北京市西城区(普通校)2014-2015学年高一上学期期末考试数学试题 Word版含答案

合集下载

北京市西城区高一数学上学期期末考试试题(扫描版)(new)

北京市西城区高一数学上学期期末考试试题(扫描版)(new)

尊敬的读者:
本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。

文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。

This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。

北京市西城区2015届高三上学期期末考试数学文试题Word版含答案

北京市西城区2015届高三上学期期末考试数学文试题Word版含答案

北京市西城区2014 — 2015学年度第一学期期末试卷高三数学(文科) 2015.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合1,0,1,2{}A -=,2{|}B x x x =>,则集合A B =( )(A ){1,0,1}-(B ){1,2}-(C ){0,1,2}(D ){1,1,2}-3.在锐角∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若2a b =,sin B =,则( ) (A )3A π= (B )6A π=(C)sin A =(D )2sin 3A =4.执行如图所示的程序框图,输出的x 值为( ) (A )4 (B )5 (C )6 (D )72.设命题p :2log 0,2x x x ∀>>,则p ⌝为( ) (A )2log 0,2x x x ∀>< (B )2log 0,2x x x ∃>≤ (C )2log 0,2x x x ∃>< (D )2log 0,2x x x ∃>≥5.设函数()y f x =的定义域为R ,则“(0)0f =”是“函数()f x 为奇函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件6. 某天,甲要去银行办理储蓄业务,已知银行的营业时间为9:00至17:00,设甲在当天 13:00至18:00之间任何时间去银行的可能性相同,那么甲去银行恰好能办理业务的概率是( )(A )13 (B )34 (C )58 (D )458. 如图,在空间四边形ABCD 中,两条对角线,AC BD 互相垂直,且长度分别为4和6,平行于这两条对角线的平面与边,,,AB BC CD DA 分别相交于点,,,E F G H ,记四边形EFGH 的面积为y ,设BEx AB=,则( ) (A )函数()y f x =的值域为(0,4] (B )函数()y f x =的最大值为8(C )函数()y f x =在2(0,)3上单调递减(D )函数()y f x =满足()(1)f x f x =-7. 设抛物线2:4W y x =的焦点为F ,过F 的直线与W 相交于A ,B 两点,记点F 到直线l :1x =-的距离为d ,则有( ) (A )2||d AB ≥ (B )2||d AB = (C )2||d AB ≤ (D )2||d AB < A BE CD GH F第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 复数i1iz =+,则||z =______.10.设平面向量,a b 满足||3=a ,||2=b ,3⋅=-a b ,那么,a b 的夹角θ=____.11.一个四棱锥的三视图如图所示,那么这个四棱锥最长棱的棱长为_____.12.设12,F F 为双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,且直线2y x =为双曲线C的一条渐近线,点P 为C 上一点,如果12||||4PF PF -=,那么双曲线C 的方程为____;离心率为_____.13. 某小学教师准备购买一些签字笔和铅笔盒作为奖品,已知签字笔每支5元,铅笔盒每个6元,花费总额不能超过50元. 为了便于学生选择,购买签字笔和铅笔盒的个数均不能少于3个,那么该教师有_______种不同的购买奖品方案.14. 设函数3||, 1,()log , 1.x a x f x x x -⎧=⎨>⎩≤(1)如果(1)3f =,那么实数a =___;(2)如果函数()2y f x =-有且仅有两个零点,那么实数a 的取值范围是___.侧(左)视图 正(主)视图俯视图三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数2π()12sin ()4f x x =--,x ∈R .(Ⅰ)求函数()f x 的最小正周期; (Ⅱ)判断函数()f x 在区间ππ[,]66-上是否为增函数?并说明理由.16.(本小题满分13分)已知数列{}n a 满足25a =,且其前n 项和2n S pn n =-. (Ⅰ)求p 的值和数列{}n a 的通项公式;(Ⅱ)设数列{}n b 为等比数列,公比为p ,且其前n 项和n T 满足55T S <,求1b 的取值范围.17.(本小题满分14分)如图,在四棱柱1111D C B A ABCD -中,A A 1⊥底面ABCD ,90BAD ∠=,BC AD //,且122A A AD BC ===,1AB =. 点E 在棱AB 上,平面1A EC 与棱11C D 相交于点F .(Ⅰ)求证:1A F ∥平面1BCE ; (Ⅱ)求证: AC ⊥平面11CDD C ;(Ⅲ)写出三棱锥11B A EF -体积的取值范围. (结论不要求证明)18.(本小题满分13分)最近,张师傅和李师傅要将家中闲置资金进行投资理财. 现有两种投资方案,且一年后投资盈亏的情况如下:B CA 1 D 1DA B 1C 1E F(1) 投资股市:(2) 购买基金:(Ⅰ)当2p =时,求q 的值; (Ⅱ)已知“购买基金”亏损的概率比“投资股市”亏损的概率小,求p 的取值范围;(Ⅲ)已知张师傅和李师傅两人都选择了“购买基金”来进行投资,假设三种投资结果出现的可能性相同,求一年后他们两人中至少有一人获利的概率. 19.(本小题满分14分)已知椭圆C :2211612x y +=的右焦点为F ,右顶点为A ,离心率为e ,点(,0)(4)P m m >满足条件||||FA e AP =. (Ⅰ)求m 的值;(Ⅱ)设过点F 的直线l 与椭圆C 相交于M ,N 两点,记PMF ∆和PNF ∆的面积分别为1S ,2S ,若122S S =,求直线l 的方程.20.(本小题满分13分)对于函数(),()f x g x ,如果它们的图象有公共点P ,且在点P 处的切线相同,则称函数()f x 和()g x 在点P 处相切,称点P 为这两个函数的切点. 设函数2()(0)f x ax bx a =-≠,()ln g x x =.(Ⅰ)当1a =-,0b =时, 判断函数()f x 和()g x 是否相切?并说明理由; (Ⅱ)已知a b =,0a >,且函数()f x 和()g x 相切,求切点P 的坐标;(Ⅲ)设0a >,点P 的坐标为1(,1)e-,问是否存在符合条件的函数()f x 和()g x ,使得它们在点P 处相切?若点P 的坐标为2(e ,2)呢?(结论不要求证明)北京市西城区2014 — 2015学年度第一学期期末高三数学(文科)参考答案及评分标准2015.1一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.B 3.A 4.C 5.B 6.D 7.A 8.D 二、填空题:本大题共6小题,每小题5分,共30分.9.210.2π311. 12.221416x y -=13.9 14.2-或4 (1,3]- 注:第12,14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为2π()12sin ()4f x x =--πcos 2()4x =- ……………… 3分sin 2x =, ……………… 5分所以函数()f x 的最小正周期2ππ2T ==.……………… 7分 (Ⅱ)解:结论:函数()f x 在区间ππ[,]66-上是增函数. ……………… 9分理由如下:由ππ2π22π22k x k -+≤≤, 解得ππππ44k x k -+≤≤,所以函数()f x 的单调递增区间为ππ[π,π]44k k -+,()k ∈Z .……………… 12分 当0=k 时,知)(x f 在区间ππ[,]44-上单调递增, 所以函数()f x 在区间ππ[,]66-上是增函数. ……………… 13分16.(本小题满分13分)(Ⅰ)解:由题意,得11S p =-,242S p =-,因为 25a =,212S a a =+, 所以 24215S p p =-=-+,解得 2p =. ……………… 3分所以 22n S n n =-.当2n ≥时,由1n n n a S S -=-, ……………… 5分 得 22(2)[2(1)(1)]43n a n n n n n =-----=-. ……………… 7分 验证知1n =时,1a 符合上式,所以43n a n =-,*n ∈N . ……………… 8分(Ⅱ)解:由(Ⅰ),得11(12)(21)12n n n b T b -==--. ……………… 10分 因为 55T S <,所以 521(21)255b -<⨯-,解得 14531b <. ……………… 12分 又因为10b ≠,所以1b 的取值范围是45(,0)(0,)31-∞. ……………… 13分17.(本小题满分14分)(Ⅰ)证明:因为1111D C B A ABCD -是棱柱,所以平面ABCD ∥平面1111A B C D . 又因为平面ABCD平面1A ECF EC =,B CA 1 D 1DA B 1C 1E F平面1111A BC D 平面11A ECF A F =,所以 1A F ∥CE . …………………3分 又 1A F ⊄平面1BCE ,CE ⊂平面1BCE , 所以 1A F ∥平面1BCE . …………………6分 (Ⅱ)证明:在四边形ABCD 中,因为 90BAD ∠=,BC AD //,且BC AD 2=,2AD =,1AB =, 所以 222112AC =+=,222112CD =+=. 所以 222AC CD AD +=,所以 90ACD ∠=,即AC CD ⊥. …………………7分 因为 1A A ⊥平面ABCD AC ⊂,平面ABCD , 所以 1A A AC ⊥.因为在四棱柱1111D C B A ABCD -中,11//A A C C ,所以 1C C AC ⊥. …………………9分 又因为 1,CD C C ⊂平面11CDD C ,1CDC C C =,所以 AC ⊥平面11CDD C . …………………11分(Ⅲ)解:三棱锥11B A EF -的体积的取值范围是12[,]33. …………………14分18.(本小题满分13分)(Ⅰ)解:因为“购买基金”后,投资结果只有“获利”、“不赔不赚”、“亏损”三种 且三种投资结果相互独立,所以 p +13+q =1. ……………… 2分又因为 12p =, 所以 q =61. ……………… 3分(Ⅱ)解:由“购买基金”亏损的概率比“投资股市”亏损的概率小,得 38q <, ……………… 4分 因为 p +13+q =1,所以 2338q p =-<,解得 724p >. ……………… 7分 又因为 113p q ++=,0q ≥, 所以 23p ≤. 所以72243p ≤<. ……………… 8分 (Ⅲ)解:记事件A 为 “一年后张师傅和李师傅两人中至少有一人获利”, ………… 9分用a ,b ,c 分别表示一年后张师傅购买基金“获利”、“不赔不赚”、“亏损”,用x ,y ,z 分别表示一年后李师傅购买基金“获利”、“不赔不赚”、“亏损”, 则一年后张师傅和李师傅购买基金,所有可能的投资结果有339⨯=种, 它们是:(,)a x ,(,)a y ,(,)a z ,(,)b x ,(,)b y ,(,)b z ,(,)c x ,(,)c y ,(,)c z , ……………10分所以事件A 的结果有5种,它们是:(,)a x ,(,)a y ,(,)a z ,(,)b x ,(,)c x .…………… 11分 因此这一年后张师傅和李师傅两人中至少有一人获利的概率5()9P A =. …………13分19.(本小题满分14分)(Ⅰ)解:因为椭圆C 的方程为 2211612x y +=,所以 4a =,b =2c =, ………………2分则 12c e a ==,||2FA =,||4AP m =-. ………………3分 因为 ||21||42FA AP m ==-,所以 8m =. ………………5分 (Ⅱ)解:若直线l 的斜率不存在,则有 21S S =,不合题意. ………………6分若直线l 的斜率存在,设直线l 的方程为)2(-=x k y ,),(11y x M ,),(22y x N .由 ⎪⎩⎪⎨⎧-==+),2(,1121622x k y y x 得 2222(43)1616480k x k x k +-+-=, ……………… 7分可知 0>∆恒成立,且 34162221+=+k k x x ,3448162221+-=k k x x . ……………… 8分因为PMF ∆和PNF ∆的面积分别为111||||2S PF y =⋅,221||||2S PF y =⋅,所以2||||212121=-==y yy y S S . ……………… 9分 即 212y y -=.所以 221y y y -=+,2212221)(22y y y y y +-=-=, ……………… 11分则 22121)]2()2([2)2()2(-+--=-⋅-x k x k x k x k , 即 2212121)4(24)(2-+-=++-x x x x x x ,即 2222222)43416(2434162344816-+-=++⋅-+-k k k k k k , 解得 25±=k . ……………… 13分所以直线l 的方程为 )2(25-=x y 或 )2(25--=x y . ……………… 14分20.(本小题满分13分)(Ⅰ)解:结论:当1a =-,0b =时,函数()f x 和()g x 不相切. …………………1分 理由如下:由条件知2()f x x =-, 由()ln g x x =,得0x >,又因为 ()2f x x '=-,1()g x x'=, …………………2分 所以当0x >时,()20f x x '=-<,1()0g x x '=>,所以对于任意的0x >,()()f x g x ''≠.当1a =-,0b =时,函数()f x 和()g x 不相切. …………………3分 (Ⅱ)解:若a b =,则()2f x ax a '=-,1()g x x'=,设切点坐标为(,)s t ,其中0s >,由题意,得 2ln as as s -=, ①12as a s -=, ② …………………4分 由②,得 1(21)a s s =-, 代入①,得 1ln 21s s s -=-. (*) …………………5分 因为 10(21)a s s =>-,且0s >, 所以 12s >. 设函数 1()ln 21x F x x x -=--,1(,)2x ∈+∞, 则 2(41)(1)()(21)x x F x x x ---'=-. …………………6分 令()0F x '= ,解得1x =或14x =(舍). …………………7分 当x 变化时,()F x '与()F x 的变化情况如下表所示,…………………8分所以当1x =时,()F x 取到最大值(1)0F =,且当1(,1)(1,)2x ∈+∞时()0F x <. 因此,当且仅当1x =时()0F x =.所以方程(*)有且仅有一解1s =.于是 ln 0t s ==,因此切点P 的坐标为(1,0). …………………9分 (Ⅲ)解:当点P 的坐标为1(,1)e-时,存在符合条件的函数()f x 和()g x ,使得它们在点P 处相切; …………………11分当点P 的坐标为2(e ,2)时,不存在符合条件的函数()f x 和()g x ,使得它们在点P 处相 切. …………………13分。

