参数对应的最优频率间隔为Δf o p t =12(2i ʃ1)c +f 0d (s i n θs -s i n θj )^r s -^r j .(19) 由式(18)和(19)可以得到:当Δr s -Δr j ≪r s -r j ,Δθs -Δθj ≪(2i ʃ1)c (f 0d )时,Δ^f o p t ʈΔf o p t ,此时距离估计误差和角度估计误差可以忽略不计.4 计算机仿真假设频率分集阵列包含8个阵元,可以工作在相控阵模式和多输入多输出模式,工作频率为10G H z .发射机中频率间隔选择库为[个相干处理时间内频率分集阵列采用的频率间51第4期 项 喆等:频率分集雷达最优频率间隔选择方法隔为1k H z .目标的角度为0ʎ,距离为30k m.空间中存在3个转发式假目标干扰源,干扰源的角度和距离分别为[-1ʎ,20ʎ,-18ʎ]和[40k m ,45k m ,50k m ].每个干扰源在空间中形成3个假目标,对应的假目标距离分别为[18k m ,25k m ,30k m ],[20k m ,30k m ,50k m ]和[30k m ,35k m ,45k m ].此时目标和干扰的相关系数随频率间隔之间的变化关系如图3所示.图3 目标和干扰的相关系数与频率间隔之间的关系由图3可以看出,当频率分集阵列工作在相控阵模式时,最优的频率间隔为18.4k H z .而频率分集阵列工作在多输入多输出模式时,最优的频率间隔为9.2k H z .由式(3)和式(6)可以发现,频率间隔Δf 与距离耦合,所以频率分集阵列雷达的最优频率间隔是F D A -M I MO 雷达的2倍.图4所示为输出信干噪比与参数估计误差之间的关系.图中假设距离误差为[-1k m ,1k m ],角度估计误差为[-1ʎ,1ʎ],可以看出,输出信干噪比在距离估计误差范围内和角度估计误差范围内的变化不大.图4 输出信干噪比随参数估计误差的变化曲线斜投影滤波输出信干噪比随输入信噪比变化如图5所示.从图5(a )可以看出,当频率分集阵列雷达工作在相控阵模式时,频率分集阵列雷达针对主瓣干扰相对于普通相控阵雷达具有一定的优势,其原因是频率分集阵列雷达可以利用距离维的自由度对主瓣干扰进行抑制.而采用最优的频率间隔时,频率分集阵列的抗干扰性能得到了很大提升.同理,当频率分集阵列雷达工作在多输入多输出模式时,采用最优的频率间隔,频率分集阵列的抗干扰性能相对常规多输入多输出雷达也得到了较大提升.图6所示为滤波输出前后的信号,可以看出,在进行斜投影滤波之后,假目标都被抑制,可以检测到目标信号.图5 滤波输出信干噪比随输入信噪比变化图5 结束语根据斜投影滤波理论,笔者讨论了频率分集阵列雷达和F D A -M I MO 雷达两种体制下斜投影滤波抗干扰方法,并对输出信干噪比进行分析.在此基础上,分析了最优输出信干噪比与频率间隔之间的关系,得到关61 西安电子科技大学学报(自然科学版) 第44卷图6 斜投影滤波输出前后的信号于频率间隔的优化问题.结合认知雷达的思想,将上一个相干处理时间内得到的最优频率间隔应用于下一个相干处理时间,并分析了参数误差对相干处理时间输出信干噪比的影响.通过仿真可以看出,频率分集阵列雷达相对于常规相控阵雷达,具有对抗主瓣干扰的优势,而且当频率分集阵列雷达和F D A -M I MO 雷达采用最优频率间隔时,可以获得更好的抗干扰性能.参考文献:[1]L IN J ,Z HA N G Y T.A S u r v e y o fR a d a rE C M a n d E C C M [J ].I E E E T r a n s a c t i o n so n A e r o s pa c ea n d E l e c t r o n i c S y s t e m s ,1985,31(3):1110-1120.[2]V O R O B Y O V S A,G E R S HMA N A B ,L U O Z Q.R ob u s t A d a p t i v eB e a m f o r m i n g U s i n g W o r s t -c a s eP e r f o r m a n c e O p t i m i z a t i o n :aS o l u t i o n t o t h eS i g n a lM i s m a t c hP r o b l e m [J ].I E E E T r a n s a c t i o n so nS i g n a lP r o c e s s i n g,2003,51(2):313-324.[3]朱玉堂,赵永波,水鹏朗,等.一种低快拍情况下的稳健自适应波束形成算法[J ].西安电子科技大学学报,2015,42(6):37-42.Z HU Y u t a n g ,Z HA O Y o n g b o ,S HU IP e n g l a n g ,e ta l .R o b u s tA d a p t i v eB e a m f o r m i n g A l g o r i t h mi nt h eS i t u a t i o no f L i m i t e dS n a p s h o t s [J ].J o u r n a l o fX i d i a nU n i v e r s i t y,2015,42(6):37-42.[4]WA N G W Q.O v e r v i e wo fF r e q u e n c y D i v e r s eA r r a y i nR a d a ra n d N a v i g a t i o n A p pl i c a t i o n s [J ].I E T R a d a r ,S o n a r &N a v i g a t i o n ,2016,10(6):1001-1012.[5]WA N G W Q,S HA O H Z .R a n g e -a n g l eL o c a l i z a t i o no fT a r g e t sb y aD o u b l e -p u l s eF r e q u e n c y D i v e r s eA r r a y R a d a r [J ].I E E EJ o u r n a l o f S e l e c t e dT o p i c s i nS i g n a l P r o c e s s i n g ,2014,8(1):106-114.[6]HO P P E RSP ,T R E M E L L I N G MJ,G I N S B E R GRJ ,e t a l .A d a p t i v eF r e q u e n c y O f f s e t S e l e c t i o n i nF r e q u e n c y Di v e r s e A r r a y R a d a r [J ].I E E E A n t e n n a s a n d W i r e l e s sP r o p a g a t i o nL e t t e r s ,2014,13(5):1405-1408.[7]X UJW,L I A OGS ,Z HUSQ,e t a l .D e c e p t i v e J a mm i n g S u p p r e s s i o nw i t hF r e q u e n c y D i v e r s eM I MOR a d a r [J ].S i g n a l P r o c e s s i n g ,2015,113:9-17.