八年级 数学 勾股定理与实数复习
八年级下册数学勾股定理的知识点
八年级下册数学勾股定理的知识点八年级下册数学勾股定理的知识点在我们上学期间,相信大家一定都接触过知识点吧!知识点在教育实践中,是指对某一个知识的泛称。
那么,都有哪些知识点呢?以下是店铺精心整理的八年级下册数学勾股定理知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。
八年级下册数学勾股定理的知识点1勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么.勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方。
勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形。
勾股定理的逆定理如果三角形三边长a,b,c满足,那么这个三角形是直角三角形,其中c为斜边.①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若,时,以a,b,c为三边的三角形是钝角三角形;若,时,以a,b,c为三边的三角形是锐角三角形;②定理中a,b,c及只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边.③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形质数和合数应用1、质数与密码学:所谓的公钥就是将想要传递的信息在编码时加入质数,编码之后传送给收信人,任何人收到此信息后,若没有此收信人所拥有的密钥,则解密的过程中(实为寻找素数的过程),将会因为找质数的过程(分解质因数)过久,使即使取得信息也会无意义。
八年级上册数学总复习资料
八年级上册数学总复习资料初二数学上册总复习指导第一章勾股定理1、探索勾股定理① 勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c22、一定是直角三角形吗① 如果三角形的三边长a b c满足a2+b2=c2 ,那么这个三角形一定是直角三角形3、勾股定理的应用第二章实数1、认识无理数① 有理数:总是可以用有限小数和无限循环小数表示② 无理数:无限不循环小数2、平方根① 算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x 就叫做a的算数平方根② 特别地,我们规定:0的算数平方根是0③ 平方根:一般地,如果一个数x的平方等于a,即x2=a。
那么这个数x就叫做a 的平方根,也叫做二次方根④ 一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根⑤ 正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±⑥ 开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数3、立方根① 立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a 的立方根,也叫三次方根② 每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。
③ 开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数4、估算① 估算,一般结果是相对复杂的小数,估算有精确位数5、用计算机开平方6、实数① 实数:有理数和无理数的统称② 实数也可以分为正实数、0、负实数③ 每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大7、二次根式① 含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数② =(a≥0,b≥0),=(a≥0,b0)③ 最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式④ 化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式第三章位置与坐标1、确定位置① 在平面内,确定一个物体的位置一般需要两个数据2、平面直角坐标系① 含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系② 通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。
(完整)八年级数学上册知识点复习总结(北师大版),推荐文档
北师大版《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
勾股定理中考章节复习(知识点+经典题型分析总结)
勾股定理中考章节复习(知识点+经典题型分析总结)【知识要点】1. 勾股定理的概念:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么 a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方。
2. 勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形,其中c 为斜边。
3. 勾股数:①满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。
)②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)4.命题、定理、证明⑴ 命题的概念:判断一件事情的语句,叫做命题。
