中考数学专题复习题 二次根式(含解析)
初中数学二次根式精选试题(含答案和解析)
初中数学二次根式精选试题一.选择题1. (2018·湖南怀化·4分)使有意义的x的取值范围是()A.x≤3B.x<3 C.x≥3D.x>3【分析】先根据二次根式有意义的条件列出关于x的不等式.求出x 的取值范围即可.【解答】解:∵式子有意义.∴x﹣3≥0.解得x≥3.故选:C.【点评】本题考查的是二次根式有意义的条件.熟知二次根式具有非负性是解答此题的关键.2.(2018•江苏宿迁•3分)若实数m、n满足.且m、n恰好是等腰△ABC的两条边的边长.则△ABC的周长是()A. 12B. 10C. 8D. 6【答案】B【分析】根据绝对值和二次根式的非负性得m、n的值.再分情况讨论:①若腰为2.底为4.由三角形两边之和大于第三边.舍去;②若腰为4.底为2.再由三角形周长公式计算即可.【详解】由题意得:m-2=0.n-4=0.∴m=2.n=4.又∵m、n恰好是等腰△ABC的两条边的边长.①若腰为2.底为4.此时不能构成三角形.舍去.②若腰为4.底为2.则周长为:4+4+2=10.故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质.根据非负数的性质求出m、n的值是解题的关键.3.(2018•江苏无锡•3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣3【分析】根据二次根式的性质把各个二次根式化简.判断即可.【解答】解:()2=3.A正确;=3.B错误;==3.C错误;(﹣)2=3.D错误;故选:A.【点评】本题考查的是二次根式的化简.掌握二次根式的性质:=|a|是解题的关键.4.(2018•江苏苏州•3分)若在实数范围内有意义.则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式.解不等式.把解集在数轴上表示即可.【解答】解:由题意得x+2≥0.解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件.掌握二次根式中的被开方数是非负数是解题的关键.5.(2018•山东聊城市•3分)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2D.﹣3=【分析】根据二次根式的加减乘除运算法则逐一计算可得.【解答】解:A.3与﹣2不是同类二次根式.不能合并.此选项错误;B.•(÷)=•==.此选项正确;C.(﹣)÷=(5﹣)÷=5﹣.此选项错误;D.﹣3=﹣2=﹣.此选项错误;故选:B.【点评】本题主要考查二次根式的混合运算.解题的关键是掌握二次根式混合运算顺序和运算法则.6.(2018•上海•4分)下列计算﹣的结果是()A.4 B.3 C.2D.【分析】先化简.再合并同类项即可求解.【解答】解:﹣=3﹣=2.故选:C.【点评】考查了二次根式的加减法.关键是熟练掌握二次根式的加减法法则:二次根式相加减.先把各个二次根式化成最简二次根式.再把被开方数相同的二次根式进行合并.合并方法为系数相加减.根式不变.7. (2018•达州•3分)二次根式中的x的取值范围是()A.x<﹣2 B.x≤﹣2 C.x>﹣2 D.x≥﹣2【分析】根据被开方数是非负数.可得答案.【解答】解:由题意.得2x+4≥0.解得x≥﹣2.故选:D.【点评】本题考查了二次根式有意义的条件.利用被开方数是非负数得出不等式是解题关键.8. (2018•杭州•3分)下列计算正确的是()A.B.C.D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB.∵.因此A符合题意;B不符合题意;CD.∵.因此C.D不符合题意;故答案为:A【分析】根据二次根式的性质.对各选项逐一判断即可。
中考数学专题《二次根式》复习试卷含答案解析
2018年中考数学专题复习卷: 二次根式一、选择题1.下列计算正确的是()A. B. C. D.2.下列四个数中,是负数的是( )A. B. C. D.3.函数y= 中自变量x的取值范围是()A. x≥-1且x≠1B. x≥-1C. x≠1D. -1≤x<14.下列各式化简后的结果为3 的是()A. B. C. D.5.下列计算正确的是()A. a5+a2=a7B. × =C. 2-2=-4D. x2·x3=x66.计算|2﹣|+|4﹣|的值是()A. ﹣2B. 2C. 2 ﹣6D. 6﹣27.计算之值为何()A. 5B. 33C. 3D. 98.下列运算正确的是()A. B. C. D.9.已知,则代数式的值是()A. 0B.C.D.10.如果(0<x<150)是一个整数,那么整数x可取得的值共有()A. 3个B. 4个C. 5个D. 6个11.化简为()A. 5﹣4B. 4 ﹣lC. 2D. 112.下列计算:①;②;③;④.其中正确的有()A. 1个B. 2个C. 3个D. 4个二、填空题13.函数y=的自变量x的取值范围是________.14.计算:=________.15.计算:________。
16.当x=2时,二次根式的值为________.17.计算的结果是________.18.计算(+1)2016(﹣1)2017=________.19.已知实数a在数轴上的位置如图所示,化简的结果是________.20.若实数a、b满足|a+2|+ =0,则=________.21.计算:=________.22.观察下列等式:第1个等式:a1= = ﹣1,第2个等式:a2= = ﹣,第3个等式:a3= =2﹣,第4个等式:a4= = ﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:a n=________;(2)a1+a2+a3+…+a n=________.三、解答题23.24.计算:()﹣1﹣6cos30°﹣()0+ .25.在平面直角坐标系中,点P(- ,-1)到原点的距离是多少?26.若b为实数,化简|2b-1|- 。
初中数学 中考复习二次根式专题练习(含答案)
二次根式复习一、知识归纳 (一)二次根式定义1注意:(12,(2)被开方数是非负数2、二次根式在实数范围内有意义的条件是 a ≥0 。
(二)二次根式的性质1、二次根式的双重非负性≥0,a ≥0a ≥0)表示非负数a 的算术平方根,≥0,2、)2=a (a ≥0)(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><(三)、最简二次根式和同类二次根式 1、最简二次根式的两个条件:(1)被开方数不含 ;(2)被开方数不含 的因数或因式。
满足:(1)根号内不含有分母,有分母的先通分,再将分母开出来 (2)根号内每个因式或因数的指数都小于根指数2,如果根号内含有因式或因数的指数大于根指数2,就利用,将每个因式或因数的指数都小于根指数2(3)分母内不含有根式,如果分母内含有根号,则利用分母有理化,将根号划去。
(1)判断一个二次根式是否是最简二次根式,要紧扣最简二次根式的特点: ①被开方数不含分母;②被开方数不能含开得尽方的因数或因式.即把每一个因数或因式都写成底数较小、乘方的形式后,因数或因式的指数小于2.③若被开方数是和(或差)的形式,则先把被开放方数写成积的形式,再作判定,若无法写成积(或一个数)的形式,则为最简二次根式.=简二次根式.=,且因式2和22()x y +的指数都是1,是最简二次根式.22a b +无法变成一个数(或因式)式.(2)化简二次根式一般例如为两步:一如果被开方数是分数或分式,利用分母有理化化简;二化去被开方数中的分母之后,再将被开方数分解成几个数相乘的形式或分解因式,然后利用积的算术平方根的性质把能开得尽方的因数或因式开出来.若被开方数中不含分母,则只需第二步.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式.同类二次根式与同类项类似. 对同类二次根式的理解应注意以下几点:(1)判断几个二次根式是否是同类二次根式时,首先将二次根式化为最简二次根式,其次看被开方数是否相同.(2)几个二次根式是否是同类二次根式,只与被开方数和根指数有关,与根号外的系数无关. 将同类二次根式的系数相加减,根指数与被开方数保持不变.(1)二次根式的系数就是这个二次根式根号外的因式(或因数),它包含前面的符号.(2)当二次根式的系数为带分数时,必须将其化为假分数.(3)不是同类二次根式,千万不要合并.(四)二次根式的运算0)=≥,≥0a b=≥,>00)a b≥,≥0a b0)=≥,>00)a b二次根式的加减实质上就是合并同类二次根式.4、二次根式加减的步骤:(1)先将二次根式化成。
中考数学真题专项汇编解析—二次根式
中考数学真题专项汇编解析—二次根式一.选择题1.(2022·湖南衡阳)那么实数a 的取值范围是( ) A .1a >B .1a ≥C .1a <D .1a ≤【答案】B【分析】根据二次根式中的被开方数是非负数求解可得.【详解】根据题意知1a -≥0,解得1a ≥,故选:B .【点睛】本题主要考查二次根式有意义的条件,解题的关键是掌握二次根式的双重非负性.2.(2022·江苏连云港)函数y =x 的取值范围是( ) A .1≥xB .0x ≥C .0x ≤D .1x ≤ 【答案】A【分析】根据二次根式有意义的条件列出不等式,即可求解.【详解】解:∵10x -≥,∵1≥x .故选A .【点睛】本题考查了求函数自变量取值范围,二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.3.(2022·的值应在( )A .10和11之间B .9和10之间C .8和9之间D .7和8之间 【答案】B6=【详解】 6=∵43,∵910<,故选:B .【点睛】本题考查了二次根式混合运算及无理数的估算,熟练掌握无理数估算方法是解题的关键.4.(2022·333,…,6666633n ++++++=个根号,一般地,对于正整数a ,b ,如果满足n b b b b b a a ++++++=个根号时,称(),a b 为一组完美方根数对.如上面()3,6是一组完美方根数对.则下面4个结论:∵()4,12是完美方根数对;∵()9,91是完美方根数对;∵若(),380a 是完美方根数对,则20a =;∵若(),x y 是完美方根数对,则点(),P x y 在抛物线2y x x 上.其中正确的结论有( )A .1个B .2个C .3个D .4个 【答案】C 【分析】根据定义逐项分析判断即可. 【详解】解:1244+=,∴()4,12是完美方根数对;故∵正确;10=9≠∴()9,91不是完美方根数对;故∵不正确;若(),380a a =即2380a a =+解得20a =或19a =- a 是正整数则20a =故∵正确;若(),x y x =2y x x ∴+=,即2y x x 故∵正确故选C 【点睛】本题考查了求算术平方根,解一元二次方程,二次函数的定义,理解定义是解题的关键.5.(2022·河北)下列正确的是( )A23=+ B 23⨯ C D 0.7【答案】B【分析】根据二次根式的性质判断即可.【详解】解:23≠+,故错误;23=⨯,故正确;=≠0.7≠,故错误;故选:B .【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键. 6.(2022·河南)下列运算正确的是( )A .2-=B .()2211a a +=+C .()325a a =D .2322a a a ⋅= 【答案】D【分析】根据二次根式的加减,完全平方公式,幂的乘方,单项式乘以单项式逐项分析判断即可求解.【详解】解:A. =B. ()22112a a a +=++,故该选项不正确,不符合题意; C. ()326a a =,故该选项不正确,不符合题意;D. 2322a a a ⋅=,故该选项正确,符合题意;故选:D.【点睛】本题考查了二次根式的加减,完全平方公式,幂的乘方,单项式乘以单项式,正确地计算是解题的关键.7.(2022·湖南怀化)下列计算正确的是( )A .()32626a a =B .824a a a ÷=C 2D .()222x y x y -=- 【答案】C【分析】依次对每个选项进行计算,判断出正确的答案.【详解】∵()32366822a a a ==∵ A 错误 ∵82826a a a a -÷==∵ B 错误2∵C 正确∵()2222x y x xy y -=-+∵ D 错误故选:C .【点睛】本题考查整式的运算,解题的关键是熟练掌握运算法则.8.(2022·湖南怀化)下列计算正确的是( )A .(2a 2)3=6a 6B .a 8÷a 2=a 4C 2D .(x ﹣y )2=x 2﹣y 2【答案】C【分析】根据积的乘方、同底数幂的除法、二次根式的化简、完全平方公式求解即可;【详解】解:A.(2a 2)3=8a 6≠6a 6,故错误;B.a 8÷a 2=a 6≠a 4,故错误;=2,故正确;D.(x ﹣y )2=x 2﹣2xy +y 2≠x 2﹣y 2,故错误;故选:C .【点睛】本题主要考查积的乘方、同底数幂的除法、二次根式的化简、完全平方公式等知识,掌握相关运算法则是解题的关键.9.(2022·云南)下列运算正确的是( )A =B .030=C .()3328a a -=-D .632a a a ÷=【答案】C【分析】根据合并同类二次根式判断A ,根据零次幂判断B ,根据积的乘方判断C ,根据同底数幂的除法判断D .【详解】解:题意;B.031=,此选项运算错误,不符合题意;C.()3328a a -=-,此选项运算正确,符合题意;D.633a a a ÷=,此选项运算错误,不符合题意;故选:C .【点睛】本题考查了二次根式的加法、零次幂、积的乘方、同底数幂相除,熟练掌握运算法则是解题的关键.10.(2022·四川德阳)下列计算正确的是( )A .()222a b a b -=-B 1=C .1a a a a ÷⋅=D .32361126ab a b ⎛⎫-=- ⎪⎝⎭ 【答案】B【分析】根据完全平方公式、二次根式的化简、同底数幂的乘除法则、积的乘法法则逐项判断即可.【详解】A.222()2a b a ab b -=-+,故本选项错误;1,故本选项符合题意;C.1111a a a a a÷⋅=⋅=,故本选项错误;D.23332336111228()()ab a b a b ⨯-=-=-,故本选项错误;故选:B .【点睛】本题考查了完全平方公式、二次根式的化简、同底数幂的乘除法则、积的乘法法则,熟练掌握同底数幂的乘除法则、积的乘法法则是解答本题的关键.11.(2022·江苏连云港)函数y =x 的取值范围是( ) A .1≥xB .0x ≥C .0x ≤D .1x ≤ 【答案】A【分析】根据二次根式有意义的条件列出不等式,即可求解.【详解】解:∵10x -≥,∵1≥x .故选A .【点睛】本题考查了求函数自变量取值范围,二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.12.(2022·四川自贡)下列运算正确的是( )A .()212-=-B .1=C .632a a a ÷= D .0102022⎛⎫-= ⎪⎝⎭ 【答案】B【分析】根据乘方运算,平方差公式,同底数幂的除法法则,零指数幂的运算法则进行运算即可.【详解】A.()211-=,故A 错误;B.221=-=,故B 正确;C.633a a a ÷=,故C 错误;D.0112022⎛⎫-= ⎪⎝⎭,故D 错误.故选:B . 【点睛】本题主要考查了整式的运算和实数的运算,熟练掌握平方差公式,同底数幂的除法法则,零指数幂的运算法则,是解题的关键.13.(2022· )A .±2B .-2C .4D .2【答案】D【分析】先计算(-2)2=4,再求算术平方根即可.2,故选:D .【点睛】本题考查算术平方根,熟练掌握算术平方根的定义是解题的关键. 14.(2022·4的值在( )A .6到7之间B .5到6之间C .4到5之间D .3到4之间【答案】D【分析】根据49<54<64,得到78<<,进而得到344<<,即可得到答案.【详解】解:∵49<54<64,∵78<,∵344<<4的值在3到4之间,故选:D .【点睛】此题考查了无理数的估算,正确掌握无理数的估算方法是解题的关键.二.填空题15.(2022·x 的取值范围是______.【答案】x ≥﹣1【分析】根据二次根式有意义的条件可得:x +1≥0,即可求得.【详解】解:∵∵x +1≥0,∵x ≥﹣1.故答案为:x ≥﹣1.【点睛】本题考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.16.(2022·_________.【答案】2【分析】根据二次根式的性质进行化简即可.2.故答案为:2. ()()(0000a a a a a a ⎧⎪===⎨⎪-⎩>)<. 17.(2022·湖北荆州)若3a ,小数部分为b ,则代数式()2b ⋅的值是______.【答案】2【分析】先由12<得到132<<,进而得出a 和b ,代入()2b ⋅求解即可.【详解】解:∵ 12<,∵132<, ∵3的整数部分为a ,小数部分为b ,∵1a =,312b ==∵()((222242b ⋅=⨯=-=,故答案为:2.【点睛】本题主要考查无理数及代数式化简求值,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法.18.(2022·x 的取值范围为_____.【答案】x ≥5【分析】根据二次根式有意义的条件得出x −5≥0,计算求解即可.【详解】解:由题意知,50x -≥,解得,5x ≥,故答案为:5x ≥.【点睛】本题考查了二次根式有意义的条件,解一元一次不等式.熟练掌握二次根式有意义的条件是解题的关键.19.(2022·四川南充)x 为正整数,则x 的值是_______________.【答案】4或7或8【分析】根据根号下的数大于等于0和x 为正整数,可得x 可以取1、2、3、4、5、6、7、8为整数即可得x 的值.【详解】解:∵80x -≥∵8x ≤∵x 为正整数∵x 可以为1、2、3、4、5、6、7、8为整数∵x 为4或7或8故答案为:4或7或8.【点睛】本题考查了利用二次根式的性质化简、解一元一次不等式等知识点,掌握二次根式的性质是解答本题的关键.20.(2022·天津)计算1)的结果等于___________.【答案】18【分析】根据平方差公式即可求解.【详解】解:221)119118=-=-=,故答案为:18.【点睛】本题考查了平方差公式的应用,熟练掌握平方差公式的展开式是解题的关键.21.(2022·浙江嘉兴)如图,在ABC中,∵ABC=90°,∵A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为_________.【分析】先求解33,,3AB AD再利用线段的和差可得答案.【详解】解:由题意可得:1,15123,DE DC30,90, A ABC33, tan603BCAB同理:13,tan6033DEAD3233,33BD AB AD【点睛】本题考查的是锐角的正切的应用,二次根式的减法运算,掌握“利用锐角的正切求解三角形的边长”是解本题的关键.22.(2022·新疆)在实数范围内有意义,则x的取值范围为__________.【答案】3x≥【分析】根据二次根式有意义的条件,得到不等式,解出不等式即可.有意义,则需要-30x≥,解出得到3x≥.故答案为:3x≥【点睛】本题考查二次根式有意义的条件,能够得到不等式是解题关键.23.(2022·2,…,排列:,2,4;…若2的位置记为(1,2)(2,3),则________.【答案】(4,2)【分析】先找出被开方数的规律,然后再求得∵规律为:被开数为从2开始的偶数,每一行4个数,∵28是第14个偶数,而14432÷=∵(4,2)故答案为:(4,2)【点睛】本题考查了类比点的坐标解决实际问题的能力和阅读理解能力.被开方数全部统一是关键.24.(2022·x的取值范围是__.【答案】1x.【分析】二次根式有意义的条件:被开方数为非负数,再列不等式,从而可得答案.10x -,解得:1x .故答案为:1x .【点睛】本题考查的是二次根式有意义的条件,解题的关键是根据二次根式有意义的条件列不等式.25.(2022·四川遂宁)实数a ,b 在数轴上的位置如图所示,化简1a +______.【答案】2【分析】利用数轴可得出102a b -<<<<,1,进而化简求出答案. 【详解】解:由数轴可得:102a b -<<<<,1,则10,10,0a b a b +>->-<∵1a +|1||1|||a b a b +--+- =1(1)()a b a b +---- =11a b a b +-+-+ =2.故答案为:2.【点睛】此题主要考查了二次根式的性质与化简,正确得出a ,b 的取值范围是解题关键.26.(2022·_____. 【答案】4【分析】根据二次根式的乘法法则计算即可.4=.故答案为:4.【点睛】本题考查了二次根式的乘法,解题的关键是掌握运算法则.27.(2022·湖南娄底)函数y=x的取值范围是_______.【答案】1x>有意义可得:10,x->再解不等式可得答案.