[8]X UJW,L I A O GS ,Z HUSQ,e t a l .J o i n tR a n g e a n dA n g l eE s t i m a t i o nU s i n g M I MO R a d a rw i t hF r e q u e n c y D i v e r s e A r r a y [J ].I E E ET r a n s a c t i o n s o nS i g n a l P r o c e s s i n g ,2015,63(13):3396-3410.[9]HO N G H,MA O X P ,HU C .A M u l t i -d o m a i nC o l l a b o r a t i v eF i l te rf o rH F S WR B a s e do n O b l i q u eP r o j e c t i o n [C ]//P r o c e e d i ng s o f th e I E E E N a ti o n a lR a d a rC o n f e r e n c e .P i s c a t a w a y :I E E E ,2012:0907-0912.[10]C A O B ,L I U A J ,MA O X P ,e ta l .A n O b l i q u e P r oj e c t i o n P o l a r i z a t i o n F i l t e r s [C ]//P r o c e e d i n gso ft h e2008I n t e r n a t i o n a l C o n f e r e n c eo n W i r e l e s sC o mm u n i c a t i o n s ,N e t w o r k i n g a n d M o b i l eC o m p u t i n g .P i s c a t a w a y:I E E E ,2008:1893-1896.[11]HA Y K I NS .C o g n i t i v eR a d a r :aW a y o f t h eF u t u r e [J ].I E E ES i g n a l P r o c e s s i n g M a g a z i n e ,2006,23(1):30-40.(编辑:郭 华)71第4期 项 喆等:频率分集雷达最优频率间隔选择方法。
微束分析 聚焦离子束 透射电镜样品制备-最新国标
微束分析聚焦离子束透射电镜样品制备1 范围本文件规定了聚焦离子束法制备透射电镜样品的分析方法原理、分析环境要求、仪器、分析样品、分析步骤、结果报告和安全注意事项。
本文件适用于金属、非金属、矿物和生物样品等固态材料的透射电镜样品制备。
当固态样品尺寸小于100纳米时,可直接进行透射电镜观测无需制样。
2 规范性引用文件本文件没有规范性引用文件。
3 术语和定义下列术语和定义适用于本文件。
3.1聚焦离子束系统 focused ion beam system FIB采用聚焦的离子束对样品表面进行轰击,并由计算机控制离子束的扫描或加工轨迹、步距、驻留时间和循环次数,以实现对材料的成像、刻蚀、诱导沉积和注入的分析加工系统。
3.2电子束诱导沉积 electron beam induced deposition采用聚焦状态的电子束轰击样品表面,诱导沉积物前驱气体在样品表面分解沉积形成固态结构。
3.3离子束诱导沉积 ion beam induced deposition采用聚焦状态的离子束轰击样品表面,诱导沉积物前驱气体在样品表面分解沉积形成固态结构。
3.4离子束刻蚀 ion beam milling采用高能离子束轰击样品表面,将样品的原子溅射出表面,形成固态结构。
3.5粗切 coarse milling采用高能大束流(通常为0.5nA-150nA)离子束轰击样品表面,将样品的原子溅射出表面,形成固态结构。
3.6细切 thin milling采用高能小束流(通常为0.2nA-10nA)离子束轰击样品表面,将样品的原子溅射出表面,形成表面平整光滑的固态结构。
3.7分级减薄 granded milling采用离子束轰击样品表面,将样品的原子溅射出表面形成固态结构时,采用逐级递减的电压或电流对固体结构顺次加工。
3.8非晶损伤 amorphous damage在高能离子束的作用下,样品表面发生非晶化的现象。
3.9低能清洗 low-energy modification使用低能的离子束对样品表面进行加工,减小非晶损伤的技术。
2020年第43卷总目次
Ⅲ
船用锅炉汽包水位内模滑模控制………………………………………………… 段蒙蒙ꎬ甘辉兵 ( 3. 83 )
三峡升船机变频器 IGBT 路故障诊断 ……………………… 孟令琦ꎬ高 岚ꎬ李 然ꎬ朱汉华 ( 3. 89 )
定航线下考虑 ECA 的船舶航速多目标优化模型 …………… 甘浪雄ꎬ卢天赋ꎬ郑元洲ꎬ束亚清 ( 3. 15 )
改进二阶灰色极限学习机在船舶运动预报中的应用………… 孙 珽ꎬ徐东星ꎬ苌占星ꎬ叶 进 ( 3. 20 )
Ⅱ
规则约束下基于深度强化学习的船舶避碰方法
………………………………… 周双林ꎬ杨 星ꎬ刘克中ꎬ熊 勇ꎬ吴晓烈ꎬ刘炯炯ꎬ王伟强 ( 3. 27 )
船用起重机吊索张力建模与计算机数值仿真 ………………………… 郑民民ꎬ张秀风ꎬ王任大 ( 4. 94 )
约束规划求解自动化集装箱码头轨道吊调度 ………………………… 丁 一ꎬ田 亮ꎬ林国龙 ( 4. 99 )
航海气象与环保
162 kW 柴油机排气海水脱硫性能
基于模糊 ̄粒子群算法的舰船主锅炉燃烧控制 ……… 毛世聪ꎬ汤旭晶ꎬ汪 恬ꎬ李 军ꎬ袁成清 ( 1. 88 )
多能源集成控制的船舶用微电网系统频率优化……………… 张智华ꎬ李胜永ꎬ季本山ꎬ赵 建 ( 1. 95 )
基于特征模型的疏浚过程中泥浆浓度控制系统设计………… 朱师伦ꎬ高 岚ꎬ徐合力ꎬ潘成广 ( 2. 74 )
基于卷积神经网络的航标图像同态滤波去雾 …………………………………………… 陈遵科 ( 4. 84 )
船用北斗导航系统终端定位性能的检测验证 …………………………………………… 吴晓明 ( 4. 89 )
A WAVELET FILTER CRITERION FOR AN A-PRZORZ EVALUATION OF WAVELET CODING AND DENOISING PERFO
The interest of the wavelet transform analysis is the deal between frequency and spatial analysis. When a FWT is used to compute the coefficients, the performances of the transform are the performances of the filter bank. A "good" filter set must be efficient both in the frequency and in the spatial domains. In the spatial domain, the quality of a filter set can be estimated from the support of the coefficients of the impulse response of the filter bank. In the frequency domain, the quality of the filter set can be estimated from the aliasing of the filter bank. Two indexes can thus been deduced from these considerations.