理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。
⑵ 命题的分类(按正确、错误与否分)真命题(正确的命题)命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
⑶ 公理:人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。
⑷ 定理:用推理的方法判断为正确的命题叫做定理。
⑸ 证明:判断一个命题的正确性的推理过程叫做证明。
⑹ 证明的一般步骤① 根据题意,画出图形。
② 根据题设、结论、结合图形,写出已知、求证。
③ 经过分析,找出由已知推出求证的途径,写出证明过程。
AB C a b c 弦股勾A BD 5.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。
数学第一章第二章知识点
1 / 10第一章勾股定理复习专题一、知识要点回顾:1、勾股定理:直角三角形两直角边的 等于斜边的 ;如果直角三角形两直角边分2、勾股定理的逆定理:如果三角形的三边长a,b,c 满足 ,那么这个三角形是___________.3、勾股数:满足a 2+b 2=c 2的三个 a,b,c,成为勾股数;写出常用的几组勾股数 , , 4.直角三角形斜边上的高为------------------。
二、典型例题解析与练习专题一:勾股定理例题1、在Rt △ABC ,∠C=90°则:⑴已知a=b=5,求c 2。
⑵已知a=1,c=2, 求b 2。
⑶已知c=17,b=8, 求a 。
⑷已知a :b=3:4,c=25, 求 b 。
例题2、已知直角三角形的两边长分别为5和12,求第三边。
练习:1、已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 。
例题3、已知:如图,等边△ABC 的边长是6cm。
⑴求等边△ABC 的高。
⑵求S △ABC 。
例题4、 如图,有一个直角三角形纸片,两直角边AC=18cm ,BC=24cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出BD 的长吗?DBA2 / 10练习。
如图,在矩形ABCD 中,AB =5cm ,在边CD 上适当选定一点E ,沿直线AE 把△ADE 折叠,使点D 恰好落在边BC 上一点F 处,且△ABF 的面积是30cm 2.(1)求此时AD 的长. (2)求DE 的长。
2.如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则EB 的长是( ).A .3B .4 CD .5例题5、一个直角三角形的周长为9,斜边为4,求这个三角形的面积。
练习:1.直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 2.直角三角形的三边长为连续偶数,则这三个数分别为__________.3、图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是_________(3题图) (第4题图) (第5题图) (第6题图)4、如图,在△ABC 中,CE 是AB 边上的中线,CD ⊥AB 于D,且AB=5,BC=4,AC=6,则DE 的长为_______.5、如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是__________6、如图,等腰ABC △中,AB AC =,AD 是底边上的高,若5cm 6cm AB BC ==,,则AD = cm .7.一辆装满货物的卡车,高2.5米,宽1.6米,要开进厂门形状如图所示的某工厂,问这辆卡能否通过厂门(厂门上方为半圆形拱门)?说明你的理由.AC DBll 2 l 3ACBABCFEDCBA专题二:勾股定理的逆定理例题1、判断由线段abc组成的三角形是不是直角直角三角形:(1)a=15,b=8,c=17 (2)a=13,b=14,c=15 (3)三边长之比为 3∶4∶5;练习: 1、试判断下列三角形是否是直角三角形:⑴a=9,b=41,c=40;⑵a=15,b=16,c=6;(3)a=5k,b=12k,c=13k(k>0)。
初二上期末复习勾股定理与平方根
(二)勾股定理与平方根一、勾股定理、勾股数、勾股定理的应用 1、勾股定理:直角三角形两直角边的平方和等于斜边的平方。
数学式子:∠C=900⇒222a b c +=2、神秘的数组(勾股定理的逆定理):如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形. 数学式子:222a b c +=⇒∠C=900满足a 2+b 2=c 2三个数a 、b 、c 叫做勾股数。
例1:一轮船在大海中航行,它先向正北方向航行8 km ,接着,它又掉头向正东方向航行15千米.⑴ 此时轮船离开出发点多少km? ⑵ 若轮船每航行1km ,需耗油0.4升,那么在此过程中轮船共耗油多少升?例2:如图,有一块直角三角形纸片,两直角边AC =6cm , BC =8cm ,现将直角边AC 沿直线折叠,使它落在斜边AB 上,且点C 落到E 点,则CD 的长是多少?例3:甲、乙两人在沙漠进行探险,某日早晨8∶00甲先出发,他以6千米/时速度向东南方向行走,1小时后乙出发,他以5千米/时速度向西南方向行走,上午10∶00时,甲、乙两人相距多远?Aa ED CB A DCBA例4:如图,由5个小正方形组成的十字形纸板,现在要把它剪开,使剪成的若干块能够拼成一个大正方形。
(1) 如果剪4刀,应如何剪拼?(2) 少剪几刀,也能拼成一个大正方形吗? 【巩固练习】1、Rt △ABC 中,∠C=900⑴如果BC=9,AC=12,那么AB= 。
