《勾股定理》复习优秀课件ppt
合集下载
勾股定理数学优秀ppt课件
实际应用
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
《勾股定理》复习课件ppt
答案5
根据勾股定理和相似三角形的性质,BD² = AB² - AD² = AC² + BC² - (AC + CD)² = 4² + 6² - (4 + 2)² = 20。 所以 BD = √20 = 2√5。
THANKS
感谢您的观看
勾股定理公式
a² + b² = c²,其中a和b是直角三 角形的两条直角边,c是斜边。
勾股定理的证明方法
欧几里得证明法
利用相似三角形的性质和比例关系, 通过一系列的逻辑推理证明勾股定理 。
毕达哥拉斯证明法
利用正方形的性质和勾股定理的关系 ,通过构造两个正方形证明勾股定理 。
勾股定理的应用场景
实际问题求解
要点一
勾股定理在三维空间的应用
要点二
勾股定理在三维空间的应用示例
勾股定理不仅适用于平面图形,还可以应用于三维空间中 的几何体。
在解决三维几何问题时,可以使用勾股定理来计算空间几 何体的边长或体积。
04
勾股定理的解题技
巧和策略
利用勾股定理求边长
总结词
勾股定理是解决直角三角形问题的重要工具 ,通过已知两边长,可以求出第三边长。
详细描述
勾股定理公式为$c^2 = a^2 + b^2$,其中 $c$为斜边长,$a$和$b$为直角边长。已知 $a$、$b$和$angle C = 90^circ$,可以通
过勾股定理求出第三边长$c$。
利用勾股定理证明三角形为直角三角形
总结词
勾股定理也可以用来证明一个三角形是否为直角三角形。
详细描述
勾股定理复习课件理的回顾 • 勾股定理的常见题型解析 • 勾股定理的变式和推广 • 勾股定理的解题技巧和策略 • 勾股定理的练习题和答案解析
新人教版八年级下《勾股定理复习》超级经典课件【优质PPT】
160
80
E
100
60
60
100
如图,公路MN和小路PQ在P处交汇,∠QPN=30°,点A处有一所学校,AP=160m,假设拖拉机行使时,周围100m内受噪音影响,那么拖拉机在公路MN上以18km/h的速度沿PN方向行驶时,学校是否受到噪音的影响?如果学校受到影响,那么受影响将持续多长时间?
CD=
C
A
B
直角三角形有哪些特殊的性质
角
边
面积
直角三角形的两锐角互余。
直角三角形两直角边的平方和等于 斜边的平方。
两种计算面积的方法。
符号语言:
在Rt△ABC中
a2+b2=c2
a
b
c
如何判定一个三角形是直角三角形呢?
(1)
(2)
有一个内角为直角的三角形是直角三角形
两个内角互余的三角形是直角三角形
符号语言:
5.若有两条线段分别为3,4,第三条线段为________时,才能组成一个直角三角形
5
4
3
2
1
观察下列图形,正方形1的边长为7,则 正方形2、3、4、5的面积之和为多少?
规律:
S2+S3+S4+S5=
S1
4′
3′
4
3
2′
2
1
如图,是一种“羊头”形图案,其作法是:从 正方形1开始,以它的一边为斜边,向外作 等腰三角形,然后再以其直角边为边,分别 向外作正方形2和2′,……依此类推,若 正方形1的边长为64,则正方形7的边长 为 。
C
A
B
a
b
c
a+b=14
c=10
a2+b2=102=100
80
E
100
60
60
100
如图,公路MN和小路PQ在P处交汇,∠QPN=30°,点A处有一所学校,AP=160m,假设拖拉机行使时,周围100m内受噪音影响,那么拖拉机在公路MN上以18km/h的速度沿PN方向行驶时,学校是否受到噪音的影响?如果学校受到影响,那么受影响将持续多长时间?
CD=
C
A
B
直角三角形有哪些特殊的性质
角
边
面积
直角三角形的两锐角互余。
直角三角形两直角边的平方和等于 斜边的平方。
两种计算面积的方法。
符号语言:
在Rt△ABC中
a2+b2=c2
a
b
c
如何判定一个三角形是直角三角形呢?
(1)
(2)
有一个内角为直角的三角形是直角三角形
两个内角互余的三角形是直角三角形
符号语言:
5.若有两条线段分别为3,4,第三条线段为________时,才能组成一个直角三角形
5
4
3
2
1
观察下列图形,正方形1的边长为7,则 正方形2、3、4、5的面积之和为多少?