Section 2 presents the definition of the spatial and frequency indexes. Section 3 details the data used to estimate compression and denoising quality. Section 4 links the indexes to the data. A formula is given to estimate the coding quality from the spatial and frequency indexes. Another formula is givne to estimate the denoising quality from the same these indexes. The proposed works are preliminary and some improvements, tests and questions remains. They are presented in the conclusion.
基于小波变换的粒子滤波目标跟踪算法
基于小波变换的粒子滤波目标跟踪算法章飞;周杏鹏;陈小惠【期刊名称】《东南大学学报(自然科学版)》【年(卷),期】2010(040)002【摘要】针对纯方位被动目标跟踪中粒子滤波算法固有的计算复杂性问题,提出了一种基于小波变换的粒子滤波算法(WMPF).对粒子权重进行小波多分辨率分解,通过设定阈值对高通部分的粒子权重进行滤波,再根据重构后的粒子权重去掉重复粒子,生成新的粒子集来近似后验概率密度函数,从而在保证滤波精度的同时大量减少粒子数,提高粒子滤波的计算效率.将WMPF算法与标准粒子滤波算法应用于具有非线性非高斯特点的纯方位目标跟踪问题,仿真结果表明,WMPF算法的跟踪精度与标准粒子滤波算法相当,计算效率却远高于标准粒子滤波算法,增强了跟踪的实时性,并且该算法有望进一步扩展粒子滤波的应用范围.【总页数】6页(P320-325)【作者】章飞;周杏鹏;陈小惠【作者单位】东南大学复杂工程系统测量与控制教育部重点实验室,南京,210096;江苏科技大学电子信息学院,镇江,212003;东南大学复杂工程系统测量与控制教育部重点实验室,南京,210096;南京邮电大学自动化学院,南京,210046【正文语种】中文【中图分类】TP274【相关文献】1.基于目标区域预检测模型的粒子滤波小目标跟踪算法 [J], 周蓉;刘波2.基于量子遗传粒子滤波的无线传感器网络的目标跟踪算法的研究 [J], 魏颖;郭鲁3.基于粒子滤波的多普勒信息辅助目标定位跟踪算法 [J], 张蒙;王海斌;张海如;汪俊;胡治国4.基于粒子滤波的检测前被动声呐目标跟踪算法研究 [J], 刘海嫚;杨鑫5.基于粒子滤波的多径伯努利目标跟踪算法 [J], 邬赟;陈天顺;谭文群;李金玲;华学阳因版权原因,仅展示原文概要,查看原文内容请购买。
Illumina cBot自动克隆扩增系统说明书
The Best Next-Gen Sequencing Workflow Just Got BettercBot is a revolutionary automated clonal amplification system at the core of the Illumina sequencing workflow (Figure 1, upper panel). cBot replaces a lab full of equipment with a single compact device, deliver-ing unsurpassed efficiency and ease of use for the highest quality sequencing results.With cBot, hands-on time is reduced to less than 10 minutes, com-pared to more than six hours of hands-on effort for emulsion PCR methods. The process of creating sequencing templates is complete in about four hours, compared to more than 24 hours for emulsion PCR-based protocols (Figure 1, lower panel).Breakthrough System for Cluster GenerationThe Illumina sequencing workflow is based on three simple steps: libraries are prepared from virtually any nucleic acid sample, amplified to produce clonal clusters, and sequenced using massively parallel synthesis. The cBot clonal amplification system has innovative features that eliminate user intervention, reduce potential failure points, and increase sequencing productivity.TruSeq Cluster Generation reagents are packaged in ready-to-use96-well plates, completely removing reagent preparation errors, potential sources of contamination, and decreasing storage require-ments. cBot features a single unique, plate-piercing manifold for intervention-free runs. Cluster generation occurs within the sealed, eight-channel Illumina flow cell, bypassing the frequent handling and contamination issues inherent to emulsion PCR-based protocols. cBot is capable of processing > 96 samples within a single flow cell, resulting in substantial cost savings without incremental effort and wasted reagents. Innovative instrument features ensure seamless operation for your sequencing workflow (Figure 2).Better Results with Less EffortcBot software enhancements and user interaction features ensure high productivity:• Integrated 8-inch touch screen provides simplified operation in a small, lab-friendly footprint• On-screen, step-by-step instructions with embedded multimedia help enable user operation with no prior training • Real-time progress indicators provide at-a-glance monitoring • Remote monitoring allows a single user to manage multiple systems from any web browser or phone• Status emails are sent when the run is complete or when intervention is requiredcBot Cluster Generation ProcessPrior to sequencing, single-molecule DNA templates are bridge amplified to form clonal clusters inside the flow cell. (Figure 3).cBotFully automated clonal cluster generation for Illumina sequencing.Illumina cBot Highlights• Fast, Efficient Workflow:Amplify > 96 samples in ~4–5 hours with < 10 minutes ofhands-on time• Easiest to Use:Pre-packaged 96-well TruSeq™ reagents, and simple touch screen interface simplifies operation• Innovative System Design:Real-time fluidic monitoring, integrated system sensors and remote monitoring ensure robust instrument operation• Highest Quality Results:Improved chemistry generates higher density clusters and sequencing accuracy LibraryPreparation SequencingCluster GenerationEight-channel flow cell reduces risk of contamination and eliminates the needfor extra equipment Manifold clamps for leak-free connections and superior thermal contactTouch screen monitor simplifies operation and provides real-timeImmobilization of Single-Molecule DNA TemplatesHundreds of millions of templates are hybridized to a lawn of oligo-nucleotides immobilized on the flow cell surface. The templates are copied from the hybridized primers by 3’ extension using a high-fidelity DNA polymerase to