有意义可得:10,10xx即10,x->解得: 1.x>故答案为:1x>【点睛】本题考查的是二次根式与分式有意义的条件,函数自变量的取值范围,理解函数自变量的取值范围的含义是解本题的关键.28.(2022·________.【答案】3【分析】直接利用二次根式的乘法法则计算得出答案.3.故答案为:3.【点睛】此题主要考查了二次根式的乘法法则,熟练掌握二次根式的乘法法则是解题关键.29.(2022·四川宜宾)《数学九章》是中国南宋时期杰出数学家秦九韶的著作,书中提出了已知三角形三边a、b、c求面积的公式,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即为S=18的三角形的三边满足::4:3:2a b c=,则用以上给出的公式求得这个三角形的面积为______. 【答案】【分析】根据周长为18的三角形的三边满足::4:3:2a b c =,求得8,6,4a b c ===,代入公式即可求解.【详解】解:∵周长为18的三角形的三边满足::4:3:2a b c =,设4,3,2a k b k c k === ∵43218k k k ++=解得2k =∴8,6,4a b c ===∴S =====故答案为:【点睛】本题考查了化简二次根式,正确的计算是解题的关键.30.(2022·湖北荆州)如图,在Rt ∵ABC 中,∵ACB =90°,通过尺规作图得到的直线MN 分别交AB ,AC 于D ,E ,连接CD .若113CE AE ==,则CD =______.【分析】先求解AE ,AC ,再连结BE ,证明,,AE BE AD BD 利用勾股定理求解BC,AB,从而可得答案.【详解】解:113CE AE==,3,4,AE AC如图,连结,BE由作图可得:MN是AB的垂直平分线,3,,AE BE AD BD90,ACB∠=︒223122,BC2242226,AB16.2BD AB【点睛】本题考查的是线段的垂直平分线的作图与性质,勾股定理的应用,二次根式的化简,熟悉几何基本作图与基本图形的性质是解本题的关键.31.(2022·x的取值范围是______.【答案】4x>【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】解:根据题意,得:4040xx-≥⎧⎨-≠⎩,解得:x>4,故答案为:x>4.【点睛】本题考查了二次根式有意义的条件是二次根式的被开方数是非负数,分式有意义的条件是分母不为0.32.(2022·x 的取值范围是_______. 【答案】1x【分析】根据二次根式的被开方数是非负数列出不等式10x -,解不等式即可求得x 的取值范围.【详解】解:根据题意得10x -,解得1x .故答案为:1x .【点睛】本题考查了二次根式有意义的条件,解题的关键是利用被开方数是非负数得出不等式.33.(2022·__________.【答案】【解析】 【分析】先计算乘法,再合并,即可求解. 【详解】3=4233=,故答案为: 【点睛】本题主要考查了二次根式的混合运算,熟练掌握二次根式的混合运算法则是解题的关键.34.(2022·湖北随州)已知mm 有最小值3721⨯=.设n 为正整数,是大于1的整数,则n 的最小值为______,最大值为______. 【答案】 3 75【分析】根据n 为正整数,1的整数,先求出n 的值可以为3、12、75,3001的整数来求解.【详解】解:=1的整数,∵1=. ∵n 为正整数∵n 的值可以为3、12、75,n 的最小值是3,最大值是75.故答案为:3;75.【点睛】本题考查了无理数的估算,理解无理数的估算方法是解答关键.35.(2022·0.618≈这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设a =b =记11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b=+++,则12100S S S +++=_______.【答案】5050【分析】利用分式的加减法则分别可求S 1=1,S 2=2,S 100=100,•••,利用规律求解即可.【详解】解:a =b =1ab ==∴, 1112211112a b a ba b b b a bS a a ++++=+===+++++++, 222222222222222222221112a b a b S a b a b a b a b ++++=+=⨯=⨯=+++++++,…,10101001001001010101010010011100100111a b S a b a b a b +++=+=⨯=+++++ ∴12100S S S +++=121005050++⋯⋯+=故答案为:5050【点睛】本题考查了分式的加减法,二次根式的混合运算,求得1ab =,找出的规律是本题的关键. 三.解答题36.(2022·四川乐山)1sin 302-︒ 【答案】3【分析】根据特殊角三角函数值、二次根式的性质、负整数指数幂求解即可. 【详解】解:原式113322=+-=.【点睛】本题主要考查了特殊角三角函数值、负整数指数幂、二次根式的性质等知识,熟知相关计算法则是解题的关键.37.(2022·江苏宿迁)计算:112-⎛⎫ ⎪⎝⎭4sin 60°.【答案】2【分析】先计算负整数指数幂,二次根式的化简,特殊角的三角函数值,再计算乘法,再合并即可.【详解】解:11124sin 6023422=+2= 【点睛】本题考查的是特殊角的三角函数值的运算,负整数指数幂的含义,二次根式的化简,掌握“运算基础运算”是解本题的关键.38.(2022·湖南娄底)计算:()11202212sin 602π-⎛⎫-++-︒ ⎪⎝⎭. 【答案】-2【分析】分别计算零指数幂、负整数指数幂、绝对值和特殊角的三角函数值,然后按照去括号、先乘除后加减的顺序依次计算即可得出答案.【详解】解:()-112022-12sin 602π⎛⎫+-+︒ ⎪⎝⎭(1212=---121=-- 2=-.【点睛】此题考查实数的混合运算,包含零指数幂、负整数指数幂、绝对值和特殊角的三角函数值.熟练掌握相关运算的运算法则以及整体的运算顺序是解决问题的关键.39.(2022·浙江湖州)计算:()223+⨯-.【答案】0【分析】先算乘方,再算乘法和减法,即可. 【详解】()26(6)6236=+-=+--=⨯【点睛】本题考查实数的混合运算,关键是掌握2a=.40.(2022·【答案】【分析】根据二次根式的混合运算进行计算即可求解.【详解】解:原式==【点睛】本题考查了次根式的混合运算,正确的计算是解题的关键.41.(2022·湖南常德)计算:213sin30452-︒︒⎛⎫- ⎪⎝⎭【答案】1【分析】根据零次幂,负整指数幂,特殊角的三角函数值,二次根式的性质进行计算即可求解.【详解】解:原式=11422-⨯+1=.【点睛】本题考查了实数的混合运算,掌握零次幂,负整指数幂,特殊角的三角函数值,二次根式的性质是解题的关键.42.(2022·四川广元)计算:2sin60°﹣2|+(π(﹣12)﹣2.【答案】3【分析】代入特殊角的三角函数值,按照实数的混合运算法则计算即可得答案.【详解】解:2sin60°﹣2|+(π+(﹣12)﹣2-- =3.【点睛】本题考查特殊角的三角函数值、零指数幂、负整数指数幂及二次根式的性质与化简,熟练掌握实数的混合运算法则,熟记特殊角的三角函数值是解题关键.43.(2022·湖北十堰)计算:1202212(1)3-⎛⎫+- ⎪⎝⎭.【分析】根据负整数指数幂、乘方、绝对值的性质化简后计算即可.【详解】解:1202212(1)3-⎛⎫+- ⎪⎝⎭321=-【点睛】本题考查实数的混合运算,解题的关键是根据负整数指数幂、绝对值的性质化简. 44.(2022·四川宜宾)计算:4sin 302︒;(2)21111aa a ⎛⎫-÷ ⎪+-⎝⎭. 【答案】1a -【分析】(1)先化简二次根式,把特殊角三角函数值代入,并求绝对值,再计算乘法,最后合并同类二次根式即可;(2)先计算括号,再运用除法法则转化成乘法计算即可求解.【解析】(1)解:原式1422=⨯+=(2)解:原式211111a a a a a+-⎛⎫=-⋅ ⎪++⎝⎭ ()()111a a a a a+-=⋅+ 1a =-.【点睛】本题考查实数的混合运算,分式的混合运算,熟练掌握实数混合运算与分式混合运算法则,熟记特殊角的三角函数值.45.(2022·四川南充)先化简,再求值:(2)(32)2(2)x x x x +--+,其中1x =.【答案】24x -;-【分析】利用多项式乘以多项式及单项式乘以多项式运算法则进行化简,然后代入求值即可.【详解】解:原式=22326424x x x x x -+---=24x -;当x 1时,原式=)214-=3+1-4=- 【点睛】题目主要考查整式的乘法及加减化简求值及二次根式混合运算,熟练掌握运算法则是解题关键.46.(2022·湖南岳阳)计算:2022032tan 45(1))π--︒+--.【答案】1【分析】根据特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值等计算法则求解即可.【详解】解:2022032tan 45(1))π--︒+--32111=-⨯+-3211=-+-1=.【点睛】本题考查了特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值,准确熟练地化简各式是解题的关键.47.(2022·湖南娄底)“体育承载着国家强盛、民族振兴的梦想”.墩墩使用握力器(如实物图所示)锻炼手部肌肉.如图,握力器弹簧的一端固定在点P 处,在无外力作用下,弹簧的长度为3cm ,即3cm PQ =.开始训练时,将弹簧的端点Q 调在点B 处,此时弹簧长4cm PB =,弹力大小是100N ,经过一段时间的锻炼后,他手部的力量大大提高,需增加训练强度,于是将弹簧端点Q 调到点C 处,使弹力大小变为300N ,已知120∠=︒PBC ,求BC 的长.注:弹簧的弹力与形变成正比,即F k x =⋅∆,k 是劲度系数,x ∆是弹簧的形变量,在无外力作用下,弹簧的长度为0x ,在外力作用下,弹簧的长度为x ,则0x x x ∆=-.【答案】2【分析】利用物理知识先求解,k 再求解336,PC 再求解,,BM PM 再利用勾股定理求解MC ,从而可得答案.【详解】解:由题意可得:当100F时,431,x 100,k 即100,F x 当300F =时,则3,x 336,PC 如图,记直角顶点为M ,120,90,PBC PMB30,BPM 而4,PB 222,4223,BMPM 226232426,MC 26 2.BC MC BM【点睛】本题是跨学科的题,考查了正比例函数的性质,三角形的外角的性质,勾股定理的应用,含30的直角三角形的性质,二次根式的化简,理解题意,建立数学函数模型是解本题的关键.。
中考数学经典题——二次根式(含答案)
二次根式要点一:二次根式的定义及性质 一、选择题1、(2010·聊城中考)无理数-3的相反数是( )A .- 3B . 3C .13D .-13【解析】选B,数a 的相反数为-a ,有-(-3)=3。
2、(2010·巴中中考)下列各数:21303003.072260cos 32.0902-︒,,,,,,, π中,无理数的个数是( )A 2个B 3个C 4个D 5个【解析】选B ,无限不循环小数是无理数,其中21303003.02-,, π三个是无理数,其他是有理数。
3、 (2009·宁波中考)x 的取值范围是( ).A .2x ≠B .2x >C .2x ≤D .2x ≥ 答案:D4、(2009·天津中考)若x y ,为实数,且20x +,则2009x y ⎛⎫ ⎪⎝⎭的值为( )A .1B .1-C .2D .2- 答案:B5.(2009·济宁中考)已知aA. aB. a -C. - 1D. 0 答案:D.6.(20092()x y =+,则x -y 的值为( )A .-1B .1C .2D .3【解析】选C.本题考查二次根式的意义,由题意可知1x =,1y =-,∴x -y =2,故选C .7、(20081a -,则a 的取值范围是( )A .1a >B .1a ≥C .1a <D .1a ≤【解析】选D.由二次根式的非负性知10. 1.a a -≥≤即 8、(2007·内江中考)已知ABC △的三边a b c ,,满足2|2|1022a b a ++=+,则ABC △为( )(A )等腰三角形 (B )正三角形 (C )直角三角形 (D )等腰直角三角形【解析】选B.∵2|2|1022a b a ++=+.∴21025412|0a a b -++--+=即2251)2|0a -++=()∴a=5,b=5,c=5. 二、填空题9、(2010·常德中考)函数y =x 的取值范围是_________.【解析】由二次根式的意义可以得出2x-6≥0,因而得出x ≥3。
中考数学最新真题专项汇总—二次根式(含解析)
中考数学最新真题专项汇总—二次根式(含解析)一.选择题1.(2022·湖北武汉)下列各式计算正确的是( )A=B .1= C =D 2=【答案】C【分析】由合并同类二次根式判断A ,B ,由二次根式的乘除法判断C ,D .【详解】解:A ≠B 、=C=D22==C .【点睛】本题考查合并同类二次根式,二次根式的乘法,二次根式的乘方运算,掌握以上知识是解题关键.2.(2022·山东聊城)射击时,子弹射出枪口时的速度可用公式v 其中a 为子弹的加速度,s 为枪筒的长.如果52510m /s a =⨯,0.64m s =,那么子弹射出枪口时的速度(用科学记数法表示)为( )A .20.410m /s ⨯B .20.810m /s ⨯C .2410⨯m /sD .28s 10m /⨯【答案】D【分析】把a =5×105m/s 2,s =0.64m 代入公式=v 化简即可.【详解】解:()2810m /s v =⨯,故选:D .【点睛】此题主要考查了二次根式的性质与化简以及科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.(2022·|2|cos45-⨯︒的结果,正确的是()B.C.D.2A【答案】B【分析】化简二次根式并代入特殊角的锐角三角比,再按照正确的运算顺序进行计算即可.-⨯︒|2|cos45=2==B【点睛】此题考查了二次根式的运算、特殊角的锐角三角比等知识,熟练掌握运算法则是解题的关键.4.(2022·山东青岛)计算)AB.1C D.3【答案】B再合并即可.【详解】解:94321故选:B.【点睛】本题考查的是二次根式的乘法运算,掌握“二次根式的乘法运算法则”是解本题的关键.5.(2022·2x -在实数范围内有意义,则x 的取值范围是( )A .1x >-B .1x -C .1x -且0x ≠D .1x -且0x ≠【答案】C【分析】根据二次根式被开方数不能为负数,负整数指数幂的底数不等于0,计算求值即可;【详解】解:由题意得:x +1≥0且x ≠0,∴x ≥-1且x ≠0,故选: C .【点睛】本题考查了二次根式的定义,负整数指数幂的定义,掌握其定义是解题关键.6.(2022·山东潍坊)秦兵马俑的发现被誉为“世界第八大奇迹”,兵马俑的眼睛,下列估算正确的是( )A .205<<B .2152<< C .12<<1 D 1> 【答案】C【分析】用夹逼法估算无理数即可得出答案.【详解】解:4<5<9,∴23,∴1∴1<1,故选:C.2【点睛】本题考查了无理数的估算,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.7.(2022·湖北恩施)函数y的自变量x的取值范围是()A.3x≥-x≠D.1x≥-且3x≠B.3x≥C.1【答案】C【分析】根据分式有意义的条件与二次根式有意义的条件得出不等式组,解不等式组即可求解.【详解】解:∴10,30+≥-≠,x x解得1x≠,故选C.x≥-且3【点睛】本题考查了求函数自变量的取值范围,掌握分式有意义的条件与二次根式有意义的条件是解题的关键.8.(2022·)A.B.3C.D.2【答案】A【分析】将被开方数12写成平方数4与3的乘积,再将4开出来为2,易知化简结果为故选:A.【点睛】本题考查了二次根式的化简,关键在于被开方数要写成平方数乘积的形式再进行化简.9.(2022·x的取值范围是()A.1≥x B.1x>x>C.0x≥D.0【答案】A0)进行计算即可.【详解】解:由题意得:10x-,∴,1x故选:A.0)是解题的关键.10.(2022·山东临沂)满足1m>的整数m的值可能是()A.3B.2C.1D.0【答案】A11的范围,再确定m的范围即可确定答案.【详解】3104<<,∴<,2131011m>,-,1∴≥,故选:A.3m【点睛】本题考查了绝对值的化简,无理数的估算和不等式的求解,熟练掌握知识点是解题的关键.11.(2021·)A.±3B.3C.±9D.9【答案】A【详解】解:,9的平方根是±3,±3,故选:A.【点睛】本题考查了算术平方根,平方根,熟练掌握相关知识是解题的关键.12.(2022·四川广安)下列运算中,正确的是()A.3a2 +2a2 =5a4B.a9÷a3=a3C=D.(﹣3x2)3=﹣27x6【答案】D【分析】根据合并同类项,同底数幂的除法,二次根式的加法,积的乘方运算,逐项分析判断即可求解.【详解】解:A. 3a2 +2a2 =5 a 2,故该选项不正确,不符合题意;B. a9÷a3=a6,故该选项不正确,不符合题意;C.D. (﹣3x2)3=﹣27x6,故该选项正确,符合题意;故选D【点睛】本题考查了合并同类项,同底数幂的除法,二次根式的加法,积的乘方运算,正确的计算是解题的关键.13.(2022·x的取值范围是A .x≥3B .x≤3C .x >3D .x <3【答案】A 【详解】解:由题意得30x -≥.解得x≥3,故选:A .14.(2022·内蒙古呼和浩特)下列运算正确的是( )A2± B .222()m n m n +=+ C .1211-=--x x x D .2229332-÷=-y x xy x y【答案】D【分析】分别根据二次根式乘法法则,完全平方公式,异分母分式加减法法则以及分式除法法则计算出各项结果后,再进行判断即可.【详解】解:A. 2,故此计算错误,不符合题意; B. 222()2m n m mn n +=++,故此计算错误,不符合题意; C. 1221(1)x x x x x --=---,故此计算错误,不符合题意; D. 22223933322y x x xy xy =x y y-÷=--,计算正确,符合题意,故选:D . 【点睛】本题主要考查了二次根式乘法,完全平方公式,异分母分式加减法以及分式除法,熟练掌握相关运算法则是解答本题的关键.15.(2022·湖南郴州)下列运算正确的是( )A .325a a a +=B .632a a a ÷=C .()222a b a b +=+ D 5 【答案】D【分析】根据合并同类项、同底数幂的除法法则,完全平方公式以及二次根式的计算法则进行计算即可.【详解】A.32a a+不能合并,故A错误;B.633a a a÷=,故B错误;C.()2222a b a ab b+=++,故C错误;5=,故D正确;故答案为:D.【点睛】本题考查合并同类项、同底数幂的除法法则、完全平方公式以及二次根式的计算法则等知识.掌握合并同类项、同底数幂的除法法则、完全平方公式以及二次根式的计算法则是解答本题的关键.16.(2022·四川雅安)下列计算正确的是()A.32=6B.(﹣25)3=﹣85C.(﹣2a2)2=2a4D【答案】D【分析】由有理数的乘方运算可判断A,B,由积的乘方运算与幂的乘方运算可判断C,由二次根式的加法运算可判断D,从而可得答案.【详解】解:239=,故A不符合题意;328,5125故B不符合题意;22424,a a故C不符合题意;2333,故D符合题意;故选D【点睛】本题考查的是有理数的乘方运算,积的乘方与幂的乘方运算,二次根式的加法运算,掌握以上基础运算是解本题的关键.17.(2022·湖南永州)下列各式正确的是()A=B .020= C .321a a -= D .()224--=【答案】D 【分析】利用二次根式性质化简、零指数幂、合并同类项、有理数减法运算即可判断。
中考数学专题练习 二次根式及一元二次方程(含解析)-人教版初中九年级全册数学试题