北京市西城区2014届高三上学期期末考试数学理试题Word版含答案

北京市西城区2014届高三上学期期末考试数学理试题Word版含答案

北京市西城区2013 — 2014学年度第一学期期末试卷高三数学(理科) 2014.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|02}A x x =<<,1{|||}B x x =≤,则集合A B =( )(A )(0,1)(B )(0,1](C )(1,2)(D )[1,2)3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若3a =,2b =,1cos()3A B +=,则c =( ) (A )4(B(C )3(D4.执行如图所示的程序框图,输出的S 值为( ) (A )34 (B )45(C )56(D )12.已知复数z 满足2i=1iz +,那么z 的虚部为( ) (A )1-(B )i -(C )1(D )i5.已知圆22:(1)(1)1C x y ++-=与x 轴切于A 点,与y 轴切于B 点,设劣弧»AB 的中点为M ,则过点M 的圆C 的切线方程是( )6. 若曲线221ax by +=为焦点在x 轴上的椭圆,则实数a ,b 满足( ) (A )22a b > (B )11a b< (C )0a b <<(D )0b a <<7.定义域为R 的函数()f x 满足(1)2()f x f x +=,且当(0,1]x ∈时,2()f x x x =-,则当[2,1]x ∈--时,()f x 的最小值为( ) (A )116-(B ) 18-(C ) 14-(D ) 08. 如图,正方体1111ABCD A BC D -的棱长为动点P 在对角线1BD 上,过点P 作垂直于1BD 的平面α,记这样得到的截面多边形(含三角形)的周长为y ,设BP =x ,则当[1,5]x ∈时,函数()y f x =的值域为( )(A) (B) (C) (D)第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 在平面直角坐标系xOy 中,点(1,3)A ,(2,)B k -,若向量OA AB ⊥,则实数k = _____.10.若等差数列{}n a 满足112a =,465a a +=,则公差d =______;24620a a a a ++++=______.(A)2y x =+-(B)1y x =+-(C)2y x =-+(D)1y x =+-11.已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示, 那么此三棱柱正(主)视图的面积为______.12.甲、乙两名大学生从4个公司中各选2个作为实习单位,则两人所选的实习单位中恰有1个相同的选法种数是______. (用数字作答)13. 如图,,B C 为圆O 上的两个点,P 为CB 延长线上一点,PA 为圆O 的切线,A 为切点. 若2PA =,3BC =,则PB =______;ACAB=______.14.在平面直角坐标系xOy 中,记不等式组220,0,2x y x y x y +⎧⎪-⎨⎪+⎩≥≤≤所表示的平面区域为D .在映射,:u x y T v x y=+⎧⎨=-⎩的作用下,区域D 内的点(,)x y 对应的象为点(,)u v . (1)在映射T 的作用下,点(2,0)的原象是 ; (2)由点(,)u v 所形成的平面区域的面积为______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)已知函数()f x x ω=,π()sin()(0)3g x x ωω=->,且()g x 的最小正周期为π.(Ⅰ)若()2f α=,[π,π]α∈-,求α的值; (Ⅱ)求函数()()y f x g x =+的单调增区间.侧(左)视图16.(本小题满分13分)以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a 表示.(Ⅰ)若甲、乙两个小组的数学平均成绩相同,求a 的值; (Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;(Ⅲ)当2a =时,分别从甲、乙两组中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X ,求随机变量X 的分布列和数学期望.17.(本小题满分14分)如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形, 60=∠BAD ,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF =3, H 是CF 的中点.(Ⅰ)求证:AC ⊥平面BDEF ;(Ⅱ)求直线DH 与平面BDEF 所成角的正弦值; (Ⅲ)求二面角H BD C --的大小.18.(本小题满分13分)已知函数()()e xf x x a =+,其中e 是自然对数的底数,a ∈R . (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)当1a <时,试确定函数2()()g x f x a x =--的零点个数,并说明理由.甲组 乙组 891a822 F BCEAHD19.(本小题满分14分)已知,A B 是抛物线2:W y x =上的两个点,点A 的坐标为(1,1),直线AB 的斜率为k ,O 为坐标原点.(Ⅰ)若抛物线W 的焦点在直线AB 的下方,求k 的取值范围;(Ⅱ)设C 为W 上一点,且AB AC ⊥,过,B C 两点分别作W 的切线,记两切线的交点为D ,求OD 的最小值.20.(本小题满分13分)设无穷等比数列{}n a 的公比为q ,且*0()n a n >∈N ,[]n a 表示不超过实数n a 的最大整数(如[2.5]2=),记[]n n b a =,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T . (Ⅰ)若114,2a q ==,求n T ; (Ⅱ)若对于任意不超过2014的正整数n ,都有21n T n =+,证明:120122()13q <<. (Ⅲ)证明:n n S T =(1,2,3,n =L )的充分必要条件为1,a q N N **挝.北京市西城区2013 — 2014学年度第一学期期末高三数学(理科)参考答案及评分标准2014.1一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.C 3.D 4.B 5.A 6.C 7.A 8.D 二、填空题:本大题共6小题,每小题5分,共30分. 9.4 10.125511. 12.24 13.1 214.(1,1) π注:第10、13、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为π()sin()(0)3g x x ωω=->的最小正周期为π, 所以 2||ωπ=π,解得2ω=. ……………… 3分由 ()2f α=22α=,即 cos 22α=, ……………… 4分所以 π22π4k α=±,k ∈Z . 因为 [π,π]α∈-, 所以7πππ7π{,,,}8888α∈--. ……………… 6分(Ⅱ)解:函数 π()()2sin(2)3y f x g x x x =+=+-ππ2sin 2cos cos 2sin 33x x x =+- (8)分1sin 222x x =+ πsin(2)3x =+, (10)分由 2πππ2π2π232k k x -++≤≤, ………………11分解得 5ππππ1212k k x -+≤≤. (12)分所以函数()()y f x g x =+的单调增区间为5ππ[ππ]()1212k k k -+∈Z ,.…………13分16.(本小题满分13分)(Ⅰ)解:依题意,得 11(889292)[9091(90)]33a ++=+++, ……………… 2分解得 1a =. ……………… 3分(Ⅱ)解:设“乙组平均成绩超过甲组平均成绩”为事件A , ……………… 4分依题意 0,1,2,,9a =,共有10种可能. (5)分由(Ⅰ)可知,当1a =时甲、乙两个小组的数学平均成绩相同, 所以当2,3,4,,9a =时,乙组平均成绩超过甲组平均成绩,共有8种可能. (6)分所以乙组平均成绩超过甲组平均成绩的概率84()105P A==. (7)分(Ⅲ)解:当2a=时,分别从甲、乙两组同学中各随机选取一名同学,所有可能的成绩结果有339⨯=种,它们是:(88,90),(88,91),(88,92),(92,90),(92,91),(92,92),(92,90),(92,91),(92,92),..................9分则这两名同学成绩之差的绝对值X的所有取值为0,1,2,3,4. (10)分因此2(0)9P X==,2(1)9P X==,1(2)3P X==,1(3)9P X==,1(4)9P X==. (11)分所以随机变量X的分布列为: (12)分所以X的数学期望221115()01234993993E X=⨯+⨯+⨯+⨯+⨯=. (13)分17.(本小题满分14分)(Ⅰ)证明:因为四边形ABCD是菱形,所以AC BD⊥. (1)分因为平面BDEF⊥平面ABCD,且四边形BDEF是矩形,所以ED⊥平面ABCD, (2)分又因为AC⊂平面ABCD,所以ED AC⊥. (3)分因为 EDBD D =,所以 AC ⊥平面BDEF . ……………… 4分(Ⅱ)解:设ACBD O =,取EF 的中点N ,连接ON ,因为四边形BDEF 是矩形,,O N 分别为,BD EF 的中点, 所以 //ON ED ,又因为 ED ⊥平面ABCD ,所以 ON ⊥平面ABCD , 由AC BD ⊥,得,,OB OC ON 两两垂直.所以以O 为原点,,,OB OC ON 所在直线分别为x 轴,y 轴,z 轴,如图建立空间直角坐标系. ……………… 5分因为底面ABCD 是边长为2的菱形,60BAD ∠=,BF =所以 (0,A ,(1,0,0)B ,(1,0,0)D -,(1,0,3)E -,(1,0,3)F ,C ,13()222H . ………………6分因为 AC ⊥平面BDEF ,所以平面BDEF 的法向量AC =. …………7分 设直线DH 与平面BDEF 所成角为α, 由 33()22DH =, 得 32sin |cos ,|DH AC DH AC DH ACα⨯⋅=<>===所以直线DH 与平面BDEF . ………………9分(Ⅲ)解:由(Ⅱ),得13(,)222BH =-,(2,0,0)DB =. 设平面BDH 的法向量为111(,,)x y z =n ,所以0,0,BH DB ⎧⋅=⎪⎨⋅=⎪⎩n n (10)分即111130,20,x z x ⎧-++=⎪⎨=⎪⎩ 令11z =,得(0,=n . ………………11分由ED ⊥平面ABCD ,得平面BCD 的法向量为(0,0,3)ED =-,则1cos ,2ED ED ED⋅<>===-n n n . (13)分由图可知二面角H BD C --为锐角,所以二面角H BD C --的大小为60. ………………14分18.(本小题满分13分)(Ⅰ)解:因为()()e xf x x a =+,x ∈R ,所以()(1)e x f x x a '=++. ……………… 2分令()0f x '=,得1x a =--. ……………… 3分当x 变化时,()f x 和()f x '的变化情况如下: (5)分故()f x 的单调减区间为(,1)a -∞--;单调增区间为(1,)a --+∞.………… 6分(Ⅱ)解:结论:函数()g x 有且仅有一个零点. ……………… 7分理由如下:由2()()0g x f x a x =--=,得方程2e x ax x -=,显然0x =为此方程的一个实数解.所以0x =是函数()g x 的一个零点. ……………… 9分当0x ≠时,方程可化简为ex ax -=. 设函数()e x a F x x -=-,则()e 1x a F x -'=-, 令()0F x '=,得x a =.当x 变化时,()F x 和()F x '的变化情况如下:即()F x 的单调增区间为(,)a +∞;单调减区间为(,)a -∞.所以()F x 的最小值min ()()1F x F a a ==-. ………………11分因为 1a <,所以min ()()10F x F a a ==->, 所以对于任意x ∈R ,()0F x >, 因此方程ex ax -=无实数解.所以当0x ≠时,函数()g x 不存在零点.综上,函数()g x 有且仅有一个零点. ………………13分19.(本小题满分14分)(Ⅰ)解:抛物线2y x =的焦点为1(0,)4. ……………… 1分由题意,得直线AB 的方程为1(1)y k x -=-, ……………… 2分令 0x =,得1y k =-,即直线AB 与y 轴相交于点(0,1)k -. ……………… 3分因为抛物线W 的焦点在直线AB 的下方, 所以 114k ->, 解得 34k <. ……………… 5分(Ⅱ)解:由题意,设211(,)B x x ,222(,)C x x ,33(,)D x y ,联立方程21(1),,y k x y x -=-⎧⎨=⎩ 消去y ,得210x kx k -+-=, 由韦达定理,得11x k +=,所以 11x k =-. ……………… 7分同理,得AC 的方程为11(1)y x k-=--,211x k =--. (8)分对函数2y x =求导,得2y x '=,所以抛物线2y x =在点B 处的切线斜率为12x ,所以切线BD 的方程为21112()y x x x x -=-, 即2112y x x x =-. ……………… 9分同理,抛物线2y x =在点C 处的切线CD 的方程为2222y x x x =- (10)分联立两条切线的方程2112222,2,y x x x y x x x ⎧=-⎪⎨=-⎪⎩ 解得12311(2)22x x x k k +==--,3121y x x k k==-, 所以点D 的坐标为111((2),)2k k k k---. ………………11分因此点D 在定直线220x y ++=上. ………………12分因为点O 到直线220x y ++=的距离d ==,所以5OD ≥,当且仅当点42(,)55D --时等号成立. (13)分由3125y k k =-=-,得15k =,验证知符合题意.所以当k =OD有最小值. ………………14分20.(本小题满分13分)(Ⅰ)解:由等比数列{}n a 的14a =,12q =, 得14a =,22a =,31a =,且当3n >时,01n a <<. .................. 1分 所以14b =,22b =,31b =,且当3n >时,[]0n n b a ==. (2)分即 ,6, 2,4, 17, 3.n n n T n ==⎧⎪=⎨⎪⎩≥ (3)分(Ⅱ)证明:因为 201421()n T n n =+≤,所以 113b T ==,120142(2)n n n b T T n -=-=≤≤. ……………… 4分因为 []n n b a =,所以 1[3,4)a ∈,2014[2,3)(2)n a n ∈≤≤. ……………… 5分由 21a q a =,得 1q <. ……………… 6分因为 201220142[2,3)a a q =∈,所以 20122223qa >≥, 所以 2012213q<<,即 120122()13q <<. ……………… 8分(Ⅲ)证明:(充分性)因为1a N *Î,q N *Î,所以11n n a a q N -*=?,所以 []n n n b a a == 对一切正整数n 都成立. 因为 12n n S a a a =+++L ,12n n T b b b =+++L ,所以 n n S T =. ……………… 9分(必要性)因为对于任意的n N *Î,n n S T =,当1n =时,由1111,a S b T ==,得11a b =;当2n ≥时,由1n n n a S S -=-,1n n n b T T -=-,得n n a b =.所以对一切正整数n 都有n n a b =. 由 n b Z Î,0n a >,得对一切正整数n 都有n a N *Î, (10)分所以公比21a q a =为正有理数. ………………11分假设 q N *Ï,令p q r=,其中,,1p r r N *?,且p 与r 的最大公约数为1. 因为1a 是一个有限整数,所以必然存在一个整数()k k N Î,使得1a 能被k r 整除,而不能被1k r +整除.又因为111211k k k k a p a a qr++++==,且p 与r 的最大公约数为1.所以2k a Z +Ï,这与n a N *Î(n N *Î)矛盾. 所以q *∈N .因此1a N *Î,q *∈N . ……………13分高考资源网版权所有!投稿可联系QQ :1084591801。