prevent misincorporation errors. The original templates are denatured, leaving the copies immobilized on the flow cell surface.Isothermal Bridge AmplificationImmobilized DNA template copies are amplified by isothermal bridge amplification. The templates loop over to hybridize to adjacent lawn oligonucleotides. DNA polymerase copies the templates from the hybridized oligonucleotides, forming dsDNA bridges, which are dena-tured to form two ssDNA strands. These two strands loop over and hybridize to adjacent oligonucleotides and are extended again to form two new dsDNA loops. The process is repeated on each template by cycles of isothermal denaturation and amplification to create millions of individual, dense clonal clusters containing ~2,000 molecules. Linearization, Blocking, and Primer HybridizationEach cluster of dsDNA bridges is denatured, and the reverse strand is removed by specific base cleavage, leaving the forward DNA strand. The 3’-ends of the DNA strands and flow cell-bound oligonucleotides are blocked to prevent interference with the sequencing reaction. The sequencing primer is hybridized to the complementary sequence on the Illumina adapter on unbound ends of the templates in the clusters. The flow cell now contains >200 million clusters with ~1,000 mol-ecules/cluster, and is ready for sequencing.SummaryIllumina sequencing with cBot automated cluster generation sets the new standard for simplified next- generation sequencing. Ready-to-use reagents, smart instrumentation improvements, and new cluster generation chemistry offers significant advantages over emulsion PCR-based workflows and promotes even higher data density and sequencing accuracy. By streamlining the critical clonal amplification step in the next-generation sequencing workflow, Illumina continues to accelerate your landmark discoveries and publications.Ordering InformationDescriptioncBotCatalog No.HiSeq System Genome AnalyzercBot Instrument Includes cBot, flow cell adapter plate,one year warranty, user manualSY-301-2002cBot Flow Cell Manifold (Optional)SY-301-2014TruSeq Single-Read Cluster Generation Kits include flow cell,reagent plate, manifold, user instructionsGD-401-3001GD-300-2001TruSeq Paired-End Cluster Generation Kits include flow cell,reagent plate, manifold, PE reagents, user instructionsPE-401-3001PE-300-2001Illumina, Inc. •9885TowneCentreDrive,SanDiego,CA92121USA•1.800.809.4566toll-free•1.858.202.4566tel•************************• For research use only© 2011 Illumina, Inc. All rights reserved.Illumina, illuminaDx, BeadArray, BeadXpress, cBot, CSPro, DASL, Eco, Genetic Energy, GAIIx, Genome Analyzer, GenomeStudio, GoldenGate, HiScan, HiSeq, Infinium, iSelect, MiSeq, Nextera, Sentrix, Solexa, TruSeq, VeraCode, the pumpkin orange color, and the Genetic Energy streaming bases design are trademarks or registered trademarks of Illumina, Inc. All other brands and names contained herein are the property of their respective owners. Pub. No. 770-2009-032 Current as of 27 April 2011at the address below.Laser radiationDo not stare into the visible-light beam of the barcode scanner. The barcode scanner is a Class 2 laser product.SY-301-2002Instrument ConfigurationCE Marked and ETL Listed instrument, Installation, setup, and accessoriesInstrument Control ComputerMini-ITX Board with Celeron M Processor 1 GB RAM, 80 GB Hard Drive Windows Embedded OSIntegrated 8” Touch Screen Monitor Operating Environment Temperature: 22°C ± 3°CHumidity: Non-Condensing 20%–80%Altitude: Less than 2,000 m (6,500 ft)Air Quality: Pollution Degree Rating of II For Indoor Use Only LaserClass 2 Laser: 630 –650 nm DimensionsW×D×H: 38 cm × 62 cm × 40 cm Weight: 34 kg Crated Weight: 36 kg Power Requirements100−240V AC 50/60 Hz, 4A, 400 Watts。
一种新的抗差自适应Unscented粒子滤波_薛丽
V k ≤ k 0 k 0 < V k ≤ k 1 V >k k 1 V k ≤ k 0 k <k 0 ≤ V k 1 k 1 ≤ V k ( 3) ( 2)
根据需要也可以采用另一种表达式
式中 k 1, 1. 5) ,k 3, 8) ,V 为观测值 l 的残 0 ∈ ( 1 ∈ ( k k 差向量 , V , x 为当前时刻状态参数估计 k =A kx k -l k k 值 。 自适应因子选取如下 1 α k = c ( c x 0 1 - Δ k ) 2 Δx k ( c 1 -c 0) 0
2011 年 6 月 第 29 卷第 3期
西北工业 大学学报 J o u r n a l o f N o r t h w e s t e r nP o l y t e c h n i c a l U n i v e r s i t y
J u n e 2011 V o l . 29 N o . 3
一种新的抗差自适应 U n s c e n t e d 粒子滤波
薛 丽 , 高社生 , 王建超
( 西北工业大学 自动化学院 , 陕西 西安 710072)
摘 要: 针对粒子滤波存在的重要性密度函数难以选取和可能出现粒子退化的问题 。 提出了一种新 的抗差自适应 U n s c e n t e d 粒子滤波算法 。 该算法不但能利用等价权函数和自适应因子合理的分配信 息 , 提高滤波精度 , 而且具有 U n s c e n t e d 粒子滤波的优点 , 更好的适用于非线性 、 非高斯系统模型的计 算 。 仿真结果表明 , 文中提出的抗差自适应 U n s c e n t e d 粒子滤波算法 , 滤波性能明显优于扩展卡尔曼 滤波和粒子滤波算法 , 并且能提高组合导航系统的定位精度 。 关 键 词: U n s c e n t e d 粒子滤波 , 抗差估计 , 等价权 , 自适应因子 中图分类号 : T P 13 文献标识码 : A 文章编号 : 10002758( 2011) 03047006 抗差估计是极大似然估计的推广 , 具有一定的 稳定性 , 它可以控制观测异常和动态模型噪声异常 对状态参数估值的影响
基于自适应粒子滤波的动态贝叶斯网推理算法
基 于 自适应 粒 子 滤 波 的动 态 贝 叶 斯 网推 理 算 法
陈栋 梁 , 王 浩, 宏亮, 姚 俞 奎 ( 合肥 工业 大 学 计 算机 科 学与技 术 系 , 徽 合肥 200 ) 安 30 9
摘
( l e @1 3 cn) dc n 6 .o h 要 : 出一种 基 于 自适 应粒 子 滤波 的动 态 贝叶 斯 网推 理 算 法 , 算法 能随 着动 态 贝叶斯 网状 提 该