《二次根式及一元二次方程》一、选择题1.估算的值()A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间2.要使+有意义,则x应满足()A.≤x≤3 B.x≤3且x≠ C.<x<3 D.<x≤33.已知方程x2+bx+a=0有一个根是﹣a(a≠0),则下列代数式的值恒为常数的是()A.ab B.C.a+b D.a﹣b4.已知a,b,c分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0的根的情况是()A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根5.某某市2016年国内生产总值(GDP)比2015年增长了12%,由于受到国际金融危机的影响,预计今年比2016年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是()A.12%+7%=x% B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x%D.(1+12%)(1+7%)=(1+x%)26.下列各式计算正确的是()A.B.(a<1)C.D.7.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠58.设a,b是方程x2+x﹣2016=0的两个实数根,则a2+2a+b的值为()A.2014 B.2017 C.2015 D.20169.方程(x﹣3)(x+1)=x﹣3的解是()A.x=0 B.x=3 C.x=3或x=﹣1 D.x=3或x=010.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.12或15 C.15 D.不能确定11.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c12.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4二、填空题13.化简=.14.计算的结果是.15.计算: +=.16.如果方程ax2+2x+1=0有两个不等实根,则实数a的取值X围是.17.设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x12+3x1x2+x22的值为.18.已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为.19.请你写出一个有一根为1的一元二次方程:.(答案不唯一)20.关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根分别是x1、x2,且x12+x22=7,则(x1﹣x2)2的值是.21.若把代数式x2﹣2x﹣3化为(x﹣m)2+k的形式,其中m,k为常数,则m+k=.22.将根号外面的因式移进根号后等于.23.若正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.若正方形OABC 的面积为1,则k的值为;点E的坐标为.三、解答题24.计算:.25.用配方法解方程:2x2+1=3x.26.已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0.(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;(2)当Rt△ABC的斜边长a=,且两条直角边b和c恰好是这个方程的两个根时,求△ABC的周长.27.已知一元二次方程x2﹣2x+m=0.(1)若方程有两个实数根,求m的X围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.28.已知关于x的一元二次方程x2=2(1﹣m)x﹣m2的两实数根为x1,x2(1)求m的取值X围;(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.《二次根式及一元二次方程》参考答案与试题解析一、选择题1.估算的值()A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间【考点】估算无理数的大小.【专题】应用题.【分析】首先利用平方根的定义估算31前后的两个完全平方数25和36,从而判断的X围,再估算的X围即可.【解答】解:∵5<<6∴3<<4故选C.【点评】此题主要考查了利用平方根的定义来估算无理数的大小,解题关键是估算的整数部分和小数部分.2.要使+有意义,则x应满足()A.≤x≤3 B.x≤3且x≠ C.<x<3 D.<x≤3【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,,解不等式①得,x≤3,解不等式②的,x>,所以,<x≤3.故选:D.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.已知方程x2+bx+a=0有一个根是﹣a(a≠0),则下列代数式的值恒为常数的是()A.ab B.C.a+b D.a﹣b【考点】一元二次方程的解.【分析】本题根据一元二次方程的根的定义,把x=﹣a代入方程,即可求解.【解答】解:∵方程x2+bx+a=0有一个根是﹣a(a≠0),∴(﹣a)2+b(﹣a)+a=0,又∵a≠0,∴等式的两边同除以a,得a﹣b+1=0,故a﹣b=﹣1.故本题选D.【点评】本题考查的重点是方程根的定义,分析问题的方向比较明确,就是由已知入手推导、发现新的结论.4.已知a,b,c分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0的根的情况是()A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【考点】根的判别式;三角形三边关系.【分析】由于这个方程是一个一元二次方程,所以利用根的判别式可以判断其根的情况.能够根据三角形的三边关系,得到关于a,b,c的式子的符号.【解答】解:∵△=(2c)2﹣4(a+b)2=4[c2﹣(a+b)2]=4(a+b+c)(c﹣a﹣b),根据三角形三边关系,得c﹣a﹣b<0,a+b+c>0.∴△<0.∴该方程没有实数根.故选A.【点评】本题是方程与几何的综合题.主要考查了三角形三边关系、一元二次方程的根的判别式等知识点.重点是对(2c)2﹣4(a+b)(a+b)进行因式分解.5.某某市2016年国内生产总值(GDP)比2015年增长了12%,由于受到国际金融危机的影响,预计今年比2016年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是()A.12%+7%=x% B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x%D.(1+12%)(1+7%)=(1+x%)2【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),然后用平均增长率和实际增长率分别求出今年的国内生产总值,由此可得到一个方程,即x%满足的关系式.【解答】解:若设2015年的国内生产总值为y,则根据实际增长率和平均增长率分别得到2010年和今年的国内生产总值分别为:2016年国内生产总值:y(1+x%)或y(1+12%),所以1+x%=1+12%,今年的国内生产总值:y(1+x%)2或y(1+12%)(1+7%),所以(1+x%)2=(1+12%)(1+7%).故选D.【点评】本题主要考查增长率问题,然后根据增长率和已知条件抽象出一元二次方程.6.下列各式计算正确的是()A.B.(a<1)C.D.【考点】二次根式的混合运算;立方根.【分析】A、根据二次根式的乘法运算法则的逆运算直接计算就可以;B、由条件可以判断出原式为负数再将根号外面的数移到根号里面化简求解就可以了;C、先将被开方数进行乘方运算再合并最后化简就可以了;D、先进行分母有理化,再进行合并同类二次根式就可以了.【解答】解:A、≠,本答案错误;B、(a<1),本答案正确;C、,本答案错误;D、==4≠2,本答案错误.故选B.【点评】本题考查了二次根式的乘、除、加、减混合运算的运用及立方根的运用,在结算时注意运算的顺序和运算的符号是解答的关键.7.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5【考点】根的判别式.【专题】判别式法.【分析】由于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,那么分两种情况:(1)当a﹣5=0时,方程一定有实数根;(2)当a﹣5≠0时,方程成为一元二次方程,利用判别式即可求出a的取值X围.【解答】解:分类讨论:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;②当a﹣5≠0即a≠5时,∵关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根∴16+4(a﹣5)≥0,∴a≥1.∴a的取值X围为a≥1.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根;切记不要忽略一元二次方程二次项系数不为零这一隐含条件.8.设a,b是方程x2+x﹣2016=0的两个实数根,则a2+2a+b的值为()A.2014 B.2017 C.2015 D.2016【考点】根与系数的关系;一元二次方程的解.【专题】压轴题.【分析】由于a2+2a+b=(a2+a)+(a+b),故根据方程的解的意义,求得(a2+a)的值,由根与系数的关系得到(a+b)的值,即可求解.【解答】解:∵a是方程x2+x﹣2016=0的根,∴a2+a=2016;由根与系数的关系得:a+b=﹣1,∴a2+2a+b=(a2+a)+(a+b)=2016﹣1=2015.故选:C.【点评】本题综合考查了一元二次方程的解的定义及根与系数的关系,要正确解答本题还要能对代数式进行恒等变形.9.方程(x﹣3)(x+1)=x﹣3的解是()A.x=0 B.x=3 C.x=3或x=﹣1 D.x=3或x=0【考点】解一元二次方程﹣因式分解法.【专题】计算题;压轴题.【分析】此题可以采用因式分解法,此题的公因式为(x﹣3),提公因式,降次即可求得.【解答】解:∵(x﹣3)(x+1)=x﹣3∴(x﹣3)(x+1)﹣(x﹣3)=0∴(x﹣3)(x+1﹣1)=0∴x1=0,x2=3.故选D.【点评】此题考查了学生的计算能力,注意把x﹣3当作一个整体,直接提公因式较简单,选择简单正确的解题方法可以达到事半功倍的效果.10.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.12或15 C.15 D.不能确定【考点】等腰三角形的性质;解一元二次方程﹣因式分解法;三角形三边关系.【专题】分类讨论.【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长.【解答】解:解方程x2﹣9x+18=0,得x1=6,x2=3∵当底为6,腰为3时,由于3+3=6,不符合三角形三边关系∴等腰三角形的腰为6,底为3∴周长为6+6+3=15故选C.【点评】此题是一元二次方程的解结合几何图形的性质的应用,注意分类讨论.11.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c【考点】根的判别式.【专题】压轴题;新定义.【分析】因为方程有两个相等的实数根,所以根的判别式△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,化简即可得到a与c的关系.【解答】解:∵一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,∴△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,即(a+c)2﹣4ac=a2+2ac+c2﹣4ac=a2﹣2ac+c2=(a﹣c)2=0,∴a=c.故选A【点评】一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4【考点】反比例函数系数k的几何意义.【专题】压轴题.【分析】△AOC的面积=△AOB的面积﹣△BOC的面积,由点A的坐标为(﹣6,4),根据三角形的面积公式,可知△AOB的面积=12,由反比例函数的比例系数k的几何意义,可知△BOC的面积=|k|.只需根据OA的中点D的坐标,求出k值即可.【解答】解:∵OA的中点是D,点A的坐标为(﹣6,4),∴D(﹣3,2),∵双曲线y=经过点D,∴k=﹣3×2=﹣6,∴△BOC的面积=|k|=3.又∵△AOB的面积=×6×4=12,∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣3=9.故选B.【点评】本题考查了一条线段中点坐标的求法及反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.二、填空题13.化简= 0 .【考点】二次根式有意义的条件.【分析】由1﹣x≥0,x﹣1≥0,得出x﹣1=0,从而得出结果.【解答】解:∵1﹣x≥0,x﹣1≥0,∴x﹣1=0,∴=0.【点评】二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.14.计算的结果是 4 .【考点】算术平方根.【专题】常规题型.【分析】根据算术平方根的定义解答即可.【解答】解: ==4.故答案为:4.【点评】此题主要考查了算术平方根的定义,本题易错点在于符号的处理.15.计算: += 3.【考点】二次根式的加减法.【分析】本题考查了二次根式的加减运算,应先化为最简二次根式,再合并同类二次根式.【解答】解:原式=2+=3.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.16.如果方程ax2+2x+1=0有两个不等实根,则实数a的取值X围是a<1且a≠0 .【考点】根的判别式.【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有不相等的实数根下必须满足△=b2﹣4ac>0.【解答】解:根据题意列出不等式组,解之得a<1且a≠0.故答案为:a<1且a≠0.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.17.设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x12+3x1x2+x22的值为7 .【考点】根与系数的关系.【分析】根据根与系数的关系,可求出x1+x2以及x1x2的值,然后根据x12+3x1x2+x22=(x1+x2)2+x1x2进一步代值求解.【解答】解:由题意,得:x1+x2=3,x1x2=﹣2;原式=(x1+x2)2+x1x2=9﹣2=7.故答案为:7.【点评】熟记一元二次方程根与系数的关系是解答此类题的关键.18.已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为 1 .【考点】一元二次方程的解;完全平方公式.【分析】首先把x=1代入一元二次方程x2+mx+n=0中得到m+n+1=0,然后把m2+2mn+n2利用完全平方公式分解因式即可求出结果.【解答】解:∵x=1是一元二次方程x2+mx+n=0的一个根,∴m+n+1=0,∴m+n=﹣1,∴m2+2mn+n2=(m+n)2=(﹣1)2=1.故答案为:1.【点评】此题主要考查了方程的解的定义,利用方程的解和完全平方公式即可解决问题.19.请你写出一个有一根为1的一元二次方程:x2=1 .(答案不唯一)【考点】一元二次方程的解.【专题】开放型.【分析】可以用因式分解法写出原始方程,然后化为一般形式即可.【解答】解:根据题意x=1得方程式x2=1.故本题答案不唯一,如x2=1等.【点评】本题属于开放性试题,主要考查一元二次方程的概念的理解与掌握.可以用因式分解法写出原始方程,然后化为一般形式即可,如(y﹣1)(y+2)=0,后化为一般形式为y2+y﹣2=0.20.关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根分别是x1、x2,且x12+x22=7,则(x1﹣x2)2的值是13 .【考点】根与系数的关系;根的判别式.【分析】首先根据根与系数的关系,得出x1+x2和x1x2的值,然后根据x12+x22的值求出m(需注意m 的值应符合此方程的根的判别式);然后再代值求解.【解答】解:由题意,得:x1+x2=m,x1x2=2m﹣1;则:(x1+x2)2=x12+x22+2x1x2,即m2=7+2(2m﹣1),解得m=﹣1,m=5;当m=5时,△=m2﹣4(2m﹣1)=25﹣4×9<0,不合题意;故m=﹣1,x1+x2=﹣1,x1x2=﹣3;∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=1+12=13.【点评】此题用到的知识点有:根与系数的关系、根的判别式、完全平方公式等知识.本题需注意的是在求出m值后,一定要用根的判别式来判断所求的m是否符合题意,以免造成多解、错解.21.若把代数式x2﹣2x﹣3化为(x﹣m)2+k的形式,其中m,k为常数,则m+k= ﹣3 .【考点】完全平方公式.【专题】配方法.【分析】根据完全平方公式的结构,按照要求x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,可知m=1.k=﹣4,则m+k=﹣3.【解答】解:∵x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,∴m=1,k=﹣4,∴m+k=﹣3.故答案为:﹣3.【点评】本题主要考查完全平方公式的变形,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.22.将根号外面的因式移进根号后等于.【考点】二次根式的性质与化简.【专题】计算题.【分析】先根据二次根式定义得到a<0,然后根据二次根式的性质把﹣a转化为,再利用乘法公式运算即可.【解答】解:∵﹣≥0,∴a<0,∴原式=﹣(﹣a)•=﹣=﹣.故答案为﹣.【点评】本题考查了二次根式的性质与化简:(a≥0)为二次根式; =|a|; =•(a≥0,b≥0)等.23.若正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.若正方形OABC的面积为1,则k的值为 1 ;点E的坐标为(+,﹣).【考点】反比例函数系数k的几何意义.【分析】(1)根据正方形OABC和正方形AEDF各有一个顶点在一反比例函数图象上,且正方形OABC 的边长为1,得出B点坐标,即可得出反比例函数的解析式;(2)由于D点在反比例函数图象上,用a和正方形OABC的边长表示出来E点坐标,代入y=(x >0)求得a的值,即可得出D点坐标.【解答】解:∵正方形OABC和正方形AEDF各有一个顶点在一反比例函数图象上,且正方形OABC的边长为1.∴B点坐标为:(1,1),设反比例函数的解析式为y=;∴xy=k=1,设正方形ADEF的边长为a,则E(1+a,a),代入反比例函数y=(x>0)得:1=(1+a)a,又a>0,解得:a=﹣.∴点E的坐标为:( +,﹣).【点评】本题考查了反比例函数与正方形性质结合的综合应用,考查了数形结合的思想,利用xy=k 得出是解题关键.三、解答题24.计算:.【考点】二次根式的混合运算;负整数指数幂.【分析】本题涉及分数指数幂、负整数指数幂、乘方、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】原式=3+4﹣2﹣2+=5﹣2+2﹣2=3.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是理解分数指数幂的意义,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.25.用配方法解方程:2x2+1=3x.【考点】解一元二次方程﹣配方法.【专题】计算题.【分析】首先把方程的二次项系数变成1,然后等式的两边同时加上一次项系数的一半,则方程的左边就是完全平方式,右边是常数的形式,再利用直接开平方的方法即可求解.【解答】解:移项,得2x2﹣3x=﹣1,二次项系数化为1,得,配方,,由此可得,∴x1=1,.【点评】配方法是一种重要的数学方法,是中考的一个重要考点,我们应该熟练掌握.本题考查用配方法解一元二次方程,应先移项,整理成一元二次方程的一般形式,即ax2+bx+c=0(a ≠0)的形式,然后再配方求解.26.已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0.(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;(2)当Rt△ABC的斜边长a=,且两条直角边b和c恰好是这个方程的两个根时,求△ABC的周长.【考点】根与系数的关系;根的判别式;勾股定理.【专题】计算题.【分析】(1)根据△>0即可证明无论k取什么实数值,该方程总有两个不相等的实数根;(2)根据勾股定理及根与系数的关系列出关于b,c的方程,解出b,c即可得出答案.【解答】解:(1)关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,△=(2k+1)2﹣4(4k﹣3)=4k2﹣12k+13=4+4>0恒成立,故无论k取什么实数值,该方程总有两个不相等的实数根;(2)根据勾股定理得:b2+c2=a2=31①因为两条直角边b和c恰好是这个方程的两个根,则b+c=2k+1②,bc=4k﹣3③,因为(b+c)2﹣2bc=b2+c2=31,即(2k+1)2﹣2(4k﹣3)=31,整理得:4k2+4k+1﹣8k+6﹣31=0,即k2﹣k﹣6=0,解得:k1=3,k2=﹣2,∵b+c=2k+1>0即k>﹣.bc=4k﹣3>0即k>,∴k2=﹣2(舍去),则b+c=2k+1=7,又因为a=,则△ABC的周长=a+b+c=+7.【点评】本题考查了根与系数的关系和根的判别式及勾股定理,难度较大,关键是巧妙运用△>0恒成立证明(1),再根据勾股定理和根与系数的关系列出方程组进行解答.27.已知一元二次方程x2﹣2x+m=0.(1)若方程有两个实数根,求m的X围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.【考点】根与系数的关系;根的判别式.【专题】压轴题.【分析】(1)一元二次方程x2﹣2x+m=0有两个实数根,△≥0,把系数代入可求m的X围;(2)利用两根关系,已知x1+x2=2结合x1+3x2=3,先求x1、x2,再求m.【解答】解:(1)∵方程x2﹣2x+m=0有两个实数根,∴△=(﹣2)2﹣4m≥0,解得m≤1;(2)由两根关系可知,x1+x2=2,x1•x2=m,解方程组,解得,∴m=x1•x2=.【点评】本题考查了一元二次方程根的判别式,两根关系的运用,要求熟练掌握.28.已知关于x的一元二次方程x2=2(1﹣m)x﹣m2的两实数根为x1,x2(1)求m的取值X围;(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.【考点】根与系数的关系;根的判别式;一次函数的性质.【专题】综合题.【分析】(1)若一元二次方程有两不等根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,可求出m的取值X围;(2)根据根与系数的关系可得出x1+x2的表达式,进而可得出y、m的函数关系式,根据函数的性质及(1)题得出的自变量的取值X围,即可求出y的最小值及对应的m值.【解答】解:(1)将原方程整理为x2+2(m﹣1)x+m2=0;∵原方程有两个实数根,∴△=[2(m﹣1)]2﹣4m2=﹣8m+4≥0,得m≤;(2)∵x1,x2为一元二次方程x2=2(1﹣m)x﹣m2,即x2+2(m﹣1)x+m2=0的两根,∴y=x1+x2=﹣2m+2,且m≤;因而y随m的增大而减小,故当m=时,取得最小值1.【点评】此题是根的判别式、根与系数的关系与一次函数的结合题.牢记一次函数的性质是解答(2)题的关键.。