北京市西城区2015届高三上学期期末考试数学文试题及答案

北京市西城区2015届高三上学期期末考试数学文试题及答案

北京市西城区2014 — 2015学年度第一学期期末试卷高三数学(文科) 2015.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合1,0,1,2{}A -=,2{|}B x x x =>,则集合A B =( )(A ){1,0,1}-(B ){1,2}-(C ){0,1,2}(D ){1,1,2}-3.在锐角∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若2a b =,sin 4B =,则( ) (A )3A π= (B )6A π=(C)sin A =(D )2sin 3A =4.执行如图所示的程序框图,输出的x 值为( ) (A )4 (B )5 (C )6 (D )72.设命题p :2log 0,2xx x ∀>>,则p ⌝为( ) (A )2log 0,2xx x ∀>< (B )2log 0,2xx x ∃>≤ (C )2log 0,2xx x ∃><(D )2log 0,2xx x ∃>≥5.设函数()y f x =的定义域为R ,则“(0)0f =”是“函数()f x 为奇函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件6. 某天,甲要去银行办理储蓄业务,已知银行的营业时间为9:00至17:00,设甲在当天 13:00至18:00之间任何时间去银行的可能性相同,那么甲去银行恰好能办理业务的概率是( )(A )13 (B )34 (C )58 (D )458. 如图,在空间四边形ABCD 中,两条对角线,AC BD 互相垂直,且长度分别为4和6,平行于这两条对角线的平面与边,,,AB BC CD DA 分别相交于点,,,E F G H ,记四边形EFGH 的面积为y ,设BEx AB=,则( ) (A )函数()y f x =的值域为(0,4] (B )函数()y f x =的最大值为8(C )函数()y f x =在2(0,)3上单调递减(D )函数()y f x =满足()(1)f x f x =-7. 设抛物线2:4W y x =的焦点为F ,过F 的直线与W 相交于A ,B 两点,记点F 到直线l :1x =-的距离为d ,则有( ) (A )2||d AB ≥ (B )2||d AB = (C )2||d AB ≤ (D )2||d AB < A BE CD GH F第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 复数i1iz =+,则||z =______.10.设平面向量,a b 满足||3=a ,||2=b ,3⋅=-a b ,那么,a b 的夹角θ=____.11.一个四棱锥的三视图如图所示,那么这个四棱锥最长棱的棱长为_____.12.设12,F F 为双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,且直线2y x =为双曲线C的一条渐近线,点P 为C 上一点,如果12||||4PF PF -=,那么双曲线C 的方程为____;离心率为_____.13. 某小学教师准备购买一些签字笔和铅笔盒作为奖品,已知签字笔每支5元,铅笔盒每个6元,花费总额不能超过50元. 为了便于学生选择,购买签字笔和铅笔盒的个数均不能少于3个,那么该教师有_______种不同的购买奖品方案.14. 设函数3||, 1,()log , 1.x a x f x x x -⎧=⎨>⎩≤(1)如果(1)3f =,那么实数a =___;(2)如果函数()2y f x =-有且仅有两个零点,那么实数a 的取值范围是___.侧(左)视图 正(主)视图俯视图三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数2π()12sin ()4f x x =--,x ∈R . (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)判断函数()f x 在区间ππ[,]66-上是否为增函数?并说明理由.16.(本小题满分13分)已知数列{}n a 满足25a =,且其前n 项和2n S pn n =-. (Ⅰ)求p 的值和数列{}n a 的通项公式;(Ⅱ)设数列{}n b 为等比数列,公比为p ,且其前n 项和n T 满足55T S <,求1b 的取值范围.17.(本小题满分14分)如图,在四棱柱1111D C B A ABCD -中,A A 1⊥底面ABCD ,90BAD ∠=,BC AD //,且122A A AD BC ===,1AB =. 点E 在棱AB 上,平面1A EC 与棱11C D 相交于点F .(Ⅰ)求证:1A F ∥平面1B CE ;(Ⅱ)求证: AC ⊥平面11CDD C ;(Ⅲ)写出三棱锥11B A EF -体积的取值范围. (结论不要求证明)18.(本小题满分13分)最近,张师傅和李师傅要将家中闲置资金进行投资理财. 现有两种投资方案,且一年后投资盈亏的情况如下:B CA 1 D 1DA B 1C 1E F(1) 投资股市:(2) 购买基金:(Ⅰ)当2p =时,求q 的值; (Ⅱ)已知“购买基金”亏损的概率比“投资股市”亏损的概率小,求p 的取值范围;(Ⅲ)已知张师傅和李师傅两人都选择了“购买基金”来进行投资,假设三种投资结果出现的可能性相同,求一年后他们两人中至少有一人获利的概率. 19.(本小题满分14分)已知椭圆C :2211612x y +=的右焦点为F ,右顶点为A ,离心率为e ,点(,0)(4)P m m >满足条件||||FA e AP =. (Ⅰ)求m 的值;(Ⅱ)设过点F 的直线l 与椭圆C 相交于M ,N 两点,记PMF ∆和PNF ∆的面积分别为1S ,2S ,若122S S =,求直线l 的方程.20.(本小题满分13分)对于函数(),()f x g x ,如果它们的图象有公共点P ,且在点P 处的切线相同,则称函数()f x 和()g x 在点P 处相切,称点P 为这两个函数的切点. 设函数2()(0)f x ax bx a =-≠,()ln g x x =.(Ⅰ)当1a =-,0b =时, 判断函数()f x 和()g x 是否相切?并说明理由; (Ⅱ)已知a b =,0a >,且函数()f x 和()g x 相切,求切点P 的坐标;(Ⅲ)设0a >,点P 的坐标为1(,1)e-,问是否存在符合条件的函数()f x 和()g x ,使得它们在点P 处相切?若点P 的坐标为2(e ,2)呢?(结论不要求证明)北京市西城区2014 — 2015学年度第一学期期末高三数学(文科)参考答案及评分标准2015.1一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.B 3.A 4.C 5.B 6.D 7.A 8.D 二、填空题:本大题共6小题,每小题5分,共30分.9.2 10.2π311. 12.221416x y -=13.9 14.2-或4 (1,3]- 注:第12,14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为2π()12sin ()4f x x =--πcos 2()4x =- ……………… 3分sin 2x =, ……………… 5分所以函数()f x 的最小正周期2ππ2T ==.……………… 7分 (Ⅱ)解:结论:函数()f x 在区间ππ[,]66-上是增函数. ……………… 9分理由如下:由ππ2π22π22k x k -+≤≤, 解得ππππ44k x k -+≤≤,所以函数()f x 的单调递增区间为ππ[π,π]44k k -+,()k ∈Z .……………… 12分 当0=k 时,知)(x f 在区间ππ[,]44-上单调递增, 所以函数()f x 在区间ππ[,]66-上是增函数. ……………… 13分16.(本小题满分13分)(Ⅰ)解:由题意,得11S p =-,242S p =-,因为 25a =,212S a a =+, 所以 24215S p p =-=-+,解得 2p =. ……………… 3分所以 22n S n n =-.当2n ≥时,由1n n n a S S -=-, ……………… 5分 得 22(2)[2(1)(1)]43n a n n n n n =-----=-. ……………… 7分 验证知1n =时,1a 符合上式,所以43n a n =-,*n ∈N . ……………… 8分(Ⅱ)解:由(Ⅰ),得11(12)(21)12n n n b T b -==--. ……………… 10分 因为 55T S <,所以 521(21)255b -<⨯-,解得 14531b <. ……………… 12分 又因为10b ≠,所以1b 的取值范围是45(,0)(0,)31-∞. ……………… 13分17.(本小题满分14分)(Ⅰ)证明:因为1111D C B A ABCD -是棱柱,所以平面ABCD ∥平面1111A B C D . 又因为平面ABCD平面1A ECF EC =,B CA 1 D 1DA B 1C 1E F平面1111A B C D 平面11A ECF A F =,所以 1A F ∥CE . …………………3分 又 1A F ⊄平面1B CE ,CE ⊂平面1B CE ,所以 1A F ∥平面1B CE . …………………6分 (Ⅱ)证明:在四边形ABCD 中,因为 90BAD ∠=,BC AD //,且BC AD 2=,2AD =,1AB =, 所以 222112AC =+=,222112CD =+=. 所以 222AC CD AD +=,所以 90ACD ∠=,即AC CD ⊥. …………………7分 因为 1A A ⊥平面ABCD AC ⊂,平面ABCD , 所以 1A A AC ⊥.因为在四棱柱1111D C B A ABCD -中,11//A A C C ,所以 1C C AC ⊥. …………………9分 又因为 1,CD C C ⊂平面11CDD C ,1CDC C C =,所以 AC ⊥平面11CDD C . …………………11分(Ⅲ)解:三棱锥11B A EF -的体积的取值范围是12[,]33. …………………14分18.(本小题满分13分)(Ⅰ)解:因为“购买基金”后,投资结果只有“获利”、“不赔不赚”、“亏损”三种 且三种投资结果相互独立,所以 p +13+q =1. ……………… 2分又因为 12p =, 所以 q =61. ……………… 3分(Ⅱ)解:由“购买基金”亏损的概率比“投资股市”亏损的概率小,得 38q <, ……………… 4分 因为 p +13+q =1,所以 2338q p =-<,解得 724p >. ……………… 7分 又因为 113p q ++=,0q ≥, 所以 23p ≤. 所以72243p ≤<. ……………… 8分 (Ⅲ)解:记事件A 为 “一年后张师傅和李师傅两人中至少有一人获利”, ………… 9分用a ,b ,c 分别表示一年后张师傅购买基金“获利”、“不赔不赚”、“亏损”,用x ,y ,z 分别表示一年后李师傅购买基金“获利”、“不赔不赚”、“亏损”,则一年后张师傅和李师傅购买基金,所有可能的投资结果有339⨯=种, 它们是:(,)a x ,(,)a y ,(,)a z ,(,)b x ,(,)b y ,(,)b z ,(,)c x ,(,)c y ,(,)c z , ……………10分所以事件A 的结果有5种,它们是:(,)a x ,(,)a y ,(,)a z ,(,)b x ,(,)c x .…………… 11分 因此这一年后张师傅和李师傅两人中至少有一人获利的概率5()9P A =. …………13分19.(本小题满分14分)(Ⅰ)解:因为椭圆C 的方程为 2211612x y +=,所以 4a =,b =2c =, ………………2分则 12c e a ==,||2FA =,||4AP m =-. ………………3分 因为 ||21||42FA AP m ==-,所以 8m =. ………………5分 (Ⅱ)解:若直线l 的斜率不存在,则有 21S S =,不合题意. ………………6分若直线l 的斜率存在,设直线l 的方程为)2(-=x k y ,),(11y x M ,),(22y x N .由 ⎪⎩⎪⎨⎧-==+),2(,1121622x k y y x 得 2222(43)1616480k x k x k +-+-=, ……………… 7分可知 0>∆恒成立,且 34162221+=+k k x x ,3448162221+-=k k x x . ……………… 8分因为PMF ∆和PNF ∆的面积分别为111||||2S PF y =⋅,221||||2S PF y =⋅,所以2||||212121=-==y yy y S S . ……………… 9分 即 212y y -=.所以 221y y y -=+,2212221)(22y y y y y +-=-=, ……………… 11分则 22121)]2()2([2)2()2(-+--=-⋅-x k x k x k x k , 即 2212121)4(24)(2-+-=++-x x x x x x ,即 2222222)43416(2434162344816-+-=++⋅-+-k k k k k k , 解得 25±=k . ……………… 13分所以直线l 的方程为 )2(25-=x y 或 )2(25--=x y . ……………… 14分20.(本小题满分13分)(Ⅰ)解:结论:当1a =-,0b =时,函数()f x 和()g x 不相切. …………………1分 理由如下:由条件知2()f x x =-, 由()ln g x x =,得0x >,又因为 ()2f x x '=-,1()g x x'=, …………………2分 所以当0x >时,()20f x x '=-<,1()0g x x '=>,所以对于任意的0x >,()()f x g x ''≠.当1a =-,0b =时,函数()f x 和()g x 不相切. …………………3分 (Ⅱ)解:若a b =,则()2f x ax a '=-,1()g x x'=,设切点坐标为(,)s t ,其中0s >,由题意,得 2ln as as s -=, ①12as a s -=, ② …………………4分 由②,得 1(21)a s s =-, 代入①,得 1ln 21s s s -=-. (*) …………………5分 因为 10(21)a s s =>-,且0s >, 所以 12s >. 设函数 1()ln 21x F x x x -=--,1(,)2x ∈+∞, 则 2(41)(1)()(21)x x F x x x ---'=-. …………………6分 令()0F x '= ,解得1x =或14x =(舍). …………………7分 当x 变化时,()F x '与()F x 的变化情况如下表所示,…………………8分所以当1x =时,()F x 取到最大值(1)0F =,且当1(,1)(1,)2x ∈+∞时()0F x <.因此,当且仅当1x =时()0F x =.所以方程(*)有且仅有一解1s =.于是 ln 0t s ==,因此切点P 的坐标为(1,0). …………………9分 (Ⅲ)解:当点P 的坐标为1(,1)e-时,存在符合条件的函数()f x 和()g x ,使得它们在点P 处相切; …………………11分 当点P 的坐标为2(e ,2)时,不存在符合条件的函数()f x 和()g x ,使得它们在点P 处相 切. …………………13分。

北京市西城区2014 — 2015学年高三(文)第一学期期末试卷

北京市西城区2014 — 2015学年高三(文)第一学期期末试卷

北京市西城区2014 — 2015学年度第一学期期末试卷高三数学(文科) 2015.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合1,0,1,2{}A -=,2{|}B x x x =>,则集合A B = ( ) (A ){1,0,1}-(B ){1,2}-(C ){0,1,2}(D ){1,1,2}-【答案】B 【解析】“0x ∀>”的否定为“0x ∃>”,“2log 2x x >”的否定为“2log 2x x ≤” 所以,p ⌝为:2log 0,2x x x ∃>≤ 故答案为:B 【考点】全称量词与存在性量词 【难度】 13.在∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若A 为锐角,2a b =,sin B =,则( )【答案】B 【解析】{}01B x x x =<>或,所以{}1,2A B =-故答案为:B 【考点】 集合的运算 【难度】 12.设命题p :2log 0,2x x x ∀>>,则p ⌝为( ) (A )2log 0,2x x x ∀>< (B )2log 0,2x x x ∃>≤ (C )2log 0,2x x x ∃>< (D )2log 0,2x x x ∃>≥(A )3A π= (B )6A π=(C)sin 3A =(D )2sin 3A =【答案】A 【解析】由正弦定理得sin sin a b A B =,所以sin 2sin A aB b==,所以sin A =。

因为ABC ∆为锐角三角形,所以3A π=故答案为:A【考点】 正弦定理 【难度】 14.执行如图所示的程序框图,输出的x 值为( ) (A )4 (B )5 (C )6 (D )7【答案】C【解析】3x =时,328y ==,833<; 4x =时,4216y ==,1643<; 5x =时,5232y ==,3253<;6x =时,6264y ==,6463>,输出6x =。