⑵如果BC=8,AB =10,那么AC = 。
2、等腰三角形ABC 的腰长为10,底边上的高为6,则底边的长为多少?二、平方根、立方根1、平方根如果一个数的平方等于9,这个数是几? ±3是9的平方根;9的平方根是±3。
一般地,如果一个数的平方等于a ,那么这个数叫做的a 平方根,也称为二次方根。
数学语言:如果a x =2,那么x 就叫做a 的平方根。
2、平方根的表示方法:一个正数a 的正的平方根,记作“a ”,正数a 的负的平方根记作“a -”。
八年级数学(上)全册教案(新人教版)
八年级数学(上)全册教案(新人教版)第一章:勾股定理1.1 勾股定理的发现导入:通过直角三角形的实际测量,让学生感受勾股定理的背景。
探究:引导学生通过实际操作,发现勾股定理,并能够用字母表示。
练习:让学生通过解决实际问题,巩固勾股定理的应用。
1.2 勾股定理的证明导入:通过回顾三角形知识,引导学生思考勾股定理的证明方法。
探究:让学生通过割补、折叠等方法,尝试证明勾股定理。
练习:让学生通过解决实际问题,加深对勾股定理证明的理解。
第二章:实数与方程2.1 实数的分类导入:通过生活中的实例,引导学生理解实数的概念。
探究:让学生通过分类讨论,理解实数的分类,包括有理数和无理数。
练习:让学生通过解决实际问题,加深对实数分类的理解。
2.2 一元一次方程导入:通过实例引入方程的概念,引导学生理解一元一次方程的特点。
探究:让学生通过解方程的方法,掌握一元一次方程的解法。
练习:让学生通过解决实际问题,巩固一元一次方程的应用。
第三章:不等式与不等式组3.1 不等式的概念导入:通过比较大小引入不等式的概念,引导学生理解不等式的表示方法。
探究:让学生通过实际操作,理解不等式的性质。
练习:让学生通过解决实际问题,加深对不等式概念的理解。
3.2 不等式的解法导入:通过实例引入不等式的解法,引导学生掌握解不等式的方法。
探究:让学生通过实际操作,掌握不等式的解法。
练习:让学生通过解决实际问题,巩固不等式的解法。
第四章:函数及其图象4.1 函数的概念导入:通过实例引入函数的概念,引导学生理解函数的表示方法。
探究:让学生通过实际操作,理解函数的性质。
练习:让学生通过解决实际问题,加深对函数概念的理解。
4.2 一次函数的图象导入:通过实例引入一次函数的图象,引导学生理解一次函数图象的特点。
探究:让学生通过实际操作,绘制一次函数的图象。
练习:让学生通过解决实际问题,巩固一次函数图象的应用。
第五章:平面图形的认识5.1 线段的性质导入:通过实例引入线段的概念,引导学生理解线段的性质。
初二数学上册知识点.复习及配套练习(新北师大版本)
.新北师大版八年级数学上册知识点复习第一章勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即 2 2 2a b c 。
2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。
2 2 23.勾股定理逆定理:如果三角形的三边长a,b,c 满足a b c ,那么这个三角形是2 2 2直角三角形。
满足a b c 的三个正整数称为勾股数。
第二章实数1.平方根和算术平方根的概念及其性质:(1)概念:如果 2x a,那么x 是a 的平方根,记作: a ;其中 a 叫做a 的算术平方根。
(2)性质:①当a≥0 时, a ≥0;当a <0时, a 无意义;②2a =a ;③ 2a a 。
2.立方根的概念及其性质:(1)概念:若(2)性质:①33 a ;x a ,那么x 是a 的立方根,记作:33 a3 a ;② 3 a a;③ 3 a = 3 a3.实数的概念及其分类:(1)概念:实数是有理数和无理数的统称;(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。
无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。
4.与实数有关的概念:在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。
因此,数轴正好可以被实数填满。
a a5.算术平方根的运算律:(a ≥0,b ≥0);(a ≥0,b >0)。
a b a bb b第三章位置与坐标1.直角坐标系及坐标的相关知识。
2.点的坐标间的关系:如果点A、B横坐标相同,则AB ∥y 轴;如果点A、B 纵坐标相同,则AB∥x 轴。
3.将图形的纵坐标保持不变,横坐标变为原来的1倍,所得到的图形与原图形关于y 轴对称;将图形的横坐标保持不变,纵坐标变为原来的1倍,所得到的图形与原图形关于x 轴对称;将图形的横、纵坐标都变为原来的1倍,所得到的图形与原图形关于原点成中心对称。
北师大版数学八年级上册全册复习
例4 李老师让同学们讨论这样一个问题,如图1-3所示,有 一个长方体盒子,底面正方形的边长为2 cm,高为3 cm,在长
方体盒子下底面的A点处有一只蚂蚁,它想吃到上底面的F点处
的食物,则怎样爬行路程最短?最短路程是多少?
过了一会,李老师问同学们答案,甲生说:先由A点到B点, 再走对角线BF;乙生说:我认为应由A先走对角线AC,再走C到F 点;丙生说:将长方形ABCD与长方形BEFC展开成长方形AEFD, 利用勾股定理求AF的长;丁生说:将长方形ABCD与正方形CFGD 展开成长方形ABFG,利用勾股定理求AF的长.你认为哪位同学
则BF=BC+CF=3+2=5(cm),AB=2 cm,连接AF,在 Rt△ABF中,AF2=BF2+AB2=52+22=29≈5.392,
∴AF=5.39 cm.连接AC, ∵AF<AC+CF,
∴丁的方法比乙的好. 比较丙生与丁生的计算结果,知丙生的说法正确.