规律:
S2+S3+S4+S5=
S1
4′
3′
4
3
2′
2
1
如图,是一种“羊头”形图案,其作法是:从 正方形1开始,以它的一边为斜边,向外作 等腰三角形,然后再以其直角边为边,分别 向外作正方形2和2′,……依此类推,若 正方形1的边长为64,则正方形7的边长 为 。
C
A
B
a
b
c
a+b=14
c=10
a2+b2=102=100
(精选幻灯片)勾股定理ppt课件
2 2 22
“总统证法”. 比较上面二式得 c2=a2+b2
16
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
17
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
b c
a2+b2=c2吗?
• 1881年,伽菲尔 德就任美国第二
A b 1 E aB ∵ S梯形ABCD= 2 a+b2
十任总统.后来, 1
人们为了纪念他 对勾股定理直观、 简捷、易懂、明
= (a2+2ab+b2) 2
又∵ S梯形 ABCD=S
AED+S
EBC+S
CED
了的证明,就把 这一证法称为
1 1 11 = ab+ ba+ c2= (2ab+c2)
33
34
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
3
s1 s2
s3
返 拼回 图 4
合作 & 交S流1+☞S2=S3
a等²+腰a直²=角c三²角形两直角边
“总统证法”. 比较上面二式得 c2=a2+b2
16
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
17
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
b c
a2+b2=c2吗?
• 1881年,伽菲尔 德就任美国第二
A b 1 E aB ∵ S梯形ABCD= 2 a+b2
十任总统.后来, 1
人们为了纪念他 对勾股定理直观、 简捷、易懂、明
= (a2+2ab+b2) 2
又∵ S梯形 ABCD=S
AED+S
EBC+S
CED
了的证明,就把 这一证法称为
1 1 11 = ab+ ba+ c2= (2ab+c2)
33
34
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
3
s1 s2
s3
返 拼回 图 4
合作 & 交S流1+☞S2=S3
a等²+腰a直²=角c三²角形两直角边
勾股定理复习精选课件PPT
“海天”
“远航”
11
2021/3/2
Thank you
感谢聆听 批评指导
汇报人:XXX 汇报日期:20XX年XX月XX日 感谢您的观看!本教学内容具有更强的时代性和丰富性,更适合学习需要和特点。为了
方便学习和使用,本文档的下载后可以随意修改,调整和打印。欢迎下载!
12
6
2021/3/2
5、你能在数轴上表示 1 7 的点吗?
7
勾股定理的逆定理
如果三角形的三边长a,b,c满足a2 +b2=c2 ,
2021/3/2
那么这个三角形是直角三角形
B
b
c
符号语言: 在△ABC中,
∵a2+b2=c2
C aA
∴ △ABC 是直角三角形, ∠C=90
互逆定理
如果一个定理的逆命题经过证明是真命题, 那么它也是一个定理, 这两个定理叫做互逆定理8, 其中一个叫做另一个的逆定理.
2021/3/2
说出下列命题的逆命题.并判断逆命题 成立?
(1)两条直线平行,内错角相等. (2)如果两个实数相等,那么它们的平 方相等.
(3)如果两个实数相等,那么它们的绝 对值相等.
(4)全等三角形的对应角相等.
9
2021/3/2
1.在已知下列三组长度的线段中,
不能构成直角三角形的是 ( )
(2)
C
45°B
2
A3
(3)
2021/3/2
2.已知一个直角三角形的两边长分别为3和4, 则第三边长的平方是( )
A、25 B、14 C、7 D、7或25
3.小明想知道学校旗杆的高度,他发现旗杆上 的绳子垂到地面还多1m,当他把绳子的下端拉 开5m后,发现下端刚好接触地面,求旗杆的 高
勾股定理复习课教学课件
C
4
12
B
3
D
A
13
转化
解题方法:不规则四边形
三角形
3.如图,在三角形ABC中,AB=AC,D在BC的延
长线上,求证:AD²-AB²=BD·CD
A
D
C
B
A.20cm B.10cm C.14cm D.无法确定
B
)
2 O 蛋糕 B
周长的一半
C
B
6
8
8
A
A
展开思想:
1. 几何体的表面路径最短的问题,一般展 开表面成平面。
2.利用两点之间线段最短,及勾股定理 求解。
D
B'
A'
A
B
第四章:知识系统梳理
直角三角形
a²+b²=c²
a²+b²=c²
求直角三角形的边长
D
B'
A'
A
B
第二章:我们一起练习吧!