北京市西城区2014-2015学年度高三第一学期期末试数学理-含答案

北京市西城区2014-2015学年度高三第一学期期末试数学理-含答案

北京市西城区2014 — 2015学年度第一学期期末试卷高三数学(理科) 2015.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合1,0,1{}A -=,2{|2}B x x x =-<,则集合A B =( )(A ){1,0,1}-(B ){1,0}-(C ){0,1}(D ){1,1}-3.在锐角∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若2a b =,sin B =,则( ) (A )3A π= (B )6A π=(C)sin A =(D )2sin 3A =4.执行如图所示的程序框图,输出的x 值为( ) (A )4 (B )5 (C )6 (D )72.设命题p :∀平面向量a 和b ,||||||-<+a b a b ,则p ⌝为( )(A )∀平面向量a 和b ,||||||-+≥a b a b (B )∃平面向量a 和b ,||||||-<+a b a b (C )∃平面向量a 和b ,||||||->+a b a b (D )∃平面向量a 和b ,||||||-+≥a b a b5.设函数()3cos f x x b x =+,x ∈R ,则“0b =”是“函数()f x 为奇函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件8. 设D 为不等式组1,21,21x y x y x y ---+⎧⎪⎨⎪⎩≤≥≤表示的平面区域,点(,)B a b 为坐标平面xOy 内一点,若对于区域D内的任一点(,)A x y ,都有1OA OB ⋅≤成立,则a b +的最大值等于( ) (A )2 (B )1 (C )0(D )36.一个四棱锥的三视图如图所示,那么对于这个四棱锥,下列说法中正确的是( ) (A(B )最长棱的棱长为3(C )侧面四个三角形中有且仅有一个是正三角形 (D )侧面四个三角形都是直角三角形7. 已知抛物线2:4C y x =,点(,0)P m ,O 为坐标原点,若在抛物线C 上存在一点Q ,使得90OQP?o ,则实数m 的取值范围是( )(A )(4,8) (B )(4,)+? (C )(0,4)(D )(8,)+?侧(左)视图正(主)视图俯视图第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 复数2i12iz -=+,则||z = _____.10.设12,F F 为双曲线C :2221(0)16x y a a -=>的左、右焦点,点P 为双曲线C 上一点,如果12||||4PF PF -=,那么双曲线C 的方程为____;离心率为____.11.在右侧的表格中,各数均为正数,且每行中的各数从左到右成等差数列,每列中的各数从上到下成等比数列,那么x y z ++=______.12. 如图,在ABC ∆中,以BC 为直径的半圆分别交AB ,AC 于点E ,F ,且2AC AE =,那么AFAB=____;A ∠= _____.13.现要给4个唱歌节目和2个小品节目排列演出顺序,要求2个小品节目之间恰好有3个唱歌节目,那么演出顺序的排列种数是______. (用数字作答)14. 设P ,Q 为一个正方体表面上的两点,已知此正方体绕着直线PQ 旋转()角后能与自身重合,那么符合条件的直线PQ 有_____条.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()cos cos 442x x xf x =+, x ∈R 的部分图象如图所示. (Ⅰ)求函数()f x 的最小正周期和单调递增区间;(Ⅱ) 设点B 是图象上的最高点,点A 是图象与x 轴的交点,求BAO ∠tan 的值.16.(本小题满分13分)现有两种投资方案,一年后投资盈亏的情况如下: (1)投资股市:(2)购买基金:(Ⅰ)当4p =时,求q 的值; (Ⅱ)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于45,求p 的取值范围; (Ⅲ)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两种方案中选择一种,已知12p =,16q =,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?给出结果并说明理由.如图,在四棱柱1111D C B A ABCD -中,A A 1⊥底面A B CD ,90BAD ∠=,BC AD //,且122A A AB AD BC ==== ,点E 在棱AB 上,平面1A EC 与棱11C D 相交于点F .(Ⅰ)证明:1A F ∥平面1B CE ;(Ⅱ)若E 是棱AB 的中点,求二面角1A EC D --的余弦值; (Ⅲ)求三棱锥11B A EF -的体积的最大值.18.(本小题满分13分)已知函数2()(0)f x ax bx a =->和()ln g x x =的图象有公共点P ,且在点P 处的切线相同.(Ⅰ)若点P 的坐标为1(,1)e-,求,a b 的值; (Ⅱ)已知a b =,求切点P 的坐标.19.(本小题满分14分)已知椭圆C :2211612x y +=的右焦点为F ,右顶点为A ,离心率为e ,点(,0)(4)P m m >满足条件||||FA e AP =. (Ⅰ)求m 的值;(Ⅱ)设过点F 的直线l 与椭圆C 相交于M ,N 两点,记PMF ∆和PNF ∆的面积分别为1S ,2S ,求证:12||||S PM S PN =.B CDA B 1C 1E FA 1 D 1设函数()(9)f x x x =-,对于任意给定的m 位自然数0121m m n a a a a -=(其中1a 是个位数字,2a 是十位数字,),定义变换A :012()()()()m A n f a f a f a =+++. 并规定(0)0A =.记10()n A n =,21()n A n =,, 1()k k n A n -=,.(Ⅰ)若02015n =,求2015n ;(Ⅱ)当3m ≥时,证明:对于任意的*()m m ∈N 位自然数n 均有1()10m A n -<; (Ⅲ)如果*010(,3)m n m m <∈≥N ,写出m n 的所有可能取值.(只需写出结论)北京市西城区2014 — 2015学年度第一学期期末高三数学(理科)参考答案及评分标准2015.1一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.D 3.A 4.C 5.C 6.D 7.B 8.A 二、填空题:本大题共6小题,每小题5分,共30分.9.1 10.221416x y -=11.17412.12 π313.9614.13注:第10,12题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分) (Ⅰ)解:因为()cos cos 442x x xf x =+cos 22x x=+ ……………… 2分=π2sin()26x +, ……………… 4分所以 2π4π12T ==. 故函数()f x 的最小正周期为4π. ……………… 6分由题意,得πππ2π2π2262x k k -++≤≤, 解得4π2π4π4π+33k x k -≤≤,所以函数()f x 的单调递增区间为4π2π[4π,4π+],()33k k k -∈Z . ……………… 9分(Ⅱ)解:如图过点B 作线段BC 垂直于x由题意,得33π4TAC ==,2=BC , 所以2tan 3πBC BAO AC ∠==.16.(本小题满分13分)(Ⅰ)解:因为“购买基金”后,投资结果只有“获利”、“不赔不赚”、“亏损”三种,且三种投资结果相互独立, 所以p +13+q =1. ……………… 2分 又因为14p =, 所以q =512. ……………… 3分 (Ⅱ)解:记事件A 为 “甲投资股市且盈利”,事件B 为“乙购买基金且盈利”,事件C 为“一年后甲、乙两人中至少有一人投资获利”, ……………… 4分则C AB AB AB =U U ,且A ,B 独立. 由上表可知, 1()2P A =,()P B p =.所以()()()()P C P AB P AB P AB =++ ……………… 5分 111(1)222p p p =?+?? 1122p =+. ……………… 6分因为114()225P C p =+>,所以35p >. ……………… 7分 又因为113p q ++=,0q ≥,所以23p ≤.所以3253p ≤<. ……………… 8分(Ⅲ)解:假设丙选择“投资股票”方案进行投资,且记X 为丙投资股票的获利金额(单位:万元),所以随机变量X 的分布列为:…………… 9分则113540(2)2884EX =⨯+⨯+-⨯=. ……………10 分假设丙选择“购买基金”方案进行投资,且记Y 为丙购买基金的获利金额(单位:万元),所以随机变量Y 的分布列为:…………… 11分则111520(1)2366EY =⨯+⨯+-⨯=. …………… 12分因为EX EY >,所以丙选择“投资股市”,才能使得一年后的投资收益的数学期望较大.……… 13分17.(本小题满分14分)(Ⅰ)证明:因为1111D C B A ABCD -是棱柱,所以平面ABCD ∥平面1111A B C D .又因为平面ABCD 平面1A ECF EC =,平面1111A B C D 平面11A ECF A F =,所以1A F ∥EC . …………………2分 又因为1A F ⊄平面1B CE ,EC ⊂平面1B CE ,所以1A F ∥平面1B CE . …………………4分 (Ⅱ)解:因为1AA ⊥底面ABCD ,90BAD ∠=,所以1AA ,AB ,AD 两两垂直,以A 为原点,以AB ,AD ,1AA 分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系. …………………5分则1(0,0,2)A ,(1,0,0)E ,(2,1,0)C , 所以 1(1,0,2)A E =-,1(2,1,2)AC =-. 设平面1A ECF 的法向量为(,,),m x y z = 由10A E m ⋅=,10AC m ⋅=, 得20,220.x z x y z -=⎧⎨+-=⎩令1z =,得(2,2,1)m =-. …………………7分 又因为平面DEC 的法向量为(0,0,1)n =, …………………8分所以1cos ,3||||m n m n m n ⋅<>==⋅,由图可知,二面角1A EC D --的平面角为锐角,所以二面角1A EC D --的余弦值为13. …………………10分(Ⅲ)解:过点F 作11FM A B ⊥于点M ,因为平面11A ABB ⊥平面1111A B C D ,FM ⊂平面1111A B C D , 所以FM ⊥平面11A ABB ,所以11111113B A EF F B A E A B E V V S FM --∆==⨯⨯ …………………12分1222323FM FM ⨯=⨯⨯=. 因为当F 与点1D 重合时,FM 取到最大值2(此时点E 与点B 重合), 所以当F 与点1D 重合时,三棱锥11B A EF -的体积的最大值为43. ………………14分18.(本小题满分13分) (Ⅰ)解:由题意,得21()1e e ea bf =-=-, …………………1分 且()2f x ax b '=-,1()g x x'=, …………………3分 由已知,得11()()e ef g ''=,即2e eab -=, 解得22e a =,3e b =. …………………5分 (Ⅱ)解:若a b =,则()2f x ax a '=-,1()g x x'=, 设切点坐标为(,)s t ,其中0s >,由题意,得 2ln as as s -=, ① 12as a s-=, ② …………………6分 由②,得 1(21)a s s =-,其中12s ≠,代入①,得 1ln 21s s s -=-. (*) …………………7分因为 10(21)a s s =>-,且0s >,所以 12s >. …………………8分 设函数 1()ln 21x F x x x -=--,1(,)2x ∈+∞, 则 2(41)(1)()(21)x x F x x x ---'=-. …………………9分 令()0F x '= ,解得1x =或14x =(舍). …………………10分当x 变化时,()F x '与()F x 的变化情况如下表所示,…………………12分所以当1x =时,()F x 取到最大值(1)0F =,且当1(,1)(1,)2x ∈+∞时()0F x <.因此,当且仅当1x =时()0F x =. 所以方程(*)有且仅有一解1s =. 于是 ln 0t s ==,因此切点P 的坐标为(1,0). …………………13分19.(本小题满分14分)(Ⅰ)解:因为椭圆C 的方程为 2211612x y +=,所以 4a =,b =2c =, ………………2分 则 12c e a ==,||2FA =,||4AP m =-. ………………3分 因为||21||42FA AP m ==-, 所以 8m =. ………………5分(Ⅱ)解:若直线l 的斜率不存在, 则有 21S S =,||||PM PN =,符合题意. …………6分若直线l 的斜率存在,则设直线l 的方程为)2(-=x k y ,),(11y x M ,),(22y x N . 由 ⎪⎩⎪⎨⎧-==+),2(,1121622x k y y x 得 2222(43)1616480k x k x k +-+-=, ……………… 7分可知 0>∆恒成立,且 34162221+=+k k x x ,3448162221+-=k k x x . ……………… 8分因为 8)2(8)2(8822112211--+--=-+-=+x x k x x k x y x y k k PN PM ……………… 10分 )8)(8()8)(2()8)(2(211221----+--=x x x x k x x k)8)(8(32)(102212121--++-=x x kx x k x kx0)8)(8(323416103448162212222=--++⋅-+-⋅=x x k k k k k k k ,所以 MPF NPF ∠=∠. ……………… 12分 因为PMF ∆和PNF ∆的面积分别为11||||sin 2S PF PM MPF =⋅⋅∠, 21||||sin 2S PF PN NPF =⋅⋅∠, ……………… 13分 所以12||||S PM S PN =. ……………… 14分20.(本小题满分13分)(Ⅰ)解:114082042n =+++=,2201434n =+=,3182038n =+=,418826n =+=,5141832n =+=,6181432n =+=,……所以 201532n =. ……………… 3分(Ⅱ)证明:因为函数2981()(9)()24f x x x x =-=--+,所以对于非负整数x ,知()(9)20f x x x =-≤.(当4x =或5时,取到最大值)… 4分 因为 12()()()()m A n f a f a f a =+++,所以 ()20A n m ≤. ……………… 6分 令 1()1020m g m m -=-,则31(3)102030g -=-⨯>.当3m ≥时,11(1)g()1020(1)1020910200m m m g m m m m --+-=-+-+=⨯->, 所以 (1)g()0g m m +->,函数()g m ,(m ∈N ,且3m ≥)单调递增. 故 g()g(3)0m >≥,即11020()m m A n ->≥.所以当3m ≥时,对于任意的m 位自然数n 均有1()10m A n -<. …………………9分 (Ⅲ)答:m n 的所有可能取值为0,8,14,16,20,22,26,28,32,36,38.…………………14分。