图1-4
图1-5
方法技巧
最短路径问题是勾股定理在立体几何中的应用,一般做法 是把长方体(或其他几何体)侧面展开,将立体图形问题转化为 平面图形问题,再根据两点之间线段最短,用勾股定理求解.
图1-19
15.一个棱长为6的木箱(如图1-20),一只苍蝇位于左面的壁 上,且到该面上两侧棱距离相等的A处.一只蜘蛛位于右面壁上 ,且到该面与上、下底面两交线的距离相等的B处.已知A到下 底面的距离AA′=4,B到一个侧面的距离BB′=4,则蜘蛛沿这 个立方体木箱的内壁爬向苍蝇的最短路程为多少?
在 Rt△ECF 中,有 EF2=a22+a42=156a2. 在 Rt△FDA 中,有 AF2=a22+a2=54a2.
在 Rt△ABE 中,有 BE=a-14a=34a,
人教版八年级数学下册课件勾股定理复习课(课2)
c
(1)如果∠A和∠B是邻补角,那么∠A+∠B=180〫.
重难点3:勾股定理逆定理的应用
Ca B
知识梳理
3. 勾股定理逆定理的应用
② 实质:由“数”到“形”的转化; ③ 应用:判定一个三角形是否为直角三角形.
知识梳理
4. 勾股数
勾股数
正整数
判断一组数是不是勾股数的步骤: 看、找、算、判.
重点解析
反走私艇 B 离走私艇 C 12 海里,若走私艇 C
从边的方面判断:如果已知条件与边有关系,则可以通过勾股定理的逆定理进行判断.
两个角都是40〫
重点解析
1.有些命题在不容易确定题设和结论的情况下,可 以先改写成“如果……那么……”的形式,然后确 定题设和结论. 2.判断一个命题是假命题只需要举出一个反例即可.
重点解析
重难点2:勾股定理的逆定理
判断满足下列条件的三角形是不是直角三角形.如果是, 请指出哪个角是直角. (1)在△ABC中,∠A=25〫、∠B=65〫; 解:(1)在△ABC中,因为∠A=25〫、∠B=65〫,所以 ∠C=180〫-∠A-∠B=90〫,所以这个三角形是直角三角形. ∠C是直角.
重点解析
重难点4:勾股数
判断下列各组数是不是勾股数:
深化练习
1.在△ABC中,∠A、 ∠B 、 ∠C的对边分别是a、b、c,下列判断 错误的是( B ).
A.如果∠C- ∠B= ∠A,则△ABC是直角三角形.
深化练习
A.如果∠C- ∠B= ∠A,则△ABC是直角三角形. 解析:因为∠C- ∠B=∠A,所以 ∠C=∠B+∠A. 因为∠C+∠B+∠A=180〫,所以 ∠C+∠C=180〫. 解得:∠C=90〫,所以△ABC是直角三角形.