中考数学复习《二次根式》专项练习题-附带答案
中考数学复习《二次根式》专项练习题-附带答案一、选择题1.下列式子,一定是二次根式的共有()√28,1,√−1,√m,,√x2+1A.5个B.4个C.3个D.2个2.下列根式是最简二次根式的是()A.√3B.√12C.√3D.√503.要使二次根式√6x+12有意义,则x的取值范围是()A.x≤-2 B.x≥-2 C.x⩾−12D.x⩽−124.计算2√5×3√10等于()A.6√15B.6√30C.30√2D.30√5 5.计算√52−42−32的结果是()A.6 B.0 C.√6D.46.使式子√x+3√4−3x在实数范围内有意义的整数x有()A.5个B.3个C.4个D.2个7.下列计算错误的是()A.√43+√121=2√7B.(√8+√3)×√3=2√6+3C.(4√2−3√6)÷2√2=2−32√3D.(√5+√7)(√5−√7)=5−7=−28.如图,在长方形ABCD中无重叠放入面积分别为12cm2和16cm2的两张正方形纸片,则图中空白部分的面积为()A.8−4√3B.16−8√3C.8√3−12D.4−2√3二、填空题9.计算:3√2−√8=.10.若代数式√2−xx−2有意义,则x的取值范围是.11.已知:x=√13+1,y=√13−1,则xy的值为.12.若a <2,化简√(a −2)2+a ﹣1= .13.已知x =√3+1,y =√3−1,则代数式y x +x y 的值是 .三、解答题14.计算:(181832;(221268(13)-15.先化简,再求值:已知x =3+2√2,求(2−x)2x−2+√x 2+9−6x x−3的值 16.已知23x =+23y =(1)试求22x y +的值; (2)试求x y y x-的值. 17.某居民小区有块形状为长方形的绿地ABCD ,长BC 为√128米,宽AB 为√50米,现在要长方形绿地中修建两个形状大小相同的长方形花坛(即图中阴影部分),每个长方形花坛的长为(√13+1)米,宽为(√13−1)米.(1)求长方形ABCD 的周长.(结果化为最简二次根式)(2)除去修建花坛的地方,其它地方全修建成通道,通道上要铺上造价为30元/平方米的地砖,要铺完整个通道,则购买地砖需要花费多少元?18.在数学课外学习活动中,小明和他的同学遇到一道题:已知a =,求2a 2﹣8a+1的值.他是这样解答的: ∵a ===2﹣,∴a ﹣2=﹣ ∴(a ﹣2)2=3,a 2﹣4a+4=3∴a 2﹣4a =﹣1∴2a 2﹣8a+1=2(a 2﹣4a )+1=2×(﹣1)+1=﹣1.请你根据小明的解析过程,解决如下问题:(1)= ;(2)化简;(3)若a=,求a4﹣10a3+a2﹣20a+5的值.参考答案1.D2.C3.B4.C5.B6.C7.A8.C9.√210.x <211.1212.113.414.(1)原式2222(2)原式333315.解: x =3+2√2=√2(3+2√2)(3−2√2)=3−2√2∴x −3=−2√2<0.原式=x −2+|x−3|x−3 =x −2+3−x x−3=x −2−1=x −3.当x =3+2√2时,原式==3+2√2−3=3−2√2−3=−2√2.16.(1)解:∵23x =和 23y =∴x+y=2323+,xy=(2323+=1 ∴()2222242114x y x y xy +=+-=-⨯= ;(2)解:∵23x =+和 23y =-∴x+y=2323+x-y=((2323232323--=+=xy=(2323=1 ∴()()2242383x y x y x y x y y x xy xy +--⨯-====17.(1)解:2×(√128+√50)=2×(8√2+5√2)=26√2(米)∴长方形ABCD 的周长为26√2米.(2)解:√128×√50−2×(√13+1)×(√13−1)=80−2×12=56(平方米)则56×30=1680(元)∴要铺完整个通道,则购买地砖需要花费1680元.18.解:(1)故答案为:﹣1; (2)==12﹣1=11;(3)∵a =∴a ﹣5=∴(a ﹣5)2=26,即a 2﹣10a+25=26.∴a 2﹣10a =1∴a 4﹣10a 3+a 2﹣20a+5=a 2(a 2﹣10a+1)﹣20a+5=a 2×(1+1)﹣20a+5=2(a 2﹣10a )+5=2+5=7. 答:a 4﹣10a 3+a 2﹣20a+5的值为7.。
中考数学专题03 二次根式-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)
专题03.二次根式一、单选题1.(2021·取1.442 )A .-100B .-144.2C .144.2D .-0.01442【答案】B【分析】类比二次根式的计算,提取公因数,代入求值即可.【详解】33 1.442= 33333(13-=--=-144.2=- 故选B .【点睛】本题考查了根式的加减运算,类比二次根式的计算,提取系数,正确的计算是解题的关键.2.(2021· ).A .321-+B .321+-C .321++D .321--【答案】A【分析】根据有理数运算和二次根式的性质计算,即可得到答案.2==∵3212-+=,且选项B 、C 、D 的运算结果分别为:4、6、0故选:A .【点睛】本题考查了二次根式、有理数运算的知识;解题的关键是熟练掌握二次根式、含乘方的有理数混合运算的性质,即可得到答案.3.(2021·湖北恩施土家族苗族自治州·,,这三个实数中任选两数相乘,所有积中小于2的有( )个.A .0B .1C .2D .3 【答案】C【分析】根据题意分别求出这三个实数中任意两数的积,进而问题可求解.【详解】解:由题意得:(2,==-=∴所有积中小于2的有2-两个;故选C .【点睛】本题主要考查二次根式的乘法运算,熟练掌握二次根式的乘法运算是解题的关键.4.(2021·湖南常德市·中考真题)计算:11122⎛⎫+-⋅= ⎪⎝⎭( )A .0B .1C .2D 【答案】B 【分析】先将括号内的式子进行通分计算,最后再进行乘法运算即可得到答案.【详解】解:11122⎛⎫-⋅ ⎪ ⎪⎝⎭=1122⋅=415-=1.故选:B . 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则以及乘法公式是解答此题的关键. 5.(2021·湖南衡阳市·中考真题)下列计算正确的是( )A 4=±B .()021-=C =D 3=【答案】B【分析】利用算术平方根,零指数幂,同类二次根式,立方根逐项判断即可选择.4=,故A 选项错误,不符合题意;0(2)1-=,故B 选项正确,符合题意;C 选项错误,不符合题意;D 选项错误,不符合题意;故选B .【点睛】本题考查算术平方根,零指数幂,同类二次根式,立方根.掌握各知识点和运算法则是解答本题的关键.6.(2021·浙江杭州市·中考真题)下列计算正确的是( )A 2=B 2=-C 2=±D 2=± 【答案】A 【分析】由二次根式的性质,分别进行判断,即可得到答案.2==,故A 正确,C 2,故B 、D 错误;故选:A . 【点睛】本题考查了二次根式的性质,解题的关键是掌握性质进行判断.7.(2021·上海中考真题)下列实数中,有理数是( )A B C D 【答案】C【分析】先化简二次根式,再根据有理数的定义选择即可【详解】A 2;B 3C 12为有理数;D 故选:C 【点睛】本题考查二次根式的化简、无理数的定义、有理数的定义、熟练掌握有理数的定义是关键8.(2021·江苏苏州市·中考真题)计算2的结果是( )A B .3 C .D .9【答案】B【分析】直接根据二次根式的性质求解即可.【详解】解:2=3,故选B .【点睛】此题主要考查了二次根式的性质,熟练掌握2(0)a a =≥是解答此题的关键.9.(2021·甘肃武威市·中考真题)下列运算正确的是( )A 3=B .4=C =D 4=【答案】C【分析】直接根据二次根式的运算法则计算即可得到答案.=A 错;=B 错;=C 2=,故D 错.故选:C .【点睛】此题考查的是二次根式的运算和化简,掌握其运算法则是解决此题关键.10.(2021· )A.7 B .C .D .【答案】B【分析】根据二次根式的运算法则,先算乘法再算减法即可得到答案;===B .【点睛】本题主要考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键.11.(2021·浙江嘉兴市·中考真题)能说明命题“若x 为无理数,则x 2也是无理数”是假命题的反例是()A .1x =B .1x =C .x =D .x =【答案】C【分析】根据反例满足条件,但不能得到结论,所以利用此特征可对各选项进行判断.【详解】解:A 、)221=3x =-B 、)221x =C 、(22=18x =,是有理数,符合题意;D 、22=5x =-,是无理数,不符合题意;故选:C .【点睛】本题考查了无理数的概念以及二次根式的运算,熟练掌握运算法则和定义是解题的关键. 12.(2021·重庆中考真题)下列计算中,正确的是( )A .21=B .2=C =D 3=【答案】C【分析】根据二次根式运算法则逐项进行计算即可.【详解】解:A. =,原选项错误,不符合题意;B. 2不是同类二次根式,不能合并,原选项错误,不符合题意;C. =D. =C .【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式运算法则,进行准确计算.13.(2020·是同类二次根式的是( )AB C D 【答案】C【分析】先把每个二次根式进行化简,化成最简二次根式,后比较被开方数即可.【详解】的被开方数不相同,故不是同类二次根式;3==被开方数相同,故是同类二次根式;=被开方数不同,故不是同类二次根式.故选:C .【点睛】本题考查了二次根式的化简,同类二次根式,熟练掌握根式化简的基本方法,灵活运用同类二次根式的定义判断解题是求解的关键.14.(2020·内蒙古赤峰市·中考真题)估计( ( ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间 【答案】A 【分析】根据二次根式的混合运算法则进行计算,再估算无理数的大小.【详解】(,∵4<6<9,∵<3,∴<5,故选:A.【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的运算法则、会进行无理数的大小估算是解题的关键.15.(2020·辽宁朝阳市· )A .0B C .D .12【答案】B 【分析】根据二次根式的性质化简第一项,根据二次根式的乘法化简第二项,然后合并即可.【详解】解:原式= =B . 【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键.16.(2020·辽宁丹东市·中考真题)在函数y =x 的取值范围是( ) A .3x ≤B .3x <C .3x ≥D .3x > 【答案】A【分析】根据二次根式有意义,列不等式9-3x≥0,求出x 的取值范围即可.【详解】解:根据二次根式有意义,所以,9-3x≥0,解得,x≤3.故选:A .【点睛】本题主要考查函数自变量的取值范围的知识点,二次根式中的被开方数必须是非负数,否则二次根式无意义.17.(2020·湖北宜昌市·其运算结果能成为有理数的是( ).A .BC .3D .0【答案】D 【分析】分别计算出各选项的结果再进行判断即可.【详解】A .B =C .3D .00=,是有理数,正确.故选:D .【点睛】此题主要考查了二次根式的运算,辨别运算结果,区分运算结果是否是有理数是解题的关键.18.(2020·山东菏泽市·中考真题)函数5y x =-的自变量x 的取值范围是( ) A .5x ≠B .2x >且5x ≠C .2x ≥D .2x ≥且5x ≠【答案】D【分析】由分式与二次根式有意义的条件得函数自变量的取值范围. 【详解】解:由题意得:20,50x x -≥⎧⎨-≠⎩解得:2x ≥且 5.x ≠ 故选D . 【点睛】本题考查的是函数自变量的取值范围,掌握分式与二次根式有意义的条件是解题的关键. 19.(2020·黑龙江绥化市·中考真题)下列等式成立的是( )A 4=±B 2=C .-=D .8=- 【答案】D【分析】根据算术平方根、立方根、二次根式的化简等概念分别判断.【详解】解:A. 4=,本选项不成立;B. 2=-,本选项不成立;C. a a a-=-= D. 8=-,本选项成立.故选:D. 【点睛】本题考查了二次根式的化简与性质,正确理解二次根式有意义的条件、算术平方根的计算等知识点是解答问题的关键.20.(2020·山东济宁市·中考真题)下列各式是最简二次根式的是( )A B C D 【答案】A 【分析】根据最简二次根式的定义即可求出答案.【详解】解:A B =C a =,不是最简二次根式,故选项错误;D = A. 【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型. 21.(2020·江苏泰州市·中考真题)下列等式成立的是( )A .3+=B =C= D 3= 【答案】D【分析】根据二次根式的运算法则即可逐一判断.【详解】解:A 、3和不能合并,故A 错误;B =B 错误;C===,故C 错误;D 3=,正确;故选:D . 【点睛】本题考查了二次根式的运算,解题的关键是掌握基本的运算法则.22.(2019·湖北恩施土家族苗族自治州·中考真题)函数11=-+y x 中,自变量x 的取值范围是( ) A .23x ≤ B .23x ≥ C .23x <且1x ≠- D .23x ≤且1x ≠- 【答案】D【分析】根据分式及二次根式有意义的条件解答即可.【详解】∵11=+y x x+1≠0,2-3x≥0,解得:23x ≤且1x ≠-,故选D. 【点睛】本题考查分式及二次根式有意义的条件,要使分式有意义,分母不为0;要使二次根式有意义,被开方数大于等于0.23.(2019·湖北宜昌市·中考真题)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b c p ++=,那么三角形的面积为S =ABC ∆中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若5a =,6b =,7c =,则ABC ∆的面积为( )A .B .C .18D .192【答案】A 【分析】利用阅读材料,先计算出p 的值,然后根据海伦公式计算ABC ∆的面积;【详解】7a =,5b =,6c =.∴56792p ++==,∴ABC ∆的面积S ==A .【点睛】考查了二次根式的应用,解题的关键是代入后正确的运算,难度不大.24.(2019·湖北中考真题)“分母有理化”是我们常用的一种化简的方法,如:7==+除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:设x =,>,故0x >,由22332x ==+=,解得x =,即=)A .5+B .5C .5D .5-【答案】D进行化简,然后再进行合并即可.【详解】设x =<0x <,∴266x =-+,∴212236x =-⨯=,∴x =5=-,∴原式5=--5=-D . 【点睛】本题考查了二次根式的混合运算,涉及了分母有理化等方法,弄清题意,理解和掌握题中介绍的方法是解题的关键.25.(2019·山东聊城市·中考真题)下列各式不成立的是( )A= B =C 5== D = 【答案】C【分析】根据二次根式的性质、二次根式的加法法则、除法法则计算,判断即可.33-==,A 选项成立,不符合题意;==B 选项成立,不符合题意;==,C 选项不成立,符合题意;==D 选项成立,不符合题意; 故选C . 【点睛】本题考查的是二次根式的混合运算,掌握二次根式的性质、二次根式的混合运算法则是解题的关键.26.(2019·江苏常州市·中考真题)下列各数中与2+ )A .2+B .2CD .2 【答案】D【分析】利用平方差公式可知与2+2;【详解】(22431=-=;故选D .【点睛】本题考查分母有理化;熟练掌握利用平方差公式求无理数的无理化因子是解题的关键.27.(2021· )A .4B .4±C .D .±【答案】C()0,0,a b a b=≥≥直接化简即可得到答案.==故选:.C【点睛】本题考查的是二次根式的化简,掌握积的算术平方根的含义是解题的关键.28.(2020·重庆中考真题)下列计算中,正确的是()A=B.2+=C=D.2【答案】C【分析】根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.【详解】解:AB.2C==D.2不是同类二次根式,不能合并,此选项错误;故选:C.【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的乘法法则与同类二次根式的概念.29.(2020·山东聊城市·).A.1B.53C.5D.9【答案】A【分析】利用二次根式的乘除法则计算即可得到结果.=÷=1=,故选:A.【点睛】本题主要考查了二次根式的乘除法,熟练掌握运算法则是解题的关键.30.(2020·内蒙古鄂尔多斯市·中考真题)中,x的取值范围在数轴上表示正确的是()A.B.C.D.【答案】D【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x 的范围. 【详解】解:根据题意得3+x ≥0,解得:x ≥﹣3, 故x 的取值范围在数轴上表示正确的是.故选D .【点睛】本题考查了二次根式的性质,二次根式中的被开方数必须是非负数,否则二次根式无意义. 二、填空题目31.(2021·天津中考真题)计算1)的结果等于_____. 【答案】9【分析】根据二次根式的混合运算法则结合平方差公式计算即可.【详解】21)19=-=.故答案为9.【点睛】本题考查二次根式的混合运算.掌握二次根式的混合运算法则是解答本题你的关键.32.(2021·湖北武汉市·_______________________.【答案】5【分析】根据二次根式的性质进行求解即可.5=5,故答案为5.【点睛】本题考查了二次根式的性质,熟练掌握二次根式的性质是解题的关键.33.(2021·浙江丽水市·有意义,则x 可取的一个数是__________. 【答案】如4等(答案不唯一,3x ≥)【分析】根据二次根式的开方数是非负数求解即可.有意义,∴x ﹣3≥0,∴x ≥3,∴x 可取x ≥3的任意一个数,故答案为:如4等(答案不唯一,3x ≥.【点睛】本题考查二次根式、解一元一次不等式,理解二次根式的开方数是非负数是解答的关键.34.(2021·四川广安市·中考真题)在函数y =x 的取值范围是___.【答案】1x 2≥【详解】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负12x 10x 2-≥⇒≥.35.