Ab t a t A d n mi a e in n t r s i fr n e ag rtm a e n a a f e p r ce f t r g W r s n e n t i sr c : y a c B y sa ewok ne e c lo h b s d o d p v at l l i a p e e t i h s i i i i en s d p p r h g r h a h n e t e n mb r o at e v r t t y a c B y sa e o s t t n et i t f a e .T e a o t l i m cn c a g h u e fp r c s o e i i l me wi d h n mi a e i n t r 'sa e u c r n y o n w k a d a c Ba e i e o s v le n .T e n mb r o a t ls i e e m n a e n sa s c o n s o e s p e n y mi y sa n t r 'e ov me t h u e fp r c e s d t r i e b d o t t t a b u d n t a l — n w k i d s i il h m
采用双树复小波和混合概率模型的光学相干层析图像去噪
An i p o e o S rn lo ih i s d t h i k t e wa ee o m ce t. Ex e i n s s o t t t i m r v d Pr b h ik ag rt m S u e o s rn h v lt c e in s p rme t h w ha hs
b s d o h u lt e o a e n t e d a - r e c mplx wa e e r n f r a d a m i e r b b l y m o e Se e v lt t a so m n x d p o a i t d l mply d.Afe t dy n i i oe t rs u i g t e sg a n o s it i u i n i h i n l d n ie d s rb t o n 0CT m a e . x d p o a l y m o e n m i r s o i -e e n r d c d. a i g s a mi e r b bi t d li c o c p c l v l s i t o u e i i Lo a ihm ft e 0CT ma e i r t d c mpo e sn u lt e o p e v l t t a so m .Th o f ce t g rt o h i g s f s e o i s d u i g d a - r e c m lx wa e e r n f r ec e iin s c n it n t d e be h e e a i e a s i n d s rb t o wh l t e s o y t e Ga s i n d s rb t o o ss e t wih e g s o y t e g n r l d G u sa it i u i n, z i o h r be h u sa it i u i n. e
基矛P—N跟踪器的自适应粒子滤波算法
XU — a g ,L i — u E Ya y n ’ I n h i,XI e g J AO F n
(. c olfC m u r c nead Tc nl y X ’ Tc nl i l 1 Sh o o o p t i c n ehoo , i吼 eh o c e Se g o ga
a p o rae sr tg y a c H n t e r s mp e se c o d n h i e e to t u ft e P N t c e ,s c s d f r n p r p i t t e y d n mia y i h e a l t p a c r i g t t e d f r n u p t - r k r u h a i e e t a o f o h a
关 键 词 : 目 标 跟 踪 ;粒 子 滤 波 ;重 采 样 ;P N 跟 踪 器 ~
中图 分 类 号 :r 3 9 P 9
文献标识码 : A
文 章 编 号 :1 7 — 2 6 2 1 ) 7 0 5 — 3 6 4 6 3 (0 1 1— 13 0
S l- da t d pa tce fle s d o ef a p e r i l t r ba e n P—N r c r i t a ke
合 的 目标 跟 踪 方 法 。 首 先 构 造 P N跟 踪 器 , 用跟 踪 器 来确 定 目标 区域 范 围 并输 出置 信 度 , — 利 以此 作 为 对 目标 物 体 定
一种基于粒子群优化的卫星仅测频被动定轨新算法英文
人声分离算法
人声分离算法人声分离是一种音频信号处理技术,旨在从混合音频中分离或提取出特定的人声信号。
这项任务通常是在语音处理、音乐处理以及音频增强等领域中应用的重要技术。
以下是一些常见的人声分离算法:1. 基于深度学习的方法:• Deep Clustering:使用深度学习模型,如深度聚类网络(Deep Clustering Network, DCN),学习在频谱域对音频进行聚类,以实现音源分离。
该方法在训练过程中将相似的频谱点聚类在一起,从而使网络能够学到不同音源的表示。
• Deep attractor network (DAN):通过学习音源的吸引子表示,这种方法使得模型能够在频谱上分离不同的音源。
2. 基于短时傅立叶变换(STFT)的方法:• Non-negative Matrix Factorization (NMF):将音频信号表示为非负矩阵的乘积,其中一个矩阵表示基础音源,另一个矩阵表示每个时间点的激活系数。
通过调整这两个矩阵,可以分离出人声信号。
• Independent Component Analysis (ICA):基于统计模型,假设混合信号是独立的非高斯过程,通过最大似然估计方法来分离不同的源信号。
3. 基于时域处理的方法:• Ideal Binary Mask (IBM):通过分析语音和非语音的频谱差异,生成一个二进制掩码,用于选择性地过滤和分离人声信号。
• Phase-sensitive Reconstruction (PSR):基于相位信息的处理,通过在频域上对信号进行修复和重新构建来分离人声。
4. 基于卷积神经网络(CNN)的方法:• U-Net Architecture:基于 U-Net 结构的深度学习模型,通过卷积层和上采样层实现对音频信号的高级特征学习和重建。
请注意,人声分离是一个复杂的问题,其效果受到许多因素的影响,如音频质量、混合信号的复杂性以及算法的设计。
选择合适的方法取决于实际应用的要求和环境。
希尔伯特变换实现包络检波
磁共振成像中的希尔伯特变换实现包络检波磁共振成像(MRI)是一种利用磁场和无线电波对人体进行断层扫
描成像的非侵入性诊断技术。
在MRI过程中,信号处理指标之一是包
络检波,用于提取信号在时间域或频域上的振幅变化,并对信号进行
能量、幅度、相位等分析。
希尔伯特变换是一种信号处理技术,可以实现包络检波。
它是将
信号分解成两个耦合的部分:正交部分和共轭正交部分。
在MRI领域,希尔伯特变换被广泛应用于包络检波中。
利用希尔伯特变换实现包络检波的基本步骤如下:
1. 将磁共振信号进行傅里叶变换,得到磁共振信号的复数表示形式。
2. 对该复数信号进行希尔伯特变换,得到正交复数信号,其中一
个部分是原信号包络。
3. 取得原信号包络的模值,即得到所需的包络信号。
通过希尔伯特变换实现包络检波,可以提高信号处理效率和准确度,实现对信号特征的更精细提取和分析。
在MRI成像中,这种技术
可以帮助医生更准确地诊断疾病,并优化治疗方案的制定。
同时,将
希尔伯特变换应用于MRI中,还可以拓展其应用范围,为临床诊断和
科学研究领域带来更多的机遇和挑战。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
An Oblique Projection Filtering Based DOA Estimation Algorithm Without A Priori KnowledgeHui-jun Hou, Xing-peng Mao, Hong Hong, Ai-jun LiuSchool of Electronics and Information EngineeringHarbin Institute of TechnologyHarbin 150001, P.R. Chinamxp@Abstract—The high resolution multiple signal classification (MUSIC) algorithm provides an efficient way to estimate direc-tion-of-arrival (DOA). However, it performs poorly when weak signals are accompanied with strong ones. To solve this problem, an oblique projection filtering based DOA estimation algorithm is proposed without using a priori knowledge of the sources, such as directions, strength, modulation modes, etc. Numerical results verify the effectiveness of the proposed algorithm. It is shown that a high resolution DOA estimation of the incident sources can be achieved. The detection performances for weak signals are more stable and superior than that of the MUSIC algorithm.Keywords—direction-of-arrival(DOA); oblique projection; weak signal detectionI.I NTRODUCTIONThe subspace based multiple signal classification (MUSIC) [1] algorithm plays an important role in providing the direc-tion-of-arrival (DOA) parameters of multiple incident waves arriving at an antenna array. However, the detection of the weak signal in the MUSIC spectrum is likely to be influenced by adjacent strong ones which lead to the difficulty of