北师大版八年级上册数学复习题(经典)
CB 257第一章 勾股定理一、选择题1.等腰三角形的腰长为13cm ,底边长为10cm ,则面积为( ).A .30 cm 2B .130 cm 2C .120 cm 2D .60 cm 22.已知Rt △ABC 中,∠C =90°,若14=+b a cm ,10=c cm ,则Rt △ABC 的面积为( ).(A )24cm 2 (B )36cm 2 (C )48cm 2 (D )60cm 23.如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为 S 1,S 2,S 3,则S 1,S 2,S 3之间的关系是( ). (A )321S S S >+ (B )321S S S =+(C )321S S S <+ (D )无法确定 4、以下列各组数为边长,能组成直角三角形的是( )A .2,3,4B .10,8,4C .7,25,24D .7,15,125、已知一个Rt △的两边长分别为3和4,则第三边长的平方是( )A .25B .14C .7D .7或256、以面积为9 cm 2的正方形对角线为边作正方形,其面积为( )A .9 cm 2B .13 cm 2C .18 cm 2D .24 cm 27、如图,直角△ABC 的周长为24,且AB:AC=5:3,则BC=( )A .6B .8C .10D .128、如图,一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米,如果梯子的顶端下滑4米,那么梯子的底部在水平方向上滑动了( )A .4米B .6米C .8米D .10米9、将一根长24 cm 的筷子,置于底面直径为5cm 、高为12cm 的圆柱形水杯中,设筷子露在杯子外面的长为hcm ,则h 的取值范围是( )A .5≤h ≤12B .5≤h ≤24C .11≤h ≤12D .12≤h ≤2410、已知,如图,长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A .6cm 2B .8cm 2C .10cm 2D .12cm2 11、已知,如图,四边形ABCD 中,AB=3cm ,AD=4cm ,BC=13cm ,CD=12cm ,且∠A=90°,则四边形ABCD 的面积为( )A 、36,B 、22C 、18D 、1212.一个三角形的三边长分别是cm cm cm 25,20,15,则这个三角形的面积是( )A 250 2cmB 1502cmC 200 2cmD 不能确定13.将直角三角形的三边扩大相同的倍数后,得到的三角形是( )A 直角三角形B 锐角三角形 词C 钝角三角形D 不能确定二、填空题1.如图,小张为测量校园内池塘A ,B 两点的距离,他在池塘边选定一点 C ,使∠ABC =90°,并测得AC 长26m ,BC 长24m ,则A ,B 两点间的距离为 m .2.如图,阴影部分是一个半圆,则阴影部分的面积为 .(π不取近似值)321S S S3.底边长为16cm ,底边上的高为6cm 的等腰三角形的腰长为 cm .4.一艘轮船以16km/h 的速度离开港口向东北方向航行,另一艘轮船同时离开港口以12km/h的速度向东南方向航行,它们离开港口半小时后相距 km .5.一个长为10m 为梯子斜靠在墙上,梯子的顶端距地面的垂直高度为8m ,梯子的顶端下滑2m 后,底端滑动 m .6.若△ABC 中,∠C=90°,(1)若a =5,b =12,则c = ;(2)若a =6,c =10,则b = ;(3)若a ∶b =3∶4,c =10,则a = ,b = .7.某农舍的大门是一个木制的矩形栅栏,它的高为2m ,宽为1.5m ,现需要在相对的顶点间用一块木棒加固,木板的长为 .8.直角三角形两直角边长分别为5cm ,12cm ,则斜边上的高为 .9、如图,从电线杆离地面6米处向地面拉一条长10米的缆绳,这条缆绳在地面的固定点距离电线杆底部为 米。
勾股定理、实数、位置与坐标、二元一次方程组复习 北师
勾股定理、实数、位置与坐标、二元一次方程组复习1、如果Rt △两直角边的比为5∶12,则斜边上的高与斜边的比为( )A .60∶13B .5∶12C .12∶13D .60∶1692、已知Rt △ABC 中,∠C =90°,若a +b =14cm ,c =10cm ,则Rt △ABC 的面积是( )A .24cm 2B .36cm 2C .48cm 2D .60cm 23、等腰三角形底边上的高为8,周长为32,则三角形的面积为( )A .56B .48C .40D .324、某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( )A .450a 元B .225a 元C .150a 元D .300a 元 5、直角坐标系中,点P (x ,y )在第三象限,且P 到x 轴、y 轴距离分别为3,7,则P 点坐标为( )A .(﹣3,﹣7)B .(﹣7,﹣3)C .(3,7)D .(7,3)6、如果yx <0,),(y x Q 那么在( )象限 A . 第四 B . 第二 C . 第一、三 D .第二、四7、已知平面直角坐标系内点),(y x 的纵、横坐标满足2x y =,则点),(y x 位于( )A .x 轴上方(含x 轴)B . x 轴下方(含x 轴)C .y 轴的右方(含y 轴)D .y 轴的左方(含y 轴)8. 如果方程组531x y ax y b -=⎧⎨+=-⎩有无数解,则a 、b 的值为( ) A .a = -3,b = -14 B .a = 3,b = -7 C .a = 1,b = 9 D .a = -3,b = 149、如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+10cy bx by ax 的解,那么,下列各式中成立的是 ( )A .a +4c =2B .4a +c =2C .a +4c +2=0D .4a +c +2=010、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2。
初 二 数 学 期 末 必 考 题
初 二 数 学 期 末 必 考 题复习资料一《勾股定理》【知识回顾】知识点1:(勾股定理)直角三角形两直角边的平方和等于斜边的平方。
如果用a ,b ,c 分别表示直角三角形的两直角边和斜边,那么222c b a =+。