(2021·湖北黄冈市·这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a =12b +=,则1ab =,记11111S a b =+++,2221111S a b =+++,…,1010101111S a b=+++.则1210S S S +++=____.【答案】10【分析】先根据1ab =求出1111n n nS a b=+++(n 为正整数)的值,从而可得1210,,,S S S 的值,再求和即可得.【详解】解:1ab =,111111()1nn n n n n n a S a b a a b ∴=+=+++++(n 为正整数), 11()n n n n a a a ab =+++,111nnna a a =+++,1=, 12101S S S ===∴=,则121010S S S +++=,故答案为:10.【点睛】本题考查了二次根式的运算、分式的运算,正确发现一般规律是解题关键.36.(2021·湖南岳阳市·中考真题)已知1x x +=,则代数式1x x+=______. 【答案】0【分析】把1x x+=直接代入所求的代数式中,即可求得结果的值.【详解】10x x+==故答案为:0. 【点睛】本题考查了求代数式的值,涉及二次根式的减法运算,整体代入法是解决本题的关键.37.(2021·四川眉山市·中考真题)观察下列等式:1311212x ===+⨯;2711623x ===+⨯;313111234x ===+⨯;…… 根据以上规律,计算12320202021x x x x ++++-=______.【答案】12021-【解答】解:13111212x =+==+⨯;2711623x ==+⨯;313111234x ===+⨯; ⋯12320201111111111112021111120212020120211223342020202122334202020212021x x x x ∴+++⋯+-=++++++⋯++-=+-+-+-+⋯+--=-⨯⨯⨯⨯, 故答案为:12021-. 【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.38.(2021·x 的取值范围是________. 【答案】0x >【分析】根据分式及二次根式有意义的条件可直接进行求解. 【详解】解:由题意得:0x ≠且20x≥,∴0x >;故答案为0x >. 【点睛】本题主要考查二次根式及分式有意义的条件,熟练掌握二次根式及分式有意义的条件是解题的关键.39.(2020·山东青岛市·中考真题)计算:-⨯=______. 【答案】4【分析】根据二次根式的混合法则运算计算即可.【详解】解:原式3⎫⎛=⎪ ⎪⎝⎭3=⨯4=,故答案为:4. 【点睛】本题考查二次根式的混合运算,熟练掌握运算顺序和运算法则是解题关键.40.(2020·山西中考真题)计算:2-=_____________.【答案】5【分析】先利用完全平方公式、二次根式的性质进行化简,然后合并同类项,即可得到答案.【详解】解:223=+-5=;故答案为:5.【点睛】本题考查了二次根式的性质,完全平方公式,解题的关键是熟练掌握运算法则进行化简.41.(2020·江苏南通市·中考真题)若m <<m +1,且m 为整数,则m =_____. 【答案】5【分析】利用二次根式的估值方法进行计算即可.【详解】解:=<<5<6,又∵m <m +1,∴m =5,故答案为:5.【点睛】本题考查了二次根式的估值求参数值的问题,熟练掌握二次根式的估值计算是解题的关键.42.(2020·湖南益阳市·中考真题)m 的结果为正整数,则无理数m 的值可以是__________.(写出一个符合条件的即可)【分析】根据2为12,即可得到一个无理数m 的值.【详解】解:∵212=,∴12m 时m (答案不唯一).【点睛】本题考查了二次根式,注意2a =是解题的关键.43.(2020·内蒙古中考真题)计算:2+=______.【分析】先将乘方展开,然后用平方差公式计算即可.【详解】解:2-==22⎡⎤-⎢⎥⎣⎦-.【点睛】本题考查了二次根式的混合运算以及平方差公式的应用,掌握二次根式混合运算的运算法则和平方差公式是解答本题的关键.44.(2020·湖南邵阳市·中考真题)在如图方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空格的实数之积为________.【答案】【分析】先将表格中最上一行的3个数相乘得到,然后中间一行的三个数相乘以及最后一行的三个数相等都是【详解】解:由题意可知,第一行三个数的乘积为:2=设第二行中间数为x ,则16⨯⨯=x x =设第三行第一个数为y ,则3⨯=y y =∴2个空格的实数之积为xy ==.【点睛】本题考查了二次根数的乘法运算法则,熟练掌握二次根式的加减乘除运算法则是解决此类题的关键.45.(2020·==,则ab =_________. 【答案】6【分析】根据二次根式的运算法则即可求解.【详解】∵-==∴a=3,b=2∴ab =6故答案为:6.【点睛】此题主要考查二次根式的运算,解题的关键是熟知其运算法则.46.(2020·甘肃金昌市·中考真题)已知5y x =+,当分别取1,2,3,……,2020时,所对应y 值的总和是__________.【答案】2032【分析】先化简二次根式求出y 的表达式,再将x 的取值依次代入,然后求和即可得.【详解】545y x x x =+=--+当4x <时,4592y x x x =--+=- 当4x ≥时,451y x x =--+= 则所求的总和为(921)(922)(923)111-⨯+-⨯+-⨯++++75312017=+++⨯2032=故答案为:2032.【点睛】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键.47.(2020·江苏南京市·的结果是__________.【答案】1 3【分析】先化成最简二次根式,再根据二次根式的加减法法则计算出分母,最后约分即可.==13=,故答案为:13.【点睛】本题考查了二次根式的混合运算,掌握二次根式的加减法法则是解题的关键.48.(2020·黑龙江绥化市·中考真题)在函数15yx=+-中,自变量x的取值范围是_________.【答案】3x≥且5x≠【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【详解】根据题意得:301050xxx-≥⎧⎪+>⎨⎪-≠⎩,解得:3x≥且5x≠.故答案为:3x≥且5x≠.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.49.(2020·青海中考真题)对于任意不相等的两个实数a,b(a > b )定义一种新运算a※,如3※,那么12※4=______【分析】按照规定的运算顺序与计算方法化为二次根式的混合运算计算即可.【详解】解:12※4==【点睛】此题考查二次根式的化简求值,理解规定的运算顺序与计算方法是解决问题的关键.50.(2019·四川绵阳市·中考真题)单项式1ax y--与2是同类项,则b a=______.【答案】1【分析】先根据同类项的定义列出方程,再结合二次根式的性质求出a ,b 的值,然后代入代数式计算即可.【详解】解:由题意知1a --=,即1a -, ∴10,10a b ,1a =,1b =,则()111b a ==,故答案为1.【点睛】此题考查了同类项的定义和二次根式的性质,属于基础题,解答本题的关键是掌握同类项的定义,难度一般.51.(2019·辽宁营口市·中考真题)和则这个长方形的面积为________.【答案】【分析】长方形的面积计算公式为长乘以宽,和按照二次根式乘法的运算法则计算,并化简成最简单二次根式即可.和==【点睛】本题考查了二次根式在长方形面积计算中的应用,明确二次根式乘法运算法则及如何化为最简二次根式是解题的关键.52.(2019·四川内江市·中考真题)若1001a a -=,则21001a -=_____. 【答案】1002.【分析】根据绝对值的性质和二次根式的性质,即可解答【详解】∵10020a -≥,∴1002a ≥.由1001a a -=,得1001a a -++=,1001=,∴210021001a -=.∴210011002a -=.故答案是:1002. 【点睛】此题考查绝对值的非负性,二次根式的性质,解题关键在于掌握运算法则 53.(2019·山东枣庄市·中考真题)观察下列各式:11111122⎛⎫=+=+- ⎪⨯⎝⎭,111112323⎛⎫=+=+- ⎪⨯⎝⎭,111113434⎛⎫=+=+- ⎪⨯⎝⎭,请利用你发现的规律,计算:____. 【答案】201820182019. 【分析】根据题意找出规律,根据二次根式的性质计算即可.12018++11111111122320182019⎛⎫⎛⎫⎛⎫=+-++-+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111111201812233420182019=+-+-+-++-201820182019=,故答案为201820182019. 【点睛】本题考查的是二次根式的化简、数字的变化规律,掌握二次根式的性质是解题 的关键.54.(2019·山东菏泽市·中考真题)已知x =,那么2x -的值是_____.【答案】4【分析】将所给等式变形为x -=【详解】∵x =,∴x =(22x =,∴226x -+=,∴24x -=,故答案为:4【点睛】本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.55.(2019·湖南益阳市·中考真题)观察下列等式:①3﹣=﹣1)2,②5﹣=)2,③7﹣=﹣2,…请你根据以上规律,写出第6个等式____________.【答案】213-=【分析】第n 个等式左边的第1个数为2n+1,根号下的数为n(n+1),利用完全平方公式得到第n 个等式右边的式子为)2(n≥1的整数).【详解】∵①3﹣﹣1)2,②5﹣=)2,③7﹣=2,…,∴第n 个等式为:(2n+1)-)2,∴第6个等式为:213-=,故答案为213-=.【点睛】本题考查了规律题,涉及了二次根式的混合运算,通过所给等式发现等式左边与右边的变化规律是解题的关键.56.(2019·山东滨州市·中考真题)计算:21|2|2-⎛⎫--= ⎪⎝⎭_________.【答案】2+【分析】根据根式的计算法则计算即可.【详解】解:原式422=-=+2+.【点睛】本题主要考查根式的计算,注意绝对值的计算,这是同学们往往容易计算错误的,应当引起重视.57.(2019·山东青岛市·0-=___________.【答案】1【分析】根据二次根式混合运算的法则计算即可.0211=-=.故答案为. 【点睛】本题考查了二次根式的混合运算,熟记法则是解题的关键.58.(2020·辽宁营口市·中考真题)()()=_____. 【答案】12【分析】直接利用平方差公式计算得出答案.【详解】解:原式=()2)2=18﹣6=12.故答案为:12. 【点睛】本题考查了二次根式的混合运算,正确运用乘法公式是解题关键. 三、解答题59.(2021·湖南长沙市·中考真题)计算:(02sin 451-++°【答案】5.【分析】先化简绝对值、特殊角的正弦值、零指数幂、二次根式的乘法,再计算实数的混合运算即可得.【详解】解:原式212=⨯+14=+5=. 【点睛】本题考查了化简绝对值、特殊角的正弦值、零指数幂、二次根式的乘法等知识点,熟练掌握各运算法则是解题关键.60.(2021·山东临沂市·中考真题)计算221122⎫⎫+-⎪⎪⎭⎭.【答案】【分析】化简绝对值,同时利用平方差公式计算,最后合并.【详解】解:221122⎫⎫+-⎪⎪⎭⎭11112222⎡⎤⎡⎤⎫⎫⎫⎫+-⎪⎪⎪⎪⎢⎥⎢⎥⎭⎭⎭⎭⎣⎦⎣⎦【点睛】本题考查了二次根式的混合运算,解题的关键是合理运用平方差公式进行计算.61.(2021·四川遂宁市·中考真题)计算:()101tan 60232-⎛⎫-+︒-+- ⎪⎝⎭π【答案】-3【分析】分别利用负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的性质化简,再进行计算即可.【详解】解:()101tan 60232-⎛⎫-+︒-+- ⎪⎝⎭π(=2-=221--=3-【点睛】本题考查了负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的化简等知识点,熟悉相关性质是解题的关键.62.(2020·广西玉林市·()23.141π--+【答案】10.【分析】先计算零指数幂、绝对值运算、算术平方根,再计算二次根式的乘法、去括号、有理数的乘方,然后计算二次根式的加减法即可得.【详解】原式211)3=-+19=++10=.【点睛】本题考查了零指数幂、绝对值运算、算术平方根、二次根式的加减法与乘法等知识点,熟记各运算法则是解题关键.63.(2020·上海中考真题)计算:1327(12)﹣2+|3. 【答案】0.【分析】利用分数的指数幂的意义,分母有理化,负指数幂的意义,绝对值的性质计算后合并即可.【详解】原式=133(3)+ 2﹣4+32﹣4+3.【点睛】本题考查了分数指数幂的运算,负指数幂的运算,绝对值的意义以及分母有理化运算,熟练掌握实数的运算法则是解题的关键.64.(2019·2318- 【答案】-3.【分析】首先进行二次根式的化简、去绝对值符号以及二次根式的乘法,然后再合并同类二次根式即可.2318-124-+=-3. 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.65.(2019·辽宁大连市·中考真题)计算:22)+【答案】7【分析】直接利用完全平方公式以及结合二次根式的性质化简进而得出答案.【详解】解:原式346=+-34=+-7=. 【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.祝你考试成功!祝你考试成功!。
备战中考数学(华师大版)巩固复习第二十一章二次根式(含解析)
备战中考数学(华师大版)巩固复习第二十一章二次根式(含解析)一、单选题1.下列根式中,是最简二次根式的是()A.B.C.D.2.下列二次根式中,不能与合并的是()A.B.C.D.3.下列各式中不是二次根式的是()A.B.C.D.4.下列各式中,正确的是()A.=﹣2 B.=9 C.=±3 D.±=±35.下列运算错误的是()A.÷=2B.(+ )×=2 +3C.(4 ﹣3 )÷2 =2﹣D.(+7)(﹣7)=﹣26.9的算术平方根是()A.3B.-3C.±3D.±97.下列式子为最简二次根式的是()A.B.C.D.8.下列根式中属最简二次根式的是()A.B.C.D.9.下列二次根式中属于最简二次根式的是().A.B.C.D.10.下列各式中,是最简二次根式的是()A.8B.C.D.11.有一个数值转换器,原理如下:当输入的X=64时,输出的y等于()A.2B.8C.D.二、填空题12.已知(2a+1)2+=0,则a2+b2021=________13.9的算术平方根是________14.若二次根式有意义,则m的取值范畴是________.15.化简的结果是________16.当x=-1时,二次根式的值是________.17.若二次根式在实数范畴内有意义,则x的取值范畴是_______ _.18.运算:=________19.化简的结果________20.的结果是________.21.最简根式和是同类二次根式,则a=________三、运算题22.运算(1)(2).23.运算:﹣15+(1)﹣15 +(2)÷﹣×+ .四、解答题24.求使有意义的x的取值范畴.25.运算:(1)+|3﹣|﹣()2;(2)•(﹣).五、综合题26.按要求填空:(1)填表:________(2)依照你发觉规律填空:已知:________,________;已知:,________.27.已知和,求下列各式的值:(1)x2﹣y2(2)x2+2xy+y2 .答案解析部分一、单选题1.【答案】D【考点】最简二次根式【解析】【解答】解:A、被开方数含分母,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意,故答案为:D.【分析】最简二次根式满足的条件:1、被开方数的每一个因数(或因式)的指数都小于根指数2;2、被开方数中不含有分母,被开方数是多项式时要先因式分解后再观看。
中考数学专题特训第六讲:二次根式(含详细参考答案)
中考数学专题复习第六讲:二次根式【基础知识回顾】 一、二次根式式子a ( )叫做二次根式【赵老师提醒:①次根式a 必须注意a___o 这一条件,其结果也是一个非数即:a ___o②二次根式a (a ≥o )中,a 可以表示数,也可以是一切符合条件的代数式】二、二次根式的性质:①(a )2= (a ≥0)= (a ≥0 ,b ≥0)(a ≥0, b ≥0)【赵老师提醒:二次根式的性质注意其逆用:如比较23和的大小,可逆用(a )2=a(a ≥0)将根号外的整数移到根号内再比较被开方数的大小】 三、最简二次根式:最简二次根式必须同时满足条件:1、被开方数的因数是 ,因式是整式2、被开方数不含 的因数或因式 四、二次根式的运算:1、二次根式的加减:先将二次根式化简,再将 的二次根式进行合并,合并的方法同合并同类项法则相同2、二次根式的乘除:= (a ≥0 ,b ≥0)(a ≥0,b >0) 3、二次根式的混合运算顺序:先算 再算 最后算【赵老师提醒:1、二次根式除法运算过程一般情况下是用将分母中的根号化= = 2、二次根式混合运算过程要特别注意两个乘法公式的运用 3、二次根式运算的结果一定要化成 】 【重点考点例析】考点一:二次根式有意义的条件(a ≥o )(a <o )例1 (2012•潍坊)如果代数式43x -有意义,则x 的取值范围是( ) A .x ≠3 B .x <3 C .x >3 D .x ≥3思路分析:根据二次根式的意义得出x-3≥0,根据分式得出x-3≠0,即可得出x-3>0,求出即可. 解:要使代数式43x -有意义, 必须x-3>0, 解得:x >3. 故选C .点评:本题考查了二次根式有意义的条件,分式有意义的条件的应用,注意:分式B A中A ≠0,二次根式a 中a ≥0. 对应训练1.(2012•德阳)使代数式21xx -有意义的x 的取值范围是( ) A .x≥0 B .x≠12 C .x≥0且x≠12D .一切实数 1.C1.解:由题意得:2x-1≠0,x≥0, 解得:x≥0,且x≠12, 故选:C .考点二:二次根式的性质例2 (2012•张家界)实数a 、b 在轴上的位置如图所示,且|a|>|b|,则化简2||a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b思路分析:现根据数轴可知a <0,b >0,而|a|>|b|,那么可知a+b <0,再结合二次根式的性质、绝对值的计算进行化简计算即可. 解:根据数轴可知,a <0,b >0,原式=-a-[-(a+b )]=-a+a+b=b . 故选C .点评:本题考查了二次根式的化简和性质、实数与数轴,解题的关键是注意开方结果是非负数、以及绝对值结果的非负性. 对应训练为 . 1.-b2.解:∵由数轴可知:b <0<a ,|b|>|a|,=|a+b|+a =-a-b+a =-b ,故答案为:-b .考点三:二次根式的混合运算思路分析:利用二次根式的分母有理化以及分数指数幂的性质和负整数指数幂的性质,分别化简,进而利用有理数的混合运算法则计算即可.=3. 点评:此题主要考查了二次根式的混合运算以及负整数指数幂的性质,熟练利用这些性质将各式进行化简是解题关键. 对应训练4=+考点四:与二次根式有关的求值问题222)(1)(x x x ++-思路分析:先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.2(1)1)4x x x+0,(1)1)4x x x +=本题考查的是二次根式及分式的化简求值,解答此题的关键是当1,此题难度不大.对应训练A .0B .25C .50D .804.D分析:根据平方差公式求出1142-642=(114+64)×(114-64)=178×50,再提出50得出50×(178-50)=50×128,分解后开出即可.=80, 故选D .点评:本题考查了平方差公式,因式分解,二次根式的运算等知识点的应用,解此题的关键是能选择适当的方法进行计算,本题主要考查学生的思维能力和应变能力,题目比较好,是一道具有代表性的题目.【聚焦山东中考】1.(2012•泰安)下列运算正确的是( )A 5=-B .21()164--=C .x 6÷x 3=x 2 D .(x 3)2=x 5 1.B .2.(2012•临沂)计算:= . 2.03.7【备考真题过关】一、选择题A .x >0B .x≥-2C .x≥2D .x≤2 1.DA B .5 C .2 D .22.AA .3BC .D .3.C .A .5<m <6B .4<m <5C .-5<m <-4D .-6<m <-5 4.A即5<m <6, 故选A .5.(2012•南充)下列计算正确的是( )A .x 3+x 3=x 6B .m 2•m 3=m 6C .3=D = 5.D6.(2012•黔东南州)下列等式一定成立的是( )A .945-=B .5315⨯=C .93=±D .2(9)9--=6.B7.(2012•广西)使式子有意义的x 的取值范围是( )A . x ≥﹣1B . ﹣1≤x ≤2C . x ≤2D .﹣1<x <2 考点: 二次根式有意义的条件。