DOA estimation. For example, the ability to detect and estimate the weak signals may be lost or severely degraded.One of the standard methods to overcome the influences of strong signals is to divide the field-of-view into sectors. Several well known examples employing such an idea are the beam-space preprocessing method [2], the beam-space MUSIC ap-proach [3], and the CLEAN algorithm [4], etc. They are all computationally efficient for suppressing the out-of-sector sources, whereas these techniques are not suitable to process spatially close signals (i.e., the angular distance between two sources is small).With accurate and prior known source DOA of the strong signal, the interference mitigation techniques, such as the inter-ference jamming DOA estimation algorithm[5], the constrained MUSIC approach [6] and the weighted prior-MUSIC method [7], provide another efficient way to estimate the DOA parame-ters of unknown weak sources. These algorithms pre-subtract the high power components of mixed incident signals, and hence result in an accurate DOA estimation. However, they would lead to an inferior and inaccurate counteraction if the errors of the prior known source directions were introduced.Different from the aforementioned ideas, this work propos-es an oblique projection filtering based DOA estimation algo-rithm. The proposed algorithm does not require any knowledgeof the sources to be known a priori, such as directions, strength,modulation modes, etc. It is effective for estimating directionsof spatially close signals, especially for the signals with greatstrength difference. In this method, an expected direction isfirstly assumed. Then, the oblique projection (OP) [8-9] filter isused to suppress undesired sources which incident from unex-pected directions. After OP filter, only the signal which im-pinges on the array from the expected direction is kept. Finally,ransack all the potential expected directions in the angle do-main, the problem of direction finding is converted into signaldetection. Simulation results show that both the weak and thestrong incident signals can be successfully detected. With greatpower difference, the proposed algorithm is more stable andmore effective for DOA estimation in contrast with the MUSICapproach.II.S IGNAL M ODEL AND O BLIQUE P ROJECTIONA.Signal ModelAssume that D uncorrelated and zero-mean far field sourcesimpinge on an array composed of N output ports. The arrayelements may be disposed discretionarily on a planar or con-formal structure. The complex array response for the k th snap-shot can be written as()()()Fk k k=+X X e (1)where()()()Fk k=X VΘF and()()()1,,Dk f k f k⎡⎤=⎣⎦θθF .The matrix()()()1,,D=⎤⎦VΘvθvθrepresents the ar-ray manifold. ()kvθand()df kθdenote the normalized steering(NS) vector and the complex envelope of the d th incidentsignal, respectively. The DOA parameterkθsymbolizes theazimuth angle for a 1-D array or refers to the elevation andazimuth angles for a 2-D or 3-D structured antenna array,[]T12,,,D=Θθθθ. ()k e is the complex vector of the obser-vation noise. The noise is modeled as a zero-mean, stationary,spatially and temporally white Gaussian process. Furthermore,all the incident signals are assumed to be uncorrelated with theThis work was supported by the National Natural Science Foundation of China (No. 61171180).978-1-4799-4195-7/14/$31.00©2014IEEEarray noise. Then the spatial covariance matrix is given by ()(){}H 2XX XF k k σ==+R X X R I E (2)where {}E i denotes the mathematical expectation and the su-perscript H represents the Hermitian transpose. 2σis the va-riance of the noise and I stands for an identity matrix. Thenoise-free spatial covariance XF R is given by ()(){}()()H HXF F F F k k ==R X X V ΘR V ΘE (3) where ()(){}{}12H 222diag ,,,D F k k σσσ==θθθR F F E (4) is the covariance of the incident signals, and 2dσθrefers to the power of the d th signal.B. Oblique Projection The oblique projection whose range is <>A and whose null space contains <>B can be written as [8]()1H H |−⊥⊥=A B B B E A A ΠA A Π (5)where H 1H()⊥−=−B ΠI B B B B . <>A and <>B are disjoint. Both A and B are full column rank complex matrix of size N t × and N s ×, respectively. Then, we have|||=A B A B A B E E E (6) ||,==A B A B E A A E B 0 (7)III. A N O BLIQUE P ROJECTION F ILTERING B ASED DOAE STIOMATION A LGORITHMA. The Principle of the Proposed AlgorithmRecall that the model introduced in Section II is constructed by D sources, and the DOA parameters of the incident signals are collected in set Θ. In this work, none of the sources’ DOAs are known a priori. An expected direction of the impinging signal is firstly assumed. Then, the oblique projection filter is used to suppress incident signals which impinge upon the array from unexpected directions. Meanwhile, the signal which im-pinges on the array from the expected direction is kept.Without loss of generality, the DOA of