例1:如图,强大的台风使得一根旗杆在离地面9m 处折断倒下,旗杆顶部落在离旗杆底部12m 处,旗杆折断之前为__________m 。
知识点2:(勾股定理的逆运用)如果三角形的三边长a ,b ,c 满足222c b a =+,那么这个三角形是直角三角形。
例2:由线段a ,b ,c 不能组成直角三角形的是( )A .15=a ,17=b ,8=cB .2=a ,3=b ,5=cC .5:4:3::=c b aD .5:4:3::=∠∠∠C B A知识点3:满足222c b a =+的三个正整数,称为勾股数。
常用的勾股数有: ①3n ,4n ,5n ;②5n ,12n ,13n ;③7n ,24n ,25n ;④8n ,15n ,17n ;⑤9n ,40n ,41n 等(n 为正整数)知识点4:勾股定理的应用重点在解决现实生活中“线段最短”的问题,方法是将原来的曲面或多个平面展开成一个平面去解,运用公理“两点之间,线段最短”,同时运用勾股定理,在一个直角三角形中求出一个最短距离。
129CBA例3:如图,圆柱的底面半径是2cm ,高是4cm 。
一只在A 点的昆虫想吃到B 点的食物,需要爬行的最短路径是__________(π取3)【例题学习】例:如图,在四边形ABCD 中,090=∠A ,若AD=4cm ,AB=3cm ,BC=12cm ,DC=13cm ,求四边形ABCD 的面积?【巩固练习】1、小明从家出发向正北方向走了150m ,接着向正东方向走到离家250m 远的地方。
小明向正东方向走了__________m ?2、直角三形的两条直角边分别为5,12,则它的面积是_________3、如图,直角三角形三边上的半圆面积之间关系是( )A .321S S S =+B .321S S S >+C .321S S S <+D .无法确定4、如图,直角三角形ABC 的周长为24,且AB ∶BC =5∶3,则AC 的长为( A .6 B .8 C .10D .125、一架云梯长25m ,如图那样斜靠在一面墙上,云梯底端离墙7m ,如果云梯的顶端下滑了4m ,那么它的底部在水平方向也滑动( )米。
新人教版八年级上册数学复习提纲
新人教版八年级上册数学复习提纲新人教版八年级上册数学复习提纲第一章勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即。
2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。
3.勾股定理逆定理:如果三角形的三边长,,满足,那么这个三角形是直角三角形。
满足的三个正整数称为勾股数。
第二章实数1.平方根和算术平方根的概念及其性质:(1)概念:如果,那么是的平方根,记作:;其中叫做的算术平方根。
(2)性质:①当≥0时,≥0;当<0时,无意义;②=;③。
2.立方根的概念及其性质:(1)概念:若,那么是的立方根,记作:;(2)性质:①;②;③=3.实数的概念及其分类:(1)概念:实数是有理数和无理数的统称;(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。
无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。
4.与实数有关的概念:在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。
因此,数轴正好可以被实数填满。
5.算术平方根的运算律:(≥0,≥0);(≥0,>0)。
第三章图形的平移与旋转1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。
2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。
这点定点称为旋转中心,转动的角称为旋转角。
旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等。
新北师大版数学八年级上册复习知识点完整版
新北师大版数学八年级上册复习知识点HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】新北师大版八年级上数学第一章到第七章知识点总结第一章 勾股定理【主要知识】1、勾股定理:直角三角形的两直角边的平方和等于_______________。
如果用b a ,和c 分别表示直角三角形的两直角边和斜边,那么________________【注】①直角三角形;②找准斜边、直角边。
2、(1)勾股定理的逆定理:如果三角形的三边长c b a ,,满足_____________,那么这个三角形是直角三角形。
(2)勾股数:满足222c b a =+的三个正整数,称为______________。
3、勾股定理的应用1、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( )A .26B .18C .20D .212、在下列数组中,能构成一个直角三角形的有( )①10,20,25;②10,24,25;③9,80,81;④8;15;17A 、4组B 、3组C 、2组D 、1组3、三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是( ).A 、钝角三角形B 、锐角三角形C 、直角三角形D 、等边三角形4、下列各组数:①,,;②9,12,16;③4,5,6;④a 8,a 15,a 17(0≠a ); ⑤9,40,41。
其中是勾股数的有( )组A 、1B 、2C 、3D 、45、将Rt △ABC 的三边都扩大为原来的2倍,得△A ’B ’C ’,则△A ’B ’C ’为( )A 、 直角三角形B 、锐角三角形C 、钝角三角形D 、无法确定6、在Rt △ABC 中,∠C =90°,∠B =45°,c =10,则a 的长为( )A :5B :10C :25D :57、已知a 、b 、c 是三角形的三边长,如果满足2(6)100a c --=,则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数:无限不循环小数叫做无理数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一、二章复习
一、例题讲解
例1.如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.