1.已知ΔABC中,∠C=90º, 若a=6, b=8, 则c= _________
B
a
c
C
b
A
2.已知ΔABC中,∠C=90º, 若a=5, c=13, 则b= _________
B
a
c
C
b
A
3.判断:下面以a、b、c 为边的三角形 是不是直角三角形?
12 (7)a=25,b=60,c=________
15
65
你计算的很快呀,怎么做的?跟我们分享一下吧!
6.已知数7和24,请你再写一个整数,使得 这个数正好是一个直角三角形第三边的长, 这个数可以是 ___________.
《勾股定理》数学教学PPT课件(10篇)
= (DE+CE)·( DE- BE)
=BD·
CD.
D
B
E
C
课堂小
结
利用勾股定理解
决实际问题
勾股定理
的应用
构造直角三角形
解决实际问题
第十七章 勾股定理
17.1 勾股定理
第3课时
利用勾股定理作图和计算
知识要点
1.勾股定理与数轴、坐标系
2.勾股定理与网格
3.勾股定理与几何图形
新知导入
想一想:
我们知道数轴上的点有的表示有理数,有的表示无理数,你
能在数轴上画出表示 13 的点吗?
如果能画出长为 13 的线段,就能在数轴上画出表示 13 的
2
点.容易知道,长为
的线段是两条直角边的长都为1的直角三
角形的斜边.
长为 13 的线段能是直角边的长为正整数的直角三角形的
斜边吗?
新知导入
想一想:
利用勾股定理,可以发现,直角边的长为正整数2, 3
知识
的直角三角形的斜边长为
AC2+BC2=AB2
由上面的例子,我们猜想:
命题1 如果直角三角形的两条直角边长分别为a,b,斜边
长为c,那么a2+b2=c2.两直角边的平方和等于斜边的平方.
a
c
b
课程讲授
1
勾股定理
下面让我们跟着以前的数学家们用拼图法来证明这一猜想.
c
证明:∵S大正方形=c2,
S小正方形=(b-a)2,
b
a
b-a
例 如图是由4个边长为1的正方形构成的“田字格”,只用没有刻
度的直尺在这个“田字格”中最多可以作出长度为
8
_____条.
=BD·
CD.
D
B
E
C
课堂小
结
利用勾股定理解
决实际问题
勾股定理
的应用
构造直角三角形
解决实际问题
第十七章 勾股定理
17.1 勾股定理
第3课时
利用勾股定理作图和计算
知识要点
1.勾股定理与数轴、坐标系
2.勾股定理与网格
3.勾股定理与几何图形
新知导入
想一想:
我们知道数轴上的点有的表示有理数,有的表示无理数,你
能在数轴上画出表示 13 的点吗?
如果能画出长为 13 的线段,就能在数轴上画出表示 13 的
2
点.容易知道,长为
的线段是两条直角边的长都为1的直角三
角形的斜边.
长为 13 的线段能是直角边的长为正整数的直角三角形的
斜边吗?
新知导入
想一想:
利用勾股定理,可以发现,直角边的长为正整数2, 3
知识
的直角三角形的斜边长为
AC2+BC2=AB2
由上面的例子,我们猜想:
命题1 如果直角三角形的两条直角边长分别为a,b,斜边
长为c,那么a2+b2=c2.两直角边的平方和等于斜边的平方.
a
c
b
课程讲授
1
勾股定理
下面让我们跟着以前的数学家们用拼图法来证明这一猜想.
c
证明:∵S大正方形=c2,
S小正方形=(b-a)2,
b
a
b-a
例 如图是由4个边长为1的正方形构成的“田字格”,只用没有刻
度的直尺在这个“田字格”中最多可以作出长度为
8
_____条.
勾股定理复习课课件
B点最短路程是 25 .