北京市西城区-第一学期期末考试高三数学理及答案

北京市西城区-第一学期期末考试高三数学理及答案

北京市西城区2014 — 2015学年度第一学期期末试卷高三数学(理科) 2015.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合1,0,1{}A -=,2{|2}B x x x =-<,则集合A B =( )(A ){1,0,1}-(B ){1,0}-(C ){0,1}(D ){1,1}-3.在锐角∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若2a b =,sin B =,则( ) (A )3A π= (B )6A π=(C)sin 3A =(D )2sin 3A =4.执行如图所示的程序框图,输出的x 值为( ) (A )4 (B )5 (C )6 (D )72.设命题p :∀平面向量a 和b ,||||||-<+a b a b ,则p ⌝为( )(A )∀平面向量a 和b ,||||||-+≥a b a b (B )∃平面向量a 和b ,||||||-<+a b a b (C )∃平面向量a 和b ,||||||->+a b a b (D )∃平面向量a 和b ,||||||-+≥a b a b5.设函数()3cos f x x b x =+,x ∈R ,则“0b =”是“函数()f x 为奇函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件8. 设D 为不等式组1,21,21x y x y x y ---+⎧⎪⎨⎪⎩≤≥≤表示的平面区域,点(,)B a b 为坐标平面xOy 内一点,若对于区域D内的任一点(,)A x y ,都有1OA OB ⋅≤成立,则a b +的最大值等于( ) (A )2 (B )1 (C )0(D )36.一个四棱锥的三视图如图所示,那么对于这个四棱锥,下列说法中正确的是( ) (A(B )最长棱的棱长为3(C )侧面四个三角形中有且仅有一个是正三角形 (D )侧面四个三角形都是直角三角形7. 已知抛物线2:4C y x =,点(,0)P m ,O 为坐标原点,若在抛物线C 上存在一点Q ,使得90OQP ,则实数m 的取值范围是( )(A )(4,8) (B )(4,) (C )(0,4)(D )(8,)侧(左)视图正(主)视图俯视图第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 复数2i12iz -=+,则||z = _____.10.设12,F F 为双曲线C :2221(0)16x y a a -=>的左、右焦点,点P 为双曲线C 上一点,如果12||||4PF PF -=,那么双曲线C 的方程为____;离心率为____.11.在右侧的表格中,各数均为正数,且每行中的各数从左到右成等差数列,每列中的各数从上到下成等比数列,那么x y z ++=______.12. 如图,在ABC ∆中,以BC 为直径的半圆分别交AB ,AC 于点E ,F ,且2AC AE =,那么AFAB=____;A ∠= _____.13.现要给4个唱歌节目和2个小品节目排列演出顺序,要求2个小品节目之间恰好有3个唱歌节目,那么演出顺序的排列种数是______. (用数字作答)14. 设P ,Q 为一个正方体表面上的两点,已知此正方体绕着直线PQ 旋转()角后能与自身重合,那么符合条件的直线PQ 有_____条.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)2 x3ya321258zE FCB A已知函数()cos cos 442x x xf x =+, x ∈R 的部分图象如图所示. (Ⅰ)求函数()f x 的最小正周期和单调递增区间;(Ⅱ) 设点B 是图象上的最高点,点A 是图象与x 轴的交点,求BAO ∠tan 的值.16.(本小题满分13分)现有两种投资方案,一年后投资盈亏的情况如下: (1)投资股市:(2)购买基金:(Ⅰ)当4p时,求q 的值; (Ⅱ)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于45,求p 的取值范围; (Ⅲ)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两种方案中选择一种,已知12p,16q ,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?给出结果并说明理由.如图,在四棱柱1111D C B A ABCD -中,A A 1⊥底面ABCD ,90BAD ∠=,BC AD //,且122A A AB AD BC ==== ,点E 在棱AB 上,平面1A EC 与棱11C D 相交于点F .(Ⅰ)证明:1A F ∥平面1B CE ;(Ⅱ)若E 是棱AB 的中点,求二面角1A EC D --的余弦值; (Ⅲ)求三棱锥11B A EF -的体积的最大值.18.(本小题满分13分)已知函数2()(0)f x ax bx a =->和()ln g x x =的图象有公共点P ,且在点P 处的切线相同.(Ⅰ)若点P 的坐标为1(,1)e-,求,a b 的值; (Ⅱ)已知a b =,求切点P 的坐标.19.(本小题满分14分)已知椭圆C :2211612x y +=的右焦点为F ,右顶点为A ,离心率为e ,点(,0)(4)P m m >满足条件||||FA e AP =. (Ⅰ)求m 的值;(Ⅱ)设过点F 的直线l 与椭圆C 相交于M ,N 两点,记PMF ∆和PNF ∆的面积分别为1S ,2S ,求证:12||||S PM S PN =.B CDA B 1C 1E FA 1 D 1设函数()(9)f x x x =-,对于任意给定的m 位自然数0121m m n a a a a -=(其中1a 是个位数字,2a 是十位数字,),定义变换A :012()()()()m A n f a f a f a =+++. 并规定(0)0A =.记10()n A n =,21()n A n =,, 1()k k n A n -=,.(Ⅰ)若02015n =,求2015n ;(Ⅱ)当3m ≥时,证明:对于任意的*()m m ∈N 位自然数n 均有1()10m A n -<; (Ⅲ)如果*010(,3)m n m m <∈≥N ,写出m n 的所有可能取值.(只需写出结论)北京市西城区2014 — 2015学年度第一学期期末高三数学(理科)参考答案及评分标准2015.1一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.D 3.A 4.C 5.C 6.D 7.B 8.A 二、填空题:本大题共6小题,每小题5分,共30分.9.1 10.221416x y -=11.17412.12 π313.9614.13注:第10,12题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分) (Ⅰ)解:因为()cos cos 442x x xf x =+cos 22x x=+ ……………… 2分=π2sin()26x +, ……………… 4分所以 2π4π12T ==. 故函数()f x 的最小正周期为4π. ……………… 6分由题意,得πππ2π2π2262x k k -++≤≤, 解得4π2π4π4π+33k x k -≤≤,所以函数()f x 的单调递增区间为4π2π[4π,4π+],()33k k k -∈Z . ……………… 9分(Ⅱ)解:如图过点B 作线段BC 垂直于x由题意,得33π4TAC ==,2=BC , 所以2tan 3πBC BAO AC ∠==.16.(本小题满分13分)(Ⅰ)解:因为“购买基金”后,投资结果只有“获利”、“不赔不赚”、“亏损”三种,且三种投资结果相互独立, 所以p +13+q =1. ……………… 2分 又因为14p, 所以q =512. ……………… 3分 (Ⅱ)解:记事件A 为 “甲投资股市且盈利”,事件B 为“乙购买基金且盈利”,事件C 为“一年后甲、乙两人中至少有一人投资获利”, ……………… 4分则CAB AB AB ,且A ,B 独立.由上表可知, 1()2P A ,()P B p .所以()()()()P C P AB P AB P AB ……………… 5分111(1)222p pp1122p . ……………… 6分 因为114()225P C p , 所以35p. ……………… 7分 又因为113p q ,0q ≥,所以23p ≤.所以3253p ≤. ……………… 8分(Ⅲ)解:假设丙选择“投资股票”方案进行投资,且记X 为丙投资股票的获利金额(单位:万元),所以随机变量X 的分布列为:…………… 9分则113540(2)2884EX =⨯+⨯+-⨯=. ……………10 分假设丙选择“购买基金”方案进行投资,且记Y 为丙购买基金的获利金额(单位:万元),所以随机变量Y 的分布列为:…………… 11分则111520(1)2366EY =⨯+⨯+-⨯=. …………… 12分因为EX EY >,所以丙选择“投资股市”,才能使得一年后的投资收益的数学期望较大.……… 13分17.(本小题满分14分)(Ⅰ)证明:因为1111D C B A ABCD -是棱柱,所以平面ABCD ∥平面1111A B C D .又因为平面ABCD 平面1A ECF EC =,平面1111A B C D 平面11A ECF A F =,所以1A F ∥EC . …………………2分 又因为1A F ⊄平面1B CE ,EC ⊂平面1B CE ,所以1A F ∥平面1B CE . …………………4分 (Ⅱ)解:因为1AA ⊥底面ABCD ,90BAD ∠=,所以1AA ,AB ,AD 两两垂直,以A 为原点,以AB ,AD ,1AA 分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系. …………………5分则1(0,0,2)A ,(1,0,0)E ,(2,1,0)C , 所以 1(1,0,2)A E =-,1(2,1,2)AC =-. 设平面1A ECF 的法向量为(,,),m x y z = 由10A E m ⋅=,10AC m ⋅=, 得20,220.x z x y z -=⎧⎨+-=⎩令1z =,得(2,2,1)m =-. …………………7分 又因为平面DEC 的法向量为(0,0,1)n =, …………………8分所以1cos ,3||||m n m n m n ⋅<>==⋅,由图可知,二面角1A EC D --的平面角为锐角,所以二面角1A EC D --的余弦值为13. …………………10分(Ⅲ)解:过点F 作11FM A B ⊥于点M ,因为平面11A ABB ⊥平面1111A B C D ,FM ⊂平面1111A B C D , 所以FM ⊥平面11A ABB ,所以11111113B A EF F B A E A B E V V S FM --∆==⨯⨯ …………………12分1222323FM FM ⨯=⨯⨯=. 因为当F 与点1D 重合时,FM 取到最大值2(此时点E 与点B 重合), 所以当F 与点1D 重合时,三棱锥11B A EF -的体积的最大值为43. ………………14分18.(本小题满分13分) (Ⅰ)解:由题意,得21()1e e ea bf =-=-, …………………1分 且()2f x ax b '=-,1()g x x'=, …………………3分 由已知,得11()()e ef g ''=,即2e eab -=, 解得22e a =,3e b =. …………………5分 (Ⅱ)解:若a b =,则()2f x ax a '=-,1()g x x'=, 设切点坐标为(,)s t ,其中0s >,由题意,得 2ln as as s -=, ① 12as a s-=, ② …………………6分 由②,得 1(21)a s s =-,其中12s ≠,代入①,得 1ln 21s s s -=-. (*) …………………7分因为 10(21)a s s =>-,且0s >, 所以 12s >. …………………8分 设函数 1()ln 21x F x x x -=--,1(,)2x ∈+∞, 则 2(41)(1)()(21)x x F x x x ---'=-. …………………9分 令()0F x '= ,解得1x =或14x =(舍). …………………10分 当x 变化时,()F x '与()F x 的变化情况如下表所示,…………………12分所以当1x =时,()F x 取到最大值(1)0F =,且当1(,1)(1,)2x ∈+∞时()0F x <. 因此,当且仅当1x =时()0F x =.所以方程(*)有且仅有一解1s =.于是 ln 0t s ==,因此切点P 的坐标为(1,0). …………………13分19.(本小题满分14分) (Ⅰ)解:因为椭圆C 的方程为 2211612x y +=,所以 4a =,b =2c =, ………………2分 则 12c e a ==,||2FA =,||4AP m =-. ………………3分 因为 ||21||42FA AP m ==-, 所以 8m =. ………………5分(Ⅱ)解:若直线l 的斜率不存在, 则有 21S S =,||||PM PN =,符合题意. …………6分若直线l 的斜率存在,则设直线l 的方程为)2(-=x k y ,),(11y x M ,),(22y x N .由 ⎪⎩⎪⎨⎧-==+),2(,1121622x k y y x 得 2222(43)1616480k x k x k +-+-=, ……………… 7分可知 0>∆恒成立,且 34162221+=+k k x x ,3448162221+-=k k x x . ……………… 8分 因为 8)2(8)2(8822112211--+--=-+-=+x x k x x k x y x y k k PN PM ……………… 10分 )8)(8()8)(2()8)(2(211221----+--=x x x x k x x k )8)(8(32)(102212121--++-=x x k x x k x kx 0)8)(8(323416103448162212222=--++⋅-+-⋅=x x k k k k k k k , 所以 MPF NPF ∠=∠. ……………… 12分 因为PMF ∆和PNF ∆的面积分别为11||||sin 2S PF PM MPF =⋅⋅∠, 21||||sin 2S PF PN NPF =⋅⋅∠, ……………… 13分 所以12||||S PM S PN =. ……………… 14分20.(本小题满分13分)(Ⅰ)解:114082042n =+++=,2201434n =+=,3182038n =+=,418826n =+=,5141832n =+=,6181432n =+=,……所以 201532n =. ……………… 3分(Ⅱ)证明:因为函数2981()(9)()24f x x x x =-=--+,所以对于非负整数x ,知()(9)20f x x x =-≤.(当4x =或5时,取到最大值)… 4分 因为 12()()()()m A n f a f a f a =+++,所以 ()20A n m ≤. ……………… 6分 令 1()1020m g m m -=-,则31(3)102030g -=-⨯>.当3m ≥时,11(1)g()1020(1)1020910200m m m g m m m m --+-=-+-+=⨯->, 所以 (1)g()0g m m +->,函数()g m ,(m ∈N ,且3m ≥)单调递增.故 g()g(3)0m >≥,即11020()m m A n ->≥.所以当3m ≥时,对于任意的m 位自然数n 均有1()10m A n -<. …………………9分 (Ⅲ)答:m n 的所有可能取值为0,8,14,16,20,22,26,28,32,36,38.…………………14分。

14-15期末-高一上-西城统考-有答案

14-15期末-高一上-西城统考-有答案

北京市西城区2014-2015学年度第一学期期末考试——高一化学试卷满分:120分考试时间:90分钟A 卷〔必修模块1〕满分100分可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 S 32 Cu 64说明:请将选择题的答案填在第4页选择题答题表中。

第一部分(选择题共50分)每小题只有一个选项符合题意(1 ~ 25小题,每小题2分)......1、下列标志中,应贴在装有浓硝酸的容器上的是A、B、C、D、2、合金是一类用途广泛的金属材料。

下列物质中,不属于合金的是A、碳素钢B、水银C、青铜D、黄铜3、下列气体与空气变红棕色的是A、SO2B、Cl2C、CO2D、NO4、下列物质中,属于电解质的是A、硝酸钾B、食盐水C、酒精D、铜5、下列各仪器中,可用于配制一定物质的量浓度的溶液的是6、下列金属中,表面自然形成的氧化膜能保护内层金属不被空气氧化的是A、KB、NaC、FeD、Al7、当光束通过下列分散系时,能观察到丁达尔效应的是A、氢氧化铁胶体B、乙醇溶液C、氯化钠溶液D、蔗糖溶液8、下列物质中,可用作净水剂的是A、纯碱B、明矾C、蔗糖D、火碱9、下列药品可用带玻璃塞得试剂瓶存放的是A、NaOH溶液B、Na2CO3溶液C、盐酸D、Na2SiO3溶液10、下列反应类型一定不属于氧化还原反应的是A、化合反应B、分解反应C、置换反应D、分分解反应11、下列变化中,需要加入适当的还原剂才能完成的是A、K I2B、FeCl2FeCl3C、CuO CuD、CO2Na2CO312、下列关于物质用途的说法中,不正确的是A、氨可用作制冷剂B、氧化铝可用作耐火材料C、晶体硅可用作制造光导纤维D、硅酸钠可用作制备硅胶和木材防火剂13、下列物质间的反应中,不属于氧化还原反应的是A、氨气和氧气B、铁和水蒸气C、氯气和石灰乳D、硅酸钠溶液和稀盐酸14、在某无色透明的酸性溶液中,能大量共存的离子组是A、Na+ K+ SO42- HCO3-B、Na+ K+ Cl- NO3-C、Cu2+ K+SO42-NO3-D、Fe2+K+ NO3- Cl-15、下列离子方程式书写不正确的是A、用盐酸除铁锈Fe2O3+6H+=2Fe3++3H2OB、铝片与盐酸反应2Al+6H+=2Al3++3H2↑C、向硫酸铝溶液中加入过量氨水Al3++3NH3.H2O=Al(OH)3↓+3NH4+E、小苏打缓解胃酸(主要成分HCl)过多CO32-+2H+═CO2↑+H2O16、下列关于化学实验基本操作的叙述中,正确的是A、加热蒸发时,蒸发皿必须垫石棉网B、制Fe(OH)2胶体时,将饱和FeCl3溶液加热煮沸C、分液时,放出分液漏斗下层溶液后,再继续放出上层溶液D、蒸馏时,在烧瓶中加入沸石或碎瓷片,以防止液体暴沸17、下列解释事实的离子方程式不正确的是A、Na放入水中,产生气体:2Na+2H2O=2Na++2OH-+H2↑B、FeCl3溶液在淀粉碘化钾试纸上,试纸变蓝:2Fe3++2I-=2Fe2++I2C、铁溶于稀硝酸,溶液变黄:3Fe +8H++2NO3-=3Fe2++2NO↑+4H2OD、l片置于NaOH溶液中,产生气体:2Al+2OH-+2H2O=2AlO2-+3H2↑18、下列关于容量瓶使用方法的叙述中,正确的是①使用容量瓶前检查是否漏水②在容量瓶中溶解固体溶质③容量瓶用蒸馏水洗净后残留少量水即使用④溶液需要冷却至室温方可注入容量瓶⑤加水定容时,不小心超过刻度线,用滴管吸出多余液体A、①②④B、①③④C、③④⑤D、①④⑤19、下列叙述中,正确的是(N A代表啊佛家的罗常数)A、0.1molNH4+中,含有的质子数为N AB、标准状况下,22.4L水中含有的水分子数为N AC、常温、常压下,22.4gCO2中含有的氧原子数为NAD、0.5mol/LNa2SO4溶液中,含有的离子总数为1.5NA20、下列实验能达到目的的是A、用Na2O2与水反应制氧气B、用饱和NaHCO3溶液除去混在Cl2中的HCl气体C、向A、lCl3溶液中加入过量的NaOH溶液制备Al(OH)3D、用Cl2除去Fe2(SO4)3溶液中的少量FeSO421、在FeCl3溶液中,加入过量的铜粉,充分反应后,溶液中一定不存在的金属离子是A、Fe2+和Cu2+B、Fe3+C、Cu2+D、Fe2+22、如下图,A处通入Cl2,关闭B阀时,C中的湿润红色布条看不到明显的变化;打开B 阀后,C中的湿润红色布条逐渐褪色。