①求证:△ACE≌△BCD;②若AD=5,BD=12,求DE的长.
例2.已知:如图,△ABC中,∠C=90º,AD是角平分线,CD=15,BD=25.求AC的长。
例3.课堂上,老师给同学们出了一道题:“有一直角三角形的两边长分别为6cm和8cm,你们知道第三边的长度吗”刘飞立刻答:“第三边是10cm”你认为第三边应该是 cm。
例4.直角三角形的周长为24,斜边长为10,则其面积为。
例5.如图,在四边形ABCD中,∠DAC=90°,AB=BC=4 . AD=2 , CD=6. 求∠BAD的度数.
例6.(折叠问题)如图,折叠矩形的一边AD,点D落在BC边上点F处,已知AB=8cm,BC=10cm,求EC的
长为 cm.
例7.(将军饮马)如图,一牧童家在B 出,A 、B 两地相距河岸的距离AC 、BD
的长分别是500米和700米,且C 、D 两点之间的距离为500米, 天黑前牧童从点A 将马牵到河边去饮水,再赶回家,那么牧童
例82440y y -+=,求xy 的值。
例9.已知111-的整数部分为a ,小数部分为b ,试求()()111++b a 的值。
例10.计算
(1)23
21-318++
(2) ()()()
22
12-323+++
二、课堂练习
1如图,将矩形ABCD 沿直线AE 折叠,使顶点D 恰好落在BC 边上F 点处,已知CE=3cm ,AB=8cm ,则图中阴影部分的面积为多少cm 2.
2.如图,在4×3的正方形网格中,△ABC 与△DEC 的顶点都在边长为1的小正方形的顶点上. (1)求证:∠BCE=90°;
(2)求∠BAC+∠CDE 的度数.
3.如图,在ABC Rt △中,∠ACB=90°,点D 为AB 的中点,DE 、DF 分别交AC 于点E ,交BC 于点F ,且DE ⊥DF.
(1)如果CB CA =,求证:2
2
2
EF BF AE =+.
(2)如果CB CA <,(1)中结论还成立吗?若成立,请证明;若不成立,请说明理由.
4.如图,在△ABC中,∠ACB=90°,BC=5cm,AC=12cm,CD⊥AB,D为垂足,求CD的长.
5.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马
牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程。
6.如图,一个高20米,周长10米的圆柱形水塔,现制造一个螺旋形登梯,
.
7.如图,在一个高为5m,长为m的楼梯表面铺地毯,则地毯长度至少应是()
A.13m
B.17m
C.18m
D.25m
8.计算
(1)3072(2)
3 0
3
1
27
3
3
6
2
)
14
.3(
-
⎪
⎭
⎫
⎝
⎛
-
-
+
-
-
-π
(3))36)(1224(+- (4)4818-5
30
20⨯+
9.比较大小
比较与的大小。
比较3121-3与的大小。
10.已知:的值。
求代数式2,211881+++-+-=x
y
y x x x y 11.10
31 (2)
313
212
11++
+++
++
+。
12.若a a a =-+-20001995,求21995-a 的值。
13.求下列方程。
(1)03612
=-x (2)()21289x += (3) ()2
932640
x +-=
(4)27)1(3-=-x (5)0322
=-+x x (6)32-x =-2
14.计算
(1)
(2(231⎛+ ⎝
(3)(()
2
771+-- (4)((
(
(
2
2
2
2
1111-
(5)1828
6
12⨯+⨯ (6) )321(++(321--)
(7)
(9(231⎛+ ⎝
1.化简 (1) (
)
2
1
6
31526-⨯- (2)
)
(3)3
12
)22(28++- (4)32)2145051183(÷-+
2.解下列方程
(1) 241)3(42
=--x (2)261)1(83
-=+-x。