20
15
如图是一个长8m,宽6m,高5m的仓库,在
其内壁的A处(长的四等分点)处有一只壁虎,
B(宽的三等分)处有一只蚊子,则壁虎抓到蚊
子的最短距离的平方为
m2
A B 21 02521 2 5
B
A
5
5 A
6
8
B
64
8
6B
46
A B 2 6 2 9 23 6 8 1 1 1 7
A、120
B、121 C、132
D、123
6.等腰三角形底边上的高为8,周长为32, 则三角形的面积为(B ) A、56 B、48 C、40 D、32
A x2+82=(16-x)2
x=6
16-x
BC=2x=12
8
SABC
1128B48 2
x
Dx
C
选择题
7.若等腰三角形中相等的两边长为10cm,第三 边长为16 cm,那么第三边上的高为 ( ) A. 12 cm B. 10 cm C. 8 cm D. 6 cm
C 20 A
在Rt△ADC中,(1 0x)22 02(3 0-x)2
解得x=5 ∴树高CD=BC+BD=10+5=15(m)
如图所示是2002年8月北京第24届国际数学 家大会会标“弦图”,它由4个全等的直角三 角形拼合而成。如果图中大、小正方形的面
积分别为52和4,那么一个直角三角形的两
直角边的和等于 10 。
P
30° 100
M 160
A
Q
有一棵树(如图中的CD)的10m高处B有两只猴子
,其中一只猴子爬下树走到离树20m处的池塘A
20
15
如图是一个长8m,宽6m,高5m的仓库,在
其内壁的A处(长的四等分点)处有一只壁虎,
B(宽的三等分)处有一只蚊子,则壁虎抓到蚊
子的最短距离的平方为
m2
A B 21 02521 2 5
B
A
5
5 A
6
8
B
64
8
6B
46
A B 2 6 2 9 23 6 8 1 1 1 7
A、120
B、121 C、132
D、123
6.等腰三角形底边上的高为8,周长为32, 则三角形的面积为(B ) A、56 B、48 C、40 D、32
A x2+82=(16-x)2
x=6
16-x
BC=2x=12
8
SABC
1128B48 2
x
Dx
C
选择题
7.若等腰三角形中相等的两边长为10cm,第三 边长为16 cm,那么第三边上的高为 ( ) A. 12 cm B. 10 cm C. 8 cm D. 6 cm
C 20 A
在Rt△ADC中,(1 0x)22 02(3 0-x)2
解得x=5 ∴树高CD=BC+BD=10+5=15(m)
如图所示是2002年8月北京第24届国际数学 家大会会标“弦图”,它由4个全等的直角三 角形拼合而成。如果图中大、小正方形的面
积分别为52和4,那么一个直角三角形的两
直角边的和等于 10 。
P
30° 100
M 160
A
Q
有一棵树(如图中的CD)的10m高处B有两只猴子
,其中一只猴子爬下树走到离树20m处的池塘A
勾股定理期末复习课件(公开课)
勾股定理
1:勾股定理的验证 2:求第三边 3:求斜边上的高 4:求面积 1:勾股数 2:逆定理(给出三边长度判断直角三角形)
第 一 章 股 股 定 理
勾股定理 逆定理
勾股定理 应用
1:折叠问题 2:最短路径问题
勾股定理: 如果用a,b,c表示直角三角形的两个直角边和斜 边,那么a2+b2=c2 B 变形: 2 2
例1:如图,已知圆柱体底面直径为2cm,高为4cm (1)求一只蚂蚁从A点到F点的距离。 (2)如果蚂蚁从A点到CG边中点H,求蚂蚁爬行的距 离。
F
●
H
A
例2、如图,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到
对角顶点C1处(三条棱长如图所示),问怎样走路线最短?最短路线长 为多少?
D1 A1 D A 4
.
C S3 A S1
S2 B
图3
变式1.如图1-1-3所示的图形中,所有的四边形都 是正方形,所有的三角形都是直角三角形,其中最 大的正方形的边长为7cm,则正方形A,B,C,D的面 积的和是_______
变式2:如图4,分别以Rt
ABC三边为边向外作三个 半圆,其面积分别用S1、S2、S3表示,容易得出S1、S2、
例1:在△ABC中, a : b : c 1:1: 确切形状是_____________。
2
,那么△ABC的
例2:如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12, AD=13, 求四边形ABCD的面积.