2023中考数学真题汇编05 二次根式(含答案与解析)
2023中考数学真题汇编·05二次根式一、单选题1.(2023·是同类二次根式的是()AB C D 2.(2023·x的取值范围是()A .x <1B .x ≤1C .x >1D .x ≥13.(2023·x 的取值范围在数轴上表示为()A .B .C .D .4.(2023·有意义,则a 的值可以是()A .1 B .0C .2D .65.(2023·辽宁大连)下列计算正确的是()A .0B .CD 266.(2023·)A .0,0a bB .0,0a bC .0,0a bD .0,0a b7.(2023·山东临沂)设m m 所在的范围是()A .5mB .54mC .43mD .3m8.(2023·山东)若代数式2x 有意义,则实数x 的取值范围是()A .2xB .0xC .2xD .0x 且2x9.(2023·天津)sin 45 )A .1BC D .210.(2023·河北)若a b ()A .2B .4C D11.(2023·湖北荆州)已知k ,则与k 最接近的整数为()A .2B .3C .4D .5二、填空题12.(2023·湖北黄冈)请写出一个正整数mm _____________.13.(2023·湖南永州)已知x在实数的范围内没有意义....的x 值是_______.14.(2023·x 应满足的条件是__________.15.(2023·x 的取值范围是__________.16.(2023·有意义,则实数x 的取值范围是______17.(2023·黑龙江绥化)若式子x有意义,则x 的取值范围是_______.18.(2023·黑龙江齐齐哈尔)在函数12y x 中,自变量x 的取值范围是______.19.(2023·江苏连云港)计算:2 __________.20.(2023·天津)计算的结果为________.21.(2023·山东聊城)计算: ______.22.(2023·上海)已知关于x2 ,则x ________三、解答题23.(2023·24.(2023·213325.(2023· 10220231 .26.(2023·四川内江)计算:2202301(1)3tan 30(3)2|2【参考答案与解析】1.【答案】C【解析】解:A 2 B不是同类二次根式,不符合题意;C是同类二次根式,符合题意;D不是同类二次根式,不符合题意;故选:C .2.【答案】D【解析】解:由题意得,x -1≥0,解得x ≥1.故选:D .3.【答案】C【解析】解:根据题意得,10x ,解得1x ,在数轴上表示如下:故选:C .4.【答案】D【解析】解:有意义,∴40a ,解得:4a ,则a 的值可以是6故选:D .5.【答案】D【解析】解:A. 1 ,故该选项不正确,不符合题意;B. ,故该选项不正确,不符合题意;C.D.26 故选:D .6.【答案】D【解析】解:根据二次根式有意义的条件,得000a b ab,0,0a b ,故选:D .7.【答案】B【解析】解:m∵∴54 ,即54m ,故选:B .8.【解析】解:∵代数式2x 有意义,∴020x x ,解得0x 且2x ,故选:D.9.【答案】B 【解析】解:222sin 45222故选:B .10.【答案】A 【解析】解:∵a b2,故选:A .11.【答案】B【解析】解:k53∵22.5=6.25,23=9∴532 ,∴与k 最接近的整数为3,故选:B .二、填空题12.【答案】8【解析】解:∴8m 要是完全平方数,∴正整数m 的值可以为8,即864m 8 ,故答案为:8(答案不唯一).13.【答案】1(答案不唯一)【解析】解:当30x 没有意义,解得3x ,x ∵为正整数,x 可取1,2,故答案为:1.14.【答案】4x 【解析】根据题意得:40x ,解得:4x ,故答案为:4x .15.【答案】9x 【解析】解:∵∴90x ,解得:9x ,故答案为:9x .16.【答案】3x 【解析】有意义,∴3030x x ≥,且,解得x 3>,故答案为:x 3>.17.【答案】5x 且0x /0x 且5x【解析】∵∴50x 且0x ,∴5x 且0x ,故答案为:5x 且0x .18.【答案】1x 且2x 【解析】解:依题意,10,20x x∴1x 且2x ,故答案为:1x 且2x .19.【答案】5【解析】解:2 5故答案为:5.20.【答案】1【解析】解:22761 故答案为:1.21.【答案】3【解析】解:333 .故答案为:3.22.【答案】18【解析】解:根据题意得,140x ,即14x ,2 ,等式两边分别平方,144x 移项,18x ,符合题意,故答案为:18.三、解答题23.【答案】24.【答案】解:原式2293 6 .25.【答案】解: 102202313211211 4 .26.【答案】解:2202301(1)3tan 30(3)2|231431231412 4 .。
中考数学备考专题复习: 二次根式(含解析)
中考备考专题复习:二次根式一、单选题1、(2016•曲靖)下列运算正确的是()A、3 ﹣=3B、a6÷a3=a2C、a2+a3=a5D、(3a3)2=9a62、把分母有理化后得()A、4bB、2C、D、3、若,则xy的值为()A、3B、8C、12D、44、下列各式中,不是二次根式的是()A、B、C、D、5、已知:m,n是两个连续自然数(m<n),且q=mn.设p=+,则p( ).A、总是奇数B、总是偶数C、有时是奇数,有时是偶数D、有时是有理数,有时是无理数6、(2015•钦州)对于任意的正数m、n定义运算※为:m※n=,计算(3※2)×(8※12)的结果为()A、2﹣4B、2C、2D、207、若等腰三角形的两边长分别为和,则这个三角形的周长为()A、B、或C、D、8、(2016•自贡)下列根式中,不是最简二次根式的是()A、B、C、D、9、(2016•眉山)下列等式一定成立的是()A、a2×a5=a10B、C、(﹣a3)4=a12D、10、(2016•潍坊)实数a,b在数轴上对应点的位置如图所示,化简|a|+ 的结果是()A、﹣2a+bB、2a﹣bC、﹣bD、b11、(2016•龙岩)与- 是同类二次根式的是()A、B、C、D、12、(2016•梅州)二次根式有意义,则x的取值范围是()A、x>2B、x<2C、x≥2D、x≤213、(2016•贵港)式子在实数范围内有意义,则x的取值范围是()A、x<1B、x≤1C、x>1D、x≥114、(2016•雅安)若式子+(k﹣1)0有意义,则一次函数y=(1﹣k)x+k﹣1的图象可能是()A、B、C、D、15、(2016•呼伦贝尔)若1<x<2,则的值为()A、2x﹣4B、﹣2C、4﹣2xD、2二、填空题16、若,则a-b+c=________ .17、若两个最简二次根式与可以合并,则a=________ .18、(2016•自贡)若代数式有意义,则x的取值范围是________.19、(2016•天津)计算(+ )(﹣)的结果等于________.20、(2016•曲靖)如果整数x>﹣3,那么使函数y= 有意义的x的值是________(只填一个)三、计算题21、(2016•攀枝花)计算;+20160﹣| ﹣2|+1.22、(2016•荆州)计算:.四、解答题23、已知 + =0,求的值.24、实数a、b在数轴上的位置如图所示,化简:25、我们知道,若两个有理数的积是1,则称这两个有理数互为倒数.同样的当两个实数与的积是1时,我们仍然称这两个实数互为倒数.①判断与是否互为倒数,并说明理由;②若实数是的倒数,求x和y之间的关系.五、综合题26、(2016•黄石)观察下列等式:第1个等式:a1= = ﹣1,第2个等式:a2= = ﹣,第3个等式:a3= =2﹣,第4个等式:a4= = ﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:a n=________;(2)a1+a2+a3+…+a n=________.27、(2016•桂林)已知任意三角形的三边长,如何求三角形面积?古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式S= (其中a,b,c是三角形的三边长,p= ,S为三角形的面积),并给出了证明例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:∵a=3,b=4,c=5∴p= =6∴S= = =6事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.如图,在△ABC中,BC=5,AC=6,AB=9(1)用海伦公式求△ABC的面积;(2)求△ABC的内切圆半径r.答案解析部分一、单选题1、【答案】D【考点】幂的乘方与积的乘方,同底数幂的除法,二次根式的加减法【解析】【解答】解:A、由于3 ﹣=(3﹣1)=2 ≠3,故本选项错误;B、由于a6÷a3=a6﹣3=a3≠a2,故本选项错误;C、由于a2与a3不是同类项,不能进行合并同类项计算,故本选项错误;D、由于(3a3)2=9a6,符合积的乘方与幂的乘方的运算法则,故本选项正确.故选D.【分析】根据二次根式的加减法、同底数幂的除法、合并同类项法则、积的乘方与幂的乘方的运算法则解答.本题考查了二次根式的加减法、同底数幂的除法、合并同类项法则、积的乘方与幂的乘方的运算法则,熟记法则是解题的关键.2、【答案】D【考点】分母有理化【解析】【解答】==.故选D.【分析】根据二次根式的除法法则计算,再分母有理化.3、【答案】C【考点】二次根式的化简求值【解析】【解答】根据题意得:,解得:,则xy=12.故选C.【分析】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.4、【答案】B【考点】二次根式的定义【解析】【解答】形如叫二次根式。
数学中考试题二次根式200题(含解析)
-(cos30°)0115.已知x= +1,求x2-2x-3的值.
116. 先化简,再求值 ,其中a=,b=.
117.计算: .
118.计算: .
119. 计算:
120.计算: .
121. 计算:.
122.计算:(2-)(2+)+(-1)2010 .
25.已知实数x、y、a满足: ,
试问长度分别为x、y、a的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果丌能,请说明理由.
26. 我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:
…①(其中 a、b、c 为三角形的三边长,s
163.计算:-(-3)=;如图所示,化简 =.
164.实数a在数轴上的位置如图所示,则化简|a-2|+ 的结果为.
165.已知a<2,则 =.
166.当x>2时,化简=.
167.计算: +| -2|+(2-π)0
168.计算: .
169.计算:-(-2009)0+( )-1+|-1|.
170.计算:
154.计算:(-1)(+1)-(sin35°- )0+(-1)2008-(-2)-2
155.计算:( +3)(3- )
156.阅读下列材料,然后回答问题.
在迚行二次根式的化简不运算时,我们有时会碰上如 一样的式子, 其实我们还可以将其迚一步化简:
=
=
= (三)
以上这种化简的步骤叫做分母有理化. 还可以用以下方法化简:
2022年全国中考数学真题分类汇编专题5:二次根式(附答案解析)
故答案为:﹣10. 三.解答题(共 2 小题) 29.计算:(﹣2)×0+5.
【解答】解:(﹣2)×0+5 =0+5 =5. 30.计算:3×(﹣1)+22+|﹣4|. 【解答】解:原式=﹣3+4+4 =5.
第9页共9页
2022 年全国中考数学真题分类汇编专题 5:二次根式
一.选择题(共 7 小题)
1.代数式 A.x≥3
在实数范围内有意义,则 x 的取值范围是(
B.x>3
C.x≤3
) D.x<3
2.若二次根式
有意义,则实数 x 的取值范围是( )
A.x≥1
B.x>1
C.x≥0
D.x>0
3.下列正确的是( )
A. t h 2+3
使用负数的实例.《九章算术》的“方程”一章,在世界数学史上首次正式引入负数及其
加减法运算法则,并给出名为“正负术”的算法,请计算以下涉及“负数”的式子的值:
﹣1﹣(﹣3)2=
.
三.解答题(共 2 小题)
29.计算:(﹣2)×0+5. 30.计算:3×(﹣1)+22+|﹣4|.
第2页共9页
2022 年全国中考数学真题分类汇编专题 5:二次根式
.
13.化简:
.
14.计算:
.
15.计算:
的结果为
.
16.计算:
.
17.若
在实数范围内有意义,则 x 的取值范围是
18.若
在实数范围内有意义,则实数 x 的取值范围是
第1页共9页
. .
19.若
有意义,则 x 的取值范围是
.
20.若
2024年中考数学二轮复习:二次根式(附答案解析)
�
= ,②
×
�
�
�
C.①③
�
=1,③ �� ÷
�
D.①②③
【考点】二次根式的乘除法.
【专题】计算题.
【答案】B
【分析】由 ab>0,a+b<0 先求出 a<0,b<0,再进行根号内的运算.
【解答】解:∵ab>0,a+b<0,
∴a<0,b<0
�
�
① � = ,被开方数应≥0,a,b 不能做被开方数,(故①错误),
�
� �
� �
② �• � =1, �• � =
� �
× = 1 =1,(故②正确),
� �
第 3页(共 12页)
�
=−b,
�
��
−�
�
�
=−b,(故③正确).
③ �� ÷ � =−b, �� ÷ � = �� ÷ −� = �� ×
��
故选:B.
【点评】本题是考查二次根式的乘除法,解答本题的关键是明确 a<0,b<0.
次根式的性质化简得出答案.
【解答】解:由图可知:a<0,a﹣b<0,
则|a|+ (� − �)2
=﹣a﹣(a﹣b)
=﹣2a+b.
故选:A.
【点评】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关
键.
2.如果 ab>0,a+b<0,那么下面各式:①
其中正确的是(
A.①②
)
B.②③
�
D.2a﹣3
)
二.填空题(共 5 小题)
11.若|2017﹣m|+ � − 2018 =m,则 m﹣20172=
二次根式(优选真题60道)-三年(2021-2023)中考数学真题分项汇编(解析版)
专题03二次根式(优选真题60道)一.选择题(共24小题)1(2023•烟台)下列二次根式中,与2是同类二次根式的是()A.4B.6C.8D.12【答案】C【分析】先根据二次根式的性质化成最简二次根式,再根据同类二次根式的定义得出答案即可.【解答】解:A.4=2,和2不是同类二次根式,故本选项不符合题意;B.6和2不是同类二次根式,故本选项不符合题意;C.8=22,和2是同类二次根式,故本选项符合题意;D.12=23,和2不是同类二次根式,故本选项不符合题意;故选:C.【点评】本题考查了同类二次根式的定义,能熟记同类二次根式的定义是解此题的关键,几个二次根式化成最简二次根式以后,如果被开方数相同,那么这几个二次根式叫同类二次根式.2(2023•岳阳)对于二次根式的乘法运算,一般地,有a•b=ab.该运算法则成立的条件是()A.a>0,b>0B.a<0,b<0C.a≤0,b≤0D.a≥0,b≥0【答案】D【分析】根据二次根式的乘法法则,即可解答.【解答】解:对于二次根式的乘法运算,一般地,有a•b=ab.该运算法则成立的条件是a≥0,b≥0,故选:D.【点评】本题考查了二次根式的乘除法,熟练掌握二次根式的乘法法则是解题的关键.3(2023•金华)要使x-2有意义,则x的值可以是()A.0B.-1C.-2D.2【答案】D【分析】根据二次根式有意义的条件列出不等式,解不等式求出x的范围,判断即可.【解答】解:由题意得:x-2≥0,解得:x≥2,则x的值可以是2,故选:D.【点评】本题考查的是二次根式有意义的条件,熟记二次根式的被开方数是非负数是解题的关键.4(2023•巴中)下列运算正确的是()A.x2+x3=x5B.3×2=6C.(a-b)2=a2-b2D.|m|=m【答案】B【分析】根据二次根式的乘法、合并同类项、完全平方公式、绝对值的性质计算,判断即可.【解答】解:A、x2与x3,不是同类项,不能合并,故本选项计算错误,不符合题意;B、3×2=6,计算正确,符合题意;C、(a-b)2=a2-2ab+b2,故本选项计算错误,不符合题意;D、当m≥0时,|m|=m,故本选项计算错误,不符合题意;故选:B.【点评】本题考查的是二次根式的乘法、合并同类项、完全平方公式、绝对值的性质,掌握相关的运算法则和性质是解题的关键.5(2023•江西)若a-4有意义,则a的值可以是()A.-1B.0C.2D.6【答案】D【分析】直接利用二次根式的定义得出a的取值范围,进而得出答案.【解答】解:a-4有意义,则a-4≥0,解得:a≥4,故a的值可以是6.故选:D.【点评】此题主要考查了二次根式的有意义的条件,正确得出a的取值范围是解题关键.6(2023•临沂)设m=515-45,则实数m所在的范围是()A.m<-5B.-5<m<-4C.-4<m<-3D.m>-3【答案】B【分析】将原式进行化简后判断其在哪两个连续整数之间即可.【解答】解:m=515-45=25×15-35=5-35=-25=-20,∵16<20<25,∴16<20<25,即4<20<5,那么-5<-20<-4,则-5<m<-4,故选:B.【点评】本题考查无理数的估算,将原式计算后得出结果为-20是解题的关键.7(2023•天津)sin45°+22的值等于()A.1B.2C.3D.2【答案】B【分析】根据特殊锐角的三角函数值及二次根式的加法法则计算即可.【解答】解:原式=22+22=2,故选:B.【点评】本题考查二次根式的运算及特殊锐角的三角函数,其相关运算法则是基础且重要知识点,必须熟练掌握.8(2023•扬州)已知a=5,b=2,c=3,则a、b、c的大小关系是()A.b>a>cB.a>c>bC.a>b>cD.b>c>a【答案】C【分析】一个正数越大,其算术平方根越大,据此进行判断即可.【解答】解:∵3<4<5,∴3<4<5,即3<2<5,则a>b>c,故选:C.【点评】本题考查实数的大小比较,此为基础且重要知识点,必须熟练掌握.9(2023•台州)下列无理数中,大小在3与4之间的是()A.7B.22C.13D.17【答案】C【分析】一个正数越大,其算术平方根越大;据此进行无理数的估算进行判断即可.【解答】解:∵4<7<8<9<13<16<17,∴4<7<8<9<13<16<17,即2<7<22<3<13<4<17,那么13在3和4之间,故选:C.【点评】本题考查无理数的估算,此为基础且重要知识点,必须熟练掌握.10(2023•云南)按一定规律排列的单项式:a,2a2,3a3,4a4,5a5,⋯,第n个单项式是() A.n B.n-1a n-1 C.na n D.na n-1【答案】C【分析】根据题干所给单项式总结规律即可.【解答】解:第1个单项式为a,即1a1,第2个单项式为2a2,第3个单项式为3a3,...第n个单项式为na n,故选:C.【点评】本题考查数式规律问题,根据已知单项式总结出规律是解题的关键.11(2023•重庆)估计5×6-1 5的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【答案】A【分析】先化简题干中的式子得到30-1,明确30的范围,利用不等式的性质求出30-1的范围得出答案.【解答】解:原式=30-1.∵5<30<6.∴4<30-1<5.故选:A.【点评】本题以计算选择为背景考查了无理数的估算,考核了学生对式子的化简和比较大小的能力,解题关键是将式子化简,确定无理数的范围最后利用不等式的性质.12(2022•内蒙古)实数a在数轴上的对应位置如图所示,则a2+1+|a-1|的化简结果是()A.1B.2C.2aD.1-2a【答案】B【分析】根据数轴得:0<a<1,得到a>0,a-1<0,根据a2=|a|和绝对值的性质化简即可.【解答】解:根据数轴得:0<a<1,∴a>0,a-1<0,∴原式=|a|+1+1-a=a+1+1-a=2.故选:B.【点评】本题考查二次根式的性质与化简,实数与数轴,掌握a2=|a|是解题的关键.13(2022•安顺)估计(25+52)×15的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【答案】B【分析】直接利用二次根式的性质结合估算无理数的大小方法得出答案.【解答】解:原式=2+10,∵3<10<4,∴5<2+10<6,故选:B.【点评】此题主要考查了二次根式的混合运算,估算无理数的大小,正确估算无理数是解题关键.14(2022•广州)代数式1x+1有意义时,x应满足的条件为()A.x≠-1B.x>-1C.x<-1D.x≤-1【答案】B【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.【解答】解:代数式1x+1有意义时,x+1>0,解得:x>-1.