2014-2015学年高一数学上学期期末考试试题含解析

2014-2015学年高一数学上学期期末考试试题含解析

2014-2015学年第一学期高一期末考试数学试题说明:1.本卷共有三个大题,21个小题,全卷满分150分,考试时间120分钟. 2.本卷分为试题卷和答题卷,答案要求写在答题卷上,在试题卷上作答不给分.一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U (A ∪B )=( ) A .{1,3,4}, B .{3,4}, C .{3}, D .{4} 2.一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可以是( ) A .球, B .三棱锥, C .正方体, D .圆柱 3.若两个球的表面积之比为1:4,则这两个球的体积之比为( ) A .1:2, B .1:4, C .1:8, D .1:164.已知点M (a ,b )在圆O :x2+y2=1外,则直线ax+by=1与圆O 的位置关系是( ) A .相切, B .相交, C .相离, D .不确定 5.在下列命题中,不是公理的是( ) A .平行于同一个平面的两个平面平行B .过不在同一直线上的三个点,有且只有一个平面C .如果一条直线上的两点在同一个平面内,那么这条直线上所有点都在此平面内D .如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线6.由表格中的数据可以判定方程20x e x --=的一个零点所在的区间是(,1)()k k k Z +∈, 则k 的值为A .-1B .0C .1D .27.若函数11()2xy m -=+的图像与x 轴有公共点,则m 的取值范围是A .1m ≤-B .10m -≤<C .1m ≥D .01m <≤8.已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞单调递增.若实数a 满足212(log )(log )2(1)f a f f a ≤+, 则a 的取值范围是A .10,2⎛⎤⎥⎝⎦B .(0,2]C .[1,2]D .1,22⎡⎤⎢⎥⎣⎦9.若定义在区间[-2015,2015]上的函数f (x )满足:对于任意的x 1,x 2∈[-2015,2015],都有f (x 1+x 2)=f (x 1)+f (x 2)-2014,且x >0时,有f (x )>2014,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( )A .2014B .2015C .4028D .403010.一个多面体的直观图、主视图、左视图、俯视图如下,M 、N 分别为1A B 、11B C 的中点.下列结论中正确的个数有①直线MN 与1A C 相交. ② MN BC ⊥. ③MN //平面11ACC A . ④三棱锥1N A BC -的体积为1316N A BC V a -=. A .4个B .3个C .2个D .1个二、填空题(本大题共5小题,每题5分,共计25分.请将正确答案填在答题卷相应位置.) 11.函数22log (1)y x x =--的定义域为___________.12.在z 轴上与点(4,1,7)A -和点(3,5,2)B -等距离的点C 的坐标为 .13.已知集合2{(,)49}A x y y x ==-,{(,)}B x y y x m ==+,且A B φ⋂≠,则实数m 的取值范围是_______________.14.已知函数1333,1()log ,01x x f x x x ⎧-≥⎪=⎨<<⎪⎩,则满足不等式1()()9f m f ≤的实数m 的取值范围为 .15.下列四个命题:其中正确的有________________(写出所有正确命题的序号).三、解答题:(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.) 16.(本小题满分12分)设全集为U R =,集合(,3][6,)A =-∞-⋃+∞,{}2|log (2)4B x x =+<. (1)求如图阴影部分表示的集合;(2)已知{}|21C x x a x a =><+且,若C B ⊆,求实数a 的取值范围.17.(本小题满分12分)已知直线1l :10ax by ++=,(,a b 不同时为0),2l :(2)0a x y a -++=, (1)若0b =且12l l ⊥,求实数a 的值;(2)当3b =且12//l l 时,求直线1l 与2l 之间的距离.18.(本小题满分12分)已知幂函数21()(22)m f x m m x +=-++为偶函数.(1)求()f x 的解析式;(2)若函数()2(1)1y f x a x =--+在区间(2,3)上为单调函数,求实数a 的取值范围.19.(本小题满分12分)20.(本小题满分13分)已知圆C 的方程:04222=+--+m y x y x ,其中5m <.(1)若圆C 与直线042:=-+y x l 相交于M ,N 两点,且MN =,求m 的值;(2)在(1)条件下,是否存在直线02:=+-c y x l ,使得圆上有四点到直线l ,若存在,求出c 的范围,若不存在,说明理由.21.(本小题满分14分)定义在D 上的函数()f x ,如果满足:对任意x D ∈,存在常数0M ≥,都有()f x M ≤ 成立,则称()f x 是D 上的有界函数,其中M 称为函数()f x 的一个上界.已知函数11()1()()24x x f x a =++,121()log 1axg x x -=-.(1)若函数()g x 为奇函数,求实数a 的值;(2)在(1)的条件下,求函数()g x 在区间5,33⎡⎤⎢⎥⎣⎦上的所有上界构成的集合;(3)若函数()f x 在[)0,+∞上是以3为上界的有界函数,求实数a 的取值范围.2014-2015学年第一学期高一期末考试数学试题参考答案一、选择题(每小题5分,共50分,在每小题给出的四个选项中只有一个符合要求.)题号 1 2 3 4 5 6 7 8 9 10答案 D D C B A C D D C B2、答案D分析:利用简单几何体的结构特征以及三视图的定义,容易判断圆柱的三视图不可能形状相同,大小均等解答:球的三视图均为圆,且大小均等;正四面体的三视图可以形状都相同,大小均等;正方体的三视图可以是三个大小均等的正方形;圆柱的三视图中必有一个为圆,其他两个为矩形故一个几何体的三视图形状都相同,大小均等,那么这个几何体不可以是圆柱故选D点评:本题主要考查了简单几何体的结构特征,简单几何体的三视图的形状大小,空间想象能力,属基础题3、4、6、7、8、9、10、二、填空题(本大题共5小题,每小题5分,共25分.)11.(]2,1 12.14 (0,0,)913.[7,72]-14.31[,log 5]915.①④⑤三、解答题:(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(本小题满分12分).解:(1)由0216,x <+<得(2,14)B =-, ……………………………2分又(,3][6,)A =-∞-⋃+∞,故阴影部分表示的集合为()(,3][14,)R A C B ⋂=-∞-⋃+∞ ; ……………………5分(2)① 21a a ≥+,即1a ≥时,C =∅,成立; ………………………9分② 21a a <+,即1a <时,(2,1)(2,14)C a a =+⊆-,114,22,a a +≤⎧⎨≥-⎩得11a -≤<, ………………………11分综上所述,a 的取值范围为[1,)-+∞. …………………12分17.(本小题满分12分)解:(1)当0b =时,1l :10ax +=,由12l l ⊥知(2)0a -=,…………4分解得2a =;……………6分(2)当3b =时,1l :310ax y ++=,当12//l l 时,有3(2)0,310,a a a --=⎧⎨-≠⎩…………8分解得3a =, …………………9分此时,1l 的方程为:3310x y ++=,2l 的方程为:30x y ++=即3390x y ++=,…………11分则它们之间的距离为229142333d -==+分 18.(本小题满分12分)解:(1)由()f x 为幂函数知2221m m -++=,得 1m =或12m =-……3分 当1m =时,2()f x x =,符合题意;当12m =-时,12()f x x =,不合题意,舍去. ∴2()f x x =. ……………………6分(2)由(1)得22(1)1y x a x =--+,即函数的对称轴为1x a =-, …………8分由题意知22(1)1y x a x =--+在(2,3)上为单调函数,所以12a -≤或13a -≥, ………11分即3a ≤或4a ≥. …………12分19.(本小题满分12分)解:20.(本小题满分13分).解:(1)圆的方程化为 m y x -=-+-5)2()1(22,圆心 C (1,2),半径 m r -=5,则圆心C (1,2)到直线:240l x y +-=的距离为 5121422122=+-⨯+=d ………3分 由于5MN =125MN =,有2221()2r d MN =+, ,)52()51(522+=-∴m 得4=m . …………………………6分(2)假设存在直线02:=+-c y x l ,使得圆上有四点到直线l 的距离为55, ……7分 由于圆心 C (1,2),半径1=r , 则圆心C (1,2)到直线02:=+-c y x l 的距离为 511532122122-<-=++⨯-=c c d , …………10分 解得5254+<<-c . …………13分21.(本小题满分14分)解:(1)因为函数)(x g 为奇函数,所以()()g x g x -=-,即11log 11log 2121---=--+x ax x ax , 即axx x ax --=--+1111,得1±=a ,而当1=a 时不合题意,故1-=a . ……4分 (2)由(1)得:11log )(21-+=x x x g , 下面证明函数11log )(21-+=x x x g 在区间(1,)+∞上单调递增, 证明略. ………6分所以函数11log )(21-+=x x x g 在区间]3,35[上单调递增, 所以函数11log )(21-+=x x x g 在区间]3,35[上的值域为]1,2[--, 所以2)(≤x g ,故函数)(x g 在区间]3,35[上的所有上界构成集合为),2[+∞.……8分(3)由题意知,3)(≤x f 在),0[+∞上恒成立.3)(3≤≤-x f ,x x x a ⎪⎭⎫ ⎝⎛-≤⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛--41221414. xx x xa ⎪⎭⎫ ⎝⎛-⋅≤≤⎪⎭⎫ ⎝⎛-⋅-∴21222124在),0[+∞上恒成立. min max 21222124⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⋅≤≤⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⋅-∴x x x x a ……………………10分设t x =2,t t t h 14)(--=,t t t p 12)(-=,由),0[+∞∈x 得1≥t ,设121t t ≤<,21121212()(41)()()0t t t t h t h t t t ---=>, ()()1212121221()()0t t t t p t p t t t -+-=<, 所以)(t h 在),1[+∞上递减,)(t p 在),1[+∞上递增, ………………12分 )(t h 在),1[+∞上的最大值为5)1(-=h ,)(t p 在),1[+∞上的最小值为1)1(=p .所以实数a 的取值范围为]1,5[-. …………………14分。

北京市西城区2014+—+2015学年度第一学期期末高三理科考试试题

北京市西城区2014+—+2015学年度第一学期期末高三理科考试试题

北京市西城区2014 — 2015学年度第一学期期末试卷高三数学(理科) 2015.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合1,0,1{}A -=,2{|2}B x x x =-<,则集合A B =( )(A ){1,0,1}-(B ){1,0}-(C ){0,1}(D ){1,1}-3.在锐角∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若2a b =,sin B =,则( ) (A )3A π= (B )6A π=(C)sin A =(D )2sin 3A =4.执行如图所示的程序框图,输出的x 值为((A )4 (B )5 (C )6 (D )72.设命题p :∀平面向量a 和b ,||||||-<+a b a b ,则p ⌝为( )(A )∀平面向量a 和b ,||||||-+≥a b a b (B )∃平面向量a 和b ,||||||-<+a b a b (C )∃平面向量a 和b ,||||||->+a b a b (D )∃平面向量a 和b ,||||||-+≥a b a b5.设函数()3cos f x x b x =+,x ∈R ,则“0b =”是“函数()f x 为奇函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件8. 设D 为不等式组1,21,21x y x y x y ---+⎧⎪⎨⎪⎩≤≥≤表示的平面区域,点(,)B a b 为坐标平面xOy 内一点,若对于区域D 内的任一点(,)A x y ,都有1OA OB ⋅≤成立,则a b +的最大值等于( ) (A )2 (B )1 (C )0 (D )36.一个四棱锥的三视图如图所示,那么对于这个四棱锥,下列说法中正确的是( ) (A(B )最长棱的棱长为3(C )侧面四个三角形中有且仅有一个是正三角形 (D )侧面四个三角形都是直角三角形7. 已知抛物线2:4C y x =,点(,0)P m ,O 为坐标原点,若在抛物线C 上存在一点Q ,使得90OQP?o ,则实数m 的取值范围是( )(A )(4,8) (B )(4,)+? (C )(0,4) (D )(8,)+?侧(左)视图正(主)视图俯视图第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 复数2i12iz -=+,则||z = _____.10.设12,F F 为双曲线C :2221(0)16x y a a -=>的左、右焦点,点P 为双曲线C 上一点,如果12||||4PF PF -=,那么双曲线C 的方程为____;离心率为____.11.在右侧的表格中,各数均为正数,且每行中的各数从左到右成等差数列,每列中的各数从上到下成等比数列,那么x y z ++=______.12. 如图,在ABC ∆中,以BC 为直径的半圆分别交AB ,AC 于点E ,F ,且2AC AE =,那么AFAB=____;A ∠= _____.13.现要给4个唱歌节目和2个小品节目排列演出顺序,要求2个小品节目之间恰好有3个唱歌节目,那么演出顺序的排列种数是______. (用数字作答)14. 设P ,Q 为一个正方体表面上的两点,已知此正方体绕着直线PQ 旋转()角后能与自身重合,那么符合条件的直线PQ 有_____条.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()cos cos 442x x xf x =+, x ∈R 的部分图象如图所示. (Ⅰ)求函数()f x 的最小正周期和单调递增区间;(Ⅱ) 设点B 是图象上的最高点,点A 是图象与x 轴的交点,求BAO ∠tan 的值.16.(本小题满分13分)现有两种投资方案,一年后投资盈亏的情况如下: (1)投资股市:(2)购买基金:(Ⅰ)当4p =时,求q 的值; (Ⅱ)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于45,求p 的取值范围; (Ⅲ)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两种方案中选择一种,已知12p =,16q =,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?给出结果并说明理由.17.(本小题满分14分)如图,在四棱柱1111D C B A ABCD -中,A A 1⊥底面ABCD ,90BAD ∠=,BC AD //,且122A A AB AD BC ==== ,点E 在棱AB 上,平面1A EC 与棱11C D 相交于点F .(Ⅰ)证明:1A F ∥平面1B CE ;(Ⅱ)若E 是棱AB 的中点,求二面角1A EC D --的余弦值; (Ⅲ)求三棱锥11B A EF -的体积的最大值.18.(本小题满分13分)已知函数2()(0)f x ax bx a =->和()ln g x x =的图象有公共点P ,且在点P 处的切线相同.(Ⅰ)若点P 的坐标为1(,1)e-,求,a b 的值; (Ⅱ)已知a b =,求切点P 的坐标.19.(本小题满分14分)已知椭圆C :2211612x y +=的右焦点为F ,右顶点为A ,离心率为e ,点(,0)(4)P m m >满足条件||||FA e AP =. (Ⅰ)求m 的值;(Ⅱ)设过点F 的直线l 与椭圆C 相交于M ,N 两点,记PMF ∆和PNF ∆的面积分别为1S ,2S ,求证:12||||S PM S PN =.B CDA B 1C 1E FA 1 D 120.(本小题满分13分)设函数()(9)f x x x =-,对于任意给定的m 位自然数0121m m n a a a a -=(其中1a 是个位数字,2a 是十位数字,),定义变换A :012()()()()m A n f a f a f a =+++. 并规定(0)0A =.记10()n A n =,21()n A n =,, 1()k k n A n -=,.(Ⅰ)若02015n =,求2015n ;(Ⅱ)当3m ≥时,证明:对于任意的*()m m ∈N 位自然数n 均有1()10m A n -<; (Ⅲ)如果*010(,3)m n m m <∈≥N ,写出m n 的所有可能取值.(只需写出结论)北京市西城区2014 — 2015学年度第一学期期末高三数学(理科)参考答案及评分标准2015.1一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.D 3.A 4.C 5.C 6.D 7.B 8.A 二、填空题:本大题共6小题,每小题5分,共30分.9.1 10.221416x y -=11.17412.12 π313.9614.13注:第10,12题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分) (Ⅰ)解:因为()cos cos 442x x xf x =+ cos 22x x=+ ……………… 2分=π2sin()26x +, ……………… 4分所以 2π4π12T ==. 故函数()f x 的最小正周期为4π. ……………… 6分由题意,得πππ2π2π2262x k k -++≤≤, 解得4π2π4π4π+33k x k -≤≤,所以函数()f x 的单调递增区间为4π2π[4π,4π+],()33k k k -∈Z . (9)分(Ⅱ)解:如图过点B 作线段BC 垂直于x 由题意,得33π4TAC ==,2=BC ,所以2tan 3πBC BAO AC ∠==. ………… 13分16.(本小题满分13分)(Ⅰ)解:因为“购买基金”后,投资结果只有“获利”、“不赔不赚”、“亏损”三种,且三种投资结果相互独立, 所以p +13+q =1. ……………… 2分 又因为14p =, 所以q =512. ……………… 3分(Ⅱ)解:记事件A 为 “甲投资股市且盈利”,事件B 为“乙购买基金且盈利”,事 件C 为“一年后甲、乙两人中至少有一人投资获利”, ……………… 4分则C AB AB AB =U U ,且A ,B 独立. 由上表可知, 1()2P A =,()P B p =.所以()()()()P C P AB P AB P AB =++ (5)分111(1)222p p p =?+?? 1122p =+. (6)分因为114()225P C p =+>,所以35p >. ……………… 7分又因为113p q ++=,0q ≥, 所以23p ≤.所以3253p ≤<. (8)分(Ⅲ)解:假设丙选择“投资股票”方案进行投资,且记X 为丙投资股票的获利金额(单位:万元),所以随机变量X 的分布列为:…………… 9分则113540(2)2884EX =⨯+⨯+-⨯=. ……………10 分假设丙选择“购买基金”方案进行投资,且记Y 为丙购买基金的获利金额(单位:万元),所以随机变量Y 的分布列为:…………… 11分则111520(1)2366EY =⨯+⨯+-⨯=. …………… 12分因为EX EY >,所以丙选择“投资股市”,才能使得一年后的投资收益的数学期望较大.……… 13分17.(本小题满分14分)(Ⅰ)证明:因为1111D C B A ABCD -是棱柱,所以平面ABCD ∥平面1111A B C D .又因为平面ABCD 平面1A ECF EC =,平面1111A B C D 平面11A ECF A F =,所以1A F ∥EC . …………………2分又因为1A F ⊄平面1B CE ,EC ⊂平面1B CE ,所以1A F ∥平面1B CE . …………………4分(Ⅱ)解:因为1AA ⊥底面ABCD ,90BAD ∠=,所以1AA ,AB ,AD 两两垂直,以A 为原点,以AB ,AD ,1AA 分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系. …………………5分则1(0,0,2)A ,(1,0,0)E ,(2,1,0)C , 所以 1(1,0,2)A E =-,1(2,1,2)AC =-. 设平面1A ECF 的法向量为(,,),m x y z = 由10A E m ⋅=,10AC m ⋅=, 得20,220.x z x y z -=⎧⎨+-=⎩令1z =,得(2,2,1)m =-. …………………7分又因为平面DEC 的法向量为(0,0,1)n =, …………………8分所以1cos ,3||||m n m n m n ⋅<>==⋅,由图可知,二面角1A EC D --的平面角为锐角,所以二面角1A EC D --的余弦值为13. …………………10分(Ⅲ)解:过点F 作11FM A B ⊥于点M ,因为平面11A ABB ⊥平面1111A B C D ,FM ⊂平面1111A B C D , 所以FM ⊥平面11A ABB ,所以11111113B A EF F B A E A B E V V S FM --∆==⨯⨯ …………………12分1222323FM FM ⨯=⨯⨯=. 因为当F 与点1D 重合时,FM 取到最大值2(此时点E 与点B 重合), 所以当F 与点1D 重合时,三棱锥11B A EF -的体积的最大值为43. ………………14分18.(本小题满分13分) (Ⅰ)解:由题意,得21()1e e ea bf =-=-, …………………1分且()2f x ax b '=-,1()g x x'=, …………………3分由已知,得11()()e ef g ''=,即2e eab -=, 解得22e a =,3e b =. …………………5分 (Ⅱ)解:若a b =,则()2f x ax a '=-,1()g x x'=, 设切点坐标为(,)s t ,其中0s >,由题意,得 2ln as as s -=, ① 12as a s-=, ② …………………6分 由②,得 1(21)a s s =-,其中12s ≠,代入①,得 1ln 21s s s -=-. (*) (7)分因为 10(21)a s s =>-,且0s >,所以 12s >. …………………8分 设函数 1()ln 21x F x x x -=--,1(,)2x ∈+∞, 则 2(41)(1)()(21)x x F x x x ---'=-. (9)分令()0F x '= ,解得1x =或14x =(舍). …………………10分 当x 变化时,()F x '与()F x 的变化情况如下表所示,…………………12分所以当1x =时,()F x 取到最大值(1)0F =,且当1(,1)(1,)2x ∈+∞时()0F x <.因此,当且仅当1x =时()0F x =. 所以方程(*)有且仅有一解1s =. 于是 ln 0ts ==,因此切点P 的坐标为(1,0). …………………13分19.(本小题满分14分)(Ⅰ)解:因为椭圆C 的方程为 2211612x y +=,所以 4a =,b =,2c =, ………………2分 则 12c e a ==,||2FA =,||4AP m =-. ………………3分 因为||21||42FA AP m ==-, 所以 8m =. ………………5分 (Ⅱ)解:若直线l 的斜率不存在, 则有 21S S =,||||PM PN =,符合题意. …………6分若直线l 的斜率存在,则设直线l 的方程为)2(-=x k y ,),(11y x M ,),(22y x N . 由 ⎪⎩⎪⎨⎧-==+),2(,1121622x k y y x 得 2222(43)1616480k x k x k +-+-=, ……………… 7分可知 0>∆恒成立,且 34162221+=+k k x x ,3448162221+-=k k x x . (8)分因为 8)2(8)2(8822112211--+--=-+-=+x x k x x k x y x y k k PN PM ……………… 10分)8)(8()8)(2()8)(2(211221----+--=x x x x k x x k)8)(8(32)(102212121--++-=x x kx x k x kx0)8)(8(323416103448162212222=--++⋅-+-⋅=x x k k k k k k k ,所以 MPF NPF ∠=∠. ……………… 12分因为PMF ∆和PNF ∆的面积分别为11||||sin 2S PF PM MPF =⋅⋅∠, 21||||sin 2S PF PN NPF =⋅⋅∠, ……………… 13分所以12||||S PM S PN =. ……………… 14分20.(本小题满分13分)(Ⅰ)解:114082042n =+++=,2201434n =+=,3182038n =+=,418826n =+=,5141832n =+=,6181432n =+=,……所以 201532n =. (3)分(Ⅱ)证明:因为函数2981()(9)()24f x x x x =-=--+,所以对于非负整数x ,知()(9)20f x x x =-≤.(当4x =或5时,取到最大值)… 4分 因为 12()()()()m A n f a f a f a =+++,所以 ()20A n m ≤. ……………… 6分 令 1()1020m g m m -=-,则31(3)102030g -=-⨯>.当3m ≥时,11(1)g()1020(1)1020910200m m m g m m m m --+-=-+-+=⨯->, 所以 (1)g()0g m m +->,函数()g m ,(m ∈N ,且3m ≥)单调递增. 故 g()g(3)0m >≥,即11020()m m A n ->≥.所以当3m ≥时,对于任意的m 位自然数n 均有1()10m A n -<. …………………9分(Ⅲ)答:m n 的所有可能取值为0,8,14,16,20,22,26,28,32,36,38.…………………14分。