the expected signalis assumed to be θ. Note that the expected direction θ maybeexactly equals to one of the sources DOA or maybe not. For convenience, a new set ϑ is defined as follows:{}{}{},for \,for ⊄⎧⎪=⎨⊂⎪⎩ΘθΘΘθθΘϑ (8) where {}i and \ refer to mathematical set and difference set operation, respectively. With non-overlapping sets {}θand ϑ, oblique projection operator ()()|v θJ E ϑcan be given by()()()()()()()()()1H H |−⊥⊥=v θJ J J E v θv θΠv θv θΠϑϑϑ (9) where ()v θrefers to the NS vector of the expected signal; and ()J ϑdenotes a set of NS vectors constructed by ϑ. Further,()()()()()()()||,==v θJ v θJ E v θv θE J 0ϑϑϑ (10)According to (10), the output of the oblique projection filteron the k th noise-free snapshot can be given by()()()()()()()()(){}{}||,for ,for F k k f k =⊂=⊄⎪⎩v θJ v θJ θE X E V ΘF θθΘ0θΘϑϑ (11) where ()f k θrefers to the complex envelope of the expectedsignal. Herein, if no practical signal impinging from the ex-pected direction, ()f k θis considered to be zero. Further, the strength of the expected signal can be evaluated by ()()()(){}{}221|11,for 1,for KK k Fk f k K k NK ==⎧⊂⎪=⎨⎪⊄⎩∑∑θv θJ θΘE X 0θΘϑ (12) As the expected direction θis ransacked in the angle do-main, an angle-power spectrum (APS) is developed. i.e.,()()()()()()()()()2|1H ||11trace KF k XFp k NK N===∑v θJ v θJ v θJ θE X E E R ϑϑϑ (13) where ()trace i represents the matrix trace, and2XF XX σ=−R R I (14)Thus, the problem of direction finding is converted into finding the peaks of the APS, i.e.,()ˆarg max p =θθθ (15) Note that the impinging signals may have different strength. If weak signals are accompanied with strong ones, direction finding of the weak signals may be influenced. To solve this problem, in Section III.C, we further define an adap-tive weight ()μθ to balance the peaks’ highlight in the APS. i.e., a weak signal’s spectrum will be weighted with a relative large coefficient and vice versa. By this way, both the weak and the strong incident signals can be successfully detected.B. The Calculation of the OP Operator According to the proposed algorithm, the key is to calculatethe OP operator ()()|v θJ E ϑas well as the noise variance 2σ. In this work, the variance of the noise is estimated by [1]211ˆN l l D N D σλ=+=−∑ (16) where 1λ, 2λ, ,N λare the eigenvalues of the spatial covari-ance matrix sorting in descending order.The calculation of operator ()()|v θJ E ϑmeans to estimate ()⊥J Πϑwhich can be given by [7] ()H HT T T T ⊥=−=J ΠI G G G G ϑ (17)where T G and G are the right-singular vectors of matrix T Rwith size T N D ×and ()T N N D ×−, respectively. i.e.,()()()2HˆT XF XX T TT σ⊥⊥==−⎡⎤=⎣⎦v θv θR ΠR ΠR I U ΛG GStrictly speaking, T D equals to 1D −for {}⊂θΘand T Dequals to D for {}⊄θΘ. Nevertheless, (17) and (18) indicate that a larger value of T D (with constraint T D N <) only results in an augmented null space, i.e., ()T <>⊂<>J G ϑfor any 1T D D >−with {}⊂θΘ. Thus, the expression (10) still holdseven if a larger T D shows with {}⊂θΘ. Thus, in this paper, we let T D D =for any {}θ.C. The Adaptive Weighting Factor of the APSAccording to the signal model (1) and the APS expression (13), we have()()()()()()()22||110KKk k k k p NK NK ==≤≤+∑∑v θJ v θJ E X E e θϑϑ (19)()()()()()()()22||11KKk k k k p NKNK==≥−∑∑v θJ v θJ E X E e θϑϑ (20)Note That()()()()()()()()22H |||11trace Kk k K σ==∑v θJ v θJ v θJ E e E E ϑϑϑ (21)()()()()()()()()()()()()()22||112H||11trace K Kk k k Np k K K Np σ==≤+=+∑∑v θJ v θJ v θJ v θJ EX θE e θE E ϑϑϑϑ(22)()()()()()()()()()()()()()22||112H||11trace KKk k k Np k KKNp σ==≥−=−∑∑v θJ v θJ v θJ v θJ E X θE e θEE ϑϑϑϑ(23)So, (19) and (20), respectively, indicate that()()()()()()()2H||20trace p p Nσ≤≤+v θJ v θJ θθE E ϑϑ (24) ()()()()()()()2H ||2trace p p Nσ≥−v θJ v θJ θθE E ϑϑ (25) From (24) and (25), it can be seen that the peaks of the APS are influenced by ()μθwhich is defined by()()()()()()()()()()()(]H H ||H H =1trace 101T T μ⊥==−∈v θJ v θJ JθE E v θΠv θv θG G v θϑϑϑ (26) Fig. 1 depicts the relationships between ()μθand signal-to-interference ratio (SIR). 200 snapshots and a half-wavelength spaced uniform linear array with 12 sensors are used in this simulation. The DOA of the first signal is 20 and the SNR is 10 dB. The incident angle of the second signal is 25, and eachsimulation is based on 500 Monte Carlo trails. It is shown that a stronger strength of the second signal makes a relatively larg-er μof the first signal; and the product results of ()μθand 2σθ are stable under different SIR. i.e., with fixed direction, a signal with a large strength will result in a relative small μand vice versa.Thus, we proposed to use ()μθas an adaptive weightingfactor to balance the highlight of the APS. In this way, we have ()()()()220p p N σμμ≤≤+θθθθ (27)()()()()22p p Nσμμ≥−θθθθ (28) After weighting, the peaks formed by all the incident signalscan be balanced adaptively. And both of the peaks formed by the weak and