故选:B.【点评】此题主要考查了二次根式有意义的条件以及分式有意义的条件,正确掌握相关定义是解题关键.15(2022•聊城)射击时,子弹射出枪口时的速度可用公式v=2as进行计算,其中a为子弹的加速度,s为枪筒的长.如果a=5×105m/s2,s=0.64m,那么子弹射出枪口时的速度(用科学记数法表示)为()A.0.4×103m/sB.0.8×103m/sC.4×102m/sD.8×102m/s【答案】D【分析】把a=5×105m/s2,s=0.64m代入公式v=2as,再根据二次根式的性质化简即可.【解答】解:v=2as=2×5×105×0.64=8×102(m/s),故选:D.【点评】此题主要考查了二次根式的性质与化简以及科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16(2022•青岛)计算(27-12)×13的结果是()A.33B.1C.5D.3【答案】B【分析】先根据二次根式的乘法进行计算,再根据二次根式的性质进行计算,最后算减法即可.【解答】解:(27-12)×1 3=27×13-12×13=9-4=3-2=1,故选:B.【点评】本题考了二次根式的混合运算,能正确运用二次根式的运算法则进行计算是解此题的关键.17(2022•绥化)若式子x+1+x-2在实数范围内有意义,则x的取值范围是()A.x>-1B.x≥-1C.x≥-1且x≠0D.x≤-1且x≠0【答案】C【分析】根据二次根式的被开方数是非负数,a-p=1a p(a≠0)即可得出答案.【解答】解:∵x+1≥0,x≠0,∴x≥-1且x≠0,故选:C.【点评】本题考查了二次根式有意义的条件,负整数指数幂,掌握二次根式的被开方数是非负数,a-p=1a p (a≠0)是解题的关键.18(2021•内江)函数y=2-x+1x+1中,自变量x的取值范围是()A.x≤2B.x≤2且x≠-1C.x≥2D.x≥2且x≠-1【答案】B【分析】根据二次根式的被开方数是非负数、分母不为0计算即可.【解答】解:由题意得:2-x≥0,x+1≠0,解得:x≤2且x≠-1,故选:B.【点评】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.19(2021•泰州)下列各组二次根式中,化简后是同类二次根式的是()A.8与3B.2与12C.5与15D.75与27【答案】D【分析】一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.先将各选项进行化简,再根据被开方数是否相同进行判断即可.【解答】解:A、8=22和3不是同类二次根式,本选项不合题意;B、12=23与2不是同类二次根式,本选项不合题意;C、5与15不是同类二次根式,本选项不合题意;D、75=53,27=33是同类二次根式,本选项符合题意.故选:D.【点评】本题考查了同类二次根式,解答本题的关键在于熟练掌握二次根式的化简及同类二次根式的概念.20(2021•大连)下列计算正确的是()A.(-3)2=-3B.12=23C.3-1=1D.(2+1)(2-1)=3【答案】B【分析】根据二次根式的性质,立方根的概念,平方差公式进行化简计算,从而作出判断.【解答】解:A、(-3)2=3,故此选项不符合题意;B、12=23,正确,故此选项符合题意;C、3-1=-1,故此选项不符合题意;D、(2+1)(2-1)=2-1=1,故此选项不符合题意,故选:B.【点评】本题考查二次根式的性质,立方根的概念和二次根式的混合运算,理解二次根式的性质和概念是解题基础.21(2021•益阳)将452化为最简二次根式,其结果是()A.452B.902C.9102D.3102【答案】D【分析】根据二次根式的性质进行化简即可.【解答】解:452=9×5×22×2=3102,故选:D.【点评】本题考查了最简二次根式的定义和二次根式的性质,注意:满足以下两个条件:①被开方数中的因式是整式,因数是整数,②被开方数中不含有能开得尽方的因式或因数,像这样的二次根式叫最简二次根式.22(2021•娄底)2、5、m是某三角形三边的长,则(m-3)2+(m-7)2等于()A.2m-10B.10-2mC.10D.4【答案】D【分析】直接利用三角形三边关系得出m的取值范围,再利用二次根式的性质化简得出答案.【解答】解:∵2、5、m是某三角形三边的长,∴5-2<m<5+2,故3<m<7,∴(m-3)2+(m-7)2=m-3+7-m=4.故选:D.【点评】此题主要考查了三角形三边关系以及二次根式的化简,正确化简二次根式是解题关键.23(2021•河北)与32-22-12结果相同的是()A.3-2+1B.3+2-1C.3+2+1D.3-2-1【答案】A【分析】化简32-22-12=9-4-1=4=2,再逐个选项判断即可.【解答】解:32-22-12=9-4-1=4=2,∵3-2+1=2,故A符合题意;∵3+2-1=4,故B不符合题意;∵3+2+1=6,故C不符合题意;∵3-2-1=0,故D不符合题意.故选:A.【点评】本题考查了二次根式的运算性质,熟悉二次根式的运算性质是解题关键.24(2021•常德)计算:5+12-1•5+12=()A.0B.1C.2D.5-12【答案】B【分析】直接利用二次根式的混合运算法则计算得出答案.【解答】解:5+12-1•5+12=5+1-22×5+12=5-12×5+12=(5)2-124=44=1.故选:B.【点评】此题主要考查了二次根式的混合运算,正确运用乘法公式计算是解题关键.二.填空题(共26小题)25(2023•滨州)一块面积为5m2的正方形桌布,其边长为 5m .【答案】5m.【分析】结合已知条件,求得5的算术平方根即可.【解答】解:设正方形桌布的边长为am(a>0),则a2=5,那么a=5,即正方形桌布的边长为5m,故答案为:5m.【点评】本题考查算术平方根的应用,其定义是基础且重要知识点,必须熟练掌握.26(2023•陕西)如图,在数轴上,点A表示3,点B与点A位于原点的两侧,且与原点的距离相等.则点B表示的数是 -3 .【答案】-3.【分析】根据原点左边的数是负数,由绝对值的定义可得答案.【解答】解:由题意得:点B表示的数是-3.故答案为:-3.【点评】此题考查了数轴,绝对值,掌握绝对值的意义是解本题的关键.27(2023•枣庄)计算(2023-1)0+12-1= 3 .【答案】3.【分析】根据零指数幂和负整数指数幂的计算法则求解即可.【解答】解:(2023-1)0+12 -1=1+2=3故答案为:3.【点评】本题主要考查了零指数幂和负整数指数幂,正确计算是解题的关键,注意非零底数的零指数幂的结果为1.28(2023•安徽)计算:38+1= 3 .【答案】3.【分析】直接利用立方根的性质化简,进而得出答案.【解答】解:原式=2+1=3.故答案为:3.【点评】此题主要考查了实数的运算,正确掌握立方根的性质是解题关键.29(2023•广安)16的平方根是 ±2 .【答案】±2.【分析】利用算术平方根与平方根的意义解答即可.【解答】解:∵16=4,4的平方根为±2,∴16的平方根为±2.故答案为:±2.【点评】本题主要考查了算术平方根与平方根,熟练掌握上述法则与性质是解题的关键.30(2023•自贡)请写出一个比23小的整数 4(答案不唯一) .【答案】4(答案不唯一).【分析】根据算术平方根的定义估算无理数23的大小即可.【解答】解:∵42=16,52=25,而16<23<25,∴4<23<5,∴比23小的整数有4(答案不唯一),故答案为:4(答案不唯一).【点评】本题考查估算无理数的大小,理解算术平方根的定义是正确解答的前提.31(2023•天津)计算(7+6)(7-6)的结果为 1 .【答案】1.【分析】利用平方差公式进行计算,即可解答.【解答】解:(7+6)(7-6)=(7)2-(6)2=7-6=1,故答案为:1.【点评】本题考查了二次根式的混合运算,平方差公式,熟练掌握平方差公式是解题的关键.32(2023•永州)已知x为正整数,写出一个使x-3在实数范围内没有意义的x值是 1(答案也可以是2) .【答案】1(答案也可以是2).【分析】根据二次根式没有意义即被开方数小于0求解即可.【解答】解:要使x-3在实数范围内没有意义,则x-3<0,∴x<3,∵x为正整数,∴x的值是1(答案也可以是2).故答案为:1(答案也可以是2).【点评】本题考查了二次根式有意义的条件,熟知二次根式a有意义,则a≥0,若没有意义,则a<0.本题较简单,属于基础题.33(2023•连云港)计算:(5)2= 5 .【答案】5.【分析】(a)2=a(a≥0),据此即可求得答案.【解答】解:(5)2=5,故答案为:5.【点评】本题考查二次根式的性质,此为基础且重要知识点,必须熟练掌握.34(2022•朝阳)计算:63÷7-|-4|= -1 .【答案】-1.【分析】先算除法,去绝对值,再合并即可.【解答】解:原式=63÷7-4=3-4=-1.故答案为:-1.【点评】本题考查二次根式的运算,解题的关键是掌握二次根式运算的相关法则.35(2022•日照)若二次根式3-2x在实数范围内有意义,则x的取值范围为 x≤32 .【答案】x≤3 2.【分析】根据二次根式的被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得:3-2x≥0,解得:x≤3 2,故答案为:x≤3 2.【点评】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.36(2022•青海)若式子1x-1有意义,则实数x的取值范围是x>1.【答案】x>1.【分析】根据二次根式的被开方数为非负数,分式的分母不等于零列式计算可求解.【解答】解:由题意得x-1>0,解得x>1,故答案为:x>1.【点评】本题主要考查二次根式有意义的条件,分式有意义的条件,掌握二次根式有意义的条件,分式有意义的条件是解题的关键.37(2022•北京)若x-8在实数范围内有意义,则实数x的取值范围是x≥8.【答案】x≥8.【分析】根据二次根式有意义的条件,可得:x-8≥0,据此求出实数x的取值范围即可.【解答】解:∵x-8在实数范围内有意义,∴x-8≥0,解得:x≥8.故答案为:x≥8.【点评】此题主要考查了二次根式有意义的条件,解答此题的关键是要明确:二次根式中的被开方数是非负数.38(2022•哈尔滨)计算3+313的结果是23 .【答案】23.【分析】先化简各二次根式,再根据混合运算的顺序依次计算可得答案.【解答】解:原式=3+3×3 3=3+3=23.故答案为:23.【点评】此题考查的是二次根式的运算,掌握其运算法则是解决此题的关键.39(2022•包头)若代数式x+1+1x在实数范围内有意义,则x的取值范围是x≥-1且x≠0.【答案】见试题解答内容【分析】根据二次根式有意义的条件,分式有意义的条件是分母不等于零,列不等式组,解出即可.【解答】解:根据题意,得x+1≥0 x≠0,解得x≥-1且x≠0,故答案为:x≥-1且x≠0.【点评】本题主要考查了二次根式有意义的条件、分式有意义的条件,掌握这两个知识点的应用,列出不等式组是解题关键.40(2022•荆州)若3-2的整数部分为a,小数部分为b,则代数式(2+2a)•b的值是2.【答案】2.【分析】根据2的范围,求出3-2的范围,从而确定a、b的值,代入所求式子计算即可.【解答】解:∵1<2<2,∴1<3-2<2,∵若3-2的整数部分为a,小数部分为b,∴a=1,b=3-2-1=2-2,∴(2+2a)•b=(2+2)(2-2)=2,故答案为:2.【点评】本题考查了估算无理数的大小的应用,解题的关键是求出a、b的值.41(2022•常德)要使代数式xx-4有意义,则x的取值范围为x>4.【答案】x>4.【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得:x-4>0,解得:x>4,故答案为:x>4.【点评】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.42(2022•随州)已知m为正整数,若189m是整数,则根据189m=3×3×3×7m=33×7m可知m有最小值3×7=21.设n为正整数,若300n是大于1的整数,则n的最小值为3,最大值为75.【答案】3;75.【分析】先将300n化简为103n,可得n最小为3,由300n是大于1的整数可得300n越小,300n越小,则n越大,当300n=2时,即可求解.【解答】解:∵300n=3×100n=103n,且为整数,∴n最小为3,∵300n是大于1的整数,∴300n越小,300n越小,则n越大,当300n=2时,300n=4,∴n=75,故答案为:3;75.【点评】本题考查二次根式的乘除法,二次根式的性质与化简,解题的关键是读懂题意,根据关键词“大于”,“整数”进行求解.43(2022•天津)计算(19+1)(19-1)的结果等于18.【答案】18.【分析】根据平方差公式即可求出答案.【解答】解:原式=(19)2-12=19-1=18,故答案为:18.【点评】本题考查平方差公式与二次根式的混合运算,解题的关键是熟练运用平方差公式,本题属于基础题型.44(2022•泰安)计算:8•6-343= 23 .【答案】23.【分析】化简二次根式,然后先算乘法,再算减法.【解答】解:原式=8×6-3×23 3=43-23=23,故答案为:23.【点评】本题考查二次根式的混合运算,理解二次根式的性质,准确化简二次根式是解题关键.45(2022•遂宁)实数a、b在数轴上的位置如图所示,化简|a+1|-(b-1)2+(a-b)2=2.【答案】2.【分析】根据数轴可得:-1<a<0,1<b<2,然后即可得到a+1>0,b-1>0,a-b<0,从而可以将所求式子化简.【解答】解:由数轴可得,-1<a<0,1<b<2,∴a+1>0,b-1>0,a-b<0,∴|a+1|-(b-1)2+(a-b)2=a+1-(b-1)+(b-a)=a+1-b+1+b-a=2,故答案为:2.【点评】本题考查二次根式的性质与化简、实数与数轴,解答本题的关键是明确题意,利用数形结合的思想解答.46(2022•内蒙古)已知x,y是实数,且满足y=x-2+2-x+18,则x⋅y的值是 12 .【答案】见试题解答内容【分析】根据负数没有平方根求出x的值,进而求出y的值,代入计算即可求出值.【解答】解:∵y=x-2+2-x+1 8,∴x-2≥0,2-x≥0,∴x=2,y=18,则原式=2×18=14=12,故答案为:12【点评】此题考查了二次根式的化简求值,熟练掌握运算法则是解本题的关键.47(2022•六盘水)计算:12-23=0.【答案】见试题解答内容【分析】先化简各个二次根式,再合并同类二次根式.【解答】解:12-23=23-23=0.故答案为0.【点评】本题考查二次根式的加减,解题的关键是首先化简各个二次根式,再合并同类二次根式.48(2022•邵阳)若1x -2有意义,则x 的取值范围是x >2.【答案】x >2.【分析】先根据二次根式及分式有意义的条件列出x 的不等式组,求出x 的取值范围即可.【解答】解:∵1x -2有意义,∴x -2≥0x -2≠0 ,解得x >0.故答案为:x >2.【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.49(2021•铜仁市)计算(27+18)(3-2)=3.【答案】3.【分析】先把二次根式化为最简二次根式,然后利用平方差公式计算.【解答】解:原式=(33+32)(3-2)=3(3+2)(3-2)=3×(3-2)=3.故答案为3.【点评】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解决问题的关键.50(2021•荆州)已知:a =12 -1+(-3)0,b =(3+2)(3-2),则a +b =2.【答案】2.【分析】先计算出a ,b 的值,然后代入所求式子即可求得相应的值.【解答】解:∵a =12-1+(-3)0=2+1=3,b =(3+2)(3-2)=3-2=1,∴a +b=3+1=4=2,故答案为:2.【点评】本题考查二次根式的化简求值、平方差公式、零指数幂、负整数指数幂,解答本题的关键是明确它们各自的计算方法.三.解答题(共10小题)51(2023•内江)计算:(-1)2023+12-2+3tan30°-(3-π)0+|3-2|.【答案】4.【分析】直接利用有理数的乘方运算法则、负整数指数幂的性质、特殊角的三角函数值、零指数幂的性质、绝对值的性质分别化简,进而得出答案.【解答】解:原式=-1+4+3×33-1+2-3=-1+4+3-1+2-3=4.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.52(2023•十堰)计算:|1-2|+12-2-(π-2023)0.【答案】2+2.【分析】直接利用负整数指数幂的性质、零指数幂的性质、绝对值的性质分别化简,进而得出答案.【解答】解:原式=2-1+4-1=2+2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.53(2023•岳阳)计算:|-3|+4+(-2)×1.【答案】3.【分析】利用绝对值的意义,算术平方根的意义和有理数的乘法法则化简运算即可.【解答】解:原式=3+2+(-2)=3+2-2=3.【点评】本题主要考查了实数的运算,绝对值的意义,算术平方根的意义和有理数的乘法法则,熟练掌握上述法则与性质是解题的关键.54(2023•上海)计算:38+12+5-13-2+|5-3|.【答案】-6.【分析】根据立方根定义,二次根式的化简,负整数指数幂,绝对值的性质进行计算即可.【解答】解:原式=2+5-2(5+2)(5-2)-9+3-5=2+5-2-9+3-5=-6.【点评】本题考查实数的运算,其相关运算法则是基础且重要知识点,必须熟练掌握.55(2023•陕西)计算:5×(-10)-17-1+|-23|.【答案】-52+1.【分析】直接利用二次根式的乘法运算法则以及负整数指数幂的性质、绝对值的性质分别化简,进而得出答案.【解答】解:原式=-52-7+|-8|=-52-7+8=-52+1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.56(2023•岳阳)计算:22-tan60°+|3-1|-(3-π)0.【答案】2.【分析】先化简特殊角的三角函数值,绝对值,零指数幂,再根据实数的运算法则计算即可.【解答】解:22-tan60°+|3-1|-(3-π)0.=4-3+3-1-1=2.【点评】本题考查了实数的混合运算,掌握运算法则是解题的关键.57(2023•眉山)计算:(23-π)0-|1-3|+3tan30°+-1 2-2.【答案】6.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=1-(3-1)+3×33+4=1-3+1+3+4=6.【点评】此题考查了实数的运算,零指数幂、负整数指数幂,绝对值,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.58(2023•武威)计算:27÷32×22-62.【答案】62.【分析】直接利用二次根式的乘除运算法则计算,进而得出答案.【解答】解:原式=33×23×22-62=122-62=62.【点评】此题主要考查了二次根式的混合运算,正确掌握相关运算法则是解题关键.59(2022•陕西)计算:5×(-2)+2×8-13-1.【答案】-9.【分析】先算乘法,负整数指数幂,求出算术平方根,再算加减即可.【解答】解:原式=-10+16-3=-10+4-3=-9.【点评】本题考查实数的混合运算,解题的关键是掌握实数相关运算的法则.60(2022•襄阳)先化简,再求值:(a+2b)2+(a+2b)(a-2b)+2a(b-a),其中a=3-2,b=3 +2.【答案】6ab,6.【分析】直接利用完全平方公式、平方差公式化简,进而合并同类项,再把已知数据代入得出答案.【解答】解:原式=a2+4b2+4ab+a2-4b2+2ab-2a2=6ab,∵a=3-2,b=3+2,∴原式=6ab=6×(3-2)(3+2)=6.【点评】此题主要考查了二次根式的混合运算与整式的混合运算--化简求值,正确掌握整式的混合运算法则是解题关键.。
专题06 二次根式(24题)(解析版)--2024年中考数学真题分类汇编