北京市西城区2014 — 2015学年高三(文)第一学期期末试卷总结

北京市西城区2014 — 2015学年高三(文)第一学期期末试卷总结

北京市西城区2014 — 2015学年度第一学期期末试卷高三数学(文科) 2015.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合1,0,1,2{}A -=,2{|}B x x x =>,则集合A B = ( ) (A ){1,0,1}-(B ){1,2}-(C ){0,1,2}(D ){1,1,2}-【答案】B 【解析】“0x ∀>”的否定为“0x ∃>”,“2log 2x x >”的否定为“2log 2x x ≤” 所以,p ⌝为:2log 0,2x x x ∃>≤ 故答案为:B 【考点】全称量词与存在性量词 【难度】 13.在∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若A 为锐角,2a b =,sin B =,则( )【答案】B 【解析】{}01B x x x =<>或,所以{}1,2A B =-故答案为:B 【考点】 集合的运算 【难度】 12.设命题p :2log 0,2x x x ∀>>,则p ⌝为( ) (A )2log 0,2x x x ∀>< (B )2log 0,2x x x ∃>≤ (C )2log 0,2x x x ∃>< (D )2log 0,2x x x ∃>≥(A )3A π= (B )6A π=(C)sin 3A =(D )2sin 3A =【答案】A 【解析】由正弦定理得sin sin a b A B =,所以sin 2sin A aB b==,所以sin A =。

因为ABC ∆为锐角三角形,所以3A π=故答案为:A【考点】 正弦定理 【难度】 14.执行如图所示的程序框图,输出的x 值为( ) (A )4 (B )5 (C )6 (D )7【答案】C【解析】3x =时,328y ==,833<; 4x =时,4216y ==,1643<; 5x =时,5232y ==,3253<;6x =时,6264y ==,6463>,输出6x =。

北京市西城区2015届高三第一学期期末数学(文)试题(含答案)(word版)

北京市西城区2015届高三第一学期期末数学(文)试题(含答案)(word版)

北京市西城区2014 — 2015学年度第一学期期末试卷高三数学(文科) 2015.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合1,0,1,2{}A -=,2{|}B x x x =>,则集合A B =( )(A ){1,0,1}-(B ){1,2}-(C ){0,1,2}(D ){1,1,2}-3.在锐角∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若2a b =,sin B =,则( ) (A )3A π= (B )6A π=(C)sin A =(D )2sin 3A =4.执行如图所示的程序框图,输出的x 值为( ) (A )4 (B )5 (C )6 (D )72.设命题p :2log 0,2x x x ∀>>,则p ⌝为( ) (A )2log 0,2x x x ∀>< (B )2log 0,2x x x ∃>≤ (C )2log 0,2x x x ∃>< (D )2log 0,2x x x ∃>≥5.设函数()y f x =的定义域为R ,则“(0)0f =”是“函数()f x 为奇函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件6. 某天,甲要去银行办理储蓄业务,已知银行的营业时间为9:00至17:00,设甲在当天 13:00至18:00之间任何时间去银行的可能性相同,那么甲去银行恰好能办理业务的概率是( )(A )13 (B )34 (C )58 (D )458. 如图,在空间四边形ABCD 中,两条对角线,AC BD 互相垂直,且长度分别为4和6,平行于这两条对角线的平面与边,,,AB BC CD DA 分别相交于点,,,E F G H ,记四边形EFGH 的面积为y ,设BEx AB=,则( ) (A )函数()y f x =的值域为(0,4] (B )函数()y f x =的最大值为8(C )函数()y f x =在2(0,)3上单调递减(D )函数()y f x =满足()(1)f x f x =-7. 设抛物线2:4W y x =的焦点为F ,过F 的直线与W 相交于A ,B 两点,记点F 到直线l :1x =-的距离为d ,则有( )(A )2||d AB ≥ (B )2||d AB = (C )2||d AB ≤ (D )2||d AB <A BE CD GH F。