the strong signals can be almost evenly described in the weighted APS. To sum up, the proposed approach to estimate DOA para-meters of the incident signals can be summarized as follows:STEP 1: calculate ()p θand ()μθthrough (13) and (23), respec-tively, for all the discrete angles in the angle domain; STEP 2: find the DOA estimates {}1ˆˆ,,D θθ through searchingimpinge on the array, and the incident angles are 20 , 25 and 50 , respectively. The SNR used for the incident signal com-ing form 25 is 10 dB. The simulation results of Fig. 2(a) and Fig. 2(b) show that the strength and the DOA values of each signal are accurately estimated by the proposed approach, andall the signals have distinct large peaks. The simulation results of Fig. 2(b) indicate that when using the MUSIC algorithm to estimate DOA, the peaks of the weak signals are sheltered by the adjacent strong ones. However, both the peaks of the weak signals and the peaks of the strong ones are balanced in the weighted spatial spectrum. Thus, the proposed approach is Array much more efficient than the MUSIC algorithm in detecting weak signals.Fig. 3 illustrated the comparison of the detection and esti-mation performances between the proposed approach and the MUSIC method under different SIR and different incident an-gle intervals. Two signals are considered in the simulation. The DOA of the first signal is20 , and the angle interval between the second and the first signal isΔ. The SNR of the first signal is 10dB and each simulation is based on 500 Monte Carlo tri-als. A successful detection is made if both of the two signals’ DOA estimation errors are smaller than 1 and the normalizedpeaks are no smaller than 0.01. The simulation results indicatecan be achieved with different angle intervals. Compared with the MUSIC algorithm, the proposed approach is more stable and more efficient in detecting the weak signal, and it has a good robustness against DOA estimation with different SIR.Fig. 4 illustrates the RMSE of the estimated DOA. The si-mulation results are based on 500 Monte Carlo trials, and the practical DOAs of the impinging signals are20 and25 , re-spectively. Simulation result of the first signal is discussed here. In Fig. 4, comparison between the MUSIC algorithm and the proposed approach is made under different number of snap-shots, SNR and SIR. The comparison results show that the es-timation accuracy of the proposed approach is very close to that of the MUSIC method and the DOA estimation error of the incident signal is stable under different SIR.V.C ONCLUSIONIn this paper, a high resolution algorithm for DOA estima-tion is proposed. The work utilizes the oblique projection filter-ing approach, all the incident sources are processed separately and the problem of direction finding is converted into signal detection. The proposed algorithm does not require any a priori knowledge about the sources, and it is effective for estimating signals’ DOA under different angle intervals. Compared with the MUSIC approach, a comparable estimation accuracy can be achieved by the proposed algorithm. Moreover, under the cir-cumstance that strong signals are nearby, it is more stable and superior in detecting and estimating the weak signals.R EFERENCES[1]R.O. Schmidt, "Multiple emitter location and signal parameterestimation," IEEE Trans. on Antennas and Propagation, Vol. 34, No. 3, pp. 276-280, May 1986.[2] A. Hassanien, S.A. Elkader and A.B. Gershman, "Convex optimizationbased beam-space preprocessing with improved robustness against out-of-sector sources," IEEE Trans. on Signal Processing, Vol. 54, No. 5, pp.1587-1595, May 2006.[3]S.C. Chan, H.H. Chen, "Uniform concentric circular arrays withfrequency-invariant characteristics-theory, design, adaptive beamform-ing and DOA estimation," IEEE Trans. on Signal Processing, Vol. 55, No. 1, pp. 165-177, Jan. 2007.[4]T.J. Cornwell, "Multiscale CLEAN deconvolution of radio synthesisimages," IEEE Journal of Selected Topics in Signal Processing, Vol. 2, No. 5, pp. 793-801, Oct. 2008.[5] C. Hui, Y.L. Wang, "Interference jamming DOA estimation algorithm,"IEEE Antennas and Propagation Society International Symposium, Vol.2B, pp. 358-361, 2005.[6]R.D. DeGroat, E.M. Dowling, and D.A. Linebarger, "The constrainedMUSIC problem," IEEE Trans. on Signal Processing, Vol. 41, No. 3, pp.1445-1449, Mar. 1993.[7]R. Boyer, G. Bouleux, "Oblique projections for direction-of-arrivalestimation with prior knowledge," IEEE Trans. on Signal Processing, Vol. 56, No. 4, pp.1374-1387, April 2008.[8]R.T. Behrens, L.L. Scharf, "Signal processing applications of obliqueprojection operators," IEEE Trans. on Signal Processing, Vol. 42, No. 6, pp. 1413-1424, Jun 1994.[9]H.J. Hou, X.P. Mao, and S.B. Li, "A generalized oblique projectionoperator for interference suppression under colored noise," in Proc. of IEEE Radar Conference, Atlanta, pp. 687-692, May 2012.。