例1:如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB 为8cm,• 长BC为10cm.当小红折叠时,顶点D落在BC边上的点F处 (折痕为AE) D A (1)求BF的长; (2)求EC的长。
勾股定理ppt课件一等奖课件
4米
3米
应用知y识=回0 归生活 资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值
2、如图:是一个长方形零件图,根据所给的尺寸, 求两孔中心A、B之间的距离
40
A
90 C
160
B 40
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
勾股定理(gou-gu theorem)
如果直角三角形两直角边分别为a、b, 斜边为c,那么
a2 b2 c2 a c
b
即 直角三角形两直角边的平方和等 于斜边的平方。
勾 股
在中国古代,人们把弯曲成直角的手臂的上半部分称为 "勾",下半部分称为"股"。我国古代学者把直角三角形 较短的直角边称为“勾”,较长的直角边称为“股”, 斜边称为“弦”.
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
C A
(2)在图1-2中,正方 形A,B,C中各含有多 少个小方格?它们的面 积各是多少?
B
图1-1
C A
B
图1-2
(3)你能发现图1-1中 三个正方形A,B,C的 面积之间有什么关系吗? 图1-2中呢?
SA+SB=SC
即:两条直角边上的正方形面积之和等于 斜边上的正方形的面积
3米
应用知y识=回0 归生活 资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值
2、如图:是一个长方形零件图,根据所给的尺寸, 求两孔中心A、B之间的距离
40
A
90 C
160
B 40
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
勾股定理(gou-gu theorem)
如果直角三角形两直角边分别为a、b, 斜边为c,那么
a2 b2 c2 a c
b
即 直角三角形两直角边的平方和等 于斜边的平方。
勾 股
在中国古代,人们把弯曲成直角的手臂的上半部分称为 "勾",下半部分称为"股"。我国古代学者把直角三角形 较短的直角边称为“勾”,较长的直角边称为“股”, 斜边称为“弦”.
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
C A
(2)在图1-2中,正方 形A,B,C中各含有多 少个小方格?它们的面 积各是多少?
B
图1-1
C A
B
图1-2
(3)你能发现图1-1中 三个正方形A,B,C的 面积之间有什么关系吗? 图1-2中呢?
SA+SB=SC
即:两条直角边上的正方形面积之和等于 斜边上的正方形的面积
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反馈检测
在矩形纸片ABCD中,AD=4cm,AB=10cm,
按图所示方式折叠,使点B与点D重合,折痕为
EF,求DE的长。
A
E
B
D
C F
C’
D’
•知识点3:(展开问题)
买最长 的吧!
快点回家, 好用它凉衣
服。
糟糕,太 长了,放 不进去。
如果电梯的长、宽、高分别是1.5米、 1.5米、2.2米,那么,能放入电梯内的 竹竿的最大长度大约是多少米?你能估 计出小明买的竹竿至少是多少米吗?
我们的誓言
我是一个有良知的人,我将无愧于父母的养育之恩和老师 的良苦用心;
我是一个有骨气的人,我不甘于平庸、碌碌无为,我将通 过百倍的努力去改变人生,创造辉煌;
我是一个意志坚强的人,我决不会言苦言累,“头悬梁、 锥刺骨”将是我学习上永远的榜样;
我是一个惜时如金的人,我决不浪费分秒宝贵的时间, “三更灯火五更鸡”将会是我刻苦学习的典范;
3、影响我们人生的绝不仅仅是环境,其实是心态在控制个人的行动和思想。同时,心态也决定了一个人的视野和成就,甚至一生。 4、无论你觉得自己多么了不起,也永远有人比更强;无论你觉得自己多么不幸,永远有人比你更不幸。
5、也许有些路好走是条捷径,也许有些路可以让你风光无限,也许有些路安稳又有后路,可是那些路的主角,都不是我。至少我会觉得,那些路不是自己想要的。 6、在别人肆意说你的时候,问问自己,到底怕不怕,输不输的起。不必害怕,不要后退,不须犹豫,难过的时候就一个人去看看这世界。多问问自己,你是不是已经为了梦想而竭尽全力了?
D A
E
B
FC
4,折叠矩形ABCD的一边AD, 折痕为AE, 且使点D落 在BC边上的点F处,已知AB=8cm,BC=10cm, 求点F和点E坐标。
y
A
D
E
BO
FCx
3、如图,将一个边长分别为4、8的长方形 纸片ABCD折叠,使C点与A点重合,则EF 的长是?
A
F D
B
C
E
2、我国古代数学著作《九章算术》中的一个问题, 原文是:今有方池一丈,葭生其中央,出水一尺,引 葭赴岸,适与岸齐,水深、葭长各几何?请用学过的 数学知识回答这个问题。
A
x
1.5米
1.5米
2.2米
2.2米
1.5米
1.5米
Cx
B
X2=1.52+1.52=4.5
AB2=2.22+X2=9.34
AB≈3米
如图是一个三级台阶,它的每一级的长宽和高分别为20dm、 3dm、2dm,A和B是这个台阶两个相对的端点, A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿 着台阶面爬到B点最短路程是多少?