北京市西城区高一数学上学期期末考试试题(基础薄弱校

北京市西城区高一数学上学期期末考试试题(基础薄弱校

北京市西城区2013 — 2014学年度第一学期期末试卷高一数学2014.1试卷满分:150分 考试时间:120分钟 A 卷 [必修 模块4] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.已知[0,2)∈πα,且角α与角π6-终边相同,则=α( ) (A )11π6(B )7π6 (C )5π6(D )π62.若sin 0<α,且cos 0>α,则角α是( ) (A )第一象限的角 (B )第二象限的角 (C )第三象限的角(D )第四象限的角3.已知向量1(1,0)=e ,2(0,1)=e ,那么向量122+e e 的坐标是( ) (A )(1,2)-(B )(1,2)-(C )(1,2)--(D )(1,2)4.若角α的终边经过点(1,2)P -,则tan =α( )(A (B ) (C )2- (D )12-5.已知正方形ABCD 的边长为1,则AB AC ⋅=u u u r u u u r( )(A (B )1(C(D )26.在平面直角坐标系xOy 中,函数sin y x =的图象( ) (A )关于x 轴对称 (B )关于y 轴对称 (C )关于原点对称(D )关于点(,0)2π对称7.在△ABC 中,D 是BC 的中点,则向量AD =u u u r( )(A )1122AB AC +u u ur u u u r(B )AB AC +u u u r u u u r(C )1122AB AC -u u ur u u u r(D )AB AC -u u u r u u u r8.已知函数1()cos 2f x x x =+,则()12f π=( )(A (B (C )1(D9.设a ,b 是两个非零向量,且+=-a b a b ,则a 与b 夹角的大小为( ) (A )120︒(B )90︒(C )60︒(D )30︒10.已知函数()sin cos f x x x =ωω在区间[,]63ππ-上单调递增,则正数ω的最大值是( ) (A )32(B )43(C )34 (D )23二、填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 11. sin()3π-=______. 12. 若1cos 2=-α,且(0,)∈πα,则α=______. 13. 已知向量(1,3)=a ,(2,)k =-b .若向量a 与b 共线,则实数k =_____. 14. 若tan 2=α,且32π∈(π,)α,则sin()2π+=α______. 15. 定义在R 上的函数()f x 满足:对任意的x ∈R ,都有(2)()f x f x +=.若(1)2f -=,则(3)f =_____.16. 已知向量(cos ,sin )αα=a ,(cos ,sin )ββ=b .若π,3〈〉=a b ,则cos()-=αβ_____.三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)已知3tan 4=-α. (Ⅰ)求πtan()4-α的值; (Ⅱ)求2sin 3cos 3sin 2cos --αααα的值.18.(本小题满分12分)已知函数2()(sin 2cos 2)1f x x x =++. (Ⅰ)求()f x 的最小正周期; (Ⅱ)若[,]124x ππ∈,求()f x 的最大值与最小值.19.(本小题满分12分)如图,正六边形ABCDEF 的边长为1,O 为其中心,,M N 分别是,BC DE 上的动点,且BM DN =u u u u r u u u r .(Ⅰ)若,M N 分别是,BC DE 的中点,求OM ON ⋅u u u u r u u u r的值; (Ⅱ)求OM ON ⋅u u u u r u u u r的取值范围.B 卷 [学期综合] 本卷满分:50分一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上. 1. 已知集合2{|430}A x x x =-+>,{|02}B x x =<≤,那么A B =I _____. 2. 已知2log 3a =,3log 2b =,21log 3c =.将,,a b c 按从小到大排列为_____. 3. 函数()121()2xf x x =-的零点个数为_____.4. 若函数2()2f x x x =-在区间(,)a +∞上是增函数,则a 的取值范围是_____.5. 给定数集A .若对于任意,a b A ∈,有a b A +∈,且a b A -∈,则称集合A 为闭集合.给出如下三个结论:① 集合{4,2,0,2,4}A =--为闭集合; ② 集合{|2,}A n n k k ==∈Z 为闭集合; ③ 若集合12,A A 为闭集合,则12A A U 为闭集合. 其中,全部正确结论的序号是_____.二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 6.(本小题满分10分)已知函数21()x f x x-=.(Ⅰ)证明:()f x 是奇函数;(Ⅱ)用函数单调性的定义证明:()f x 在(0,)+∞上为增函数.7.(本小题满分10分)已知函数()log (2)1a f x x =+-,其中1a >.(Ⅰ)若()f x 在[0,1]上的最大值与最小值互为相反数,求a 的值; (Ⅱ)若()f x 的图象不经过第二象限,求a 的取值范围. 8.(本小题满分10分)已知函数()|2|f x x x =-. (Ⅰ)解不等式()3f x <;(Ⅱ)设0a ,求()f x 在区间[0,]a 上的最大值.北京市西城区2013 — 2014学年度第一学期期末试卷高一数学参考答案及评分标准 2014.1 A 卷 [必修 模块4] 满分100分一、选择题:本大题共10小题,每小题4分,共40分.1. A ;2. D ;3. D ;4. C ;5. B ;6. C ;7.A ;8. A ;9. B ; 10. C. 二、填空题:本大题共6小题,每小题4分,共24分.11.2-; 12. 32π; 13.6-;14. 5-15.2; 16. 12. 三、解答题:本大题共3小题,共36分. 17.(本小题满分12分) (Ⅰ)解:因为 3tan 4=-α, 所以 πtan tanπ4tan()π41tan tan 4--=+⋅ααα 【 3分】 7=-. 【 6分】(Ⅱ)解:因为3tan 4=-α, 所以2sin 3cos 2tan 33sin 2cos 3tan 2--=--αααααα 【 9分】 1817=. 【12分】18.(本小题满分12分)(Ⅰ)解:2()(sin 2cos 2)1f x x x =++22sin 22sin 2cos 2cos 21x x x x =+⋅++ 【 2分】sin 42x =+.【 4分】 因为 242T ππ==, 所以()f x 的最小正周期是2π. 【 6分】 (Ⅱ)解:由(Ⅰ)得,()sin 42f x x =+. 因为124x ππ≤≤,所以43x π≤≤π, 【 8分】所以 0sin 41x ≤≤,所以 2sin 423x ≤+≤. 【10分】 所以,当8x π=时,()f x 取得最大值3;当4x π=时,()f x 取得最小值2.【12分】19.(本小题满分12分)(Ⅰ)解:因为ABCDEF 是边长为1的正六边形,O 为其中心,且,M N 分别是,BC DE 的中点,所以 OM ON ==u u u u r u u u r ,120MON ︒∠=, 【 2分】所以 3cos1208OM ON OM ON ︒⋅==-u u u u r u u u r u u u u r u u u r . 【 4分】(Ⅱ)解:因为ABCDEF 是边长为1的正六边形,O 为其中心,BM DN =u u u u r u u u r,所以 △DON ≌△BOM . 【 6分】所以 OM ON =u u u u r u u u r,且DON BOM ∠=∠,即 OM ON =u u u u r u u u r ,且120MON ︒∠=. 【 8分】所以 21cos1202OM ON OM ON ON ︒⋅==-u u u u r u u u r u u u u r u u u r u u u r . 【10分】当点N 重合于点D 或E 时,ON u u u r 取得最大值1,OM ON u u u u r u u u r ⋅取得最小值12-;【11分】当点N 是DE 的中点时,ON u u u r 取得最小值2,OM ON u u u ur u u u r ⋅取得最大值38-.【12分】B 卷 [学期综合] 满分50分一、填空题:本大题共5小题,每小题4分,共20分.1.{|01}x x <<;2.c b a <<;3. 1;4. [1,)+∞;5.②. 二、解答题:本大题共3小题,共30分.6.(本小题满分10分)(Ⅰ)证明:由已知,函数()f x 的定义域为{0}D x x =∈≠R . 【 1分】设x D ∈,则x D -∈,22()11()()x x f x f x x x----==-=--. 【 3分】所以函数()f x 为奇函数. 【 4分】 (Ⅱ)证明:设12,x x 是(0,)+∞上的两个任意实数,且12x x <,则210x x x ∆=->.2221212111()()x x y f x f x x x --∆=-=-【 6分】 22122121121212(1)(1)()(1)x x x x x x x x x x x x ----+==. 【 8分】 因为 120x x <<, 所以 120x x >,210x x ->,1210x x +>,所以 0y ∆>, 【 9分】 所以 ()f x 在(0,)+∞上是增函数. 【10分】7.(本小题满分10分)(Ⅰ)解:函数()log (2)1a f x x =+-的定义域是(2,)-+∞. 【 1分】因为 1a >,所以 ()log (2)1a f x x =+-是[0,1]上的增函数. 【 2分】 所以 ()f x 在[0,1]上的最大值是(1)log 31a f =-;最小值是(0)log 21a f =-. 【 4分】依题意,得 log 31(log 21)a a -=--, 【 5分】 解得a =【 6分】(Ⅱ)解:由(Ⅰ)知,()log (2)1a f x x =+-是(2,)-+∞上的增函数. 【 7分】在()f x 的解析式中,令0x =,得(0)log 21a f =-, 所以,()f x 的图象与y 轴交于点(0,log 21)a -. 【 8分】 依题意,得(0)log 210a f =-≤, 【 9分】 解得 2a ≥. 【10分】8.(本小题满分10分)(Ⅰ)解:原不等式可化为22230x x x ≥⎧⎨--<⎩,, (1) 或22230.x x x <⎧⎨-+>⎩,(2) 【 1分】解不等式组(1),得 23x ≤<;解不等式组(2),得2x <. 【 3分】 所以原不等式的解集为{|3}x x <. 【 4分】(Ⅱ)解:222,2,()|2|2, 2.x x x f x x x x x x ⎧-≥⎪=-=⎨-+<⎪⎩ 【 5分】① 当01a <<时,()f x 是[0,]a 上的增函数,此时()f x 在[0,]a 上的最大值是2()2f a a a =-+. 【 6分】 ② 当12a ≤≤时,()f x 在[0,1]上是增函数,在[1,]a 上是减函数,此时()f x 在[0,]a 上的最大值是(1)1f =. 【 7分】③ 当2a >时,令()(1)(2)10f a f a a -=-->,解得1a >. 所以,当21a <≤+此时()(1)f a f ≤,()f x 在[0,]a 上的最大值是(1)1f =;当1a >+()(1)f a f >,()f x 在[0,]a 上的最大值是2()2f a a a =-.【 9分】 记()f x 在区间[0,]a 上的最大值为()g a ,所以222,01,()1,112,1a a a g a a a a a ⎧-+<<⎪⎪=≤≤⎨⎪->⎪⎩ 【10分】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市西城区2014 — 2015学年度第一学期期末试卷高一数学 2015.1试卷满分:150分 考试时间:120分钟A 卷 [必修 模块4] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.已知(0,2π)α∈,且sin 0<α,cos 0>α,则角α的取值范围是( ) (A )π(0,)2(B )π(,π)2(C )3π(π,)2(D )3π(,2π)22.已知向量(2,8)=a ,(4,2)=-b .若2=-c a b ,则向量=c ( ) (A )(0,18)(B )(8,14)(C )(12,12)(D )(4,20)-3.已知角α的终边经过点(3,4)P -,那么sin =α( ) (A )35(B )45-(C )34(D )34-4.在△ABC 中,D 是BC 的中点,则AD =( ) (A )1()2AB AC +(B )1()2AB AC -(C )1()2AB BC +(D )1()2AB BC -5.函数2(sin cos )y x x =-的最小正周期为( ) (A )2π(B )3π2(C )π(D )π26.如果函数cos()y x =+ϕ的一个零点是3π,那么ϕ可以是( ) (A )6π (B )6π-(C )3π(D )3π-7.如图,在矩形ABCD 中,2AB =,BC =, E 是CD的中点,那么AE DC ⋅=( )(A )4(B )2(C (D )18.当[0,π]x ∈时,函数()cos f x x x =的值域是( )(A )[2,1]-(B )[1,2]-(C )[1,1]-(D )[-9.为得到函数πcos()6y x =+的图象,只需将函数sin y x =的图象( ) (A )向左平移π3个单位 (B )向右平移π3个单位(C )向左平移2π3个单位 (D )向右平移2π3个单位10.已知a ,b 为单位向量,且m ⋅=a b ,则||t +a b ()t ∈R 的最小值为( )(A (B )1(C )||m(D二、填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 11.若向量(1,2)=a 与向量(,1)=-λb 共线,则实数=λ_____. 12.已知α是第二象限的角,且5sin 13α=,则cos =α_____. 13.若(,)22ππ∈-θ,且tan 1>θ,则θ的取值范围是_____. 14.已知向量(1,3)=a ,(2,1)=-b ,(1,1)=c .若(,)=∈R c a +b λμλμ,则=λμ_____. 15.函数2()sin sin cos f x x x x =+⋅的最大值是_____.16.关于函数()sin(2)()6f x x x π=-∈R ,给出下列三个结论:① 对于任意的x ∈R ,都有2()cos(2)3f x x π=-; ② 对于任意的x ∈R ,都有()()22f x f x ππ+=-;③ 对于任意的x ∈R ,都有()()33f x f x ππ-=+.其中,全部正确结论的序号是_____.三、解答题:本大题共3小题,共36分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知tan 2=-α,其中(,)2π∈πα. (Ⅰ)求πtan()4-α的值; (Ⅱ)求sin 2α的值.18.(本小题满分14分)已知向量(cos ,sin )=ααa ,1(2=-b ,其中α是锐角. (Ⅰ)当30︒=α时,求||+a b ; (Ⅱ)证明:向量+a b 与-a b 垂直; (Ⅲ)若向量a 与b 夹角为60︒,求角α.19.(本小题满分10分)已知函数()sin cos f x a x b x =+,其中a ∈Z ,b ∈Z .设集合{|()0}A x f x ==,{|(())0}B x f f x ==,且A B =.(Ⅰ)证明:0b =; (Ⅱ)求a 的最大值.B 卷 [学期综合] 本卷满分:50分一、填空题:本大题共5小题,每小题4分,共20分. 把答案填在题中横线上. 1.已知集合{,}A a b =,则满足{,,}A B a b c = 的不同集合B 的个数是_____. 2.若幂函数y x =α的图象过点(4,2),则=α_____.3.函数2lg ,0,()4,0,x x f x x x >⎧=⎨-<⎩的零点是_____.4.设()f x 是定义在R 上的偶函数,且()f x 在[0,)+∞上是减函数.若()(2)f m f >,则 实数m 的取值范围是_____.5.已知函数()f x 的定义域为D .若对于任意的1x D ∈,存在唯一的2x D ∈,使得M =成立,则称函数()f x 在D 上的几何平均数为M .已知函数()31([0,1])g x x x =+∈,则()g x 在区间[0,1]上的几何平均数为_____.二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 6.(本小题满分10分)已知函数()(2)()f x x x a =-+,其中a ∈R . (Ⅰ)若()f x 的图象关于直线1x =对称,求a 的值; (Ⅱ)求()f x 在区间[0,1]上的最小值. 7.(本小题满分10分)已知函数()23xxf x a b =⋅+⋅,其中,a b 为常数.(Ⅰ)若0ab >,判断()f x 的单调性,并加以证明; (Ⅱ)若0ab <,解不等式:(1)()f x f x +>.8.(本小题满分10分)定义在R 上的函数()f x 同时满足下列两个条件:① 对任意x ∈R ,有(2)()2f x f x +≥+;② 对任意x ∈R ,有(3)()3f x f x +≤+. 设()()g x f x x =-.(Ⅰ)证明:(3)()(2)g x g x g x +≤≤+; (Ⅱ)若(4)5f =,求(2014)f 的值.北京市西城区2014 — 2015学年度第一学期期末试卷高一数学参考答案及评分标准 2015.1A 卷 [必修 模块4] 满分100分一、选择题:本大题共10小题,每小题4分,共40分.1.D ;2.B ;3.B ;4.A ;5.C ;6.A ;7.B ;8.A ;9.C ; 10.D . 二、填空题:本大题共6小题,每小题4分,共24分.11.12-; 12.1213-; 13. (,)42ππ;14.32; 15.12; 16. ① ② ③. 注:16题,少解不给分.三、解答题:本大题共3小题,共36分. 17.(本小题满分12分) (Ⅰ)解:因为 tan 2=-α,所以 πtan tanπ4tan()π41tan tan 4--=+⋅ααα 【 3分】 3=. 【 6分】(Ⅱ)解:由π(,π)2∈α,tan 2α=-, 得sin α=, 【 8分】cos α=. 【10分】 所以 4sin 22sin cos 5==-ααα. 【12分】18.(本小题满分14分) (Ⅰ)解:当30︒=α时,1)2=a , 【 1分】 所以11(,)22+a b =, 【 2分】 所以||+=a b = 【 4分】 (Ⅱ)证明:由向量(cos sin )αα=,a,1(2=-b , 得1(cos ,sin 2+=-ααa b,1(cos ,sin 2-=+ααa b , 由 π(0,)2∈α,得向量+a b ,-a b 均为非零向量. 【 5分】 因为 222213()()||||(sin cos )()044+⋅-=-=+-+=ααa b a b a b , 【 7分】所以向量+a b 与-a b 垂直. 【 8分】 (Ⅲ)解:因为||||1==a b ,且向量a 与b 夹角为60︒, 所以 1||||cos 602︒⋅=⋅=a b a b . 【10分】所以 11cos 22-+=αα, 即 π1sin()62-=α. 【12分】 因为 π02<<α, 所以 πππ663-<-<α, 【13分】 所以 ππ66-=α, 即3π=α. 【14分】19.(本小题满分10分) (Ⅰ)证明:显然集合A ≠∅.设 0x A ∈,则0()0f x =. 【 1分】 因为 A B =,所以 0x B ∈, 即 0(())0f f x =,所以 (0)0f =, 【 3分】 所以 0b =. 【 4分】 (Ⅱ)解:由(Ⅰ)得()sin f x a x =,a ∈Z .① 当0a =时,显然满足A B =. 【 5分】 ② 当0a ≠时,此时{|sin 0}A x a x ==;{|sin(sin )0}B x a a x ==, 即{|sin ,}B x a x k k ==π∈Z . 【 6分】因为 A B =,所以对于任意x ∈R ,必有sin a x k ≠π (k ∈Z ,且0)k ≠成立. 【 7分】所以对于任意x ∈R ,sin k x a π≠,所以 1k aπ>, 【 8分】 即 ||||a k <⋅π,其中k ∈Z ,且0k ≠.所以 ||a <π, 【 9分】 所以整数a 的最大值是3. 【10分】B 卷 [学期综合] 满分50分一、填空题:本大题共5小题,每小题4分,共20分.1. 4;2.12; 3. 2-,1; 4. (2,2)-; 5. 2. 注:3题,少解得2分,有错解不给分. 二、解答题:本大题共3小题,共30分. 6.(本小题满分10分)(Ⅰ)解法一:因为2()(2)()(2)2f x x x a x a x a =-+=+--, 所以,()f x 的图象的对称轴方程为22ax -=. 【 2分】 由212a-=,得0a =. 【 4分】 解法二:因为函数()f x 的图象关于直线1x =对称,所以必有(0)(2)f f =成立, 【 2分】 所以 20a -=, 得0a =. 【 4分】 (Ⅱ)解:函数()f x 的图象的对称轴方程为22ax -=. ① 当202a-≤,即 2a ≥时, 因为()f x 在区间(0,1)上单调递增,所以()f x 在区间[0,1]上的最小值为(0)2f a =-. 【 6分】② 当2012a-<<,即 02a <<时, 因为()f x 在区间2(0,)2a -上单调递减,在区间2(,1)2a-上单调递增, 所以()f x 在区间[0,1]上的最小值为222()()22a a f -+=-. 【 8分】 ③ 当212a-≥,即 0a ≤时,因为()f x 在区间(0,1)上单调递减,所以()f x 在区间[0,1]上的最小值为(1)(1)f a =-+. 【10分】7.(本小题满分10分)(Ⅰ)解:当0,0a b >>时,()f x 在R 上是增函数;当0,0a b <<时,()f x 在R 上是减函数; 【 1分】 证明如下:当0,0a b >>时,任取12,x x ∈R ,且12x x <,则210x x x ∆=->, 则 212121()()(22)(33)x x x xy f x f x a b ∆=-=-+-.因为 122122,0(22)0x x x x a a <>⇒->;又122133,0(33)0x x x xb b <>⇒->, 所以 21()()0y f x f x ∆=->,所以,当0,0a b >>时,()f x 在R 上是增函数.当0,0a b <<时,同理可得,()f x 在R 上是减函数. 【 5分】 (Ⅱ)解:由(1)()2230x xf x f x a b +-=⋅+⋅>,得 32()2xb a >-. (*) 【 6分】 ① 当0,0a b <>时,(*)式化为3()22xa b->, 解得32log ()2ax b>-. 【 8分】 ② 当0,0a b ><时,(*)式化为3()22xab-<, 解得32log ()2ax b<-. 【10分】 8.(本小题满分10分)(Ⅰ)证明:因为()()g x f x x =-,所以(2)(2)2g x f x x +=+--,(3)(3)3g x f x x +=+--.由条件①,②可得(2)(2)2()22()()g x f x x f x x f x x g x +=+--≥+--=-=; ③ 【 2分】 (3)(3)3()33()()g x f x x f x x f x x g x +=+--≤+--=-=. ④ 【 4分】所以(3)()(2)g x g x g x +≤≤+. (Ⅱ)解:由③得 (2)()g x g x +≥,所以(6)(4)(2)()g x g x g x g x +≥+≥+≥. 【 6分】由④得 (3)()g x g x +≤,所以(6)(3)()g x g x g x +≤+≤. 【 7分】 所以必有(6)()g x g x +=,即()g x 是以6为周期的周期函数. 【 8分】 所以(2014)(33564)(4)(4)41g g g f =⨯+==-=. 【 9分】 所以(2014)(2014)20142015f g =+=. 【10分】。

相关文档
最新文档