专题06二次根式(24题)一、单选题1(2024·湖南·中考真题)计算2×7的结果是()A.27B.72C.14D.14【答案】D【分析】此题主要考查了二次根式的乘法,正确计算是解题关键.直接利用二次根式的乘法运算法则计算得出答案.【详解】解:2×7=14,故选:D2(2024·内蒙古包头·中考真题)计算92-62所得结果是()A.3B.6C.35D.±35【答案】C【分析】本题考查化简二次根式,根据二次根式的性质,化简即可.【详解】解:92-62=81-36=45=35;故选C.3(2024·云南·中考真题)式子x在实数范围内有意义,则x的取值范围是()A.x>0B.x≥0C.x<0D.x≤0【答案】B【分析】本题主要考查了二次根式有意义的条件.根据二次根式有意义的条件,即可求解.【详解】解:∵式子x在实数范围内有意义,∴x的取值范围是x≥0.故选:B4(2024·黑龙江绥化·中考真题)若式子2m-3有意义,则m的取值范围是()A.m≤23B.m≥-32C.m≥32D.m≤-23【答案】C【分析】本题考查了二次根式有意义的条件,根据题意可得2m-3≥0,即可求解.【详解】解:∵式子2m-3有意义,∴2m-3≥0,解得:m≥3 2,故选:C.5(2024·四川乐山·中考真题)已知1<x<2,化简x-12+x-2的结果为()A.-1B.1C.2x -3D.3-2x【答案】B【分析】本题考查了二次根式的性质,去绝对值,熟练掌握知识点是解题的关键.先根据a 2=a 化简二次根式,然后再根据1<x <2去绝对值即可.【详解】解:x -1 2+x -2 =x -1 +x -2 , ∵1<x <2,∴x -1>0,x -2<0,∴x -1 +x -2 =x -1+2-x =1,∴x -12+x -2 =1,故选:B .6(2024·重庆·中考真题)已知m =27-3,则实数m 的范围是()A.2<m <3B.3<m <4C.4<m <5D.5<m <6【答案】B【分析】此题考查的是求无理数的取值范围,二次根式的加减运算,掌握求算术平方根的取值范围的方法是解决此题的关键.先求出m =27-3=12,即可求出m 的范围.【详解】解:∵m =27-3=33-3=23=12,∵3<12<4,∴3<m <4,故选:B .7(2024·江苏盐城·中考真题)矩形相邻两边长分别为2cm 、5cm ,设其面积为Scm 2,则S 在哪两个连续整数之间()A.1和2B.2和3C.3和4D.4和5【答案】C【分析】本题主要考查无理数的估算,二次根式的乘法,先计算出矩形的面积S ,再利用放缩法估算无理数大小即可.【详解】解:S =2×5=10,∵9<10<16,∴9<10<16,∴3<10<4,即S 在3和4之 间,故选:C .8(2024·安徽·中考真题)下列计算正确的是()A.a 3+a 5=a 6B.a 6÷a 3=a 2C.-a2=a 2D.a 2=a【答案】C【分析】题目主要考查合并同类项、同底数幂的除法、积的乘方运算、二次根式的化简,根据相应运算法则依次判断即可【详解】解:A、a3与a5不是同类项,不能合并,选项错误,不符合题意;B、a6÷a3=a3,选项错误,不符合题意;C、-a2=a2,选项正确,符合题意;D、当a≥0时,a2=a,当a<0时,a2=-a,选项错误,不符合题意;故选:C9(2024·重庆·中考真题)估计122+3的值应在()A.8和9之间B.9和10之间C.10和11之间D.11和12之间【答案】C【分析】本题考查的是二次根式的乘法运算,无理数的估算,先计算二次根式的乘法运算,再估算即可.【详解】解:∵122+3=26+6,而4<24=26<5,∴10<26+6<11,故答案为:C10(2024·四川德阳·中考真题)将一组数2,2,6,22,10,23,⋯,2n,⋯,按以下方式进行排列:则第八行左起第1个数是()A.72B.82C.58D.47【答案】C【分析】本题考查了数字类规律探索,正确归纳类推出一般规律是解题关键.求出第七行共有28个数,从而可得第八行左起第1个数是第29个数,据此求解即可得.【详解】解:由图可知,第一行共有1个数,第二行共有2个数,第三行共有3个数,归纳类推得:第七行共有1+2+3+4+5+6+7=28个数,则第八行左起第1个数是2×29=58,故选:C.二、填空题11(2024·江苏连云港·中考真题)若式子x-2在实数范围内有意义,则x的取值范围是.【答案】x≥2【详解】根据二次根式被开方数必须是非负数的条件,要使x-2在实数范围内有意义,必须x-2≥0,∴x≥2.故答案为:x≥212(2024·江苏扬州·中考真题)若二次根式x-2有意义,则x的取值范围是.【答案】x≥2【详解】解:根据题意,使二次根式x-2有意义,即x-2≥0,解得:x≥2.故答案为:x≥2.【点睛】本题主要考查使二次根式有意义的条件,理解二次根式有意义的条件是解题关键.13(2024·贵州·中考真题)计算2⋅3的结果是.【答案】6【分析】利用二次根式的乘法运算法则进行计算.【详解】解:原式=2×3=6,故答案为:6.【点睛】本题考查二次根式的乘法运算,掌握二次根式乘法的运算法则a⋅b=ab(a≥0,b>0)是解题关键.14(2024·北京·中考真题)若x-9在实数范围内有意义,则实数x的取值范围是.【答案】x≥9【分析】根据二次根式有意义的条件,即可求解.【详解】解:根据题意得x-9≥0,解得:x≥9.故答案为:x≥9【点睛】本题主要考查了二次根式有意义的条件,熟练掌握二次根式的被开方数为非负数是解题的关键.15(2024·天津·中考真题)计算11-1的结果为.11+1【答案】10【分析】利用平方差公式计算后再加减即可.【详解】解:原式=11-1=10.故答案为:10.【点睛】本题考查了二次根式的混合运算,掌握二次根式的混合运算法则及平方差公式是解题的关键.16(2024·四川德阳·中考真题)化简:-32=.【答案】3【分析】根据二次根式的性质“a2=a ”进行计算即可得.【详解】解:-32=-3=3,故答案为:3.【点睛】本题考查了化简二次根式,解题的关键是掌握二次根式的性质.17(2024·黑龙江大兴安岭地·中考真题)在函数y=x-3x+2中,自变量x的取值范围是.【答案】x≥3/3≤x【分析】本题主要考查函数自变量取值范围,分别根据二次根式有意义的条件和分式有意义的条件列出不等式求解即可.【详解】解:根据题意得,x-3≥0,且x+2≠0,解得,x≥3,故答案为:x≥3.18(2024·山东烟台·中考真题)若代数式3x-1在实数范围内有意义,则x的取值范围为.【答案】x>1/1<x【分析】本题考查代数式有意义,根据分式的分母不为0,二次根式的被开方数为非负数,进行求解即可.【详解】解:由题意,得:x-1>0,解得:x>1;故答案为:x>1.19(2024·山东威海·中考真题)计算:12-8⋅6=.【答案】-23【分析】本题考查了二次根式的混合运算,根据二次根式的性质以及二次根式的乘法进行计算即可求解.【详解】解:12-8⋅6=23-43=-23故答案为:-23.20(2024·黑龙江齐齐哈尔·中考真题)在函数y=13+x+1x+2中,自变量x的取值范围是.【答案】x>-3且x≠-2【分析】本题考查了求自变量的取值范围,根据二次根式有意义的条件和分式有意义的条件列出不等式组解答即可求解,掌握二次根式有意义的条件和分式有意义的条件是解题的关键.【详解】解:由题意可得,3+x>0 x+2≠0,解得x>-3且x≠-2,故答案为:x>-3且x≠-2.三、解答题21(2024·内蒙古包头·中考真题)(1)先化简,再求值:x+12-2x+1,其中x=22.(2)解方程:x-2x-4-2=xx-4.【答案】(1)x2-1,7;(2)x=3【分析】本题考查了整式的运算,二次根式的运算,解分式方程等知识,解题的关键是:(1)先利用完全平方公式、去括号法则化简,然后把x的值代入计算即可;(2)先去分母,去括号,移项,合并同类项,系数化1,检验,解分式方程即可.【详解】解:(1)x+12-2x+1=x2+2x+1-2x-2=x2-1,当x=22时,原式=222-1=7;(2)x-2x-4-2=xx-4去分母,得x-2-2x-4=x,解得x=3,把x=3代入x-4=3-4=-1≠0,∴x=3是原方程的解.22(2024·上海·中考真题)计算:|1-3|+2412+12+3-(1-3)0.【答案】26【分析】本题考查了绝对值,二次根式,零指数幂等,掌握化简法则是解题的关键.先化简绝对值,二次根式,零指数幂,再根据实数的运算法则进行计算.【详解】解:|1-3|+2412+12+3-(1-3)0=3-1+26+2-3(2+3)(2-3)-1 =3-1+26+2-3-1=26.23(2024·甘肃·中考真题)计算:18-12×3 2.【答案】0【分析】根据二次根式的混合运算法则计算即可.本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.【详解】18-12×32=18-12×32=18-18=0.24(2024·河南·中考真题)(1)计算:2×50-1-30;(2)化简:3a-2+1÷a+1a2-4.【答案】(1)9(2)a+2【分析】本题考查了实数的运算,分式的运算,解题的关键是:(1)利用二次根式的乘法法则,二次根式的性质,零指数幂的意义化简计算即可;(2)先把括号里的式子通分相加,然后把除数的分母分解因式,再把除数分子分母颠倒后与前面的结果相乘,最后约分化简即可.【详解】解:(1)原式=100-1=10-1=9;(2)原式=3a-2+a-2 a-2÷a+1a+2a-2=a+1 a-2⋅a+2a-2a+1=a+2.。
初三数学二次根式试题答案及解析
初三数学二次根式试题答案及解析1.下列各数中是无理数的是()A.B.﹣2C.0D.【答案】A【解析】A、正确;B、是整数,是有理数,故B错误;C、是整数,是有理数,故C错误;D、是分数,是有理数,故D错误.故选A.【考点】无理数2. a满足以下说法:①a是无理数;②2<a<3;③a2是整数.那么a可能是()A.B.C.2.5D.【答案】A.【解析】由a是无理数可知C、D是有理数,不合题意;由a2是整数可知A、B符合题意;再由2<a<3,只有A.故选A.【考点】1.估算无理数的大小;2.无理数;3.实数的运算.3. 16的平方根是()A.B.4C.-4D.【答案】A.【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根:∵(±4)2=16,∴16的平方根是±4.故选A.【考点】平方根.4.计算:= .【答案】2.【解析】.【考点】二次根式计算.5.=.【答案】﹣【解析】分别进行分母有理化、二次根式的化简及零指数幂的运算,然后合并即可得出答案.解:原式=﹣1﹣2+1=﹣.故答案为:﹣.6.计算:-=________.【答案】3【解析】原式=4-=3.7.已知长方形的长是cm,宽是cm,求与此长方形面积相等的圆的半径.【答案】r=.【解析】利用面积公式列出方程·=πr2,解得r=.8.下面计算正确的是()A.4+=4B.÷=3C.·=D.=±2【答案】B.【解析】A.4+=4,本选项错误;B.,本选项正确;C.,故本选项错误;D.,故本选项错误.故选B.考点: 二次根式的混合运算.9.的值为()A.B.4C.D.2【答案】B.【解析】∵故选B.考点: 算术平方根.10.计算:.【答案】.【解析】先化成最简二次根式,再合并同类二次根式即可得出答案.试题解析:.考点: 二次根式的加减法.11.式子成立的条件是()A.≥3B.≤1C.1≤≤3D.1<≤3【答案】D【解析】根据二次根式的定义,式子成立的条件为,-1,即1<.12.若一个式子与之积不含二次根式,则这个式子可以是.(填写出一个即可)【答案】.【解析】本题实际是求的有理化因式,一般二次根式的有理化因式是符合平方差公式的特点的式子.与的积不含二次根式的式子是.故答案是.【考点】分母有理化.13.二次根式的值是()A.﹣3B.3或﹣3C.9D.3【答案】D.【解析】. 故选D.【考点】二次根式化简.14.下列计算正确的是()A.B.C.D.【答案】C.【解析】 A.,故本选项错误;B.和不是同类二次根式,不能合并,故本选项错误;C.,故本选项正确;D.,故本选项错误.故选C.【考点】二次根式的乘除法.15.若,,且ab<0,则a﹣b=.【答案】-7.【解析】先根据算术平方根的定义,求出、的值,然后根据确定、的值,最后代入中求值即可.试题解析:∵,,∴a=±3,b=4;∵,∴,;∴.考点: (1)算术平方根;(2)代数式求值.16.下列二次根式中,取值范围是的是()A.B.C.D.【答案】C.【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须;要使在实数范围内有意义,必须;要使在实数范围内有意义,必须;要使在实数范围内有意义,必须,因此,取值范围是的是. 故选C.【考点】二次根式和分式有意义的条件.17.下列式子中,是最简二次根式的是()A.B.C.D.【答案】B【解析】最简二次根式满足:1.被开方数中不能含有分母;2. 被开方数中不能有开得尽方的因数或因式.只有B符合条件; 选项A,C,D都不符合条件, 故选B.【考点】最简二次根式.【考点】最简二次根式18.化简:=_______________.【答案】【解析】根据二次根号下的数为非负数,可得,解得所以.【考点】二次根式的性质19.计算与化简(1)(2)【答案】(1);(2).【解析】(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1).(2).【考点】1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式.20.计算:(1)(2)(3)【答案】(1);(2);(3).【解析】(1)将各根式化为最简单二次根式后合并同类根式即可;(2)括号内化最简单二次根式后合并同类根式,除式变为乘式计算即可;(3)应用完全平方公式和平方差公式展开后合并同类根式即可.试题解析:(1).(2).(3).【考点】二次根式化简.21.计算:。
中考数学复习《二次根式》专项训练(含答案)
~数学中考专项:二次根式【沙盘预演】1.函数y=自变量的取值范围是()A.x≠﹣3 B.x>﹣3 C.x≥﹣3 D.x≤﹣3【解析】解:根据题意得到:x+3>0,解得x>﹣3,故选B.2.下列运算正确的是()A.﹣=13 B.=﹣6C.﹣=﹣5 D.=±3【解析】解:A、=﹣13,故错误;B、=6,故错误;C、=﹣5,正确;D、=3,故错误;故选:C.3.与是同类二次根式的是()A.B.C.D.【解析】解:A、与﹣的被开方数不同,故A错误;B、与﹣的被开方数不同,故B错误;C、与﹣的被开方数相同,故C正确;D、与﹣的被开方数不同,故D错误;故选:C4.下列运算正确的是()A.﹣a•a3=a3B.﹣(a2)2=a4C.x﹣x=D.(﹣2)(+2)=﹣1【解析】解:A、﹣a•a3=﹣a4,故选项错误;B、﹣(a2)2=﹣a4,选项错误;C、x﹣x=x,选项错误;D、(﹣2)(+2)=()2﹣22=3﹣4=﹣1,选项正确.故选D.5.若二次根式有意义,则a的取值范围是()A.a≥2B.a≤2C.a>2 D.a≠2【解析】解:∵二次根式有意义,∴a﹣2≥0,即a≥2,则a的范围是a≥2,故选A6.在函数y=34xx--中,自变量x的取值范围是( )A.x>3 B.x≥3 C.x>4 D.x≥3且x≠4【解析】欲使根式有意义,则需x-3≥0;欲使分式有意义,则需x-4≠0.∴x的取值范围是30,40.xx-⎧⎨-⎩≥≠解得x≥3且x≠4.故选D.7.要使式子有意义,则x的取值范围是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣1 【解析】解:要使式子有意义,故x﹣1≥0,解得:x≥1.则x的取值范围是:x≥1.故选:C.8.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b 【解析】解:如图所示:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.9.若式子1-x在实数范围内有意义,则x的取值范围是x≥1.【解析】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.10.下列算式①=±3;②=9;③26÷23=4;④=;⑤a+a=a2.运算结果正确的概率是()A.B.C.D.【解析】解:①=3,故此选项错误;②==9,正确;③26÷23=23=8,故此选项错误;④=,正确;⑤a+a=2a,故此选项错误,故运算结果正确的概率是:.故选:B.11.若式子1x在实数范围内有意义,则x的取值范围是x≥1.-【解析】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.12.若二次根式有意义,则x的取值范围是x≥1.【解析】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【真题演练】1.(•张家界)下列运算正确的是()A.a2+a=2a3B.=aC.(a+1)2=a2+1 D.(a3)2=a6【解析】解:A、a2和a不是同类项,不能合并,故原题计算错误;B、=|a|,故原题计算错误;C、(a+1)2=a2+2a+1,故原题计算错误;D、(a3)2=a6,故原题计算正确;故选:D.2.(•聊城)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2D.﹣3=【解析】解:A、3与﹣2不是同类二次根式,不能合并,此选项错误;B、•(÷)=•==,此选项正确;C、(﹣)÷=(5﹣)÷=5﹣,此选项错误;D、﹣3=﹣2=﹣,此选项错误;故选:B.3.(•扬州)使有意义的x的取值范围是()A.x>3 B.x<3 C.x≥3D.x≠3【解析】解:由题意,得x﹣3≥0,解得x≥3,故选:C.4.(•孝感)下列计算正确的是()A.a﹣2÷a5=B.(a+b)2=a2+b2C.2+=2D.(a3)2=a5【解析】解:A、a﹣2÷a5=,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.5.(•郴州)下列运算正确的是()A.a3•a2=a6B.a﹣2=﹣C.3﹣2=D.(a+2)(a﹣2)=a2+4【解析】解:A、a3•a2=a5,故此选项错误;B、a﹣2=,故此选项错误;C、3﹣2=,故此选项正确;D、(a+2)(a﹣2)=a2﹣4,故此选项错误.6.(•泰州)下列运算正确的是()A.+=B.=2C.•=D.÷=2【解析】解:A、与不能合并,所以A选项错误;B、原式=3,所以B选项错误;C、原式==,所以C选项错误;D、原式==2,所以D选项正确.故选:D.7.(•郴州)计算:=3.【解析】解:原式=3.故答案为:38.(•泸州)若二次根式在实数范围内有意义,则x的取值范围是x≥1.【解析】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xx中考数学专题复习题:二次根式
一、选择题
1.把根号外的因式移入根号内的结果是
A. B. C. D.
2.能使等式成立的x取值范围是
A. B. C. D.
3.下列二次根式中,化简后不能与进行合并的是
A. B. C. D.
4.计算的值为
A. B. C. D.
5.化简的结果为
A. B. C. D.
6.若,,则的值是
A. 2
B. 4
C. 5
D. 7
7.已知的三边分别为x、y、z.
以、、为三边的三角形一定存在;
以、、为三边的三角形一定存在;
以、、为三边的三角形一定存在;
以、、为三边的三角形一定存在.以上四个结论中,正确结论的个数为
A. 1
B. 2
C. 3
D. 4
8.若代数式有意义,则实数x的取值范围是
A. B. C. D.
9.当时,化简的正确结果是
A. 4
B.
C.
D.
10.已知三角形的三边长分别为a、b、c,求其面积问题,中外数学家曾经进行过深入
研究,古希腊的几何学家海伦,约公元50年给出求其面积的海伦公式
,其中;我国南宋时期数学家秦九韶约
曾提出利用三角形的三边求其面积的秦九韶公式
,若一个三角形的三边长分别为2,3,4,则其面积是
A. B. C. D.
二、填空题
11.计算:______ .
12.与最简二次根式是同类二次根式,则______ .
13.计算的结果是______ .
14.定义运算“@”的运算法则为:x@y=,则(2@6)@8= ______ .
15.若,则的值为______.
16.已知直角三角形的周长为,斜边的中线为2,则它的面积是______ .
17.请仔细观察下列一组数据它们可是按照一定规律排列着的:0,,,3,,
,那么第10个数据应该是______ .
18.代数式的值等于______ .
19.若,则x的取值范围是______.
20.公元3世纪,我国古代数学家刘徽就能利用近似公式得到的近似值
他的算法是:先将看出:由近似公式得到;再将看成,由近似值公式得到;依此算法,所得的近似值会越来越精确当取得近似值时,近似公式中的a是______ ,r是______ .
三、计算题
21..
22.计算:
化简:,并求当时的值.
23.如图所示,某幼儿园为加强安全管理,决定将园内滑滑板的倾斜角由降为,
已知原滑滑板AB的长为4米,点D,B,C在同一水平地面上.
改善后滑滑板会加长多少米?
若滑滑板的正前方有3米长的空地就能保证安全,已知原滑滑板的前方有5米长的空地,则这样改造是否可行?请说明理由.
参考数据:,,,以上结果均保留到小数点后两位
【答案】
1. B
2. B
3. C
4. C
5. C
6. B
7. C
8. B
9. D10. B
11.
12. 1
13.
14. 6
15.
16. 2
17.
18. 4
19.
20. 或;或
21. 解:原式
.
22. 解:原式.
23. 解:原式
,
当时,原式.
24. 解:在中,,
,
在中,,
,
,
改善后滑滑板会加长米;
不可行,理由如下:
为等腰直角三角形,
,
在中,,
,
,
而,
这样改造不可行.
如有侵权请联系告知删除,感谢你们的配合!。