3、三角形ABC中,AB=10,AC=17,BC 边上的高线AD=8,求BC的长?
分类思想
规律
1.直角三角形中,已知两边长时, 应分类讨论。
2.当已知条件中没有给出图形时, 应认真读句画图,避免遗漏另一 种情况。
•知识点2:(折叠问题)
1、如图,用一张长方形纸片ABCD进行折纸, 已知该纸片宽AB为8cm,•长BC•为10cm.当 折叠时,顶点D落在BC边上的点F处(折痕 为AE). 想一想,此时EC有多长?•
B
5 E 10 C
A 10 F
如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬
到点B处吃食,要爬行的最短路程( 取3)是( B )
A.20cm B.10cm C.14cm D.无法确定
周长的一半
2O
蛋糕 B
C6
B
8
8
A
A
展开思想
规律
1. 几何体的表面路径最短的问题,一般展 开表面成平面。
A
D
E
B
FC
2、如图,一块直角三角形的纸片,两直角 边AC=6㎝,BC=8㎝。现将直角边AC沿直 线AD折叠,使它落在斜边AB上,且与AE重 合,求CD的长.
A
6 6 E4
C
D D
B
第8题图
方程思想
规律
直角三角形中,当无法已知两边 求第三边时,应采用间接求法: 灵活地寻找题中的等量关系,利 用勾股定理列方程。
C5 X X+B1
A
1、小强想知道学校旗杆的高,他发现旗杆顶端的 绳子垂到地面还多1米,当他把绳子的下端拉开5米 后,发现下端刚好接触地面,你能帮他算出来吗?
A
x米 (X+1)米
C 5米
B
1、快乐总和宽厚的人相伴,财富总与诚信的人相伴,聪明总与高尚的人相伴,魅力总与幽默的人相伴,健康总与阔达的人相伴。 2、人生就有许多这样的奇迹,看似比登天还难的事,有时轻而易举就可以做到,其中的差别就在于非凡的信念。
A
20
C
A
20
3
23
2
3
2
B
3
2 B
如图,长方体的长为
15 cm,宽为 10 cm,高 为20 cm,点B离点C 5 cm,一只蚂蚁如果要沿着 长方体的表面从点 A爬 到点B,需要爬行的最短 距离是多少?
5B
C
20
15
A 10
E
5B C
20
15
A 10 F
E C5 B
20
A 10
5
B C
20
15 A 20
2.利用两点之间线段最短,及勾股定理 求解。
反馈检测
做一个长、宽、高分别为50厘米、40厘米、 30厘米的木箱,一根长为70厘米的木棒能 否放入,为什么?试用今天学过的知识说 明.
再见
5、折叠矩形ABCD的一边AD,点D落在 BC边上的点F处,已AB=8CM,BC=10CM, 求 1.CF 2.EC.
常见题型探讨
• 知识点1:(已知两边ห้องสมุดไป่ตู้第三边)
1.在直角三角形中,若两直角边的长分 别为1cm,2cm ,则斜边长为 _____. 2.已知直角三角形的两边长为3、4,
则另一条边长是________________.
3、三角形ABC中,AB=10,AC=17,BC
边上的高线AD=8,求BC的长?
我是一个潜力无穷的人,我的潜力在于我始终不渝、坚持
勾股定理 复习课
再回首 勾股定理:B 弦c
字母表示:
勾a
如果在Rt∆ABC中,
C 股b A
∠C=90°
那么a2
+
b2
=
c2
直角三角形是前提 谁是斜边看清楚
语言叙述:
直角三角形的两条直角边的平方 和等于它斜边的平方。
工具箱
勾股定理的公式变形
A
a2+b2=c2
c b
C
a
a2=c2-b2
B
a c2 b2
b2 =c2-a2
b= c2-a2
c a2 b2
基础练习
1.在Rt△ABC中,∠C=90°, ①若a=5,b=12,则c=___________;
②若a=15,c=25,则b=___________;
③若c=61,b=60,则a=__________; ④若a∶b=3∶4,c=10, 则Rt△ABC的面积为________。